RU2188763C2 - Слоистый материал - Google Patents

Слоистый материал Download PDF

Info

Publication number
RU2188763C2
RU2188763C2 RU99112565A RU99112565A RU2188763C2 RU 2188763 C2 RU2188763 C2 RU 2188763C2 RU 99112565 A RU99112565 A RU 99112565A RU 99112565 A RU99112565 A RU 99112565A RU 2188763 C2 RU2188763 C2 RU 2188763C2
Authority
RU
Russia
Prior art keywords
nanocomposite
layered material
material according
paragraphs
sol
Prior art date
Application number
RU99112565A
Other languages
English (en)
Other versions
RU99112565A (ru
Inventor
Герхард ЙОНШКЕР (DE)
Герхард ЙОНШКЕР
Мартин МЕННИГ (DE)
Мартин МЕННИГ
Хельмут ШМИДТ (DE)
Хельмут Шмидт
Райнер АНГЕНЕНДТ (DE)
Райнер Ангенендт
Original Assignee
Институт Фюр Нойе Материалиен Гем. Гмбх
Пфлайдерер Деммштоффтехник Интернациональ Гмбх Унд Ко.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Институт Фюр Нойе Материалиен Гем. Гмбх, Пфлайдерер Деммштоффтехник Интернациональ Гмбх Унд Ко. filed Critical Институт Фюр Нойе Материалиен Гем. Гмбх
Publication of RU99112565A publication Critical patent/RU99112565A/ru
Application granted granted Critical
Publication of RU2188763C2 publication Critical patent/RU2188763C2/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/24Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing alkyl, ammonium or metal silicates; containing silica sols
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C14/00Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix
    • C03C14/002Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix the non-glass component being in the form of fibres, filaments, yarns, felts or woven material
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C14/00Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix
    • C03C14/004Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix the non-glass component being in the form of particles or flakes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/001Macromolecular compounds containing organic and inorganic sequences, e.g. organic polymers grafted onto silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2214/00Nature of the non-vitreous component
    • C03C2214/32Nature of the non-vitreous component comprising a sol-gel process
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/28Fire resistance, i.e. materials resistant to accidental fires or high temperatures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249924Noninterengaged fiber-containing paper-free web or sheet which is not of specified porosity

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Nanotechnology (AREA)
  • Structural Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)
  • Laminated Bodies (AREA)
  • Glass Compositions (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Silicon Polymers (AREA)
  • Medicinal Preparation (AREA)
  • Materials For Medical Uses (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

Слоистый материал отличается субстратом на основе стекловолокон, минеральных волокон или древесных материалов и находящимся с ним в функциональном контакте нанокомпозитом, который получен модифицированием поверхности а) коллоидных неорганических частиц, б) одним или несколькими силанами общей формулы I: Rx-Si-Ai4-х, где остатки А - одинаковые или различные и представляют собой гидроксильные или гидролитические отщепляемые группы, за исключением метокси, остатки R - одинаковые или различные и представляют собой гидролитически не отщепляемые группы и х имеет значение 0, 1, 2 или 3, причем, по меньшей мере, для 50% силанов имеют значение х ≥ 1; в условиях золь-гель-процесса с количеством воды ниже стехиометрического, в пересчете на имеющиеся гидролизуемые группы, с образованием нанокомпозитного золя, в случае необходимости, с дальнейшим гидролизом и конденсацией нанокомпозитного золя перед контактированием с субстратом и с последующим отверждением. 15 з. п.ф-лы.

