KR910002238B1 - 레이저다이오드 구동회로 - Google Patents

레이저다이오드 구동회로 Download PDF

Info

Publication number
KR910002238B1
KR910002238B1 KR1019860006763A KR860006763A KR910002238B1 KR 910002238 B1 KR910002238 B1 KR 910002238B1 KR 1019860006763 A KR1019860006763 A KR 1019860006763A KR 860006763 A KR860006763 A KR 860006763A KR 910002238 B1 KR910002238 B1 KR 910002238B1
Authority
KR
South Korea
Prior art keywords
semiconductor device
current
circuit
voltage
driving
Prior art date
Application number
KR1019860006763A
Other languages
English (en)
Other versions
KR870002676A (ko
Inventor
가츠미 나가노
Original Assignee
가부시끼가이샤 도오시바
와타리 스기이찌로
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP60179255A external-priority patent/JPS6240789A/ja
Priority claimed from JP60184041A external-priority patent/JPS6245190A/ja
Priority claimed from JP60184042A external-priority patent/JPS6245191A/ja
Priority claimed from JP60204417A external-priority patent/JPS6265531A/ja
Priority claimed from JP60240411A external-priority patent/JPS62102576A/ja
Application filed by 가부시끼가이샤 도오시바, 와타리 스기이찌로 filed Critical 가부시끼가이샤 도오시바
Publication of KR870002676A publication Critical patent/KR870002676A/ko
Application granted granted Critical
Publication of KR910002238B1 publication Critical patent/KR910002238B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/125Optical beam sources therefor, e.g. laser control circuitry specially adapted for optical storage devices; Modulators, e.g. means for controlling the size or intensity of optical spots or optical traces
    • G11B7/126Circuits, methods or arrangements for laser control or stabilisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters

Abstract

내용 없음.

