CN111334739A - 一种挤压铸造型腔表面强化方法 - Google Patents

一种挤压铸造型腔表面强化方法 Download PDF

Info

Publication number
CN111334739A
CN111334739A CN201911423977.3A CN201911423977A CN111334739A CN 111334739 A CN111334739 A CN 111334739A CN 201911423977 A CN201911423977 A CN 201911423977A CN 111334739 A CN111334739 A CN 111334739A
Authority
CN
China
Prior art keywords
casting
cavity
powder
microns
telescopic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911423977.3A
Other languages
English (en)
Inventor
康正阳
许善新
苏小平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou Sanji Foundry Equipment Co ltd
Nanjing Tech University
Original Assignee
Suzhou Sanji Foundry Equipment Co ltd
Nanjing Tech University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou Sanji Foundry Equipment Co ltd, Nanjing Tech University filed Critical Suzhou Sanji Foundry Equipment Co ltd
Priority to CN201911423977.3A priority Critical patent/CN111334739A/zh
Publication of CN111334739A publication Critical patent/CN111334739A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/08Metallic material containing only metal elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D18/00Pressure casting; Vacuum casting
    • B22D18/02Pressure casting making use of mechanical pressure devices, e.g. cast-forging
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

本发明公开了一种挤压铸造型腔表面强化方法,首先对挤压铸造型腔表面进行探伤、烘烤和擦拭预处理,待强化区域进行喷砂粗化处理,使其露出均质的金属本色,表面粗糙度控制在Ra6‑8微米;采用热喷涂工艺,挤压铸造铸型表面制备梯度热喷涂涂层;采用抛磨盘对喷涂区域进行打磨处理,使最终的喷涂涂层厚度控制在100‑300微米,粗糙度Ra<0.4微米。经过本发明方法强化的挤压铸造型腔耐磨性得到提升,同时由于涂层的润滑脱黏效果,大幅减少铸造过程中脱模剂的使用,最终降低修模频率,降低生产成本。

