RU2127227C1 - Способ получения цеолита y с увеличенным объемом мезопор и цеолиты - Google Patents

Способ получения цеолита y с увеличенным объемом мезопор и цеолиты Download PDF

Info

Publication number
RU2127227C1
RU2127227C1 RU96107261A RU96107261A RU2127227C1 RU 2127227 C1 RU2127227 C1 RU 2127227C1 RU 96107261 A RU96107261 A RU 96107261A RU 96107261 A RU96107261 A RU 96107261A RU 2127227 C1 RU2127227 C1 RU 2127227C1
Authority
RU
Russia
Prior art keywords
zeolite
zeolites
volume
mesopores
solution
Prior art date
Application number
RU96107261A
Other languages
English (en)
Other versions
RU96107261A (ru
Inventor
Дейвид Э. Купер
Томас У. Хастингс
Эллиот Ф. Хурценберг
Original Assignee
Пи-Кью Корпорейшн,
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Пи-Кью Корпорейшн, filed Critical Пи-Кью Корпорейшн,
Publication of RU96107261A publication Critical patent/RU96107261A/ru
Application granted granted Critical
Publication of RU2127227C1 publication Critical patent/RU2127227C1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/084Y-type faujasite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/026After-treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S423/00Chemistry of inorganic compounds
    • Y10S423/21Faujasite, e.g. X, Y, CZS-3, ECR-4, Z-14HS, VHP-R

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

Изобретение относится к способам получения ультрастабильных цеолитов типа Y. Объем мезопор диаметром 2 - 60 нм цеолитов типа Y увеличивают посредством гидротермической обработки этих цеолитов при температурах, превышающих температуру кипения при атмосферном давлении раствора для обработки. В результате такого процесса обработки получены уникальные цеолиты, и способ проведен без паровой термообработки. 3 с. и 23 з.п.ф-лы, 29 табл.

