RU2213050C2 - Способ получения углерода - Google Patents

Способ получения углерода Download PDF

Info

Publication number
RU2213050C2
RU2213050C2 RU99106200/12A RU99106200A RU2213050C2 RU 2213050 C2 RU2213050 C2 RU 2213050C2 RU 99106200/12 A RU99106200/12 A RU 99106200/12A RU 99106200 A RU99106200 A RU 99106200A RU 2213050 C2 RU2213050 C2 RU 2213050C2
Authority
RU
Russia
Prior art keywords
carbon
catalyst
reaction
sio
preparing
Prior art date
Application number
RU99106200/12A
Other languages
English (en)
Other versions
RU99106200A (ru
Inventor
Сигеки Оно
Original Assignee
Рисерч Инститьют оф Инновэйтив Текнолоджи фор Дзе Ерт
Симадзу Корпорейшн
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26439594&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=RU2213050(C2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Рисерч Инститьют оф Инновэйтив Текнолоджи фор Дзе Ерт, Симадзу Корпорейшн filed Critical Рисерч Инститьют оф Инновэйтив Текнолоджи фор Дзе Ерт
Publication of RU99106200A publication Critical patent/RU99106200A/ru
Application granted granted Critical
Publication of RU2213050C2 publication Critical patent/RU2213050C2/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/734Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
    • Y10S977/742Carbon nanotubes, CNTs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/842Manufacture, treatment, or detection of nanostructure for carbon nanotubes or fullerenes
    • Y10S977/843Gas phase catalytic growth, i.e. chemical vapor deposition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/842Manufacture, treatment, or detection of nanostructure for carbon nanotubes or fullerenes
    • Y10S977/844Growth by vaporization or dissociation of carbon source using a high-energy heat source, e.g. electric arc, laser, plasma, e-beam

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Catalysts (AREA)

Abstract

Изобретение предназначено для получения углеродных нанотрубок, которые могут быть использованы при изготовлении литиевых батарей, адсорбентов, жидкокристаллических материалов. В реакционную трубку загружают гранулы катализатора на основе переходного металла, например Со или Ni, нанесенного на SiO2. Катализатор можно получить алкоксидным или золь-гель способом. Катализатор нагревают до 400-900oС. Подают реакционный газ, содержащий СО2 и восстановительный газ, например Н2. Производят прямое осаждение высокофункционального углерода, например углеродных нанотрубок, на поверхности катализатора. Изобретение позволяет получить углеродные нанотрубки при обычном давлении, более низкой температуре, в одну стадию, а также контролировать структуру полученного углерода в зависимости от условий реакции и типа катализатора. 4 з.п.ф-лы, 1 ил.