Description

Изобретение относится к слоистым материалам, которые отличаются субстратом на основе стекловолокон, минеральных волокон или древесных материалов и находящимся с ним в функциональном контакте нанокомпозитом, который получают модифицированием поверхности
а) коллоидных неорганических частиц
б) одним или несколькими силанами общей формулы (I)
Rx-Si-A4-x (I)
где остатки А одинаковые или различные и представляют собой гидроксильные или гидролитические отщепляемые группы, за исключением метоксигруппы, остатки R одинаковые или различные и представляют собой гидролитически не отщепляемые группы и х имеет значение 0, 1, 2 или 3, причем по меньшей мере для 50% силанов имеют значение х ≥ 1;
в условиях золь-гель-процесса с количеством воды ниже стехиометрического, в пересчете на имеющиеся гидролизуемые группы, с образованием нанокомпозитного золя, в случае необходимости с дальнейшим гидролизом и конденсацией нанокомпозитного золя перед контактированием с субстратом и с последующим отверждением.
Субстрат может иметь самые различные физические формы, и нанокомпозит может также существовать в различных формах распределения. Например, нанокомпозит в виде сплошного покрытия или слоя может полностью или частично покрывать субстрат или в форме ламината находиться между несколькими субстратами. Специальные примеры слоистых материалов такого рода представляют собой обладающие термостойким пропитыванием волокна, крученые нити, пряжи и полуфабрикаты, как ткань, трикотаж, трикотажные изделия и плетельные изделия.
Альтернативно нанокомпозит может образовывать прерывистые или также точечные места контактов между несколькими субстратами и связывать, например, по типу матрицы субстрат в форме частиц, хлопьев или волокон. Специальные примеры слоистых материалов вышеназванного вида представляют изоляционные материалы на основе стекловолокон или минеральных волокон и древесных материалов, как древесно-волокнистые плиты, древесно-стружечные плиты, столярные плиты, фанерная плита и облегченные строительные плиты из древесной шерсти. Для особых целей можно применять примеси из стекловолокон и древесных материалов, например для древесно-стружечных плит с огнестойкими свойствами.
Примеры пригодных субстратов представляют собой стекловолокна, природные или синтетические минеральные волокна, такие как асбест, минеральные волокна, шлаковолокна, и волокна из керамических материалов, включая волокна из окисной керамики; древесные материалы в виде целлюлозы, древесной шерсти, древесной муки, древесных стружек, бумаги, картона, древесных плит, древесных брусков и древесных ламинатов.
Под субстратами в виде волокон подразумевают как отдельные волокна, включая полые волокна и нитевидные монокристаллы ("усы"), так и соответствующие мотки волокон, шнуры, тросы, крученые нити и пряжа, а также полуфабрикаты, как ткань, трикотаж, трикотажные изделия, плетеные изделия, текстиль, войлоки, нетканые материалы, полотна, листы и маты. Конкретными примерами этого являются стекловата, стекломаты и минеральная шерсть, например шлаковата, металлургическая шлаковата, минеральное волокно и базальтовое волокно.
Используемый согласно изобретению нанокомпозит получают модифицированием поверхности коллоидных неорганических частиц (а) с одним или несколькими силанами (б) в случае необходимости в присутствии других добавок (с) в условиях золь-гель-процесса.
Подробности золь-гель-процесса описаны: С. Ж. Бринкер, Г. В. Шерер: "Sol-Gel Science - The Physics and Chemistry of Sol-Gel-Processing, Academic Press, Бостон, Сан-Диего, Нью-Йорк, Сидней 1990) и в патентах ФРГ 1941191, 3719339, 4020316 и 4217432.
Там указаны также специальные примеры используемых согласно изобретению силанов (б), а также их гидролитически отщепляемых остатков А и гидролитически не отщепляемых остатков R.
Предпочтительные примеры отщепляемых гидролитически групп А представляют собой водород, галогены (F, C1, Вr и I, особенно C1 и Вr), алкокси (особенно С2-4-алкокси, как, например, этокси, н-пропокси, изопропокси и бутокси), арилокси (особенно С6-10-арилокси, например фенокси), алкарилокси (например, бензилокси), ацилокси (особенно C1-4-ацилокси, как, например, ацетокси и пропионилокси) и алкилкарбонил (например, ацетил). Пригодными остатками А являются также аминогруппы (например, моно- или диалкильные, -арильные и -аралкиламиногруппы с вышеназванными алкильными, арильными и аралкильными остатками), амидные группы (например, бензамидо) и альдоксимные или кетоксимные группы. Два или три остатка А могут вместе образовывать также комплексирующую группировку с Si-атомом, как это имеет место в случае, например, Si-полиольных комплексов, которые образуются гликолем, глицерином или пирокатехином. Особенно предпочтительные остатки А представляют собой С2-4-алкоксигруппы, особенно этоксигруппа. Метоксигруппы менее пригодны для целей изобретения, так как они имеют слишком высокую реакционную способность (короткое время обработки нанокомпозитного золя) и могут приводить к получению нанокомпозитов и соответственно слоистых материалов с недостаточной гибкостью.
Названные гидролизуемые группы А могут в случае необходимости включать также один или несколько обычных заместителей, например атомы галогена или алкоксигруппы.
Гидролитически не отщепляемые остатки R выбирают предпочтительно из алкила (особенно C1-4-алкила, как, например, метил, этил, пропил и бутил), алкенила (особенно C2-4-алкенила, как, например, винил, 1-пропенил, 2-пропенил и бутенил), алкинила (особенно C2-4-алкинила, как ацетиленил и пропаргил), арила (особенно С6-10-арила, как, например, фенил и нафтил) и из соответствующих алкарильных и арилалкильных групп. Эти группы также могут включать в случае необходимости один или несколько обычных заместителей, например галогены, алкокси-, гидрокси-, амино- или эпоксидные группы.
Вышеназванные алкильные, алкенильные и алкинильные группы включают соответствующие циклические остатки, как, например, циклопропил, циклопентил и циклогексил.
Особенно предпочтительные остатки R представляют собой замещенные в случае необходимости С1-4-алкильные группы, особенно метил и этил, и замещенные в случае необходимости С6-10-арильные группы, особенно фенил.
Далее, предпочтительно, чтобы в вышеуказанной формуле (1) х имел значение 0, 1 или 2 и особенно предпочтительно 0 или 1. Далее предпочтительно, по меньшей мере, 60 и особенно предпочтительно, по меньшей мере, 70% количества силанов формулы (1) имеют значение х = 1. В определенных случаях может быть еще более предпочтительно, если более 80 или даже более 90% (например, 100%) силанов формулы (1) имеют значение х = 1.
Слоистые материалы согласно изобретению могут быть получены, например, из чистого метилтриэтоксисилана (МТЭОС) или из смесей МТЭОС и тетраэтоксисилана (ТЭОС) в качестве компоненты (б).
Конкретные примеры силанов общей формулы (1) представляют собой соединения следующих формул: тетраэтоксисилан Si(OC2H5)4, тетра-н- или -изопропилсилан Si(0-H- или изо-С3Н7)4, тетрабутоксисилан Si(OC4H9)4, тетрахлорсилан SiCl4, тетраацетоксисилан Si(ООССН3)4, метилтрихлорсилан СН3-SiС13, метилтриэтоксисилан СН3-Si(OC2H5)3, этилтрихлорсилан С2Н5-SiС13, этилтриэтоксисилан С2Н5-Si(OC2H5)3, пропилтриэтоксисилан С3Н7-Si(ОС2Н5)3, фенилтриэтоксисилан С6Н5-Si-(ОС2Н5)3, триэтоксисиланпропилхлорид (С2Н5О)3-Si-С3Н6-С1, диметилдихлорсилан (СН3)2SiС12, диметилдиэтоксисилан (СН3)2Si (OC2H5)2, диметилдиоксисилан (СН3)2Si(ОН)2, дифенилдихлорсилан (C6H5)2SiCl2, дифенилдиэтоксисилан (С6Н5)2Si(ОС2Н5)2, триизопропилсилангидроксид (изо-С3Н7)3SiОН, винилтриацетоксисилан CH2= CH-Si(OOССН3)3, винилтрихлорсилан СН2=СН-SiС13, винилтриэтоксисилан CH2=CH-Si(OC2H5)3, силикохлороформ НSiС13,
винилтриметоксиэтоксисилан CH2=CH-Si(ОС2Н4ОСН3)3, аллилтриэтоксисилан CH2= CH-CH2-Si(OC2H5)3, аллилтриацетоксисилан СН2= СН-СН2-Si(ООССН3)3, метакрилпропилтриэтоксисилан СН2= С(СН3)СОО-С3Н7-Si-(ОС2Н5)3, циклогексилэтилтриэтоксисилан Н-С6Н13-СН2-СН2-Si(ОС2Н5)3, н-децилтриэтоксисилан C8H17-CH2-CH2-Si(ОС2Н5)3, глицидилоксипропилтриэтоксисилан
Figure 00000001