Description

Изобретение относится к цеолитам, применяемым в качестве носителей для катализатора. В частности, оно касается цеолита Y с увеличенным объемом мезопор и способа получения такого цеолита.
Многие процессы превращения в нефтехимической промышленности проводят с использованием катализаторов, основным компонентом которых являются цеолиты со структурой цеолита Y. Во многих случаях цеолит в ходе его подготовки подвергают нескольким стадиям обработки с целью его стабилизации и/или деалюминирования, при этом получают цеолит с пониженным значением константы единичной ячейки (ao) и повышенным соотношением кремния и алюминия. В целом, известны три класса таких стабилизированных цеолитов Y: ультрастабильные цеолиты Y ("USY"), сверхстабильные цеолиты Y ("VUSY") и супердеалюминированные ультрастабильные цеолиты Y ("SDUSY"). Такие стабилизированные цеолиты, так же, как и цеолиты Y в том виде, как они синтезированы, не имеют большого количества пор диаметром больше 2 нм, так называемых "мезопор", обычно диаметром от 2 до 60 нм. Ограниченный объем мезопор диаметром от 2 до 80 нм может стать серьезным недостатком при использовании таких катализаторов в процессах, где наблюдается коксование катализаторов. Примерами таких процессов являются крекинг или гидрокрекинг тяжелой сырой нефти.
У цеолита Y в том виде, как он синтезирован, (далее обозначенного просто Y) значение константы единичной ячейки (ao) составляет от 24,6 до 24,85 ангстрем (A). Эти материалы в том виде, как они синтезированы, имеют объем мезопор менее 0,05 см3/г. Для ультрастабильных цеолитов Y (USY) значение константы единичной ячейки понижено и составляет от 24,5 до 24,6 A. Эти материалы типа USY имеют объем мезопор меньше 0,17 см3/г. Сверхстабильные цеолиты Y (VUSY) имеют пониженное значение константы единичной ячейки, составляющее от 24,27 (примерно 24,3) до 24,5 A. Материалы типа VUSY имеют объем мезопор менее 0,22 см3/г. Супер-деалюминированные ультрастабильные цеолиты Y (SDUSY) имеют пониженное значение константы единичной ячейки, равное или меньшее 24,27 А. Объем пор у материалов типа SDUSY составляет менее 0,25 см3/г.
Известны способы получения цеолитов со структурой Y и объемом вторичных пор 0,20 см3/г, у которых диаметр вторичных пор составляет от 10 до 60 нм. Один из способов, например, описанный в патенте США 5069890, C 01 B 33/34, 1991, заключается в прокаливании с паром предварительно деалюминированных цеолитов Y при высоких температурах в течение длительного времени, обычно от 16 до 24 ч. Поскольку исходные деалюминированные цеолиты Y получают путем однократного или многократного прокаливания с паром, требуется по меньшей мере двукратное прокаливание с паром для получения продукта с несколько большим объемом вторичных пор. При получении таких продуктов в результате обработки возрастает соотношение SiO2/Al2O3.
В другом способе, в частности, в патенте США 5112473, C 10 G 11/02, 1992, описано аналогичное небольшое увеличение объема так называемых вторичных пор способом, заключающимся в обработке кислотой деалюминированного цеолита Y со значениями ao от 24,3 до 24,5 A. Однако известный способ не позволяет осуществить более значительное увеличение объема таких пор.
Задачей данного изобретения является получение цеолитов со структурой цеолита Y, с увеличенным объемом мезопор диаметром от 2 до 6 нм по сравнению с аналогичными цеолитами, полученными известными способами. Задачей изобретения также является создание способа достижения более значительного увеличения объема мезопор, а также получение таких мезопор без парового прокаливания.
Указанная задача решается тем, что получают стабилизированный цеолит, имеющий структуру цеолита Y и объем мезопор, заключенный в мезопорах диаметром примерно от 2 до 60 нм, при взаимосвязи мольного соотношения SiO2/Al2O3 (MCKA), константы единичной ячейки ao и объема мезопор, определяемой табл. А.
Цеолит может относиться к типу USY. При этом его объем мезопор может составлять примерно от 0,2 до 0,6 см3/г.
Цеолит может относиться к типу VUSY. При этом его объем мезопор может составлять примерно от 0,3 до 0,6 см3/г.
Цеолит может относиться к типу SDUSY. При этом его объем мезопор может составлять примерно от 0,3 до 0,6 см3/г.
Указанная выше задача решается также тем, что в предложенном способе увеличения объема мезопор, заключенного в мезопорах диаметром примерно от 2 до 60 нм, цеолита, имеющего структуру цеолита типа Y, проводят гидротермическое взаимодействие указанного цеолита с водным раствором, в котором растворены одна или несколько солей, кислот, оснований и/или водорастворимых органических соединений, которое осуществляет при температуре выше атмосферной точки кипения раствора в течение времени, достаточного для получения цеолитов с увеличенным объемом мезопор диаметром от 2 нм и выше, по меньшей мере на 5% выше, чем объем мезопор цеолита перед указанным взаимодействием, последующее отделение, промывку и выделение полученного цеолита.
В предложенном способе pH может составлять 10 или ниже.
В предложенном способе pH может составлять 8 или ниже.
В предложенном способе pH может составлять 7 или ниже.
В предложенном способе pH может составлять от 8 до 10.
В предложенном способе pH может составлять от 4,5 до 8.
В предложенном способе pH может составлять менее 4,5.
Соль может представлять собой соль щелочного металла или соль аммония.
Соль может представлять собой нитрат, хлорид или сульфат.
Кислотой может являться сильная неорганическая кислота.
Кислотой может являться азотная кислота.
Соль может представлять собой нитрат щелочного металла или аммония, а кислотой может являться азотная кислота.
Получаемый цеолит, соотношения константы единичной ячейки ao и объема мезопор могут быть определены в табл. Б.
Длительность взаимодействия может составлять от 1 мин до 24 ч.
Длительность взаимодействия может быть достаточной для получения цеолитов с объемом мезопор по меньшей мере на 5% выше объема мезопор исходных цеолитов.
Длительность взаимодействия может быть достаточной для получения цеолитов с объемом мезопор по меньшей мере на 10% выше объема мезопор исходных цеолитов.
Температура может составлять 115oC или выше.
Температура может составлять от 115 до 250oC.
Указанная выше задача решается также тем, что цеолиты получают указанным способом.
Установлено, что гидротермическая обработка цеолита со структурой цеолита Y водным раствором может вызывать увеличение количества пор диаметром более 2 нм с резким увеличением объема мезопор. По существу цеолит приводят в контакт с водным раствором веществ при высокой температуре, превышающей температуру кипения раствора при атмосферном давлении, и при давлении, достаточном для того, чтобы поддерживать раствор по меньшей мере частично в жидком состоянии в течение времени, необходимо для проведения требуемого модифицирования.
Полученный предложенным способом материал отличается от известных тем, что объем мезопор в нем больше исходного, например, не менее 0,05 см3/г для синтезированного нестабилизированного и/или не подвергнутого деалюминированию цеолита Y; больше 0,17 см3/г для ультрастабильных цеолитов Y (USY); больше 0,22 см3/г для сверхстабильных цеолитов Y (VUSY): и больше 0,25 см3/г для супер-деалюминированных ультрастабильных цеолитов Y (SDUSY).
Предложенный способ отличается от известных тем, что увеличение объема мезопор достигается способом, в котором не использован пар. Предложенный способ позволяет сохранять или регулировать соотношение SiO2/Al2O3. Представляется, что наиболее важными параметрами, обеспечивающими увеличенный объем мезопор, являются время-температура и pH.
Термин "гидротермическая обработка или способ" здесь относится к обработке или способу, включающему контактирование с водным раствором, в котором по меньшей мере часть раствора поддерживают в жидком состоянии. Термин "жидкофазный гидротермический" здесь является синонимом термина "гидротермический".
Термин "объем мезопор" здесь относится к объему пор, имеющих диаметр от 2 до 60 нм. Материалы с высоким объемом мезопор, предложенные в изобретении, получают из цеолитов, имеющих структуру цеолита Y, представляющих собой синтетический фожазит. При описании изобретения цеолиты со структурой Y разделяют на четыре больших класса: (а) цеолиты Y, в том виде, как они синтезированы, до стабилизации и/или деалюминирования (здесь "Y"); (б) ультрастабильные цеолиты Y (здесь "USY"); (в) сверхстабильные цеолиты Y (здесь "VUSY"); (г) супер-деалюминированные ультрастабильные цеолиты Y (здесь "SDUSY").
При осуществлении предложенного способа цеолит, принадлежащий к одному из четырех классов цеолитов, имеющих структуру цеолита Y, подвергают гидротермическому взаимодействие с водным раствором одного или нескольких веществ из числа солей, кислот, оснований и/или водорастворимых органических соединений при температуре выше точки кипения раствора при атмосферном давлении (далее обозначаемой "атмосферная точка кипения") в течение времени, достаточного для увеличения объема мезопор этого цеолита, заключенного в мезопорах диаметром от 2 до 60 нм, с последующим разделением, промывкой и выделением полученного продукта. Как правило, продукт имеет размеры единичной ячейки и соотношение SiO2/Al2O3 в том же диапазоне, что и исходный материал, хотя могут быть небольшие отличия. Например, гидротермическая обработка при низком pH может вызвать увеличения соотношения SiO2/Al2O3 и небольшое уменьшение размера единичной ячейки. Полученный предложенным способом материал далее может быть подвергнут стабилизации, деалюминированию и/или другим воздействием, которые могут изменить размеры единичной ячейки и соотношение SiO2/Al2O3.
Температура гидротермической обработки превышает атмосферную точку кипения раствора, используемого при гидротермической обработке. Обычно она составляет 110oC или выше, предпочтительно 115oC или выше. Более высокие температуры, такие, как 125oC и выше, или 135oC и выше, например, от 135 до 250oC, также приемлемы. Верхний температурный предел ограничен используемым оборудованием, однако представляется целесообразным использование температур выше 250oC. Поскольку это гидротермическое взаимодействие проводят при температуре выше точки кипения, необходимо оборудование, работающее под давлением. Обработка при сверхвысоком давлении может обеспечить приемлемые результаты при температуре от 200 до 400oC. Хотя оптимальная температура обработки зависит от класса обрабатываемого цеолита Y, обработка или контактирование, как правило, происходит при температуре в интервале от атмосферной точки кипения до 250oC, предпочтительно от 115 до 250oC. Хорошие результаты получены при температуре в диапазоне от 140 до 200oC.
Длительность обработки обратно пропорциональна температуре обработки, при этом для более высоких температур требуется меньшее время для достижения одной и той же степени увеличения объема мезопор. При низких температурах, например, 110oC, для обработки требуется 72 часа для достижения объема мезопор немного большего, чем достигается с помощью известных способов. При наиболее высоких температурах можно сократить длительность обработки до 5 минут. Как правило, длительность обработки составляет от 5 минут до 24 часов, предпочтительно от 2 часов и выше, более предпочтительно от 2 до 10-20 часов.
Температура и длительность обработки обычно таковы, чтобы обеспечить увеличение объема мезопор в конечном продукте по меньшей мере на 5%, предпочтительно на 10% по сравнению с объемом мезопора исходного цеолита.
Раствор для проведения гидротермической обработки обычно представляет собой водный раствор одного или более компонента из числа солей, кислот, оснований и/или водорастворимых органических веществ. Среди прочих к солям относятся растворимые в воде соли аммония, включая четвертичные аммонийные соли, соли щелочных и щелочноземельных металлов и сильных или слабых кислот, как органических, так и неорганических. В качестве возможных, но не исчерпывающих примеров используемых солей можно привести нитраты, хлориды и сульфаты аммония и щелочных металлов, например, натрия и калия. В качестве возможных примеров кислот можно привести неорганические кислоты, в том числе такие сильные, как азотная, серная и соляная кислоты, а также органические кислоты, в том числе уксусную и муравьиную кислоты. В качестве примеров оснований можно привести неорганические основания, в том числе гидроксиды аммония, щелочных и щелочноземельных металлов, а также органические основания, в том числе гидроксиды четвертичного аммония, комплексы аминов, соли пиридиния и т.п. Примерами водорастворимых органических веществ могут быть низшие спирты, простые эфиры и т.п. Предпочтительно из числа солей использовать соли аммония и соли щелочных металлов, в частности с сильными неорганическими кислотами, особенно с азотной кислотой. Из числа кислот предпочтительными являются неорганические кислоты, такие, как азотная, серная и соляная кислоты, предпочтительно азотная кислота. Концентрация и количество раствора, контактирующего со стабилизированным цеолитом Y, должны быть такими, чтобы обеспечить по меньшей мере 0,1 мас. ч. растворенного вещества на одну массовую часть цеолита в расчете на безводный.
Концентрация раствора может составлять до 10 н.
Предпочтительный способ обеспечивает получение цеолитов с увеличенным объемом мезопор и уникальным распределением пор в диапазоне мезопор с диаметром от 2 до 60 нм. В предпочтительном случае получаемые цеолиты Y имеют следующий объем мезопор, диаметр которых составляет от 2 до 60 нм, при соотношении между константой единичной ячейки (ao) и объемом мезопор, представленными в табл. 1.
Для разных типов цеолита Y оптимальными являются различные условия обработки. Некоторые из предпочтительных вариантов проведения обработки обсуждаются ниже, однако ясно, что предпочтительные варианты обработки для одного класса цеолитов применимы также и к другим классам.
Исходные синтезированные цеолиты Y ("Y").
Исходные синтезированные цеолиты Y обычно имеют размеры единичной ячейки в диапазоне от 24,6 A до теоретической величины 24,85 A и соотношение SiO2/Al2O3 от 3 до 6, и получаемые после обработки продукты имеют близкие параметры. Эти материалы, полученные в результате синтеза (без дополнительной обработки), являются высококристаллическими веществами с очень малым объемом мезопор, например, менее 0,05 см3/г. С помощью предложенного способа обработки эти продукты превращают в материалы с объемом мезопор 0,05 см3/г или выше. Как правило, объем мезопор находится в диапазоне от 0,05 до 0,5 - 0,6 см3/г, предпочтительно от 0,2 - 0,3 до 0,5 - 0,6 см3/г. Цеолиты, получаемые предложенным способом из цеолита Y, имеют структуру цеолита Y и константу единичной ячейки (ao) от 24,6 до 24,85 A, такую же, как и aо исходного Y. В этих цеолитах мольное соотношение SiO2/Al2O3 составляет от 3 до 6, а содержание Na2O - от 12 до 18 мас.%.
Условия увеличения объема мезопор оказываются более мягкими для исходного цеолита Y, чем для других типов цеолитов, при этом методика, используемая для других типов цеолитов, также применима к Y. Предпочтительно температура находится в диапазоне от 115 до 250oC, а длительность обработки - от 5 минут до 24 часов. Полученный материал может быть использован в каталитических процессах, где не требуется повышенная стабильность, характерная для других типов цеолитов. Другой возможностью является использование полученного продукта в качестве исходного материала для дальнейших операций стабилизации и/или деалюминирования. Синтез цеолитов Y описан, например, в книге [4] и патентах [5-7]. Можно также использовать аналогичные цеолиты, полученные другими способами.
