RU2268896C2 - Высокотекучие пропиленовые блоксополимеры - Google Patents

Высокотекучие пропиленовые блоксополимеры Download PDF

Info

Publication number
RU2268896C2
RU2268896C2 RU2002134901/04A RU2002134901A RU2268896C2 RU 2268896 C2 RU2268896 C2 RU 2268896C2 RU 2002134901/04 A RU2002134901/04 A RU 2002134901/04A RU 2002134901 A RU2002134901 A RU 2002134901A RU 2268896 C2 RU2268896 C2 RU 2268896C2
Authority
RU
Russia
Prior art keywords
propylene
polymerization
bar
stage
block copolymers
Prior art date
Application number
RU2002134901/04A
Other languages
English (en)
Other versions
RU2002134901A (ru
Inventor
Ульрих ДАН (DE)
Ульрих ДАН
Вольфганг БИДЕЛЛЬ (DE)
Вольфганг БИДЕЛЛЬ
Ханс-Юрген ЦИММЕРМАНН (DE)
Ханс-Юрген ЦИММЕРМАНН
Роланд ХИНГМАНН (DE)
Роланд ХИНГМАНН
Йоахим РЕШ (DE)
Йоахим РЕШ
Гюнтер ШВАЙЕР (DE)
Гюнтер ШВАЙЕР
Юрген ОЕЛЬЦЕ (DE)
Юрген ОЕЛЬЦЕ
Original Assignee
Базелль Полиолефин Италия С.П.А.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7643405&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=RU2268896(C2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Базелль Полиолефин Италия С.П.А. filed Critical Базелль Полиолефин Италия С.П.А.
Publication of RU2002134901A publication Critical patent/RU2002134901A/ru
Application granted granted Critical
Publication of RU2268896C2 publication Critical patent/RU2268896C2/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F297/00Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
    • C08F297/06Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the coordination type
    • C08F297/08Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the coordination type polymerising mono-olefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/04Monomers containing three or four carbon atoms
    • C08F10/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/04Monomers containing three or four carbon atoms
    • C08F110/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/04Monomers containing three or four carbon atoms
    • C08F210/06Propene

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Graft Or Block Polymers (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Artificial Filaments (AREA)

Abstract

Изобретение относится к высокотекучим пропиленовым блоксополимерам, состоящим из 50-80 вес.% пропиленового гомополимера и из 20-50 вес.% пропиленового сополимера, сополимеризованного с 10-70 вес.%, отличного от пропилена, C2-C8-алк-1-ена. Способ получения высокотекучих пропиленовых блоксополимеров включает газофазную двухступенчатую полимеризацию в присутствии катализатора Циглера-Натта. На первой ступени полимеризации пропилен полимеризуют при давлении от 10 до 50 бар, температуре от 50 до 100°С и средней продолжительности выдерживания реакционной смеси от 0,3 до 5 часов в присутствии, по меньшей мере, 2,0 об.% водорода в расчете на общий объем. Пропиленовый гомополимер, полученный на первой ступени полимеризации, вместе с каталитической системой Циглера-Натта направляют в промежуточную емкость, где сначала в течение 0,01-5 минут снижают давление ниже 5 бар и поддерживают температуру от 10 до 80°С и затем, путем сжатия газовой смеси, давление в промежуточной емкости опять повышают до 5-60 бар. Подвергнутый промежуточной декомпрессии пропиленовый гомополимер вместе с каталитической системой Циглера-Натта подают на вторую ступень полимеризации, где под давлением от 10 до 50 бар, при температуре от 50 до 100°С и средней продолжительности выдерживания реакционной смеси от 0,5 до 5 часов пропиленовый гомополимер сополимеризуют смесью пропилена и С28-алк-1-ена. Весовое соотношение между прореагировавшими мономерами на первой и на второй ступенях поддерживают в интервале от 4:1 до 1:1. Высокотекучие пропиленовые блоксополимеры применяют для получения пленок, волокон и формованных изделий. 3 н. и 7 з.п. ф-лы, 5 табл.