Эти силаны можно получать известными методами; ср. В Нолл, "Химия и технология силиконов", издательство Химия ГмбХ, Вайн-хайм/Бергштрассе (1968).
Ссылаясь на вышеназванные компоненты (а), (б) и (с), количество компоненты (б) составляет обычно от 20 до 95, предпочтительно от 40 до 90 и особенно предпочтительно от 70 до 90 вес. % выраженное как полисилоксан формулы: Rx SiO(2-0,5х), который образуется при конденсации.
Используемые по изобретению силаны общей формулы (1) можно полностью или частично применять в форме форконденсатов, т.е. соединений, образованных частичным гидролизом силанов формулы (1), или индивидуально, или в смеси с другими гидролизуемыми соединениями. Подобные, преимущественно растворимые в реакционной среде олигомеры могут быть линейными или циклическими низкомолекулярными частичными конденсатами (органополисилоксаны) со степенью конденсации, например, приблизительно от 2 до 100, особенно предпочтительно от 2 до 6.
Используемое для гидролиза и конденсации силанов формулы (1) количество воды составляет предпочтительно от 0,1 до 0,9, особенно предпочтительно от 0,25 до 0,75 моля воды на 1 моль имеющихся гидролизуемых групп. Часто получают особенно хорошие результаты с 0,35 - 0,45 моля воды на 1 моль имеющихся гидролизуемых групп.
Специальные примеры коллоидных неорганических частиц (а) представляют собой золи и наноскалярные диспергируемые порошки (размер частиц предпочтительно до 300, особенно до 100 нм и особенно предпочтительно до 50 нм) SiO2, TiO2, ZrO2, Al2O3, V2О3, CeO2, SnO2, ZnO, окиси железа или углерода (сажа и графит), особенно SiO2.
Количество компоненты (а) в пересчете на компоненты (а), (б) и (с) составляет обычно от 5 до 60, предпочтительно от 10 до 40 и особенно предпочтительно от 10 до 20 мас.%.
Для получения нанокомпозита в качестве возможных компонентов (с) можно применять другие добавки в количестве до 20 мас.%, предпочтительно до 10 и особенно предпочтительно вплоть до 5 мас.%, например катализаторы отверждения, такие как соли металлов и алкоксиды металлов (например, окись алюминия, титана, циркония), органические связующие, такие как поливиниловый спирт, поливинилацетат, крахмал, полиэтиленгликоль и гуммиарабик, пигменты, красители, огнестойкие добавки, соединения стеклообразующих элементов (например, борная кислота, сложный эфир борной кислоты, метилат натрия, ацетат калия, втор-бутилат алюминия и т.д.), антикоррозионные средства и вспомогательные средства для покрытия. Применение связующих является согласно изобретению менее предпочтительным.
Гидролиз и конденсацию осуществляют в условиях золь-гель-процесса в присутствии кислых катализаторов конденсации (например, соляной кислоты) при значении рН предпочтительно от 1 до 2, пока не образуется вязкий золь.
Предпочтительно кроме растворителя, который образуется при гидролизе алкоксигрупп, не использовать дополнительного растворителя. Однако, если желательно, можно использовать, например, спиртовые растворители, как этанол, или другие полярные, протонные или апротонные растворители, как тетрагидрофуран, диоксан, диметилформамид или бутилгликоль.
Чтобы обеспечить благоприятную морфологию частиц золя и его вязкость, полученный нанокомпозитный золь подвергают предпочтительно целенаправленной последующей реакции, при которой реакционную смесь нагревают от нескольких часов до нескольких дней при температуре от 40 до 120oС. Особенно предпочтительным является однодневное выдерживание при комнатной температуре или многочасовое нагревание до 60-80oС. При этом образуется нанокомпозитный золь с вязкостью предпочтительно от 5 до 500 мПа•с, особенно предпочтительно от 10 до 50 мПа•с. Разумеется, вязкость золя добавлением растворителей или удалением побочных продуктов реакции (например, спиртов) можно устанавливать до подходящих для специальной цели применения величин. Дополнительная реакция может быть связана также предпочтительно со снижением количества растворителя.
Массовая доля нанокомпозита в слоистом материале составляет предпочтительно от 0,1 до 80, особенно от 1 до 40 и особенно предпочтительно от 1 до 20 мас.%.
Объединение субстрата и нанокомпозита или нанокомпозита соответственного нанокомпозитного золя осуществляют после по меньшей мере начального гидролиза компоненты (б) и во всяком случае перед последующим отверждением. Предпочтительно нанокомпозитный золь активируют незадолго до контактирования с субстратом подачей последующего количества воды.
Контактирование можно осуществлять любым известным специалисту и рациональным для данного случая способом, например простым смешиванием субстрата и нанокомпозитного золя, погружением, опрыскиванием, нанесением покрытия раклей, распылением, центрифугированием, литьем, нанесением кистью, нанесением щеткой и т. д. в нанокомпозитный золь или с нанокомпозитным золем. Чтобы улучшить адгезию между субстратом и нанокомпозитом, во многих случаях может оказаться предпочтительным субстрат перед контактированием с нанокомпозитом или соответственно его предшественником подвергать обычной предварительной обработке поверхности, например коронному разряду, обезжириванию, обработке грунтовками, как аминосиланы, эпоксисиланы, шлихтованию из крахмала или силиконов, обработке комплексообразователями, поверхностно-активными веществами и т.д.
Заключительному отверждению может предшествовать стадия сушки при комнатной температуре или слегка повышенной температуре (например, приблизительно до 50oС).
