RU2216873C2 - Передача цифровых сигналов посредством мультиплексирования с ортогональным частотным разделением - Google Patents

Передача цифровых сигналов посредством мультиплексирования с ортогональным частотным разделением Download PDF

Info

Publication number
RU2216873C2
RU2216873C2 RU99105345/09A RU99105345A RU2216873C2 RU 2216873 C2 RU2216873 C2 RU 2216873C2 RU 99105345/09 A RU99105345/09 A RU 99105345/09A RU 99105345 A RU99105345 A RU 99105345A RU 2216873 C2 RU2216873 C2 RU 2216873C2
Authority
RU
Russia
Prior art keywords
symbol
signal
bits
data bits
ofdm
Prior art date
Application number
RU99105345/09A
Other languages
English (en)
Other versions
RU99105345A (ru
Inventor
Раджив ВИДЖАЯН
Джозеф П. Оденвальдер
Джек К. ВУЛФ
Эфраим Зехави
Чонг У. ЛИ
Original Assignee
Квэлкомм Инкорпорейтед
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=25373850&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=RU2216873(C2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Квэлкомм Инкорпорейтед filed Critical Квэлкомм Инкорпорейтед
Publication of RU99105345A publication Critical patent/RU99105345A/ru
Application granted granted Critical
Publication of RU2216873C2 publication Critical patent/RU2216873C2/ru

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/27Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes using interleaving techniques
    • H03M13/2703Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes using interleaving techniques the interleaver involving at least two directions
    • H03M13/2707Simple row-column interleaver, i.e. pure block interleaving
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/20Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
    • H04N21/23Processing of content or additional data; Elementary server operations; Server middleware
    • H04N21/231Content storage operation, e.g. caching movies for short term storage, replicating data over plural servers, prioritizing data for deletion
    • H04N21/2312Data placement on disk arrays
    • H04N21/2315Data placement on disk arrays using interleaving
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/27Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes using interleaving techniques
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/29Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes combining two or more codes or code structures, e.g. product codes, generalised product codes, concatenated codes, inner and outer codes
    • H03M13/2933Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes combining two or more codes or code structures, e.g. product codes, generalised product codes, concatenated codes, inner and outer codes using a block and a convolutional code
    • H03M13/2936Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes combining two or more codes or code structures, e.g. product codes, generalised product codes, concatenated codes, inner and outer codes using a block and a convolutional code comprising an outer Reed-Solomon code and an inner convolutional code
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/31Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes combining coding for error detection or correction and efficient use of the spectrum
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0057Block codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0059Convolutional codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0064Concatenated codes
    • H04L1/0065Serial concatenated codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0071Use of interleaving
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2649Demodulators
    • H04L27/26524Fast Fourier transform [FFT] or discrete Fourier transform [DFT] demodulators in combination with other circuits for demodulation
    • H04L27/26526Fast Fourier transform [FFT] or discrete Fourier transform [DFT] demodulators in combination with other circuits for demodulation with inverse FFT [IFFT] or inverse DFT [IDFT] demodulators, e.g. standard single-carrier frequency-division multiple access [SC-FDMA] receiver or DFT spread orthogonal frequency division multiplexing [DFT-SOFDM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/20Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
    • H04N21/23Processing of content or additional data; Elementary server operations; Server middleware
    • H04N21/238Interfacing the downstream path of the transmission network, e.g. adapting the transmission rate of a video stream to network bandwidth; Processing of multiplex streams
    • H04N21/2383Channel coding or modulation of digital bit-stream, e.g. QPSK modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/438Interfacing the downstream path of the transmission network originating from a server, e.g. retrieving encoded video stream packets from an IP network
    • H04N21/4382Demodulation or channel decoding, e.g. QPSK demodulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Probability & Statistics with Applications (AREA)
  • Multimedia (AREA)
  • Mathematical Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Discrete Mathematics (AREA)
  • Error Detection And Correction (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)
  • Time-Division Multiplex Systems (AREA)
  • Reduction Or Emphasis Of Bandwidth Of Signals (AREA)

Abstract

В системе мультиплексирования с ортогональным частотным разделением (МОЧР), которая использует внешний кодер Рида-Соломона и блок чередования и внутренний сверточный кодер, после внутреннего сверточного кодирования биты данных подвергаются чередованию посредством внутреннего блока чередования, а затем группируются в символы, каждый из которых имеет m битов. После группирования символы отображаются на комплексную плоскость с использованием квадратурной амплитудной модуляции (КАМ). Таким образом, биты, но не символы, чередуются посредством внутреннего блока чередования. Приемник осуществляет мягкое решение с учетом значения каждого бита в каждом принимаемом комплексном символе КАМ. Техническим результатом является создание системы для передачи высокоскоростных цифровых данных в условиях многолучевого распространения. 5 с. и 16 з.п.ф-лы, 4 ил., 1 табл.