Ультрастабильные цеолиты Y (USY).
Обычно для USY характерны размеры единичной ячейки от 24,5 A до 24,6 A и соотношение SiO2/Al2O3 от 5 до 12, а получаемые из них продукты имеют аналогичные параметры. Объем мезопор исходных цеолитов (известных в настоящее время материалах) обычно меньше 0,17 см3/г. При обработке по предлагаемому способу объем мезопор возрастает по меньшей мере на 5%. Так, при обработке исходного цеолита с объемом мезопор около 0,17 см3/г получают материал с объемом мезопор 0,18 см3/г или выше. Объемы мезопор, как правило, находятся в интервале от 0,2 до 0,6 см3/г.
Исходные синтезированные цеолиты Y подвергают деалюминированию и стабилизации для получения USY. Эти стабилизированные цеолиты подвергают аммониевому ионообмену и прокаливанию с паром. Возможно также проведение стадии аммониевого ионообмена после прокаливания с паром. Такие цеолиты известны как водородные цеолиты Y (HY), или ультрастабильные цеолиты (USY) соответственно. В таких материалах соотношение SiO2/Al2O3 составляет от 5 до 12, хотя в зависимости от методики получения оно может оставлять от 5 до 10, от 5 до 6,5 или от 6 до 10. Содержание Na2O в этих материалах составляет менее 3,5%, константа единичной ячейки (ao) - от 24,5 до 24,6 A, а объем мезопор - существенно меньше 0,17, обычно около 0,1 см3/г при диаметре пор от 2 до 60 нм. Получение и свойства таких ультрастабильных цеолитов описаны во многих патентах, в частности в [8, 9]. Можно также использовать аналогичные цеолиты, деалюминированные другими способами.
Исходные цеолиты приводят в контакт с гидротермическим раствором, в общих чертах описанным выше, предпочтительно с раствором одной или нескольких солей, и, возможно, вещества, изменяющего pH. Затем смесь нагревают, при этом сочетание температуры и длительности обработки должно быть достаточным для обеспечения требуемой степени увеличения объема мезопор. Предпочтительно температура составляет по меньшей мере 115oC. Авторы установили, что необходимо проводить обработку в течение двух или более часов, а иногда от 10 до 24 часов. Величина pH суспензии должна быть равной или меньшей 10. Более высокие величины pH не обеспечивают требуемых свойств.
Предпочтительно в растворах для обработки использовать одну или несколько неорганических солей. Особенно предпочтительны нитраты щелочных металлов или аммония. Концентрацию и количество раствора, контактирующего со стабилизированным цеолитом Y, устанавливают так, чтобы обеспечить по меньшей мере 0,1 мас. ч. растворенного вещества на 1 мас.ч. цеолита в расчете на безводный. Концентрация раствора может достигать 10 н.
Величина pH суспензии цеолитов в растворе имеет очень большое значение для получаемого объема мезопор и для регулирования избытка оксида алюминия в решетке, остающегося в цеолите, что повлияет на соотношение SiO2/Al2O3. Если величину pH раствора поддерживают или устанавливают в диапазоне от 4,5 до 8 перед контактированием с цеолитом, то объем мезопор составляет от 0,13 до 0,45 см3/г или выше, в зависимости от температур. При величинах pH от 8 до 10 объем мезопор составляет от 0,13 до 0,22 см3/г. Соотношение SiO2/Al2O3 существенно не возрастает в интервале величин pH от 4,5 до 10. Если pH меньше 4,5, то объем мезопор вновь составляет от 0,13 до 0,25 см3/г или выше, в зависимости от температуры и длительности гидротермической обработки. Низких величин pH достигают использованием любой кислоты, предпочтительно азотной, при этом соотношение SiO2/Al2O3 возрастает по мере удаления из решетки цеолита избыточного оксида алюминия.
Регулирование температуры и длительности обработки крайне важно для обеспечения контролируемого значительного увеличения объема мезопор в получаемом продукте. При низких температурах, например, 110oC, требуется 72 часа для получения объема мезопор 0,12 см3/г, равного или несколько больше, чем получают известными способами. Проведение гидротермической обработки при 125oC или выше требует гораздо меньше времени для получения объема мезопор выше 0,12 см3/г. Предпочтительно использовать температуру от 135 до 250oC и длительность обработки от 1 - 5 минут до 24 часов. Наиболее предпочтительны температуры от 140 до 200oC и длительность обработки от 1 до 16 часов.
Цеолиты, полученные предложенным способом из USY (и HY), имеют структуру цеолита Y, но с более узким диапазоном изменения константы единичной ячейки (ao) - от 24,5 до 24,6 A, аналогично исходным ВЦ или USY. У этих цеолитов мольное соотношение SiO2/Al2O3 составляет от 5 до 10 или даже до 12 или выше, при содержании Na2O менее 0,25%. Объем мезопор в этих продуктах превышает 0,12 см3/г, обычно он значительно выше 0,15 см3
С увеличением объема мезопор происходит уменьшение площади поверхности цеолита, и в некоторых случаях также частичное разрушение кристаллической структуры цеолита. Кристалличность может снизиться примерно до 50% от исходной в продуктах с объемом мезопор, достигающим 0,4 см3/г.
Цеолиты USY, полученные при обработке HY и USY, применяют в качестве носителей для катализаторов различных превращений углеводородов. Их особенно успешно применяют в процессах, где используют тяжелую сырую нефть, поскольку большие молекулы углеводородов легче диффундируют к каталитическим активным центрам через крупные мезопоры.
Сверхстабильные цеолиты Y (VUSY).
Обычно VUSY имеют размеры единичной ячейки более 24,27 A (примерно 24,3 A) и менее 24,5 A, соотношение SiO2/Al2O3 от 5 до 25 - 30 или выше, а получаемые после обработки продукты имеют сходные характеристики. Объем мезопор исходных цеолитов (известных материалов) обычно менее 0,22 см3/г. Настоящий способ обеспечивает увеличение объема мезопор исходных материалов по меньшей мере на 5%. Так, обработка исходного цеолита с объемом мезопор около 0,22 см3/г дает продукт с объемом мезопор около 0,23 см3/г или выше. Обычно объем мезопор составляет от 0,3 до 0,6 см3/г.
Цеолиты VUSY с большим объемом мезопор получают из предварительно деалюминированных и стабилизированных цеолитов Y. В качестве исходных цеолитов используют фожазит с мольным соотношением SiO2/Al2O3 от 3 до 6 (обычно 5 или выше), подвергнутый алюминиевому ионообмену и по меньшей мере дважды прокаленный с водяным паром. Длительность стадий прокаливания с паром составляет 2 часа или меньше. Эти материалы представляют собой сверхстабильные цеолиты Y с соотношением SiO2/Al2O3 от 5 до 25 - 30 или выше, хотя в зависимости от способа получения это соотношение может составлять от 5 до 15, от 5 до 10, от 5 до 9 или от 7,5 до 14. Содержание Na2O в этих материалах - менее 0,4%, константа единичной ячейки (ao) - от 24,3 (24,27) до 24,5 A, объем мезопор существенно ниже 0,22 см3/г для пор диаметром от 2 до 60 нм. Получение и свойства таких сверхстабильных цеолитов описаны в ряде патентов, в частности [8] . Можно также использовать аналогичные цеолиты, деалюминированные другими способами.
Исходный цеолит приводят в контакт с описанным выше гидротермическим раствором, предпочтительно раствором одной или нескольких солей, и, возможно, веществом, изменяющим pH раствора. Затем смесь нагревают, при этом сочетание температуры и длительности обработки должно быть достаточным для облегчения требуемой степени увеличения объема мезопор. Предпочтительно температура равна по меньшей мере 115oC. Установлено, что необходимо проводить обработку в течение двух или более часов, иногда время обработки составляет от 1 - 5 минут до 24 часов. Величина pH суспензии должна быть равной или меньше 8. Более высокие величины pH не обеспечивают требуемых свойств.
Предпочтительно в растворах для обработки использовать одну или несколько неорганических солей. Предпочтительными являются нитраты щелочных металлов или аммония, последний наиболее предпочтителен. Концентрацию и количество раствора, контактирующего со сверхстабилизируемым цеолитом Y, устанавливают так, чтобы обеспечить по меньшей мере 0,1 мас.ч соли на 1 мас.ч цеолита в расчете на безводный. Концентрация раствора может достигать 10 н.
Величина pH суспензии цеолитов в растворе имеет очень большое значение для получаемого объема мезопор и для регулирования избытка оксида алюминия в решетке, остающегося в цеолите, что влияет на соотношение SiO2/Al2O3. Если величину pH раствора поддерживают или устанавливают в диапазоне от 3 до 8 перед контактированием с цеолитом, то объем мезопор составляет от 0,23 до 0,42 см3/г или выше, в зависимости от температуры. Соотношение SiO2/Al2O3 существенно не возрастает при этих величинах pH. Если pH ниже 3, то мезопор составляет от 0,23 до 0,3 см3/г или выше, в зависимости от температуры и длительности гидротермической обработки. Таких величин pH достигают с помощью кислот, предпочтительно азотной кислоты, при этом соотношение SiO2/Al2O3 возрастает по мере удаления из решетки некоторой части избыточного оксида алюминия.
Регулирование температуры и длительности обработки крайне важно для обеспечения контролируемого и заметного увеличения объема мезопор в получаемом продукте. При низких температурах, например, 110oC, требуется 72 часа для получения несколько большего объема мезопор по сравнению с известными способами. Проведение гидротермической обработки при 125oC или выше требует гораздо меньше времени для получения объема мезопор выше 0,22 см3/г. Предпочтительно использовать температуры от 135 до 250oC и длительность обработки от 1 - 5 минут до 24 часов.
Цеолиты, полученные предложенным способом из VUSY, имеют структуру цеолита Y, но с более узким диапазоном изменения константы единичной ячейки (ao) - от 24,27 до 24,5 A, аналогично исходным VUSY. У этих цеолитов мольное соотношение SiO2/Al2O3 составляет от 5 до 15 или от 25 до 30 или выше, при содержании Na2O менее 0,08%. Объем мезопор в этих продуктах превышает 0,22 см3/г, обычно он значительно выше 0,25 см3/г. Цеолиты, полученные при гидротермической обработке раствором соли, не содержащим кислоты, обычно имеют объем мезопор от 0,23 до 0,55 см3/г и соотношение SiO2/Al2O3 от 5 до 9. Если перед нагреванием величину pH суспензии цеолитов в растворе соли устанавливают в интервале от 6,5 до 7,5, то объем мезопор составляет от 0,35 до 0,55 см3/г. При давлении кислоты в суспензию цеолитов в растворе для снижения pH, полученный продукт имеет объем мезопор от 0,23 до 0,32 см3/г и соотношение SiO2/Al2O3 от 7,5 до 15 или даже до 25, возможно, до 30 и выше.
С увеличением объема мезопор происходит уменьшение площади поверхности цеолита и в некоторых случаях частичное разрушение его кристаллической структуры. Кристалличность может снизиться примерно до 50% исходной в продуктах с объемом мезопор, приближающимся к 0,5 см3/г.
Цеолиты VUSY, полученные при обработке исходных VUSY, применяют в качестве носителей для катализаторов различных превращений углеводородов. Их особенно успешно применяют в процессах, где используют тяжелую сырую нефть, поскольку большие молекулы углеводородов легче диффундируют к каталитическим активным центрам через крупные мезопоры.
Супердеалюминированные ультрастабильные цеолиты Y (SDUSY).
Цеолиты SDUSY представляют собой цеолиты Y с наименьшим из всех классов этих цеолитов размером единичной ячейки, который обычно составляет 24,27 A или менее, чаще от 24,27 A до нижнего предела, достигаемого в цеолитах Y и обычно равного 24,09 A, при этом соотношение SiO2/Al2O3 составляет 20 и выше, чаще от 20 до 100 или даже 300 и выше. Объем мезопор исходных цеолитов (известных материалов) обычно менее 0,25 см3/г. Предложенный способ обеспечивает увеличение объема мезопор исходных материалов по меньшей мере на 5%. Так, обработка исходного цеолита с объемом мезопор около 0,25 см3/г позволяет получить продукт с объемом мезопор около 0,26 см3/г или выше. Обычно объем мезопор составляет от 0,3 до 0,6 см3/г.
Цеолиты SDUSY с большим объемом мезопор получают из цеолитов Y, предварительно подвергнутых глубокому деалюминированию и стабилизации. В качестве исходных цеолитов используют фожазит, подвергнутый аммониевому ионообмену и несколько раз прокаленный с водяным паром, а также обработанный кислотой для облегчения деалюминирования. Эти материалы представляют собой супердеалюминированные ультрастабильные цеолиты Y с соотношением SiO2/Al2O3 от 20 или выше до 200-300 или выше, предпочтительно до 80 или выше. Содержание Na2O в этих материалах - менее 0,1%, константа единичной ячейки (ao - от 24,27 до нижнего предела для SDUSY, составляющего около 24,09 A, объем мезопор - значительно меньше 0,25 см3/г для пор диаметром от 2 до 60 нм. Получение и свойства таких сверхстабильных цеолитов описано в работе [10] и патентах [11, 12]. Можно также использовать аналогичные цеолиты, полученные другими способами.
Исходный цеолит приводят в контакт с описанным выше гидротермическим раствором, предпочтительно раствором одной или нескольких солей, и, возможно, веществом, изменяющим pH раствора. Затем смесь нагревают, при этом сочетание температуры и длительности обработки должно быть достаточным для обеспечения требуемой степени увеличения объема мезопор. Предпочтительно температура равна по меньшей мере 115oC. Установлено, что необходимо проводить обработку в течение двух или более часов, иногда время обработки составляет от 1-5 минут до 24 часов. Величина pH суспензии должна быть равной или меньше 7. Более высокие величины pH не обеспечивают требуемых свойств.
Предпочтительно в растворах для обработки используют одну или несколько неорганических солей. Предпочтительными являются нитраты щелочных металлов или аммония, последний наиболее предпочтителен. Концентрацию и количество раствора, контактирующего со сверхстабилизируемых цеолитом Y, устанавливают так, чтобы обеспечить по меньшей мере 0,1 мас. ч соли на 1 мас. ч цеолита в расчете на безводный. Концентрация раствора может достигать 10 н.
Величина pH суспензии цеолитов в растворе имеет очень большое значение для получаемого объема мезопор и для регулирования избытка оксида алюминия в решетке, остающегося в цеолите, что влияет на соотношение SiO2/Al2O3. Если величину pH раствора поддерживают или устанавливают в диапазоне от 3 до 7 перед контактированием с цеолитом, то объем мезопор составляет от 0,25 до 0,6 см3/г или выше, в зависимости от температуры. Таких величин pH достигают с помощью кислот, предпочтительно азотной кислоты, при этом соотношение SiO2/Al2O3 возрастает по мере удаления из решетки цеолита некоторой части избыточного оксида алюминия.
Регулирование температуры и длительности обработки крайне важно для обеспечения контролируемого и значительного увеличения объема мезопор в получаемом продукте. При низких температурах, например, 110oC, требуется 72 часа для получения несколько большего объема мезопор по сравнению с полученным известными способами. Проведение гидротермической обработки при 125oC или выше требует гораздо меньше времени для получения объема мезопор выше 0,25 см3/г. Предпочтительно использовать температуры от 135 до 250oC и длительность обработки от 1-5 минут до 24 часов. Для цеолитов SDUSY требуются более жесткие условия, более высокие температуры и/или большая длительность обработки, чем для других классов цеолитов, для получения эквивалентного увеличения объема мезопор.
Цеолиты, полученные предложенным способом из SDUSY, имеют структуру цеолита Y, но с более узким диапазоном изменения константы единичной ячейки (ao) - от 24,27 до нижнего передела для цеолитов SDUSY, обычно равного 24,09 A, как и в исходном SDUSY. У этих цеолитов мольное соотношение SiO2/Al2O3 составляют от 20 до 100 или выше, например, до 300 или выше, при содержании Na2O менее 0,05% и объеме мезопор обычно выше 0,25 см3/г.