Description

[발명의 명칭]
레이저다이오드 구동회로
[도면의 간단한 설명]
제1도 (a) 및 제1도(b)는 본 발명의 제1실시예에 따른 레이저다이오드 구동회로를 나타낸 회로도.
제2도는 제1도에 따른 레이저다이오드 구동회로에 사용된 레이저다이오드의 순방향전류와 광출력과의 관계를 나타낸 파형도.
제3도는 제1도에 따른 레이저다이오드 구동회로에 사용된 레이저다이오드의 광출력과 포토다이오드모니터전류사이의 관계를 나타낸 파형도.
제4도는 제1도에 따른 레이저다이오드 구동회로의 구체적인 일례를 나타낸 회로도.
제5도는 제4도에 따른 레이저다이오드 구동회로의 펄스구동특성을 나타낸 파형도.
제6도는 본 발명의 제1실시예에 대한 제1변형예를 나타낸 회로도.
제7도는 본 발명의 제1실시예에 대한 제2변형예를 나타낸 회로도.
제8도는 본 발명의 제1실시예에 대한 제3변형예의 주요부를 나타낸 회로도.
제9도는 본 발명의 제1실시예에 대한 제4변형예의 주요부를 나타낸 회로도.
제10도는 본 발명의 제1실시예에 대한 제5변형예의 주요부를 나타낸 회로도.
제11도는 본 발명의 제2실시예에 따른 과전류보호회로가 구비된 레이저다이오드 구동회로를 나타낸 회로도.
제12도는 제11도의 레이저다이오드 구동회로에 사용된 레이저다이오드의 순방향 및 광출력사이의 관계와, 레이저다이오드의 광출력과 포토다이오드의 모니터전류사이의 관계를 나타낸 파형도.
제13도는 본 발명의 제2실시예에 대한 제1변형예를 나타낸 회로도.
제14도는 본 발명의 제2실시예에 대한 제2변형예를 나타낸 회로도.
제15도는 본 발명의 제3실시예에 따른 기준전류스위칭회로가 구비된 레이저다이오드 구동회로를 나타낸 회로도.
제16도는 제15도에 따른 레이저다이오드 구동회로에 사용된 레이저다이오드에서의 순방향전류와 광출력사이의 관계와, 레이저다이오드의 광출력과 포토다이오드의 모니터전류사이의 관계를 나타낸 파형도.
제17도는 제15도에 따른 레이저다이오드 구동회로의 구체적인 일례를 나타낸 회로도.
제18도는 제17도의 레이저다이오드에서 순방향전류에 대한 스위칭응답특성을 나타낸 파형도.
제19도는 제17도의 레이저다이오드 구동회로로부터 출력되는 광출력에 대한 외부검출회로를 나타낸 회로도.
제20도는 제19도의 외부검출회로에서 출력되는 출력전압의 응답특성을 나타낸 파형도.
제21도는 본 발명의 제3실시예에 대한 제1변형예를 나타낸 회로도.
제22도는 본 발명의 제3실시예에 대한 제2변형예를 나타낸 회로도.
제23도는 본 발명의 제4실시예에 따른 과전류보호회로가 구비된 레이저다이오드 구동회로를 나타낸 회로도.
제24도는 제23도에 사용된 레이저다이오드로부터 출력되는 광출력의 온도특성을 나타낸 파형도.
제25도는 본 발명의 제4실시예에 대한 변형예를 나타내는 회로도.
제26도는 본 발명의 제5실시예에 따른 리셋트회로가 구비된 레이저다이오드 구동회로를 나타낸 회로도.
제27도는 제26도에 사용된 리셋트회로의 동작을 설명하기 위해 전원공급전압의 변화를 나타낸 파형도.
제28도는 리셋트회로가 동작하기 위한 전원공급전압변화의 범위를 나타낸 파형도.
제29도는 제26도의 회로가 동작하기 위한 전원공급전압변화와 리셋트신호레벨의 변화범위에 대한 각각의 예를 나타낸 파형도.
제30도는 본 발명의 제5실시예에 대한 제1변형예를 나타낸 회로도.
제31도는 제30도의 레이저다이오드 구동회로에 대해 전원공급전압의 변화와 입력전압의 변화사이의 관계를 나타낸 파형도.
제32도는 본 발명의 제5실시예에 대한 제2변형예를 나타낸 회로도.
제33도는 제32도의 레이저다이오드 구동회로 각 부분의 회로동작을 설명하기 위한 파형도.
제34도는 상기 제1실시예로부터 제5실시예까지를 결합시킨 레이저다이오드 구동회로의 전체구성을 설명하기 위한 회로도.
제35도는 종래의 레이저다이오드 구동회로를 나타낸 회로도이다.
* 도면의 주요부분에 대한 부호의 설명
1 : 기준전류원 2 : 반전증폭수단
3 : 궤환회로 4 : 순방향전류회로
5 : 전류제어수단 6 : 스위칭회로
7 : 전압입력단자 8 : 출력단자
10 : 과전류보호회로 11 : 패키지
12 : 순방향전류제한회로 21 : 검출수단
22 : 리셋트수단 23 : 제2분압회로
24 : 제1분압회로 LD : 레이저다이오드
PD : 포토다이오드 PD2 : 포토다이오드센서
VC : 전압비교기
[발명의 상세한 설명]
산업상의 이용분야
본 발명은 레이저다이오드 구동회로에 관한 것으로, 특히 소정의 광출력을 안정되면서도 빠르게 발생시킬수 있도록 레이저다이오드를 제어하는 레이저다이오드 구동회로에 관한 것이다.
종래의 기술 및 그 문제점
광디스크장치나 광통신장치등과 같은 광정보처리장치에서는 레이저다이오드를 광원으로 사용하고 있는데, 이와 같이 광정보처리장치에서 레이저다이오드를 광원으로 사용하는 경우에는 그 레이저다이오드로부터 출력되는 광출력을 빠르면서도 안정되게 발생시키는 것이 매우 중요한 문제가 된다.
그러나, 레이저다이오드는 그 순방향전류가 예정된 임계치에 도달될때 발진하여 레이저광을 출력시키게되고, 그후 레이저다이오드의 광출력은 순방향전류에 비례하여 증가하게 되므로, 레이저다이오드의 광출력변화는 순방향전류의 변화에 비해 비교적 크게 변화되게 된다. 이때문에 종래에는 레이저다이오드의 광출력변화를 억제하면서 광출력을 예정된 레벨로 안정되게 제어할 수 있는 레이저다이오드 구동회로가 제안되었다.
제35도는 이와 같은 레이저다이오드 구동회로를 나타낸 것으로, 도면중 참조부호 LD는 레이저다이오드이고, PD는 레이저다이오드(LD)의 광출력을 모니터하기 위한 포토다이오드로서, 이 레이저다이오드(LD)와 포토다이오드(PD)는 1개의 패키지(11)내에 내장되게 된다. 또 이 패키지(11)로부터는 레이저다이오드(LD)의 애노드 및 포토다이오드(PD)의 캐소드는 공통접속한 공통접속단자(11a)와, 레이저다이오드(LD)의 캐소드단자(11b) 및, 포토다이오드(PD)의 애노드단자(11c)의 합계 3개의 단자핀이 외부로 돌출되어 있다. 또 레이저다이오드(LD)의 한쪽의 출력면은 포토다이오드(PD)로 향하고, 다른쪽의 출력측면으로부터 외부로 광출력(Po)이 도출되도록 되어 있다.
또한, 제35도에서 참조부호 122는 전원입력단자로, 이 전원입력단자(12)에 인가되는 전원전압(+Vcc)이 제1OP앰프(A1)를 구비한 바이어스점 설정회로(123)에 의해 적당한 전압값으로 분압설정되어 공통접속단자(11a)에 공급되게 된다.
또, 제35도에서 참조부호 124는 포토다이오드(PD)의 광기전류검출회로로서 제2OP앰프(A2)를 구비하고 있다. 그리고, 참조부호 125는 그 다음단에 접속된 트랜지스터(Q125)를 구동하기 위한 연산회로로, 이는 상기 광기전류검출회로(124)의 출력신호를 입력받아, 이것을 소정 연산처리하여 트랜지스터(Q125)의 제어용전압을 출력하는 것인데, 이 연산회로(15)에는 제3OP앰프가 구비되어 있다.
트랜지스터(Q125)는 레이저다이오드(LD)의 순방향전류회로(126)에 접속됨과 더불어, 연산회로(125)의 제어를 받아 상기 레이저다이오드(LD)의 순방향전류(If)를 소정의 전압값으로 규정하게 되는 바, 이와 같이하여 순방향전류(If)가 소정의 전압값으로 규정되게 된다. 따라서 레이저다이오드(LD)의 광출력(Po)이 일정한 출력값으로 되도록 제어되게 된다.
그러나, 상기한 레이저다이오드 구동회로에 있어서는 도합 3개의 OP앰프(A1, A2, A3)가 구비되어 상당히 복잡한 회로구성으로 되어 있고, 또 상기 3개의 OP앰프(A1∼A3)중 2개의 OP앰프(A2, A3)는 광출력의 피드백루프내에 배치되어 있기 때문에, 광출력(Po)이 변화되었을 때 그를 일정한 값으로 안정시키기 까지의 응답시간이 비교적 길어져서 고속구동성이 악화된다는 문제가 있게 된다.
또한, 상기 레이저다이오드는 순방향전류에 대해 비교적 큰 전압강하가 이루어져서 그 전압강하에 수반하여 상당히 큰 온도상승이 있게 된다. 이러한 레이저다이오드는 대부분의 반도체소자와 마찬가지로 온도에 대해 의존적이기는 하지만 통상적인 온도상승은 방열수단을 구비함으로써 처리할 수 있게 된다. 그러나 그레이저다이오드에 어떤 이유로 해서 정규치를 초과하는 과전류가 흐를 때는 방열수단만을 가지고 그 온도상승을 적당하게 처리할 수 없게 되므로 레이저다이오드의 파손이 초래되게 된다.
또한, 상기 레이저다이오드는 온도가 변화하더라도 규정된 광출력을 안정되게 발생시킬 수 있는 것이 요구됨에도 불구하고 온도변화에 대한 레이저다이오드의 광출력을 안정되게 제어할 수 있도록 온도보상에 대해 충분히 고려된 레이저다이오드는 거의 개발된 것이 없으므로 레이저다이오드의 온도보상에 대한 충분한 대응책을 구비한 레이저다이오드 구동회로가 필요하게 되었다.
발명의 목적
이에, 본 발명은 상기한 사정을 감안하여 발명된 것으로서, 비교적 간단한 회로구성의 수단으로 레이저다이오드의 광출력을 규정된 레벨로 빠르고 안정되게 제어하고, 또 레이저다이오드에 과전류가 흐르는 것에 의해 발생되는 레이저다이오드의 파손을 방지하여 안정된 동작을 할 수 있도록 제어하며, 또한 레이저다이오드의 광출력레벨을 다수의 각 레벨로 정밀하게 변조시킬 수 있을 뿐만아니라 온도변화에 대해서도 레이저다이오드의 광출력레벨을 규정치로 안정되게 제어하는 한편, 공급전압의 강하로 인한 불균일성에 의해 야기되는 비정상적인 결과로서 레이저다이오드가 파손되는 것이 방지되도록 레이저다이오드를 제어할 수 있는 레이저다이오드 구동회로를 제공함에 그 목적이 있다.
발명의 구성
상기 목적을 실현하기 위한 본 발명의 제1관점에 따른 레이저다이오드 구동회로는 반도체장치로부터 방출되는 빛의 세기에 해당하는 광전류를 출력시키는 출력수단과, 규정된 값의 기준전류를 공급하는 기준전류공급수단 및, 상기 출력수단으로부터 출력되는 광전류가 상기 기준전류공급수단기준전류에 비례하여 변동되도록 상기 반도체장치에 공급되는 구동전류를 제어하는 전류제어수단을 포함하는 구성으로 되어, 구동전류의 공급에 따라 광을 방출시키도록 되어 있다.
또한, 본 발명의 제2관점에 따른 레이저다이오드 구동회로는 반도체장치로부터 방출되는 광의 세기에 해당하는 광전류를 출력시켜 주는 출력수단과, 규정된 값의 기준전류를 공급하는 기준전류공급수단 및, 상기 출력수단으로부터 출력되는 광전류가 상기 기준전류공급수단으로부터의 기준전류에 비례하여 변동되도록 상기 반도체장치로 공급되는 구동전류를 제어하는 전류제어수단을 포함하되, 상기 전류제어수단은 상기 출력수단으로부터 출력되는 광전류와 상기 기준전류공급수단으로부터 출력되는 기준전류와의 차전류를 반전증폭시키는 전압비교기와, 이 전압비교기로부터 출력되는 반전증폭출력을 상기 반도체장치로 궤환시킴으로써 상기 순방향전류를 기준전류에 대응하는 전류값으로 제어하는 궤환회로를 포함하여 구성되어 있다.
본 발명의 제3관점에 따른 레이저다이오드 구동회로는 공급된 구동전류에 대응하여 광을 방출시키는 반도체장치에 구동전류를 공급하는 구동전류공급수단과, 반도체장치에서 방출되는 광의 세기에 따라 광전류를 발생시키는 광전류 출력수단, 규정전류값을 갖는 기준전류를 출력시키는 기준전류출력수단 및, 상기 광전류출력수단으로부터 출력되는 광전류가 기준전류에 비례하여 변동되도록 제어 및 공급하는 전류제어수단을 포함하여 구성되어 있다.
본 발명의 제4관정에 따른 레이저다이오드 구동회로는 제1반도장치에 구동전류를 공급하기 위한 제1단자를 갖춘 제1회로와, 광을 검출하는 제2반도체장치로부터의 제어전류를 수신하기 위한 제2단자와, 기준전류를 수신하기 위한 제3단자를 갖춘 제2회로를 포함하되, 제2회로는 제1회로에 접속되어 제어전류가 기준전류에 비례하여 변동되도록 제1단자에 공급되는 구동전류를 제어하도록 구성되어 있다.
본 발명의 제5관점에 따른 레이저다이오드 구동회로는 반도체장치로부터 발산되는 빛의 세기에 해당하는 값을 갖는 광전류를 출력시키는 출력수단과, 규정값을 갖는 기준전류를 공급하는 기준전압공급수단, 상기기준전압공급수단에서 출력되는 기준전압과 상기 출력수단에서 출력되는 광전류에 해당하는 값을 갖는 전압을 비교하여 그 비교결과에 따른 제어신호를 발생시키는 비교수단(VC) 및, 상기 비교수단으로부터 발생되는 제어신호에 따라 상기 반도체장치를 제어하는 반도체장치 제어수단을 포함하여 구동전류의 공급에 따라 광을 방출하도록 구성되어 있다.
작용
상기한 구성으로 본 발명에 의하면, 레이저다이오드의 광출력을 검출하여 그 광출력의 레벨에 따라 전기적인 신호로 변환한 후 이를 기준신호와 비교하게 되므로, 상기 전기적인 신호는 기준신호에 따라 규정치를 갖도록 제어되게 된다. 따라서 레이저다이오드의 광출력을 규정된 값으로 안정되게 제어할 수 있게 된다.
또한 본 발명에 의하면, 회로구성이 간단해져서 응답특성이 매우 충분해질 뿐만아니라 고속제어능력도 양호하게 되므로 경제성을 높일 수 있게 되고, 또 레이저다이오드의 순방향전류를 검출하여 이를 제어할 수 있게 되므로 초과전류로 인해 레이저다이오드가 파손되는 것이 방지되어 시스템동작의 안정화를 도모할 수 있게 된다.
또, 본 발명에 의하면 다수의 기준신호가 발생되고 레이저다이오드의 광출력레벨에 따른 전기적인 신호가 다수의 기준신호에서 선택된 기준신호에 따른 값과 동일하게 되도록 제어되므로, 자유로운 형태로 레이저다이오드의 광출력을 다양하게 변조시킬 수 있게 된다.
또한 본 발명에 의하면 레이저다이오드의 광출력레벨특성의 온도계수와 반대의 온도특성을 갖는 신호레벨로 기준신호레벨을 발생시키는 기준신호원이 제공되는 한편, 레이저다이오드의 광출력은 전기적인 신호로 변환되고, 이 전기적인 신호는 기준신호와 비교되어 그 기준신호에 따른 값을 갖도록 제어되므로, 레이저다이오드에 온도변화가 발생된 경우에도 레이저다이오드의 광출력을 예정된 값으로 제어할 수 있게 된다.
더우기, 본 발명에 의하면, 전원공급전압을 검출하여 그 검출된 전원공급전압이 소정 값으로 될 때 레이저다이오드의 동작을 중단시키게 되므로, 어떤 이유로해서 전원공급전압이 차단되거나 개방되어야 하는 낮은 전압상태에서도 레이저다이오드의 비정상적인 동작으로 인한 비정상적인 높은 광출력의 발생에 의해 레이저다이오드가 파손되는 것을 방지할 수 있게 된다.
실시예
이하 도면을 참조하여 본 발명의 실시예를 설명한다.
제1도(a)는 본 발명의 1실시예에 따른 레이저다이오드 구동회로를 나타낸 것으로, 레이저다이오드 구동회로는 예컨대 광디스크장치의 광원으로서 사용되는 레이저다이오드(LD)와, 이 레이저다이오드(LD)의 광출력을 전기적인 신호로 변환시키는 포토다이오드(PD)를 구비하고 있다. 그리고 이 레이저다이오드(LD)와 포토다이오드(PD)는 패키지(11)내에 형성되게 된다. 이때 패키지(11)는 그 외부에 모두 3개의 단자가 설치되어 있다. 즉, 레이저다이오드(LD)의 애노드와 포토다이오드(PD)의 캐소드가 공통으로 연결된 공통단자(11a)와, 레이저다이오드(LD)의 캐소드단자(11b) 및, 포토다이오드(PD)의 애노드단자(11c)의 3개 단자가 설치되어 있다. 또 레이저다이오드(LD)의 출력면중 하나는 포토다이오드(PD)를 향하도록 위치되고, 광출력(Po)는 다른 출력면으로부터 외부로 출력되게 된다.
한편, 레이저다이오드(LD)의 캐소드단자(11b)는 기준전압(접지)에 접속되고, 또 포토다이오드(PD)의 애노드단자(11c)에는 기준전류원(1)과 전류제어수단(5)이 접속되는데, 여기서 전류제어수단(5)은 레이저다이오드(LD)의 광출력(Po)을 모니터하는 포토다이오드(PD)에서의 광전류(Is)가 기준전류원(1)을 흐르는 기준전류(Iref)와 같게 되도록 레이저다이오드(LD)에 공급되는 순방향전류를 제어하게 된다. 이 전류제어수단(5)은 포토다이오드(PD)의 애노드단자(11c)에 연결된 반전증폭기(2)와, 이 반전증폭기(2)로부터 반전증폭된 출력을 공통단자(11a)에 연결된 순방향전류회로(4)로 궤환시키는 궤환회로(3)로 구성되어 Is와 기준전류원(1)에 흐르는 기준전류(Iref)의 차전류를 반전시켜 증폭시키게 된다.
이와 같은 구성으로 된 레이저다이오드 구동회로는 쉽게 집적화할 수 있지만, 전류사정상 레이저다이오드(LD)와 포토다이오드(PD)를 외부적으로 접합시킬 수 있는 부품으로 구비할 수도 있고, 또 점선(11)내에 도시된 레이저다이오드(LD)와 포토다이오드(PD)를 제외한 제1도(a)의 부분을 집적화시킬 수도 있다. 또 기준전류원(1)은 전류조정의 편리를 위해 집적회로용 외부저항으로 설정할 수도 있다.