Description

一种挤压铸造型腔表面强化方法
技术领域
本发明涉及一种挤压铸造型腔表面强化方法,属于机械制造和表面工程领域。
背景技术
挤压铸造(又称液态模锻),是一种既具有铸造特点,又类似模锻的新兴金属成形工艺。它是将一定量的被铸金属液直接浇注入涂有润滑剂的型腔中,并持续施加机械静压力,利用金属铸造凝固成形时易流动和锻造技术使已凝固的硬壳产生塑性变形,使金属在压力下结晶凝固并强制消除因凝固收缩形成的缩孔缩松,以获得无铸造缺陷的液态模锻制件。根据压力作用形式的不同,挤压铸造可分为直接挤压铸造和间接挤压铸造两大类。直接挤压工艺类似于金属模锻,压力直接施加于液态金属的整个面上;间接挤压工艺与压铸接近,压力通过浇道间接作用于液态金属上。
无论是直接挤压还是间接挤压铸造,都具有高压成形和凝固的工艺特点,对成形型腔表面耐磨性和脱附性提出更高要求。在实际应用中,采用型腔选材、热处理和时效,配合水性脱模剂的大量使用,能够较好的缓解型腔磨损问题,一定程度上延长型腔的使用寿命。但是,尽管采用了上述方法,挤压铸造型腔的修模频率让然偏高,影响产线生产效率。另一方面,大量使用的水性脱模剂对产线环境造成不利影响,且增加了制造成本。
热喷涂是一种表面强化技术,是表面工程技术的重要组成部分,一直是我国重点推广的新技术项目。它是利用某种热源(如电弧、等离子喷涂或燃烧火焰等)将粉末状或丝状的金属或非金属材料加热到熔融或半熔融状态,然后以一定速度喷射到预处理过的基体表面,沉积而形成具有各种功能的表面涂层的一种技术。
热喷涂技术的技术特点包括:
1.基体材料不受限制,可以是金属和非金属,可以在各种基体材料上喷涂;
2.可喷涂的涂层材料极为广泛,热喷涂技术可用来喷涂几乎所有的固体工程材料,如硬质合金、陶瓷、金属、石墨等;
3.喷涂过程中基体材料温升小,不产生应力和变形;
4.操作工艺灵活方便,不受工件形状限制,施工方便;
5.涂层厚度可以从0.01至几毫米;
6.涂层性能多种多样,可以形成耐磨、耐蚀、隔热、抗氧化、绝缘、导电、防辐射等具有各种特殊功能的涂层;
7.适应性强及经济效益好等优点。
将热喷涂技术应用在模具型腔表面由来已久,如引用专利1至引用专利4所述。
引用专利1。中国专利:CN201310247777.3,汽车模具表面的热喷涂改质处理方法,公开了一种模具表面热喷涂强化方法,加工对象为冲压模具,喷涂材料为金属陶瓷类材料。
引用专利2。中国专利:CN200810047136.2,热喷涂纳米复合陶瓷涂层塑料模具及其生产方法,公开了一种模具钢基体-粘结底层-纳米复合陶瓷涂层组成的表面强化方案。涂层的硬度高达HRC60-70,耐蚀性能优良。
引用专利3。中国专利:CN201010138207.7,一种采用热喷涂工艺快速制作滚塑成型模具的方法。在获得快速原型的基础上,通过在其表面实施锡合金涂层,电镀镍层,然后喷涂自结合涂层,喷涂足够厚度的锌铝合金层,最后去除型腔内填充物,获得要求的滚塑加工成型模具。
引用专利4。中国专利:CN97241594.7,等离子喷涂处理热作模,是在普通热作模具工作表面进行等离子喷涂处理形成保护层,其与工作表面结合牢固,且具有高温下抗氧化性、抗疲劳性和耐磨性和高硬度,使得模具使用寿命大大提高,且使用时不易产生粘结。喷涂材料为自溶性镍基Cr-B-Si合金粉末和其它耐磨合金的混合粉末。
上述引用文献公开了利用热喷涂技术强化模具的技术方案,但未见针对挤压铸造型腔专门开发的模具表面热喷涂强化技术,并且在先技术的表面涂层并不是围绕挤压铸造成型的特殊工况——高压充型和凝固所特别开发的,因此在实际使用中,有益效果较为有限。
本发明提出一种挤压铸造型腔表面强化方法,即通过热喷涂工艺在挤压铸造型腔表面制备耐磨润滑脱附涂层;所制备涂层的材料、厚度、表面粗糙度都是结合挤压铸造的特殊工况特殊设计的。相较于未使用本发明方法的挤压铸造型腔,本发明方法能够显著提高模具表面耐磨、润滑和脱附性能,大幅减少铸造过程中脱模剂的使用,最终降低修模频率,改善产线环境,降低生产成本。
发明内容
本发明的一种挤压铸造型腔表面强化方法,其优点在于能够明显提升挤压铸造型腔耐磨性、表面润滑和脱黏效果,大幅减少铸造过程中脱模剂的使用,最终降低修模频率,降低生产成本。
本发明所采取的技术方案是:首先,对型腔表面进行前处理,去除表面油脂,获得特定的表面粗糙度;随后,制备多种金属混合粉末,这些粉末具有特定的成分、含量和粒度;然后,采用热喷涂工艺,将上述金属混合粉末依次铺设在挤压铸造型腔工作表面,形成梯度涂层;最后,对梯度涂层进行打磨,降低其表面粗糙度。上述技术方案尤其适用于铝合金、铝镁合金等轻合金的挤压铸造成型型腔。
上述技术方案的热喷涂梯度涂层的结构由:底部结合层、中部承载层、顶部损耗层,以及分布在梯度涂层表面的伸缩微柱四部分组成。伸缩微柱在型腔高温状态下(对应充型阶段),体积为伸长状态,此时梯度涂层表面没有间隙,能够很好的承载铸造压力,同时快速导热。伸缩微柱在型腔底温状态下(对应凝固阶段),体积为缩小状态,此时在梯度涂层表面产生微小的间隙,使得型腔-成形件直接的实际接触面积减小,两者间依附力随之降低,利于成形件的脱模过程。
