RU2196846C2 - Наноструктурные сырьевые материалы для термического напыления - Google Patents

Наноструктурные сырьевые материалы для термического напыления Download PDF

Info

Publication number
RU2196846C2
RU2196846C2 RU98111495/02A RU98111495A RU2196846C2 RU 2196846 C2 RU2196846 C2 RU 2196846C2 RU 98111495/02 A RU98111495/02 A RU 98111495/02A RU 98111495 A RU98111495 A RU 98111495A RU 2196846 C2 RU2196846 C2 RU 2196846C2
Authority
RU
Russia
Prior art keywords
nanostructured
coating
particles
solution
powders
Prior art date
Application number
RU98111495/02A
Other languages
English (en)
Other versions
RU98111495A (ru
Inventor
Питер Р. СТРАТТ
Бернард Х. КИР
Росс Ф. БОУЛЕНД
Original Assignee
Дзе Юниверсити оф Коннектикут
Рутгерс, Дзе Стейт Юниверсити Оф Нью-Джерси
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Дзе Юниверсити оф Коннектикут, Рутгерс, Дзе Стейт Юниверсити Оф Нью-Джерси filed Critical Дзе Юниверсити оф Коннектикут
Publication of RU98111495A publication Critical patent/RU98111495A/ru
Application granted granted Critical
Publication of RU2196846C2 publication Critical patent/RU2196846C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/068Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with silicon
    • C01B21/0687After-treatment, e.g. grinding, purification
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/32Phosphates of magnesium, calcium, strontium, or barium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • C01G25/02Oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62222Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic coatings
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • C23C4/11Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/123Spraying molten metal
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/02Amorphous compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/50Agglomerated particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/89Deposition of materials, e.g. coating, cvd, or ald
    • Y10S977/892Liquid phase deposition

Abstract

Изобретение относится к способам получения наноструктурных материалов, позволяющих использовать их при нанесении наноструктурного покрытия в стандартных установках термического напыления. В одном варианте наноструктурное исходное сырье содержит сферические агломераты, полученные путем повторной обработки порошков. В другом варианте тонкую дисперсию наночастиц непосредственно инжектируют в факел или плазму устройства для термического напыления для получения наноструктурных покрытий. В другом варианте жидкие металлоорганические химические прекурсоры (предшествующие соединения) непосредственно инжектируют в факел плазменного устройства для термического напыления, в результате чего синтез наночастиц, плавление и закалку осуществляют в одну операцию. В этих способах используют ультразвук для дезинтеграции только что синтезированных агломератов из частиц, дисперсии наночастиц в жидкой среде и распыления жидкого прекурсора. Техническим результатом изобретения является создание наноструктурных материалов, состоящих из ультрадисперсных зерен и частиц, пригодных для термического распыления. 9 с. и 13 з.п. ф-лы, 6 ил.