제1도(b)는 상술한 제1실시예에 따른 레이저다이오드 구동회로의 변형예를 나타낸 것으로, 공통단자(11a)가 순방향전류 If를 최대치로 조절하는 구동트랜지스터(Q2)와 저항(R1)을 구비한 순방향전류회로(4)를 매개하여 양(+)의 전원선(2)에 접속된 구성으로 된 것이다. 또 도면에서 참조부호 5는 구동트랜지스터(Q2)의 바이어스전류회로인데, 이는 제어트랜지스터(Q1)의 출력회로로도 제공된다.
상기 제어트랜지스터(Q1)는 반전증폭수단(2)의 구성요소가 되는 것으로서, 이 제어트랜지스터(Q1)는 베이스가 포토다이오드(PD)의 애노드단자(11c)에 접속되고 에미터가 음(-)의 전원선(2b)에 접속되며 컬렉터가 구동트랜지스터(Q2)의 베이스에 접속된다. 또, 여기서 포토다이오드(PD)의 애노드단자(11c)는 기준전류를 공급하는 기준전류원(1)을 매개하여 음(-)의 전원선(2b)에 접속되고, 또 레이저다이오드(LD)의 캐소드는 캐소드단자(11b)를 통해 전원선(2b)에 접속된다.
제2도 및 제3도는 상기한 레이저다이오드 구동회로의 동작을 설명하기 위한 것으로서, 제2도는 레이저다이오드(LD)의 순방향전류(If)와 광출력(Po)의 관계를 설명하기 위한 특성파형도이고, 제3도는 레이저다이오드(LD)의 광출력(Po)과 포토다이오드(PD)에서 발생되는 모니터전류(Is ; 광전류)의 관계를 설명하기 위한 특성파형도이다.
먼저 제2도에 도시된 특성곡선을 보면 레이저다이오드(LD)의 순방향전류(If)가 어떤 임계전류, 예컨대 60mA에 도달할 때 레이저다이오드(LD)의 발진에 의해 광출력(Po)이 얻어지고, 그후 광출력(Po)은 순방향전류(If)에 비례하여 증가하는 것을 알 수 있다. 여기서 포토다이오드(PD)는 광출력(Po)을 공급받아 광전류(모니터전류 ; Is)를 발생시키게 된다.
제3도에 도시된 바와 같이 광전류(Is)는 광출력(Po)에 비례하여 증가하게 되는 바, 실온에서 순방향전류(If)가 90mA이고 광출력(Po)이 10mW에서 광전류(Is)가 0.75mA이었다고 가정하면, 상기 구체적인 일례에서 광출력(Po)에 대한 광전류(Is)의 비례계수는
Is/Po=0.75(mA)/10(mW)………………………………………… (1)
으로 유도된다.
상술한 바와 같이 포토다이오드(PD)의 광전류(Is)는 광출력(Po)에 비례하므로, 광전류(Is)를 검출하고 이것으로 광출력(Po)을 궤환제어함으로써 광출력(Po)을 일정값으로 제어할 수 있게 된다. 본 발명에 있어서 광출력(Po)은 검출된 광전류(Is)를 기준전류(Iref)에 대응하는 값과 같게 되도록 제어함으로써 일정값을 갖도록 조정되게 된다.
즉, 광전류(Is)와 기준전류(Iref)의 관계가 Is<Iref인 상태에서는 제어트랜지스터(Q1)의 베이스에 아무 전류도 흐르지 않게 되므로 제어트랜지스터(Q1)는 턴오프상태로 되고, 이에 따라 구동트랜지스터(Q2)는 바이어스전류회로(5)에서 공급되는 바이어스전류(Ib)에 의해 턴온되므로 레이저다이오드(LD)에는 광출력(Po)을 증가시키는 전류제어저항(R1)에 의해 규정되는 최대전류가 흐르게 된다.
한편, 광출력(Po)의 증가와 그에 따른 광전류(Is)의 증가에 따라 Is>Iref로 되게 되면, 광전류(Is)와 기준전류(Iref)의 차이에 따른 베이스전류가 제어트랜지스터(Q1)에 흐르게 되므로 그 차전류의 증폭된 전류가 제어트랜지스터(Q1)의 컬렉터에 흐르게 된다. 그 때문에 바이어스전류회로(5)의 바이어스전류(Ib)는 증폭된 전류에 따른 양만큼만 제어트랜지스터(Q1)쪽으로 흐르게 되므로 구동트랜지스터(Q2)의 베이스 바이어스전류는 그에 따른 양만큼 감소하게 되고, 이때 구동트랜지스터(Q2)는 제어트랜지스터(Q1)의 반전증폭전류에 의해 구동되어 광전류(Is)와 기준전류(Iref)의 차전류에 따라 레이저다이오드(LD)의 순방향전류를 제어하게 되므로 순방향전류(If)는 감소하게 된다.
상기한 예에서 기준전류원(1)이 기준전류(Iref)가 0.75mA로 셋트되어 있다면 레이저다이오드(LD)의 순방향전류(If)는 0.75mA의 기준전류(Iref)에 대응하는 90mA가 되도록 제어되고, 결과적으로 광출력 Po은 10mW의 일정값을 갖도록 제어되게 된다.
한편, 제1도에 도시된 레이저다이오드 구동회로에서 알 수 있는 바와 같이 순방향전류회로(4)에 의해 얻어지는 제어전류는 포토다이오드(PD)에 흐르는 광전류(Is)를 포함하고 있으므로 순방향전류(If)에 대한 제어동작은 광전류(Is)의 양만큼 에러가 발생되게 된다. 그러나, 전술한 실시예에서와 같이 광전류(Is)는 순방향전류(If)의 1/100보다 작은 값이어서 그 에러는 거의 무시할 정도로 되므로 순방향전류제어회로(4)에 흐르는 제어전류는 레이저다이오드(LD)의 순방향전류(If)와 같다고 할 수 있다.
이와 같이 본 실시예에 있어서는 단지 2개의 트랜지스터, 즉 제어트랜지스터(Q1) 및 구동트랜지스터(Q2)와 전류제어저항(R1)이 궤환회로(3)에 연결되게 되므로, 종래의 궤환시스템에 비해 아주 적은 수의 소자와 간단한 회로구성으로 출력안정동작이 이루어지게 된다. 따라서, 광출력(Po)의 변화를 위한 궤환시스템의 응답지연이 매우 작아져서 레이저다이오드(LD)가 고주파로 펄스구동되는 경우에도 적절한 안정동작이 얻어질 수 있게 된다. 이하 이에 대하여 보다 구체적으로 설명한다.
제4도는 본 발명의 제1실시예에 대한 구체적인 일례를 나타낸 것으로, 레이저다이오드(LD)는 고주파펄스전류에 의해 구동되고 그에 따른 펄스광출력은 외부에 설치된 포토다이오드센서(PD2)에 의해 검출되게 된다.
또, 도면중 참조부호 6은 레이저다이오드(LD)의 구동을 스위칭시키는 스위칭회로로서, 이는 스위칭트랜지스터(Q3)와 저항(R5)(R8), 콘덴서(C2) 및 다이오드(D)로 구성되고, 또 참조부호 7은 상기 스위칭회로(6)를 구동시키기 위한 펄스전압이 입력되는 전압입력단자를 나타낸다.
그리고, 포토다이오드센서(PD2)에는 검출된 광전류(IO)를 증폭하여 출력전압(Vo)을 출력단자(8)로 출력시키는 감지증폭기가 접속된다.
상기한 구성으로 된 본 실시예에 있어서, 기준전류원은 저항값이 8.2K
Figure kpo00002
인 저항(R2)으로 구성되므로, 예컨대 트랜지스터(Q1)의 베이스와 에미터사이에 요구되는 전압(VBE)을 0.6V라 하면 기준전압(Iref)는 0.6V/8.2K
Figure kpo00003
=73μA로 설정된다.
그러므로, 레이저다이오드(LD)의 광출력(Po)은 73μA인 기준전류(Iref)에 따른 값을 갖도록 제어되고, 이때 상기 (1)식으로 주어진 비례관계에 의해 레이저다이오드(LD)로부터 약 1mW의 광출력(Po)이 얻어지게 된다.
제5도(a) 내지 제5도(c)는 제4도의 회로에 있어서 전압입력단자(7)로부터 입력전압(Vi)으로서 1MHZ의 펄스전압이 입력되는 것에 의해 레이저다이오드(LD)가 펄스구동될 때 얻어지는 펄스응답특성의 구체적인 일례를 나타낸 것으로, 제5도(a)는 입력전압(Vi)과 레이저다이오드(LD)의 애노드전압(구동전압 ; Vd)사이의 응답특성을 설명하기 위한 파형도이고, 제5도(b)는 입력전압(Vi)과 레이저다이오드(LD)의 순방향전류(If)사이의 응답특성을 설명하기 위한 파형도이며, 제5도(c)는 입력전압(Vi)과 외부로의 출력전압(Vo)사이의 응답특성을 설명하기 위한 파형도이다.
여기서 제5도(b)에 도시된 특성곡선으로부터 알수 있는 바와 같이 광출력시간동안에는 그 레이저다이오드(LD)에 대략 58mA의 순방향전류(If)가 흐르게 된다.
또한 포토다이오드(PD2)와 감지증폭기로 구성되는 외부검출시스템을 통해 출력단자(8)로부터 출력되는 펄스출력전압(Vo)은 약 0.2의 크기를 가짐과 더불어, 상승기간(tr)과 하강시간(tr)이 각각 대략 40nsec와 50nsec인 매우 빠른 응답을 각각 보여주게 되고, 이에 따라 상기 펄스구동에서의 광출력(Po)이 안정된 상태에서 일정값으로 제어될 수 있게 된다. 여기서 상승시간(tr)과 하강시간(tr)은 감지증폭기 자체와 다른 것에 의한 응답지연을 포함하는 값이다.
더우기, 출력전압의 크기가 0.2V일때, 포토다이오드센서(PD2)에 흐르는 광전류(Io)는 OP앰프(A4)의 궤환저항(R4)의 값 100K
Figure kpo00004
으로 출력값을 나눈 값, 즉 0.2V/100K
Figure kpo00005
=2μA가 된다.
제6도는 본 발명의 제1실시예에 대한 제1변형예를 나타낸 것으로, 본 제1변형예에서는 제어트랜지스터로서 제1실시예의 NPN형 트랜지스터(Q1)대신에 접합형 FET(Q4)를 사용하여 광출력(Po)의 제어에 대한 정밀도를 향상시키도록 된 것이다. 그리고 제6도의 회로구성에서 접합형 FET(Q4)를 사용한 것 이외에는 제1도에 도시된 제1실시예의 회로구성과 동일하다.
제4도에 도시된 회로구성에 있어서, 기준전류(Iref)는 약 100μA 보다 적은 값으로 주어지고 광출력(Po)은 포토다이오드((PD)의 광전류(Is)가 기준전류(Iref)에 따른 값을 갖도록 제어되게 된다. 따라서, NPN형 트랜지스터(Q1)가 제어트랜지스터로 사용되는 상기 제1실시예에 있어서는 포토다이오드(PD)의 광전류(Is)가 작은 값을 갖게 되면, 그 NPN형 트괜지스터(Q1)에는 수 μA의 베이스전류가 흐르게 되고, 또 광전류(Is)에는 그 베이스전류가 포함되게 되므로 그 베이스전류의 크기 만큼의 제어에러가 발생되게 되지만, 제4도에 도시된 회로구성에서는 제어트랜지스터로서 입력임피던스가 높은 접합형 FET(Q4)를 사용하기 때문에 게이트전류가 거의 존재하지 않게 된다. 즉, 상기한 베이스전류에 의한 제어에러가 제거되게 된다.
제7도는 본 발명의 제1실시예에 대한 제2변형예를 나타낸 것으로, 본 변형예는 포토다이오드(PD)와 기준전류원(VC)을 접속하여 제어정밀도의 향상을 도모한 것이다. 본 변형예에서는 전압비교기(VC)의 기준전압(Vref)은 접지전위로 설정되게 된다.
여기서, 기준전류원(1)의 기준전류(Iref)의 포토다이오드(PD)의 광전류(Is)사이의 차이에 따른 신호는 전압비교기(VC)를 통해 반전된 후 제어트랜지스터(Q1)에 의해 증폭되고, 이렇게 증폭된 출력은 순방향전류회로(4)로 궤환되어 레이저다이오드(LD)의 순방향전류(If)를 기준전류(Iref)에 따른 전류값으로 제어하게 된다. 이때의 그 기본동작은 상술한 제1실시예의 경우과 유사하다.
또, 상기한 제어동작에서의 애노드전압은 전압비교기(VC)의 기준전압(Vref)인 접지전위와 같도록 설정된다.
한편, 상기 포토다이오드(PD)의 애노드가 제어트랜지스터(Q1)의 베이스에 직접 연결된 경우에는 포토다이오드(PD)의 애노드전위는 제어트랜지스터(Q1)의 온도특성에 대한 영향하에서 온도의존성을 갖게 되어 광출력의 안정된 동작에서도 마찬가지로 온도의존성을 나타내게 된다.
그러나, 상기 제1실시예에 대한 제2변형예에 있어서는 포토다이오드(PD)의 전압은 전압비교기(VC)의 기준전압(Vref)의 규정되므로 제어트랜지스터(Q1)의 온도특성의 효과가 제거되게 된다.
또한, 예를 들어 레이저다이오드(LD)의 애노드전위가 1.5V이고 제어트랜지스터(Q1)의 베이스-에미터전압(VBE)이 0.6V라면, 제1실시예의 경우에는 포토다이오드(PD)는 1.5V-0.6V=0.9V의 역바이어스전압에 의해 동작되게 되지만, 본 변형예에서는 포토다이오드(PD)의 애노드가 전압비교기(VC)를 위한 기준전압(Vref)인 접지레벨로 설정되어 역바이어스 전압 1.5V-OV=1.5V로 되기 때문에 제1실시예에서의 값보다 더 큰 값으로 설정되게 된다. 그 때문에 포토다이오드(PD)의 검출감도가 향상되어, 온도특성에 의한 영향의 제거와 함께 레이저다이오드(LD)의 광출력(Po)의 안정된 동작이 더욱 정밀해지게 된다. 한편, 여기서 기준전압(Vref)은 접지전위와는 다른 전위로 설정될 수 있는데, 이와 같이 하게 되면 포토다이오드를 위한 역바이어스전압을 더 큰 값으로 설정할 수 있게 된다.
제8도 내지 제10도는 본 발명의 제1실시예에 대한 제3 내지 제5변형예를 나타낸 것으로, 레이저다이오드(LD)와 포토다이오드(PD)를 하나의 패키지(11)내에 형성하고 레이저다이오드(LD)의 애노드와 포토다이오드(PD)의 캐소드를 상호 연결하는 연결모우드상의 제한을 완화하여 상기 도면에 도시된 바와 같이 여러가지 방법으로 레이저다이오드(LD)와 포토다이오드(PD)를 연결한 경우를 나타낸 것이다.
즉, 레이저마이오드(LD)와 포토다이오드(PD)의 가능한 연결모우드로서는 (a) 레이저다이오드(LD)의 애노드와 포토다이오드(PD)의 캐소드를 공통으로 연결시키는 모우드와, (b) 레이저다이오드(LD)의 캐소드와 포토다이오드(PD)의 애노드를 공통으로 연결시키는 모우드, (c) 레이저다이오드(LD)와 포토다이오드(PD)의 캐소드를 상호공통으로 연결시키는 모우드, (d) 레이저다이오드(LD)와 포토다이오드(PD)의 애노드를 상호 공통으로 연결시키는 모우드 및, (e) 레이저다이오드(LD)와 포토다이오드(PD)를 공통으로 연결시키지 않는 모우드를 포함하게 된다.
이하, 상기한 바와 같은 각 연결모우드에 따라 구성되는 레이저다이오드 구동회로의 변형예에 대해 설명한다.
먼저 제8도(a)는 본 발명의 제1실시예에 대한 제3변형예를 나타낸 것으로, 본 변형예는 구동트랜지스터(Q2)로서 PNP형 트랜지스터를 사용하고, 기준전류원(1)과 포토다이오드(PD)의 접속점을 구동트랜지스터(Q2)의 베이스에 직접 접속함으로써, 제1실시예에서의 제어트랜지스터(Q1)에 대응하는 트랜지스터의 구성을 제거한 것인 바, 이와 같이 하게 되면 그 회로구성을 더욱 간단히 할 수 있게 된다. 또 이때 레이저다이오드(LD)는 에미터폴로워(emitter follower)로서 접속된 구동트랜지스터(Q2)의 에미터에 접속된다.
한편, 상기한 구성으로 된 회로의 동작을 설명하면, 광전류(Is)와 기준전류(Iref)의 관계가 조건 Is<Iref을 만족시키는 상태에서는 광전류(Is)와 기준전류(Iref)사이의 차이에 따른 베이스전류가 구동트랜지스터(Q2)의 베이스에 흐르게 되고, 그에 따라 그 차전류가 증폭된 전류에 대응하는 순방향전류(If)가 그 에미터회로에 흐르게 된다. 그리고, 이때 레이저다이오드(LD)의 광출력(Po)은 증폭된 순방향전류(If)에 의해 증가되는 바, 본 변형예에서는 이와 같은 방식으로 순방향전류(If)가 광전류(Is)와 기준전류(Iref) 사이의 차전류에 따라 증가되고 또 반전되어 광출력(Po)이 증가된다.
그리고, 광출력(Po)이 증가되어 광전류(Is)가 Is>Iref 관계를 만족시키도록 증가되게 되면 구동트랜지스터(Q2)의 베이스전류가 높아지게 되고, 이에 따라 구동트랜지스터(Q2)가 오프상태로 되어 순방향전류(If)를 차단시키게 됨으로써 광출력(Po)은축소되게 된다.
상기한 바와 같은 궤환동작에 의해 레이저다이오드(LD)의 광출력(Po)은 포토다이오드(PD)의 광전류(Is)가 기준전류(Iref)에 같게 되도록 일정값으로 제어되는 바, 본 변형예에서는 회로구성소자의 수가 작기 때문에 빠른 구동능력의 관점에서 좀 더 만족스런 효과를 얻을 수 있게 된다. 또 본 변형예에서 레이저다이오드(LD)의 애노드와 포토다이오드(PD)의 캐소드를 공통으로 접속하는 것도 가능하다.
제8도(b)는 제8도(a)에 도시된 회로와 대칭되는 회로를 나타낸 것으로, 본 변형예에서는 구동트랜지스터(Q2')로서 NPN형 트랜지스터를 사용한 것으로서, 그 회로동작관계는 제8도(a)에 도시된 회로와 유사하다. 또, 여기서 레이저다이오드(LD)의 캐소드와 포토다이오드(PD)의 애노드를 공통으로 접속할 수 있다.
제9도(a)는 본 발명의 제1실시예에 대한 제4변형예를 나타내는 것으로, 본 변형예에서는 구동트랜지스터(Q2)로서 PNP형 트랜지스터를 사용하고, 기준전류원(1)과 포토다이오드(PD)의 접속점이 구동트랜지스터(Q2)의 베이스에 연결되어 있다는 점에서 상술한 제8도(a)에 도시된 제3변형예와 동일하다. 단지, 여기서 제8도(a)와 다른 부분은 레이저다이오드(LD)가 구동트랜지스터(Q2)의 컬렉터에 접속되어 있다는 점이다.
그리고, 포토다이오드(PD)로 광출력(Po)에 대응하는 광전류(Is)를 검출하고, 상기 광전류(Is)가 기준전류(Iref)에 따른 값과 동일하게 되도록 상기 검출된 값을 궤환시킴으로써 상기 광출력(Po)을 일정값으로 제어하는 동작은 상기 제3변형예의 경우와 유사하다.
제9도(b)는 제9도(a)와 상보적인 회로를 나타낸 것으로, 본 변형예는 구동트랜지스터(Q2')로서 NPN형 트랜지스터를 사용한 것으로서, 그 회로동작은 제9도(a)와 유사하다.