Первоначальное отверждение или предварительное отверждение можно проводить при комнатной температуре, однако оно происходит предпочтительно путем термообработки при температурах выше 50oС, преимущественно выше 100oС и особенно предпочтительно при 150oС или выше. Максимальная температура отверждения зависит, в частности, от точки плавления или термостойкости субстрата, но составляет, как правило, от 250 до 300oС. У минеральных субстратов возможны также более высокие температуры отверждения, например, от 400 до 500oС и выше. Обычно времена отверждения лежат в области от минут до часов, например от 2 до 30 минут.
Кроме обычного термического отверждения, например, в печи с циркуляцией воздуха применяют также другие методы отверждения, например отверждение инфракрасным излучением. Перед отверждением полученный композит может подвергаться в случае необходимости также формованию.
Предметом настоящего изобретения является также применение вышеуказанного нанокомпозита для нанесения покрытия и/или упрочнения вышеназванных субстратов. Понятие "упрочнение" должно включать здесь все мероприятия, которые пригодны для получения субстрата в более упроченной или более компактной форме, и включает, например, пропитывание субстрата нанокомпозитом, укладку субстрата в матрицу из нанокомпозита или склеивание или соединение субстратов или частей субстратов с нанокомпозитом. Под "покрытием" подразумевают особенно частичное или полное обмазывание субстрата нанокомпозитом, чтобы придать субстрату или его частям особые свойства, как, например, устойчивость к окислению, огнестойкость, гидрофобность, олеофобность, твердость, непроницаемость, электрическая или тепловая изоляция.
Следующие примеры должны подробнее пояснить настоящее изобретение. В примерах речь идет об используемом кизельзоле, а именно о водном кизельзоле фирмы БАЙЕР ("Левазил 300/30") с содержанием твердого вещества 30 мас.% и с размером частиц от 7 до 10 нм. Далее в примерах применяют следующие сокращения:
МТЭОС - метилтриэтоксисилан
ТЭОС - тетраэтоксисилан
ФТЭОС - фенилтриэтоксисилан
ПРИМЕР 1
Смесь из 65 мол.% МТЭОС, и 15 мол.% ФТЭОС, и 20 мол.% ТЭОС (или альтернативно из 80 мол. % МТЭОС и 20 мол. % ТЭОС) интенсивно перемешивают с кизельзолем и соляной кислотой в качестве катализатора, чтобы получить путем гидролиза и конденсации силанов нанокомпозитный золь. Благодаря кизельзолю при этом вводят такое количество воды, что на 1 моль гидролизуемых групп приходится 0,8 моля воды. Приблизительно через 5 минут после получения золь наполняют вышеназванной силановой смесью, так что общее содержание воды в получаемой смеси составляет 0,4 моля воды на 1 моль алкоксигрупп. Количество кизельзоля в общем содержании твердого вещества составляет около 14 мас.%.
После фазы дополнительной реакции приблизительной 12 часов при комнатной температуре добавляют к вышеназванной смеси такое количество воды, чтобы общее содержание воды в золе составляло 0,5 моля воды на 1 моль алкоксигрупп. Приблизительно через 5 минут смесь готова для применения.
Готовую для применения смесь разбрызгивают через распылительное кольцо на увлажненную стекловату и отверждают приблизительно от 5 до 10 минут в печи с циркуляцией воздуха приблизительно при 200oС. Получают эластичный изоляционный материал со значительно улучшенными противопожарными свойствами по сравнению со стекловатой, связанной фенольной смолой.
ПРИМЕР 2
68,7 мл МТЭОС (соответствует 80% всего количества) и 19,2 мл ТЭОС (соответствует 20% всего количества) смешивают и половину этой смеси интенсивно перемешивают с 11,7 мл кизельзоля (соответственно 14,3 мас.% количества кизельзоля) и 0,386 мл концентрированной соляной кислоты. Через 5 минут в исходную смесь добавляют вторую половину силановой смеси, после чего перемешивают еще 5 минут, затем образованный золь подвергают дополнительной реакции (2-часовое выдерживание при комнатной температуре). Получают устойчивый при хранении форконденсат с содержанием твердого вещества SiO2 около 300 г/л и 0,4 моля воды на 1 моль гидролизуемых групп. Концентрированием на ротационном испарителе обеспечивают содержание твердого вещества 60 вес. %.
Перед использованием к связующему добавляют еще 3,0 мл изопропилата титана и около 2,5 мл воды для достижения содержания воды 0,5 моля воды на 1 моль гидролизуемых групп. Полученную таким образом смесь перемешивают с древесными стружками, так что 15% массы состоит из SiO2. Затем массу связывают в горячем прессе при 180oС в течение 10 минут до получения формованного изделия. Получают формованное изделие, которое похоже на обычную прессованную древесно-стружечную плиту, но изготовлено без органического связующего. Огнестойкость такой плиты в противоположность огнестойкости обычной прессованной древесно-стружечной плиты значительно улучшена.
ПРИМЕР 3
1. Получение золя
172 мл МТЭОС смешивают с 48 мл ТЭОС. При интенсивном перемешивании добавляют 29 мл кизельзоля и 2 мл серной кислоты (35%). Приблизительно через 5 минут образуется полупрозрачный золь, который оставляют для последующей реакции на 4 часа при комнатной температуре. После добавления при перемешивании остальных 3 мл воды смесь приблизительно через 5 минут готова для применения.
2. Применение золя
2.1 100 г древесных стружек смешивают с 60 мл золя и прессуют при давлении 7,1 МПа в пресс-форме с диаметром 12 см в течение 10 минут. Затем прессованное изделие в обогреваемом прессе (обогревают нижнюю и верхнюю тарелки) прессуют при давлении 2,6 МПа и при температуре 100oС около 3 часов. Получают механически устойчивое формованное изделие с количеством древесной стружки 82 мас.%.
2.2 300 г гранулированного минерального волокна перемешивают с 10 мл вышеназванного золя и прессуют 5 минут при давлении 4,4 МПа в пресс-форме с диаметром 12 см. Затем прессованное изделие оставляют в сушильном шкафу с циркуляцией воздуха на 8 часов при температуре 80oС. Получают механически устойчивое формованное изделие с содержанием гранулята минерального волокна 1 мас.%.