Description

Настоящее изобретение касается высокотекучих пропиленовых блоксополимеров, состоящих из 50-80 вес.% пропиленового гомополимера и 20-50 вес.% пропиленового сополимера с 10-70 вес.% полимеризованного, отличного от пропилена, С28-алк-1-ена, полученных путем двухступенчатой полимеризации с использованием каталитической системы Циглера-Натта из газовой фазы, причем на первой ступени полимеризации пропилен полимеризуется под давлением 10-50 бар, при температуре 50-100°С и средней продолжительности пребывания реакционной смеси от 0,3 до 5 часов в присутствии, по меньшей мере, 2 об.% водорода от общего объема и затем полученный на первой ступени полимеризации пропиленовый гомополимер с каталитической системой Циглера-Натта передается в промежуточную емкость, где вначале в течение 0,01-5 минут давление снижается ниже 5 бар и поддерживается температура 10-80°С и в заключение путем сжатия газовой смеси давление в промежуточной емкости вновь повышается на 5-60 бар, и после этого пропиленовый гомополимер вместе с каталитической системой Циглера-Натта направляется на вторую ступень полимеризации, где под давлением 10-50 бар, при температуре 50-100°С и средней продолжительности от 0,5 до 5 часов к пропиленовому гомополимеру сополимеризуется смесь из пропилена и С28-алк-1-ена, и при этом весовое соотношение мономера, прореагировавшего на первой и на второй ступени полимеризации, составляет от 4:1 до 1:1.
Далее настоящее изобретение касается способа получения таких высокотекучих пропиленовых блоксополимеров, а также их применения в качестве пленок, волокон или формованных изделий.
Пропилен-этиленовые блоксополимеры, полученные путем полимеризации на каталитической системе Циглера-Натта, уже были описаны в многочисленных патентных изданиях (US-A 4454299, US-A 4455405, DE-A 3827565, DE-A 4004087). Подобные блоксополимеры обычно получают способом, в котором газообразный пропилен вначале полимеризуется на первой ступени полимеризации, затем полученный пропиленовый гомополимер подают на вторую ступень полимеризации, где к нему приполимеризовывают смесь из пропилена и этилена. Способ обычно проводят при повышенном давлении и в присутствии водорода в качестве регулятора молекулярной массы. Полученные таким образом пропилен-этиленовые блоксополимеры, как правило, обладают высокой ударной вязкостью и жесткостью.
Пропиленовые блоксополимеры с высоким содержанием каучука, т.е. блоксополимеры, в которых большую часть всего блоксополимера составляет сополимер, полученный на второй ступени полимеризации, обычными способами полимеризации удается получать непосредственно из реактора, только со сравнительно низкой скоростью текучести расплава. Это происходит потому, что необходимые для регулирования молекулярной массы блоксополимеров высокие концентрации водорода практически не реализуются. Далее при получении блоксополимеров с высоким содержанием каучука и сравнительно высокой скоростью текучести расплава часто наблюдается образование нежелательных отложений на второй ступени полимеризации, что вызывает проблемы морфологии получаемых продуктов. По этой причине технически очень трудно получить пропиленовые блоксополимеры, обогащенные каучуком, которые одновременно с высокой ударной вязкостью обладают высокой степенью текучести, т.е. характеризуются высокой скоростью текучести расплава.
Получать пропиленовые блоксополимеры, обогащенные каучуком, обладающие высокой текучестью, можно, подвергая обогащенный каучуком блоксополимер дополнительной деструкции молекулярной массы с помощью органических перекисей, благодаря чему степень текучести расплава и связанная с ним текучесть могут быть значительно повышены. Такая деструкция молекулярной массы требует, разумеется, сравнительно трудоемких дополнительных стадий. Кроме того, использование органических перекисей связано с рядом недостатков, среди прочего повышенная эмиссия низкомолекулярных фракций, загазованность, существенная потеря жесткости, теплостойкости и размягчение.
Задачей данного изобретения является устранение описанных недостатков и получение высокотекучих пропиленовых блоксополимеров с высоким содержанием каучука, которые могут быть получены простым способом и без добавления перекисей и которые отличаются высокой ударной вязкостью и жесткостью, а также хорошей теплостойкостью и текучестью при литье под давлением и, кроме того, обладают низким содержанием легко летучих компонентов.
Поставленная задача решается описанными вначале новыми высокотекучими пропиленовыми блоксополимерами.
Пропиленовые блоксополимеры согласно изобретению состоят из 50-80 вес.%, преимущественно 60-80 вес.%, пропиленового гомополимера и из 20-50 вес.%, преимущественно 20-40 вес.%, пропиленового сополимера, с 10-70 вес.% в расчете на пропиленовый сополимер полимеризованного (приполимеризованного), отличного от пропилена, С28-алк-1-ена. Доля присоединенного С28-алк-1-ена в пропиленовом сополимере составляет преимущественно 20-60 вес.%.
Под С28-алк-1-енами следует понимать линейные или разветвленные алк-1-ены, особенно этилен, бут-1-ен, пент-1-ен, гекс-1-ен, гепт-1-ен или окт-1-ен, а также смеси этих сомономеров, причем преимущественно применяют этилен или бут-1-ен.
Пропиленовые блоксополимеры согласно изобретению получают путем двухступенчатой полимеризации из газовой фазы.
Полимеризацию на обеих ступенях проводят в присутствии каталитической системы Циглера-Натта. Применяют преимущественно такие системы катализатора, в которых наряду с титансодержащим твердым компонентом а) содержатся также сокатализаторы в виде алюминийорганического соединения б) и электродонорные соединения с). Таким путем могут быть получены пропиленовые блоксополимеры согласно изобретению.
Для получения титансодержащего твердого компонента а) в качестве титанового соединения применяют обычно галогениды или алкоголяты трех- или четырехвалентного титана, причем могут использоваться также титаналкоксигалогеновые соединения или смеси различных соединений титана. Преимущественно применяют соединения титана, которые в качестве галогена содержат хлор. Предпочтительны также галогениды титана, которые наряду с титаном содержат только галоген и прежде всего хлорид титана и особенно титантетрахлорид.
Титансодержащий твердый компонент а) содержит, по меньшей мере, одно галогенсодержащее соединение магния. В качестве галогена имеют в виду хлор, бром, йод или фтор, причем бром и особенно хлор являются предпочтительными. Галогенсодержащие магниевые соединения вводят либо непосредственно при получении титансодержащего твердого компонента а), либо они образуются в процессе его получения. В качестве магниевых соединений, пригодных для получения титансодержащих твердых компонентов а), используют прежде всего галогениды магния, особенно дихлорид или дибромид магния или соединения магния, из которых галогениды могут быть получены обычным способом, например путем взаимодействия с галогенирующим агентом. Это, например, алкил-, арил-, алкокси- или арилокси- соединения магния или соединения Гриньяра. Преимущественными примерами свободных от галогена соединений магния, пригодными для получения титансодержащего твердого компонента а), являются н-бутилэтилмагний или н-бутилоктилмагний. Предпочтительными гелогенирующими агентами являются хлор или хлористый водород. В качестве галогенизирующего агента могут служить также галогениды титана.
Помимо этого целесообразно, чтобы титансодержащий твердый компонент а) содержал электронодонорные соединения, например моно- или полифункциональные карбоновые кислоты, ангидриды карбоновых кислот или эфиры карбоновых кислот, далее кетоны, эфиры, спирты, лактоны или фосфор- или кремнийорганические соединения.
В качестве электронодонорных соединений в титансодержащих твердых компонентах предпочтительны производные карбоновых кислот и особенно производные фталевой кислоты общей формулы (II):
Figure 00000001
где Х и Y могут представлять собой хлор, бром или C110-алкоксигруппу или вместе означать кислород в ангидридной группе. Особенно предпочтительными электронодонорными соединениями являются эфиры фталевой кислоты, причем Х и Y означают С18-алкоксигруппу. Предпочтительными примерами используемых эфиров фталевой кислоты являются диэтилфталат, ди-н-бутилфталат, ди-изо-бутилфталат, ди-н-пентилфталат, ди-н-гексилфталат, ди-н-гептилфталат, ди-н-октилфталат или ди-2-этилгексилфталат.
Другими предпочтительными электродонорными соединениями в титансодержащих твердых компонентах являются диэфиры 3- или 4-членных, в случае необходимости замещенных циклоалкил-1,2-дикарбоновых кислот, а также моноэфиры замещенных бензофенон-2-карбоновых кислот или замещенные бензофенон-2-карбоновые кислоты. В качестве гидроксисоединений в случае этих эфиров применяют обычные при реакции этерификации алканолы, например С115-алканолы или С57-циклоалканолы, которые в свою очередь могут содержать одну или более C110-алкильных групп, далее С610-фенолы.