Цеолиты SDUSY, полученные при обработке исходных SDUSY, применяют в качестве носителей для катализаторов различных превращений углеводородов. Их особенно успешно применяют в процессах, где используют тяжелую сырую нефть, поскольку большие молекулы углеводородов могут легче диффундировать к каталитическим активным центрам через крупные мезопоры.
Приведенные ниже примеры иллюстрируют некоторые возможные варианты выполнения изобретения. Эти примеры не ограничивают объем притязаний, указанный в описании и в формуле изобретения. Соотношения даны в массовых частях (мас. ч), массовых процентах ( мас. %) или миллионных частях (млн.ч.), если не указано иное.
Константу единичной ячейки определяли по методу ASTM D 3942-80 "Определение размера единичной ячейки в цеолите типа фожазита". Степень кристалличности определяли при сопоставлении данных рентгеноструктурного анализа модифицированного цеолита с данными для стандартного цеолита, полученного известными способами. Характеристики поверхности цеолита (площадь поверхности, объем пор и распределение пор по размерам) определяли по адсорбции N2 при 77 K.
Пример 1 (сравнительный).
К 62,5 мл 4 н раствора NH4NO3 добавляли цеолит HY (9,0 г) при соотношении 2,2 мас.ч. соли на 1 мас.ч. цеолита в расчете на безводный. Суспензию загружали в автоклав и нагревали при 82oC в течение 2, 16 и 72 часов. По окончании опыта продукты фильтровали и промывали 200 мл деионизированной воды при 66oC. Характеристики исходного цеолита и полученных продуктов приведены в табл. 2.
Результаты показывают, что обработка при низкой температуре не позволяет получить требуемое увеличение объема мезопор даже при длительной обработке.
Пример 2-6. Влияние температуры.
Процесс обработки проводили так же, как в примере 1, за исключением того, что цеолиты обрабатывали в автоклаве при разных температурах. Длительность обработки составляла 16 часов. Условия обработки и свойства полученных цеолитов приведены в табл. 3
Результаты показывают, что с увеличением температуры возрастают объем мезопор и общий объем пор, а мольное соотношение оксида кремния и оксида алюминия SiO2/Al2O3 заметно не меняется.
Примеры 7 - 9. Замена NH4NO3 на NaNO3.
Процесс обработки проводили так же, как в примере 2, за исключением того, что вместо раствора NH4NO3 использовали раствор NaNO3. Температура обработки и свойства полученных цеолитов приведены в табл. 4.
Результаты показывают, что гидротермическая обработка раствором NaNO3 эффективна с точки зрения увеличения объема мезопор, однако при этом сохраняется сравнительно высокое содержание натрия в цеолите.
Примеры 10 - 12. Замена NH4NO3 или NaNO3 на (NH4)2SO4.
Процесс обработки проводили так же, как в примерах 7 - 9, за исключением того, что вместо раствора NaNO3 использовали раствор (NH4)2SO4. Условия и результаты приведены в табл. 5.
Результаты показывают, что при обработке сульфатами необходимы несколько более высокие температуры для получения требуемого увеличения объема мезопор.
Примеры 13 и 14. Использование соли и кислоты.
Процесс обработки проводили так же, как в примере 3, за исключением того, что к суспензии цеолитов в растворе соли добавляли кислоту (4 н HNO3) в разных количествах. В табл. 6 приведены условия обработки и полученные результаты.
Результаты показывают, что добавление кислоты в раствор соли, содержащей цеолиты, обеспечивает увеличение мольного соотношения SiO2/Al2O3, при этом объем мезопор мало меняется, по сравнению с результатами, полученными в результате обработки без кислоты.
Примеры 15 и 16. Влияние длительности обработки в присутствии кислоты.
Процесс обработки проводили так же, как в примере 13, за исключением того, что изменяли продолжительность обработки. В табл. 7 приведены условия обработки и полученные результаты.
Результаты показывают, что объем мезопор возрастает с увеличением длительности обработки.
Примеры 17 и 19. Влияние длительности обработки.
Процесс обработки проводили так же, как в примере 2, за исключением того, что длительность обработки составляла 2, 6 и 18 часов соответственно. В табл. 8 приведены условия обработки и полученные результаты.
Результаты показывают, что с увеличением продолжительности обработки возрастает объем мезопор.
Примеры 20 - 24. Влияние pH.
Процесс обработки проводили так же, как в примере 3, за исключением того, что изменяли pH раствора соли. Для получения требуемого pH добавляли соответствующие количества гидроксида аммония. Условия обработки и результаты приведены в табл.9.
Результаты показывают, что увеличение объема мезопор происходит в наибольшей степени при значениях pH 8 или меньше. Также очевидно, что при pH от 8 до 10 можно достичь увеличения объема мезопор по сравнению с получаемым известными способами.
Примеры 25 - 30. Влияние pH при повышенных температурах
Процесс обработки проводили так же, как в примере 5, за исключением того, что изменяли pH раствора соли добавлением соответствующего количества гидроксида аммония для получения требуемого pH. Условия обработки и результаты приведены в табл. 10.
Результаты показывают, что при увеличении pH до 10 или 12 не удается получить требуемой величины объема мезопор даже при температуре обработки 180oC. Также очевидно, что объем мезопор диаметром от 10 до 60 нм значительно увеличивается при pH 7 и температуре 180oC. Сравните объем мезопор диаметром от 10 до 60 нм в примерах 25 и 20.
Примеры 31 и 32. Гидротермическая обработка с использованием только кислоты.
В 30 мл деионизированной воды суспендировали цеолиты HY (3 г), затем добавляли 4 н HNO3 в количестве, достаточном для соотношения 1 и 4 мг-экв H+ на 1 г цеолитов соответственно. Суспензии нагревали 1 час при 149oC. В табл. 11 представлены результаты. В таблицу включен сравнительный пример с нагреванием 2 часа при более низкой температуре.
Результаты показывают, что объем мезопор может быть увеличен гидротермической обработкой кислотой, если температура составляет более 115oC, а концентрация кислоты - примерно 4 мг-экв H+ на грамм цеолитов.
Примеры 33 - 36. Замена NH4NO3 на NH4Cl - влияние pH.
Процесс обработки проводили так же, как в примере 3, за исключением того, что вместо NH4NO3 использовали NH4Cl, а величину pH изменяли добавлением кислоты или NH4OH. Условия и результаты представлены в табл. 12.
Результаты показывают, что объем мезопор возрастает при замене MH4NO3 на NH4Cl. Сравните результаты примеров 34 и 3.
Пример 37 (сравнительный).
Процесс обработки проводили так, как в примере 26, за исключением того, что величина pH была равна 7,2, температура - 82oC, а длительность обработки - 72 часа. Объем мезопор полученных цеолитов составил 0,101 см3/г. Результат показывает, что температуры ниже 115oC не обеспечивают требуемого увеличения объема мезопор даже при оптимальном pH и длительном нагревании.
Примеры 38 - 41. Влияние температуры.
Деалюминированные цеолиты Y, имеющие значительно меньшую величину aо (24,33 A), взаимодействовали с 3 н. раствором MH4NO3 в течение 48 часов. Соотношение MH4NO3 и безводных цеолитов составляло 1 : 1 (мас.). Различные условия обработки и результаты представлены в табл. 13.
Результаты показывают, что при повышении температуры объем мезопор возрастает, а соотношение SiO2/Al2O3 практически не меняется. Также очевидно, что температура должна быть выше 110oC, чтобы обеспечить требуемое увеличение объема мезопор.
Примеры 42 - 44. Влияние температуры.
Деалюминированные цеолиты, имеющие aо = 24,33 A, подвергали взаимодействию с 6 н. раствором NH4NO3 в течение 18 часов при разных температурах. Соотношение NH4NO3 и безводных цеолитов составляло 2,1 : 1 (мас.). Условия обработки и полученные свойства приведены в табл. 14.
Результаты показывают, что при более высоких температурах получают больший объем мезопор. Также очевидно, что температуры около 100oC не обеспечивают требуемого увеличения объема мезопор даже при замене 1 мас.ч. NH4NO3, используемой в экспериментах, представленных в табл. 13, на 2 мас.ч. NH4NO3.
Примеры 45 - 47. Влияние температуры.
Деалюминированные цеолиты с aо = 24,37 A подвергали взаимодействию с 6 н. раствором NH4NO3 в течение 6 часов при разных температурах. Соотношение NH4NO3 и безводных цеолитов составляло 2,1 : 1 (мас.). Условия обработки и полученные свойства приведены в табл. 15.
Результаты вновь показывают, что при более высоких температурах получают объем мезопор.
Примеры 48 - 52. Влияние длительности обработки на объем мезопор.
Деалюминированные цеолиты с понижающей величиной ao (24, 33 A) подвергали взаимодействию с 3 н раствором NH4NO3 при 149oC при разной продолжительности взаимодействия. Соотношение NH4NO3 и безводных цеолитов составляло 1: 1 (мас. ). В табл. 15 приведены общая длительность нагревания, продолжительность нагревания при 149oC и характеристики исходного цеолита и продуктов.
Результаты показывают, что при увеличении длительности гидротермической обработки объем мезопор возрастает. Очевидно, что объем мезопор можно увеличить без значительных изменений SiO2/Al2O3. Видно также, что с увеличением объема мезопор объем микропор уменьшается.
Примеры 53 и 54. Влияние длительности обработки.
Деалюминированные цеолиты Y с ao=24,37 A подвергали взаимодействию с 6 н раствором NH4NO3 при 150oC при разной длительности обработки. Соотношение NH4NO3 и цеолитов составляло 2,1 : 1 (мас.). В табл. 17 приведены общая продолжительность нагревания и характеристики цеолитов.
Результаты вновь показывают, что объем мезопор увеличивается с увеличением длительности обработки.
Примеры 55 - 60. Влияние аниона соли.
Деалюминированные цеолиты Y с a0=24,35 A подвергали взаимодействию при 120 или 150oC с 6 н. раствором NH4NO3 или (NH4)2SO4. Общая длительность нагревания составляла 3 часа. Соотношение солей и цеолитов составляло 2,1:1 (мас. ) для NH4NO3 или 1,7: 1 (мас.) для (NH4)2SO4. В табл. 18 приведены анионы солей, температурные условия и характеристики полученных цеолитов.
Результаты показывают, что сульфат не столь эффективен, как нитрат для увеличения объема мезопор. Рентгенокристаллические измерения показывают, что при использовании в качестве соли (NH4)2SO4 образуется кристаллический основной сульфат алюминия, который, очевидно, занимает место во внутреннем объеме кристаллов цеолитов.
Примеры 61 - 63. Влияние аниона соли.
Деалюминированные цеолиты Y с a0=24,37 A подвергали взаимодействию при 150o с 6 н раствором NH4NO3, (NH4)2SO4 или NH4C. Перед взаимодействием с цеолитами растворы аммониевых солей были слегка подкислены. Общая длительность нагревания составляла 6 часов. Соотношение соли и цеолита при взаимодействии составляло соответственно 2,1, 1,7 и 1,4 (мас.) для нитрата, сульфата и хлорида. Эти соотношения обеспечивают одно и то же эквивалентное соотношение NH4/цеолит при взаимодействии. В табл. 19 приведены анионы солей и характеристики цеолитов.
Результаты показывают, что объем мезопор увеличивается при использовании нитрата, но не хлорида или сульфата. В последнем случае образуется кристаллический основной сульфат алюминия, очевидно, остающийся во внутренних порах цеолита, что снижает объем пор и кристалличность. Основной сульфат алюминия образуется даже в условиях слабокислой среды.
Примеры 64 - 69. Влияние подкисления раствора нитрата.
Деалюмирированные цеолиты Y с a0 = 24,33 A взаимодействовали с 4 н. раствором NH4NO3 при 130oC и общей длительности нагревания 4 часа. В каждом из опытов раствор NH4NO3 слегка подкисляли разными количествами NHO3 перед взаимодействием с цеолитами. Во всех опытах соотношение NH4NO3 и цеолитов составляло 2,1: 1 (мас.). В табл. 20 приведены количества кислоты и характеристики цеолитов.
Результаты показывают, что при 130oC с увеличением количества кислоты возрастают как объем мезопор, так и соотношение SiO2/Al2O3. Возрастание этих величин более значительно, чем при проведении аналогичной обработки при 93oC.
Примеры 70 - 73. Влияние подкисления и температуры.
Деалюминированные цеолиты Y, использовавшиеся в качестве исходных в примерах 38-41, подвергали взаимодействию с 3 н. раствором NH4NO3 при 30oC в течение 4 часов (общая длительность нагревания). Соотношение NH4NO3 и цеолитов составляло 1:1 мас. В одном из опытов раствор NH4NO3 слегка подкисляли HNO3. Условия подкисления и характеристики цеолитов приведены в табл. 21.
Результаты вновь показывают, что при 130oC в кислой среде получают цеолиты с более высоким объемом мезопор и соотношением SiO2/Al2O3, чем в отсутствие кислоты.
Примеры 74 и 75. Влияние подкисления раствора нитрата.
Деалюминированные цеолиты с ao= 24,37 A подвергали взаимодействию с 6 н раствором NH4NO3 при 180oC в течение 6 часов (общая длительность нагревания). Соотношение NH4NO3 и цеолитов составляло 2:1 мас. В одном из опытов раствор NH4NO3 слегка подкисляли и характеристики цеолитов приведены в табл. 22.
Результаты показывают, что после обработки при 180oC объем мезопор значительно увеличивается, однако в присутствии кислоты - в меньшей степени, чем в ее отсутствие. Соотношение SiO2/Al2O3 заметно не меняется и соизмеримо с этим соотношением после обработки при 130oC.
Примеры 76 - 79. Влияние pH.
Деалюминированные цеолиты с ao=24,37 A подвергали взаимодействию с 6 н раствором NH4NO3 при соотношении NH4NO3 и цеолитов 2,1:1 мас. В отдельных опытах изменяли величину pH добавлением гидроксида аммония или HNO3 для достижения требуемой величины pH. Обработку проводили при 150oC и общей продолжительности нагревания 6 часов. Характеристики приведены в табл. 23.
Результаты показывают, что наибольший объем мезопор получен при pH, примерно равном 7. При pH выше 8 наблюдается значительное снижение кристалличности, площади поверхности и объема пор по сравнению с максимальными величинами, полученными после обработки при pH7. Соотношение SiO2/Al2O3 продуктов обработки в присутствии гидроксида аммония существенно не отличается от этого соотношения в исходном цеолите Y.
Примеры 76 - 79. Влияние pH раствора хлорида.
Повторяли процедуру примеров 76 - 79 за исключением того, что вместо NH4NO3 использовали NH4Cl. Условия обработки и результаты приведены в табл. 24.
Результаты вновь показывают, что при pH, примерно равном 7, получают максимальный объем мезопор. При pH выше 8 наблюдается значительное снижение кристалличности, площади поверхности и объема пор по сравнению с максимальными величинами, полученными после обработки при pH 7.
Примеры 85 и 86. Влияние катиона соли.
Повторяли процедуру примеров 46 и 47, за исключением того, что вместо 6 н. раствора NH4NO3 использовали 6 н. раствор NaNO3. Обработку проводили при температурах 150 или 180oC, общая продолжительность нагревания 6 часов. Условия и свойства полученных цеолитов приведены в табл. 25, для сравнения даны также результаты обработки NH4NO3.
Результаты показывают, что при получении большого объема мезопор NH4NO3 более эффективен, чем NaNO3.
Пример 87.
Деалюминированные цеолиты SDUSY с пониженной величиной ao (24,26 A) подвергали взаимодействию с 4 н раствором NH4NO3 в течение 6 часов при 220oC. Соотношение NH4NO3 и безводных цеолитов составляло 1,5:1 мас. Результаты приведены в табл. 26.
Результаты показывают, что при высоких температурах (200oC) получают увеличение объема мезопор при сравнительно неизменном соотношении SiO2/Al2O3.
Пример 88.
Цеолиты NaY (3,5 г) добавляли к 80 мл 2 н. раствора NH4NO3 при соотношении соли и безводных цеолитов 3,6 : 1 масс. Суспензию загружали в автоклав и нагревали при 200oC в течение 16 часов. Опыт завершали фильтрованием и промывкой деионизированной водой при 66oC. Свойства исходных цеолитов и полученного продукта приведены в табл. 27.
Результаты показывают, что при обработке цеолита Y при повышенной температуре достигается необходимое увеличение объема мезопор даже без предварительной стадии стабилизации исходного сырья водяным паром.