Description

Настоящее изобретение относится главным образом к области наноструктурных материалов. В частности, настоящее изобретение относится к наноструктурным сырьевым материалам, используемым при напылении высококачественных наноструктурных покрытий посредством процесса термического напыления.
Краткое описание уровня техники
Давно установлено, что материалы с тонкой микроструктурой проявляют технологически привлекательные свойства. В течение нескольких последних лет определился класс субмикроструктурных материалов, состоящих из ультратонких зерен или частиц. Эти материалы называются "наноструктурными материалами". Наноструктурные материалы характеризуются наличием высокой доли атомов материалов, остающихся у границ зерен или частиц. Например, при размере зерна в диапазоне пяти нанометров около половины атомов в нанокристаллическом или нанофазном твердом теле остаются у поверхности раздела зерен или частиц.
Хотя исследования в области наноструктурных материалов в последнее время сконцентрированы на синтезе и обработке наноструктурных сыпучих материалов, все больше растет интерес к наноструктурным покрытиям, включающим тепловые барьеры, твердые и сверхтвердые покрытия.
Наноструктурные сыпучие материалы с требуемыми многофункциональными покрытиями создают беспрецедентные возможности улучшения свойств материалов и их рабочих характеристик в широком диапазоне конструктивных применений.
С конца 1980-х годов особенно активно проводились исследования наноструктурных материалов в Рутгерсовском университете и в Коннектикутском университете. Был достигнут прогресс в синтезе 1) наноструктурных металлических порошков посредством метода реакции в органическом растворе (OSR), метода реакции в водном растворе (ASR), 2) наноструктурных металлокерамических порошков (керметов) посредством метода распылительно-конверсионной обработки и 3) наноструктурных порошков посредством метода газоконденсационной обработки. Также был достигнут прогресс в уплотнении наноструктурных порошков посредством методов твердофазного и жидкофазного спекания (для сыпучих материалов) с сохранением требуемой наноструктуры.
В последнее время для синтеза наноструктурных порошков используют три различных способа, а именно: 1) способы реакции в органическом растворе (OSR) и реакции в водном растворе (ASR) для синтезирования наноструктурных металлических порошков, например наноструктурных Cr3C2/Ni порошков; 2) способ распылительно-конверсионной обработки (SPR) для синтезирования наноструктурных металлокерамических порошков (керметов), например порошков вольфрам/углерод/кобальт и Fе3Мо3С/Fe; и 3) способ газоконденсационной обработки (GSP) для синтезирования наноструктурных керамических порошков, например порошков диоксида титана, диоксида циркония и порошка кремний/углерод/азот.
OSR и ASR способы получения наноструктурных металлов и сплавов включают три этапа: 1) приготовления органического или водного раствора смешанных хлоридов металлов; 2) восстановительного разложения исходного раствора гидридом металла с получением коллоидного раствора металлических компонентов; и 3) фильтрации, промывки и сушки с последующей газофазной карбюризацией в условиях регулируемой активности углерода и кислорода для получения требуемой нанодисперсии карбидных фаз в металлической матричной фазе.
Эту процедуру применяют для синтезирования множества наноструктурных металлокарбидных порошков, включая наноструктурные Сr3С2/NiCr порошки, используемые при термическом напылении коррозионно-стойких твердых покрытий. Добавление на стадии конечной промывки небольшого количества органического пассиватора, например раствора парафина в гексане, обеспечивает защиту порошка с высокоразвитой поверхностью от самовоспламенения при сушке и воздействии воздуха. Полученные таким способом порошки являются рыхлыми, неплотно агломерированными. Под используемым в настоящем описании термином "агломерированные" также понимают агрегированные частицы.
SCP способ синтезирования наноструктурных металлокерамических композиционных порошков включает три этапа: 1) приготовление водного раствора смеси солей составляющих элементов; 2) сушка распылением исходного раствора с получением гомогенного предшественника порошка; и 3) конверсия в псевдоожиженном слое (восстановления или карбюризации) предшественника порошка до требуемого наноструктурного металлокерамического порошка. SCP способ используют для получения наноструктурного WC/Co, Fе3Мо3С/Fe и других аналогичных материалов. Частицы могут иметь форму полых сферических оболочек. После синтезирования порошки обычно пассивируются для исключения чрезмерного окисления при воздействии воздуха.
В настоящее время GCP способ является наиболее гибким процессом, используемым для синтеза экспериментальных количеств наноструктурных металлических и керамических порошков. Характерной особенностью этого процесса является его способность к образованию неплотно агломерированных наноструктурных порошков, которые можно синтезировать при относительно низких температурах.
В варианте конденсации в токе инертного газа (IGC) GCP способа используют испаряемый источник для создания частиц порошка, конвективно транспортируемых к холодной подложке и собирающихся на последней. Наночастицы образуются в зоне термализации (замедления до тепловой энергии) как раз над испаряемым источником вследствие взаимодействия между горячими парами и намного более холодными атомами инертного газа (обычно при давлении 1-20 миллибар) в камере. Керамические порошки обычно получают посредством двухстадийного процесса: испарения источника паров металла или, предпочтительнее, недокиси металла с высоким давлением паров и последующего медленного окисления для получения частиц требуемых наноструктурных керамических порошков.
В варианте химического осаждения из паровой фазы (CVC) GCP способа используют трубчатый реактор для разложения предшественника несущего газа и формирования непрерывного потока кластеров или наночастиц в трубе реактора. Для успешной CVC обработки критическими аспектами являются 1) низкая концентрация предшественника в несущем газе; 2) быстрое расширение газового потока в равномерно нагретом трубчатом реакторе; 3) быстрое охлаждение образующихся в газовой фазе кластеров или наночастиц при их выходе из трубы реактора; и 4) низкое давление в реакционной камере.
Полученные частицы наноструктурного керамического порошка неплотно агломерированы, как и в IGC процессе, и проявляют способность к спеканию при низкой температуре. Это отличает их от ультратонких порошков, полученных посредством известных способов сжигания в факеле при окружающем давлении и плазменно-дуговой обработки порошка, обеспечивающих получение цементированных агрегированных частиц, которые могут быть уплотнены только при намного более высоких температурах спекания. CVC способ используется для синтезирования наноструктурных порошков различных керамических материалов, которые не могут быть легко получены посредством IGC процесса вследствие их высоких температур плавления и/или низкого давления паров. Примерами являются наноструктурные порошки SICxNy, имеющие множество подходящих металлоорганических предшественников, например гексаметилдизилазан (HMDS). На реальный состав полученного порошка сильно влияет выбор несущего газа. Так, HMDS/H2O, HMDS/H2 и HMDS/NН3 дают наноструктурные керамические порошки с составами, близкими к SiO2, SiC и Si3N4 соответственно.
В настоящее время в промышленной практике порошки, используемые для нанесения металлических, керамических или композиционных покрытий путем термического напыления или плазменного осаждения, содержат частицы с диаметром в пределах от 5 до 50 микрон. В течение короткого времени пребывания в факеле или в плазме частицы быстро нагреваются с образованием распыленной струи частично или полностью расплавленных капель. Когда эти частицы достигают поверхности подложки, создается огромная ударная сила, способствующая прочной адгезии частицы к подложке и образованию плотного покрытия из практически любого требуемого материала, при этом покрытия с толщиной в диапазоне от 25 микрон до нескольких миллиметров образуются при относительно высоких скоростях осаждения.
Как правило, обычные порошки, используемые при нанесении покрытий путем термического напыления, получают посредством серии этапов, включающих измельчение в шаровой мельнице, механическое смешивание, реакцию при высокой температуре и иногда сушку распылением с использованием связующего. Системы подачи порошков для технологии термического напыления сконструированы таким образом, что они могут работать с агломератами порошков с размером частиц в диапазоне от 5 до 25 микрон. Минимальный размер зерен или частиц в обычных порошках составляет от 1 до 0,5 микрон. В отличие от них в наноструктурных материалах размер зерен или частиц находится в диапазоне от 1 до 100 нанометров. Сразу после синтезирования порошки с наночастицами обычно непригодны для обычного нанесения покрытий путем термического напыления и требуют повторной обработки для того, чтобы они удовлетворяли требованиям к размеру обычной технологии напыления. Соответственно, остается потребность в способах повторной обработки только что синтезированных порошков с тем, чтобы обеспечить их пригодность для обычного промышленного напыления покрытий. Альтернативно, остается потребность в обеспечении надежного, недорогого, высокопропускного прямого инжектирования только что синтезированного порошка или химического предшественника порошка для синтеза частиц in-situ в устройстве для термического напыления для обеспечения воспроизводимого высококачественного осаждения наноструктурных покрытий.
Краткое описание изобретения
Вышеупомянутые и другие проблемы и затруднения уровня техники преодолеваются или смягчаются посредством способов настоящего изобретения, которые впервые создают возможность получения наноструктурного сырья, пригодного для использования в обычной технологии термического напыления.
Соответственно, в одном из вариантов настоящего изобретения предусмотрен способ повторной обработки только что синтезированных порошков из наночастиц с получением агрегированных форм, пригодных для использования в обычной технологии напыления наноструктурных покрытий, отличающийся тем, что только что синтезированные порошки сначала диспергируют в жидкую среду посредством ультразвука и затем подвергают сушке распылением. Эти высушенные путем распыления агломерированные наноструктурные порошки имеют сферическую форму и узкое распределение размеров частиц в оптимальном диапазоне 10-50 микрон. Поэтому эти порошки имеют превосходные характеристики сырья для термического напыления, а также обеспечивают равномерное плавление в факеле или плазме. И вследствие этого покрытия имеют однородные наноструктуры, незначительную пористость, хорошую адгезию к подложке и превосходную износостойкость. В отличие от порошков, смешанных, например, посредством шаровой мельницы или механического смешивания, способ настоящего изобретения позволяет смешивать составляющие элементы материалов на молекулярном уровне.
В альтернативном варианте настоящего изобретения предусмотрен способ прямого инжектирования наночастиц только что синтезированного порошка в факел или плазму в обычном устройстве для термического напыления, отличающийся тем, что только что синтезированный порошок сначала диспергируют в жидкую среду посредством ультразвука.
Прямое инжектирование посредством данного способа обеспечивает возможность воспроизводимого осаждения высококачественных наноструктурных покрытий без промежуточного этапа повторной обработки. Очень короткие диффузионные расстояния обеспечивают возможность осуществления быстрых реакций между наночастицами и парами в газовом потоке, как например карбюризации, азотирования и борирования. Этот вариант также обеспечивает возможность смешивания компонентов заданного материала на молекулярном уровне.
В еще одном варианте настоящего изобретения предусмотрен способ получения наноструктурных покрытий, использующий металлоорганическое аэрозольное сырье, образованное посредством ультразвука, отличающийся тем, что синтез наночастиц, плавление и закалку осуществляют в одной операции.
Вышеупомянутые и другие признаки и преимущества настоящего изобретения могут быть оценены и поняты специалистами из последующего подробного описания и чертежей.
Краткое описание чертежей
Сошлемся теперь на чертежи, на которых сходные элементы обозначены сходными позициями на каждом из чертежей, где
фиг. 1 является технологической картой примеров синтеза агломерированных наноструктурных порошков для использования при нанесении покрытий путем термического напыления, включающего способ обработки только что синтезированных порошков согласно настоящему изобретению;
фиг. 2 является подробной технологической картой способа повторной обработки только что синтезированных наноструктурных порошков согласно настоящему изобретению;
фиг. 3 является растровой электронной микрофотографией WC/CO наноструктурного порошка, полученного посредством способа повторной обработки согласно настоящему изобретению;
фиг. 4А и 4Б являются схемами сравнения термического напыления обычных частиц металлокерамического порошка (кермета) и агломерированных частиц металлокерамического порошка (кермета) настоящего изобретения;
фиг. 5 является иллюстрацией способа получения наноструктурных покрытий согласно настоящему изобретению, использующему металлоорганическое аэрозольное сырье, полученное посредством ультразвука.
Описание предпочтительных вариантов
Согласно фиг. 1 и 2 в одном из вариантов настоящего изобретения предусмотрен способ повторной обработки наночастиц порошков в агломерированную форму, пригодную для осаждения наноструктурных покрытий путем термического напыления. Согласно этому способу только что синтезированные наноструктурные порошки 10, 12 и 14 дезинтегрируют посредством ультразвука и диспергируют в жидкую среду и затем подвергают сушке распылением с получением сферических агломератов из наночастиц 16, пригодных для осаждения путем термического напыления. Исходные частицы, обычно менее 50 микрон, могут быть уменьшены до субмикронных размеров, образуя вязкую суспензию или коллоидную суспензию за несколько минут. Хотя и наночастицы 10, синтезированные посредством способа реакции в растворе (OSR или ASR), и наночастицы 12, синтезированные посредством SCP способа, или частицы 14, синтезированные посредством CVC способа, пригодны для повторной обработки посредством способа согласно настоящему изобретению, должно быть понятно, что наночастицы, синтезированные посредством любого способа, также пригодны для использования в настоящем изобретении. Кроме того, хотя порошки из агломерированных наночастиц особенно пригодны для осаждения путем термического напыления, их также можно использовать и в других применениях, требующих агломерированных наночастиц.
При осуществлении этого варианта способа только что синтезированный порошок, который может содержать частицы 10, 12 или 14, или их смесь, сначала суспендируют в жидкой среде с образованием суспензии 18. Жидкая среда может быть на водной основе или на органической основе, в зависимости от требуемых характеристик готового агломерированного порошка.
Пригодные органические растворители включают, но не ограничиваются ими, толуол, керосин, метанол, этанол, изопропиловый спирт, ацетон и т.п.
Среду затем обрабатывают ультразвуком для диспергирования наноструктурного материала, образующего дисперсию 20. Эффект ультразвукового рассеяния наиболее резко выражен в зоне 22 у конца ультразвукового рупора 24. Наноструктурный порошок может быть просто диспергирован в растворе или может образовать коллоидную суспензию, обычно в течение нескольких минут.
В раствор также может быть добавлено связующее с образованием смеси 26. В жидких средах на органической основе связующее содержит от около 5 до около 15 вес.%, предпочтительнее около 10 вес.% парафина, растворенного в подходящем органическом растворителе. Подходящие органические растворители включают, но не ограничиваются ими, гексан, пентан, толуол и т.п. В жидких средах на водной основе связующее содержит эмульсию промышленно доступных поливинилового спирта (ПВА), поливинилпирролидона (ПВП), карбоксиметилцеллюлозы (КМЦ) или любого другого водорастворимого полимера, образованную в деионизованной воде. Связующее присутствует в пределах от около 0,5 вес.% до около 5 вес.% от веса общего раствора, предпочтительнее от около 1 вес.% до около 10 вес.% от веса общего раствора. Предпочтительным связующим является КМЦ.