제10도(a)는 본 발명의 제1실시예에 대한 제5변형예를 나타낸 것으로, 본 변형예에서는 레이저다이오드(LD)의 캐소드와 포토다이오드(PD)의 캐소드가 공통으로 연결되어 있는 바, 이는 공통단자가 접속점에서 인출되어야 하는 제한이 있는 경우의 회로구성을 나타낸 것이다. 그리고, 본 변형예는 포트다이오드(PD)의 캐소드와 레이저다이오드(LD)의 캐소드가 상술한 바와 같이 연결되는 점외에는 회로구성요소가 제8도(a)에 도시된 제3변형예의 경우와 유사하다.
한편, 상기한 제5변형예에 있어서 구동트랜지스터(Q2)에 흐르는 제어전류와 포토다이오드(PD)에 흐르는 광전류(Is)의 합이 순방향전류(If)로서 레이저다이오드(LD)에 흐르게 된다. 이 때문에 순방향전류(If)와 제어전류 사이에 광전류(Is)에 따른 에러가 존재하게 된다. 그러나 상기 광전류(Is)는 상술한 바와 같이 순방향전류(If)의 1/l00보다도 적은 값이기 때문에 상기 에러는 거의 무시할 수 있게 되어 구동트랜지스터(Q2)에 흐르는 제어전류는 레이저다이오드(LD)의 순방향전류(If)와 같은 것으로 간주할 수 있게 된다. 따라서 본 변형예의 수단에 의해 광출력(Po)의 안정된 제어동작은 제3변형예에서와 실질적으로 같아지게 된다.
제10도(b)는 제l0도(a)에 도시된 회로와 상보적인 회로로서, 구동트랜지스터(Q2')로서 NPN형 트랜지스터를 사용한 것인 바, 그 회로동작은 제10도(a)에 도시된 회로의 동작과 거의 동일하다.
제11도는 본 발명의 제2실시예에 따른 레이저다이오드 구동회로를 나타낸 것으로, 이는 상술한 제1실시예에 도시된 출력안정화용 제어회로를 구비한 레이저다이오드 구동회로에 과전류보호회로(10)를 부가한 것이다.
제11도에 도시된 레이저다이오드 구동회로에 있어서는 전술한 제1실시예에서 레이저다이오드(LD)의 애노드에 직렬로 접속된 전류구동저항(R1)이 제거되고, 그 대신에 레이저다이오드(LD)의 캐소드에 어느정도로 전류제한 기능을 하는 전압검출저항(R10)이 직렬로 접속되어 있다. 그리고, 제11도에서 제1도에서의 구성요소와 동일한 부분에 대해서는 동일한 참조부호를 붙이고, 그에 대한 설명은 생략한다.
한편, 과전류보호회로(10)에 었어서는 제한트랜지스터(Q5)를 구비한 순방향전류 제한회로(순방향제한수단 ; 12)가 순방향전류회로(4)에 접속되어 있는 바, 여기서 상기 제한트랜지스터(Q5)는 그 컬렉터가 공통단자(11a)에 연결되면서 에미터가 음(-)의 전원선(2b)에 연결되어 있다. 그리고 순방향전류회로(4)에 있는 레이저다이오드(LD)에 캐소드단자(11a)와 전원선(2b)의 사이에는 순방향전류(Is)에 의한 전압강하를 검출전압으로서 검출하는 검출저항(R10)이 접속되어 있고, 이 검출전압의 검출점(3a)은 상기 제한트랜지스터(Q5)의 베이스에 접속되어 있다.
여기서, 상기 검출저항(R12)의 저항값은
R10=VBE/Ifmax ………………………………………………………… (2)
로 주어지는데, 여기서 Ifmax는 레이저다이오드(LD)의 순방향전류(If)에 대한 최대값(제한전류값)이고, VBE는 제한트랜지스터(Q5)를 도통상태로 하는데 필요한 베이스-에미터전압이다(그 저항을 나타내는 표기"R10"은 그 저항값을 나타내는 것으로 간주함).
이어, 제12도(a)와 제12도(b)를 참조하여 상기한 구성으로 된 레이저다이오드 구동회로의 동작을 설명한다.
제12도(a)는 레이저다이오드(LD)의 순방향전류(If)와 광출력(Po)의 관계를 나타낸 파형특성도이고, 제12도(B)는 레이저다이오드(LD)의 광출력(Po)과 포토다이오드(PD)에서 생성되는 모니터전류[광전류(Is)]의 관계를 나타낸 파형특성도이다.
제12도(a)에 도시된 바와 같이 레이저다이오드(LD)는 순방향전류(Is)가 어떤 임계전류값 "Ith"에 도달할 때 레이저발진하여 광출력(Po)을 출력시키게 되고, 그후 광출력(Po)은 순방향전류(If)에 비례해서 증가하게 된다. 한편, 광전류(Is)는 광출력(Po)의 수신과 더불어 발생되게 되므로 광출력(Po)에 비례하여 증가하게 된다.
또한, 제1실시예에 관련하여 설명한 바와 같이 포토다이오드(PD)에 의해 검출되는 광전류(Is)는 광출력(Po)에 비례하므로, 그 광출력(Po)은 기준전류(Iref)에 따른 값을 갖도록 안정된 방법으로 일정값으로 궤환제어되게 된다.
그리고, 순방향전류(If)가 최대정격값(Ifmax) 근방의 값에서 광출력(Po)이 거의 최대정격출력값(Pomax)으로 일정하게 되도록 제어되는 것으로 하고, 그 때의 순방향전압강하를 Vf라 하면, 이때의 레이저다이오드(LD)의 최대소비전력 Pdmax는
Pdmax=Vf-Ifmax ……………………………………………………… (3)
로 주어진다.
레이저다이오드(LD)는 이와 같은 최대소비전력(Pdmax) 이하의 범위내에서 정상적인 레이저발징상태가 유지되게 된다.
상술한 바와 같이 정상적인 출력안정상태에서는 검출저항(R10)에 의해 검출되는 검출전압 If·R10은 제한트랜지스터(Q5)의 베이스와 에미터사이의 전압(VBE)보다 작은 값으로 되기 때문에 순방향전류 제한회로(12)는 전혀 영향을 받지 않게 된다. 그러나 어떤 이유로 인해 순방향전류회로(4)에 최대정격전류(Ifmax)보다 큰 과전류가 흐르게 되면 그때 검출(R10)에서 검출되는 검출전압은 제한트랜지스터(Q5)의 베이스-에미터전압(VBE)을 초과하게 되고, 그 결과 제한트랜지스터(Q5)가 턴온되어 순방향전류의 일부는 순방향전류제한회로(12)를 구성하는 트랜지스터(Q5)의 컬렉터-에미터를 통해 바이패스되게 된다. 그에 따라 레이저다이오드(LD)의 최대정격값(제한전류값)보다 큰 과전류의 흐름이 제어되게 됨으로써 레이저다이오드(LD)는 과전류로 인해 야기되는 단자파손으로부터 보호되게 된다.
또한, 과전류상태가 중지되면 순방향전류 제한회로(12)는 최초의 비동작상태로 복귀하게 되므로 정상적인 출력안정상태로 돌아가게 된다.
제13도는 본 발명의 제2실시예에 대한 제1변형예를 나타낸 것으로, 이는 저항(R11)으로 기준전류원(1)을 구성한 것이다. 여기서 제어트랜지스터(Q1)의 베이스-에미터사이의 요구전압이 VBE1라 하면, 이때 저항(R11)은Iref=VBE1/R1을 만족시키도록설정된다. 또한 바이어스전류회로(5)는 저항(R12)으로 구성된다.
제14도는 본 발명의 제2실시예에 대한 제2변형예를 나타낸 것으로, 본 변형예에서는 검출저항(R10')이 구동트랜지스터(Q2)의 에미터와 공통단자(11a) 사이에 접속되고, 제한트랜지스터(Q5')는 구동트랜지스터(Q2)의 베이스와 공통단자(11a)사이에 접속되고, 또 검출전압검출점(3b)은 제한트랜지스터(Q5')의 베이스에 접속되어 있다. 상기한 바와 같이 본 변형예에 있어서는 순방향전류 제한회로(12')가 레이저다이오드(LD)의 애노드측에 있는 순방향전류 제어회로(4)의 일부에 설치되어 있다는 점을 제외하고 다른 구성은 제11도에 도시된 구성과 거의 동일하다.
상기한 회로구성에 있어서, 최대치전류(Ifmax)를 초과하는 과전류가 어떤이유로해서 순방향전류회로(4)에 흐르게 되면 검출저항(R10')으로부터 검출되는 검출전압값은 제한트랜지스터(Q5')의 베이스-에미터전압(VBE)을 초과하게 된다. 따라서, 제한트랜지스러(Q5')가 턴온되어 구동트랜지스터(Q2)의 베이스바이어스 전류의 일부분이 순방향전류 제한회로(12')로 흐르게 됨으로써, 구동트랜지스터(Q2)의 전류증폭요소가 축소되어 레이저다이오드(LD)로 과도한 양의 순방향전류가 흐르는 것이 억압되게 된다. 그러므로, 전술한 변형예에서와 같이 레이저다이오드(LD)는 과전류에 의한 단자파손으로부터 보호되게 된다.
한편, 상기한 제2변형예에 있어서 검출저항(R10')으로 흐르는 전류는 순방향전류(If)에 더하여 레이저다이오드(LD)로 흐르는 광전류(Is)를 포함하게 되므로, 그 광전류(Is)가 에러요인으로 되게 되지만, 상술한바와 같이 광전류(Is)는 순방향전류(If)의 1/100보다 작은 값이기 때문에 광전류(Is)에 의한 검출전압의 에러는 거의 무시할 수 있게 된다.
제15도는 본 발명의 제2실시예에 대한 제3변형예를 나타낸 것으로, 본 변형예는 제11도에 도시된 변형예에서 기준전류원(1) 대신에 기준전류 스위칭회로(J1)를 설치한 것이다.
단, 제15도에서 제11도와 동일한 회로구성에 대해서는 동일한 참조부호를 붙인다.
즉, 포토다이오드(PD)의 애노드단자(11c)와 음의 전원선(2b)사이에는 스위칭에 의해 2개의 다른 전류값 Iref1와 Iref2중 하나로 기준전류(Iref)를 설정할 수 있는 기준전류 스위칭회로(J1)가 접속되어 있다. 도면중 참조부호 14a는 기준전류가 Iref1로 실정되어 있는 제1기준전류원이고, 참조부호 14b는 기준전류가 Iref2로 설정되어 있는 제2기준전류원이며, 또한 15a와15b는 제1 및 제2차동증폭기로서 이들은 기준전류원(14a)(14b)사이를 스위칭시키기 위한 선택스위치를 구성하고 있다.
또한, 상기 제1차동증폭기(15a)는 한쌍의 트랜지스터(Q6)(Q7)로 구성되고, 제2차동증폭기(15b)는 다른 한쌍의 트랜지스터(Q8, Q9)로 구성되는데, 상기 제1차동증폭기(15a)는 트랜지스터(Q6)와 제2차동증폭기(15b)의 트란지스터(Q8)의 컬렉터는 공통으로 접속되면서 그 접속점은 포토다이오드(PD)의 애노드단자(11c)에 접속되어 있다. 또한 제1차동증폭기(15a)의 에미터공통접속점은 제1기준전류원(14a)에 접속되고, 제2차동증폭기(l5b)의 에미터공통접속점은 제2기준전류원(14b)에 접속되어 있다.
또, 제1차동증폭기(15a)에 있는 트랜지스터(Q6)와 제2차동증폭기(15b)에 있는 트랜지스터(Q9)의 베이스에는 제어전압입력단자(13)로부터의 스위칭제어전압(Vc)이 공급되는 한편, 상기 제1차동증폭기(15a)에 있는 트랜지스터(Q7)의 베이스와 제2차동증폭기(15b)에 있는 트랜지스터(Q8)의 베이스에는 기준전압(Vref2 ; 실시예에서는 기준전위)이 공급되게 된다.
따라서, 스위칭제어전압(Vc)과 기준전압(Vref2)사이의 관계가 Vc>Vref2를 만족시키는 경우에는 제1차동증폭기(15a)에 있는 트랜지스터(Q6)가 온상태로 되어 기준전류(Iref)는 기준전류(Irefl)로 셋팅되게 되고, Vc<Vref2인 경우에는 제2차동증폭기(15b)에 있는 트랜지스터(Q8)가 온상태로 되어 기준전류(Iref)로서 기준전류(Iref2)가 설정되도록 스위칭되게 된다. 그에 따라 차동증폭기(15a)(15b)로 구성되는 선택스위치는 각 트랜지스터(Q6)(Q7)의 차단주파수에 따른 고속스위칭능력을 갖게 된다.
제16도(a)는 레이저다이오드(LD)의 순방향전류(If)와 광출력(Po)사이의 관계를 나타낸 특성파형도이고, 제16도(b)는 레이저다이오드(LD)의 광출력(Po)과 포토다이오드(PD)에서 발생되는 모니터전류(Is ; 광전류)와의 관계를 나타낸 특성파형도이다.
제16도(a)에 도시된 특성곡선을 보면, 레이저다이오드(LD)는 그 순방향전류(If)가 어떤 임계전류값에 도달될 때 광출력을 내도록 발진하게 되고, 그후 광출력은 순방향전류(If)에 비례해서 증가하게 됨을 알 수있는데, 이러한 비례범위에서 순방향전류(If)에 대한 광출력의 특성곡선은 일반적인 반도체장치의 순방향특성과 완전히 동일하게 된다. 한편, 포토다이오드(PD)는 광출력(Po)의 인가에 따라 광전류(Is)를 발생시키게 되는데, 이 광전류(Is)는 제16도(b)에 도시된 바와 같이 광출력(Po)에 비례하여 증가하게 된다.
상기한 바와 같이 포토다이오드(PD)에 의해 검출되는 광전류(Is)는 광출력(Po)에 비례하게 되므로, 본발명에서는 광전류(Is)가 기준전류(Iref)에 따른 값이 되도록 광출력(Po)을 궤환제어함으로써 광출력의 출력레벨을 직접 제어하는 경우에 발생되는 제어능력의 불안정성을 피하여 광출력의 안정된 제어를 실현할 수있게 된다.
즉, 광전류(Is)와 기준전류(Iref)사이의 관계가 Is<Iref 상태인 경우에는 제어트랜지스터(Q1)의 베이스에는 아무런 전류도 흐르지 않게 되므로 제어트랜지스터(Q1)가 턴오프되고, 이에 따라 바이어스전류(Ib)가 바이어스전류회로(5)로부터 구동트랜지스터(Q2)의 베이스로 흘러 그 구동트랜지스터(Q2)를 턴온시키게 되므로 검출저항(R10)에 의해 규정되는 최대상한전류가 레이지다이오드(LD)로 흘러 광출력(Po)을 증가시키게 된다.
또한, 광전류(IS)가 광출력(Po)의 증가와 더불어 증가되어 Is>Iref의 관계로 되게 되면, 광전류(Is)와 기준전류(Iref)사이의 차에 따른 베이스전류가 제어트랜지스터(Q1)로 흐르게 되므로 이 차전류가 증폭된 전류가 제어트랜지스터(Q1)의 컬렉터로 흐르게 되고, 이 때문에 증폭된 전류에 따른 전류량이 바이어스전류회로(5)의 바이어스전류(Ib)로부터 제어트랜지스터(Q1)측으로 흐르게 됨으로써 구동트랜지스터(Q2)의 베이스바이어스전류가 그 양만큼 감소하게 된다. 따라서 상기 구동트랜지스터(Q2)가 제어트랜지스터(Q1)에서 반전증폭된 전류에 의해 구동되어 레이저다이오드(LD)의 순방향전류(If)가 전류증폭요소의 감소에 의해 축소되게 되므로 광출력(Po)이 축소되게 된다.
이러한 궤환동작에 의해 레이저다이오드(LD)의 광출력은 포토다이오드(PD)의 광전류(Is)가 기준전류(Iref)에 따른 값과 같아지도록 그 출력레벨이 제어되게 된다.
여기서, 레이저다이오드(LD)의 광출력(Po)이 기준전류값에 따라 출력레벨(PO1)이나 출력레벨(PO2)로 제어된다고 하면, 기준전류 스위칭회로(JI)의 전압입력단(13)에 공급되는 스위칭제어전압(Vc)의 값이Vc>Vref2나 Vc>Vref2를 만족시키도록 변화될 때 레이저다이오드(LD)의 광출력(Po)의 레벨은 PO1이나PO2로 제어되게 된다.
이들 값 사이의 관계는 다음과 같다.
Vc
Figure kpo00006
Vc>Vref2, Vc<Vref2 ; Is→Is1/=Irefl, Is2=Iref2 ; If→Ifl, If2 ; PO
Figure kpo00007
POl, PO2.
광디스크장치에 있어서, 상기 레이저다이오드(LD)의 광출력 PO1과 PO2는, 각각 독출레벨과 기록레벨로 공급된다.
상기한 바와 같이 본 실시예의 제어동작에 있어서는 단지 2개의 트랜지스터, 즉 제어트랜지스터(Q1)와 구동트랜지스더(Q2)만이 궤환회로(3)에 접속되기 때문에 종래장치에 비해 구성요소의 수가 매우 적어져서 회로구성이 간단화되게 된다. 그러므로, 광출력(Po)의 변화에 대한 궤환시스템의 응답지연이 매우 작아지게 된다. 또한 차동증폭기(15a)(15b)로 구성되는 선택스위치는 매우 빠른 스위칭능력을 갖고 있기 때문에 고속제어 능력, 즉 광출력(Po)의 출력레벨의 고속변조능력을 얻을 수 있게 된다.
이하, 제17도 내지 제20도를 참조하여 상기 제l실시예의 실제적인 적용예를 설명한다.
제17도는 제15도에 대응하는 실제적인 회로를 도시해 놓은 회로도이고, 제18도는 기준전류 스위칭회로(J1)에서의 스위칭제어전압(Vc)에 따른 레이저다이오드(LD)의 순방향전류(If)의 응답특성을 설명하기 위한 특성도이며, 제19도는 외부로부터의 광출력(Po)을 검출하기 위한 검출회로를 도시해 놓은 도면이고, 제20도는 스위칭제어전압(Vc)와 외부검출회로로부터 출력되는 출력전압(Vo)사이의 응답특성을 나타낸 특성도이다.
제17도에 있어서, 예컨대 제1기준전류원(14a)은 그 기준전류(Iref1)가 75μA로 설정되도록 120K
Figure kpo00008
의 저항값을 갖는 저항(R14)으로 구성되고, 전류원(14b)은 그 기준전류(Iref2)가 280μA로 설정되도록 저항값 33K
Figure kpo00009
을 갖는 저항(R15)으로 구성된다. 따라서 2개의 기준전류(Iref1과 Iref2)의 비율은 1 : 4로 되어 광출력(Po)의 출력레벨은 기준전류(Iref)에 대해 1 : 4의 비율로 스위칭제어되도록 설계된다. 여기서 순방향전류회로(4)에 연결된 저항(R1)은 순방향전류를 최대정격값으로 안정화시키기 위한 저항이다.
또, 제17도에 있어서, 전압입력단(13)에 공급되는 스위칭제어수단(Vc)이 Vc>Vref2나 Vc<Vref2의 관계가 되도록 스위칭될 때의 스위칭제어전압(Vc)과 레이저다이오드(LD)의 순방향전류(If)사이의 응답특성에 따른 측정결과가 제18도에 도시되어 있다.