Claims (16)

1. Слоистый материал, содержащий субстрат и находящийся с ним в контакте нанокомпозит, полученный из неорганических частиц и силанов в условиях золь-гель-процесса с последующим отверждением, отличающийся тем, что слоистый материал содержит субстрат на основе стекловолокон, минеральных волокон или древесных материалов и нанокомпозит, полученный модифицированием поверхности а) коллоидных неорганических частиц, б) одним или несколькими силами общей формулы I
Rх-Si-A4-х (I),
где остатки А - одинаковые или различные и представляют собой гидроксильные или гидролитические отщепляемые группы, за исключением метоксигруппы;
остатки R - одинаковые или различные и представляют собой гидролитически не отщепляемые группы;
х имеет значение 0,1,2 или 3, причем, по меньшей мере, для 50% силанов имеют значение х≥1;
в условиях золь-гель-процесса с количеством воды ниже стехиометрического, в пересчете на имеющиеся гидролизуемые группы, с образованием нанокомпозитного золя, в случае необходимости, с дальнейшим гидролизом и конденсацией нанокомпозитного золя перед контактированием с субстратом.
2. Слоистый материал по п. 1, отличающийся тем, что модифицирование поверхности осуществлено в присутствии кислого катализатора конденсации при величине рН от 1 до 2.
3. Слоистый материал по п. 1 или 2, отличающийся тем, что нанокомпозитный золь получен с помощью многочасовой до многодневной дополнительной реакции при температурах от комнатной до 120oС.
4. Слоистый материал по одному из пп. 1-3, отличающийся тем, что коллоидные неорганические частицы (а) выбраны из золей и наноскалярных, диспергируемых порошков SiO2, TiO2, ZrO2, A12O3, V2O3, СеO2, SnO2, ZnO, окиси железа или углерода.
5. Слоистый материал по одному из пп. 1-4, отличающийся тем, что нанокомпозитный золь получен с помощью добавок (с), например катализаторов отверждения, органических связующих, пигментов, красителей, огнестойких добавок, соединений стеклообразующих элементов, антикоррозионных средств и/или вспомогательных средств для нанесения покрытий.
6. Слоистый материал по одному из пп. 1-5, отличающийся тем, что нанокомпозит получен с использованием от 5 до 60, предпочтительно от 10 до 40 и особенно предпочтительно от 10 до 20 мас. % компоненты (а).
7. Слоистый материал по одному из пп. 1-6, отличающийся тем, что нанокомпозит получен с использованием от 20 до 95, предпочтительно от 40 до 90 и особенно предпочтительно от 70 до 90 мас. % компоненты (б), выраженной как полисилоксан формулы
Rx SiO(2-0.5x).
8. Слоистый материал по одному из пп. 5-7, отличающийся тем, что нанокомпозит получен с использованием не более 20, предпочтительно не более 10 и особенно предпочтительно не более 5 мас. % других добавок (с).
9. Слоистый материал по одному из пп. 1-8, отличающийся тем, что остатки А в формуле I представляют С2-4-алкоксигруппы, предпочтительно этоксигруппы.
10. Слоистый материал по одному из пп. 1-9, отличающийся тем, что R в формуле I обозначает замещенную, в случае необходимости, С1-4-алкильную группу и/или замещенную, в случае необходимости, С6-10-арильную группу, предпочтительно метильную, этильную и/или фенильную группу.
11. Слоистый материал по одному из пп. 1-10, отличающийся тем, что х в формуле I имеет значение 0,1 или 2, предпочтительно 0 или 1.
12. Слоистый материал по одному из пп. 1-11, отличающийся тем, что, по меньшей мере, 60 и предпочтительно, по меньшей мере, 70% компоненты (б) силанов формулы I имеют значение х≥1, предпочтительно х= 1.
13. Слоистый материал по одному из пп. 1-12, отличающийся тем, что модифицирование поверхности осуществлено от 0,1 до 0,9, предпочтительно от 0,25 до 0,75 моля воды на 1 моль имеющихся гидролизуемых групп.
14. Слоистый материал по одному из пп. 1-13, отличающийся тем, что массовая доля нанокомпозита составляет от 0,1 до 8,0, предпочтительно от 1 до 40 и особенно предпочтительно от 1 до 20 мас. %.
15. Слоистый материал по одному из пп. 1-14, отличающийся тем, что отверждение осуществлено термически, предпочтительно при температурах 50 - 300oС.
16. Слоистый материал по одному из пп. 1-11, отличающийся тем, что он выполнен в форме субстрата, покрытого нанокомпозитом, пропитанной нанокомпозитом ткани или формованного изделия, содержащей упрочненный нанокомпозитом субстратный материал.
RU99112565A 1996-11-15 1997-11-14 Слоистый материал RU2188763C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE1996147369 DE19647369A1 (de) 1996-11-15 1996-11-15 Verbundwerkstoffe
DE19647369.1 1996-11-15