Description

Предпосылки изобретения
Область изобретения
Изобретение относится к способу получения высокофункционального углерода для использования в литиевых ионных батареях, адсорбентах, жидкокристаллических материалах и т.п.
Описание предшествующего уровня техники
Углерод в форме нанотрубчатых частиц, который является разновидностью высокофункционального углерода, можно получать путем поддержания стабильного дугового разряда между углеродными электродами в газообразной среде гелия в условиях высокой температуры и высокого давления. Альтернативно, углеродные нанотрубки могут быть образованы на переднем конце катода - на стороне углеродного электрода - путем вызова разряда постоянного тока в газовой атмосфере аргона.
В известном способе получения такого углерода с контролируемой мелкой структурой частиц аморфный углерод облучают электронным лучом в атмосфере вакуума в присутствии активного металла, либо углеродный материал облучают с помощью электронного луча при ускоряющем напряжении, превышающем заданный уровень.
В традиционном способе получения углерода с нанотрубчатой структурой частиц важным параметром, влияющим на выход этого продукта, является давление инертного газа, и внутреннее давление реактора необходимо поддерживать на уровне, по меньшей мере, 90 атм. Таким образом, требуется специфический реактор.
Способ контролирования мелкой структуры углеродных частиц путем облучения углеродного материала электронным лучом нельзя использовать в промышленном масштабе.
Известен также способ получения углерода, в котором металл катализатора имеет форму проволки и реакция протекает в две стадии, а именно:
1-я стадия: CO2+H2-->CO+H2O при 900oС;
2-я стадия: CO+H2-->C+H2O при 600-650oС;
(см. JP 63-159210), который, однако, не обеспечивает получения высокофункционального углерода.
Краткое изложение изобретения
Целью настоящего изобретения является получение высокофункционального углерода, например, углерода в форме нанотрубок.
С целью получения высокофункционального углерода, такого как углерод в форме нанотрубок, в условиях низкой температуры и нормального давления, в соответствии с настоящим изобретением, реакционный газ, содержащий, по меньшей мере, диоксид углерода, и восстановительный газ приводят во взаимодействие с катализатором на основе переходного металла в форме гранул при температуре реакции 400-900oС для восстановления диоксида углерода, содержащегося в реакционном газе, при помощи водорода, с осаждением таким путем высокофункционального углерода, например, в форме нанотрубок, на поверхности катализатора. В качестве восстановительного газа предпочтительно используют водород.
Примерами высокофункционального углерода являются углерод, имеющий структуру нанотрубок, сверхтонких частиц, нанокапсул, углеродный графит с луковицеобразной структурой частиц, углерод с нанополиэдральной и подобной структурой частиц.
Используемый по настоящему изобретению катализатор на основе переходного металла представляет собой Ni/SiO2, образованный из никеля (Ni), нанесенного на двуокись кремния, полученный алкоксидным способом.
Предпочтительно, используемый согласно изобретению катализатор на основе переходного металла представляет Co/SiO2, образованный из кобальта, нанесенного на двуокись кремния, полученный алкоксидным способом.
Катализатор также выбирают из Ni/SiO2 и Co/SiO2, полученных золь-гель способом и нанесенных на двуокись кремния. Реактор, который можно использовать в применении к настоящему изобретению, представляет реактор с неподвижным или псевдоожиженным слоем для циркулирования реакционного газа, приводимого в контакт с катализатором. В реактор с неподвижным слоем загружают катализатор в неподвижном состоянии, а реактор с псевдоожиженным слоем содержит катализатор в текучем состоянии.
В соответствии с изобретением, углерод в форме нанотрубок или подобной структуры можно получить в условиях более низкой температуры и нормального давления, при этом нет необходимости в специальной крупногабаритной установке.
При приведении реакционного газа, содержащего углеродное соединение, в контакт с катализатором на основе переходного металла при температуре 400-900oС для осаждения углерода на поверхности катализатора, тонкую структуру углерода можно контролировать при более низкой температуре и нормальном давлении в условиях массового производства путем изменения типа катализатора и условий реакции.
Указанные выше, а также другие цели, особенности, аспекты и преимущества настоящего изобретения будут более понятны из приведенного ниже подробного описания изобретения, рассматриваемого вместе с прилагаемым чертежом.
На чертеже представлено схематическое изображение установки осаждения углерода, к которой применимо настоящее изобретение.
Описание предпочтительных вариантов изобретения
В кварцевую реакционную трубку 1 с внутренним диаметром 6 мм и длиной 30 см загружают катализатор 3, занимающий в центре трубки область около 3 см. Затем в реакционную трубку 1 загружают стекловату 5,5 с обеих сторон катализатора 3 для удерживания катализатора 3. Для нагревания катализатора 3 вокруг реакционной трубки 1 предусматривают электрическую печь 7.
В реакционную трубку 1 через одно отверстие вводят реакционный газ, содержащий водород и диоксид углерода. Газ выпускают через другое отверстие реакционной трубки 1 через клапан 9. Компоненты газа определяют путем переключения клапана 9 и направления выпущенного газа в масс-спектрометр 11, который обеспечивают в качестве блока детектирования.
Пример 1
Пример 1 далее описывается со ссылкой на чертеж.
В реакционную трубку 1 загружают в качестве катализатора 3 Ni/SiO2 (Ni: 50 мас. %), состоящий из никеля на носителе из двуокиси кремния, полученный алкоксидным способом. Катализатор 3 нагревают до температуры 535oС при помощи электрической печи 7, и в реакционную трубку 1 подают газообразный водород при скорости потока 50 см3/мин в течение 2 ч в качестве предварительной обработки для восстановления катализатора 3.