제18도에 도시된 특성곡선에서 알 수 있는 바와 같이, 스위칭제어수단(Vc)이 Vc>Vref2에서 Vc<Vref2로 스위칭되어 기준전류(Iref)가 Iref=75μA에서 Iref2=280μA로 스위칭 되면, 레이저다이오드(LD)의 순방향전류(If)는 If1=600mA에서 If2=70mA로 스위칭되게 되는데, 이때 그 순방향전류(If)에 대한 상승시간(tr)은 약 20nsec로서 매우 빠른 스위칭 응답특성을 나타내게 된다. 또한 제16도에 도시된 순방향전류(If)에 대한 광출력(Po)의 특성곡선으로부터, 60mA와 70mA의 순방향전류(If)에 대한 광출력(Po)이 각각 1mW와 4mW로 되어 1:4의 비율로 스위칭제어됨을 알 수 있다.
다음, 제19도에 도시된 바와 같은 외부적으로 제공되는 검출회로에서 스위칭제어전압(Vc)과 광출력(Po)사이의 응답특성을 측정한 결과를 설명한다.
외부검출회로에서는 포토센서(Ps)와, 이 포토센서(Ps)에 의해 검출되는 광전류(Is)를 증폭한 후 출력단자(16)로부터 전압출력(Vc)을 출력시키는 감지증폭기가 제공되는데, 이 감지증폭기는 OP앰프(A5)와 궤환저항(R16)으로 구성된다.
제20도(A)에 도시된 특성으로부터, 스위칭제어전압(Vc)이 Vc>Vref로부터 Vc<Vref로 스위칭되어, 기준전류(Iref)가 Iref1에서 Iref2로 스위칭되면, 외부검출회로에 의해 검출된 출력전압(Vc)은 각각 약 50nsec로 스위칭되는 상승시간(tr)과 하강시간(tr)을 갖게 됨을 알 수 있는데, 이는 매우 빠른 스위칭응답임이 확실하다.
제20도(B)는 50nsec의 펄스폭으로 스위칭되는 펄스전압이 스위칭제어전압(Vc)으로 사용되는 경우의 출력전압(Vo)의 펄스응답의 측정결과를 나타낸 것인 바, 이와 같은 경우에도 출력펄스전압(Vo)의 상승시간(tr)과 하강시간(tr)은 각각 약 50nsec로 되어 펄스제어시에 비교적 빠른 응답이 얻어지게 됨을 알 수 있다.
여기서 상승시간(tr)과 하강시간(tf)은 외부검출회로에 존재하는 감지증폭기 자체와 다른 소자의 응답지연을 포함한 값을 나타낸다.
제21도는 본 발명의 제3실시예에 대한 제1변형예를 나타낸 것으로, 본 변형예에서는 기준전류스위칭회로(J2)에 n개의 기준전류원(24a∼24n)이 제공되어 기준전류(Ifef)가 선택스위치(17)의 수단에 의해Iref1∼Irefn중 어느 하나의 값으로 설정될수 있도록 되어 있다.
또 제21도에서 선택스위치(17)는 기계적 선택스위치로 도시되어 있지만, 상술한 제1실시예의 경우와 같이 n개의 차동증폭기로 구성될 수도 있다. 또한 기준전류스위칭회로(J2)이외의 다른 구성은 제3실시예와 동일하다. 따라서 본 변형예에 따르면 레이저다이오드(LD)의 광출력(Po)의 출력레벨을 n개의 다른 방식으로 디지탈적으로 변조 및 제어할 수 있게 된다.
제22도는 제3실시예의 제2번형예를 나타낸 것으로, 본 변형예에서는 기준전류(Iref)를 아날로그형태로 가변설정할 수 있도록 기준전류원회로에 대해 가변적인 기준전류원회로(J3)를 채용한 구성으로 되어 있다.
그리고, 가변적인 기준전류원회로(J3)는 OP앰프(A6)와 에미터폴로워 접속의 출력트랜지스터(Q10) 및 에미터출력저항(R17)으로 구성되어 있는 바, 여기서 상기 출력트탠지스터(Q10)의 에미터와 에미터출력저항(R17)의 접속점에서는 OP앰프(A6)의 두 입력단자가 실제로 단락상태로 된다는 원리에 따라 제어전압(Vc)과 같은 전압이 발생되게 된다. 따라서, 기준전류(Iref)는 다음식으로 정해지게 된다.
Iref= [Vc-(-Vee)]/R17
윗식에서 보면 기준전류(Iref)가 제어전압(Vc)의 전압값에 따라 여러가지로 설정될 수 있다는 것을 알수 있다. 또 본 변형예의 구성은 가변기준전류원회로(J3)를 제외하고는 상술한 제3실시예와 동일하다.
본 변형예에 따르면, 아날로그방식으로 레이저마이오드(LD)의 광출력(Po)의 출력레벨을 변조 및 제어할수 있게 된다.
제23도는 본 발명에 따른 레이저다이오드 구동회로의 제4실시예를 나타낸 것으로, 본 실시예는 제11도에 도시된 본 발명의 제2실시예에서의 기준전류원(1)을 제22도에 도시된 트랜지스터(Q10)와 OP앰프(A6)로 구성된 가변적인 기준전류원회로(J3)로 대치함과 더불어 기준전류원회로(J3)에 있는 OP앰프(A6)의 비반전입력단에 온도보상회로(18)를 접속하고, 또 제11도의 제어트랜지스터(Q1)는 제6도와 같이 접합형 FET(Q11)로 대치하며, 전류제어저항(R1)을 구동트랜지스터(Q2)의 에미터에 직렬로 접속하고, 제11도의 바이어스전류회로(5)도 제13도에 도시된 바와 같이 저항(R12)으로 대치한 것이다.
또, 온도보상회로(18)는 접지와 음의 전원선(2b) 사이에 트랜지스터(Q12)와 2개의 저항(R18)(R19)이 직렬접속되어 있는데, 여기서 2개의 저항(R18)(R19)은 같은 온도계수를 갖는 것이다. 또 저항(R20)은 트랜지스터(Q12)의 베이스 바이어스전류를 셋팅시키기 위한 저항이고, 트랜지스터(Q12)의 베이스에는 순방향으로 연결된 다이오드(D)와 역방향으로 연결된 제너다이오드를 매개하여 전원선(2b)이 접속되어 있다. 그리고 저항(R18)(R19)의 접속점은 OP앰프(A6)의 비반전입력단자에 접속되어 있다.
한편, 상기온도보상회로(18)에 있어서, 다이오드(D)는 트랜지스터(Q22)의 베이스-에미터전압(VBE)과 동일한 값의 순방향전압을 가지므로 그의 전압에 대한 온도계수는 트랜지스터(Q12)의 온도계수와 동일하게된다. 또한, 제너다이오드(LD)의 제어전압(Vz)은 레이저다이오드(LD)의 광출력(Po)의 온도계수와 반대부호의 온도계수를 갖게 된다. 더욱이 제너다이오드(ZD)는 광출력(Po)의 온도계수와 대응하는 계수를 갖는 것으로 선택되게 되는데, 후에 설명하는 바와 같이 가변적인 기준전류원회로(J3)는 레이저다이오드(LD)의 광출력(Po)의 온도계수를 보상하기 위해 제너다이오드(ZD)의 제너전압(Vz)의 온도계수를 사용하게 된다.
이어, 제12도(a) 및 제12도(b)와 제24도를 참조하여 본 실시예에 있어서의 기준전류의 온도계수설정과 그 동작을 설명한다.
우선, 제12도(a)와 제12도(b)에 의거하여 레이저다이오드(LD)와 제너다이오드(ZD)의 실온인 일정한 온도조건일때의 제어를 설명한다.
제12도(a)에서 레이저다이오드는 순방향전류(If)가 어떤 임계전류값(Ith)에 도달되면 레이저발진을 통해 광출력(Po)을 발생시키게 되고, 그후 광출력(Po)은 순방향전류(If)에 비례하여 증가하게 된다.
한편, 포토다이오드(PD)는 광출력(Po)을 인가받아 광전류(Is)를 발생시키게 되는데, 이때 광전류(Is)는 제12도(b)에 도시된 바와 같이 광출력(Po)에 비례하여 증가하게 된다. 또, 포토다이오드(PD)에서 검출된 광전류(Is)는 광출력(Po)에 비례하므로 광출력(Po)은 기준전류(Iref)에 따른 값을 갖도록 광출력(Po)을 궤환제어함으로써 기준전류(Iref)에 따른 출력레벨로 제어할 수 있게 된다.
여기서 가변적인 기준전류원회로(J3)에서 기준전류(Iref)의 값이 설정되는 것에 대하여 설명한다. 다이오드(D)의 순방향전압과 트랜지스터(Q12)의 베이스-에미터전압(VBE)은 동일한 값을 갖도록 배치되므로 트랜지스터(Q12)의 에미터전압은 제너전압(Vz)과 동일한 값을 갖게 된다. 이 때문에 OP앰프(A6)의 비반전입력단자로 입력되는 제너입력전압( Vo)은
Vc=Vz·R19/(R18+R19)
로 주어지게 된다.
이어 출력트랜지스터(Q10)의 에이티에서는 OP앰프(A6)의 양 입력단자의 가상단락원리에 의해 입력전압(Vc)과 동일한 값의 전압이 발생되게 된다. 그러므로 전원선(2b)의 전위를 접지전위로 간주하면 기준전류(Iref)는 다음식으로 표시된다.
Iref=Vc/R17=Vz·R19/[R17(R18+R19)]…………………………… (4)
이때 상기한 바와 같이 설정된 기준전류(Iref)와 포트다이오드(PD)에 의해 검출된 광전류(Is)의 관계가 Is<Iref의 조건을 만족시키는 경우에는 제어트랜지스터(Q11)의 게이트는 컷오프전압보다 낮은 값으로 설정되기 때문에 제어트랜지스터(Q11)는 턴오프된다. 이 때문에 저항(R12)에 의해 설정되는 바이어스전류(Ib)가 구동트랜지스터(Q2)의 베이스로 흘러 구동트랜지스터(Q2)가 턴온상태로 되게 됨으로써 레이저다이오드(LD)에는 순방향전류회로(4)에 의해 설정된 최대상한 전류가 흘러 광출력(Po)을 증가시키게 된다.
한편, 광출력(Po)의 증가에 의해 광전류(Is)가 Is/Iref를 만족시키도록 증가되게 되면, 광전류(Is)와 기준전류(Iref)의 차전류가 가변적인 기준전류원회로(J3)의 트랜지스터(Q10)와 저항(R17)으로 흐르게 된다. 이때 트랜지스터(Q11)의 게이트전압이 상기 차전류에 따른 양만큼 증가하여 게이트전압의 증가량에 대응하는 증폭전류가 제어트랜지스터(Q11)의 드레인으로 흐른다. 이 때문에 바이어스설정저항(R11)에 의해 설정되는 바이어스전류(Ib)가 증폭된 전류량에 해당되는 양만큼 제어트랜지스터(Q11)측으로 흐르게 되므로 구동트랜지스터(Q2)의 베이스바이어스전류는 그 양만큼 감소되게 된다. 그리고 구동트랜지스터(Q2)는 제어트랜지스터(Q11)의 반전증폭된 전류에 의해 구동되므로 그 전류증폭요소가 제어되어 레이저다이오드(LD)의 순방향전류(If)는 감소하게 된다.
또, 온도특성을 고려하지 않을 때 상기 궤환동작에 의해 레이저다이오드(LD)의 광출력(Po)은 광전류(Is)가 기준전류(Iref)에 대응하는 값으로 되는 출력레벨로 제어되게 된다.
다음 레이저다이오드(LD)의 광출력(Po)의 온도계수를 보상하기 위해 기준전류(Iref)의 온도계수를 설정하는 동작에 대하여 설명한다.
제24도는 기준전류(Iref)를 변수로 할 때의 레이저다이오드(LD)로부터 출력되는 광출력(Po)의 온도특성에 대한 측정예를 나타낸 것으로, 이러한 온도특성으로부터, 온도의 존성이, 고려되는 경우의 광출력(Po)에 대한 실험식은 다음과 같게 된다.
Po=ro(1+α·△T)Iref+β……………………………………………… (5)
여기서, ro는 변환계수(제24도의 예에서는 4.69mW/mA),
α는 상기 변환계수(r0)의 온도계수(상기와 동일한 예에서는 -496ppm/0℃)
△T는 실내온도(25℃)와의 온도차(℃),
β는 광출력이 적은 경우에 변환효율이 감소됨에 의해 발생되는 시프트항(shift 項)(상기 예에서는 0.07mW)을 나타낸다.
상기 각 수치예는 주위온도가 0℃에서 50℃로 변화될 때의 측정값으로부터 얻어진 것이다.
제24도의 특성곡선으로부터 알 수 있는 바와 같이 일정한 기준전류(Iref)에 대해 광출력(Po)은 온도가 상승됨에 따라 저하되게 된다. 즉, 광출력(Po)은 부온도계수(예컨대 α=-496ppm/℃)를 갖는다. 그러므로 광출력(Po)의 부온도계수(α)에 대한 보상은 기준전류(Iref)에 역부호를 가지면서 광출력(Po)의 온도계수에 대응하는 계수값을 갖는 온도계수를 제공함으로써 실현되게 된다.
즉, 온도계수를 고려할 때의 기준전류(Iref)는
Iref=(Irefo(1+αiㆍ
Figure kpo00010
T)…………………………………………………… (6)
여기서, Iref는 실온(25℃)에서의 기준전류, αi는 기준전류의 온도계수를 나타낸다. 그리고 상기 (6)식을 상기 (5)식에 대입하면
Po=ro·Iref[1+(α+αi)·△T+α·αi·(△T)2]+β………………… (7)
이 얻어지게 되는데 여기서, 다음의 (8)식과 같이 기준전류의 온도계수(αi)가 변환계수[광출력(Po)의 온도계수]의 온도계수에 대해 역부호이면서 수치적으로 동일한 값을 갖고, 또 온도계수인 αi·α가 매우 작아, 즉
αi=-α,α·αi≪ …………………………………………………………… (8)
라 하면, 상기 (7)식은 다음과 같이 표시되게 된다.
Po=ro·Iref0+β ………………………………………………………… (9)
다시 말해, 기준전류의 온도계수(αi)가 (8)식으로부터 αi=+496ppm/℃로 설정되고, α·αi≪1 이라는 조건이 만족될 수 있다면, 광출력(Po)은 기준전류의 온도계수에 의해 보상되어 온도의존성을 더이상 갖지 않게 된다.
본 발명에 따르면, 기준전류(Iref)에 αi로 나타낸 온도계수를 제공하는 수단으로서 상기한 바와 같이 가변기준전류원회로에 제너다이오드(ZD)를 포함하는 온도보상회로(18)가 접속된 구성의 회로가 설치되어 있는데, 이는 상기 제너다이오드(ZD)의 제너전압(Vz)의 온도계수(αz)를 이용하도록 되어 있다.
또 제너전압(Vz)의 온드계수에 대해 정온도계수를 갖는 제너다이오드(ZD)를 선택하게 되면, 상기 식(4)식으로부터 알 수 있는 바와 같이 역시 기준전류(Iref)에 대응하는 온도계수를 설정할 수 있게 된다.
상기 (4)식으로부터 제어전압(Vz)의 온도계수(αz)와 기준전류(Iref)의 온도계수(αi)는 다음식과 같은 관계가 있다.
αi=αz·R19/(R18+R19)……………………………………………… (10)
상기의 수치값에 따라 제너전압(Vz)의 온도계수를 약 +600ppm/℃ 정도로 선택하고 저항(R18, R19)의 값을 적절하게 조정함으로써 상기 (8)식이 만족되도록 기준젼류(Iref)의 온도계수(αi)를 조정할 수 있게 된다.
제25도는 본 발명의 제4실시예에 대한 변형예를 나타낸 회로도로서, 본 변형예에서는 기준전류회로(J4)에서 설정되는 기준전류(Iref)를 2종류의 기준전류값, 즉 Iref1과 Iref2로 절환설정할 수 있도록 된 것이다.
레이저다이오드의 광출력에 대한 온도보상회로를 예를들어 레이저다이오드(LD)의 레이저광원에 적용하게되면 광출력(Po)을 다른 2가지의 출력값 상태, 즉 광디스크장치의 독출전력과 기록전력의 상태로 안정되게 제어하는 것이 필요하게 되는데, 본 변형예는 이러한 경우에 아주 적합하게 된다.
또한, 본 변형예에서는 제23도의 회로와 같이, 기준전류원회로(J4)가 OP앰프(A6)와, 이 OP앰프(A6)의 입력측에 제너다이오드(ZD)를 포함하고 있는 온도보상회로(18)를 구비하고 있는데, 본 변형예에서는 OP앰프(A6)의 출력측에 2가지의 값으로 기준전류(Iref)를 설정할 수 있는 다음과 같이 구성된 회로로 구비되어있다.
즉, 포토다이오드(PD)의 애노드(11C)단자측에 각각 트랜지스터쌍(Q13, Q14)(Q15, Q16)으로 구성된 제1및 제2차동증폭기(26a, 26b)와, 4개의 트랜지스터(Q17∼Q20)로 구성된 교차결합회로(19 ; cros-coupled ciruit)가 접속되고, 이 교차결합회로(19)의 트랜지스터(Q19, Q20)의 에미터에는 기준전류설정용 저항(R21, R22)이 각각 접속되어 있다.
여기서, 제1및 제2차동증폭기(26a, 26b)는 기준전류(Iref)를 2가지 값으로 절환하기 위한 선택스위치를 이루고 있는데, 제1차동증폭기(26a)에서의 트랜지스터(Q13)의 베이스와 제2차동증폭기(26b)에서의 트랜지스터(Q16)의 베이스에는 제어전압 입력단자(20)로부터 절환제어전압(Vs)이 인가되는 한편, 제1차동증폭기(26a)에서의 트랜지스터(Q14)의 베이스와 제2차동증폭기(26b)에서의 트랜지스터(Q15)의 베이스에는 기준전압(Vref2)이 인가되게 된다(도면의 예에서는 접지전위).
상기 절환제어전압(Vs)과 기준전압(Vref2)의 관계가 Vs/Vref2를 만족시키게 될 때에는 제1차동증폭기(26a)에서의 트랜지스터(Q13)가 턴온상태로 되고, 포토다이오드(PD)의 애노드단자(11C)는 교차결합회로(19)에서의 트랜지스터(Q17)의 컬렉터전류(Iref2)로 선택되게 된다.
한편, 절환제어전압(Vs)과 기준전압(Vref2)의 관계가 Vs<Vref2인 경우에는 제2차동증폭기(26b)에서의 트랜지스터(Q15)가 턴온상태로 되고, 포토다이오드(PD)의 애노드단자(11C)는 교차결합회로(19)에서의 트랜지스터(Q18)의 컬렉터전류(Iref2)로 선택되게 된다.
여기서, 트랜지스되(Q19)와 제1기준전류를 설정하기 위한 저항(P21)사이의 접속점에서의 전압(V1)과, 트랜지스터(20)와 제2기준전류를 설정하기 위한 저항(R22)사이의 접속점에서의 전압(V2)은 모두 OP앰프(A6)의 입력전압(Vc)과 동일하게 되므로 2종류의 기준전압값(Iref1와 Iref2)은 다음식에 의해 상기(4)식과 거의 유사하게 규정되게 된다.
Iref1=Vz·R19/R21(R18+R19) ……………………………………… (11)
Iref2=Vz·R19/R21(Rl8+R19) ………………………………………… (12)