制备底部结合层、中部承载层和顶部损耗层的热喷涂粉末粒度10-250微米。伸缩微柱通过热喷涂工艺制备在顶部损耗层之上,粉末粒度50-250微米。
附图说明
图1是涂层加工方法工艺路线图。
图2是热喷涂梯度涂层结构横截面示意图。
图3是微单元固体润滑颗粒伸长状态横截面示意图。
图4是微单元固体润滑颗粒缩小状态横截面示意图。
图中,1,铸型基体;2,底部结合层;3,中部承载层;4,顶部损耗层;5,伸缩微柱;6,铸型基体微单元;7,伸长状态固体润滑颗粒;8,缩小状态固体润滑颗粒;9,微小缝隙。
具体实施方式
下文结合发明内容提供具体的实施例。
实施例一:630吨铝合金挤压铸造型腔表面强化
本实施例是铝合金挤压铸造成形,挤压铸造机最大合模压力为630吨,铝液最大成形压力约170MPa,对应产品重量为4-7kg,产品投影面积范围300-450cm2。铸型所用钢基体材料为H13,成形铝合金牌号为A356。
如图1所示,实施例一包括以下步骤。
步骤一,型腔表面喷涂前处理。
步骤二,型腔表面喷砂处理。
步骤三,混合金属粉末制备。制备三种金属粉末用于后续热喷涂加工。
金属粉末一是60%镍Ni和40%铝Al的混合粉末,粉末粒度45-90微米,用于喷涂形成底部结合层。
金属粉末二是碳化钨-钴混合粉末(WC-Co),钴元素质量分数为17-20%,用于喷涂形成中部承载层和顶部损耗层。
金属粉末三是金属钼颗粒(Mo),粉末粒度50-250微米,用于在顶部损耗层之上,制备伸缩微柱。
步骤四,热喷涂加工梯度涂层。底部结合层厚度20-100微米;中部承载层厚度50-250微米;顶部损耗层厚度50-250微米;在顶部损耗层之上,再通过热喷涂工艺铺设粉末三。其中,粉末三的喷涂需要对被加工表面进行预热处理,预热温度300-600摄氏度。
步骤五,热喷涂涂层打磨处理。采用抛磨盘对喷涂区域进行打磨处理,使最终的喷涂涂层厚度控制在10-300微米,粗糙度Ra<0.4微米。通过打磨处理,步骤四中铺设在顶部损耗层之上的大粉末粒度金属颗粒顶部与模具表面平齐,获得图1所示的表面梯度涂层。
上述梯度涂层能够兼顾承载和热冲击,在挤压铸造高压高温环境下,仍具有较长服役寿命;表面伸缩微柱兼具润滑和减少型腔-成形件粘着力的作用。
实施例一制备的梯度涂层参数如下表所示。
粉末类型 粒度[微米] 喷涂厚度[微米]
底部结合层 Ni-Al混合粉末 45-90 20-100
中部承载层 WC-Co混合粉末 20-70 50-250
顶部损耗层 WC-Co混合粉末 20-70 50-250
伸缩微柱 Mo粉末 50-150 200
图3和图4分别代表伸缩微柱的两种状态。图3是金属钼颗粒的伸长状态,图4是金属钼颗粒的缩小状态。伸缩微柱两种状态的切换是受挤压铸造型腔温度调控的。
上述挤压铸造型腔表面强化梯度涂层的工作流程如下所述。
首先,对挤压铸造型腔进行预热处理,预热温度300摄氏度。此时,伸缩微柱发生热胀,处在伸长状态。伸缩微柱与挤压铸造型腔紧密结合,形成完整的支撑表面。
随后,将温度750-800摄氏度的液态铝合金注入挤压铸造型腔;挤压铸造型腔内部的水冷/风冷管道带走热量,降低铸型温度;液态铝合金在高压下相变凝固。此时,由于冷缩作用,伸缩微柱开始由伸长状态向缩小状态转变。转变过程中,会有少量金属钼残留在成形铸件表面。
最后,通过顶出机构将成形铝铸件从挤压铸造铸型表面取出;由于此时伸缩微柱处于缩小状态,成形铸件与挤压铸造铸型的实际接触面积减小;同时残留在成形铸件表面的金属钼发挥固体润滑作用,减少铸型-铸件相对运动过程中,铸型表面磨损,也使得下料过程更为顺畅。
实施例二:2500吨铝合金挤压铸造型腔表面强化
实施例二与实施例一的区别在于,挤压铸造装备的吨位不同,因此梯度涂层需要有更好的承载性。
实施例二制备的梯度涂层参数如下表所示。
粉末类型 粒度[微米] 喷涂厚度[微米]
底部结合层 Ni-Al混合粉末 45-90 20-100
中部承载层 WC-Co混合粉末 20-70 50-250
顶部损耗层 WC-Co混合粉末 20-70 200-500
伸缩微柱 Mo粉末 50-100 100
实施例二与实施例一相比,梯度涂层的工作流程存有区别。
首先,对挤压铸造型腔进行预热处理,预热温度300摄氏度,同时在铸型表面喷涂水性脱模剂,在铸型表面形成厚度2-10微米的脱模剂薄膜。
随后,将温度750-800摄氏度的液态铝合金注入挤压铸造型腔;挤压铸造型腔内部的水冷/风冷管道带走热量,降低铸型温度;液态铝合金在高压下相变凝固。
最后,通过顶出机构将成形铝铸件从挤压铸造铸型表面取出,再重新喷涂一遍水性脱模剂。
本发明不限于上述实施例中示出的事项。本领域的技术人员根据说明书的描述,以及公知的技术所进行的改变和适配是本发明可以接受的,并且被包含在所要求保护的范围中。