Могут применяться также смеси различных электронодонорных соединений.
При получении титансодержащих твердых компонентов а), как правило, на моль магниевого соединения вводят от 0,05 до 2 молей, преимущественно 0,2-1,0 моль электронодонорного соединения.
Кроме того, титансодержащие твердые компоненты а) могут содержать также неорганические оксиды в качестве носителя. Обычно в качестве носителя применяют тонкодисперсный неорганический оксид со средним диаметром частиц 5-200 мкм, преимущественно 20-70 мкм. Под средним диаметром частиц здесь понимают среднее объемное значение распределения частиц по размерам, определенное с помощью счетчика Коултера.
Предпочтительно частицы тонкодисперсного неорганического оксида состоят из первичных частиц со средним диаметром от 1 до 20 мкм, в частности, от 1 до 5 мкм. В случае так называемых первичных частиц речь идет о пористых, гранулированных частицах оксида, которые получают обычно из неорганического оксида гидрогеля путем измельчения. Первичные частицы можно просеять перед дальнейшей их переработкой.
Далее предпочтительно применяемый неорганический оксид характеризуется тем, что имеет полости или каналы со средним диаметром от 0,1 до 20 мкм, особенно от 1 до 15 мкм, и доля их макроскопического объема от всех частиц составляет от 5 до 30%, предпочтительно от 10 до 30%.
Средний диаметр первичных частиц, а также долю макроскопического объема полостей и каналов неорганического оксида определяют путем анализа изображения с помощью сканирующего электронного микроскопа (растровая электронная микроскопия) или с помощью электронного микроанализа проб (электронно-лучевой микроанализ) поверхности и диаметра частиц неорганического оксида. Полученные снимки с изображением обрабатывают и затем определяют средний диаметр первичных частиц, а также долю макроскопического объема полостей и каналов. Анализ снимков с изображением осуществляется путем перевода данных электронной микроскопии (в контрастное бинарное изображение) и цифровой оценки с помощью пригодной EDV-программы, например анализа программного пакета Fa.SIS.
Предпочтительно применяемые неорганические оксиды могут быть получены, например, путем распылительной сушки измельченного гидрогеля, который смешивают с водой или алифатическим спиртом. Такие тонко измельченные неорганические оксиды имеются в продаже.
Тонкодисперсный неорганический оксид обладает объемом пор обычно от 0,1 до 10 см3/г, преимущественно от 1 до 4 см3/г, и удельной поверхностью от 10 до 1000 м2/г, преимущественно от 100 до 500 м2/г, при этом имеют в виду значения, определенные методом ртутной порозиметрии по DIN 66133 и методом адсорбции азота по DIN 66131.
Можно использовать также неорганический оксид, значение рН которого, т.е. отрицательный десятичный логарифм концентрации протонов, находится в области 1-6,5 и, в частности, в области 2-6.
В качестве неорганических оксидов применяют прежде всего оксиды кремния, алюминия, титана или металлов I или II главной группы Периодической таблицы элементов. Особенно пригоден наряду с оксидом алюминия или оксидом магния или слоистым силикатом также оксид кремния (кизельгель). Могут также применяться смешанные оксиды, например силикат алюминия или силикат магния.
Используемые в качестве носителей неорганические оксиды содержат на своей поверхности воду. Эта вода связана частично физически за счет адсорбции, а частично химически в виде гидроксильных групп. Путем термической или химической обработки содержание воды на неорганическом оксиде можно снизить или полностью удалить, при этом для химической обработки как правило применяют обычные осушители, такие как SiCl4, хлорсиланы или алюминийалкилы. Содержание воды в пригодных неорганических оксидах составляет от 0 до 6 вес.%. Предпочтительно применяется неорганический оксид в коммерчески доступной форме без дальнейшей обработки.
Магниевое соединение и неорганический оксид в титансодержащих твердых компонентах а) присутствуют преимущественно в таких количествах, чтобы на 1 моль неорганического оксида приходилось 0,1-1 моль, предпочтительно 0,2-0,5 моля соединения магния.
Для получения титансодержащих твердых компонентов а), как правило, применяют также такие C1-C8-алканолы, как метанол, этанол, н-пропанол, изопропанол, н-бутанол, втор.-бутанол, трет.-бутанол, изобутанол, н-гексанол, н-гептанол, н-октанол или 2-этилгексанол или их смеси. Преимущественно применяют этанол.
Титансодержащие твердые компоненты можно получать известными способами. Примерами могут служить способы, описанные, например, в ЕР-А 45975, ЕР-А 45977, ЕР-А 86473, ЕР-А 171200, GB-A 2111066, US-A 4857613 и US-А 5288824. Преимущественно применяют способ, известный из DE-A 19529240.
В качестве соединений алюминия b) наряду с триалкилалюминием пригодны также такие соединения, в которых алкильная группа замещена алкоксигруппой или атомом галогена, например хлором или бромом. Алкильные группы могут быть одинаковыми или разными. Принимаются во внимание линейные или разветвленные алкильные группы. Преимущественно используют соединения триалкилалюминия, алкильная группа которых содержит 1-8 атомов углерода, например триметилалюминий, триэтилалюминий, триизобутилалюминий, триоктилалюминий или метилдиэтилалюминий или их смеси.
Помимо соединения алюминия b) в качестве дополнительного сокатализатора применяют обычно электронодонорные соединения с), такие как моно- или полифункциональные карбоновые кислоты, ангидриды или эфиры карбоновых кислот, а также кетоны, эфиры, спирты, лактоны, а также фосфор- и кремнийорганические соединения, причем электронодонорные соединения с) могут быть одинаковыми или отличными от электронодонорных соединений, применяемых для получения титансодержащих твердых компонентов а). Преимущественными электронодонорньми соединениями являются кремнийорганические соединения общей формулы (I)
Figure 00000002
где R1 одинаковые или разные и означают С120-алкильную группу, 5-7-членную циклоалкильную группу, которая в свою очередь может быть замещена C110-алкилом, С618-арильную группу или С618-арил-С110-алкильную группу; R2 одинаковые или разные и означают С120-алкильную группу, и n представляет собой целые числа 1, 2 или 3. Особенно предпочтительны такие соединения, в которых R1 означает C1-C8-алкильную группу или 5-7-членную циклоалкильную группу, а R2 означает С14-алкильную группу и n - целые числа 1 или 2.
Среди таких соединений особенно выделяют диметоксидиизопропилсилан, диметоксиизобутилизопропилсилан, диметоксидиизобутилсилан, диметоксидициклопентилсилан, диметоксиизопропил-трет.-бутилсилан, диметоксиизобутил-втор.-бутилсилан и диметоксиизопропил-втор.-бутилсилан.
Сокатализаторы b) и с) применяют преимущественно в таких количествах, чтобы атомарное соотношение между алюминием в соединении алюминия b) и титаном в титансодержащем твердом компоненте а) составляло от 10:1 до 800:1, в особенности от 20:1 до 200:1 и мольное соотношение между соединением алюминия b) и электронодонорным соединением с) составляло от 1:1 до 250:1, в особенности от 10:1 до 80:1.
Титансодержащий твердый компонент а), соединение алюминия b) и, как правило, применяемое электронодонорное соединение с) вместе образуют каталитическую систему Циглера-Натта. Составные компоненты катализатора b) и с) могут вводиться в реактор полимеризации вместе с титансодержащим твердым компонентом а) или в виде смеси или в любой последовательности раздельно.
Способ получения высокотекучих пропиленовых блоксополимеров согласно изобретению проводят на двух следующих друг за другом ступенях полимеризации, т.е. в каскаде реакторов в газовой фазе. Могут использоваться обычные реакторы, используемые для полимеризации С28-алк-1-енов. Пригодны также такие реакторы, как, например, реакторы непрерывного действия мешалкой, петлевые реакторы или реакторы псевдоожиженного слоя. Размер реактора для осуществления способа согласно изобретению не имеет существенного значения. Реактор выбирается в зависимости от съема продукции, который должен быть достигнут в целом или на каждой отдельной ступени реакции.
В качестве реакторов особенно пригодны реакторы псевдоожиженного слоя, а также горизонтальные или вертикальные реакторы с порошкообразным слоем трубчатого типа. В способе согласно изобретению реакционный слой состоит из полимера из С28-алк-1-ена, заполимеризовавшегося в данном реакторе.
В особенно предпочтительной форме выполнения способ получения пропиленового блоксополимера согласно изобретению проводят в каскаде последовательных реакторов, в которых порошкообразный реакционный слой приводится в движение посредством вертикальной мешалки, для чего особенно пригодны так называемые свободно несущие винтовые мешалки. Такие мешалки известны, например, из ЕР-В 000512 и ЕР-В 031417. Они, в частности, отличаются тем, что порошкообразный реакционный слой становится очень гомогенным. Пример такого порошкообразного слоя описан в ЕР-В 038478. Каскад реакторов преимущественно состоит из двух последовательно подсоединенных реакторов в форме котла с мешалкой объемом 0,1-100 м3, например 12,5, 25, 50 или 75 м3.