Description

Область техники
Настоящее изобретение относится к передаче цифрового сигнала посредством мультиплексирования с ортогональным частотным разделением (МОЧР), более конкретно изобретение относится к устройствам и системам МОЧР, которые используются при передаче цифровых сигналов.
Предшествующий уровень техники
Мультиплексирование с ортогональным частотным разделением (МОЧР) представляет собой способ широковещательной трансляции передачи высокоскоростных цифровых сигналов, например сигналов телевидения высокой четкости (ТВВЧ). В системах МОЧР один высокоскоростной поток данных делится на несколько параллельных низкоскоростных подпотоков, причем каждый подпоток используется для модуляции соответствующей поднесущей частоты.
Способ модуляции, используемый в системах МОЧР, определяется как квадратурная амплитудная модуляция (КАМ), при которой модулируется как фаза, так и амплитуда несущей частоты. При модуляции КАМ из множества битов данных формируются комплексные символы КАМ, причем каждый символ включает в себя действительную составляющую и мнимую составляющую, и при этом каждый символ представляет множество битов данных, из которых он был сформирован. Множество битов КАМ передаются совместно в конфигурации, которую можно графически представить с помощью комплексной плоскости. В типовом случае такая конфигурация называется "созвездием". Использование КАМ позволяет повысить эффективность системы МОЧР.
Передаваемый в широковещательном режиме сигнал может распространяться к приемнику более чем одним путем. Например, сигнал от единственного передатчика может распространяться к приемнику по прямой линии, а также после отражений от физических объектов. Кроме того, когда система использует способ так называемой "сотовой" трансляции для увеличения спектральной эффективности, принимаемый сигнал может транслироваться более чем одним передатчиком. Поэтому один и тот же сигнал будет передаваться к приемнику более чем одним путем. Такое параллельное распространение сигналов, как искусственное (т.е. обусловленное трансляцией одного и того же сигнала от более чем одного передатчика), так и естественное (т.е. обусловленное отражениями), определяется как "многолучевое распространение". Ясно, что, хотя сотовая цифровая трансляция является спектрально эффективной, следует принять меры для учета эффектов многопутевого распространения.
Системы МОЧР, использующие КАМ, более эффективны при наличии условий многолучевого распространения (которые должны возникать при использовании сотовых методов трансляции), чем способы КАМ, основанные на использовании только одной несущей частоты. В системах КАМ с одной несущей должен использоваться комплексный выравниватель для выравнивания характеристик каналов, которые имеют эхосигналы, сравнимые по уровню с сигналом прямого распространения, причем такое выравнивание является трудным для осуществления. В противоположность этому, в системах МОЧР необходимость в комплексных выравнивателях можно исключить, просто вводя защитные интервалы подходящей длины в начале каждого символа. Соответственно, системы МОЧР, которые используют КАМ, имеют преимущество в условиях, когда имеется многолучевое распространение.
Что касается современных систем МОЧР, то при оценке настоящего изобретения следует учитывать, что в современных системах поток данных, подлежащий трансляции, кодируется дважды, сначала с помощью кодера Рида-Соломона, а затем с помощью схемы решетчатого кодирования. Заметим, что настоящее изобретение в равной степени применимо к системам, в которых имеет место только одно кодирование. В обычной схеме решетчатого кодирования поток данных кодируется с помощью сверточного кодера, а затем последовательные биты комбинируются в группу битов, которая образует символ КАМ. В группе имеется несколько битов, причем число битов на группу определяется целым числом m (следовательно, каждая группа именуется имеющей m-ичную размерность), обычно значение m составляет четыре, пять, шесть или семь, хотя оно может быть больше или меньше.
После группирования битов в многобитные символы символы подвергаются чередованию. "Чередование" означает, что поток символов переупорядочивается в последовательности, чтобы тем самым рандомизировать потенциальные ошибки, обусловленные искажениями в канале. В иллюстративных целях, положим, что необходимо передать пять слов. Если в ходе передачи сигнала без чередования возникают временные искажения в канале, в таких обстоятельствах, еще до исключения искажений в канале, может быть потеряно целое слово, и может оказаться затруднительным или вообще невозможным распознать, какая информация была передана посредством потерянного слова.
В противоположность этому, если буквы пяти слов последовательно переупорядочиваются (т.е. "чередуются") до передачи, и возникает помеха в канале, то может потеряться несколько букв, возможно, по одной букве на слово. Однако после декодирования переупорядоченных букв будут получены все пять слов, хотя в нескольких словах могут быть пропущены буквы. Совершенно ясно, что в этих обстоятельствах цифровому декодеру было бы относительно легко, практически полностью, восстановить данные. После чередования m-ичных символов символы отображаются на комплексные символы с использованием вышеупомянутых принципов КАМ, мультиплексируются в соответствующих каналах поднесущей, и передаются.
Было обнаружено, что современные системы МОЧР, которые используют вышеупомянутую схему решетчатого кодирования, в которой биты данных группируются в символы до чередования, оказываются недостаточно эффективными в условиях многолучевого распространения, когда некоторые из поднесущих МОЧР значительно ослаблены. Кроме того, было обнаружено, что можно повысить эффективность систем МОЧР в присутствии ослабления поднесущей, обусловленного условиями многолучевого распространения. Также было обнаружено, что эффективность подобной системы МОЧР можно дополнительно повысить за счет мягкого принятия решения в приемнике при определении значений принимаемых данных.
Сущность изобретения
Соответственно, задачей настоящего изобретения является создание системы для передачи высокоскоростных цифровых данных в условиях многолучевого распространения. Также задачей настоящего изобретения является создание системы для передачи высокоскоростных цифровых данных с использованием принципов МОЧР, которая функционирует сравнительно эффективно при ослаблении поднесущей в условиях многолучевого распространения. Кроме того, задачей настоящего изобретения является создание системы для приема высокоскоростных цифровых данных, которая позволяет использовать мягкое принятие решения на базе каждого подканала для определения значения данных. Задачей настоящего изобретения также является создание системы для передачи высокоскоростных данных, характеризуемой простотой в использовании и экономичностью в производстве и обслуживании.
В одном из аспектов изобретение предусматривает передатчик сигнала мультиплексирования с ортогональным частотным разделением (МОЧР сигнала), в котором биты данных обрабатываются посредством внутреннего блока чередования до группирования битов в многобитные символы.
В другом аспекте изобретение предусматривает устройство для передатчика МОЧР-сигнала для обработки битов цифровых данных для передачи их на приемник, при этом устройство содержит внешний блок чередования для обработки битов данных; кодер для кодирования упомянутых обработанных битов; внутренний блок чередования для приема битов данных из кодера и чередования битов данных; и средство приема чередованных битов данных из внутреннего блока чередования и генерирования символа, представляющего m последовательных битов из внутреннего блока чередования, где m есть целое число, большее единицы.
В передатчике МОЧР предусмотрено устройство, реализующее изобретение, для обработки битов цифровых данных для передачи их на приемник. В этом варианте реализации устройство включает в себя внешний блок чередования, предпочтительно, блок чередования символов кода Рида-Соломона для обработки битов данных, и внутренний блок чередования для приема обработанных выходных битов данных от внешнего блока чередования и чередования битов данных. Устройство также включает в себя средство приема чередованных битов данных от внутреннего блока чередования и генерирования символа, представляющего m последовательных битов от внутреннего блока чередования, где m есть целое число, большее единицы.
Предпочтительно, сверточный кодер обрабатывает биты между внутренним и внешним блоками чередования. Кроме того, может быть предусмотрено средство отображения каждого символа в m-ичное сигнальное пространство, согласно предпочтительному варианту осуществления, средство отображения использует квадратурную амплитудную модуляцию (КАМ) для генерирования комплексных символов. Если m - нечетное целое, равное по меньшей мере пяти (5), средство отображения минимизирует сумму расстояний Хэмминга между соседними символами в квадранте сигнального пространства.
Как описано ниже более подробно, последовательно-параллельный преобразователь обрабатывает комплексные символы в m подпотоков, где m есть целое число, большее единицы. Генератор защитного периода устанавливает защитный период в потоках сигнала. Данное устройство раскрывается в комбинации с передатчиком МОЧР и в дополнительной комбинации с системой МОЧР.
В еще одном аспекте изобретение предусматривает способ передачи битов цифровых данных с использованием мультиплексирования с ортогональным частотным разделением (МОЧР), включающий значения сверточного кодирования битов, чередования битов, группирования m битов параллельно, для формирования соответствующего символа.
Способ передачи битов цифровых данных, использующий МОЧР, включает в себя сверточное кодирование битов и затем чередование битов. Затем, способ включает группирование m битов параллельно для формирования соответствующего символа.
Изобретение также предусматривает устройство для приемника, предназначенное для приема n подпотоков сигнала, мультиплексированного с ортогональным частотным разделением (МОЧР-сигнала), содержащего комплексные отрегулированные по фазе символы, где каждый символ представляет m битов данных, которое включает в себя для каждого подпотока квантователь мягкого решения для определения двоичного значения каждого бита, представляемого каждым символом в подпотоке. Эту часть функции приемника может принимать на себя компьютерное логическое устройство.
Изобретение, таким образом, также предусматривает компьютерное логическое устройство для приемника МОЧР-сигнала, предназначенного для приема комплексных символов в МОЧР-сигнале, каждый из которых представляет m битов данных, при этом компьютерное логическое устройство содержит компьютерное логическое устройство хранения, считываемое системой цифровой обработки; и команды, реализованные в логическом устройстве хранения, команды, исполняемые системой цифровой обработки для выполнения этапов способа для принятия мягкого решения с учетом значения каждого символа, при этом этапы способа включают определение первого набора возможных значений для каждого символа, причем каждое значение в первом наборе имеет двоичное значение "0" в предварительно определенном бите; определение, для каждого символа, модуля разности между символом и каждым возможным значением в первом наборе возможных значений; и определение наименьшего модуля разности и генерирование первого сигнала, представляющего его.
Устройство для передачи МОЧР-сигналов содержит средство квадратурной амплитудной модуляции (КАМ) для генерирования символов КАМ. Также, устройство включает в себя средство отображения для отображения символов на m-ичное пространство так, чтобы сумма расстояний Хэмминга между соседними символами в пространстве была минимизирована, где m - нечетное целое, равное по меньшей мере пяти (5).
Краткое описание чертежей
Признаки, задачи и преимущества настоящего изобретения поясняются в последующем подробном описании, иллюстрируемом чертежами, на которых представлено следующее:
фиг.1 - блок-схема системы передачи цифрового сигнала, выполненной в соответствии с настоящим изобретением;
фиг. 2 - блок-схема передатчика, выполненного в соответствии с настоящим изобретением;
фиг. 3 - блок схема приемника, выполненного в соответствии с настоящим изобретением; и
фиг. 4 - блок-схема последовательности операций, реализуемой логикой мягкого решения в приемнике.
Подробное описание предпочтительных вариантов осуществления
На фиг. 1 изображена система 10 для передачи высокоскоростных цифровых данных на приемник 12 от одного или более, по существу, одинаковых передатчиков 14, 16 посредством множества каналов 18, 20 эфирного интерфейса. Высокоскоростные цифровые сигналы могут представлять собой, например, сигналы телевидения высокой четкости (ТВВЧ). Система 10 является системой мультиплексирования с ортогональным частотным разделением (МОЧР). Соответственно, передатчики 14, 16 передают на приемник 12 одинаковые сигналы, причем каждый сигнал мультиплексируется во множество из n подканалов, где n - целое число, большее единицы (1). В соответствии с принципами МОЧР, каждый подканал представляет соответствующий подпоток последовательности комплексных квадратурно-амплитудно-модулированных (КАМ) символов. В свою очередь, каждый символ КАМ представляет m битов данных, где m - целое число, большее единицы (1). В одном из предпочтительных вариантов осуществления значение m составляет шесть (6). В другом предпочтительном варианте осуществления значение m составляет семь (7). Хотя рассматриваемый вариант осуществления описывается в терминах квадратурной амплитудной модуляции, он в равной степени применим к системам модуляции с использованием манипуляции фазовым сдвигом.
Фиг. 2 изображает существенные фрагменты передатчика 14 рассматриваемого варианта осуществления. Внешний символьный кодер с исправлением ошибок, например кодер Рида-Соломона 22, принимает поток битов цифровых данных, подлежащих передаче, и кодирует биты согласно принципам, известным в технике. Аналогично, внешний блок чередования 24, предпочтительно блок чередования символов Рида-Соломона, чередует данные из внешнего кодера 22 в соответствии с принципами, известными в технике. (См. например, G.C. Clark, Jr. аnd J.B. Cain, "Error-Correcting Coding for Digital Communications", Plenum Press, New York, 1981; S. Lin and D.J. Costello, Jr., "Error Control Coding: Fundamentals and Applications", Prentice-Hall, Englewood Cliffs, N.J. 1983).
Из внешнего блока чередования 24 сигнал подается на сверточный кодер 26, который сверточно кодирует биты данных по общеизвестным принципам. Биты данных затем передаются на внутренний блок чередования 28, который чередует биты. Затем чередованные биты подаются на блок группирования 30 сигнального пространства.
Согласно настоящему изобретению, блок группирования 30 сигнального пространства группирует параллельно последовательность m битов из внутреннего блока чередования 28. Таким образом, блок группирования сигнального пространства формирует соответствующий символ, который является представителем каждого из m последовательных битов, принимаемых из внутреннего блока чередования 28.
Очевидно, что передатчик 14, в отличие от передатчиков МОЧР с решетчатым кодированием, обрабатывает биты данных посредством внутреннего блока чередования до группирования битов в многобитные символы. Заявителем было обнаружено, что при помощи этой структуры передатчика и структуры приемника 12, обсуждаемой ниже, характеристики разнесения и эффективность системы 10 улучшается в условиях многолучевого распространения, по сравнению с традиционными передатчиками с решетчатым кодированием, которые сначала группируют биты данных в символы, а затем обрабатывают символы посредством внутреннего блока чередования.
Как показано на фиг. 2, символы из блока группирования 30 сигнального пространства посылаются на элемент 32 отображения сигнального пространства. В соответствии с настоящим изобретением, элемент 32 отображения сигнального пространства отображает каждый символ на m-ичное сигнальное пространство. Предпочтительно, элемент отображения использует квадратурную амплитудную модуляцию (КАМ), для осуществления модуляции как по амплитуде, так и по фазе на базе каждого символа, для генерирования комплексных символов.
Эти комплексные символы отображаются на комплексную плоскость, иногда называемую созвездием КАМ. Соответственно, каждый комплексный символ может быть выражен в терминах его положения x-y на комплексной плоскости как "х+jy", где j есть квадратный корень из отрицательной единицы
Figure 00000002