Publications (2)

Publication Number Publication Date
RU99112565A RU99112565A (ru) 2001-04-27
RU2188763C2 true RU2188763C2 (ru) 2002-09-10

Family

ID=7811827

Family Applications (1)

Application Number Title Priority Date Filing Date
RU99112565A RU2188763C2 (ru) 1996-11-15 1997-11-14 Слоистый материал

Country Status (25)

Country Link
US (1) US6187426B1 (ru)
EP (1) EP0842967B1 (ru)
JP (1) JP2001504403A (ru)
KR (1) KR100519575B1 (ru)
CN (1) CN1237187A (ru)
AT (1) ATE196488T1 (ru)
AU (1) AU736612B2 (ru)
BR (1) BR9712766A (ru)
CA (1) CA2271308A1 (ru)
CZ (1) CZ293927B6 (ru)
DE (2) DE19647369A1 (ru)
DK (1) DK0842967T3 (ru)
EE (1) EE04062B1 (ru)
ES (1) ES2150731T3 (ru)
GR (1) GR3035009T3 (ru)
HU (1) HU222399B1 (ru)
ID (1) ID21779A (ru)
NZ (1) NZ335095A (ru)
PL (1) PL193895B1 (ru)
PT (1) PT842967E (ru)
RU (1) RU2188763C2 (ru)
SI (1) SI0842967T1 (ru)
TR (1) TR199901064T2 (ru)
WO (1) WO1998021266A1 (ru)
YU (1) YU22199A (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2453441C2 (ru) * 2006-01-13 2012-06-20 ЭнБиСи МЕШТЕК, Инк Композитный материал, препятствующий загрязнению
RU2547737C2 (ru) * 2009-09-03 2015-04-10 Эвоник Дегусса Гмбх Гибкие покровные комбинированные материалы с преимущественно минеральным составом
RU2600050C2 (ru) * 2012-01-16 2016-10-20 Кронотек Аг Применение модифицированных наночастиц в древесных материалах для уменьшения эмиссии летучих органических соединений (лос)