После механического смешивания и, если необходимо, дополнительной ультразвуковой обработки, суспензию наноструктурного порошка в жидкой среде 26 подвергают сушке распылением в горячем воздухе с образованием агломерированных частиц 16. Хотя может быть использован любой подходящий нереактивный газ или их смесь, предпочтительными являются азот или горячий аргон. Вследствие отсутствия требований к обработке отходящих из распылительной сушилки газов, предпочтительнее использовать жидкие среды на водной основе там, где это возможно.
После распыления порошки 16 подвергают термообработке при низких температурах (<250oС) для удаления остаточной влаги, оставляющей органический компонент (полимер или парафин) в качестве связующей фазы. При необходимости может быть добавлен этап дополнительной термообработки при высокой температуре, эффективной для удаления абсорбированного и хемисорбированного кислорода и способствующей частичному спеканию. Полученный порошок затем может быть использован в обычном процессе осаждения путем термического напыления. Последующие неограничивающие примеры иллюстрируют способ повторной обработки только что синтезированных наноструктурных порошков, использующий ультразвуковое диспергирование.
ПРИМЕР 1
Типичными условиями обработки для получения агломератов наноструктурного WC/Co порошка являются следующие условия.
Наноструктурный WC/Co, приготовленный посредством хорошо известного способа, образован в примерно 50 вес.% растворе в деионизованной и обескислороженной воде. Для диспергирования наноструктурного WC/Co с образованием суспензии с низкой вязкостью использовали ультразвуковой рупор, работающий на частоте 20000 Гц при мощности 300-400 Вт. При подаче питания такой мощности исходные, только что синтезированные частицы в виде полой сферической оболочки диаметром 10-50 микрон, быстро дезинтергировались и диспергировались в жидкой среде, образуя дисперсную фазу из частиц размером около 100 нанометров. Затем в суспензию добавляли 5-10 вес.% газовой сажи и 2-3 вес.% раствор ПВП в деионизованной и обескислороженной воде. Газовую сажу добавляли факультативно для компенсации потерь углерода в частицах WC за счет высокого реагирования в факеле или плазме. Для использования с WC/Co материалами также пригодна КМЦ.
После смешивания и дополнительной ультразвуковой обработки суспензию подвергали сушке распылением в промышленной установке для получения порошка, состоящего из твердых сферических частиц со средним диаметром в диапазоне 5-20 микрон, изображенного на фиг.3. В заключение, порошки предпочтительнее очищали путем низкотемпературной дегазирующей обработки при пониженном давлении после агломерирования перед повторным заполнением сухим азотом. После этого порошки в течение неопределенного времени могут, не деградируя, храниться в азоте.
Вследствие высокоразвитой поверхности агломератов наноструктурного WC/Co порошка и присутствия кислорода и обогащенных кислородом групп существует возможность декарбюризации in situ внутри агломератов. Для исключения этой проблемы на некоторых этапах обработки порошка предпочтительнее вводить пассивирующую обработку, используя подходящее не содержащее кислорода соединение, например парафин. Парафин хемисорбируется на высокоразвитой поверхности наночастиц. Предпочтительнее вводить парафин в растворе гексана (5-10 вес.%).
Для осаждения наноструктурных металлокерамических покрытий идеально подходит высокоскоростной топливокислородный (HVOF) процесс вследствие относительно низкой температуры факела и короткого времени переноса частиц, минимизирующих вредные реакции в факеле.
Особенностью использования металлокерамических (керметов) наноструктурных порошков, например, WC/Co, повторно обработанных посредством способа настоящего изобретения, является гомогенное плавление матричной (связующей) фазы при нанесении покрытия путем термического напыления с образованием полутвердых или "пористых" частиц. Согласно фиг. 4А и 4Б частицы обычного порошка 40, содержащие фазу твердых частиц 42, окружены твердой матричной фазой 44. В термической зоне устройства для напыления твердая матричная фаза 44 становится расплавленной матричной фазой 46. Поэтому в частицах обычного металлокерамического порошка (кермете) 40 крупные (диаметром 5-25 микрон) зерна карбида 42 подвергаются в термической зоне небольшим изменениям размера вследствие ограниченного времени передачи тепла в течение времени переноса от сопла и до соударения с подложкой, составляющего 1 миллисекунду. Покрытия 48, образованные этими частицами, следовательно, могут быть пористыми.
В отличие от обычного порошка кермета агломерированные частицы металлокерамического порошка (кермета) 50 настоящего изобретения, содержащие твердые частицы 52 с размером зерна в диапазоне от около 5 до около 50 нанометров, агломерированы внутри матричной фазы 54 посредством связующего 56. В процессе термического напыления малый размер карбидных зерен 52 агломерированных наноструктурных частиц 50 позволяет частицам быстро раствориться в расплавленной матрице 58 с образованием "пористой" частицы кермета 60. Эта пористая частица 60 будет легко ниспадать для соударения с подложкой, образуя высокоадгезивное плотное покрытие с низкой пористостью 62. Степень текучести соударяющейся частицы может регулироваться выбором степени перегрева относительно эвтектической температуры соударяющихся частиц. Кроме того, высокая скорость соударения пористых наноструктурных частиц кермета способствует улучшению напыления и адгезии к поверхности подложки.
ПРИМЕР 2
Нанострутурные порошки Сr3С2/NiCr, полученные посредством ASR и OSR способов, находятся в форме рыхлых агломератов различных размеров и морфологии. Используя вышеописанную базовую процедуру, эти порошки могут быть диспергированы посредством ультразвука в водную или органическую жидкую среду с полимерным или парафиновым связующим и подвергнуты сушке распылением для получения сферических агломератов единообразного размера диаметром 5-25 микрон. Более того, в процессе термического напыления нанокомпозиционные порошки частично расплавляются и подвергаются закалке разбрызгиванием при столкновении с поверхностью подложки. Это поведение подобно поведению, описанному для наноструктурных порошков WC/Co.
ПРИМЕР 3
Наноструктурные порошки SiO2 могут быть получены посредством синтеза путем сжигания в факеле, являющегося промышленным процессом. Только что синтезированный порошок имеет высокоразвитую поверхность (>400 м2/гм) и форму твердых агломератов, называемых "цементированными агрегатами" с 10-100 наночастицами на агрегат. Такие порошки могут быть легко диспергированы в водный раствор вследствие присущей им гидрофильности. Полученная коллоидная суспензия, содержащая ПВА, ПВП или КМЦ в качестве связующего, может быть конвертирована (преобразована) в сферические аггрегаты путем сушки распылением, как обсуждалось выше. Однако поведение при термическом напылении отличается, поскольку частицы SiO2 скорее склонны к размягчению, чем к плавлению.
Высушенные распылением агломерированные наноструктурные порошки, описанные в вышеприведенных примерах, имеют сферическую форму и узкое распределение частиц по размерам в оптимальном диапазоне 10-50 микрон. Как таковые они имеют превосходные характеристики сырья для термического напыления и также имеют склонность к равномерному плавлению в факеле или плазме, при этом образованные из них покрытия имеют однородную структуру, незначительную пористость, хорошую адгезию с подложкой и прекрасную износостойкость. В частности, покрытия полученные посредством данного способа из металлокерамических материалов, как например WC/Co, Сr3С2/Ni, Fе3Мо3С/Fe имеют новую наноструктуру, включающую нанодисперсию твердой карбидной фазы в аморфной или нанокристаллической, обогащенной металлом матричной фазе, в результате чего проявляют превосходные твердость и износостойкость.
В альтернативном варианте настоящего изобретения наноструктурное порошковое сырье вводится в систему термического напыления сразу после ультразвукового диспергирования. Подходящими только что синтезированными наноструктурными порошками для осуществления настоящего изобретения являются порошки, полученные любым физическим способом, как например GCP, или способами химической обработки, например IGC и CVC способами. Такие порошки являются монодисперсными и рыхлыми, неплотно агломерированными. Размер частиц легко регулируется в диапазоне 3-30 нанометров путем точной настройки определенных критических параметров, известной из уровня техники. Эти неплотно агломерированные порошки легко могут быть диспергированы в деионизованной воде, различных спиртах или жидких углеводородах путем ультразвукового перемешивания с образованием коллоидной суспензии или шлама. Эта наночастотная суспензия или шлам затем может быть введена вместе с жидким керосиновым топливом непосредственно в зону сжигания распылителя HVOF посредством жидкого питания. Альтернативно суспензия или шлам могут быть введены в форме аэрозоля в газовом питании для плазмы или распылителя HVOF.
Особенностью этого варианта является то, что частицы быстро нагреваются вблизи от сопла распылителя и почти одновременно достигают скорости газового потока, находящейся в ультразвуковом диапазоне. В некоторых случаях наночастицы испаряются прежде, чем они конденсируются на холодной подложке. В этом случае способ фактически становится очень высокоскоростным CVD процессом.
В случае применения для индивидуального состава прямое инжектирование наночастиц посредством данного способа сулит множество преимуществ. Во-первых, это исключает необходимость в повторной обработке. Во-вторых, две или более системы питания наночастицами, работающие непрерывно или последовательно, могут создавать мультинанослои или композиционно модулированные структуры с размерами даже ниже наношкалы. В-третьих, диспергирование может осуществляться в ту же самую жидкость, которая используется в качестве топлива для устройства для термического напыления, например, в керосин. И наконец, вследствие коротких диффузионных расстояний между частицами и парами в газовом потоке происходят очень быстрые реакции (например, реакции карбюризации, азотирования и борирования).
Способ прямого инжектирования также может использоваться для введения керамических наноструктурных нитевидных кристаллов, полых оболочек и частиц других форм в нанокомпозиционное покрытие. Полые керамические микросферы (диаметром 1-5 микрон) промышленно доступны. Обычно для создания почти любой желаемой структуры покрытия, включая армированные нитевидными кристаллами и слоистые нанокомпозиты, могут использоваться смеси различных фаз и морфологий частиц.
Таким образом, простота, гибкость и способность к изменению размера частиц способа прямого инжектирования наночастиц представляет возможность разработать новые классы термически напыляемых наноструктурных покрытий. Более того, вследствие того, что устройства для термического напыления могут быть адаптированы к существующим системам термического напыления, способ является эффективным по затратам. Последующие неограничивающие примеры иллюстрируют этот вариант способа инжектирования только что синтезированных порошков сразу после ультразвукового диспергирования.
ПРИМЕР 4
Наноструктурные порошки ZrO2, Al2O3, SiO2 и SiCxNy, полученные посредством CVC способа, или наноструктурный Сr3С2/NiCr, полученный посредством OSR способа, вследствие их ультратонкого размера частиц легко диспергировали в органическую жидкую среду с образованием коллоидных суспензий. Поэтому эти материалы являются идеальными материалами для прямого инжектирования в струю жидкости типичного распылителя для термического напыления. Из наноструктурных порошков SiO2 и Сr3С2/NiCr были получены высокоплотные покрытия с соответственно аморфной и частично аморфной структурами.
ПРИМЕР 5
Субмикронные наноструктурные частицы WC/Co поддерживали в высокодиспергированном состоянии в жидкой фазе после ультразвуковой обработки путем непрерывного механического перемешивания. Поэтому не было необходимости в получении совершенно стабильных коллоидных суспензий этих порошков. Покрытия, полученные путем последующего прямого инжектирования в зону сжигания распылителя для термического напыления, сходны с покрытиями, полученными с использованием порошковых агломератов в качестве сырья.
Пример 6
Способ прямого инжектирования использовали для осаждения напылением наноструктурных покрытий из иттрийстабилизированной окиси циркония (YSZ) на предварительно окисленных подложках из металла-CrAlY. Покрытия предпочтительнее выравнивали по составу для минимизации напряжений из-за несоответствия термического расширения, что является необходимым предварительным требованием для улучшения их устойчивости к растрескиванию в термоциклических условиях.
ПРИМЕР 7
Новый тип термобарьерного покрытия (ТБП) может быть получен путем введения полых керамических микросфер в верхнее покрытие из наноструктурного YSZ, нанесенное на связующее покрытие металл-CrAlY. Альтернативно, керамические микросферы могут быть введены в связующее покрытие металл-CrAlY. В этом случае для обеспечения высокого термического сопротивления слоя покрытия необходима высокая объемная доля микросфер.
ПРИМЕР 8
При введении в факел или плазму суспендированной смеси наночастиц и полых микросфер возможно селективное плавление наночастиц при нерасплавлении микросфер. Поэтому было получено композиционное покрытие, в котором полые керамические сферы связаны с подложкой посредством плотного наноструктурного керамического покрытия.
Термобарьерные покрытия из наноструктурного YSZ могут быть получены либо посредством способа повторной обработки, либо посредством способа прямого инжектирования. В любом случае готовое покрытие может содержать либо равноосные, либо столбчатые зерна, в зависимости, главным образом, от скорости осаждения частиц и градиента температуры в осажденном покрытии.
В еще одном варианте настоящего изобретения в качестве исходного сырья для термического напыления служили аэрозоли металлоорганического предшественника, полученные посредством ультразвукового сопла. Это создает преимущество, заключающееся в объединении синтеза наночастиц, плавлении и закалки в одной операции. Согласно фиг.5 жидкий предшественник вводили в ультразвуковое сопло 82. Сопло распыляет полученную аэрозоль 84 в плазме 86, создаваемой посредством пропускания плазмообразующего газа над электродами 88, с получением наночастиц 90, которые затем могут быть закалены на подложке. Например, металлоорганический предшественник гексаметилдизилазан (HMDS) распыляли в воздухе посредством ультразвука и подавали к выходу сопла плазменного распылителя постоянного тока. Быстрый пиролиз соединения предшественника приводил к образованию кластеров или наночастиц наноструктурного SiCxNy, которые испускались в виде высокоскоростного луча из распылителя. Из этих горячих частиц, сталкивающихся и коалесцирующих на поверхности подложки, было образовано покрытие.
Наноструктурные покрытия, образованные посредством способов настоящего изобретения, нашли широкое применение в различных областях. В частности, наноструктурные покрытия, образованные из оксиапатита или вителлиума, нашли применение в медицинских устройствах. Покрытия обладают однородной структурой, незначительной пористостью, хорошей адгезией к подложке и превосходной износостойкостью. В отличие от порошков, смешанных, например, посредством шаровой мельницы или путем механического смешивания, способ настоящего изобретения обеспечивает возможность смешивания составляющих элементов материала на молекулярном уровне. Очень короткое диффузионное расстояние в варианте прямого инжектирования обеспечивает возможность осуществления очень быстрых реакций между наночастицами и парами в газовом потоке, например, реакций карбюризации, азотирования и борирования.
Несмотря на то, что в настоящем описании изображены и описаны предпочтительные варианты настоящего изобретения, в нем могут быть осуществлены различные модификации и замены, не отходящие от духа и сферы применения настоящего изобретения. Соответственно, должно быть понятно, что настоящее изобретение описано путем иллюстраций и не ограничивается ими.