Для четных значений m отображение на комплексную плоскость осуществляется с использованием m/2 кодированных по Грею двоичных цифр для x-координат и с использованием оставшихся m/2 двоичных цифр (кодированных по Грею) для представления y-координаты. При таком отображении смежные биты в квадранте комплексной плоскости отличаются друг от друга по значению только одним двоичным значением. Другими словами, так называемое расстояние Хэмминга между смежными битами в квадранте в точности равно единице (1).
В противоположность этому, для нечетных значений m, поскольку созвездие КАМ уже не является прямоугольным, символы КАМ уже не могут независимо кодироваться по Грею в двух измерениях. Соответственно, для нечетных значений m символы КАМ отображаются с использованием квази-Греевского кода, изображенного в нижеприведенной таблице, для минимизации суммы расстояний Хэмминга между m битами, присвоенными каждой различающейся паре соседних символов в квадранте (то есть, элементами одного и того же квадранта, которые физически представлены в таблице как следующие друг за другом, без каких-либо промежуточных элементов).
Специалистам будет очевидно, что созвездие, изображенное в таблице, можно рассматривать как включающее в себя четыре квадранта, причем начало координат созвездия находится между третьей строкой и четвертой строкой и между третьим столбцом и четвертым столбцом. Согласно настоящему изобретению два из m битов, из представляемых каждым символом КАМ, кодируют квадрант символа.
Таким образом, два из битов из символов КАМ в первом квадранте есть 00, два бита из каждого символа во втором квадранте есть 01, два бита из каждого символа в третьем квадранте есть 11 и два бита из каждого символа в четвертом квадранте есть 10.
Соответственно, в таблице три оставшихся бита каждого символа обозначаются одной из восьми букв a-h. Распределения для символа в первом квадранте обсуждаются ниже, но следует иметь в виду, что, как показано в таблице, распределение одного и того же бита отражается в других трех квадрантах. Каждой букве можно произвольно присвоить значение "000"; например буква "а" может представлять двоичное значение "000". Чтобы поддерживать расстояние Хэмминга до соседних элементов в квадранте равным единице, в настоящем изобретении используется распределение b=001 и с=010. Это, в свою очередь, приводит к d=011 и f=111.
Для оставшихся распределений существуют две возможности минимизации суммы межсимвольных расстояний Хэмминга в квадранте. Первая состоит в распределении g=100 и h=101. В этом случае расстояние Хэмминга между всеми соседними элементами в квадранте равно 1, за исключением расстояния Хэмминга между d и g, которое равно трем. Или же, g=101 и h=100. В этом случае расстояние Хэмминга между соседними элементами в квадранте равно 1, за исключением расстояния Хэмминга между d и g, которое равно двум, и расстояния Хэмминга между b и h, которое равно двум. Оба случая, так или иначе, минимизируют сумму расстояний Хэмминга от одного соседнего элемента к другому соседнему элементу в квадранте.
Таблица является отображением для случая m=5. Следует иметь в виду, однако, что изложенные здесь принципы применимы к большим нечетным значениям m. Например, для нечетного m>5 каждая точка в приведенной таблице замещается квадратной матрицей из 2(m-5) точек, так, что пять из битов каждого символа используются для идентификации отдельных квадратных матриц, а оставшиеся m-5 битов используются в качестве двумерного кода Грея, чтобы обозначать точки в квадратной матрице.
После отображения поток комплексных символов мультиплексируется в подпотоки последовательно-параллельным преобразователем 34. По мере того, как преобразователь 34 мультиплексирует символы, он вставляет символы пилот-сигнала в n подпотоков d0....dn-1 (что представлено блоком вставки 33 символа пилот-сигнала в передатчике 14, как показано на чертеже). Для специалиста очевидно, что пилот-сигналы создают стандарт амплитуды и фазы для приемника, например приемника 12, чтобы использовать их для определения масштаба и фазы принимаемых комплексных символов.
После мультиплексирования подпотоки преобразуются в частотную область блоком 36 быстрого преобразования Фурье (БПФ). Затем генератор 38 защитного периода принимает выходной сигнал блока 36 БПФ и создает в выходном сигнале защитные периоды. В предпочтительном варианте осуществления защитные периоды создаются путем вставления в сигнал циклического расширения символа, несущего информацию.
На фиг.3 изображены существенные элементы приемника 12, соответствующего настоящему изобретению. Принимаемый сигнал посылается на блок удаления 40 защитного периода, который удаляет защитные периоды, вставленные передатчиком 14 путем обработки только энергии, принимаемой в течение периода полезного сигнала. Из блока удаления 40 сигнал посылается на блок 42 обратного БПФ для преобразования сигнала обратно во временную область.
Как показано на фиг.3, блок 42 обратного БПФ выводит подпотоки принимаемых комплексных символов данных
Figure 00000003
Каждый символ комбинируется в соответствующем умножителе 44 с соответствующим вектором коррекции поворота фазы e = -jφ, где φ - поворот фазы символа, оцениваемый на основе пилот-сигнала, введенного в передатчике 14.
Затем значение битов, представляемых каждым комплексным символом в соответствующих подпотоках, определяется соответствующими квантователями 46 мягкого решения. Таким образом, квантователи 46 декодируют комплексные символы обратно в биты данных, которые они соответственно представляют. Способ, посредством которого определяются значения битов каждого символа, излагается ниже со ссылками на фиг.4. Как указано на фиг.3, однако, чтобы облегчить принятие мягких решений, квантователи 46 принимают соответствующие оценки "р" амплитуд принимаемых сигналов, основанные на пилот-сигналах.
Из квантователей 46 подпотоки битов данных посылаются на параллельно-последовательный преобразователь 48, чтобы комбинировать подпотоки в единую последовательность битов данных. Затем последовательность битов данных посылается на блок удаления чередования 50 для переупорядочения битов в порядок, в котором они находились до осуществления чередования посредством внутреннего блока чередования 28 передатчика. После удаления чередования биты посылаются на декодер 52 для декодирования битов в соответствии со схемами сверточного кодирования, широко известными в технике. Возможный вариант осуществления сверточного декодера 52 - это декодер Витерби, конструкция которого широко известна в технике. Выходной сигнал декодера 52 подается на внешний блок дечередования 51, который переупорядочивает сверточно декодированные символы. Переупорядоченные символы затем подаются на декодер 53 Рида-Соломона, который декодирует переупорядоченные символы так, как хорошо известно в технике.
Фиг. 4 иллюстрирует логику соответствующего настоящему изобретению квантователя 46 мягкого решения при определении значений битов, представляемых принимаемым комплексным символом. Как следует из фиг.3, каждый квантователь 46 может представлять собой микропроцессор, который, предпочтительно, включает в себя устройство 53 хранения данных, которое содержит команды, используемые квантователем 46, для осуществления этапов настоящего изобретения. Соответственно, для специалистов очевидно, что квантователь 46 может включать в себя программируемый центральный блок обработки (ЦБО) или программируемую микросхему матрицы вентилей или специализированную интегральную схему.
На фиг.4 изображена структура различных вариантов осуществления логики, согласно настоящему изобретению, в виде реализованной на структурах считываемой компьютером логики в устройстве хранения 53 (фиг.3). Для специалистов очевидно, что фиг. 4 иллюстрирует структуры логических элементов, которые функционируют согласно данному изобретению. Очевидно, что изобретение реализуется в одном из основных вариантов осуществления на базе машинного компонента, который реализует логические элементы в форме, выдающей команды блоку цифровой обработки (то есть компьютеру или микропроцессору) для выполнения последовательности этапов работы, соответствующих тем, которые показаны на фиг.4.
Эти команды могут находиться в логических структурах/схемах в устройстве хранения данных (или реализоваться посредством этих структур), которое содержит носитель хранения данных, например в устройстве хранения 53, показанном на фиг.3. Машинный компонент может являться комбинацией логических элементов, которые реализуются в устройстве хранения 53, которое может представлять собой электронное постоянное запоминающее устройство (ПЗУ), или электронное оперативное запоминающее устройство (ОЗУ), или другое подходящее устройство хранения данных. Альтернативно, команды могут быть реализованы в форме элементов компьютерного программного кода на полупроводниковых устройствах, на магнитной ленте, на оптических дисках, на матрице запоминающих устройств прямого доступа (ЗУПД), на магнитной ленте, на традиционном дисководе жесткого диска, на электронном постоянном запоминающем устройстве, или на электронном оперативном запоминающем устройстве, или другом подходящем устройстве хранения данных.
Начиная с блока 58, отрегулированный по фазе сигнал
Figure 00000004
(значение i обозначает i-ый символ) для каждого принимаемого комплексного символа принимается из умножителя 44, как изложено выше, квантователем 46 настоящего изобретения. Затем, в блоке 56 определяется первый набор возможных значений piα, которые может иметь принимаемый комплексный символ. Значения величин α известны заранее, поскольку каждое из них соответствует положению в заданной геометрии созвездия. Этот первый набор включает в себя 2m-1 элементов piα, каждый из которых имеет двоичный "0" в k-ом бите, k=1,...,m. Другими словами, в блоке 56 первый набор возможных значений определяется для каждого символа, причем каждое значение в первом наборе имеет двоичное значение "0" в заданном бите.
Аналогично, в блоке 58 определяется второй набор возможных значений piα, которые может иметь принимаемый комплексный символ. Этот второй набор включает в себя 2m-1 элементов piα, каждый из которых имеет двоичную "1" в k-ом бите, k=1,...,m. Другими словами, в блоке 58 второй набор возможных значений определяется для каждого символа, причем каждое значение во втором наборе имеет двоичное значение "1" в заданном бите. Таким образом, в созвездии 32 значений, показанном выше в таблице, шестнадцать возможных значений выводятся в блоке 56, и другие шестнадцать выводятся в блоке 58.
Затем в блоке 60 определяются абсолютные значения разностей между отрегулированным по фазе сигналом
Figure 00000005
и каждым ожидаемым сигналом piα в первом наборе, и наименьшее абсолютное значение выбирается в качестве первого сигнала. Также в блоке 60 определяются абсолютные значения разностей между отрегулированным по фазе сигналом
Figure 00000006
и каждым ожидаемым сигналом piα во втором наборе, и наименьшее абсолютное значение выбирается в качестве второго сигнала. Выходной сигнал блока 60 имеет вид:
Figure 00000007

Хотя конкретный блок чередования битов для мультиплексирования с ортогональным частотным разделением при передаче цифровых сигналов, подробно описанный выше, обеспечивает решение вышеописанных задач изобретения, следует иметь в виду, что в настоящее время это характеризует преимущественный вариант осуществления настоящего изобретения, представляющий в широком смысле сущность настоящего изобретения. При этом настоящее изобретение охватывает другие варианты осуществления, которые могут быть очевидными для специалистов, т. е. объем настоящего изобретения ограничивается только формулой изобретения.