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19915378A1 (de) * 1999-04-06 2000-10-12 Inst Neue Mat Gemein Gmbh Haushaltsgeräte mit katalytischer Zusammensetzung
DE19915377A1 (de) * 1999-04-06 2000-10-12 Inst Neue Mat Gemein Gmbh Katalytische Zusammensetzung, Verfahren zu ihrer Herstellung und ihre Verwendung
DE10037723A1 (de) * 2000-08-02 2002-02-14 Pfleiderer Ag Verfahren zur Herstellung eines Verbundwerkstoffes
DE10041481B4 (de) 2000-08-24 2006-01-19 Deutsche Rockwool Mineralwoll Gmbh & Co. Ohg Dämmstoffelement sowie Verfahren und Vorrichtung zur Herstellung eines Dämmstoffelementes, insbesondere einer roll- und/oder wickelbaren Dämmstoffbahn aus Mineralfasern
DE10203958B4 (de) * 2001-02-01 2015-11-05 Walter F. Engelmann Keramische, organische Überzugsmasse, Verfahren zum Zubereiten und Verfahren zum Aufbringen einer solchen Überzugsmasse, insbesondere für Trägermaterialien aus Metall, Glas oder Kunststoff
DE10141687A1 (de) * 2001-08-25 2003-03-06 Degussa Siliciumverbindungen enthaltendes Mittel zur Beschichtung von Oberflächen
DE10214482B4 (de) * 2002-03-30 2006-04-20 Johns Manville Europe Gmbh Verfahren zum Behandeln von Hybridgarnen aus Glas- und Polyolefinfasern
WO2004026783A1 (en) * 2002-09-17 2004-04-01 3M Innovative Properties Company Porous surfactant mediated metal oxide films
US6784270B1 (en) * 2002-09-26 2004-08-31 The United States Of America As Represented By The Secretary Of The Navy Polymer containing borate and alkynyl groups
US6767981B1 (en) * 2002-09-26 2004-07-27 The United States Of America As Represented By The Secretary Of The Navy Thermoset and ceramic containing silicon and boron
US20040244829A1 (en) * 2003-06-04 2004-12-09 Rearick Brian K. Coatings for encapsulation of photovoltaic cells
KR100708435B1 (ko) * 2004-12-31 2007-04-18 주식회사 케이씨씨 포름알데히드를 함유하지 않는 암면 천정판용 코팅 조성물및 이로 코팅된 암면 천정판
KR100609596B1 (ko) * 2005-02-18 2006-08-08 이정훈 무기 또는 금속 나노입자 및 고분자수지의 복합재료의 제조방법
MX2007013889A (es) * 2005-05-06 2008-04-17 Dynea Oy Metodos para preparar composiciones enlazantes hibridas organicas-inorganicas y productos no tejidos.
DE102005025771B3 (de) * 2005-06-04 2006-12-28 Chemex Gmbh Isolierender Speiser und Verfahren zu dessen Herstellung
DE102005036029A1 (de) * 2005-07-28 2007-02-01 Klevers Gmbh & Co. Kg Brandschutzgewebe
DE102006006655A1 (de) * 2005-08-26 2007-03-01 Degussa Ag Cellulose- bzw. lignocellulosehaltige Verbundwerkstoffe auf der Basis eines auf Silan basierenden Komposits als Bindemittel
DE102006006656A1 (de) 2005-08-26 2007-03-01 Degussa Ag Silan enthaltendes Bindemittel für Verbundwerkstoffe
EP1973964B1 (en) * 2006-01-19 2011-07-06 Dow Corning Corporation Silicone resin film, method of preparing same, and nanomaterial-filled silicone compositon
WO2007092118A2 (en) * 2006-02-02 2007-08-16 Dow Corning Corporation Silicone resin film, method of preparing same, and nanomaterial-filled silicone composition
KR100791049B1 (ko) * 2006-07-28 2008-01-03 한국전기연구원 고분자수지와 소수화된 무기물로 형성된 유무기 하이브리드졸 용액의 제조방법 및 이에 의해 제조된 재료
US8322754B2 (en) 2006-12-01 2012-12-04 Tenaris Connections Limited Nanocomposite coatings for threaded connections
DE202007000262U1 (de) * 2007-01-02 2007-04-19 Brandchemie Gmbh Brandschutzmaterial aus Faserhalbzeug
CN101323724B (zh) * 2007-06-13 2011-05-18 慧智科技(中国)有限公司 耐热油墨组合物、其制备方法及用途
DE102007057829A1 (de) * 2007-11-29 2009-06-04 Sensient Imaging Technologies Gmbh Verbundwerkstoff mit cellulosehaltigem Material und Verfahren zur Herstellung
US20100015339A1 (en) * 2008-03-07 2010-01-21 Evonik Degussa Gmbh Silane-containing corrosion protection coatings
KR100965227B1 (ko) 2008-04-03 2010-07-20 주식회사 쎄코텍 내화성이 개선된 현무암코아사 직물 및 그 제조방법
DE102008059770A1 (de) 2008-12-01 2010-06-02 Felix Schoeller Jr. Foto- Und Spezialpapiere Gmbh & Co. Kg Verbundwerkstoff, Verfahren zur Herstellung eines Formkörpers und Verwendung des Verbundwerkstoffs
JP6234678B2 (ja) * 2009-11-20 2017-11-22 スリーエム イノベイティブ プロパティズ カンパニー 表面改質ナノ粒子を含む無機顔料組成物及び製造方法
KR20130005889A (ko) * 2011-07-07 2013-01-16 엘지전자 주식회사 투명 복합 소재 및 그 제조 방법
RU2520462C2 (ru) * 2011-07-19 2014-06-27 Марат Мухамадеевич Галеев Полимерная композиция на основе органического наполнителя для изготовления изделий
WO2014039509A2 (en) 2012-09-04 2014-03-13 Ocv Intellectual Capital, Llc Dispersion of carbon enhanced reinforcement fibers in aqueous or non-aqueous media
DE102013003612A1 (de) 2013-03-01 2014-09-04 Gerhard Fauner Verfahren zum Härten und/oder Bauteil schonenden Lösen von Klebverbindungen im elektromagnetischen Feld
KR101444820B1 (ko) * 2013-05-21 2014-09-30 한국전기연구원 유연 에너지소자의 절연 및 부식방지용 하이브리드 패키징 소재 제조방법
WO2015092135A1 (en) * 2013-12-16 2015-06-25 Teknologian Tutkimuskeskus Vtt Oy Plasma-assisted sol-gel coating for non-woven fabrics and foamed structures
AR100953A1 (es) 2014-02-19 2016-11-16 Tenaris Connections Bv Empalme roscado para una tubería de pozo de petróleo
PL3020524T3 (pl) * 2014-11-13 2019-04-30 SWISS KRONO Tec AG Sposób produkcji płyt drewnopochodnych, w szczególności płyt drewnopochodnych OSB i płyta drewnopochodna, którą można wyprodukować tym sposobem
CN104451696B (zh) * 2014-12-03 2017-02-22 浙江大学 金属表面防腐复合硅溶胶的制备方法
CN108314328B (zh) * 2018-01-31 2020-06-16 和县晶晶玻璃制品有限公司 一种高强度复合玻璃的制备方法
EP3988509A1 (de) * 2020-10-21 2022-04-27 Hellma GmbH & Co. KG Herstellung von quarzglasformkörpern unterschiedlicher grau- bis schwarzfärbung für optische anwendungen
WO2024090513A1 (ja) * 2022-10-26 2024-05-02 大日本印刷株式会社 粒子付き基材、および粒子付き基材の製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL84025A0 (en) * 1986-10-03 1988-02-29 Ppg Industries Inc Organosiloxane/metal oxide coating compositions and their production
DE4338360A1 (de) * 1993-11-10 1995-05-11 Inst Neue Mat Gemein Gmbh Verfahren zur Herstellung von funktionellen glasartigen Schichten
US5391210A (en) * 1993-12-16 1995-02-21 Minnesota Mining And Manufacturing Company Abrasive article
US5648407A (en) * 1995-05-16 1997-07-15 Minnesota Mining And Manufacturing Company Curable resin sols and fiber-reinforced composites derived therefrom
ES2157008T3 (es) * 1995-09-19 2001-08-01 Inst Neue Mat Gemein Gmbh Peliculas delgadas de sio2, procedimiento para su obtencion y utilizacion de las mismas.