Claims (22)

1. Стабилизированный цеолит, имеющий структуру цеолита Y и объем мезопор, заключенный в мезопорах диаметром примерно 2 - 60 нм, при взаимосвязи молярного отношения SiO2/Al2O3 (МСКА), константы единичной ячейки ao и объема мезопор, определяемых следующей таблицей:
2. Цеолит по п.1, относящийся к типу USY.
3. Цеолит по п.2, в котором объем мезопор составляет примерно 0,2 - 0,6 см3/г.
4. Цеолит по п.1, относящийся к типу VUSY.
5. Цеолит по п.4, в котором объем мезопор составляет примерно 0,3 - 0,6 см3/г.
6. Цеолит по п.1, относящийся к типу SDUSY.
7. Цеолит по п.6, в котором объем мезопор составляет примерно 0,3 - 0,6 см3/г.
8. Способ увеличения объема мезопор, заключенного в мезопорах диаметром примерно 2 - 60 нм, цеолита, имеющего структуру цеолита типа Y, включающий проведение гидротермического взаимодействия указанного цеолита с водным раствором, в котором растворены одна или несколько солей, кислот, оснований и/или водорастворимых органических соединений, которое осуществляют при температуре выше атмосферной точки кипения раствора в течение времени, достаточного для получения цеолитов с увеличенным объемом мезопор диаметром 2 нм и выше, по меньшей мере на 5% выше, чем объем мезопор цеолита перед указанным взаимодействием, последующее отделение, промывку и выделению полученного цеолита.
9. Способ по п.8 в котором рН 10 или ниже.
10. Способ по п.8 в котором рН 8 или ниже.
11.Способ по п.8 в котором 7 или ниже.
12. Способ по п.8 в котором рН 8 - 10.
13. Способ по п.8 в котором рН 4,5 - 8,0. 2 14. Способ по п.8 в котором pH менее рН 4,5
15. Способ по 8, в котором соль представляет собой соль щелочного металла или соль аммония.
16. Способ по 15, в котором соль представляет собой нитрат, хлорид или сульфат.
17. Способ по п.8, в котором кислота представляет собой сильную неорганическую кислоту.
18. Способ по п.8, в котором кислотой является азотная кислота.
19. Способ по п.8, в котором соль представляет собой нитрат щелочного металла или аммония, а кислотой является азотная кислота.
20. Способ по п.8, в котором получаемый цеолит, соотношение константы единичной ячейки ao и объема мазопор определены в следующей таблице:
21. Способ по п.8, в котором длительность взаимодействия составляет от 1 мин до 24 ч.
22. Способ по п.8, в котором длительность взаимодействия является достаточной для получения цеолитов с объемом мезопор по меньшей мере на 5% выше объема мезопор исходных цеолитов.
23. Способ по п.8, в котором длительность взаимодействия является достаточной для получения цеолитов с объемом мезопор по меньшей мере на 10% выше объема мезопор исходных цеолитов.
24. Способ по п.8, в котором температура составляет 115oC или выше.
25. Способ по п.8, в котором температура составляет 115oC - 250oC.
26. Цеолиты, полученные любым из способов по пп.8-25.
Приоритет по пунктам и признакам:
08.09.93 по п.1 в отношении признаков, относящихся к типу VUSY; по пп. 2,4 и 16; по п.8 в отношении взаимодействия цеолита с раствором одной или нескольких солей; по п.15 в отношении соли аммония; п.19 в отношении нитрата аммония и азотной кислоты; по пп.20-26 в отношении признаков, относящихся к типу VUSY;
08.09.93 по п. 1 - признаки, относящиеся к типу USY; по п.8 - взаимодействие цеолита с раствором одной или нескольких кислот; по пп.9, 12-14, 17 и 18; по пп.20-26 - признаки, относящиеся к типу USY;
30.08.94 по пп.3, 5-7; по п.8 - взаимоотношение цеолита с раствором одного или нескольких оснований и/или водорастворимых органических соединений; по пп. 10 и 11, по п.15 - в отношении соли щелочного металла; по пп.20-26 - признаки, относящиеся к типам Y и SDUSY.
RU96107261A 1993-09-07 1994-09-06 Способ получения цеолита y с увеличенным объемом мезопор и цеолиты RU2127227C1 (ru)