Затем в реакционную трубку 1 подают реакционный газ, содержащий водород и диоксид углерода с содержанием этих газов в смеси в соотношении 2:1. Содержащийся в реакционном газе диоксид углерода восстанавливают при помощи водорода путем введения в контакт с катализатором 3 с осаждением углерода на поверхности катализатора 3. После завершения реакции температура катализатора 3 составляет 540oС.
В примере 1 реакционный газ после реакции содержит водород, диоксид углерода, метан, монооксид углерода и воду. Реакционное отношение, полученное из разности между количеством диоксида углерода, содержащимся в реакционном газе до и после реакции, составило 40%.
После завершения реакции осажденный на поверхности катализатора 3 углерод исследовали при помощи сканирующего электронного микроскопа (SEM) и трансмиссионного электронного микроскопа (ТЕМ), и определили стерическое наслоение ядер образованного углерода с ростом углеродных нанотрубок внутри, на поверхности и вокруг наслоенных ядер.
При использовании катализатора, несущего Со, вместо катализатора 3, несущего Ni, степень кристалличности образованного углерода снижается, несмотря на то, что реакционное отношение увеличивается до около 50%.
Пример 2
В примере 2 представлена возможность получения углерода со сверхтонкой структурой частиц, имеющих размер 10 нм каждая в отдельности, путем изменения соотношения смешиваемого количества диоксида углерода и водорода, присутствующих в реакционном газе, и температуры катализатора 3. Такой высокодисперсный углерод используют для производства шин, батарей или адсорбентов и т. п. Поскольку высокодисперсный углерод обычно получают способом термического разложения углеводородов в условиях высокой температуры, этапы его получения осложнены необходимостью использования крупных установок, что является недостатком такого способа.
Способ получения высокодисперсного углерода описан со ссылкой на чертеж. Катализатор 3 получают из Ni/SiO2, подобно тому, как описано в примере 1.
Катализатор 3 нагревают до температуры 600oС при помощи электрической печи 7, и в качестве предварительной обработки для восстановления катализатора 3 в реакционную трубку 1 подают в течение 2 ч газообразный водород со скоростью потока 50 см3/мин.
Затем реакционный газ, содержащий смесь водорода и диоксида углерода в соотношении 3:1, подают в реакционную трубку 1, поддерживая при этом температуру катализатора 3 на уровне 600oС. Содержащийся в реакционном газе диоксид углерода восстанавливают при помощи водорода путем приведения в контакт с катализатором 3, и углерод, такой как углерод в виде сверхтонких частиц, осаждается на поверхности катализатора 3.
В примере 2 реакционный газ после реакции содержит водород, диоксид углерода, метан, монооксид углерода и воду. Реакционное отношение, полученное из разности между количествами диоксида углерода, содержащимися в реакционном газе до и после реакции, составило 38%.
После завершения реакции осажденный на поверхности катализатора 3 углерод исследовали при помощи SEM и ТЕМ для определения осаждения сверхтонких частиц углерода.
При использовании катализатора, несущего Со, вместо катализатора 3, несущего Ni, степень кристалличности образованного углерода снижалась, несмотря на то, что реакционное отношение увеличивалось до около 45%.
Пример 3
В качестве Примера 3 описывается способ контролирования тонкой структуры частиц полученного углерода со ссылкой на чертеж.
В реакционную трубку 1 загружают в качестве катализатора 3 Ni/SiO2 (Ni: 50 мас.%) (около 150 мг), полученный способом золь-гель, на носителе из двуокиси кремния. Углерод осаждают с использованием такой же предварительной обработки, реакционных условий для осаждения углерода и композиции реакционного газа, как описано в примере 1.
В примере 3 после реакции реакционный газ содержит водород, диоксид углерода, метан, монооксид углерода и воду. Реакционное отношение, полученное из разности между количествами содержащегося в реакционном газе диоксида углерода до и после реакции, составило около 40%. После завершения реакции осажденный на поверхности катализатора 3 углерод исследовали при помощи ТЕМ, при этом была четко видна кристаллическая решетка с частичным образованием частиц углеродного графита луковицеобразной формы и углеродных нанополиэдровых частиц.
Пример 4
В примере 4 описан еще один способ контролирования тонкой структуры частиц полученного углерода со ссылкой на чертеж.
В реакционную трубку загружают около 150 мг гранул Co/SiO2 (Co: 50 мас. %), полученный способом золь-гель на носителе из двуокиси кремния, который использовали в качестве катализатора 3. Углерод осаждают с использованием такой же предварительной обработки, условий реакции для осаждения углерода и композиции реакционного газа, как описано в примере 1.
В примере 4 после завершения реакции реакционный газ также содержит водород, диоксид углерода, метан, монооксид углерода и воду. Реакционное отношение, полученное из разности между количествами содержащегося в реакционном газе диоксида углерода до и после реакции, составило около 40%.
После завершения реакции осажденный на поверхности катализатора 3 углерод исследовали при помощи ТЕМ, и обнаружили, что кристаллические решетки были разупорядочены и качество углерода было ниже в сравнении с Примером 3.
Катализатор, используемый по изобретению, не ограничивается вышеизложенным, но его можно альтернативно получать из металла или окиси металла, отличных от указанного выше. Способ получения катализатора не ограничивается вышеприведенным способом также, катализатор, например, можно получать способом импрегнирования. При использовании катализатора, полученного способом импрегнирования, образуемый углерод имеет тонкодисперсную структуру, подобную той, как указана в примере 4.
Кроме того, изобретение не ограничено реакцией между диоксидом углерода и водородом, как указано в примерах, для образования углерода и воды, но можно также использовать реакцию между метаном и диоксидом углерода с образованием углерода и воды, либо разложение метана.
Несмотря на то, что изобретение было подробно описано и проиллюстрировано, должно быть понятно, что это подробное описание приводится только для иллюстрации и примера, и его нельзя рассматривать как ограничивающее изобретение. Существо и объем настоящего изобретения ограничены лишь приводимой далее формулой изобретения.