При полимеризации для получения пропиленового блоксополимера согласно изобретению молекулярная масса может устанавливаться и контролироваться с помощью обычных в технике полимеризации регуляторов, например водорода. Наряду с регуляторами, могут также применяться регуляторы молекулярной массы, т.е. соединения, которые влияют на активность катализаторов, или также антистатики. Последние препятствуют образованию отложений на стенках реакторов за счет электростатического заряда.
На первой ступени полимеризации для получения пропиленовых блоксополимеров согласно изобретению пропилен полимеризуется при обычных условиях реакции при давлении 10-50 бар, преимущественно 15-40 бар, температуре 50-100°С, преимущественно 60-90°С и средней продолжительности реакции 0,3-5 час, преимущественно 0,8-4 часа. Для регулирования молекулярной массы получаемого пропиленового гомополимера полимеризацию первой ступени проводят в присутствии, по меньшей мере, 2 об.%, в особенности, по меньшей мере, 5 об.% водорода от объема смеси на первой ступени полимеризации. Получаемый на первой ступени полимеризации пропиленовый гомополимер образует так называемые матрицы пропиленового блоксополимера согласно изобретению и имеет индекс полидисперсности (PI) преимущественно, по меньшей мере, 2,8, в особенности, по меньшей мере, 3,0.
В заключение полученный на первой ступени полимеризации пропиленовый гомополимер вместе с каталитической системой Циглера-Натта выгружается из первой ступени и подается в промежуточную емкость. В качестве промежуточных емкостей применяют реакторы или емкости, обычно используемые при полимеризации С28-алк-1-енов. Пригодными промежуточными емкостями являются также цилиндрические резервуары, резервуары с мешалкой или так же циклоны.
В промежуточной емкости выгруженный из первой ступени полимеризации пропиленовый гомополимер вместе с каталитической системой Циглера-Натта вначале в течение 0,01-5 минут, в особенности 0,2-4 минут, подвергается декомпрессии, по меньшей мере, до 5 бар, преимущественно, по меньшей мере, 3,5 бар. В это время к пропиленовому гомополимеру можно добавить C1-C8-алканол в количестве 0,001-10 г, в особенности 0,001-1,0 г, на 1 кг пропиленового гомополимера для лучшего регулирования последующей стадии полимеризации. Для этой цели особенно пригодны изопропанол, но также этанол или гликоль. В промежуточной емкости вначале поддерживается температура 10-80°С, в особенности 20-70°С, а затем за счет сжатия газовой смеси используемых мономеров, т.е. пропилена и С28-алк-1-ена давление в промежуточной емкости вновь повышается до 5-60 бар, в особенности до 10-50 бар. В промежуточной емкости к реакционной смеси можно добавлять обычные антистатики, например полигликолевый эфир жирных спиртов, жирные кислоты и алкилфенолы, алкилсульфаты и алкилфосфаты, а также четвертичные аммониевые соединения.
Затем пропиленовый гомополимер вместе с каталитической системой Циглера-Натта удаляется из промежуточной емкости и подается на вторую ступень полимеризации. На второй ступени полимеризации пропиленовый гомополимер сополимеризуется со смесью из пропилена и С28-алк-1-ена при давлении 10-50 бар, в особенности 10-40 бар, температуре 50-100°С, в особенности 60-90°С, и средней продолжительности реакции 0,5-5 часов, в особенности 0,8-4 часа. При этом весовое соотношение мономера, прореагировавшего на первой и второй ступенях полимеризации, рассчитывается так, что находится в пределах от 4:1 до 1:1, в особенности от 4:1 до 1,5:1. Так же, как и в промежуточной емкости, на второй ступени полимеризации на 1 кг пропиленового сополимера можно добавить 0,001-10 г, в особенности 0,005-0,5 г С18-алканола. Для этого особенно рекомендуется изопропанол, гликоль, но также этанол. В качестве сомономеров пропилена на второй ступени полимеризации пригодны среди прочих этилен и бут-1-ен. Доля сомономера или сомономеров пропилена от общей газовой смеси на второй ступени полимеризации составляет 15-60 об.%, в особенности 20-50 об.%.
Полученные согласно изобретению пропиленовые блоксополимеры имеют скорость текучести расплава (MFR) при 230°С и при весе (образца) 2,16 кг по ISO 1133, который удовлетворяет следующему соотношению (I):
(I) MFR≥101,39+0,0787*XS2-5,4674*XS,
где XS означает долю образовавшегося на второй ступени полимеризации пропиленового сополимера в % в расчете на общее количество пропиленового блоксополимера.
Скорость текучести расплава (MFR) полученных пропиленовых блоксополимеров находится в пределах 2-100 г/10 мин, в особенности в пределах 5-80 г/10 мин при температуре 230°С и при весе 2,16 кг. Скорость текучести расплава при этом соответствует количеству полимера, которое выдавливается в течение 10 минут из устройства для испытаний в соответствии с ISO 1133 при температуре 230°С и весе 2,16 кг. Пропиленовые блоксополимеры согласно изобретению получают без использования перекисной деструкции молекулярной массы.
Полученные согласно изобретению пропиленовые блоксополимеры характеризуются высокой текучестью, т.е. высокой скоростью текучести расплава и одновременно значительно более высоким содержанием каучука, что означает, что повышена доля пропиленового сополимера в общей массе пропиленового блоксополимера. Кроме того, пропиленовые блоксополимеры согласно изобретению характеризуются высокой ударной вязкостью и жесткостью, а также хорошей теплостойкостью и хорошей текучестью при литье под давлением (спиральной текучестью). При этом они содержат сравнительно мало низкомолекулярных компонентов, таких как например н-гептан или трет.-бутанол.
Способ согласно изобретению может быть осуществлен просто в обычных в производстве пластических масс реакторах, получаемые при этом пропиленовые блоксополимеры не требуют дополнительной деструкции молекулярной массы.
Пропиленовые блоксополимеры согласно изобретению пригодны прежде всего для получения пленок, волокон и формованных изделий.
Примеры
Во всех примерах 1, 2 и 3, иллюстрирующих данное изобретение, а также сравнительных примерах А, В и С применялась каталитическая система Циглера-Натта, содержащая титансодержащий твердый компонент а), полученный следующим способом.
На первой ступени тонкодисперсный кизельгель со средним диаметром частиц 30 мкм, объемом пор 1,5 см3/г и удельной поверхностью 260 м2/г смешивают с раствором н-бутилоктилмагния в н-гептане, при этом на 1 моль SiO2 вводят 0,3 моля соединения магния. Тонкодисперсный кизельгель, кроме того, имеет средний размер первичных частиц 3-5 мкм и диаметр полостей каналов 3-5 мкм, причем объемная доля макроскопических полостей и каналов от общего количества частиц составляет около 15%. Раствор перемешивают 45 минут при 95°С, затем охлаждают до 20°С, после чего вводят хлористый водород в 10-кратном молярном количестве в расчете на магнийорганическое соединение. Через 60 минут продукт реакции при постоянном перемешивании смешивают с 3 молями этанола на 1 моль магния. Эту смесь в течение 0,5 часа перемешивают при температуре 80°С и затем ее обрабатывают 7,2 моля тетрахлорида титана и 0,5 моля ди-н-бутилфталата в расчете на 1 моль магния. В заключение смесь перемешивают 1 час при 100°С, после чего полученный таким образом твердый остаток отфильтровывают и многократно промывают этилбензолом.
Полученный таким образом твердый остаток 3 часа при температуре 125°С экстрагируют 10 об.%-ным раствором тетрахлорида титана в этилбензоле. Затем твердый продукт путем фильтрации отделяют от экстрагирующего средства и промывают н-гептаном до тех пор, пока экстрагирующее средство будет содержать только 0,3 вес.% тетрахлорида титана.
Титансодержащий твердый компонент а) содержит:
3,5 вес.% Ti
7, 4 вес.% Mg
28,2 вес.% Cl.
Наряду с титансодержащим твердым компонентом а) в качестве сокатализаторов были использованы триэтилалюминий и диметоксиизобутилизопропилсилан согласно US-А 4857613 и US-A 5288824.
Примеры 1, 2 и 3
Способ согласно изобретению во всех примерах 1, 2 и 3 проводили в 2 последовательно соединенных трубчатых автоклавах, снабженных свободнонесущими винтовыми мешалками, с полезным объемом 200 л каждый. Оба реактора содержали подвижный твердый слой из тонкодисперсного пропиленового полимера.