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
US11663593A 1993-09-07 1993-09-07
US08/116.635 1993-09-07
US08/116,635 1993-09-07
US11777693A 1993-09-08 1993-09-08
US08/117.776 1993-09-08
US08/117,776 1993-09-08
US08/298,158 US5601798A (en) 1993-09-07 1994-08-30 Process for preparing zeolite Y with increased mesopore volume
US08/298.158 1994-08-30
US08/298,158 1994-08-30
PCT/US1994/009991 WO1995007236A1 (en) 1993-09-07 1994-09-06 Process for preparing zeolite y with increased mesopore volume

Publications (2)

Publication Number Publication Date
RU96107261A RU96107261A (ru) 1998-07-27
RU2127227C1 true RU2127227C1 (ru) 1999-03-10

Family

ID=27381856

Family Applications (1)

Application Number Title Priority Date Filing Date
RU96107261A RU2127227C1 (ru) 1993-09-07 1994-09-06 Способ получения цеолита y с увеличенным объемом мезопор и цеолиты

Country Status (12)

Country Link
US (1) US5601798A (ru)
EP (1) EP0719238A1 (ru)
JP (1) JPH09502416A (ru)
AU (1) AU690141B2 (ru)
BR (1) BR9407423A (ru)
CA (1) CA2171196A1 (ru)
CZ (1) CZ68396A3 (ru)
FI (1) FI961071A (ru)
NO (1) NO960909L (ru)
RU (1) RU2127227C1 (ru)
SK (1) SK30596A3 (ru)
WO (1) WO1995007236A1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2487756C1 (ru) * 2009-04-29 2013-07-20 ПиКью КОРПОРЕЙШН Цеолит y
US11518684B2 (en) 2018-05-28 2022-12-06 China Petroleum & Chemical Corporation NaY molecular sieve with an aluminum-rich surface and a process of preparing same
RU2792150C2 (ru) * 2018-05-28 2023-03-17 Чайна Петролеум Энд Кемикал Корпорейшн МОЛЕКУЛЯРНОЕ СИТО NaY С ОБОГАЩЕННОЙ АЛЮМИНИЕМ ПОВЕРХНОСТЬЮ И СПОСОБ ЕГО ПОЛУЧЕНИЯ