Claims (5)

1. Способ получения углерода путем приведения реакционного газа, содержащего, по меньшей мере, диоксид углерода и восстановительный газ, в контакт с катализатором на основе переходного металла в форме гранул при заданной температуре реакции 400-900oС и для прямого восстановления диоксида углерода с образованием углерода, при этом осаждая высокофункциональный углерод на поверхности указанного катализатора.
2. Способ получения углерода по п. 1, в котором указанным восстановительным газом является водород.
3. Способ получения углерода по п. 1, в котором указанный катализатор на основе переходного металла представляет Ni/SiO2, образованный из никеля, нанесенного на двуокись кремния, полученный алкоксидным способом.
4. Способ получения углерода по п. 1, в котором указанный катализатор на основе переходного металла представляет Co/SiO2, образованный из кобальта, нанесенного на двуокись кремния, полученный алкоксидным способом.
5. Способ получения углерода по п. 1, в котором указанный катализатор выбирают из Ni/SiO2 и Co/SiO2, полученных золь-гель способом и нанесенных на двуокись кремния.
Приоритет по пунктам:
28.08.1998 по пп. 1, 2, 4, 5;
25.03.1998 по п. 3.
RU99106200/12A 1998-03-25 1999-03-24 Способ получения углерода RU2213050C2 (ru)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP10-098419 1998-03-25
JP9841998 1998-03-25
JP10-242786 1998-08-28
JP24278698A JP3415038B2 (ja) 1998-03-25 1998-08-28 カーボンの製造方法

Publications (2)

Publication Number Publication Date
RU99106200A RU99106200A (ru) 2000-12-27
RU2213050C2 true RU2213050C2 (ru) 2003-09-27

Family

ID=26439594

Family Applications (1)

Application Number Title Priority Date Filing Date
RU99106200/12A RU2213050C2 (ru) 1998-03-25 1999-03-24 Способ получения углерода

Country Status (6)

Country Link
US (1) US6261532B1 (ru)
EP (1) EP0945402B1 (ru)
JP (1) JP3415038B2 (ru)
CN (1) CN1133580C (ru)
DE (1) DE69908998T2 (ru)
RU (1) RU2213050C2 (ru)