Claims (21)

1. Устройство для обработки битов цифровых данных для передачи их на приемник, содержащее внешний блок чередования для обработки битов данных, кодер для кодирования обработанных битов, внутренний блок чередования для приема битов данных из кодера и чередования битов данных и средство приема чередованных битов данных из внутреннего блока чередования и генерирования символа, представляющего m последовательных битов из внутреннего блока чередования, где m - целое число, большее 1.
2. Устройство по п. 1, отличающееся тем, что внешний блок чередования является блоком чередования Рида-Соломона.
3. Устройство по п. 1 или 2, отличающееся тем что дополнительно содержит средство отображения каждого символа на m-ичное сигнальное пространство.
4. Устройство по п. 3, отличающееся тем, что средство отображения использует квадратурную амплитудную модуляцию (КАМ) для генерирования комплексных символов.
5. Устройство по п. 4, отличающееся тем, что содержит последовательно-параллельный преобразователь для обработки комплексных символов в n подпотоков, где n - целое число, большее 1.
6. Устройство по любому из пп. 3-5, отличающееся тем, что m - нечетное целое число, равное по меньшей мере 5, при этом средство отображения минимизирует сумму расстояний Хэмминга между соседними символами в квадранте сигнального пространства.
7. Устройство по п. 5 или 6, отличающееся тем, что дополнительно содержит генератор защитного периода для формирования защитного периода в сигнальных потоках.
8. Устройство по п. 7, отличающееся тем, что использует принцип мультиплексирования с ортогональным частотным разделением (МОЧР).
9. Способ передачи битов цифровых данных с использованием мультиплексирования с ортогональным частотным разделением (МОЧР), включающий этапы сверточного кодирования битов, чередования битов, группирования m битов параллельно для формирования соответствующего символа.
10. Способ по п. 9, отличающийся тем, что дополнительно включает этап отображения символа на m-ичное пространство с использованием квадратурной амплитудной модуляции для генерирования комплексного символа.
11. Способ по п. 10, отличающийся тем, что m = 7.
12. Способ по п. 10 или 11, отличающийся тем, что дополнительно включает этап кодирования битов данных и чередования битов данных с использованием внешнего кодера перед этапом сверточного кодирования.
13. Способ по п. 12, отличающийся тем, что дополнительно включает этапы подразделения комплексных символов в n подпотоков, выполнения быстрого преобразования Фурье для подпотоков для формирования преобразованного выходного сигнала и формирования множества защитных периодов в преобразованном выходном сигнале.
14. Устройство для приемника, предназначенного для приема n подпотоков сигнала, мультиплексированного с ортогональным частотным разделением (МОЧР), содержащего комплексные отрегулированные по фазе символы, каждый из которых представляет m битов данных, причем устройство содержит для каждого подпотока квантователь мягкого решения для определения двоичного значения каждого бита, представляемого каждым символом в подпотоке.
15. Устройство по п. 14, отличающееся тем, что квантователь мягкого решения содержит средство определения первого набора возможных значений для каждого символа, причем каждое значение в первом наборе имеет двоичное значение "0" в предварительно определенном бите, средство определения для каждого символа модуля разности между символом и каждым возможным значением в первом наборе возможных значений и средство определения наименьшего модуля разности и формирования первого сигнала, представляющего его.
16. Устройство по п. 15, отличающееся тем, что квантователь мягкого решения дополнительно содержит средство определения второго набора возможных значений для каждого символа, причем каждое значение во втором наборе имеет двоичное значение "1" в предварительно определенном бите, средство определения для каждого символа модуля разности между символом и каждым возможным значением во втором наборе возможных значений и средство определения наименьшего модуля разности и формирования второго сигнала, представляющего его.
17. Устройство по п. 16, отличающееся тем, что квантователь мягкого решения дополнительно содержит средство возврата двоичной "1", когда первый сигнал больше, чем второй сигнал, и возврата двоичного "0" в противном случае.
18. Устройство по п. 17, отличающееся тем, что квантователь мягкого решения дополнительно содержит средство возврата доверительного значения, пропорционального модулю разности между первым и вторым сигналами.
19. Устройство по п. 9 или 18 в комбинации с приемником, содержащим блок удаления защитного периода для удаления защитных периодов в сигнале МОЧР перед вводом сигнала МОЧР в квантователь мягкого решения.
20. Компьютерное логическое устройство для приемника сигнала мультиплексирования с ортогональным частотным разделением (МОЧР) для приема комплексных символов в сигнале МОЧР, причем каждый из упомянутых символов представляет m битов данных, содержащее компьютерное логическое устройство хранения, считываемое системой цифровой обработки, и команды, реализованные в упомянутом логическом устройстве хранения, причем команды предназначены для исполнения системой цифровой обработки для выполнения мягкого решения с учетом значения каждого символа, при этом мягкое решение включает определение первого набора возможных значений для каждого символа, причем каждое значение в первом наборе имеет двоичное значение "0" в предварительно определенном бите, определение для каждого символа модуля разности между символом и каждым возможным значением в первом наборе возможных значений и определение наименьшего модуля разности и формирование первого сигнала, представляющего его.
21. Передатчик сигнала мультиплексирования с ортогональным частотным разделением (МОЧР), в котором биты данных обрабатываются посредством внутреннего блока чередования перед группированием битов в многобитные символы.
RU99105345/09A 1997-06-19 1998-06-16 Передача цифровых сигналов посредством мультиплексирования с ортогональным частотным разделением RU2216873C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/879,297 1997-06-19
US08/879,297 US6151296A (en) 1997-06-19 1997-06-19 Bit interleaving for orthogonal frequency division multiplexing in the transmission of digital signals

Publications (2)

Publication Number Publication Date
RU99105345A RU99105345A (ru) 2001-01-27
RU2216873C2 true RU2216873C2 (ru) 2003-11-20

Family

ID=25373850

Family Applications (1)

Application Number Title Priority Date Filing Date
RU99105345/09A RU2216873C2 (ru) 1997-06-19 1998-06-16 Передача цифровых сигналов посредством мультиплексирования с ортогональным частотным разделением

Country Status (18)

Country Link
US (3) US6151296A (ru)
EP (1) EP0919098A3 (ru)
JP (3) JP2001500713A (ru)
KR (1) KR100578675B1 (ru)
CN (2) CN1168271C (ru)
AR (1) AR013006A1 (ru)
AU (1) AU759184B2 (ru)
BR (1) BR9806005A (ru)
CA (1) CA2263669C (ru)
CL (1) CL2007003699A1 (ru)
FI (2) FI990353A (ru)
IL (3) IL128579A (ru)
MX (1) MXPA99001685A (ru)
MY (1) MY119818A (ru)
NO (1) NO324299B1 (ru)
RU (1) RU2216873C2 (ru)
WO (1) WO1998058496A2 (ru)
ZA (1) ZA985386B (ru)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006135275A2 (fr) * 2005-06-15 2006-12-21 Igor Borisovich Dounaev Procede d'emission et de reception de signaux a modulation d'amplitude en quadrature, systeme de sa mise en oeuvre, support lisible par machine et realisation d'un procede destine a la synchronisation de la reception des signaux de la modulation d'amplitude en quadrature
US7668253B2 (en) 2004-03-05 2010-02-23 Samsung Electronics Co., Ltd Method for allocating a subchannel in an orthogonal frequency division multiple access cellular communication system
EA014629B1 (ru) * 2007-10-30 2010-12-30 Сони Корпорейшн Устройство и способ обработки данных
RU2443062C2 (ru) * 2007-03-12 2012-02-20 Квэлкомм Инкорпорейтед Сигнальная передача и прием в системах беспроводной связи
RU2446591C2 (ru) * 2007-03-12 2012-03-27 Квэлкомм Инкорпорейтед Мультиплексирование каналов обратной связи в системе беспроводной связи
RU2452097C2 (ru) * 2007-08-13 2012-05-27 Квэлкомм Инкорпорейтед Передача с разнесением частот в системе беспроводной связи
RU2453998C2 (ru) * 2007-03-02 2012-06-20 Квэлкомм Инкорпорейтед Повторитель физического уровня, использующий метрики измерений в реальном времени и адаптивную антенную решетку для обеспечения целостности и усиления сигнала
RU2479127C2 (ru) * 2008-03-10 2013-04-10 Самсунг Электроникс Ко., Лтд. Устройство и способ составления подканала разнесения в системе беспроводной связи
RU2518932C2 (ru) * 2008-10-10 2014-06-10 Майкрософт Корпорейшн Уменьшенное рассогласование коэффициентов усиления постоянной состовляющей (dc) и dc-утечки при обработке преобразования с перекрытием
US8885761B2 (en) 2003-03-25 2014-11-11 Sony Corporation Data processing apparatus and method