Claims (22)

1. Способ получения агломерированных наноструктурных частиц, включающий: (а) диспергирование наноструктурного материала в жидкую среду посредством ультразвука; (б) добавление органического связующего к среде с получением раствора; и (в) сушку распылением раствора с получением, агломерированных наноструктурных частиц.
2. Способ по п. 1, отличающийся тем, что наноструктурные частицы имеют размер в диапазоне от около 5 до около 20 мкм в диаметре.
3. Способ по п. 1, отличающийся тем, что органические связующие выбирают из группы, включающей поливиниловые спирты, поливинилпирролидоны и карбоксиметилцеллюлозу.
4. Способ по п. 1, отличающийся тем, что дополнительно осуществляют термообработку агломерированных наноструктурных частиц в токе водорода при высокой температуре, эффективной для удаления абсорбированного и хемисорбированного кислорода и способствующую частичному спеканию.
5. Способ прямого инжектирования наноструктурных частиц в распылитель для термического напыления для нанесения покрытия путем термического напыления, включающий: (а) ультразвуковое диспергирование наноструктурного материала в жидкую среду с образованием дисперсного раствора; (б) инжектирование упомянутого дисперсного раствора непосредственно в питание для устройства для термического напыления.
6. Способ по п. 5, отличающийся тем, что дисперсный раствор инжектируют в газовое питание устройства для термического напыления в форме аэрозоля.
7. Способ по п. 5, отличающийся тем, что дисперсный раствор дополнительно содержит элементы в виде частиц, выбранные из группы, включающей керамические нитевидные кристаллы и керамические полые оболочки, металлокерамические нитевидные кристаллы и металлокерамические полые оболочки.
8. Наноструктурное исходное сырье для термического напыления покрытий, полученное посредством способа по п. 1 или 5.
9. Наноструктурное исходное сырье по п. 8, отличающееся тем, что оно произведено из наноструктурного материала, выбранного из группы, включающей WC/Co, Cr3C2/Ni, Fe3Mo3C/Fe, иттрийстабилизированную окись циркония и SiC, Si3N4 и MnO2.
10. Способ получения наноструктурных покрытий, включающий: (а) ультразвуковое диспергирование наноструктурного материала в жидкую среду; (б) добавление органического связующего к упомянутой среде с образованием раствора; (в) сушку распылением раствора, вследствие чего образуются агломерированные наноструктурные частицы; и (г) напыление покрытия из агломерированных наноструктурных частиц на изделие с образованием наноструктурного покрытия.
11. Наноструктурное покрытие, полученное посредством способа по п. 10, отличающееся тем, что покрытие образуют из металлокерамического материала и оно содержит нанодисперсию твердой карбидной фазы в аморфной обогащенной металлом фазе.
12. Способ получения наноструктурного покрытия, включающий: (а) ультразвуковое диспергирование наноструктурного порошка в жидкую среду; (б) инжектирование упомянутого дисперсного раствора непосредственно в питание распылителя для термического напыления; и (в) напыление покрытия из агломерированных нанострукторных частиц на изделие с образованием наноструктурного покрытия.
13. Способ по п. 12, отличающийся тем, что дисперсный раствор дополнительно содержит элементы в виде частиц, выбранные из группы, включающей керамические нитевидные кристаллы, керамические полые оболочки.
14. Способ по п. 10 или 12, отличающийся тем, что на этапе напыления покрытия поддерживают эффективную величину перегрева над эвтектической температурой наноструктурных частиц для образования пористых агломерированных частиц, которые будут легко ниспадать для соударения с изделием, подлежащим напылению покрытия.
15. Наноструктурное покрытие, образованное посредством способа по п. 10 или 12.
16. Наноструктурное покрытие по п. 15, отличающееся тем, что наноструктурный материал содержит иттрийстабилизированную окись циркония, в результате чего образуется термобарьерное покрытие.
17. Наноструктурное покрытие по п. 16. отличающееся тем, что оно содержит равноосные зерна.
18. Наноструктурное покрытие по п. 16, отличающееся тем, что оно содержит столбчатые зерна.
19. Наноструктурное покрытие по п. 15, отличающееся тем, что наноструктурные порошки выбраны из группы, включающей WC/Co, Cr3C2/Ni, Fe3Mo3C/Fe, SiC, Si3N4, иттрийстабилизированная окись циркония, гидроксиаппатит, вителлиум и MnO2.
20. Способ получения наноструктурного покрытия, включающий: (а) образование раствора из металлоорганического исходного сырья; (б) распыление металлоорганического раствора посредством ультразвука; и (в) подачу распыленного раствора на выход сопла плазменного распылителя, где он затем контактирует с изделием, подлежащим нанесению покрытия.
21. Наноструктурное покрытие, образованное посредством способа по п. 20.
22. Наноструктурное покрытие по п. 21, отличающееся тем, что металлоорганическим исходным сырьем является гексаметилдизилазан.
RU98111495/02A 1995-11-13 1996-11-13 Наноструктурные сырьевые материалы для термического напыления RU2196846C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US55813395A 1995-11-13 1995-11-13
US08/558,133 1995-11-13

Publications (2)

Publication Number Publication Date
RU98111495A RU98111495A (ru) 2000-06-10
RU2196846C2 true RU2196846C2 (ru) 2003-01-20

Family

ID=24228350

Family Applications (1)

Application Number Title Priority Date Filing Date
RU98111495/02A RU2196846C2 (ru) 1995-11-13 1996-11-13 Наноструктурные сырьевые материалы для термического напыления

Country Status (6)

Country Link
US (3) US6025034A (ru)
EP (1) EP0866885A4 (ru)
CN (1) CN1195884C (ru)
CA (1) CA2237588A1 (ru)
RU (1) RU2196846C2 (ru)
WO (1) WO1997018341A1 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2477763C1 (ru) * 2012-01-11 2013-03-20 Федеральное Государственное Автономное Образовательное Учреждение Высшего Профессионального Образования "Сибирский Федеральный Университет" (Сфу) Способ получения полимерного нанокомпозиционного материала
RU2490204C1 (ru) * 2011-12-19 2013-08-20 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Казанский (Приволжский) Федеральный Университет" (ФГАОУ ВПО КФУ) Способ получения композиций на основе углеродных нанотрубок и полиолефинов
RU2508963C2 (ru) * 2012-05-18 2014-03-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Бурятский государственный университет" Способ диспергирования наноразмерного порошка диоксида кремния ультразвуком
RU2568555C1 (ru) * 2014-07-08 2015-11-20 Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) Способ получения наноструктурированного конгломерированного порошкового материала для нанесения покрытий методами газодинамического и газотермического напыления