Claims (6)

1.一种挤压铸造型腔表面强化方法,其特征在于,在挤压铸造型腔表面加工能够兼顾承载和热冲击的梯度涂层;所述梯度涂层包括底部结合层2、中部承载层3和顶部损耗层4,顶部损耗层表面布置有伸缩微柱5;所述伸缩微柱5具有伸长状态和缩小状态;伸缩微柱5处在缩小状态,梯度涂层表面产生微小缝隙9,使得型腔-成形件实际接触面积减小,两者间依附力随之降低,利于成形铸件的脱模和落料;伸缩微柱5处在伸长状态,梯度涂层表面没有微小缝隙,能够很好的承载挤压铸造压力,同时快速导热。
2.根据权利要求1所述的一种挤压铸造型腔表面强化方法,其特征在于,所述伸缩微柱5伸长状态和缩小状态的转换受挤压铸造型腔表面温度调控。
3.根据权利要求1和2所述的一种挤压铸造型腔表面强化方法,其特征在于,所述梯度涂层包括底部结合层2、中部承载层3、顶部损耗层4及其表面布置的伸缩微柱5是通过热喷涂工艺制备在挤压铸造铸型表面的。
4.根据权利要求1所述的一种挤压铸造型腔表面强化方法,其特征在于:
底部结合层2的喷涂厚度为20-100微米,热喷涂粉末类型为Ni-Al混合粉末,粉末粒度45-90微米;
中部承载层3的喷涂厚度为50-250微米,热喷涂粉末类型为WC-Co混合粉末,粉末粒度20-70微米;
顶部损耗层4的喷涂厚度为50-250微米,热喷涂粉末类型为WC-Co混合粉末,粉末粒度20-70微米;
伸缩微柱5的喷涂厚度为50-200微米,热喷涂粉末类型为Mo金属粉末,粉末粒度50-150微米;
梯度涂层的总厚度为100-300微米。
5.根据权利要求1和4所述的一种挤压铸造型腔表面强化方法,其特征在于制备阶梯涂层包括以下步骤:型腔表面喷涂前处理、型腔表面喷砂处理、制备混合金属粉末、热喷涂加工梯度涂层和热喷涂涂层打磨处理;所述型腔表面喷涂前处理去除表面油脂,获得均匀的表面粗糙度分布;所述热喷涂涂层打磨处理将铺设在损耗层上的大粒度金属颗粒顶部与模具表面平齐,同时控制梯度涂层总厚度和表面粗糙度。
6.根据权利要求1所述的一种挤压铸造型腔表面强化方法,其特征在于,经过强化处理的铸造型腔的工作流程是:
首先对挤压铸造型腔进行预热处理,预热温度300摄氏度;同时在铸型表面喷涂水性脱模剂,在铸型表面形成厚度2-10微米的脱模剂薄膜;此时伸缩微柱5处在伸长状态;
随后将温度750-800摄氏度的液态铝合金注入挤压铸造型腔;挤压铸造型腔内部的水冷/风冷管道带走热量,降低铸型温度;在液态铝合金高压凝固过程中,伸缩微柱5开始由伸长状态向缩小状态转变,少量伸缩微柱金属残留在成形铸件表面;
最后通过顶出机构将成形铝铸件从挤压铸造铸型表面取出;由于伸缩微柱5处于缩小状态,成形铸件与挤压铸造铸型的实际接触面积减小;同时残留在成形铸件表面的伸缩微柱金属发挥固体润滑作用,减少铸型-铸件相对运动过程的铸型表面磨损,也使得落料过程更为顺畅。
CN201911423977.3A 2019-12-30 2019-12-30 一种挤压铸造型腔表面强化方法 Pending CN111334739A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911423977.3A CN111334739A (zh) 2019-12-30 2019-12-30 一种挤压铸造型腔表面强化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911423977.3A CN111334739A (zh) 2019-12-30 2019-12-30 一种挤压铸造型腔表面强化方法