상기 기준전류원회로(J4)부분 이외의 구성과, 제1 및 제2기준전류(Iref1와 Iref2)의 온도특성에 의한 레이저다이오드(LD)의 광출력(Po)의 온도특성에 대한 보상동작 및, 기준전류(Iref1와 Iref2)의 온도계수가 제너다이오드(ZD)의 제너전압(Vz)의 온도계수에 의해 요망된 값으로 설정되는것 등은 상기 제4실시예의 경우와 거의 동일하다.
그러므로, 본 변형예에 의하면 온도의존성을 수반하지 않고 레이저다이오드(LD)의 광출력을 2가지의 출력레벨로 매우 안정되게 제어하는 것이 가능하게 된다.
또한 본 변형예를 광디스크장치에 적용하게 되면 독출과 기록비임(beam)의 온도계수를 동시에 감소시킬수 있게 된다.
제26도는 본 발명의 제5실시예를 나타낸 것으로, 본 실시예는 포토다이오드로 구성된 레이저다이오드 구동회로에 기준전류원(1)과, 접합전계효과트랜지스터 (JFET) (Q11)가 구비된 반전증폭수단(2), 궤환회로(3), 순방향전류구동회로(4) 및, 검출수단(21)과 리셋트수단(22)으로 이루어진 리셋트회로(U1)가 추가되어 구성되어 있다. 이와 같은 회로구성에 의해 정극성 전원선로(2a)를 통해 공급되는 전원전압(Vcc)이 모니터되어, 그 전원전압(Vcc)이 사전에 설정된 전압값이하로 낮아지게 되면 레이저다이오드(LD)의 동작이 중지되도록 구동회로는 리셋트되게 된다.
여기서, 상기 구동회로에 제공된 기준전류원(1)은 실제적으로 OP앰프와 같은 전압전류변환회로(Voltage current conversion cicuit)로 구성된 것으로, 그 OP앰프의 비반전입력단에는 기준전류를 설정하기 위한 전압으로서 전원전압을 처리함으로써 얻어진 적절한 값으리 전압이 인가되고, 상기 OP앰프의 출력측에는 기준전류(Iref)를 설정하기 위한 전압에 대응하는 값을 갖는 변환된 전류가 설정되게 된다.
또한 애노드단자(11C)와 기준전류원(1)의 접속점에는 JFET로 구성된 제어트랜지스터(Q11)의 게이트가 접속되는데, 이 제어트랜지스터(Q11)의 드레인에는 구동트랜지스터(Q2)의 베이스가 연결되고, 또 참조부호R27은 소오스저항을 나타낸다.
전원전압(+Vcc)이 소정 전압값으로 일정하게 유지되면 레이저다이오드(LD)의 광출력을 모니터하는 포토다이오드(PD)의 광전류(Is)와 기준전류원(1)에 의해 설정된 기준전류(lref)간의 차는 제어트랜지스터(Q11)에 의해 반전증폭되고, 그 반전증폭출력은 궤환회로(3)를 통해 순방향전류구동회로(4)로 궤환된다. 이러한 궤환작용에 의해 레이저다이오드(LD)의 순방향전류(If)는 기준전류(Iref)에 대응하는 전류값으로 제어되고, 레이저다이오드(LD)의 광출력(Po)은 설정된 기준전류(Iref)에 대응하는 고정된 값을 갖도록 제어되게 된다.
또한, 순방향전류(If)가 임계전류값에 도달했을 때의 레이저다이오드(LD)의 발진상태에 대응하는 순방향전압을 Vf라 하고, 구동트랜지스터(Q2)의 베이스-에미터전압을 VBE라 할때, 제27도에 도시된 바와 같이 전원이 OV에서부터 소정 전압까지 증가되는 동안의 레이저다이오드(LD)의 동작, 즉 전원이 온상태인 동안의 동작을 고려해 본다.
제27도에서 V1과 V2가 V1=Vf, V2=Vf+VBE로 각각 고정될 때, Vcc<V1인 경우에는 구동트랜지스터(Q2)가 오프상태로 되므로 구동회로가 비동작상태로 되어 레이저다이오드(LD)가 빛을 발산하지 못하게 된다. 한편, Vcc>V2로 되면, 구동트랜지스터(Q2)가 온상태로 될 가능성이 있으므로 만일 소정 기준전류(Iref)가 기준전류원(1)으로 정확하게 설정되면 레이저다이오드(LD)는 그 기준전류(Iref)에 대응하는 출력레벨로 일정한 광출력(Po)을 발생시키게 될 것이다.
또한, 전원전압(Vcc)이 V1<Vcc<V2의 범위에 있게 되면, 구동트랜지스터(Q2)가 바이어스전류(Ib)에의해 트리거되어 온상태로 되게 되므로 얼마간의 크기를 갖는 순방향전류(If)가 레이저다이오드(LD)로 흐르게 된다.
한편, 기준전류(Iref)를 설정하는 OP앰프는 전원전압(Vcc)이 소정 전압 이하일 때 비동작상태로 되는 것이 요망되지만, 그 OP앰프의 반전입력단과 비반전입력단으로 입력되는 전압의 균형이 역으로 바뀜에 따른 기능장애에 의해 때때로 과잉출력이 발생될 수 있게 되는데, 이러한 경우 기준전류(Iref)가 비정상적으로 높은 값으로 설정되어 과잉순방향전류(If)가 레이저다이오드(LD)로 흐르게 됨으로써 비정상적으로 높은 광출력(Po)이 발생되게 된다.
그러나 레이저다이오드(LD)가 예컨대 광디스크장치의 광원으로서 사용될 때, 저전압인가상태의 발생하에 전원이 차단되거나 통전되는 경우등에는 비정상적으로 높은 광출력이 발생되어 기록매체에 대한 오기록이나 오소거등이 발생된다. 제28도에 도시된 제5실시예에서는 이와 같은 문제점을 제거한 것으로서, 본 실시예에서는 전원전압(Vcc)이 소정 전원값(Vcc')이하로 강하되는 것을 검출하는 검출수단(21)을 설치하여 전원전압이 낮은 경우에는 레이저다이오드(LD)가 전원의 차단 및 공급과 같은 상태에서 비동작상태로 되도록 되어 있다. 또 여기서 리셋트수단(2)은 검출수단(21)에 의해 검출된 신호에 의해 동작되어 구동회로를 비구동상태로 설정하는 트랜지스터(Q22)로 구성되어 있다.
또한, 상기 소정의 전원전압(Vcc')은 다음 조건에 따른 값을 갖게 된다.
V3 < Vcc' < V4
V3<V1, V4>V2 …………………………………………………………… (13)
제26도에 도시된 바와같이, 본 실시예에 따른 리셋트회로(U1)에서의 검출수단(21)은 2단으로 구성된 분압회로, 즉 2개의 저항(R25)(R26)으로 이루어진 제1분압회로(24)와 2개의 저항(R23)(R24)과 1개의 트랜지스터(Q21)로 이루어진 제2분압회로(23)로 구성되어 있다. 이 제1 및 제2분압회로(24)(23)는 전원선로(2a)와 접지사이에 병렬로 연결된 것으로, 제1분압회로(24)의 전압분배점(24a)은 리셋트트랜지스터(Q22)의 베이스에 접속되고, 제2분압회로(23)의 전압분배점(23a)은 트랜지스터(Q21)의 베이스에 접속되며, 트랜지스터(Q21)의 컬렉터는 리셋트트랜지스터(Q22)의 베이스에 접속되어 있다.
여기서, 트랜지스터(Q22)(Q21)의 베이스와 에미터간의 전압을 각각 VBE22와 VBE21이라 하면, 이때 분압회로(24)(23)의 각 저항은 다음 식을 만족시키기 위해 다음과 같이 설정된다.
V3=VBE22·(R25+R26)/R26,
V4=VBE22·(R23+R24)/R24 ……………………………………………… (14)
또한 상기 제1 및 제2분압회로(24)(23)에 있는 각 저항 사이의 관계는 식(13)을 만족시키기 위해 다음과 같이 설정된다.
R25/R26<R23/R24 ………………………………………………………… (15)
이하, 제29도(a)와 제29도(b)를 참조하여 본 실시예의 동작을 설명한다. 여기서 제29도(a)는 전원전압(Vcc)의 상승과 하강변화를 나타낸 것이고, 제29도(b)는 전원전압(Vcc)이 상승하거나 하강하는 동안 리셋트회로(U1)로부터 출력되는 리셋트신호(Vr)의 변화를 나타낸 것이다.
먼저 전원전압(Vcc)이 상승하여 전압(V3)에 도달되게 되면, 이는 제1분압회로(24)에 의해 검출되어 전압분배점(24a)에서 전압 VBE22가 발생된다. 이에 따라 리셋트 트랜지스터(Q22)가 온상태로 되어 리셋트회로(U1)로부터 로우레벨의 리셋트신호(Vr)가 출력되게 됨으로써 구동트랜지스터(Q2)가 오프상태로 되어 구동회로가 동작되지 않게 된다.
이어 전원전압(Vcc)이 전압 V4까지 상승되게 되면, 이 전압은 제2분압회로(23)에 의해 검출되어 전압분배점(23a)에서 VBE21인 전압이 발생되고, 이에 따라 트랜지스터(Q21)가 턴온되어 리셋트 트랜지스터(Q22)가 오프상태로 되게 됨으로써 리셋트회로(U1)로부터 하이레벨의 리셋신호(Vr)가 출력된다. 그리고 이와 같은 하이레벨의 리셋트신호(Vr)에 의해 구동트랜지스터(Q2)가 온상태로 되어 구동회로가 다시 구동상태로 되게 된다.
그러나, 전원전압(Vcc)이 Vcc', 즉 V3<Vcc'<V4가 되면 리셋트신호(Vr)가 로우레벨로 되어 구동회로는 비동작상태로 되게 된다.
한편, 전원전압(Vcc)이 강하되는 기간동안의 동작은 상기한 동작의 역동작으로 된다. 즉, 먼저 전원전압(Vcc)이 전압 V4로 강하되면, 트랜지스터(Q21)가 오프상태로 되어 리셋트트랜지스터(Q22)가 온상태로 되게 됨으로써 로우레벨로 출력되는 리셋트신호(Vr)에 의해 구동회로는 비구동상태로 된다. 이어 전원전압(Vcc)이 더욱 강하되어 전압 V3으로 되면, 리셋트트랜지스터(Q22)가 오프상태로 되어 리셋트신호(Vr)가하이레벨로 되게 되는 바, 이 상태에서는 전원전압(Vcc)이 너무 낮아졌기 때문에 구동회로로부터 순방향전류는 공급되지 않게 된다.
특히, 제1분압회로(24)에 있는 저항들을 R25=8.6K
Figure kpo00011
, R26=20K
Figure kpo00012
으로 설정하고, 제2분압회로(23)에있는 저항들을 R23=22K
Figure kpo00013
, R24=10K
Figure kpo00014
으로 설정하며, V1=1.5V, V2=2.2V, V3과 V4를 V3=1V, V4=3V로 일정하게 설정하게 되면, 상기 구동전류를 상술한 전원전압의 범위내로 리셋트시킬 수 있게 됨으로써 구동회로에서 발생되던 기능장애를 방지할 수 있게 된다.
제30도는 본 발명의 제5실시예에 따른 제1변형예를 나타낸 것으로, 본 실시예에서는 리셋트회로의 검출수단으로서 2개의 차동증폭회로(OP앰프), 즉 제1회로(A11)와 제2회로(A12)로 구성되는 윈도우 비교기를 사용하도록 된 것이다.
여기서, 상기 제1차동증폭회로(A11)는 정전류원(28a)에 의해 바이어스되는 한쌍의 트랜지스터(Q23)(Q24)와, 전류미러트랜지스터(Q27)(Q28)로 이루어진 능동부하로 구성되어 있고, 상기 제2차동증폭회로(A12)는 정전류원(28b)에 의해 바이어스되는 한쌍의 트랜지스터(Q25)(Q26)와, 공통의 능동부하인 전류미러트랜지스터(Q27)(Q28)로 구성되어 있다.
또, 도면중 참조부호 28c는 전류미러트랜지스터(Q27)(Q28)의 바이어스정전류원이고, 29는 윈도우 비교기의 출력단이며, 또 30은 윈도우비교기의 입력전압(Vi)을 공급하기 위한 셋트회로로서 2개의 다이오드(D1)(D2)와 3개의 저항(R28)(R29)(R32)으로 구성되어 있다.
여기서, 상기한 각 다이오드(D1)(D1)의 순방향 전압을 Vfd라 하면, 입력전압(Vi)은 다음 식으로 설정된다.
Vi=Vcc-2Vfd·R28/(R28+R29)=Vcc-Vi …………………………… (16)
또한, 참조부호 31은 각각 제1및 제2차동즈폭기(A11)(A12)의 제1 및 제2기준전압(Vref1과 Vref2)을 설정하기 위한 회로로서, 3개의 다이오드(D3, D4, D5)와 4개의 저항(R34, R33, R30, R31)으로 구성되어 있다. 또, 여기서 제1기준전압(Vref1)은 전원전압(V3)에 대응하여 설정되고, 제2기준전압(Vref2)은 전원전압(V4)에 대응하여 설정된다. 즉 제1 및 제2기준전압(Vref1과 Vref2)은 제1 및 제2전원전압(V3와V4)에 대해 다음 관계를 만족시키도록 설정된다.
Vref1=V3-Vi,
Vref2=V4-Vi …………………………………………………………… (17)
제31도는 상기 식(17)로 나타낸 관계, 즉 전원저압(Vcc)과 입력전압(Vi)의 관계를 나타낸 특성곡선이다. 윈도우비교기로 구성된 검출수단은 입력전압(Vi)이 Vref1<Vi<Vref2의 관계를 만족할 때, 즉 상기한 전원전압(Vcc')이 V3<Vcc'<V4를 만족할 때 출력단자(29)로 하이레벨의 검출신호(Vd)를 출력시키게 된다. 그리고 이러한 하이레밸의 검출신호(Vd)에 의해 리셋트트랜지스터(Q22)가 턴온되어 리셋트신호(Vr)가 로우레벨로 됨으로써 구동회로는 비구동상태로 된다.
이에 대한 구체적인 예로서, 예를 들어 입력전압설정회로(30)의 Vi가 1V로 설정되고, 제1 및 제2기준전압(Vref1, Vref2)이 각각 0.5V와 2.1V로 설정되면, 구동회로는 식(17)에서 설정되는 바와 같이 V3=1.5V와 V4=3.1V 범위사이의 전원전압(Vcc)의 전압값에서 비구동상태로 설정되어 전원전압(Vcc)이 강하되는 동안의 기능장애가 방지되게 된다.
제32도는 본 발명의 제5실시예의 제2변형예를 나타낸 것으로, 본 변형예에서는 리셋트회로(U3)에 필요로 되는 시정수회로가 구비된 것이다. 이러한 시정수회로는 전원의 온·오프시에 전원전압(Vcc)이 고속으로 상승하거나 하강하게 되면 리셋트신호(Vr)를 필요로 되는 시간동안 지속시킴으로써 구동회로의 리셋트동작을 보호하게 된다.
또 상기 변형예에서의 리셋트회로(U3)는 나란히 배열된 리셋트트랜지스터(Q22a)(Q22b)를 갖추고 있는데, 이 2개의 리셋트트랜지스터(Q22a)(Q22b)는 그 컬렉터가 서로 접속되면서 그 접속점이 구동트랜지스터(Q2)의 베이스에 접속되어 있다. 또, 여기서 2개의 리셋트트랜지스터(Q22a)(Q22b)가 나란히 배치되고, 시정수회로가 설치된 것을 제외하고는 제26도에 도시된 제5실시예와 실질적으로 동일하다.
먼저, 콘덴서(C1)와 저항(R36)으로 구성되는 상승시정수회로는 정극성 전원선로(2a)와 접지측에 연결되고, 상승시정수신호(Va)에 대한 출력점은 리셋트트랜지스터(Q22a)의 베이스에 연결된다.
한편, 하강 시정수회로를 구성하는 콘덴서(C2)는 정극성전원회로(2a)와 제2분압회로(33)의 전압분배점(23a)사이에 연결된다. 이러한 하강시정수회로는 콘덴서(C2)와 2개의 저항(R23)(R24)으로 구성된다. 또 하강하는 동안에는 전원전압(Vcc)이 오프상태로 되어 하강시정수회로를 활성하하기 위한 전하가 없게되므로, 저항(R25)과 콘덴서(C3)로 구성된 직렬회로가 충전지속회로로서 정극성전원회로(2a)와 접지측에 접속되어 있다.
이하, 제33도(a) 내지 제33도(h)를 참조하여 상기 변형예의 동작을 설명한다.
전원전압 Vcc가 상승하는 동안[제33도(a)], t1 동안에 상승시정수회로의 시정수 γ=C1·R36에 따라 상승시정수신호(Va)가 발생된다[제33도(b)]. 이때, 리셋트트랜지스터중의 하나인 Q22가 온상태로 되어 로우레벨의 리셋트신호(Vr)가 출력된다[제33도(c)와 제33도(h)]. 그리고 이러한 리셋트신호(Vr)에 의해 구동회로가 t1 시간동안 리셋트되게 됨으로써 전원전압(Vcc)이 상승할 때의 구동회로의 기능장애를 방지할수 있게 된다.
한편, 소정의 전원전압(Vcc)이 공급되는 동안 충전지속회로의 콘덴서(C3)에는 제33도(d)에 도시된 바와같이 전원전압(Vcc)이 충전되게 된다.
또한, 전원전압(Vcc)이 강하되는 동안[제33도(a)], t2 동안에 하강시정수회로의 시정수 τ2=C·(R23, R24)에 따라 하강시정수신호(Vc)가 발생되어 트랜지스터(Q21)가 오프상태로 된다. 이때, 다른 리셋트트랜지스터(Q22b)가 온상태로 되어[제33도(f)와 제33도(g)], 전원전압의 상승시와 마찬가지로 로우레벨의 리셋트신호가 출력되게 됨으로써[제33도(h)] 전원전압(Vcc)이 하강할 때의 구동회로의 기능장애를 방지할수 있게 된다.
제34도는 상술한 제1실시예 내지 제5실시예의 회로조합에다 과전류보호회로(10), 기준전류스위칭회로(J1), 온도보상회로(18), 리셋트회로(U1)등의 주변회로를 접속하여 구성한 본 발명의 전반적인 회로구성을 나타낸것으로, 기본 구동회로는 레이저다이오드(LD)와 포토다이오드(PD), 기준전류원(1), 반전증폭회로(2), 궤환회로(3) 및 순방향 전류회로(4)로 구성된 것이다.
상기한 바와 같은 구조로 이루어진 본 발명의 레이저다이오드 구동회로는 레이저다이오드로부터의 광출력을 소정 값으로 빠르고 안정되게 제어할 수 있게 된다. 또한 과전류와 온도변화 및 전원전압강하에 대해 레이저다이오드를 보호할 수 있고 다수의 기준전압에 대응하는 소정 값으로 레이저다이오드의 광출력을 가변적으로 변조시킬 수 있게 된다.
[발명의 효과]
이상 설명한 바와 같이 본 발명에 따른 레이저다이오드 구동회로에 의하면, 비교적 간단한 회로구성으로 레이저다이오드의 광출력을 규정된 레벨로 빠르고 안정되게 제어할 수 있게 된다.
또, 과전류나 공급전압의 강하로 인한 레이저다이오드의 파손을 방지하여 레이저다이오드를 안정되게 제어할 수 있게 됨과 더불어, 레이저다이오드의 광출력레벨을 다수의 각 레벨로 정밀하게 변조시킬 수 있게 된다.