Families Citing this family (206)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6447848B1 (en) * 1995-11-13 2002-09-10 The United States Of America As Represented By The Secretary Of The Navy Nanosize particle coatings made by thermally spraying solution precursor feedstocks
US6933331B2 (en) * 1998-05-22 2005-08-23 Nanoproducts Corporation Nanotechnology for drug delivery, contrast agents and biomedical implants
US6433154B1 (en) * 1997-06-12 2002-08-13 Bristol-Myers Squibb Company Functional receptor/kinase chimera in yeast cells
US20080311306A1 (en) * 1997-08-22 2008-12-18 Inframat Corporation Superfine ceramic thermal spray feedstock comprising ceramic oxide grain growth inhibitor and methods of making
US6277774B1 (en) * 1997-08-22 2001-08-21 Inframat Corporation Grain growth inhibitor for superfine materials
US20030032057A1 (en) * 1997-08-26 2003-02-13 Genentech, Inc. Secreted and transmembrane polypeptides and nucleic acids encoding the same
CN1209482C (zh) * 1998-06-10 2005-07-06 美国南诺考尔股份有限公司 用于能量储存和能量转换装置的热喷涂电极的制造方法
US6653519B2 (en) * 1998-09-15 2003-11-25 Nanoscale Materials, Inc. Reactive nanoparticles as destructive adsorbents for biological and chemical contamination
US6926997B2 (en) 1998-11-02 2005-08-09 Sandia Corporation Energy storage and conversion devices using thermal sprayed electrodes
US6258417B1 (en) 1998-11-24 2001-07-10 Research Foundation Of State University Of New York Method of producing nanocomposite coatings
US6689453B2 (en) * 1998-11-24 2004-02-10 Research Foundation Of State University Of New York Articles with nanocomposite coatings
US6524744B1 (en) * 1998-12-07 2003-02-25 T/J Technologies, Inc. Multi-phase material and electrodes made therefrom
US6235351B1 (en) * 1999-01-22 2001-05-22 Northrop Grumman Corporation Method for producing a self decontaminating surface
US6881604B2 (en) * 1999-05-25 2005-04-19 Forskarpatent I Uppsala Ab Method for manufacturing nanostructured thin film electrodes
US6689424B1 (en) 1999-05-28 2004-02-10 Inframat Corporation Solid lubricant coatings produced by thermal spray methods
US6723387B1 (en) 1999-08-16 2004-04-20 Rutgers University Multimodal structured hardcoatings made from micro-nanocomposite materials
WO2001012431A1 (en) * 1999-08-16 2001-02-22 Rutgers, The State University Multimodal structured hardcoatings made from micro-nanocomposite materials
US20070044513A1 (en) * 1999-08-18 2007-03-01 Kear Bernard H Shrouded-plasma process and apparatus for the production of metastable nanostructured materials
US6517995B1 (en) * 1999-09-14 2003-02-11 Massachusetts Institute Of Technology Fabrication of finely featured devices by liquid embossing
DE19958474A1 (de) * 1999-12-04 2001-06-21 Bosch Gmbh Robert Verfahren zur Erzeugung von Funktionsschichten mit einer Plasmastrahlquelle
DE19958473A1 (de) * 1999-12-04 2001-06-07 Bosch Gmbh Robert Verfahren zur Herstellung von Kompositschichten mit einer Plasmastrahlquelle
US6794086B2 (en) 2000-02-28 2004-09-21 Sandia Corporation Thermally protective salt material for thermal spraying of electrode materials
US6359325B1 (en) * 2000-03-14 2002-03-19 International Business Machines Corporation Method of forming nano-scale structures from polycrystalline materials and nano-scale structures formed thereby
EP1134302A1 (en) * 2000-03-17 2001-09-19 Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, C.S.G.I New process for the production of nanostructured solid powders and nano-particles films by compartimentalised solution thermal spraying (CSTS)
DE60135455D1 (de) 2000-05-16 2008-10-02 Univ Minnesota It einer mehrfachdüsenanordnung
US6494932B1 (en) * 2000-06-06 2002-12-17 Birch Mountain Resources, Ltd. Recovery of natural nanoclusters and the nanoclusters isolated thereby
ATE320318T1 (de) * 2000-06-30 2006-04-15 Ngimat Co Verfahren zur abscheidung von materialien
US6638575B1 (en) * 2000-07-24 2003-10-28 Praxair Technology, Inc. Plasma sprayed oxygen transport membrane coatings
US6674047B1 (en) 2000-11-13 2004-01-06 Concept Alloys, L.L.C. Wire electrode with core of multiplex composite powder, its method of manufacture and use
US6428596B1 (en) 2000-11-13 2002-08-06 Concept Alloys, L.L.C. Multiplex composite powder used in a core for thermal spraying and welding, its method of manufacture and use
US6513728B1 (en) 2000-11-13 2003-02-04 Concept Alloys, L.L.C. Thermal spray apparatus and method having a wire electrode with core of multiplex composite powder its method of manufacture and use
DE10057953A1 (de) * 2000-11-22 2002-06-20 Eduard Kern Keramische Verbundschichten mit verbesserten Eigenschaften
ES2384236T3 (es) 2000-12-08 2012-07-02 Sulzer Metco (Us) Inc. Revestimiento de barrera térmica mejorado y de polvo de circonia estabilizado pre-aleado
DE10061749C2 (de) * 2000-12-12 2003-08-07 Federal Mogul Burscheid Gmbh Kolbenring für Brennkraftmaschinen
US7066977B2 (en) * 2001-05-02 2006-06-27 Fu-Kuo Huang Flame synthesis and non-vacuum physical evaporation
US7247338B2 (en) * 2001-05-16 2007-07-24 Regents Of The University Of Minnesota Coating medical devices
JP3812368B2 (ja) * 2001-06-06 2006-08-23 豊田合成株式会社 Iii族窒化物系化合物半導体素子及びその製造方法
US7201940B1 (en) * 2001-06-12 2007-04-10 Advanced Cardiovascular Systems, Inc. Method and apparatus for thermal spray processing of medical devices
US6974640B2 (en) * 2001-07-09 2005-12-13 The University Of Connecticut Duplex coatings and bulk materials, and methods of manufacture thereof
US6630207B1 (en) * 2001-07-17 2003-10-07 Science Applications International Corporation Method and apparatus for low-pressure pulsed coating
WO2003022741A2 (en) * 2001-09-12 2003-03-20 F.W. Gartner Thermal Spraying Company Nanostructured titania coated titanium
US6730616B2 (en) * 2001-09-24 2004-05-04 Texas Instruments Incorporated Versatile plasma processing system for producing oxidation resistant barriers
US6936181B2 (en) * 2001-10-11 2005-08-30 Kovio, Inc. Methods for patterning using liquid embossing
CA2473407A1 (en) * 2002-01-15 2003-07-24 Consorzio Interuniversitario Per Lo Sviluppo Dei Sistemi A Grande Interf Ase C.S.G.I. Basic suspension, its preparation and process for paper deacidification
US7416108B2 (en) 2002-01-24 2008-08-26 Siemens Power Generation, Inc. High strength diffusion brazing utilizing nano-powders
US20040018409A1 (en) * 2002-02-28 2004-01-29 Shiqiang Hui Solid oxide fuel cell components and method of manufacture thereof
US6787194B2 (en) * 2002-04-17 2004-09-07 Science Applications International Corporation Method and apparatus for pulsed detonation coating of internal surfaces of small diameter tubes and the like
US6755886B2 (en) * 2002-04-18 2004-06-29 The Regents Of The University Of California Method for producing metallic microparticles
US7316748B2 (en) * 2002-04-24 2008-01-08 Wisconsin Alumni Research Foundation Apparatus and method of dispensing small-scale powders
WO2003090937A1 (en) * 2002-04-24 2003-11-06 Wisconsin Alumni Research Foundation Apparatus and method of fabricating small-scale devices
US20040012124A1 (en) * 2002-07-10 2004-01-22 Xiaochun Li Apparatus and method of fabricating small-scale devices
US7160577B2 (en) * 2002-05-02 2007-01-09 Micron Technology, Inc. Methods for atomic-layer deposition of aluminum oxides in integrated circuits
US7279129B2 (en) * 2002-05-14 2007-10-09 Nanoscale Corporation Method and apparatus for control of chemical or biological warfare agents
US20030219544A1 (en) * 2002-05-22 2003-11-27 Smith William C. Thermal spray coating process with nano-sized materials
US20070134432A1 (en) * 2002-07-09 2007-06-14 Maurice Gell Methods of making duplex coating and bulk materials
FR2842750B1 (fr) * 2002-07-26 2004-10-08 Toulouse Inst Nat Polytech Procede permettant de recouvrir a basse temperature des surfaces par des phosphates apatitiques nanocristallins, a partir d'une suspension aqueuse de phosphate amorphe
US6957608B1 (en) 2002-08-02 2005-10-25 Kovio, Inc. Contact print methods
US6878184B1 (en) 2002-08-09 2005-04-12 Kovio, Inc. Nanoparticle synthesis and the formation of inks therefrom
GB2393452B (en) * 2002-08-28 2005-12-28 C A Technology Ltd Improvements to powder production and spraying
US7258934B2 (en) * 2002-09-25 2007-08-21 Volvo Aero Corporation Thermal barrier coating and a method of applying such a coating
US6924249B2 (en) * 2002-10-02 2005-08-02 Delphi Technologies, Inc. Direct application of catalysts to substrates via a thermal spray process for treatment of the atmosphere
EP1422308B1 (de) * 2002-11-22 2008-03-26 Sulzer Metco (US) Inc. Spritzpulver für die Herstellung einer bei hohen Temperaturen beständigen Wärmedämmschicht mittels einem thermischen Spritzverfahren
ATE390497T1 (de) 2002-11-22 2008-04-15 Sulzer Metco Us Inc Spritzpulver für die herstellung einer bei hohen temperaturen beständigen wärmedämmschicht mittels einem thermischen spritzverfahren
US7078276B1 (en) 2003-01-08 2006-07-18 Kovio, Inc. Nanoparticles and method for making the same
WO2005017226A1 (en) * 2003-01-10 2005-02-24 University Of Connecticut Coatings, materials, articles, and methods of making thereof
US7112758B2 (en) * 2003-01-10 2006-09-26 The University Of Connecticut Apparatus and method for solution plasma spraying
CN1761520A (zh) * 2003-01-28 2006-04-19 环境清洁技术公司 在连续流反应器中处理的锰氧化物
US6942897B2 (en) * 2003-02-19 2005-09-13 The Board Of Trustees Of Western Michigan University Nanoparticle barrier-coated substrate and method for making the same
US20040202789A1 (en) * 2003-03-31 2004-10-14 Council Of Scientific And Industrila Research Process for preparing thin film solids
US7488464B2 (en) * 2003-07-31 2009-02-10 Enviroscrub Technologies Corporation Metal oxide processing methods and systems
US8083907B1 (en) 2003-09-26 2011-12-27 University Of South Florida Hydrogen storage nano-foil and method of manufacture
JP2007507604A (ja) * 2003-09-29 2007-03-29 ゼネラル・エレクトリック・カンパニイ ナノ構造化コーティング系、部品及び関連製造方法
DE10357535A1 (de) * 2003-12-10 2005-07-07 Mtu Aero Engines Gmbh Keramisches Material und Verfahren zum Reparieren von Wärmedämmschichten mit lokalen Beschädigungen
KR100743188B1 (ko) 2003-12-26 2007-07-27 재단법인 포항산업과학연구원 나노 조직의 고 경도 WC-Co 코팅 제조 방법
US20080260952A1 (en) * 2004-01-22 2008-10-23 The University Of Manchester Ceramic Coating
WO2005071141A1 (en) * 2004-01-22 2005-08-04 The University Of Manchester Ceramic coating
US7635515B1 (en) * 2004-04-08 2009-12-22 Powdermet, Inc Heterogeneous composite bodies with isolated lenticular shaped cermet regions
US7509735B2 (en) * 2004-04-22 2009-03-31 Siemens Energy, Inc. In-frame repairing system of gas turbine components
US8334079B2 (en) * 2004-04-30 2012-12-18 NanoCell Systems, Inc. Metastable ceramic fuel cell and method of making the same
DE102004030523A1 (de) * 2004-06-18 2006-01-12 Siemens Ag Transportsystem für Nanopartikel und Verfahren zu dessen Betrieb
US20050282032A1 (en) * 2004-06-18 2005-12-22 General Electric Company Smooth outer coating for combustor components and coating method therefor
US7384879B2 (en) * 2004-09-27 2008-06-10 Auburn University Selection and deposition of nanoparticles using CO2-expanded liquids
FR2877015B1 (fr) * 2004-10-21 2007-10-26 Commissariat Energie Atomique Revetement nanostructure et procede de revetement.
US20060251821A1 (en) * 2004-10-22 2006-11-09 Science Applications International Corporation Multi-sectioned pulsed detonation coating apparatus and method of using same
DE102004053221B3 (de) * 2004-11-04 2006-02-02 Zschimmer & Schwarz Gmbh & Co. Kg Chemische Fabriken Flüssigkeit und deren Verwendung zur Aufbereitung von Hartmetallen
KR100601096B1 (ko) * 2004-11-08 2006-07-19 재단법인 포항산업과학연구원 용사코팅용 나노구조 텅스텐 카바이드-코발트계 분말의 제조 방법
EP2282198A1 (en) * 2004-11-24 2011-02-09 Sensirion Holding AG Method for applying a layer to a substrate
US7402347B2 (en) * 2004-12-02 2008-07-22 Siemens Power Generation, Inc. In-situ formed thermal barrier coating for a ceramic component
US20060184251A1 (en) * 2005-01-07 2006-08-17 Zongtao Zhang Coated medical devices and methods of making and using
US20060172141A1 (en) * 2005-01-27 2006-08-03 Xinyu Huang Joints and methods of making and using
CA2499202A1 (en) * 2005-03-01 2006-09-01 National Research Council Of Canada Biocompatible titania thermal spray coating made from a nanostructured feedstock
EP1700926A1 (de) * 2005-03-09 2006-09-13 Degussa AG Plasmagespritzte Schichten aus Aluminiumoxid
US7887923B2 (en) 2005-03-09 2011-02-15 Evonik Degussa Gmbh Plasma-sprayed layers of aluminium oxide
EP1707651A1 (de) * 2005-03-31 2006-10-04 Siemens Aktiengesellschaft Schichtsystem und Verfahren zur Herstellung eines Schichtsystems
US20060222777A1 (en) * 2005-04-05 2006-10-05 General Electric Company Method for applying a plasma sprayed coating using liquid injection
US8058188B2 (en) * 2005-04-13 2011-11-15 Albany International Corp Thermally sprayed protective coating for industrial and engineered fabrics
WO2006116844A1 (en) * 2005-05-02 2006-11-09 National Research Council Of Canada Method and apparatus for fine particle liquid suspension feed for thermal spray system and coatings formed therefrom
KR100684275B1 (ko) * 2005-05-11 2007-02-20 한국과학기술원 정전분무 화염증착법을 이용한 박막 제조장치
DE102006019137A1 (de) * 2005-05-17 2007-10-31 Wolfgang Dr.-Ing. Beck Beschichtungsstoff für In-Mould-Coating (IMC) auf der Basis eines aminofunktionellen Reaktionspartners für Isocyanate und Verfahren zur Herstellung
DE102005025054A1 (de) * 2005-05-30 2006-12-07 Forschungszentrum Jülich GmbH Verfahren zur Herstellung gasdichter Schichten und Schichtsysteme mittels thermischem Spritzen