В первый реактор полимеризации пропилен подавался в газообразной форме, где полимеризовался при параметрах времени, давления и температуры, указанных в таблице I. Используемая при этом каталитическая система Циглера-Натта состояла из титансодержащего компонента а), а также триэтилалюминия и изобутилизопропилдиметоксисилана в качестве сокатализатора. Дозировка данных твердых компонентов устанавливалась таким образом, чтобы передача компонентов реакционной смеси с первой ступени полимеризации на вторую по времени соответствовала режиму, указанному в таблице I. Дозировка этих компонентов производилась путем регулирования давления подачи свежего пропилена. В реактор также подавали: триэтилалюминий (в виде 1-молярного раствора в гептане) в количестве 60, максимум 105 мл/час и изобутилизопропилдиметоксисилан (в виде 0,125-молярного раствора в гептане) в количестве 70, максимум 120 мл/час в качестве дополнительного компонента катализатора. Для регулирования скорости текучести расплава (по ISO 1133) добавляли водород, концентрация которого в реакционном газе контролировалась методом газовой хроматографии.
Путем кратковременной декомпрессии реактора через погружную трубу полимерная масса последовательно выгружалась из реактора. Образовавшийся в первом реакторе пропиленовый гомополимер вместе с катализатором непрерывно подавался в промежуточную емкость, где подвергался взаимодействию с изопропанолом (в виде 0,5 молярного раствора в гептане). Дозирование количества изопропанола регулировалось таким образом, чтобы весовое соотношение между образовавшимся в первом реакторе пропиленовым гомополимером и получаемым во втором реакторе пропиленовым сополимером соответствовало указанным в таблице I значениям. Количество вводимого изопропанола можно также разделить таким образом, чтобы он частично дозировался в промежуточную емкость и частично во второй реактор. В промежуточной емкости давление снижали до 1 бара и выдерживали в течение 30 с и затем путем сжатия газовой смеси, состав которой соответствовал составу второго реактора, давление повышали до 30 бар.
Порошок полимера из промежуточной емкости непрерывно подавали во второй реактор. Там при температуре, давлении и времени, соответствующих таблице I, к нему приполимеризовывается смесь из пропилена и этилена. Доля этилена составляла около 30 об.%. Весовое соотношение между образовавшимися в первом реакторе пропиленовым гомополимером и во втором реакторе пропиленовым сополимером контролировали с помощью добавленного изопропанола, что приведено в таблице I.
Точные условия выполнения примеров 1, 2 и 3 согласно изобретению, т.е. параметры давления, температуры и времени, количество водорода, а также количества сокатализаторов, степень текучести расплава (MFR) и количество получаемого полимера из двух реакторов также приведены в таблице I. Таблица I включает также весовое соотношение между образовавшимся в первом реакторе гомополимером (РР(I)) и полученным во втором реакторе пропилен-этиленовым сополимером (EPR (II)).
Доля образовавшегося во втором реакторе пропилен-этиленового сополимера вычислялась из соотношения количеств перенесенного и выгруженного сополимера по формуле:
Figure 00000003
Свойства полученных продуктов и данные сравнительных примеров 1', 2' и 3' приведены в таблицах III, IV и V.
Таблица I
Пример 1 Пример 2 Пример 3
Реактор I
Давление (I) бар 32 32 22
Температура (I) °С 80 80 70
Водород (I) об.% 10,9 9,5 6,3
Кол-во изобутилизопропил-диметоксисилана (0,125 моль), мл/час 103 120 70
Кол-во триэтилалюминия (1 моль), мл/час 90 105 60
Время (I), час 1,5 1,3 2,3
MFR(I), г/10 мин 190 180 115
Перенесенное количество, кг/час 30 35 19
Реактор II
Давление(II), бар 15 18 22
Температура (II), °С 70 70 70
Водород, об.% 1,5 1,2 0,9
Этилен, об.% 30,6 29,4 29,4
Время, час 1,2 1,0 1,1
Выход продукта, кг/час 38,6 46,8 42,9
MFR(II), г/10 мин 51 31 7,5
Вес. соотношение РР(I):EPR(II) 4:1 3,3:1 2:1
Сравнительные примеры 1', 2' и 3'
Во всех трех сравнительных примерах способ осуществлялся в двух последовательно соединенных перемешивающих автоклавах, снабженных свободнонесущими винтовыми мешалками, с полезным объемом 200 л каждый. Оба реактора содержали подвижный твердый слой из тонкодисперсного пропиленового полимера.
В первый реактор полимеризации вводился пропилен в газообразной форме и полимеризовался в среднем в течение 2,3 часов в присутствии каталитической системы Циглера-Натта из титансодержащего твердого компонента а), триэтилалюминия и изобутилизопропилдиметоксисилана при давлении и температуре, указанных в таблице II. При этом дозировка указанных твердых компонентов поддерживалась таким образом, чтобы передача из первого во второй реактор полимеризации соответствовала в среднем данным, указанным в таблице II. Дозировка этих компонентов производилась с помощью регулирования давления подаваемого свежего пропилена. В реактор вводился также триэтилалюминий (в виде 1-молярного раствора в гептане) в количестве 60 мл/час и изобутилизопропилдиметоксисилан (в виде 0,125-молярного раствора в гептане) в количестве 72 мл/час. Для регулирования скорости текучести расплава (по ISO 1133) добавлялся водород, концентрация которого в реакционном газе контролировалась методом газовой хроматографии.
Путем кратковременной декомпрессии реактора через погружную трубу полимерная масса постепенно удалялась из реактора. Образовавшийся в первом реакторе пропиленовый гомополимер вместе с катализатором и непрореагировавшими мономерами непрерывно подавался во второй реактор без снижения давления в промежуточной емкости.
Там к нему при давлении, температуре и средней продолжительности, соответствующих данным таблицы II, приполимеризовывалась смесь пропилена и этилена. Доля этилена составляла 30 об.%. Весовое соотношение между образовавшимся в первом реакторе пропиленовым гомополимером (РР(I)) и полученным во втором реакторе пропиленовым сополимером (EPR(II)) приведено в таблице II. Во второй реактор также дозировался изопропанол (в виде 0,5-молярного раствора в гептане). Количество вводимого изопропанола регулировалось таким образом, чтобы весовое соотношение между РР(1) и EPR(II) поддерживалось в диапазоне, указанном в таблице II.
Полученные в сравнительных примерах 1', 2' и 3' пропиленовые блоксополимеры затем подвергали перекисной деструкции молекулярной массы с помощью 5 вес.%-ного раствора перекиси ди-трет.-бутила в н-гептане (Luperox® 101 фирмы Interox/Peroxid-Cemie) в двухшнековом экструдере (ZSK 30, Schnecke 8A фирмы Werner and Pfleiderer). Таким образом можно значительно повысить его скорость текучести расплава (MFR). Скорость текучести расплава (MFR II) перед и после молекулярной деструкции (MFR после деструкции) приведены в таблице II.
Таблица II
Сравнительный пример 1' Сравнительный пример 2' Сравнительный пример 3'
Реактор I
Давление (I), бар 32 32 22
Температура (I), °С 80 80 80
Водород (I), об.% 0,4 0,9 0,4
Количество изобутилизопропил-диметоксисилана (0,125 моль), мл/час 72 72 72
Количество триэтилалюминия (1 моль), мл/час 60 60 60
Время (I), час 2,3 2,3 2,3
MFR (I), г/10 мин 3,5 16 15
Перенесенное количество, кг/час 20 20 20
Реактор II
Давление (II) бар 15 15 23
Температура (II), °С 70 70 70
Водород, об.% 1,6 3,8 2,1
Этилен, об.% 30 30 30
Время, час 1,8 1,8 1,5
Выход, кг/час 25 26,8 30,2
MFR (II), г/10 мин 2 7,5 3,5
MFR после деструкции, г/10 мин 48 31 7
Вес. соотношение PP(I):EPR(II) 4:1 3:1 2:1
В последующих таблицах III, IV и V сравниваются показатели пропиленовых блоксополимеров, полученных в примерах 1, 2 и 3 согласно изобретению и сравнительных примерах 1', 2' и 3'. Измерялись следующие показатели:
Figure 00000004
Таблица III
Пример 1 Сравнительный пример 1'
MFR(I)/MFR(II)/MFR после деструкции 190/51/51 3,5/2/48
XS (%) 21 21,1
Е-модуль (МПа) 1126 1051
Ударная вязкость (аск) (23°С) (кДж/м2) 7,8 7,5
Ударная вязкость (аск) (0°С)(кДж/м2) 5,6 5,8
Текучесть (определенная в литьевой пресс-форме со спиралевидным каналом)(см) 113 97
Теплостойкость В (°С) 87 77
Температура по Вика А (°С) 144 140
P.I. (индекс полидисперсности) матрицы 3,19 2,59
Crossover-модуль матрицы (Па) 16000 35800
Характеристическая вязкость каучука (η, дл/г) 3,73 дл/г 1,67 дл/г
Доля трет.-бутанола (ppm) <1 ppm 4 ppm
Доля н-гептана (ppm) 15 ppm 647ppm
Таблица IV
Пример 2 Сравнительный пример 2'
MFR(I)/MFR(II)/MFR после деструкции 180/31/31 16/7,5/31
XS (%) 23 22
Е-модуль (МПа) 1037 1074
Ударная вязкость (аск) (23°С), кДж/м2 10,2 7,2
Ударная вязкость (аск) (0°С), кДж/м2 6,5 5,6
Текучесть (определенная в литьевой пресс-форме со спиралевидным каналом)(см) 101 92
Теплостойкость В (°С) 81 74
Температура по Вика А (°С) 142 140
P.I.(индекс полидисперсности) матрицы 3,17 2,52
Crossover-модуль матрицы (Па) 17000 34100
Характеристическая вязкость каучука (η, дл/г) 3,98 дл/г 1,68 дл/г
Доля трет.-бутанола (ppm) <1 ppm 4 ppm
доля н-гептана (ppm) 9 ppm 671 ppm
Таблица V
Пример 3 Сравнительный пример 3'
MFR(I)/MFR(II)/MFR после деструкции 115/7,5/7,5 15/3,5/7
XS (%) 32 33
Е-модуль (МПа) 745 613
Ударная вязкость (аск) (23°С), кДж/м2 59 66
Ударная вязкость (аск) (0°С), кДж/м2 20 67
Текучесть (определенная в литьевой пресс-форме со спиралевидным каналом)(см) 74 60
Теплостойкость В (°С) 67 62
Температура по Вика А (°С) 41 37
P.I.(индекс полидисперсности) матрицы 3,52 2,78
Crossover-модуль матрицы (Па) 35000 39000
Характеристическая вязкость каучука (η, дл/г) 4,68 дл/г 2,68 дл/г
Доля трет.-бутанола (ppm) <1 ppm 15 ppm
Доля н-гептана (ppm) 36 ppm >500 ppm