Claims (68)

  1. 반도체장치(LD)로부터 방출되는 빛의 세기에 해당하는 광전류를 출력시키는 출력수단(PD)과, 규정된 값의 기준전류를 공급하는 기준전류공급수단 및, 상기 출력수단(PD)으로부터 출력되는 광전류가 상기 기준전류공급수단으로부터의 기준전류에 비례하여 변동되도록 상기 반도체장치(LD)에 공급되는 구동전류를 제어하는 전류제어수단(2, 3)을 포함하는 구성으로되어, 구동전류의 공급에 따라 광을 방출시키도록 되어 있는것을 특징으로 하는 반도체장치의 구동장치.
  2. 제1항에 있어서, 상기 반도체장치(LD)의 애노드와 상기 출력수단(PD)의 캐소드가 연결된 것을 특징으로 하는 반도체장치의 구동장치.
  3. 제1항에 있어서, 상기 반도체장치(LD)의 캐소드와 상기 출력수단(PD)의 캐소드가 연결된 것을 특징으로 하는 반도체장치의 구동장치.
  4. 제1항에 있어서, 상기 전류제어수단(2, 3)이 과전류를 방지하는 저항(R1)을 포함하여 구성된 것을 특징으로 하는 반도체장치의 구동장치.
  5. 제1항에 있어서, 상기 기준전류공급수단이 전류원(1)으로 구성된 것을 특징으로 하는 반도체장치의 구동장치.
  6. 제1항에 있어서, 상기 기준전류공급수단이 저항(R2)으로 구성된 것을 특징으로 하는 반도체장치의 구동장치.
  7. 제1항에 있어서, 상기 반도체장치(LD)에 접속됨과 더불어, 그 반도체장치(LD)에 간혈적으로 구동전류를 공급하여 반도체장치(LD)를 스위칭제어하는 스위칭회로(6)를 추가로 포함하여 구성된 것을 특징으로 하는 반도체장치의 구동장치.
  8. 제7항에 있어서, 상기 스위칭회로(6)는 스위칭트랜지스터(Q3)를 포함하여 구성된 것을 특징으로 하는 반도체장치의 구동장치.
  9. 제1항에 있어서, 상기 전류제어수단(2, 3)에 병렬로 접속되어 발진을 방지하는 콘덴서(C1)를 추가로 포함하여 구성된 것을 특징으로 하는 반도체장치의 구동장치.
  10. 제4항에 있어서, 상기 전류제어수단(2, 3)에 공급되는 전압이 약 +5V인 것을 특징으로 하는 반도체장치의 구동장치.
  11. 제1항에 있어서, 상기 반도체장치(LD)에 공급되는 순방향 전류를 검출하여, 그 검출된 순방향전류가 규정전류값을 초과하게 될때 상기 반도체장치(LD)로 공급되는 순방향전류를 제한하는 전류제한수단을 추가로 포함하여 구성된 것을 특징으로 하는 반도체장치의 구동장치.
  12. 제11항에 있어서, 상기 전류제한수단(10)이 상기 반도체장치(LD)에 직렬로 접속된 검출전저항(R10)을 포함하여 구성된 것을 특징으로 하는 반도체장치의 구동장치.
  13. 제1항에 있어서, 상기 기준전류공급수단은 다수의 기준전류를 발생시키기 위한 기준전류원과, 이 기준전류원으로부터 출력되는 다수의 기준전류중 하나를 선택하는 선택수단을 포함하여 구성된 것을 특징으로하는 반도체장치의 구동장치.
  14. 제13항에 있어서, 상기 선택수단은 기준전류원(24a∼24n)과 전류제어수단(2, 3)사이에 접속된 스위칭회로(17)를 포함하여 구성된 것을 특징으로 하는 반도체장치의 구동장치.
  15. 제1항에 있어서, 상기 기준전류공급수단은 온도계수가 광출력의 온도계수와 부호가 반대이고 광출력의 온도계수에 해당하는 값을 갖도록 된 기준전류원(J3)을 포함하여 구성된 것을 특징으로 하는 반도체장치의 구동장치.
  16. 제15항에 있어서, 상기 기준전류원(J3)은 광출력레벨의 온도계수와는 반대의 온도계수를 갖는 정전압다이오드(ZD, D)와, 이 정전압다이오드(ZD, D)로부터 출력되는 정전압에 해당되는 기준신호를 발생시키는 기준신호발생회로(18)로 구성된 것을 특징으로 하는 반도체장치의 구동장치.
  17. 제4항에 있어서, 비구동상태에서 순방향전류회로를 설정하기 위해 전류제어수단(2, 3)의 전압이 적어도 하나의 규정전압 값인 것을 검출하는 러셋트수단(U1)을 추가로 포함하여 구성된 것을 특징으로 하는 반도체장치의 구동장치.
  18. 제17항에 있어서, 상기 규정전압값이 제1전위(V3)와 제2전위인(V4)인 것을 특징으로 하는 반도체장치의 구동장치.
  19. 제17항에 있어서, 상기 리셋트수단(U1)은 전원전압을 분압시키도록 된 2개의 저항(R25, R26)으로 이루어진 제1분압회로(24)와, 2개의 저항(R23, R24)으로 이루어진 제2분압회로(23) 및, 상기 제1 및 제2분압회로(24, 23) 사이에 연결된 트랜지스터(Q21)을 포함하여 구성된 것을 특징으로 하는 반도체장치의 구동장치.
  20. 제1항에 있어서, 상기 전류제어수단은 트랜지스터(Q2 또는 Q2')를 포함하여 구성된 것을 특징으로하는 반도체장치의 구동장치.
  21. 제20항에 있어서, 상기 구동전류는 트랜지스터(Q2 또는 Q2')의 컬렉터로부터 상기 반도체장치(LD)로 공급되는 것을 특징으로 하는 반도체장치의 구동장치.
  22. 제20항에 있어서, 상기 구동전류는 트랜지스터(Q2 또는 Q2')의 에미터로부터 상기 반도체장치(LD)로 공급되는 것을 특징으로 하는 반도체장치의 구동장치.
  23. 반도체창치(LD)로부터 방출되는 광의 세기에 해당하는 광전류를 출력시켜 주는 출력수단(PD)과, 규정된 값의 기준전류를 공급하는 기준전류공급수단 및, 상기 출력수단(PD)으로부터 출력되는 광전류가 상기기준전류공급수단으로부터의 기준전류에 비례하여 변동되도록 상기 반도체장치(PD)로 공급되는 구동전류를 제어하는 전류제어수단을 포함하되, 상기 전류제어수단은 상기 출력수단(PD)으로부터 출력되는 광전류와 상기 기준전류공급수단으로부터 출력되는 기준전류와의 차전류를 반전증폭시키는 전압비교기(VC)와, 이 전압비교기(VC)로부터 출력되는 반전증폭출력을 상기 반도체장치(LD)로 궤환시킴으로써 상기 순방향전류를 기준전류에 대응하는 전류값으로 제어하는 궤환회로(3)를 포함하여 구성된 것을 특징으로 하는 반도체장치의 구동장치.
  24. 공급된 구동전류에 대응하여 광을 방출시키는 반도체장치(LD)에 구동전류를 공급하는 구동전류공급수단(4)과, 반도체장치(LD)에서 방출되는 광의 세기에 따라 광전류를 발생시키는 광전류 출력수단(PD), 규정전류값을 갖는 기준전류를 출력시키는 기준전류출력수단 및, 상기 광전류출력수단(PD)으로부터 출력되는 광전류가 기준전류에 비례하여 변동되도록 제어 및 공급하는 전류제어수단을 포함하여 구성된 것을 특징으로 하는 반도체장치 구동회로.
  25. 제24항에 이어서, 상기 반도체장치(LD)의 애노드와 포토다이오드의 캐소드가 접속된 것을 특징으로하는 반도체장치 구동회로.
  26. 제24항에 있어서, 상기 반도체장치(LD)의 캐소드와 포토다이오드의 캐소드가 접속된 것을 특징으로하는 반도체장치 구동회로.
  27. 제24항에 있어서, 상기 전류제어수단이 과전류를 방지하는 저항(R1)을 포함하여 구성된 것을 특징으로 하는 반도체장치 구동회로.
  28. 제24항에 있어서, 상기 기준전류출력수단은 전류원(1)을 포함하여 구성된 것을 특징으로 하는 반도체장치 구동회로.
  29. 제24항에 있어서, 상기 기준전류출력수단은 저항(R2)을 포함하여 구성된 것을 특징으로 하는 반도체장치 구동회로.
  30. 제24항에 있어서, 상기 반도체장치(LD)에 접속됨과 더불어, 그 반도체장치(LD)에 간헐적으로 구동전류를 공급하여 반도체장치(LD)를 스위칭제어하는 스위칭회로(6)를 추가로 포함하여 구성된 것을 특징으로 하는 반도체장치 구동회로.
  31. 제30항에 있어서, 상기 스위칭회로(6)는 스위칭 트랜지스터(Q23)를 포함하여 구성된 것을 특징으로하는 반도체장치 구동회로.
  32. 제24항에 있어서, 상기 전류제어수단에 병렬로 접속되어 발진을 방지하는 콘덴서(C1)를 추가로 포함하여 구성된 것을 특징으로 하는 반도체장치 구동회로.
  33. 제24항에 있어서, 전원공급단자에 공급되는 전압이 약 +5V인 것을 특징으로 하는 반도체장치 구동회로.
  34. 제24항에 있어서, 상기 기준전류출력수단은 온도계수가 광출력의 온도계수와 부호가 반대이고 광출력온도계수에 해당하는 값을 갖도록 된 기준전류원(J3)을 포함하여 구성된 것을 특징으로 하는 반도체장치 구동회로.
  35. 제34항에 있어서, 상기 기준전류원(J3)은 광출력레벨의 온도계수와는 반대부호의 온도계수를 갖는 정전압 다이오드(ZD, D)로부터 출력되는 정전압에 따라 기준신호를 발생시키는 기준신호발생회로(18)를 포함하여 구성된 것을 특징으로 하는 반도체장치 구동회로.
  36. 제24항에 있어서, 비구동상태에서 순방향전류회로를 설정하기 위해 전류제어수단의 전압이 적어도 하나의 규정전압값인 것을 겁출하여 리셋트수단(U1)을 추가로 포함하여 구성된 것을 특징으로 하는 반도체장치 구동회로.
  37. 제36항에 있어서, 상기 규전전압값이 제1전위(V3)와 제2전위(V4) 사이의 값인 것을 특징으로 하는 반도체장치 구동회로.
  38. 제36항에 있어서, 상기 리셋트수단(U1)은 전원전압을 분압시키도록 된 2개의 저항(R25, R26)으로 이루어진 제1본압회로(24)와, 2개의 저항(R23, R24)으로 이루어진 제2분압회로(23) 및, 상기 제1및 제2분압회로(24, 23)사이에 연결된 트랜지스터(Q21)를 포함하여 구성된 것을 특징으로 하는 반도체장치 구동회로.
  39. 제24항에 있어서, 상기 전류제어수단은 트랜지스터(Q2 또는 Q2')를 포함하여 구성된 것을 특징으로하는 반도체장치 구동회로.
  40. 제39항에 있어서, 구동전류공급수단(4)이 트랜지스터(Q2 또는 Q2')의 컬렉터에 의해 제어되는 것을 특징으로 하는 반도체장치 구동회로.
  41. 제39항에 있어서, 구동전류공급수단(4)이 저항(R12)을 포함하여 구성된 것을 특징으로 하는 반도체장치 구동회로.
  42. 제1반도장치(LD)에 구동전류를 공급하기 위한 제1단자를 갖춘 제1회로(4)와, 광을 검출하여 제2반도체장치로부터의 제어전류를 수신하기 위한 제2단자와, 기준전류를 수신하기 위한 제3단자를 갖춘 제2회로(2, 3)를 포함하되, 제2회로는 제1회로(4)에 접속되어 제어전류가 기준전류에 비례하여 변동되도록 제1단자에 공급되는 구동전류를 제어하도록 구성된 것을 특징으로 하는 반도체장치 구동회로.
  43. 제42항에 있어서, 상기 제1회로(4)에 제1반도체장치(LD)에 직렬로 접속된 전류보호저항(R1)이 추가로 갖추어진 것을 특징으로 하는 반도체장치의 구동회로.
  44. 제42항에 있어서, 상기 제2회로(2, 3)의 제3단자로 공급되는 기준전류는 기준전류원(1)로부터 공급되는 것을 특징으로 하는 반도체장치의 구동회로.
  45. 제42항에 있어서, 상기 기준전류원이 저항(R11)인 것을 특징으로 하는 반도체장치의 구동회로.
  46. 제42항에 있어서, 반도체장치(LD)에 병렬로 접속됨과 더불어 그 제1반도체장치를 스위칭시키는 스위칭트랜지스터(Q3)를 추가로 포함하여 구성된 것을 특징으로 하는 반도체장치의 구동회로.
  47. 제42항에 있어서, 상기 제1회로(4)에 병렬로 접속되어 발진을 방지하는 콘덴서(C1)를 추가로 포함하여 구성된 것을 특징으로 하는 반도체장치의 구동회로.
  48. 제42항에 있어서, 상기 제1회로(4) 및 제2회로(2, 3)에 공급되는 전압이 약 +5V인 것을 특징으로하는 반도체장치의 구동회로.
  49. 제42항에 있어서, 상기 반도체장치(LD)로 공급되는 순방향 전류를 검출하여 검출된 순방향전류가 규정된 값을 초과할 때 상기 반도체장치(LD)로 공급되는 순방향전류를 제한하는 전류제한수단(10)을 추가로 포함하여 구성된 것을 특징으로 하는 반도체장치의 구동회로.
  50. 제49항에 있어서, 상기 전류제한수단(10)은 상기 반도체장치(LD)에 직렬로 접속된 검출저항(R10)을 포함하여 구성된 것을 특징으로 하는 반도체장치의 구동회로.
  51. 제42항에 있어서, 상기 제2회로(2, 3)는 기준전류의 온도계수가 광출력의 온도계수와 부호가 반대이면서 광출력의 온도계수에 해당하는 값을 갖도록 설정하는 기준전류원(J3)을 갖추어 구성된 것을 특징으로하는 반도체장치의 구동회로.
  52. 제51항에 있어서, 상기 기준전류원(J3)은 광출력레벨의 온도계수와는 반대부호의 온도계수를 갖는 정전압다이오드(ZD, D)와 이 정전압다이오드(ZD, D)로부터 출력되는 정전압에 따라 기준신호를 발생시키는 기준신호발생회로(18)를 포함하여 구성된 것을 특징으로 하는 반도체장치의 구동회로.
  53. 제42항에 있어서, 비구동상태에서 순방향전류회로를 설정하기 위해 전류제어수단의 전압이 적어도 하나의 규정전압값인 것을 검출하여 리셋트수단(U1)을 추가로 포함하여 구성된 것을 특징으로 하는 반도체장치의 구동회로.
  54. 제53항에 있어서, 상기 규정전압값이 제1전위(V3)와 제2전위(V4) 사이의 값인 것을 특징으로 하는 반도체장치의 구동회로.
  55. 제53항에 있어서, 상기 리셋트수단(U1)은 전원전압을 분압시키도록 된 2개의 저항(R25, R26)으로 이루어진 제1분압회로(24)와, 2개의 저항(R23, R24)으로 이루어진 제2분압회로(23) 및 이 제1 및 제2분압회로(24, 23) 사이에 접속된 트랜지스터(Q21)로 구성된 것을 특징으로 하는 반도체장치의 구동회로.
  56. 제42항에 있어서, 상기 제2회로(2, 3)가 트랜지스터(Q2 또는 Q2')를 포함하여 구성된 것을 특징으로 하는 반도체장치의 구동회로.
  57. 제42항에 있어서, 상기 구동전류는 트랜지스터(Q2 또는 Q2')의 컬렉터로부터 상기 반도체장치(LD)로 공급되는 것을 특징으로 하는 반도체장치의 구동회로.
  58. 제42항에 있어서, 상기 제1회로(4)가 트랜지스터(Q2 또는 Q2')를 포함하여 구성된 것을 특징으로하는 반도체장치의 구동회로.
  59. 반도체장치로부터 발산되는 빛의 세기에 해당하는 값을 갖는 광전류를 출력시키는 출력수단(PD)과, 규정값을 갖는 기준전압(Vref)을 공급하는 기준전압공급수단, 상기 기준전압공급수단에서 출력되는 기준전압과 상기 출력수단(PD)에서 출력되는 광전류에 해당하는 값을 갖는 전압을 비교하여 그 비교결과에 따른 제어신호를 발생시키는 비교수단(VC) 및, 상기 비교수단(VC)으로부터 발생되는 제어신호에 따라 상기 반도체장치를 제어하는 반도체장치 제어수단(4)을 포함하여 구동전류의 공급에 따라 광을 방출하도록 구성된것을 특징으로 하는 반도체장치의 구동장치.
  60. 제59항에 있어서, 상기 반도체장치의 애노드와 포토다이오드의 캐소드가 연결된 것을 특징으로 하는 반도체장치의 구동장치.
  61. 제59항에 있어서, 상기 반도체장치의 캐소드와 출력수단(PD)의 캐소드가 접속된 것을 특징으로 하는 반도체장치의 구동장치.
  62. 제59항에 있어서, 상기 반도체장치제어수단은 상기 반도체장치(LD)에 직렬로 접속된 전류보호저항(R1)을 포함하여 구성된 것을 특징으로 하는 반도체장치의 구동장치.
  63. 제59항에 있어서, 상기 기준전압공급수단은 전류원(Iref)에 접속되어 있는 것을 특징으로 하는 반도체장치의 구동장치.
  64. 제59항에 있어서, 상기 기준전압공급수단은 저항을 포함하여 구성된 것을 특징으로 하는 반도체장치의 구동장치.
  65. 제59항에 있어서, 발진을 방지하기 위한 콘덴서(C1)을 추가로 포함하여 구성된 것을 특징으로 하는 반도체장치의 구동장치.
  66. 제59항에 있어서, 상기 기준전압공급수단은 다수의 기준전류(Iref1, Iref2)를 발생시키기 위한 기준전류원과. 이 기준전류원으로부터의 다수의 기준전류중 하나를 선택하는 선택수단(15a, 15b)을 포함하여 구성된 것을 특징으로 하는 반도체장치의 구동장치.
  67. 제66항에 있어서, 상기 선택수단(15a, 15b)은 기준전류원과 비교수단 사이에 접속된 스위칭회로(17)를 포함하여 구성된 것을 특징으로 하는 반도체장치의 구동장치.
  68. 제24항에 있어서, 상기 구동전류공급수단이 트랜지스터(Q2)를 포함하여 구성된 것을 특징으로 하는 반도체장치의 구동회로.
KR1019860006763A 1985-08-16 1986-08-16 레이저다이오드 구동회로 KR910002238B1 (ko)