Families Citing this family (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE346017T1 (de) * 1998-09-18 2006-12-15 Univ Rice William M Katalytisches wachstum von einwandigen kohlenstoffnanoröhren aus metallpartikeln
JP4211882B2 (ja) * 1999-05-24 2009-01-21 財団法人地球環境産業技術研究機構 炭素製造用触媒
US20030091496A1 (en) 2001-07-23 2003-05-15 Resasco Daniel E. Method and catalyst for producing single walled carbon nanotubes
US7816709B2 (en) 1999-06-02 2010-10-19 The Board Of Regents Of The University Of Oklahoma Single-walled carbon nanotube-ceramic composites and methods of use
US6333016B1 (en) 1999-06-02 2001-12-25 The Board Of Regents Of The University Of Oklahoma Method of producing carbon nanotubes
US6413487B1 (en) * 2000-06-02 2002-07-02 The Board Of Regents Of The University Of Oklahoma Method and apparatus for producing carbon nanotubes
US6919064B2 (en) 2000-06-02 2005-07-19 The Board Of Regents Of The University Of Oklahoma Process and apparatus for producing single-walled carbon nanotubes
CN100457609C (zh) * 2000-11-13 2009-02-04 国际商业机器公司 单壁碳纳米管的制造方法及应用
KR100444140B1 (ko) * 2000-11-24 2004-08-09 주식회사 동운인터내셔널 고성능 이차전지용 도전재 및 이를 이용한 이차전지
KR100444141B1 (ko) * 2000-11-24 2004-08-09 주식회사 동운인터내셔널 리튬 이차전지용 음극 활물질, 이를 이용한 음극판 및이차전지
JP4872154B2 (ja) * 2000-12-28 2012-02-08 株式会社島津製作所 微細中空状炭素の製造方法
ITMI20010068A1 (it) * 2001-01-16 2002-07-16 Getters Spa Sistemi per la conversione di acqua in gas non ossidanti e dispositivi elettronici che li contengono
US6649431B2 (en) * 2001-02-27 2003-11-18 Ut. Battelle, Llc Carbon tips with expanded bases grown with simultaneous application of carbon source and etchant gases
FR2826646B1 (fr) * 2001-06-28 2004-05-21 Toulouse Inst Nat Polytech Procede de fabrication selective de nanotubes de carbone ordonne en lit fluidise
US6706402B2 (en) 2001-07-25 2004-03-16 Nantero, Inc. Nanotube films and articles
US6643165B2 (en) 2001-07-25 2003-11-04 Nantero, Inc. Electromechanical memory having cell selection circuitry constructed with nanotube technology
US6835591B2 (en) 2001-07-25 2004-12-28 Nantero, Inc. Methods of nanotube films and articles
US6574130B2 (en) 2001-07-25 2003-06-03 Nantero, Inc. Hybrid circuit having nanotube electromechanical memory
KR20030033152A (ko) * 2001-10-17 2003-05-01 남기석 관형 촉매 반응기를 이용한 탄소나노튜브의 대량생산
US6784028B2 (en) 2001-12-28 2004-08-31 Nantero, Inc. Methods of making electromechanical three-trace junction devices
CA2385802C (en) * 2002-05-09 2008-09-02 Institut National De La Recherche Scientifique Method and apparatus for producing single-wall carbon nanotubes
KR100473621B1 (ko) * 2002-05-31 2005-03-10 한국전기연구원 리튬이차전지의 전극제조방법 및 이를 이용한리튬이차전지
US7829622B2 (en) 2002-06-19 2010-11-09 The Board Of Regents Of The University Of Oklahoma Methods of making polymer composites containing single-walled carbon nanotubes
GB0216654D0 (en) * 2002-07-17 2002-08-28 Univ Cambridge Tech CVD Synthesis of carbon nanoutubes
KR100475254B1 (ko) * 2002-08-28 2005-03-10 주식회사 동운인터내셔널 신규 구조의 섬유상 탄소
US7846414B2 (en) * 2002-11-15 2010-12-07 Mcgill University Method for producing carbon nanotubes using a DC non-transferred thermal plasma torch
KR100500210B1 (ko) * 2002-11-20 2005-07-11 한국화학연구원 기계화학적으로 처리된 촉매를 사용하는 탄소 나노튜브의제조방법
CN100411980C (zh) * 2003-09-30 2008-08-20 鸿富锦精密工业(深圳)有限公司 控制碳纳米管生长密度的方法
US20050112050A1 (en) * 2003-11-21 2005-05-26 Pradhan Bhabendra K. Process to reduce the pre-reduction step for catalysts for nanocarbon synthesis
WO2005069765A2 (en) 2004-01-09 2005-08-04 Olga Matarredona Carbon nanotube pastes and methods of use
JP4604563B2 (ja) 2004-06-08 2011-01-05 住友電気工業株式会社 カーボンナノ構造体の製造方法
US7500974B2 (en) * 2005-06-28 2009-03-10 Covidien Ag Electrode with rotatably deployable sheath
WO2007055744A2 (en) 2005-06-28 2007-05-18 The Board Of Regents Of The University Of Oklahoma Methods for growing and harvesting carbon nanotubes
CA2758694C (en) * 2009-04-17 2017-05-23 Seerstone Llc Method for producing solid carbon by reducing carbon oxides
US10005672B2 (en) 2010-04-14 2018-06-26 Baker Hughes, A Ge Company, Llc Method of forming particles comprising carbon and articles therefrom