Publications (1)

Publication Number Publication Date
CN111334739A true CN111334739A (zh) 2020-06-26

Family

ID=71181429

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911423977.3A Pending CN111334739A (zh) 2019-12-30 2019-12-30 一种挤压铸造型腔表面强化方法

Country Status (1)

Country Link
CN (1) CN111334739A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112981286A (zh) * 2021-04-21 2021-06-18 中国航发北京航空材料研究院 一种铝合金厚板的孔挤压强化方法和所述方法用润滑剂
CN114959543A (zh) * 2022-05-25 2022-08-30 苏州热工研究院有限公司 金属铸造件浅表缺陷的热喷涂强化修复方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4588021A (en) * 1983-11-07 1986-05-13 Hazelett Strip-Casting Corporation Matrix coatings on endless flexible metallic belts for continuous casting machines method of forming such coatings and the coated belts
JPH06142822A (ja) * 1992-11-09 1994-05-24 Kawasaki Steel Corp 高融点活性金属鋳造用鋳型の製造方法
JPH06218489A (ja) * 1992-01-23 1994-08-09 Toyota Motor Corp 鋳造用金型部品
US5499672A (en) * 1994-06-01 1996-03-19 Chuetsu Metal Works Co., Ltd. Mold for continuous casting which comprises a flame sprayed coating layer of a tungsten carbide-based wear-resistant material
JPH09195069A (ja) * 1995-11-17 1997-07-29 Ngk Insulators Ltd AlまたはAl合金鋳造用の銅合金製金型
US20030077398A1 (en) * 1995-11-13 2003-04-24 Peter R. Strutt Nanostructured feeds for thermal spray systems, method of manufacture, and coatings formed therefrom
US20080093047A1 (en) * 2006-10-18 2008-04-24 Inframat Corporation Casting molds coated for surface enhancement and methods of making
US20080145554A1 (en) * 2006-12-14 2008-06-19 General Electric Thermal spray powders for wear-resistant coatings, and related methods
US20130101820A1 (en) * 2010-05-24 2013-04-25 Nobuo Yonekura Thermal spray coated member and thermal spraying method therefor
CN105397065A (zh) * 2015-11-10 2016-03-16 苏州三基铸造装备股份有限公司 汽车离合器壳体的挤压铸造生产工艺
US20160369407A1 (en) * 2013-07-03 2016-12-22 Snecma Process for preparing a substrate for thermal spraying of a metal coating