Claims (10)

1. Высокотекучие пропиленовые блоксополимеры, состоящие из 50-80 вес.% пропиленового гомополимера и из 20-50 вес.% пропиленового сополимера с 10-70 вес.% сополимеризованного отличного от пропилена С28-алк-1-ена, полученные из газовой фазы путем двухступенчатой полимеризации с помощью каталитической системы Циглера - Натта, причем на первой ступени полимеризации пропилен полимеризуют при давлении от 10 до 50 бар, температуре от 50 до 100°С и средней продолжительности выдерживания реакционной смеси от 0,3 до 5 ч в присутствии, по меньшей мере, 2,0% водорода в расчете на общий объем и затем полученный на первой ступени полимеризации пропиленовый гомополимер с каталитической системой Циглера - Натта направляют в промежуточную емкость, где сначала в течение 0,01-5 мин снижают давление ниже 5 бар и поддерживают температуру от 10 до 80°С и затем путем сжатия газовой смеси давление в промежуточной емкости опять повышают до 5-60 бар и затем пропиленовый гомополимер с каталитической системой Циглера - Натта подают на вторую ступень полимеризации, где под давлением от 10 до 50 бар, при температуре от 50 до 100°С и средней продолжительности от 0,5 до 5 ч пропиленовый гомополимер сополимеризуют смесью пропилена и С28-алк-1-ена и при этом весовое соотношение между прореагировавшими мономерами на первой и на второй ступенях полимеризации поддерживают таким образом, что оно находится в интервале от 4:1 до 1:1.
2. Высокотекучие пропиленовые блоксополимеры по п.1, в которых степень текучести расплава (MFR) при 230°С и весе 2,16 кг, измеренная по ISO 1133, удовлетворяет следующему соотношению (I):
(I) MFR≥101,39+0,0787·XS2-5,4674·XS,
где XS означает долю пропиленового сополимера в% от общего пропиленового блоксополимера.
3. Высокотекучие пропиленовые блоксополимеры по п.1 или 2, в которых используемая каталитическая система Циглера - Натта наряду с титансодержащим твердым компонентом, который содержит галогенсодержащее соединение магния, электронодонор и неорганический оксид в качестве носителя, кроме того, содержит соединение алюминия и дополнительно электронодонорное соединение.
4. Высокотекучие пропиленовые блоксополимеры по пп.1-3, где пропилен на первой ступени полимеризации полимеризуется при давлении от 15 до 40 бар и температуре от 60 до 90°С.
5. Высокотекучие пропиленовые блоксополимеры по пп.1-4, где на 1 кг пропиленового гомополимера в промежуточной емкости добавляется 0,001-10 г C1-C8-алканола в расчете на пропиленовый гомополимер.
6. Высокотекучие пропиленовые блоксополимеры по пп.1-5, где в промежуточной емкости после декомпрессии путем сжатия газовой смеси давление снова повышается до 10-40 бар.
7. Высокотекучие пропиленовые блоксополимеры по пп.1-6, где на второй ступени полимеризации при давлении от 10 до 40 бар и температуре от 60 до 90°С совместно полимеризуется смесь пропилена и C2-C8-алк-1-ена.
8. Высокотекучие пропиленовые блоксополимеры по пп.1-7, отличающиеся тем, что пригодны для получения пленок, волокон и формованных изделий.
9. Продукты как пленки, волокна и формованные изделия, содержащие высокотекучие пропиленовые блоксополимеры по пп.1-7.
10. Способ получения высокотекучих пропиленовых блоксополимеров по пп.1-7 путем двухступенчатой полимеризации из газовой смеси с помощью каталитической системы Циглера - Натта, отличающийся тем, что на первой ступени полимеризации пропилен полимеризуют при давлении от 10 до 50 бар, температуре от 50 до 100°С и средней продолжительности пребывания реакционной смеси от 0,3 до 5 ч в присутствии, по меньшей мере, 2% водорода в расчете на общий объем и полученный на первой ступени полимеризации пропиленовый гомополимер вместе с каталитической системой Циглера - Натта направляют в промежуточную емкость, где вначале в течение 0,01-5 мин давление снижают ниже 5 бар, поддерживают температуру от 10 до 80°С и затем путем сжатия газовой смеси давление в промежуточной емкости снова повышают до 5-60 бар и затем пропиленовый гомополимер вместе с каталитической системой Циглера - Натта подают на вторую ступень полимеризации, где при давлении от 10 до 50 бар, температуре от 50 до 100°С и средней продолжительности от 0,5 до 5 ч пропиленовый гомополимер сополимеризуют со смесью пропилена и С28-алк-1-ена и при этом весовое соотношение между прореагировавшими мономерами на первой и второй ступенях полимеризации поддерживают таким образом, что оно находится в интервале от 4:1 до 1:1.
RU2002134901/04A 2000-05-25 2001-05-23 Высокотекучие пропиленовые блоксополимеры RU2268896C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10025727A DE10025727A1 (de) 2000-05-25 2000-05-25 Hochfließfähige Propylenblockcopolymerisate
DE10025727.5 2000-05-25