US9205531B2 (en) 2011-09-16 2015-12-08 Baker Hughes Incorporated Methods of fabricating polycrystalline diamond, and cutting elements and earth-boring tools comprising polycrystalline diamond
JP5555944B2 (ja) * 2010-11-16 2014-07-23 学校法人早稲田大学 カーボンナノチューブの製造方法
SG11201400649XA (en) 2011-09-16 2014-04-28 Baker Hughes Inc Methods of fabricating polycrystalline diamond, and cutting elements and earth-boring tools comprising polycrystalline diamond
JP2013201058A (ja) * 2012-03-26 2013-10-03 Toyota Motor Corp 非水電解質二次電池用の負極活物質、及び非水電解質二次電池
JP2013218817A (ja) * 2012-04-05 2013-10-24 Toyota Motor Corp 非水電解質二次電池用の負極活物質、及び非水電解質二次電池
JP2015518461A (ja) * 2012-04-16 2015-07-02 シーアストーン リミテッド ライアビリティ カンパニー 固体カーボンナノチューブ、固体炭素クラスタ、およびフォレストを生成するための方法および反応器
CN104271498B (zh) * 2012-04-16 2017-10-24 赛尔斯通股份有限公司 用非铁催化剂来还原碳氧化物的方法和结构
EP2838841A4 (en) * 2012-04-16 2015-12-23 Seerstone Llc METHODS OF USING METAL CATALYSTS IN CATALYTIC CARBON OXIDE CONVERTERS
NO2749379T3 (ru) 2012-04-16 2018-07-28
MX354529B (es) 2012-04-16 2018-03-07 Seerstone Llc Métodos para producir carbono sólido mediante la reducción de dióxido de carbono.
WO2013158158A1 (en) 2012-04-16 2013-10-24 Seerstone Llc Methods for treating an offgas containing carbon oxides
CN104302576B (zh) 2012-04-16 2017-03-08 赛尔斯通股份有限公司 用于捕捉和封存碳并且用于减少废气流中碳氧化物的质量的方法和系统
US9896341B2 (en) 2012-04-23 2018-02-20 Seerstone Llc Methods of forming carbon nanotubes having a bimodal size distribution
US10815124B2 (en) 2012-07-12 2020-10-27 Seerstone Llc Solid carbon products comprising carbon nanotubes and methods of forming same
US9604848B2 (en) 2012-07-12 2017-03-28 Seerstone Llc Solid carbon products comprising carbon nanotubes and methods of forming same
JP6025979B2 (ja) 2012-07-13 2016-11-16 シーアストーン リミテッド ライアビリティ カンパニー アンモニアおよび固体炭素生成物を形成するための方法およびシステム
US9779845B2 (en) 2012-07-18 2017-10-03 Seerstone Llc Primary voltaic sources including nanofiber Schottky barrier arrays and methods of forming same
US9650251B2 (en) 2012-11-29 2017-05-16 Seerstone Llc Reactors and methods for producing solid carbon materials
WO2014111862A1 (en) 2013-01-17 2014-07-24 Saudi Basic Industries Coporation Carbon nano-tube production from carbon dioxide
EP3129133B1 (en) 2013-03-15 2024-10-09 Seerstone LLC Systems for producing solid carbon by reducing carbon oxides
ES2900814T3 (es) 2013-03-15 2022-03-18 Seerstone Llc Electrodos que comprenden carbono nanoestructurado
WO2014151144A1 (en) 2013-03-15 2014-09-25 Seerstone Llc Carbon oxide reduction with intermetallic and carbide catalysts
EP3129135A4 (en) 2013-03-15 2017-10-25 Seerstone LLC Reactors, systems, and methods for forming solid products
EP3114077A4 (en) 2013-03-15 2017-12-27 Seerstone LLC Methods of producing hydrogen and solid carbon
CN104085880B (zh) * 2014-07-30 2016-08-24 四川大学 一种由二氧化碳转化制备固体碳的方法
WO2018022999A1 (en) 2016-07-28 2018-02-01 Seerstone Llc. Solid carbon products comprising compressed carbon nanotubes in a container and methods of forming same
US11040876B2 (en) * 2017-09-18 2021-06-22 West Virginia University Catalysts and processes for tunable base-grown multiwalled carbon nanotubes
CN108502868A (zh) * 2018-03-14 2018-09-07 四川大学 一种将co2转换为表面富含含氧基团的碳纳米管的方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4572813A (en) * 1983-09-06 1986-02-25 Nikkiso Co., Ltd. Process for preparing fine carbon fibers in a gaseous phase reaction
JPS63159210A (ja) * 1986-08-22 1988-07-02 Mitsubishi Heavy Ind Ltd 炭酸ガスの分解方法
JPH01317110A (ja) * 1988-06-17 1989-12-21 Nippon Steel Corp 高純度カーボン微粒子の製造方法
JP2746495B2 (ja) * 1992-01-23 1998-05-06 株式会社日立製作所 二酸化炭素の変換方法及び装置
US5780101A (en) * 1995-02-17 1998-07-14 Arizona Board Of Regents On Behalf Of The University Of Arizona Method for producing encapsulated nanoparticles and carbon nanotubes using catalytic disproportionation of carbon monoxide
CN1061706C (zh) * 1996-06-19 2001-02-07 中国科学院金属研究所 一种气相生长纳米碳纤维的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
W.Z.LI. Large-Scale Synthesis of Aligned Carbon Nanotubes, Science, 1996, v.274, p.p.1701-1703. *