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4588021A (en) * 1983-11-07 1986-05-13 Hazelett Strip-Casting Corporation Matrix coatings on endless flexible metallic belts for continuous casting machines method of forming such coatings and the coated belts
JPH06218489A (ja) * 1992-01-23 1994-08-09 Toyota Motor Corp 鋳造用金型部品
JPH06142822A (ja) * 1992-11-09 1994-05-24 Kawasaki Steel Corp 高融点活性金属鋳造用鋳型の製造方法
US5499672A (en) * 1994-06-01 1996-03-19 Chuetsu Metal Works Co., Ltd. Mold for continuous casting which comprises a flame sprayed coating layer of a tungsten carbide-based wear-resistant material
US20030077398A1 (en) * 1995-11-13 2003-04-24 Peter R. Strutt Nanostructured feeds for thermal spray systems, method of manufacture, and coatings formed therefrom
JPH09195069A (ja) * 1995-11-17 1997-07-29 Ngk Insulators Ltd AlまたはAl合金鋳造用の銅合金製金型
US20080093047A1 (en) * 2006-10-18 2008-04-24 Inframat Corporation Casting molds coated for surface enhancement and methods of making
US20080145554A1 (en) * 2006-12-14 2008-06-19 General Electric Thermal spray powders for wear-resistant coatings, and related methods
US20130101820A1 (en) * 2010-05-24 2013-04-25 Nobuo Yonekura Thermal spray coated member and thermal spraying method therefor
US20160369407A1 (en) * 2013-07-03 2016-12-22 Snecma Process for preparing a substrate for thermal spraying of a metal coating
CN105397065A (zh) * 2015-11-10 2016-03-16 苏州三基铸造装备股份有限公司 汽车离合器壳体的挤压铸造生产工艺

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112981286A (zh) * 2021-04-21 2021-06-18 中国航发北京航空材料研究院 一种铝合金厚板的孔挤压强化方法和所述方法用润滑剂
CN114959543A (zh) * 2022-05-25 2022-08-30 苏州热工研究院有限公司 金属铸造件浅表缺陷的热喷涂强化修复方法

Similar Documents

Publication Publication Date Title
US5482637A (en) Anti-friction coating composition containing solid lubricants
US7845875B2 (en) Light articulation ball-joint and method of manufacture of such a ball joint
Zhang et al. Rapid hard tooling by plasma spraying for injection molding and sheet metal forming
CN111334739A (zh) 一种挤压铸造型腔表面强化方法
US7806243B2 (en) Vehicular brake rotors
CN109576628B (zh) 连铸结晶器长边铜板复合涂层的制备方法
KR101286842B1 (ko) 반용융 또는 반응고 상태의 철계 합금의 주조 방법 및 주조용 금형
CN106756717B (zh) 一种高强耐磨铜镍锡合金涂层的制备方法
CN102234754A (zh) 汽车覆盖件冷冲压模具的修复方法
CN111235456A (zh) 激光熔覆增材制造用三元硼化物和碳化物强化金属陶瓷粉末及其制备与应用
CN108018548B (zh) 一种修复钨基粉末合金压铸模具涂层合金及其制备方法
CN103255413B (zh) 铜及铜合金表面激光熔覆钴基自润滑涂层及制备工艺
Yang et al. Development of precision spray forming for rapid tooling
Lucchetta et al. Investigation and characterization of Stellite-based wear-resistant coatings applied to steel moulds by cold-spray
KR20190138021A (ko) 이종 접합 부재 및 그의 제조방법
US20210094094A1 (en) Composite part and method and tooling for making the same
US20190056004A1 (en) Pressed powder titanium brake rotor
JPS5923832A (ja) 複合材料部材の製造方法
CN110280767B (zh) 一种钛铝复合管的制备方法及模具
CN114292126A (zh) 一种多孔陶瓷局部增强复合材料汽车刹车片的制备方法
CN210128033U (zh) 一种汽车制动盘及车辆
CN210146665U (zh) 一种铍铜合金线收线滚筒
CN101491832B (zh) 普通钢球表面包复钴铬钨合金的方法
Ramesh et al. Air jet erosion wear behavior of Al6061-SiC-Carbon fibre hybrid composite
CN110218915A (zh) 一种AlSi20Fe5Ni2坯料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20200626