Families Citing this family (77)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5840271A (en) * 1996-02-09 1998-11-24 Intevep, S.A. Synthetic material with high void volume associated with mesoporous tortuous channels having a narrow size distribution
US5849258A (en) * 1996-06-06 1998-12-15 Intevep, S.A. Material with microporous crystalline walls defining a narrow size distribution of mesopores, and process for preparing same
AU3232997A (en) * 1996-06-07 1998-01-05 Chevron U.S.A. Inc. Zeolite me-utd-1
CN1068528C (zh) * 1997-08-27 2001-07-18 中国石油化工总公司 具有丰富次级孔的y沸石及其制备方法
US6846403B2 (en) * 1998-12-28 2005-01-25 Mobil Oil Corporation Gasoline sulfur reduction in fluid catalytic cracking
US6852214B1 (en) * 1998-08-31 2005-02-08 Mobil Oil Corporation Gasoline sulfur reduction in fluid catalytic cracking
US6974787B2 (en) 1998-08-31 2005-12-13 Exxonmobil Corporation Gasoline sulfur reduction in fluid catalytic cracking
US20020153283A1 (en) * 1998-12-28 2002-10-24 Arthur W Chester Gasoline sulfur reduction in fluid catalytic cracking
US6136291A (en) * 1998-10-08 2000-10-24 Mobile Oil Corporation Faujasite zeolitic materials
US7803267B2 (en) * 1998-12-28 2010-09-28 W. R. Grace & Co.-Conn. Gasoline sulfur reduction in fluid catalytic cracking
US7084087B2 (en) * 1999-09-07 2006-08-01 Abb Lummus Global Inc. Zeolite composite, method for making and catalytic application thereof
US6814950B1 (en) * 1999-09-07 2004-11-09 Abb Lummus Global Inc. Inorganic oxides with mesoporosity or combined meso-and microporosity and process for the preparation thereof
EP1214272B1 (en) * 1999-09-07 2010-10-27 Technische Universiteit Delft Inorganic oxides with mesoporosity or combined meso-and microporosity and process for the preparation thereof
US7361797B2 (en) * 2002-02-05 2008-04-22 Abb Lummus Global Inc. Hydrocarbon conversion using nanocrystalline zeolite Y
US7507686B2 (en) * 2002-12-03 2009-03-24 W. R. Grace & Co. - Conn. Gasoline sulfur reduction in fluid catalytic cracking
US20050077244A1 (en) * 2003-10-12 2005-04-14 Felix Rodriguez Method and composition for control of microbial contamination in drinking water produced by condensation
GB0329106D0 (en) * 2003-12-16 2004-01-21 Leuven K U Res & Dev Pressure driven separations of liquid feeds
US8439047B2 (en) * 2003-12-22 2013-05-14 Philip Morris Usa Inc. Composite mesoporous/microporous materials and their use in smoking articles for removing certain gas phase constituents from tobacco smoke
US7807110B2 (en) 2004-03-12 2010-10-05 Cormetech Inc. Catalyst systems
US8084383B2 (en) * 2004-03-16 2011-12-27 W.R. Grace & Co.-Conn. Gasoline sulfur reduction catalyst for fluid catalytic cracking process
US7589041B2 (en) * 2004-04-23 2009-09-15 Massachusetts Institute Of Technology Mesostructured zeolitic materials, and methods of making and using the same
US7776786B2 (en) * 2004-05-04 2010-08-17 Cormetech, Inc. Catalyst systems advantageous for high particulate matter environments
EP1938898B1 (en) * 2005-09-12 2019-06-12 Petroleum Energy Center Catalyst composition for hydrogenation treatment of hydrocarbon and hydrogenation treatment method
CA2625544A1 (en) * 2005-10-12 2007-04-19 Valorbec Societe En Commandite, Represented By Gestion Valeo S.E.C. Silica nanoboxes, method of making and use thereof
JP4984816B2 (ja) * 2005-11-29 2012-07-25 株式会社デンソー メソポーラス構造体の製造方法
JP2009545437A (ja) * 2006-08-01 2009-12-24 コーメテック, インコーポレイテッド 排ガス処理のための組成物および方法
ES2319007B1 (es) * 2006-12-07 2010-02-16 Rive Technology, Inc. Metodos para fabricar materiales zeoliticos mesoestructurados.
US8206498B2 (en) * 2007-10-25 2012-06-26 Rive Technology, Inc. Methods of recovery of pore-forming agents for mesostructured materials
US8932454B2 (en) 2008-09-18 2015-01-13 Exxonmobile Research And Engineering Co. Mesoporous Y hydrocracking catalyst and associated hydrocracking processes
US8361434B2 (en) * 2008-09-18 2013-01-29 Exxonmobil Research And Engineering Company Extra mesoporous Y zeolite
TW201029929A (en) * 2008-12-18 2010-08-16 Grace W R & Co Novel ultra stable zeolite Y and method for manufacturing the same
US9242234B2 (en) 2008-12-22 2016-01-26 Centre National De La Recherche Scientifique Modified Y-type zeolites having a trimodal intracrystalline structure, method for making same, and use thereof
FR2940265B1 (fr) * 2008-12-22 2011-06-10 Total Raffinage Marketing Zeolithes y modifiees, leur procede de fabrication et leur utilisation
US8524625B2 (en) * 2009-01-19 2013-09-03 Rive Technology, Inc. Compositions and methods for improving the hydrothermal stability of mesostructured zeolites by rare earth ion exchange
CN102333728A (zh) 2009-01-19 2012-01-25 里福技术股份有限公司 在低Si/Al沸石中引入介孔
JP5508744B2 (ja) * 2009-03-13 2014-06-04 出光興産株式会社 ベータゼオライトの製造方法及び水素化分解触媒の製造方法
CN102020289B (zh) * 2009-09-10 2012-07-25 中国石油化工股份有限公司 一种超稳y沸石及其制备和应用方法
US8685875B2 (en) * 2009-10-20 2014-04-01 Rive Technology, Inc. Methods for enhancing the mesoporosity of zeolite-containing materials
FR2952379B1 (fr) * 2009-11-10 2012-05-11 Inst Francais Du Petrole Procede d'hydrocraquage mettant en oeuvre une zeolithe modifiee par un traitement basique
FR2952380B1 (fr) * 2009-11-10 2012-05-18 Inst Francais Du Petrole Procede de production de distillat moyen a partir de cires fischer tropsch mettant en oeuvre un catalyseur a base de zeolithe modifiee par un traitement basique
FR2952378B1 (fr) * 2009-11-10 2012-04-20 Inst Francais Du Petrole Procede d'hydrotraitement et d'hydroisomerisation de charges issues de source renouvelable mettant en oeuvre une zeolithe modifiee par un traitement basique
US20110171121A1 (en) * 2010-01-08 2011-07-14 Rive Technology, Inc. Compositions and methods for making stabilized mesoporous materials
US20110224068A1 (en) * 2010-03-11 2011-09-15 W.R. Grace & Co.-Conn. Low small mesoporous peak cracking catalyst and method of using
FR2958297B1 (fr) 2010-03-30 2013-11-29 Total Raffinage Marketing Procede de valorisation d'essence
FR2969510B1 (fr) * 2010-12-23 2014-06-13 Total Raffinage Marketing Procede de preparation d'un catalyseur industriel d'hydroconversion, catalyseur ainsi obtenu et son utilisation dans un procede d'hydroconversion
JP2012140287A (ja) * 2010-12-28 2012-07-26 Jgc Catalysts & Chemicals Ltd 新規なフォージャサイト型ゼオライトおよびその製造方法、ならびに該フォージャサイト型ゼオライトを含む炭化水素接触分解用触媒
AU2012240093B2 (en) * 2011-04-08 2015-06-11 W. R. Grace & Co.-Conn. Mesoporous framework-modified zeolites
CN103889572B (zh) * 2011-10-24 2017-02-15 道达尔炼油法国 用于制备介孔化催化剂的方法、由此获得的催化剂及其在催化工艺中的用途
KR102008954B1 (ko) * 2011-10-24 2019-08-08 토탈 라피나쥬 프랑스 메조기공-함유 촉매의 제조방법, 이에 따라 획득된 촉매 및 이의 수소첨가전환 공정에서의 용도
FR2981584B1 (fr) * 2011-10-24 2019-09-20 Total Raffinage France Procede de preparation d'un catalyseur d'hydroconversion, catalyseur ainsi obtenu et son utilisation dans un procede d'hydroconversion
FR2981583B1 (fr) * 2011-10-24 2019-05-17 Total Raffinage France Procede de preparation d'un catalyseur contenant des mesopores, catalyseur ainsi obtenu et son utilisation dasn un procede d'hydroconversion
CN103889573B (zh) 2011-10-24 2016-08-24 道达尔炼油法国 用于制备加氢转化催化剂的方法、由此获得的催化剂及其在加氢转化方法中的用途
US9376324B2 (en) 2012-01-13 2016-06-28 Rive Technology, Inc. Introduction of mesoporosity into zeolite materials with sequential acid, surfactant, and base treatment
CN103930369A (zh) 2012-01-13 2014-07-16 瑞弗科技有限公司 低硅沸石的中孔隙率的引入
US9993810B2 (en) 2012-07-23 2018-06-12 W. R. Grace & Co.-Conn Silica sol bound catalytic cracking catalyst stabilized with magnesium
US10005072B2 (en) 2012-07-23 2018-06-26 W. R. Grace & Co.-Conn High matrix surface area catalytic cracking catalyst stabilized with magnesium and silica
US8765660B1 (en) 2013-03-08 2014-07-01 Rive Technology, Inc. Separation of surfactants from polar solids
CN103172082B (zh) * 2013-04-25 2014-10-22 哈尔滨工业大学 一种含介孔的y型分子筛的制备方法
FR3010071B1 (fr) * 2013-09-02 2015-08-21 Ceca Sa Zeolithes a porosite hierarchisee
US9662640B2 (en) 2013-12-27 2017-05-30 Rive Technology, Inc. Introducing mesoporosity into zeolite materials with a modified acid pre-treatment step
US20160121312A1 (en) * 2014-10-31 2016-05-05 Chevron U.S.A. Inc. Middle distillate hydrocracking catalyst containing highly nanoporous stabilized y zeolite
US20160121313A1 (en) * 2014-10-31 2016-05-05 Chevron U.S.A. Inc. Middle distillate hydrocracking catalyst containing highly a stabilized y zeolite with enhanced acid site distribution
CN105621445B (zh) * 2014-11-03 2017-10-27 中国石油化工股份有限公司 一种NaY型分子筛及其制备方法
CN107001056B (zh) 2014-12-11 2019-04-02 瑞弗科技有限公司 以减少的处理制备介孔沸石
US10626019B2 (en) 2014-12-30 2020-04-21 W. R. Grace & Co.-Conn. Methods for preparing zeolites with surfactant-templated mesoporosity and tunable aluminum content
CN107344719B (zh) * 2016-05-05 2020-10-16 中国石油化工股份有限公司 Y-y型同晶复合分子筛及其制备方法
CN107344720B (zh) * 2016-05-05 2019-04-12 中国石油化工股份有限公司 一种y型分子筛及其制备方法
CN107758684B (zh) * 2016-08-23 2019-05-31 中国石油天然气集团公司 一种高介孔量y型沸石及其制备方法
IT201600105178A1 (it) 2016-10-19 2018-04-19 Versalis Spa Procedimento per la produzione di dieni
US11052381B2 (en) 2017-02-21 2021-07-06 China Petroleum & Chemical Corporation Modified Y-type molecular sieve, preparation thereof and catalyst comprising the same
SG11201907656VA (en) 2017-02-22 2019-09-27 China Petroleum & Chem Corp Catalytic cracking catalyst and preparation thereof
US10118163B1 (en) 2017-07-28 2018-11-06 Saudi Arabian Oil Company Methods for producing hierarchical mesoporous zeolite beta
CN111386242B (zh) 2017-07-31 2023-06-02 勒芬天主教大学 沸石后处理方法
GB201814932D0 (en) * 2018-09-13 2018-10-31 Univ Manchester Zeolite modification process and product thereof
US11559796B2 (en) 2020-07-28 2023-01-24 Saudi Arabian Oil Company Methods for producing hierarchical mesoporous beta zeolite
WO2023006908A1 (en) 2021-07-30 2023-02-02 Firmenich Sa Process for preparing a oxacylohexane or oxacylopentane derivative
WO2024003271A1 (en) 2022-06-30 2024-01-04 Firmenich Sa Process for preparation of ether, thioether or secondary amine derivatives in the presence of a heterogeneous acidic catalyst