Also Published As

Publication number Publication date
DE69908998T2 (de) 2004-05-19
US6261532B1 (en) 2001-07-17
DE69908998D1 (de) 2003-07-31
JP3415038B2 (ja) 2003-06-09
JPH11335106A (ja) 1999-12-07
CN1133580C (zh) 2004-01-07
EP0945402B1 (en) 2003-06-25
EP0945402A1 (en) 1999-09-29
CN1235930A (zh) 1999-11-24

Similar Documents

Publication Publication Date Title
RU2213050C2 (ru) Способ получения углерода
US7687109B2 (en) Apparatus and method for making carbon nanotube array
Kumar Carbon nanotube synthesis and growth mechanism
US7682658B2 (en) Method for making carbon nanotube array
EP1061043A1 (en) Low-temperature synthesis of carbon nanotubes using metal catalyst layer for decomposing carbon source gas
Awasthi et al. Synthesis of carbon nanotubes
US7090819B2 (en) Gas-phase process for purifying single-wall carbon nanotubes and compositions thereof
Rakov Methods for preparation of carbon nanotubes
US7850940B2 (en) Carbonnitride nanotubes with nano-sized pores on their stems, their preparation method and control method of size and quantity of pore thereof
JP2526782B2 (ja) 炭素繊維とその製造方法
Zeng et al. Synthesis and application of carbon nanotubes
US20040052289A1 (en) Carbon nanostructures and methods of preparation
US7700048B2 (en) Apparatus for making carbon nanotube array
CZ292640B6 (cs) Způsob zvyšování pravidelnosti nanostruktury částic uhlíku
MXPA01002186A (es) Medios de carbon para almacenamiento de hidrogeno.
WO2001085612A2 (en) Process for preparing carbon nanotubes
CN110255626B (zh) 基于气相沉积制备表面活性洋葱状碳纳米球的方法
JP2002320848A (ja) 水素貯蔵材
KR100385867B1 (ko) 고순도의 탄소나노튜브를 합성하는 방법
KR20070068126A (ko) 나노크기 이하의 기공을 가지는 카본나이트라이드나노튜브, 이의 제조방법 및 카본나이트라이드 나노튜브의기공 크기와 양을 조절하는 방법
KR20020069328A (ko) 연료전지용 탄소 나노튜브 제조방법
KR20030093666A (ko) 자성유체를 이용한 탄소 나노튜브의 합성방법
KR20080006899A (ko) 탄소나노섬유를 이용한 천연흑연의 표면개질 방법
KR20240094634A (ko) 탄소나노튜브-실리콘 복합 음극재 제조 방법 및 이로부터 제조한 탄소나노튜브-실리콘 복합 음극재
Raghubanshi et al. Synthesis of carbon nanostructures using hydrogen storage alloys as catalysts