US20060275542A1 (en) * 2005-06-02 2006-12-07 Eastman Kodak Company Deposition of uniform layer of desired material
GB0512666D0 (en) * 2005-06-22 2005-07-27 Univ Loughborough Method for concentrating nanosuspensions
EP1741826A1 (en) 2005-07-08 2007-01-10 Nederlandse Organisatie voor Toegepast-Natuuurwetenschappelijk Onderzoek TNO Method for depositing a polymer layer containing nanomaterial on a substrate material and apparatus
US7927948B2 (en) 2005-07-20 2011-04-19 Micron Technology, Inc. Devices with nanocrystals and methods of formation
DE102005036309A1 (de) * 2005-08-02 2007-02-08 Linde Ag Einbringen von Nanopartikeln
DE102005038453B4 (de) * 2005-08-03 2011-06-09 TTI-Technologie-Transfer-Initiative GmbH an der Universität Stuttgart Verfahren und Vorrichtung zum thermischen Spritzen von Suspensionen
US7989290B2 (en) 2005-08-04 2011-08-02 Micron Technology, Inc. Methods for forming rhodium-based charge traps and apparatus including rhodium-based charge traps
US7575978B2 (en) * 2005-08-04 2009-08-18 Micron Technology, Inc. Method for making conductive nanoparticle charge storage element
WO2007030752A2 (en) * 2005-09-09 2007-03-15 University Of Arkansas At Little Rock System and method for tissue generation and bone regeneration
US9763788B2 (en) 2005-09-09 2017-09-19 Board Of Trustees Of The University Of Arkansas Bone regeneration using biodegradable polymeric nanocomposite materials and applications of the same
US8936805B2 (en) 2005-09-09 2015-01-20 Board Of Trustees Of The University Of Arkansas Bone regeneration using biodegradable polymeric nanocomposite materials and applications of the same
JP5319288B2 (ja) * 2005-10-17 2013-10-16 ナショナル・リサーチ・カウンシル・オブ・カナダ 被膜および粉末の反応性噴射形成
US20070099014A1 (en) * 2005-11-03 2007-05-03 Sulzer Metco (Us), Inc. Method for applying a low coefficient of friction coating
CN1962155A (zh) * 2005-11-10 2007-05-16 鸿富锦精密工业(深圳)有限公司 一种二氧化碳激光焊接装置
US20090004296A1 (en) * 2006-01-04 2009-01-01 Do-Coop Technologies Ltd. Antiseptic Compositions and Methods of Using Same
US7579087B2 (en) * 2006-01-10 2009-08-25 United Technologies Corporation Thermal barrier coating compositions, processes for applying same and articles coated with same
CA2637883C (en) * 2006-01-31 2015-07-07 Regents Of The University Of Minnesota Electrospray coating of objects
EP2529761B1 (en) * 2006-01-31 2017-06-14 Nanocopoeia, Inc. Nanoparticle coating of surfaces
US9108217B2 (en) 2006-01-31 2015-08-18 Nanocopoeia, Inc. Nanoparticle coating of surfaces
DE102006005775A1 (de) * 2006-02-07 2007-08-09 Forschungszentrum Jülich GmbH Thermisches Spritzverfahren mit kolloidaler Suspension
IL175045A0 (en) * 2006-04-20 2006-09-05 Joma Int As A coating formed by thermal spraying and methods for the formation thereof
FR2900351B1 (fr) * 2006-04-26 2008-06-13 Commissariat Energie Atomique Procede de preparation d'une couche nanoporeuse de nanoparticules et couche ainsi obtenue
FI118211B (fi) * 2006-05-19 2007-08-31 Metso Paper Inc Staattinen vedenpoistoelin rainanmuodostuskonetta varten sekä menetelmä rainanmuodostuskonetta varten olevan staattisen vedenpoistoelimen pinnoittamiseksi
US20080069854A1 (en) * 2006-08-02 2008-03-20 Inframat Corporation Medical devices and methods of making and using
CN101588826A (zh) * 2006-08-02 2009-11-25 英孚拉玛特公司 腔支撑装置及其制造及使用方法
EP1895818B1 (en) 2006-08-30 2015-03-11 Sulzer Metco AG Plasma spraying device and a method for introducing a liquid precursor into a plasma gas system
ES2534215T3 (es) * 2006-08-30 2015-04-20 Oerlikon Metco Ag, Wohlen Dispositivo de pulverización de plasma y un método para la introducción de un precursor líquido en un sistema de gas de plasma
US20080072790A1 (en) * 2006-09-22 2008-03-27 Inframat Corporation Methods of making finely structured thermally sprayed coatings
DE102006047101B4 (de) * 2006-09-28 2010-04-01 Siemens Ag Verfahren zum Einspeisen von Partikeln eines Schichtmaterials in einen Kaltgasspritzvorgang
US20080081007A1 (en) * 2006-09-29 2008-04-03 Mott Corporation, A Corporation Of The State Of Connecticut Sinter bonded porous metallic coatings
US9149750B2 (en) 2006-09-29 2015-10-06 Mott Corporation Sinter bonded porous metallic coatings
EP1911858B1 (de) * 2006-10-02 2012-07-11 Sulzer Metco AG Verfahren zur Herstellung einer Beschichtung mit kolumnarer Struktur
WO2008049080A1 (en) * 2006-10-18 2008-04-24 Inframat Corporation Superfine/nanostructured cored wires for thermal spray applications and methods of making
US7781031B2 (en) * 2006-12-06 2010-08-24 General Electric Company Barrier layer, composite article comprising the same, electroactive device, and method
US20080138624A1 (en) * 2006-12-06 2008-06-12 General Electric Company Barrier layer, composite article comprising the same, electroactive device, and method
US20080138538A1 (en) * 2006-12-06 2008-06-12 General Electric Company Barrier layer, composite article comprising the same, electroactive device, and method
US9040816B2 (en) * 2006-12-08 2015-05-26 Nanocopoeia, Inc. Methods and apparatus for forming photovoltaic cells using electrospray
US8465602B2 (en) 2006-12-15 2013-06-18 Praxair S. T. Technology, Inc. Amorphous-nanocrystalline-microcrystalline coatings and methods of production thereof
US20080166493A1 (en) * 2007-01-09 2008-07-10 Inframat Corporation Coating compositions for marine applications and methods of making and using the same
CA2619331A1 (en) * 2007-01-31 2008-07-31 Scientific Valve And Seal, Lp Coatings, their production and use
KR100834515B1 (ko) * 2007-03-07 2008-06-02 삼성전기주식회사 금속 나노입자 에어로졸을 이용한 포토레지스트 적층기판의형성방법, 절연기판의 도금방법, 회로기판의 금속층의표면처리방법 및 적층 세라믹 콘덴서의 제조방법
US8057914B2 (en) * 2007-03-26 2011-11-15 Howmedica Osteonics Corp. Method for fabricating a medical component from a material having a high carbide phase and such medical component
US8920534B2 (en) 2007-03-26 2014-12-30 Howmedica Osteonics Corp. Method for fabricating a biocompatible material having a high carbide phase and such material
US8367506B2 (en) 2007-06-04 2013-02-05 Micron Technology, Inc. High-k dielectrics with gold nano-particles
KR100981368B1 (ko) 2007-06-25 2010-09-10 한국과학기술연구원 텅스텐 복합 분말, 이로부터 형성된 코팅재, 및 텅스텐복합 분말의 제조 방법
US8530000B2 (en) * 2007-09-19 2013-09-10 Micron Technology, Inc. Methods of forming charge-trapping regions
US7763325B1 (en) 2007-09-28 2010-07-27 The United States Of America As Represented By The National Aeronautics And Space Administration Method and apparatus for thermal spraying of metal coatings using pulsejet resonant pulsed combustion
US20110003084A1 (en) * 2008-02-25 2011-01-06 National Research Council Of Canada Process of Making Ceria-Based Electrolyte Coating
DE102008001721B4 (de) * 2008-05-13 2021-01-14 Voith Patent Gmbh Verfahren zum Beschichten einer Klinge
DE102008026101B4 (de) * 2008-05-30 2010-02-18 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Thermisch gespritzte Al2O3-Schichten mit einem hohen Korundgehalt ohne eigenschaftsmindernde Zusätze und Verfahren zu ihrer Herstellung
US20100068405A1 (en) * 2008-09-15 2010-03-18 Shinde Sachin R Method of forming metallic carbide based wear resistant coating on a combustion turbine component
KR101110588B1 (ko) 2009-04-22 2012-02-15 한국세라믹기술원 액상-기상 전환 에어로졸 증착 방법 및 장치
FR2947568B1 (fr) * 2009-07-02 2011-07-22 Snecma Revetement de protection thermique pour une piece de turbomachine et son procede de realisation
US20110086178A1 (en) * 2009-10-14 2011-04-14 General Electric Company Ceramic coatings and methods of making the same
US8679246B2 (en) 2010-01-21 2014-03-25 The University Of Connecticut Preparation of amorphous mixed metal oxides and their use as feedstocks in thermal spray coating
EP2543443B1 (en) * 2010-03-04 2019-01-09 Imagineering, Inc. Coating forming device, and method for producing coating forming material
US20130126773A1 (en) 2011-11-17 2013-05-23 General Electric Company Coating methods and coated articles
CN104285323A (zh) * 2012-05-07 2015-01-14 塞尔拉公司 用于碱性膜燃料电池的阳极电催化剂
US20130332362A1 (en) * 2012-06-11 2013-12-12 Visa International Service Association Systems and methods to customize privacy preferences
DE102012021222B4 (de) * 2012-10-27 2015-02-05 Forschungszentrum Jülich GmbH Verfahren zur Herstellung einer nanoporösen Schicht auf einem Substrat
KR101727848B1 (ko) 2013-03-13 2017-04-17 가부시키가이샤 후지미인코퍼레이티드 용사용 슬러리, 용사 피막 및 용사 피막의 형성 방법
JP6185047B2 (ja) 2013-03-13 2017-08-23 株式会社フジミインコーポレーテッド 溶射用スラリー、及び溶射皮膜の形成方法
US9822264B2 (en) 2013-07-15 2017-11-21 United Technologies Corporation Nanocellular and nanocellular particle filled polymer composite coating for erosion protection
FR3013996B1 (fr) 2013-12-02 2017-04-28 Office National Detudes Et De Rech Aerospatiales Onera Procede de reparation locale de barrieres thermiques
FR3014115B1 (fr) 2013-12-02 2017-04-28 Office National Detudes Et De Rech Aerospatiales Onera Procede et systeme de depot d'oxyde sur un composant poreux
US9647254B2 (en) * 2013-12-05 2017-05-09 GM Global Technology Operations LLC Coated separator and one-step method for preparing the same
WO2016004047A1 (en) * 2014-07-02 2016-01-07 Corning Incorporated Spray drying mixed batch material for plasma melting
US11145894B2 (en) 2014-08-21 2021-10-12 Battelle Memorial Institute Process for fabrication of enhanced β″-alumina solid electrolytes for energy storage devices and energy applications
KR102419886B1 (ko) 2014-09-03 2022-07-12 가부시키가이샤 후지미인코퍼레이티드 용사용 슬러리, 용사 피막 및 용사 피막의 형성 방법
WO2016044749A1 (en) * 2014-09-19 2016-03-24 Nanosynthesis Plus. Ltd. Methods and apparatuses for producing dispersed nanostructures
JP6548406B2 (ja) * 2015-02-27 2019-07-24 日立造船株式会社 溶射材料およびその製造方法、溶射方法並びに溶射製品
CN104827025A (zh) * 2015-05-09 2015-08-12 芜湖鼎瀚再制造技术有限公司 一种高硬度Co-Cr-W-B焊层材料及其制备方法
US9999721B2 (en) 2015-05-26 2018-06-19 Medtronic Minimed, Inc. Error handling in infusion devices with distributed motor control and related operating methods
CN104947027A (zh) * 2015-06-24 2015-09-30 安徽再制造工程设计中心有限公司 MnO2-TiC-Co纳米材料及其制备方法
JP6741410B2 (ja) 2015-09-25 2020-08-19 株式会社フジミインコーポレーテッド 溶射用スラリー、溶射皮膜および溶射皮膜の形成方法
JP6681168B2 (ja) * 2015-10-20 2020-04-15 株式会社フジミインコーポレーテッド 溶射用スラリー、溶射皮膜および溶射皮膜の形成方法
CN105369177A (zh) * 2015-11-20 2016-03-02 江苏尚大海洋工程技术有限公司 一种等离子喷涂制备耐酸碱纳米哈氏合金涂层的方法
CN105369187B (zh) * 2015-11-20 2018-08-07 江苏尚大海洋工程技术有限公司 一种等离子喷涂及整体重熔制备耐酸碱纳米哈氏合金涂层的方法
EP3389862B1 (en) * 2015-12-16 2023-12-06 6K Inc. Method of producing spheroidal dehydrogenated titanium alloy particles
US10987735B2 (en) 2015-12-16 2021-04-27 6K Inc. Spheroidal titanium metallic powders with custom microstructures
EP3463677A4 (en) 2016-06-01 2020-02-05 Arizona Board of Regents on behalf of Arizona State University SYSTEM AND METHODS FOR SPRAYING BY DEPOSITION OF PARTICULATE COATINGS
US10697464B2 (en) * 2016-07-29 2020-06-30 Raytheon Technologies Corporation Abradable material
GB201614008D0 (en) 2016-08-16 2016-09-28 Seram Coatings As Thermal spraying of ceramic materials
RU2652202C2 (ru) * 2016-10-11 2018-04-25 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" Способ получения полых наноструктурированных металлических микросфер
FI128311B (en) * 2017-02-17 2020-03-13 Teknologian Tutkimuskeskus Vtt Oy A process for making a carbide powder and a carbide powder
US10363553B2 (en) * 2017-04-19 2019-07-30 King Abdulaziz University Nanocomposite hollow sphere as a photocatalyst and methods thereof
PL423410A1 (pl) * 2017-11-09 2019-05-20 3D Lab Spolka Z Ograniczona Odpowiedzialnoscia Urządzenie do wytwarzania sferycznych proszków metali metodą atomizacji ultradźwiękowej
PL424869A1 (pl) * 2018-03-13 2019-09-23 3D Lab Spółka Z Ograniczoną Odpowiedzialnością Urządzenie do ultradźwiękowej atomizacji materiałów metalicznych i sposób jego czyszczenia
WO2019246257A1 (en) 2018-06-19 2019-12-26 Amastan Technologies Inc. Process for producing spheroidized powder from feedstock materials
JP7206716B2 (ja) * 2018-09-07 2023-01-18 トヨタ自動車株式会社 蒸発器及びその製造方法、並びに蒸発器を有するループ型ヒートパイプ
IT201900001323A1 (it) 2019-01-30 2020-07-30 Ima Spa Metodo per la realizzazione di un componente per una macchina per la produzione e/o il confezionamento di prodotti farmaceutici.
IT201900001321A1 (it) 2019-01-30 2020-07-30 Ima Spa Metodo per la realizzazione di un dispositivo operatore automatico articolato e relativo dispositivo operatore automatico articolato.
SG11202111578UA (en) 2019-04-30 2021-11-29 6K Inc Lithium lanthanum zirconium oxide (llzo) powder
CN114007782A (zh) 2019-04-30 2022-02-01 6K有限公司 机械合金化的粉末原料
CN110129711A (zh) * 2019-06-28 2019-08-16 沈阳富创精密设备有限公司 一种新型制备涂层的热喷涂方法
CN114641462A (zh) 2019-11-18 2022-06-17 6K有限公司 用于球形粉末的独特原料及制造方法
US11590568B2 (en) 2019-12-19 2023-02-28 6K Inc. Process for producing spheroidized powder from feedstock materials
CN111334739A (zh) * 2019-12-30 2020-06-26 苏州三基铸造装备股份有限公司 一种挤压铸造型腔表面强化方法
WO2021263273A1 (en) 2020-06-25 2021-12-30 6K Inc. Microcomposite alloy structure
CN112063959B (zh) * 2020-08-06 2022-02-11 西安交通大学 一种柱-层/树复合结构热障涂层及其制备方法
CN112195461A (zh) * 2020-09-11 2021-01-08 广东工业大学 一种纳米材料冷喷涂装置
KR20230073182A (ko) 2020-09-24 2023-05-25 6케이 인크. 플라즈마를 개시하기 위한 시스템, 디바이스 및 방법
JP2023548325A (ja) 2020-10-30 2023-11-16 シックスケー インコーポレイテッド 球状化金属粉末の合成のためのシステムおよび方法
WO2022211218A1 (ko) * 2021-04-02 2022-10-06 한국과학기술원 액체금속 전구체 용액, 이를 이용한 금속막 제조방법 및 이를 포함하는 전자소자
EP4071267A1 (en) 2021-04-07 2022-10-12 Treibacher Industrie AG Suspension for thermal spray coatings
CN114560707A (zh) * 2022-03-24 2022-05-31 湖南国发控股有限公司 一种窑具生产用氮化硅浸渍剂的配方及制备与应用工艺