Families Citing this family (191)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19609909A1 (de) * 1996-03-14 1997-09-18 Deutsche Telekom Ag Verfahren und System zur OFDM-Mehrträger-Übertragung von digitalen Rundfunksignalen
DE19638654A1 (de) * 1996-09-20 1998-03-26 Siemens Ag Verfahren zur digitalen Nachrichtenübertragung
US6151296A (en) * 1997-06-19 2000-11-21 Qualcomm Incorporated Bit interleaving for orthogonal frequency division multiplexing in the transmission of digital signals
DE69837077T2 (de) * 1997-12-30 2007-06-21 Canon K.K. Verschachteler für Turbo-Kodierer
US7430257B1 (en) 1998-02-12 2008-09-30 Lot 41 Acquisition Foundation, Llc Multicarrier sub-layer for direct sequence channel and multiple-access coding
US5955992A (en) * 1998-02-12 1999-09-21 Shattil; Steve J. Frequency-shifted feedback cavity used as a phased array antenna controller and carrier interference multiple access spread-spectrum transmitter
ATE210908T1 (de) * 1998-04-14 2001-12-15 Fraunhofer Ges Forschung Rahmenstruktur und -synchronisation für mehrträgersysteme
US6442221B1 (en) * 1998-09-22 2002-08-27 Zenith Electronics Corporation Ghost eliminating equalizer
US20010028630A1 (en) * 1998-11-09 2001-10-11 Doron Burshtein Methods and apparatus for robust and low-complexity QAM modulation
US6751269B1 (en) * 1999-01-11 2004-06-15 Texas Instruments Incorporated Bit-interleaved coded modulation for CATV upstream channels
US6442130B1 (en) * 1999-01-21 2002-08-27 Cisco Technology, Inc. System for interference cancellation
US7545890B1 (en) * 1999-01-29 2009-06-09 Texas Instruments Incorporated Method for upstream CATV coded modulation
KR100480765B1 (ko) * 1999-03-26 2005-04-06 삼성전자주식회사 직교 주파수 분할 다중화 전송/수신 시스템 및 이를 이루기위한블록 엔코딩 방법
US6614861B1 (en) * 1999-04-16 2003-09-02 Nokia Networks Oy Method and apparatus for higher dimensional modulation
US6278685B1 (en) 1999-08-19 2001-08-21 Intellon Corporation Robust transmission mode
KR100793216B1 (ko) 1999-10-22 2008-01-10 넥스트넷 와이어리스 인크. 무선 통신 시스템, 무선 직교 주파수 분할 다중 수신기 및 직교 주파수 분할 다중 심볼 수신 방법
DE19958425A1 (de) * 1999-12-03 2001-06-13 Siemens Ag Datenübertragung in einem Kommunikationssystem
US6442129B1 (en) 1999-12-06 2002-08-27 Intellon Corporation Enhanced channel estimation
US6397368B1 (en) * 1999-12-06 2002-05-28 Intellon Corporation Forward error correction with channel adaptation
US6307890B1 (en) * 1999-12-06 2001-10-23 Cue Corporation High density FM subcarrier modulation with standardized network layer
US6587826B1 (en) * 1999-12-15 2003-07-01 Agere Systems Inc. Channel code configurations for digital audio broadcasting systems and other types of communication systems
US7088781B2 (en) * 1999-12-15 2006-08-08 Paradyne Corporation Tone ordered discrete multitone interleaver
FR2805102A1 (fr) 2000-02-16 2001-08-17 Canon Kk Procedes et dispositifs d'emission et de reception d'information, et systemes les mettant en oeuvre
US20090262700A1 (en) * 2000-03-09 2009-10-22 Franceschini Michael R Frequency domain direct sequence spread spectrum with flexible time frequency code
AU2001252897A1 (en) * 2000-03-09 2001-09-17 Raytheon Company Frequency domain direct sequence spread spectrum with flexible time frequency code
US6952454B1 (en) * 2000-03-22 2005-10-04 Qualcomm, Incorporated Multiplexing of real time services and non-real time services for OFDM systems
US6473467B1 (en) * 2000-03-22 2002-10-29 Qualcomm Incorporated Method and apparatus for measuring reporting channel state information in a high efficiency, high performance communications system
JP4359864B2 (ja) * 2000-04-03 2009-11-11 日本ビクター株式会社 直交周波数分割多重装置および直交周波数分割多重方法
US6289000B1 (en) 2000-05-19 2001-09-11 Intellon Corporation Frame control encoder/decoder for robust OFDM frame transmissions
WO2001095512A1 (en) * 2000-06-06 2001-12-13 Georgia Tech Research Corporation System and method for object-oriented video processing
US6907044B1 (en) 2000-08-04 2005-06-14 Intellon Corporation Method and protocol to support contention-free intervals and QoS in a CSMA network
US7352770B1 (en) 2000-08-04 2008-04-01 Intellon Corporation Media access control protocol with priority and contention-free intervals
ITVA20000030A1 (it) * 2000-08-11 2002-02-11 Siemens Inf & Comm Networks Metodo di trasmissione per garantire la confidenzialita' dei dati.
US9130810B2 (en) * 2000-09-13 2015-09-08 Qualcomm Incorporated OFDM communications methods and apparatus
US7295509B2 (en) 2000-09-13 2007-11-13 Qualcomm, Incorporated Signaling method in an OFDM multiple access system
US8670390B2 (en) 2000-11-22 2014-03-11 Genghiscomm Holdings, LLC Cooperative beam-forming in wireless networks
US8385470B2 (en) * 2000-12-05 2013-02-26 Google Inc. Coding a signal with a shuffled-Hadamard function
US7139237B2 (en) * 2000-12-29 2006-11-21 Motorola, Inc. Method and system for multirate multiuser modulation
US6760822B2 (en) * 2001-03-30 2004-07-06 Intel Corporation Method and apparatus for interleaving data streams
US9819449B2 (en) 2002-05-14 2017-11-14 Genghiscomm Holdings, LLC Cooperative subspace demultiplexing in content delivery networks
US10355720B2 (en) 2001-04-26 2019-07-16 Genghiscomm Holdings, LLC Distributed software-defined radio
US9893774B2 (en) 2001-04-26 2018-02-13 Genghiscomm Holdings, LLC Cloud radio access network
US10931338B2 (en) 2001-04-26 2021-02-23 Genghiscomm Holdings, LLC Coordinated multipoint systems
US10425135B2 (en) 2001-04-26 2019-09-24 Genghiscomm Holdings, LLC Coordinated multipoint systems
GB2391776B (en) * 2001-05-03 2004-04-14 British Broadcasting Corp Improvements in decoders for many-carrier signals, in particular in DVB-T receivers
GB0110907D0 (en) 2001-05-03 2001-06-27 British Broadcasting Corp Improvements in decoders for many carrier signals, in particular in DVB-T recievers
US20030063556A1 (en) * 2001-05-31 2003-04-03 David Hernandez Block segmentation procedure for reduction of peak-to-average power ratio effecs in orthogonal frequency-division multiplexing modulation
US20030086363A1 (en) * 2001-05-31 2003-05-08 David Hernandez System and apparatus for block segmentation procedure for reduction of peak-to- average power ratio effects in orthogonal frequency-division multiplexing modulation
DE10127346C2 (de) * 2001-06-06 2003-07-17 Siemens Ag Datenübertragungssystem auf Multiträgerbasis und Verfahren zum Unterdrücken von Störungen bei einem Datenübertragungssystem auf Multiträgerbasis
WO2004014056A1 (en) * 2001-08-04 2004-02-12 Enikia Llc Power line communication system
US6990059B1 (en) 2001-09-05 2006-01-24 Cisco Technology, Inc. Interference mitigation in a wireless communication system
US7855948B2 (en) * 2001-09-05 2010-12-21 Cisco Technology, Inc. Interference mitigation in a wireless communication system
US7321601B2 (en) * 2001-09-26 2008-01-22 General Atomics Method and apparatus for data transfer using a time division multiple frequency scheme supplemented with polarity modulation
EP1430677A2 (en) * 2001-09-26 2004-06-23 General Atomics Method and apparatus for data transfer using a time division multiple frequency scheme
US7609608B2 (en) * 2001-09-26 2009-10-27 General Atomics Method and apparatus for data transfer using a time division multiple frequency scheme with additional modulation
US7236464B2 (en) * 2001-09-26 2007-06-26 General Atomics Flexible method and apparatus for encoding and decoding signals using a time division multiple frequency scheme
US7342973B2 (en) * 2001-09-26 2008-03-11 General Atomics Method and apparatus for adapting multi-band ultra-wideband signaling to interference sources
AU2002334634A1 (en) * 2001-09-26 2003-04-07 Nokia Corporation An adaptive coding scheme for ofdm wlans with a priori channel state information at the transmitter
MXPA04005171A (es) * 2001-11-29 2004-08-11 Qualcomm Inc Metodo y aparato para determinar la tasa de probabilidad logaritmica con precodificacion.
KR100449225B1 (ko) * 2002-01-19 2004-09-22 학교법인 성균관대학 무선통신 시스템에서 송신 다이버시티 장치
KR100441510B1 (ko) * 2002-02-01 2004-07-23 삼성전자주식회사 채널상태정보를 적용된 데이터 에러 정정장치
AU2003294204A1 (en) * 2002-02-20 2004-05-04 General Atomics Method and apparatus for data transfer using a time division multiple frequency scheme with additional modulation
GB2387515A (en) * 2002-04-08 2003-10-15 Ipwireless Inc Mapping bits to at least two channels using two interleavers, one for systematic bits, and the other for parity bits
KR100469425B1 (ko) * 2002-04-27 2005-02-02 엘지전자 주식회사 이동통신 시스템의 데이터 전송 장치 및 방법
US6727772B2 (en) * 2002-05-01 2004-04-27 Intel Corporation Method and system for synchronizing a quadrature amplitude modulation demodulator
US9628231B2 (en) 2002-05-14 2017-04-18 Genghiscomm Holdings, LLC Spreading and precoding in OFDM
US10200227B2 (en) 2002-05-14 2019-02-05 Genghiscomm Holdings, LLC Pre-coding in multi-user MIMO
US10142082B1 (en) 2002-05-14 2018-11-27 Genghiscomm Holdings, LLC Pre-coding in OFDM
US10644916B1 (en) 2002-05-14 2020-05-05 Genghiscomm Holdings, LLC Spreading and precoding in OFDM
US8149703B2 (en) 2002-06-26 2012-04-03 Qualcomm Atheros, Inc. Powerline network bridging congestion control
US7826466B2 (en) 2002-06-26 2010-11-02 Atheros Communications, Inc. Communication buffer scheme optimized for VoIP, QoS and data networking over a power line
AU2002319335B2 (en) * 2002-08-13 2008-12-04 Nokia Corporation Symbol interleaving
US7433298B1 (en) * 2002-08-19 2008-10-07 Marvell International Ltd. Compensation for residual frequency offset, phase noise and I/Q imbalance in OFDM modulated communications
US6901083B2 (en) * 2002-10-25 2005-05-31 Qualcomm, Incorporated Method and system for code combining at an outer decoder on a communication system
KR100532586B1 (ko) * 2002-10-30 2005-12-02 한국전자통신연구원 직교부호와 비이진 신호값을 이용한코드분할다중접속/직교주파수분할다중 방식의 송/수신장치 및 그 방법
US7281189B2 (en) * 2002-10-31 2007-10-09 Matsushita Electric Indutrial Co., Ltd. Apparatus and method for separately modulating systematic bits and parity bits in accordance with communication quality
US7724639B1 (en) * 2002-12-12 2010-05-25 Entropic Communications, Inc. Method of bit allocation in a multicarrier symbol to achieve non-periodic frequency diversity
US6904550B2 (en) * 2002-12-30 2005-06-07 Motorola, Inc. Velocity enhancement for OFDM systems
WO2004064282A2 (de) * 2003-01-10 2004-07-29 Siemens Aktiengesellschaft Verfahren und kommunikationssystemvorrichtung zum codemodulierten übertragen von informationen
EP1437850A1 (de) * 2003-01-10 2004-07-14 Siemens Aktiengesellschaft Verfahren und Kommunikationssystemvorrichtung zum codemodulierten Übertragen von Information
JP2004241984A (ja) * 2003-02-05 2004-08-26 Toshiba Corp データ伝送装置
KR100552680B1 (ko) * 2003-02-17 2006-02-20 삼성전자주식회사 다중 안테나 ofdm 통신 시스템에서의 papr 저감방법 및 이를 사용하는 다중 안테나 ofdm 통신 시스템
KR100532422B1 (ko) * 2003-02-28 2005-11-30 삼성전자주식회사 동일 심볼을 다수의 채널에 중복적으로 전송하여 통신거리를 확장시킨 무선 랜 시스템의 직교 주파수 분할다중화 송수신 장치 및 그 송수신 방법
US7313190B2 (en) * 2003-03-11 2007-12-25 Texas Instruments Incorporated Efficient bit interleaver for a multi-band OFDM ultra-wideband system
US8064528B2 (en) 2003-05-21 2011-11-22 Regents Of The University Of Minnesota Estimating frequency-offsets and multi-antenna channels in MIMO OFDM systems
US20050047496A1 (en) * 2003-08-13 2005-03-03 Mcintire William K. Modem with pilot symbol synchronization
KR100520159B1 (ko) * 2003-11-12 2005-10-10 삼성전자주식회사 다중 안테나를 사용하는 직교주파수분할다중 시스템에서간섭신호 제거 장치 및 방법
TWI229980B (en) * 2003-11-20 2005-03-21 Syncomm Technology Corp De-mapping method for wireless communications systems
US8090857B2 (en) 2003-11-24 2012-01-03 Qualcomm Atheros, Inc. Medium access control layer that encapsulates data from a plurality of received data units into a plurality of independently transmittable blocks
US7376117B2 (en) * 2003-12-02 2008-05-20 Infineon Technologies Ag Interleaving circuit for a multiband OFDM transceiver
US7660327B2 (en) 2004-02-03 2010-02-09 Atheros Communications, Inc. Temporary priority promotion for network communications in which access to a shared medium depends on a priority level
US20050204258A1 (en) * 2004-02-13 2005-09-15 Broadcom Corporation Encoding system and method for a transmitter in wireless communications
EP1569349A1 (en) * 2004-02-23 2005-08-31 Alcatel Alternative concatenated coding scheme for digital signals
US7715425B2 (en) 2004-02-26 2010-05-11 Atheros Communications, Inc. Channel adaptation synchronized to periodically varying channel
BRPI0508465A (pt) 2004-03-05 2007-07-31 Samsung Electronics Co Ltd método e aparelho para a alocação de subportadoras em um sistema de comunicação sem fio de banda larga usando-se postadoras múltiplas
US9137822B2 (en) 2004-07-21 2015-09-15 Qualcomm Incorporated Efficient signaling over access channel
US9148256B2 (en) 2004-07-21 2015-09-29 Qualcomm Incorporated Performance based rank prediction for MIMO design
US11381285B1 (en) 2004-08-02 2022-07-05 Genghiscomm Holdings, LLC Transmit pre-coding
US11184037B1 (en) 2004-08-02 2021-11-23 Genghiscomm Holdings, LLC Demodulating and decoding carrier interferometry signals
US11552737B1 (en) 2004-08-02 2023-01-10 Genghiscomm Holdings, LLC Cooperative MIMO
US7539270B2 (en) * 2004-09-30 2009-05-26 Intel Corporation Method and apparatus to interleave bits across symbols from different constellations
US7877064B2 (en) * 2004-11-01 2011-01-25 General Instrument Corporation Methods, apparatus and systems for terrestrial wireless broadcast of digital data to stationary receivers
US8155230B2 (en) * 2005-03-08 2012-04-10 Commissariat A L'energie Atomique Method for the flexible demodulation of estimated complex symbols
US9246560B2 (en) 2005-03-10 2016-01-26 Qualcomm Incorporated Systems and methods for beamforming and rate control in a multi-input multi-output communication systems
US9154211B2 (en) 2005-03-11 2015-10-06 Qualcomm Incorporated Systems and methods for beamforming feedback in multi antenna communication systems
US20070217490A1 (en) * 2005-03-15 2007-09-20 Bae Systems Plc Modem
US8446892B2 (en) 2005-03-16 2013-05-21 Qualcomm Incorporated Channel structures for a quasi-orthogonal multiple-access communication system
US9461859B2 (en) 2005-03-17 2016-10-04 Qualcomm Incorporated Pilot signal transmission for an orthogonal frequency division wireless communication system
US9520972B2 (en) 2005-03-17 2016-12-13 Qualcomm Incorporated Pilot signal transmission for an orthogonal frequency division wireless communication system
US9143305B2 (en) 2005-03-17 2015-09-22 Qualcomm Incorporated Pilot signal transmission for an orthogonal frequency division wireless communication system
US9184870B2 (en) 2005-04-01 2015-11-10 Qualcomm Incorporated Systems and methods for control channel signaling
US9408220B2 (en) 2005-04-19 2016-08-02 Qualcomm Incorporated Channel quality reporting for adaptive sectorization
US9036538B2 (en) 2005-04-19 2015-05-19 Qualcomm Incorporated Frequency hopping design for single carrier FDMA systems
US7502982B2 (en) * 2005-05-18 2009-03-10 Seagate Technology Llc Iterative detector with ECC in channel domain
US8611284B2 (en) 2005-05-31 2013-12-17 Qualcomm Incorporated Use of supplemental assignments to decrement resources
US8879511B2 (en) 2005-10-27 2014-11-04 Qualcomm Incorporated Assignment acknowledgement for a wireless communication system
US8565194B2 (en) 2005-10-27 2013-10-22 Qualcomm Incorporated Puncturing signaling channel for a wireless communication system
US8462859B2 (en) 2005-06-01 2013-06-11 Qualcomm Incorporated Sphere decoding apparatus
RU2290749C1 (ru) * 2005-06-15 2006-12-27 Игорь Борисович Дунаев Способ демодуляции сигнала многопозиционной частотной манипуляции с эквидистантным разнесением по частоте, демодулятор такого сигнала и машиночитаемый носитель
US8599945B2 (en) 2005-06-16 2013-12-03 Qualcomm Incorporated Robust rank prediction for a MIMO system
US9179319B2 (en) 2005-06-16 2015-11-03 Qualcomm Incorporated Adaptive sectorization in cellular systems
US7822059B2 (en) 2005-07-27 2010-10-26 Atheros Communications, Inc. Managing contention-free time allocations in a network
AU2011203042B2 (en) * 2005-07-27 2012-02-23 Qualcomm Atheros, Inc. Managing spectra of modulated signals in a communication network
US8175190B2 (en) 2005-07-27 2012-05-08 Qualcomm Atheros, Inc. Managing spectra of modulated signals in a communication network
US8885628B2 (en) 2005-08-08 2014-11-11 Qualcomm Incorporated Code division multiplexing in a single-carrier frequency division multiple access system
US9209956B2 (en) 2005-08-22 2015-12-08 Qualcomm Incorporated Segment sensitive scheduling
US20070041457A1 (en) 2005-08-22 2007-02-22 Tamer Kadous Method and apparatus for providing antenna diversity in a wireless communication system
US8644292B2 (en) 2005-08-24 2014-02-04 Qualcomm Incorporated Varied transmission time intervals for wireless communication system
US9136974B2 (en) 2005-08-30 2015-09-15 Qualcomm Incorporated Precoding and SDMA support
US8477684B2 (en) 2005-10-27 2013-07-02 Qualcomm Incorporated Acknowledgement of control messages in a wireless communication system
US9088384B2 (en) 2005-10-27 2015-07-21 Qualcomm Incorporated Pilot symbol transmission in wireless communication systems
US9172453B2 (en) 2005-10-27 2015-10-27 Qualcomm Incorporated Method and apparatus for pre-coding frequency division duplexing system
US9225488B2 (en) 2005-10-27 2015-12-29 Qualcomm Incorporated Shared signaling channel
US8045512B2 (en) 2005-10-27 2011-10-25 Qualcomm Incorporated Scalable frequency band operation in wireless communication systems
US8582509B2 (en) 2005-10-27 2013-11-12 Qualcomm Incorporated Scalable frequency band operation in wireless communication systems
US8693405B2 (en) 2005-10-27 2014-04-08 Qualcomm Incorporated SDMA resource management
US9144060B2 (en) 2005-10-27 2015-09-22 Qualcomm Incorporated Resource allocation for shared signaling channels
US9225416B2 (en) 2005-10-27 2015-12-29 Qualcomm Incorporated Varied signaling channels for a reverse link in a wireless communication system
US9210651B2 (en) 2005-10-27 2015-12-08 Qualcomm Incorporated Method and apparatus for bootstraping information in a communication system
US8582548B2 (en) 2005-11-18 2013-11-12 Qualcomm Incorporated Frequency division multiple access schemes for wireless communication
JP4812454B2 (ja) * 2006-02-13 2011-11-09 ソニー株式会社 復調装置および方法、並びにプログラム
CN101405981B (zh) * 2006-03-17 2011-11-09 交互数字技术公司 用于为数据分组重传实施自适应正交幅度调制信号星座重新映射的方法
EP2001134A4 (en) * 2006-03-24 2009-06-24 Mitsubishi Electric Corp NESTING METHOD AND COMMUNICATION DEVICE
US20070286103A1 (en) * 2006-06-08 2007-12-13 Huaning Niu System and method for digital communication having puncture cycle based multiplexing scheme with unequal error protection (UEP)
US20070288980A1 (en) * 2006-06-08 2007-12-13 Huaning Niu System and method for digital communication having a frame format and parsing scheme with parallel convolutional encoders
US8189627B2 (en) * 2006-06-28 2012-05-29 Samsung & Electronics Co., Ltd. System and method for digital communications using multiple parallel encoders
US8107552B2 (en) 2006-06-28 2012-01-31 Samsung Electronics Co., Ltd. System and method of wireless communication of uncompressed video having a fast fourier transform-based channel interleaver
EP1912365A1 (en) * 2006-10-11 2008-04-16 Thomson Licensing Method for transmitting a stream of data in a communication system with at least two transmission antennas and transmitter implementing said method
US8194750B2 (en) 2006-10-16 2012-06-05 Samsung Electronics Co., Ltd. System and method for digital communication having a circulant bit interleaver for equal error protection (EEP) and unequal error protection (UEP)
US7876871B2 (en) * 2006-11-30 2011-01-25 Qualcomm Incorporated Linear phase frequency detector and charge pump for phase-locked loop
US7924951B2 (en) * 2006-12-14 2011-04-12 The Trustees Of Columbia University In The City Of New York Methods and systems for digital wireless communication
US7965803B2 (en) * 2006-12-14 2011-06-21 The Trustees Of Columbia University In The City Of New York Methods and systems for providing feedback for beamforming
KR101326695B1 (ko) 2007-02-20 2013-11-08 삼성전자주식회사 디지털 방송 송신기 및 그의 송신방법, 디지털 방송 수신기및 그의 수신방법, 그리고, 디지털 방송 시스템
US8111670B2 (en) * 2007-03-12 2012-02-07 Samsung Electronics Co., Ltd. System and method for processing wireless high definition video data using remainder bytes
KR101484798B1 (ko) 2007-05-10 2015-01-28 퀄컴 인코포레이티드 공유 매체에의 분산형 액세스의 관리
WO2008157724A1 (en) * 2007-06-19 2008-12-24 The Trustees Of Columbia University In The City Of New York Methods and systems for providing feedback for beamforming and power control
US9313067B2 (en) * 2007-08-14 2016-04-12 Qualcomm Incorporated Multi-bandwidth communication system using a shared baseband processor
AU2010281296B2 (en) * 2009-08-07 2014-12-04 Advanced Micro Devices, Inc. Soft-demapping of QAM signals
DE102009047243A1 (de) 2009-11-27 2011-06-01 Orgentec Diagnostika Gmbh Monospezifische Polypeptidreagenzien
CN102939736B (zh) 2010-04-12 2016-05-25 高通股份有限公司 用于经由共享介质在站之间通信的方法、系统和设备
WO2013097088A1 (en) * 2011-12-27 2013-07-04 France Telecom Research & Development Beijing Company Limited Method and system for mapping bit sequences
US8982772B2 (en) 2011-08-17 2015-03-17 CBF Networks, Inc. Radio transceiver with improved radar detection
US9049611B2 (en) 2011-08-17 2015-06-02 CBF Networks, Inc. Backhaul radio with extreme interference protection
US10764891B2 (en) 2011-08-17 2020-09-01 Skyline Partners Technology Llc Backhaul radio with advanced error recovery
US8238318B1 (en) 2011-08-17 2012-08-07 CBF Networks, Inc. Intelligent backhaul radio
US8467363B2 (en) 2011-08-17 2013-06-18 CBF Networks, Inc. Intelligent backhaul radio and antenna system
US8989762B1 (en) 2013-12-05 2015-03-24 CBF Networks, Inc. Advanced backhaul services
US10051643B2 (en) 2011-08-17 2018-08-14 Skyline Partners Technology Llc Radio with interference measurement during a blanking interval
US20220070867A1 (en) * 2011-08-17 2022-03-03 Skyline Partners Technology Llc Backhaul radio with advanced error recovery
US8761100B2 (en) 2011-10-11 2014-06-24 CBF Networks, Inc. Intelligent backhaul system
US10708918B2 (en) 2011-08-17 2020-07-07 Skyline Partners Technology Llc Electronic alignment using signature emissions for backhaul radios
US8422540B1 (en) 2012-06-21 2013-04-16 CBF Networks, Inc. Intelligent backhaul radio with zero division duplexing
US9474080B2 (en) 2011-08-17 2016-10-18 CBF Networks, Inc. Full duplex backhaul radio with interference measurement during a blanking interval
US10716111B2 (en) 2011-08-17 2020-07-14 Skyline Partners Technology Llc Backhaul radio with adaptive beamforming and sample alignment
US8928542B2 (en) 2011-08-17 2015-01-06 CBF Networks, Inc. Backhaul radio with an aperture-fed antenna assembly
US8502733B1 (en) 2012-02-10 2013-08-06 CBF Networks, Inc. Transmit co-channel spectrum sharing
US8385305B1 (en) 2012-04-16 2013-02-26 CBF Networks, Inc Hybrid band intelligent backhaul radio
US10548132B2 (en) * 2011-08-17 2020-01-28 Skyline Partners Technology Llc Radio with antenna array and multiple RF bands
US9713019B2 (en) 2011-08-17 2017-07-18 CBF Networks, Inc. Self organizing backhaul radio
USD704174S1 (en) 2012-08-14 2014-05-06 CBF Networks, Inc. Intelligent backhaul radio with symmetric wing radome
US9143785B2 (en) 2012-10-25 2015-09-22 Allen LeRoy Limberg COFDM broadcast systems employing turbo coding
US8891605B2 (en) 2013-03-13 2014-11-18 Qualcomm Incorporated Variable line cycle adaptation for powerline communications
CN103259987B (zh) * 2013-05-09 2016-05-11 青岛橡胶谷知识产权有限公司 地面信道传输超高清数字电视信号的发射机
US9848330B2 (en) * 2014-04-09 2017-12-19 Microsoft Technology Licensing, Llc Device policy manager
EP4138318A1 (en) 2015-09-07 2023-02-22 Cohere Technologies, Inc. Multiple access using orthogonal time frequency space modulation
US10243773B1 (en) 2017-06-30 2019-03-26 Genghiscomm Holdings, LLC Efficient peak-to-average-power reduction for OFDM and MIMO-OFDM
US10637705B1 (en) 2017-05-25 2020-04-28 Genghiscomm Holdings, LLC Peak-to-average-power reduction for OFDM multiple access
EP3915236A4 (en) 2019-01-25 2023-05-24 Genghiscomm Holdings, LLC ORTHOGONAL MULTI-ACCESS AND NON-ORTHOGONAL MULTI-ACCESS
US11343823B2 (en) 2020-08-16 2022-05-24 Tybalt, Llc Orthogonal multiple access and non-orthogonal multiple access
US11917604B2 (en) 2019-01-25 2024-02-27 Tybalt, Llc Orthogonal multiple access and non-orthogonal multiple access
WO2020242898A1 (en) 2019-05-26 2020-12-03 Genghiscomm Holdings, LLC Non-orthogonal multiple access