Publications (2)

Publication Number Publication Date
RU2002134901A RU2002134901A (ru) 2004-06-20
RU2268896C2 true RU2268896C2 (ru) 2006-01-27

Family

ID=7643405

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2002134901/04A RU2268896C2 (ru) 2000-05-25 2001-05-23 Высокотекучие пропиленовые блоксополимеры

Country Status (17)

Country Link
US (1) US7196140B2 (ru)
EP (1) EP1290053B1 (ru)
JP (1) JP2003535162A (ru)
KR (1) KR20030014243A (ru)
CN (1) CN1187387C (ru)
AR (1) AR030935A1 (ru)
AT (1) ATE271080T1 (ru)
AU (1) AU779011B2 (ru)
BR (1) BR0111340A (ru)
CA (1) CA2422598A1 (ru)
DE (2) DE10025727A1 (ru)
ES (1) ES2223859T3 (ru)
PL (1) PL360844A1 (ru)
RU (1) RU2268896C2 (ru)
TR (1) TR200402352T4 (ru)
TW (1) TW593375B (ru)
WO (1) WO2001090208A1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2463313C1 (ru) * 2008-09-22 2012-10-10 Митсуи Кемикалс, Инк Основанный на пропилене блоксополимер, содержащая его композиция и полученные из них формованные изделия
RU2702633C1 (ru) * 2013-11-15 2019-10-09 У.Р. Грейс Энд Ко.-Конн Полимер на основе пропилена с уменьшенной высокомолекулярной частью

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2002250827A1 (en) * 2001-01-10 2002-09-04 Basell Poliolefine Italia S.P.A. Block copolymers and process for their preparation
DE10163075A1 (de) * 2001-12-20 2003-07-10 Basell Polyolefine Gmbh Katalysatorsysteme von Typ der Ziegler-Natta-Katalysatoren und ein Verfahren zu deren Herstellung
EP1523509A1 (en) * 2002-07-24 2005-04-20 Basell Polyolefine GmbH At least two-stage process for preparing propylene polymer compositions
US20060003154A1 (en) * 2004-06-30 2006-01-05 Snowden Hue S Extruded thermoplastic articles with enhanced surface segregation of internal melt additive
AU2006239375A1 (en) * 2005-04-28 2006-11-02 Basell Poliolefine Italia S.R.L. Propylene polymer composition for thermoforming
EP1935938A1 (en) * 2006-12-18 2008-06-25 Borealis Technology Oy Improved high melt flow heterophasic polypropylene copolymers
CN102365301A (zh) * 2009-04-02 2012-02-29 道达尔石油化学产品研究弗吕公司 优化挤出工艺中的能量消耗的方法
CN102731692A (zh) * 2011-04-02 2012-10-17 中国石油化工股份有限公司 消除聚合物发粘的方法和阻粘剂
CN104558335B (zh) * 2013-10-11 2017-06-09 中国石油化工股份有限公司 一种基于丙烯的三元共聚物的制备方法
KR20160132958A (ko) * 2014-03-14 2016-11-21 밀리켄 앤드 캄파니 개질된 헤테로상 폴리올레핀 조성물
KR102100228B1 (ko) * 2015-10-05 2020-04-13 하이만 센서 게엠베하 모놀리식 집적된 신호 처리를 갖는 고분해능 서모파일 적외선 센서 어레이
WO2019094216A1 (en) * 2017-11-13 2019-05-16 W.R. Grace & Co.-Conn. Catalyst components for propylene polymerization