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB972831A (en) * 1959-12-28 1964-10-21 Union Carbide Corp Crystalline zeolite y'
US3374056A (en) * 1964-12-03 1968-03-19 Grace W R & Co Process for increasing the thermal stability of synthetic faujasite
US3691099A (en) * 1970-02-27 1972-09-12 Dean Arthur Young Treatment of aluminosilicate
US3929672A (en) * 1971-10-20 1975-12-30 Union Oil Co Ammonia-stable Y zeolite compositions
US4879019A (en) * 1979-10-15 1989-11-07 Union Oil Company Of California Hydrocarbon conversion process for selectively making middle distillates
US5288396A (en) * 1979-10-15 1994-02-22 Union Oil Company Of California Hydrocracking process using a catalyst selective for making middle distillates
US4269815A (en) * 1980-05-23 1981-05-26 Filtrol Corporation Method of exchanging sodium zeolite
JPS5926925A (ja) * 1982-08-02 1984-02-13 Shokubai Kasei Kogyo Kk 改質ゼオライト
SE8602341D0 (sv) * 1986-05-22 1986-05-22 Eka Nobel Ab Sett att framstella en modifierad zeolit y
GB8613131D0 (en) * 1986-05-30 1986-07-02 Shell Int Research Hydrocarbon conversion
GB8613132D0 (en) * 1986-05-30 1986-07-02 Shell Int Research Hydrocarbon conversion catalysts
US4663025A (en) * 1986-08-14 1987-05-05 Phillips Petroleum Company Catalytic cracking processes
GB8708961D0 (en) * 1987-04-14 1987-05-20 Shell Int Research Preparation of modified zeolites
GB8708962D0 (en) * 1987-04-14 1987-05-20 Shell Int Research Preparation of modified zeolites
US5013699A (en) * 1988-04-07 1991-05-07 Uop Novel zeolite compositions derived from zeolite Y
AU624892B2 (en) * 1989-02-28 1992-06-25 Uop Middle distillate hydrocracking cayalyst employing low acidity Y zeolite
US5087348A (en) * 1989-06-19 1992-02-11 Texaco Inc. Hydrocarbon treating process
US5069890A (en) * 1989-06-19 1991-12-03 Texaco Inc. Zeolite treating process
US5350501A (en) * 1990-05-22 1994-09-27 Union Oil Company Of California Hydrocracking catalyst and process
US5143878A (en) * 1990-06-04 1992-09-01 Texaco Inc. Zeolite treating process
US5112473A (en) * 1990-06-04 1992-05-12 Texaco Inc. Hydrotreating or cracking process employing an acidified dealuminated Y-zeolite
US5227352A (en) * 1990-06-29 1993-07-13 Petroleum Energy Center Catalyst composition for catalytic cracking of hydrocarbon oil and process for producing the same
US5190903A (en) * 1991-03-31 1993-03-02 Uop Low acidity Y zeolite
US5242677A (en) * 1992-06-11 1993-09-07 Pq Corporation Stable zeolite of low unit cell constant and method of making same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2487756C1 (ru) * 2009-04-29 2013-07-20 ПиКью КОРПОРЕЙШН Цеолит y
US11518684B2 (en) 2018-05-28 2022-12-06 China Petroleum & Chemical Corporation NaY molecular sieve with an aluminum-rich surface and a process of preparing same
RU2792150C2 (ru) * 2018-05-28 2023-03-17 Чайна Петролеум Энд Кемикал Корпорейшн МОЛЕКУЛЯРНОЕ СИТО NaY С ОБОГАЩЕННОЙ АЛЮМИНИЕМ ПОВЕРХНОСТЬЮ И СПОСОБ ЕГО ПОЛУЧЕНИЯ

Also Published As

Publication number Publication date
EP0719238A4 (ru) 1996-08-07
CA2171196A1 (en) 1995-03-16
NO960909L (no) 1996-05-03
JPH09502416A (ja) 1997-03-11
CZ68396A3 (en) 1996-10-16
US5601798A (en) 1997-02-11
EP0719238A1 (en) 1996-07-03
FI961071A0 (fi) 1996-03-07
NO960909D0 (no) 1996-03-06
AU690141B2 (en) 1998-04-23
FI961071A (fi) 1996-05-07
WO1995007236A1 (en) 1995-03-16
SK30596A3 (en) 1997-03-05
BR9407423A (pt) 1996-04-09
AU7645294A (en) 1995-03-27

Similar Documents

Publication Publication Date Title
RU2127227C1 (ru) Способ получения цеолита y с увеличенным объемом мезопор и цеолиты
US3930987A (en) Catalyst and method of preparing same
KR101086993B1 (ko) 동일 반응계 내 zsm―5 합성
CN108698842B (zh) 对分子筛的受控碱处理
US5080878A (en) Modified crystalline aluminosilicate zeolite catalyst and its use in the production of lubes of high viscosity index
JPH0533103B2 (ru)
JPS61278590A (ja) 接触クラツキング方法
US5073672A (en) Catalyst of the gallosilicate type and its utilization for the aromatization of light C2 -C4 gases
US5171556A (en) Beta type zeolite and its preparation process
US3437604A (en) Hydrocarbon conversion catalyst preparation
KR100237271B1 (ko) 단위 격자 상수가 낮은 안정한 제올라이트 및 그의 제조 방법
US3974099A (en) High activity amorphous silica-alumina catalyst
US4537866A (en) Method of preparing silicate composition
US4876411A (en) Modified crystalline aluminosilicate zeolite catalyst and its use in the production of lubes of high viscosity index
US4414137A (en) Catalytically active amorphous silica
DE69122088T2 (de) Zeolith vom mtw-typ sowie verfahren zu seiner herstellung
JP3684265B2 (ja) 均一なミクロポアと均一なメソポアの2種類の細孔を有するフォージャサイト型ゼオライトおよびその製造方法
EP0055913B1 (en) Preparation of a fluidisable methanol conversion catalyst
US4548705A (en) Hydrocracking with catalytically active amorphous silica and zeolites
US5334781A (en) Process for the preparation of nitrobenzene
US4481102A (en) Cracking with catalytically active amorphous silica
AU717421B2 (en) Process for preparing zeolite Y with increased mesopore volume
EP0453148A1 (en) Gallium zeolites
CA1208620A (en) Treatment of zeolites
US4618738A (en) Hydrocarbon conversion process with catalytically active amorphous silica