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4881241A (en) * 1988-02-24 1989-11-14 Centre National D'etudes Des Telecommunications Method and installation for digital communication, particularly between and toward moving vehicles
FR2660131B1 (fr) * 1990-03-23 1992-06-19 France Etat Dispositif de transmissions de donnees numeriques a au moins deux niveaux de protection, et dispositif de reception correspondant.
GB9020170D0 (en) * 1990-09-14 1990-10-24 Indep Broadcasting Authority Orthogonal frequency division multiplexing
US5233629A (en) * 1991-07-26 1993-08-03 General Instrument Corporation Method and apparatus for communicating digital data using trellis coded qam
JPH05130191A (ja) * 1991-10-31 1993-05-25 Nippon Motoroola Kk マルチサブチヤネル信号の位相制御によるピーク/平均値比率低減方法
US5392299A (en) * 1992-01-15 1995-02-21 E-Systems, Inc. Triple orthogonally interleaed error correction system
US5315617A (en) * 1992-05-29 1994-05-24 General Electric Company QAM encoding for high-definition television system
JPH066400A (ja) * 1992-06-22 1994-01-14 Oki Electric Ind Co Ltd ビット尤度演算装置
EP0578313B1 (fr) * 1992-07-08 1998-12-02 Laboratoires D'electronique Philips S.A.S. Codage enchaíné, pour la transmission OFDM
US5425050A (en) * 1992-10-23 1995-06-13 Massachusetts Institute Of Technology Television transmission system using spread spectrum and orthogonal frequency-division multiplex
JP3154580B2 (ja) * 1993-02-26 2001-04-09 松下電器産業株式会社 ディジタル伝送装置
JP3074103B2 (ja) * 1993-11-16 2000-08-07 株式会社東芝 Ofdm同期復調回路
JPH07183862A (ja) * 1993-12-22 1995-07-21 Toshiba Corp 周波数分割多重伝送の誤り訂正方法およびそれを用いた伝送システム
EP0679000A1 (en) * 1994-04-22 1995-10-25 Koninklijke Philips Electronics N.V. Soft quantisation
DE69534067T2 (de) * 1994-05-09 2006-04-13 Victor Company of Japan, Ltd., Yokohama Einstellung eines Referenzunterträgers bei Mehrträgerübertragung
JP2731722B2 (ja) * 1994-05-26 1998-03-25 日本電気株式会社 クロック周波数自動制御方式及びそれに用いる送信装置と受信装置
JPH0832457A (ja) * 1994-07-21 1996-02-02 Sony Corp ビタビ復号方法および装置並びに絶対値演算回路
US5903546A (en) * 1994-08-31 1999-05-11 Sony Corporation Means and method of improving multiplexed transmission and reception by coding and modulating divided digital signals
US5717722A (en) * 1994-11-08 1998-02-10 Anritsu Corporation Precision symbol demodulation system for multi-carrier modulation signal
US5659578A (en) * 1994-11-23 1997-08-19 At&T Wireless Services, Inc. High rate Reed-Solomon concatenated trellis coded 16 star QAM system for transmission of data over cellular mobile radio
US5682376A (en) * 1994-12-20 1997-10-28 Matsushita Electric Industrial Co., Ltd. Method of transmitting orthogonal frequency division multiplex signal, and transmitter and receiver employed therefor
JP3466757B2 (ja) * 1995-03-10 2003-11-17 株式会社エヌ・ティ・ティ・ドコモ 品質適応通信方式
JP3521016B2 (ja) * 1995-03-27 2004-04-19 松下電器産業株式会社 直交周波数分割多重信号の受信方法および受信装置
EP0753948B1 (en) * 1995-07-11 2006-06-07 Alcatel Capacity allocation for OFDM
US5862182A (en) * 1996-07-30 1999-01-19 Lucent Technologies Inc. OFDM digital communications system using complementary codes
DE19638654A1 (de) * 1996-09-20 1998-03-26 Siemens Ag Verfahren zur digitalen Nachrichtenübertragung
JP2815343B2 (ja) * 1996-10-01 1998-10-27 株式会社次世代デジタルテレビジョン放送システム研究所 符号化伝送方式とその送受信装置
JP3312363B2 (ja) * 1996-12-27 2002-08-05 株式会社エヌ・ティ・ティ・ドコモ 符号化装置および復号化装置および符号化復号化システム並びに方法
US5946357A (en) * 1997-01-17 1999-08-31 Telefonaktiebolaget L M Ericsson Apparatus, and associated method, for transmitting and receiving a multi-stage, encoded and interleaved digital communication signal
US5970098A (en) * 1997-05-02 1999-10-19 Globespan Technologies, Inc. Multilevel encoder
US6151296A (en) * 1997-06-19 2000-11-21 Qualcomm Incorporated Bit interleaving for orthogonal frequency division multiplexing in the transmission of digital signals
US6144696A (en) * 1997-12-31 2000-11-07 At&T Corp. Spread spectrum bit allocation algorithm
DE60133006T2 (de) * 2000-06-16 2009-07-02 Thomson Licensing Gleitfensterverarbeitung zum empfang von mehrträgersignalen
US20020136282A1 (en) * 2001-03-26 2002-09-26 Quang Nguyen Optimum UMTS modem
CA2439804A1 (en) * 2001-03-27 2002-10-03 Aware, Inc. Receiver transparent q-mode