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2453441C2 (ru) * 2006-01-13 2012-06-20 ЭнБиСи МЕШТЕК, Инк Композитный материал, препятствующий загрязнению
RU2547737C2 (ru) * 2009-09-03 2015-04-10 Эвоник Дегусса Гмбх Гибкие покровные комбинированные материалы с преимущественно минеральным составом
US9180487B2 (en) 2009-09-03 2015-11-10 Evonik Degussa Gmbh Flexible coating composites having primarily mineral composition
RU2547737C9 (ru) * 2009-09-03 2015-12-20 Эвоник Дегусса Гмбх Гибкие покровные комбинированные материалы с преимущественно минеральным составом
RU2600050C2 (ru) * 2012-01-16 2016-10-20 Кронотек Аг Применение модифицированных наночастиц в древесных материалах для уменьшения эмиссии летучих органических соединений (лос)

Also Published As

Publication number Publication date
WO1998021266A1 (de) 1998-05-22
CZ171199A3 (cs) 1999-08-11
EP0842967B1 (de) 2000-09-20
BR9712766A (pt) 1999-10-26
ES2150731T3 (es) 2000-12-01
HU222399B1 (hu) 2003-06-28
EP0842967A3 (de) 1998-06-17
PL193895B1 (pl) 2007-03-30
CA2271308A1 (en) 1998-05-22
EE04062B1 (et) 2003-06-16
ATE196488T1 (de) 2000-10-15
US6187426B1 (en) 2001-02-13
DE19647369A1 (de) 1998-05-20
HUP0000341A3 (en) 2000-11-28
AU5653398A (en) 1998-06-03
ID21779A (id) 1999-07-22
SI0842967T1 (en) 2000-12-31
KR20000052733A (ko) 2000-08-25
EP0842967A2 (de) 1998-05-20
AU736612B2 (en) 2001-08-02
PL333416A1 (en) 1999-12-06
KR100519575B1 (ko) 2005-10-07
JP2001504403A (ja) 2001-04-03
EE9900125A (et) 1999-12-15
DK0842967T3 (da) 2000-11-20
PT842967E (pt) 2001-03-30
TR199901064T2 (xx) 1999-08-23
DE59702378D1 (de) 2000-10-26
NZ335095A (en) 2000-11-24
YU22199A (en) 1999-11-22
CN1237187A (zh) 1999-12-01
GR3035009T3 (en) 2001-03-30
HUP0000341A2 (hu) 2000-06-28
CZ293927B6 (cs) 2004-08-18

Similar Documents

Publication Publication Date Title
RU2188763C2 (ru) Слоистый материал
US6352610B1 (en) Composite materials based on vegetable materials
AU678386B2 (en) Solvent-free organosiloxane composition and its use
AU2006337487B2 (en) Ceramic wall cladding composites that reflect IR radiation
RU99112565A (ru) Слоистые материалы
JP5452929B2 (ja) 支持体を被覆する方法
PL208412B1 (pl) Zawiesina polisiloksanu oraz sposób wytwarzania kształtek opartych na włóknach mineralnych i kształtki z włókien mineralnych
US3215662A (en) Method of preparing consolidated articles
MXPA99004099A (en) Composite materials
MXPA99004142A (en) Composite materials based on vegetable materials
JPS6137105B2 (ru)
JPH03124865A (ja) 耐熱性繊維不織布用結合剤及び耐熱性繊維不織布とその製造方法
CZ200382A3 (cs) Způsob výroby kompozitního materiálu
RU99112503A (ru) Слоистые материалы на основе растительных материалов
CZ169599A3 (cs) Slévárenské pojivo

Legal Events

Date Code Title Description
PD4A Correction of name of patent owner
MM4A The patent is invalid due to non-payment of fees

Effective date: 20061115