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3617358A (en) * 1967-09-29 1971-11-02 Metco Inc Flame spray powder and process
US4746468A (en) * 1985-05-17 1988-05-24 Mitsubishi Mining & Cement Co., Ltd. Method of preparing ceramic microspheres
SU1463799A1 (ru) * 1987-06-12 1989-03-07 Московский институт тонкой химической технологии Способ получени шихты дл газоплазменных покрытий
US4982067A (en) * 1988-11-04 1991-01-01 Marantz Daniel Richard Plasma generating apparatus and method
US5213851A (en) * 1990-04-17 1993-05-25 Alfred University Process for preparing ferrite films by radio-frequency generated aerosol plasma deposition in atmosphere

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3419415A (en) * 1964-09-29 1968-12-31 Metco Inc Composite carbide flame spray material
JPS63121647A (ja) 1986-11-12 1988-05-25 Mitsubishi Heavy Ind Ltd イツトリア安定化ジルコニア皮膜コ−テイング方法
US5688565A (en) 1988-12-27 1997-11-18 Symetrix Corporation Misted deposition method of fabricating layered superlattice materials
US5155071A (en) 1991-08-16 1992-10-13 E. I. Du Pont De Nemours And Company Flame-produced partially stabilized zirconia powder
DE69432175T2 (de) 1993-03-24 2004-03-04 Georgia Tech Research Corp. Verfahren und vorrichtung zur verbrennungs cvd von filmen und beschichtungen
DE4334639A1 (de) * 1993-10-11 1995-04-13 Inst Neue Mat Gemein Gmbh Verfahren zur Herstellung von TiN-Sinterkörpern und -Schichten
DE4402890A1 (de) * 1994-02-01 1995-08-03 Basf Ag Verfahren zur Herstellung von Zusammensetzungen, enthaltend Metallpartikel im Nanometergrößenbereich
US5609921A (en) * 1994-08-26 1997-03-11 Universite De Sherbrooke Suspension plasma spray
US5874134A (en) * 1996-01-29 1999-02-23 Regents Of The University Of Minnesota Production of nanostructured materials by hypersonic plasma particle deposition
US5932293A (en) 1996-03-29 1999-08-03 Metalspray U.S.A., Inc. Thermal spray systems
US5986277A (en) 1997-10-29 1999-11-16 National Research Council Of Canada Method and apparatus for on-line monitoring the temperature and velocity of thermally sprayed particles
US6071324A (en) 1998-05-28 2000-06-06 Sulzer Metco (Us) Inc. Powder of chromium carbide and nickel chromium