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10044540B2 (en) 2003-03-25 2018-08-07 Saturn Licensing Llc Data processing apparatus and method
US8885761B2 (en) 2003-03-25 2014-11-11 Sony Corporation Data processing apparatus and method
US10333753B2 (en) 2003-03-25 2019-06-25 Saturn Licensing Llc Data processing apparatus and method
US9106494B2 (en) 2003-03-25 2015-08-11 Sony Corporation Data processing apparatus and method
US9300515B2 (en) 2003-03-25 2016-03-29 Sony Corporation Data processing apparatus and method
US9722836B2 (en) 2003-03-25 2017-08-01 Saturn Licensing Llc Data processing apparatus and method
US7668253B2 (en) 2004-03-05 2010-02-23 Samsung Electronics Co., Ltd Method for allocating a subchannel in an orthogonal frequency division multiple access cellular communication system
WO2006135275A3 (fr) * 2005-06-15 2007-03-08 Igor Borisovich Dounaev Procede d'emission et de reception de signaux a modulation d'amplitude en quadrature, systeme de sa mise en oeuvre, support lisible par machine et realisation d'un procede destine a la synchronisation de la reception des signaux de la modulation d'amplitude en quadrature
WO2006135275A2 (fr) * 2005-06-15 2006-12-21 Igor Borisovich Dounaev Procede d'emission et de reception de signaux a modulation d'amplitude en quadrature, systeme de sa mise en oeuvre, support lisible par machine et realisation d'un procede destine a la synchronisation de la reception des signaux de la modulation d'amplitude en quadrature
RU2453998C2 (ru) * 2007-03-02 2012-06-20 Квэлкомм Инкорпорейтед Повторитель физического уровня, использующий метрики измерений в реальном времени и адаптивную антенную решетку для обеспечения целостности и усиления сигнала
US8619837B2 (en) 2007-03-02 2013-12-31 Qualcomm Incorporated Use of adaptive antenna array in conjunction with an on-channel repeater to improve signal quality
RU2446591C2 (ru) * 2007-03-12 2012-03-27 Квэлкомм Инкорпорейтед Мультиплексирование каналов обратной связи в системе беспроводной связи
RU2443062C2 (ru) * 2007-03-12 2012-02-20 Квэлкомм Инкорпорейтед Сигнальная передача и прием в системах беспроводной связи
RU2452097C2 (ru) * 2007-08-13 2012-05-27 Квэлкомм Инкорпорейтед Передача с разнесением частот в системе беспроводной связи
US8526371B2 (en) 2007-08-13 2013-09-03 Qualcomm Incorporated Frequency diverse transmissions in a wireless communication system
US8179954B2 (en) 2007-10-30 2012-05-15 Sony Corporation Odd interleaving only of an odd-even interleaver when half or less data subcarriers are active in a digital video broadcasting (DVB) standard
US8891692B2 (en) 2007-10-30 2014-11-18 Sony Corporation Data processing apparatus and method for interleaving and deinterleaving data
US9100251B2 (en) 2007-10-30 2015-08-04 Sony Corporation Data processing apparatus and method for interleaving and deinterleaving data
US8737522B2 (en) 2007-10-30 2014-05-27 Sony Corporation Data processing apparatus and method for interleaving and deinterleaving data
US9722835B2 (en) 2007-10-30 2017-08-01 Saturn Licensing Llc Data processing apparatus and method for interleaving and deinterleaving data
US10020970B2 (en) 2007-10-30 2018-07-10 Saturn Licensing Llc Data processing apparatus and method for interleaving and deinterleaving data
US8374269B2 (en) 2007-10-30 2013-02-12 Sony Corporation Odd interleaving only of an odd-even interleaver when half or less data subcarriers are active in a digital video broadcasting (DVB) system
EA014629B1 (ru) * 2007-10-30 2010-12-30 Сони Корпорейшн Устройство и способ обработки данных
US8451866B2 (en) 2008-03-10 2013-05-28 Samsung Electronics Co., Ltd. Apparatus and method for composing diversity subchannel in wireless communication system
RU2479127C2 (ru) * 2008-03-10 2013-04-10 Самсунг Электроникс Ко., Лтд. Устройство и способ составления подканала разнесения в системе беспроводной связи
RU2518932C2 (ru) * 2008-10-10 2014-06-10 Майкрософт Корпорейшн Уменьшенное рассогласование коэффициентов усиления постоянной состовляющей (dc) и dc-утечки при обработке преобразования с перекрытием