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP60179255A JPS6240789A (ja) 1985-08-16 1985-08-16 レ−ザダイオ−ド駆動回路
JP85-179255 1985-08-16
JP60184041A JPS6245190A (ja) 1985-08-23 1985-08-23 レ−ザダイオ−ドの過電流保護回路
JP60184042A JPS6245191A (ja) 1985-08-23 1985-08-23 レ−ザダイオ−ドの光出力制御回路
JP85-184041 1985-08-23
JP60204417A JPS6265531A (ja) 1985-09-18 1985-09-18 レ−ザダイオ−ドの光出力の温度特性補償回路
JP85-184042 1985-09-18
JP85-240411 1985-10-29
JP60240411A JPS62102576A (ja) 1985-10-29 1985-10-29 レ−ザダイオ−ド駆動回路のリセツト回路
JP85-184417 1985-10-29

Publications (2)

Publication Number Publication Date
KR870002676A KR870002676A (ko) 1987-04-06
KR910002238B1 true KR910002238B1 (ko) 1991-04-08

Family

ID=27528746

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019860006763A KR910002238B1 (ko) 1985-08-16 1986-08-16 레이저다이오드 구동회로

Country Status (3)

Country Link
US (1) US4819241A (ko)
EP (1) EP0215311A3 (ko)
KR (1) KR910002238B1 (ko)

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0224185A3 (en) * 1985-11-19 1989-04-26 Kabushiki Kaisha Toshiba Laser diode driving circuit
NL8602303A (nl) * 1986-09-12 1988-04-05 Philips Nv Werkwijze voor het in pulsmode aansturen van een halfgeleiderlaser, aanstuurinrichting voor een halfgeleiderlaser en laserschrijfapparaat voorzien van een dergelijke aanstuurinrichting.
DE3726244C2 (de) * 1987-08-07 1993-11-18 Kommunikations Elektronik Schaltungsanordnung zur Überwachung der Leistung einer Laserdiode
GB2208962B (en) * 1987-08-19 1991-05-08 Plessey Co Plc Power supply
DE3939309A1 (de) * 1988-11-28 1990-05-31 Minolta Camera Kk Einen laserstrahl erzeugende baueinheit
US5036519A (en) * 1988-12-05 1991-07-30 Ricoh Company, Ltd. Semiconductor laser controller
US4924473A (en) * 1989-03-28 1990-05-08 Raynet Corporation Laser diode protection circuit
US5018154A (en) * 1989-09-12 1991-05-21 Brother Kogyo Kabushiki Kaisha Semiconductor laser drive device
JPH07174629A (ja) * 1993-12-20 1995-07-14 Mitsubishi Electric Corp 光劣化検出回路
IT1268070B1 (it) * 1994-06-06 1997-02-20 Cselt Centro Studi Lab Telecom Circuito in tecnologia cmos per il pilotaggo ad alta velocita' di sorgenti ottiche.
US5438581A (en) * 1994-08-16 1995-08-01 Eastman Kodak Company Laser driver ASIC chip
EP0746888A1 (en) * 1994-12-23 1996-12-11 Koninklijke Philips Electronics N.V. Laser power supply circuit as well as optical recording and/or reading device comprising such a laser power supply circuit
JPH08204270A (ja) * 1995-01-20 1996-08-09 Brother Ind Ltd 半導体レーザ駆動回路
DE69627922T2 (de) * 1995-03-24 2004-03-11 Nohmi Bosai Ltd. Sensor zur Feststellung feiner Teilchen wie Rauch
US5673282A (en) * 1995-07-28 1997-09-30 Lucent Technologies Inc. Method and apparatus for monitoring performance of a laser transmitter
US5936986A (en) * 1996-07-30 1999-08-10 Bayer Corporation Methods and apparatus for driving a laser diode
US5949085A (en) * 1997-01-29 1999-09-07 Xircom, Inc. Ratiometric compensated optical isolation coupler
JPH11121851A (ja) * 1997-10-15 1999-04-30 Fujitsu Ltd 発光素子駆動回路及びこれを有する発光装置
US6229833B1 (en) * 1997-10-16 2001-05-08 Fujitsu Limited Laser diode protecting circuit and laser driving current control circuit
JP3389480B2 (ja) * 1997-10-16 2003-03-24 富士通株式会社 Ld保護回路
US6265857B1 (en) 1998-12-22 2001-07-24 International Business Machines Corporation Constant current source circuit with variable temperature compensation
US6278476B1 (en) * 2000-03-09 2001-08-21 Toshiba Tec Kabushiki Kaisha Image forming apparatus in which a laser beam is applied from a semiconductor laser to scan an image carrier, and method of controlling the apparatus
US6728494B2 (en) * 2000-06-08 2004-04-27 Matsushita Electric Industrial Co., Ltd. Light-emitting device drive circuit, and optical transmission system using the circuit
US6496526B1 (en) * 2000-10-18 2002-12-17 Xerox Corporation Current switching driver with controlled bias and ON states
JP2002261381A (ja) * 2001-02-28 2002-09-13 Hamamatsu Photonics Kk 駆動電流供給回路
US6696887B2 (en) * 2001-09-27 2004-02-24 Matthew S. Taubman Transistor-based interface circuitry
JP2003174227A (ja) * 2001-12-06 2003-06-20 Mitsubishi Electric Corp 半導体レーザモジュール
US6941080B2 (en) 2002-07-15 2005-09-06 Triquint Technology Holding Co. Method and apparatus for directly modulating a laser diode using multi-stage driver circuitry
GB2393034B (en) * 2002-09-12 2007-01-17 Ericsson Telefon Ab L M Laser driver control circuit
JP4581345B2 (ja) * 2003-08-08 2010-11-17 富士ゼロックス株式会社 発光素子駆動装置及び画像形成装置
US7372882B2 (en) * 2004-04-28 2008-05-13 Renesas Technology Corp. Driving circuit for and semiconductor device for driving laser diode
KR20060002239A (ko) * 2004-07-01 2006-01-09 삼성전자주식회사 레이저 출력 제어장치
US20060043278A1 (en) * 2004-08-30 2006-03-02 Honeywell International Inc. VCSEL pin sensor
EP1772798A1 (en) * 2005-09-13 2007-04-11 Higher Way Electronic Co., Ltd. Optical output system with auto optical power control for optical mouse
US7512163B2 (en) * 2005-10-04 2009-03-31 Microsoft Corporation Dual current control for laser diode driver circuit
GB2441007B (en) * 2006-08-17 2011-08-24 Susan Jane Branch Auricular therapy
JP2009026789A (ja) * 2007-07-17 2009-02-05 Nec Corp 光モジュール、ホストボード、およびホストボードの製造方法
US8369191B2 (en) 2010-11-29 2013-02-05 Tdk Corporation Method for controlling the current of laser diode on thermally assisted magnetic recording head
US9923642B2 (en) * 2015-02-23 2018-03-20 Mitsubishi Electric Corporation Light receiving device
CN106340800B (zh) * 2016-03-10 2019-03-12 北京国科欣翼科技有限公司 激光器
CN106340799B (zh) * 2016-03-10 2019-03-08 北京国科欣翼科技有限公司 激光器控制系统
KR102423938B1 (ko) 2018-04-02 2022-07-25 한국전자통신연구원 버스트 모드로 광송신을 하기 위한 광망 종단 장치
CN109286126A (zh) * 2018-11-29 2019-01-29 Oppo广东移动通信有限公司 激光的输出控制方法及电子设备、计算机可读存储介质
US10914627B2 (en) 2019-02-13 2021-02-09 Semtech Corporation Configurable laser monitor photodiode in optical modulation amplitude controller

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3898583A (en) * 1972-03-29 1975-08-05 Xerox Corp Laser stabilization technique
US4009385A (en) * 1976-03-22 1977-02-22 Bell Telephone Laboratories, Incorporated Laser control circuit
JPS5624991A (en) * 1979-08-08 1981-03-10 Tech Res & Dev Inst Of Japan Def Agency Driving circuit for pulse laser diode
JPS57162479A (en) * 1981-03-31 1982-10-06 Toshiba Corp Semiconductor laser diode driving circuit
JPS5861691A (ja) * 1981-10-07 1983-04-12 Sharp Corp 半導体レーザ装置の駆動回路
JPS58200444A (ja) * 1982-05-18 1983-11-22 Foster Denki Kk 光出力制御回路

Also Published As

Publication number Publication date
EP0215311A3 (en) 1989-05-03
KR870002676A (ko) 1987-04-06
US4819241A (en) 1989-04-04
EP0215311A2 (en) 1987-03-25

Similar Documents

Publication Publication Date Title
KR910002238B1 (ko) 레이저다이오드 구동회로
US5974064A (en) Temperature compensation of laser diodes
EP0913896B1 (en) Laser diode driving method and circuit
US5237579A (en) Semiconductor laser controller using optical-electronic negative feedback loop
US20020009109A1 (en) Laser diode driving method and circuit which provides an automatic power control capable of shortening the start-up period
US5341086A (en) Constant-current circuit for light-emitting element
JP3320900B2 (ja) レーザダイオードの自動温度制御回路及びこれを用いた電気/光信号変換ユニット
US9319146B2 (en) Optical transmitter
US5050177A (en) Laser diode driving circuit
KR100286399B1 (ko) 반도체 레이저 장치 및 그에 따른 펌핑 회로
US20030227694A1 (en) Laser diode module, laser diode device and optical transmitter incorporating the same
US5536934A (en) Light intensity deterioration detecting circuit with compensation for resistance errors
US6885443B2 (en) Drive device for a light-emitting component
JPH11121851A (ja) 発光素子駆動回路及びこれを有する発光装置
EP1494324B1 (en) Semiconductor laser drive circuit and photoelectric sensor
JP2898813B2 (ja) 半導体レーザ制御装置
KR0144327B1 (ko) 레이저 다이오드의 직류바이어스 회로
JPH05190950A (ja) Ld劣化検出回路
JPH04286384A (ja) レーザダイオードの出力制御回路
JPS63114286A (ja) レ−ザダイオ−ド駆動回路
KR860002513Y1 (ko) 광학식 디지탈 디스크 플레이어의 레이저광 출력 조절회로
JPS6376492A (ja) レ−ザダイオ−ド駆動回路
JP2993179B2 (ja) レーザダイオード駆動回路
JP2744045B2 (ja) 半導体レーザ制御装置
JP2000114644A (ja) 半導体レーザの駆動回路

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20060331

Year of fee payment: 16

EXPY Expiration of term