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3617358A (en) * 1967-09-29 1971-11-02 Metco Inc Flame spray powder and process
US4746468A (en) * 1985-05-17 1988-05-24 Mitsubishi Mining & Cement Co., Ltd. Method of preparing ceramic microspheres
SU1463799A1 (ru) * 1987-06-12 1989-03-07 Московский институт тонкой химической технологии Способ получени шихты дл газоплазменных покрытий
US4982067A (en) * 1988-11-04 1991-01-01 Marantz Daniel Richard Plasma generating apparatus and method
US5213851A (en) * 1990-04-17 1993-05-25 Alfred University Process for preparing ferrite films by radio-frequency generated aerosol plasma deposition in atmosphere

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2490204C1 (ru) * 2011-12-19 2013-08-20 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Казанский (Приволжский) Федеральный Университет" (ФГАОУ ВПО КФУ) Способ получения композиций на основе углеродных нанотрубок и полиолефинов
RU2477763C1 (ru) * 2012-01-11 2013-03-20 Федеральное Государственное Автономное Образовательное Учреждение Высшего Профессионального Образования "Сибирский Федеральный Университет" (Сфу) Способ получения полимерного нанокомпозиционного материала
RU2508963C2 (ru) * 2012-05-18 2014-03-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Бурятский государственный университет" Способ диспергирования наноразмерного порошка диоксида кремния ультразвуком
RU2568555C1 (ru) * 2014-07-08 2015-11-20 Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) Способ получения наноструктурированного конгломерированного порошкового материала для нанесения покрытий методами газодинамического и газотермического напыления

Also Published As

Publication number Publication date
EP0866885A4 (en) 2000-09-20
US20010004473A1 (en) 2001-06-21
EP0866885A1 (en) 1998-09-30
CA2237588A1 (en) 1997-05-22
WO1997018341A1 (en) 1997-05-22
CN1195884C (zh) 2005-04-06
US6277448B2 (en) 2001-08-21
US20030077398A1 (en) 2003-04-24
US6025034A (en) 2000-02-15
CN1175984A (zh) 1998-03-11
US6579573B2 (en) 2003-06-17

Similar Documents

Publication Publication Date Title
RU2196846C2 (ru) Наноструктурные сырьевые материалы для термического напыления
WO1997018341A9 (en) Nanostructured feeds for thermal spray
Kear et al. Chemical processing and applications for nanostructured materials
Kear et al. Chemical processing and properties of nanostructured WC-Co materials
US5707419A (en) Method of production of metal and ceramic powders by plasma atomization
US6576036B2 (en) Grain growth inhibitor for superfine materials
US3974245A (en) Process for producing free flowing powder and product
US5939146A (en) Method for thermal spraying of nanocrystalline coatings and materials for the same
US20080311306A1 (en) Superfine ceramic thermal spray feedstock comprising ceramic oxide grain growth inhibitor and methods of making
US8679246B2 (en) Preparation of amorphous mixed metal oxides and their use as feedstocks in thermal spray coating
JP3653380B2 (ja) 炭化クロム−ニッケルクロム微粒化粉の製造方法
US4687511A (en) Metal matrix composite powders and process for producing same
EP0459693B1 (en) Method for preparing powders of nickel alloy and molybdenum for thermal spray coatings
CN101412618A (zh) 包含陶瓷氧化物晶粒生长抑制剂的超细陶瓷热喷涂原料和其制备方法
JP4425888B2 (ja) コンポジット構造を有するナノ球状粒子、粉末、及び、その製造方法
US20080113105A1 (en) Coating Formed By Thermal Spraying And Methods For The Formation Thereof
KR20040067608A (ko) 금속 분말 및 그 제조 방법
Yang et al. Advanced nanomaterials and coatings by thermal spray: multi-dimensional design of micro-nano thermal spray coatings
WO2006068409A1 (en) Method of preparing disperse-strengthened alloys and disperse-strengthened alloys prepared by the same
EP0094961A1 (en) Nickel-chromium carbide powder and sintering method
CN114990541A (zh) 高硬度材料涂层结构及其制备方法
Skandan et al. On the Influence of Powder Feed Structure on Wear Properties of HVOF Sprayed WC/Co Hardcoatings
JP3380902B2 (ja) 超微粒子厚膜の形成方法
Vaishnavi et al. Cermet Based Nanocomposites for Automotive Body Frame
Afonso et al. Al-Y-Ni-Co-Zr ALLOY AND Al-Y-Ni-Co-Zr+ SiC

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20101114