Also Published As

Publication number Publication date
KR20000068228A (ko) 2000-11-25
CA2263669A1 (en) 1998-12-23
AU8145298A (en) 1999-01-04
JP4669026B2 (ja) 2011-04-13
IL128579A (en) 2003-10-31
US6151296A (en) 2000-11-21
CN1234936A (zh) 1999-11-10
AU759184B2 (en) 2003-04-10
BR9806005A (pt) 2001-09-18
NO324299B1 (no) 2007-09-17
CN100518028C (zh) 2009-07-22
EP0919098A3 (en) 1999-10-13
NO990758L (no) 1999-04-16
FI990353A (fi) 1999-04-19
FI990353A0 (fi) 1999-02-18
JP2011061804A (ja) 2011-03-24
MY119818A (en) 2005-07-29
NO990758D0 (no) 1999-02-18
JP2001500713A (ja) 2001-01-16
US6717908B2 (en) 2004-04-06
EP0919098A2 (en) 1999-06-02
IL156053A (en) 2008-04-13
US20010030939A1 (en) 2001-10-18
CL2007003699A1 (es) 2008-01-18
US6282168B1 (en) 2001-08-28
JP2008295057A (ja) 2008-12-04
WO1998058496A2 (en) 1998-12-23
WO1998058496A3 (en) 1999-05-20
IL156053A0 (en) 2003-12-23
ZA985386B (en) 1999-04-07
CN1496036A (zh) 2004-05-12
MXPA99001685A (es) 2003-07-21
KR100578675B1 (ko) 2006-05-12
AR013006A1 (es) 2000-11-22
CN1168271C (zh) 2004-09-22
IL128579A0 (en) 2000-01-31
FI20051008L (fi) 2005-10-07
CA2263669C (en) 2008-04-29

Similar Documents

Publication Publication Date Title
RU2216873C2 (ru) Передача цифровых сигналов посредством мультиплексирования с ортогональным частотным разделением
US10601449B2 (en) Apparatus and method for communicating data over a communication channel
JP4694568B2 (ja) 周波数ダイバーシティのためのシステム及び方法
JP2008295057A5 (ru)
CN106922212B (zh) 基于ofmda的wlan系统中的交织处理方法和设备
KR100442628B1 (ko) 통신시스템의 부호어 시퀀스 재배열 방법 및 장치
CN1738373A (zh) 数字广播系统发送装置及方法
AU2003200323B2 (en) Transmission of digital signals by orthogonal frequency division multiplexing
CN1491037A (zh) 数字广播系统发送装置及方法