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4621952A (en) 1981-07-28 1986-11-11 Union Carbide Corporation Fluidized bed discharge process
DE3144312A1 (de) 1981-11-07 1983-05-19 Basf Ag, 6700 Ludwigshafen Verfahren zur herstellung von propylen-ethylen-polymerisaten vom typ der sogenannten block-copolymerisate
DE3214246A1 (de) 1982-04-17 1983-10-27 Basf Ag, 6700 Ludwigshafen Verfahren zum herstellen von propylen-ethylen-polymerisaten vom typ der sogenannten "block-copolymerisate"
FR2577558B1 (fr) 1985-02-19 1987-03-06 Bp Chimie Sa Polymerisation en plusieurs etapes d'alpha-olefines en phase gazeuse
US4734448A (en) 1985-07-10 1988-03-29 Idemitsu Petrochemical Co., Ltd. Propylene polymer composition
DE3827565A1 (de) 1988-08-13 1990-02-15 Basf Ag Verfahren zum herstellen von propylen-ethylen-polymerisaten vom typ der sogenannten "schlagzaehmodifizierten polypropylene"
EP0357394B1 (en) 1988-08-31 1995-08-02 Mitsubishi Chemical Corporation Process for producing propylene block copolymer
JP2664741B2 (ja) 1988-10-05 1997-10-22 三菱化学株式会社 流動性の改良された粒状プロピレン共重合体の製造法
US5280074A (en) 1989-12-21 1994-01-18 Hoechst Ag Process for the preparation of a polypropylene molding composition
DE4004087A1 (de) 1990-02-10 1991-08-14 Basf Ag Copolymerisate des propylens
EP0457455B2 (en) 1990-05-14 2008-07-02 Union Carbide Chemicals & Plastics Technology Corporation Polymer compositions
DE4117144A1 (de) 1991-05-25 1992-11-26 Basf Ag Hochfliessfaehige propylen-ethylen-copolymerisate
DE4117842A1 (de) * 1991-05-31 1992-12-03 Basf Ag Propylen-ethylen-copolymerisate aus drei verschiedenen bestandteilen
US6300434B1 (en) 1991-05-31 2001-10-09 Basell Polyolefin Gmbh Propylene-ethylene copolymers made from three different constituents
CA2079200A1 (en) 1991-09-27 1993-03-28 Hajime Sadatoshi Ethylene-propylene block copolymer
KR100341040B1 (ko) 1994-08-18 2002-11-23 칫소가부시키가이샤 고강성프로필렌-에틸렌블록공중합체조성물및이의제조방법
JP3355864B2 (ja) 1995-04-24 2002-12-09 チッソ株式会社 高剛性プロピレン・エチレンブロック共重合体の連続製造法
USH1722H (en) 1995-05-05 1998-04-07 Goode; Mark Gregory Process for producing polypropylene impact block copolymers
DE19522283A1 (de) 1995-06-20 1997-01-02 Basf Ag Vorrichtung zurGasphasenpolymerisation von C¶2¶-C¶8¶-Alk-1-enen
EP0790262B1 (en) 1995-08-31 2000-05-10 Chisso Corporation Propylene-ethylene copolymer compositions and process for the production thereof
US6204336B1 (en) 1996-04-08 2001-03-20 Sumitomo Chemical Company High-rigidity ethylene/propylene block copolymer and process for the production thereof
US6057407A (en) 1997-01-08 2000-05-02 Bp Amoco Corporation High melt flow propylene polymer produced by gas-phase polymerization
JP2002504954A (ja) 1997-06-24 2002-02-12 ボレアリス エイ/エス プロピレンポリマーの製造方法
FI111848B (fi) 1997-06-24 2003-09-30 Borealis Tech Oy Menetelmä ja laitteisto propeenin homo- ja kopolymeerien valmistamiseksi
JP3558860B2 (ja) * 1998-03-12 2004-08-25 三菱化学株式会社 プロピレン系ブロック共重合体のゲル含量の推定方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2463313C1 (ru) * 2008-09-22 2012-10-10 Митсуи Кемикалс, Инк Основанный на пропилене блоксополимер, содержащая его композиция и полученные из них формованные изделия
RU2702633C1 (ru) * 2013-11-15 2019-10-09 У.Р. Грейс Энд Ко.-Конн Полимер на основе пропилена с уменьшенной высокомолекулярной частью

Also Published As

Publication number Publication date
AU6231401A (en) 2001-12-03
DE10025727A1 (de) 2002-01-03
DE50102859D1 (en) 2004-08-19
TR200402352T4 (tr) 2004-12-21
PL360844A1 (en) 2004-09-20
AR030935A1 (es) 2003-09-03
EP1290053A1 (de) 2003-03-12
TW593375B (en) 2004-06-21
US20050038208A1 (en) 2005-02-17
US7196140B2 (en) 2007-03-27
AU779011B2 (en) 2005-01-06
KR20030014243A (ko) 2003-02-15
ES2223859T3 (es) 2005-03-01
JP2003535162A (ja) 2003-11-25
BR0111340A (pt) 2003-06-17
CN1187387C (zh) 2005-02-02
EP1290053B1 (de) 2004-07-14
CA2422598A1 (en) 2003-03-13
CN1444610A (zh) 2003-09-24
ATE271080T1 (de) 2004-07-15
WO2001090208A1 (de) 2001-11-29

Similar Documents

Publication Publication Date Title
RU2444547C2 (ru) Газофазный способ получения гетерофазных сополимеров пропилена
RU2268896C2 (ru) Высокотекучие пропиленовые блоксополимеры
EP0452916B1 (en) Process for producing polyolefins
DE69614251T2 (de) Fester katalysatorbestandteil zur olefinpolymerisation und katalysator
EP0980396B1 (en) Polybutene-1 (co)polymers and process for their preparation
EP1030876B1 (en) Talc containing polypropylene compositions
JP5255175B2 (ja) 新規なブテン−1(コ)ポリマーおよびその製造方法
US6221984B1 (en) Random propylene copolymer
DE19736616B4 (de) Fester Katalysatorbestandteil für die α-Olefin-Polymerisation, Katalysator für die α-Olefin-Polymerisation und Herstellungsverfahren für α-Olefin-Polymer
EP0416379A2 (en) Thermoplastic olefin polymer and method of preparing same
DE102009058468A1 (de) Verfahren zur Herstellung eines alpha-Olefinpolymerisationskatalysators
JPH0660216B2 (ja) オレフィン重合用固体触媒の製造法
JPH0372509A (ja) オレフィン重合触媒及びエチレン共重合体の製造法
AU708459B2 (en) Catalyst systems of the Ziegler-Natta type
US6200922B1 (en) Catalyst systems of the Ziegler-Natta type
RU2133757C1 (ru) Катализатор и способ (со)полимеризации этилена
EP1544218A1 (en) Process for producing olefin polymers
US5741862A (en) High flexible propylene/ethylene copolymers and process for preparing same
US6191223B1 (en) Polymer blends
JP2975128B2 (ja) プロピレン−エチレン共重合体
RU2117678C1 (ru) Каталитическая система для полимеризации пропилена, способ его полимеризации и полученные этим способом полипропилены
AU710989B2 (en) Improved propylene copolymers
US20090234076A1 (en) Propylene-based block copolymer particles
JPH0568481B2 (ru)
KR100254166B1 (ko) 폴리올레핀계수지 및 그 수지를 함유하는 수지 조성물

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20080524