KR20200123214A - 슬라이딩 게이트 - Google Patents

슬라이딩 게이트 Download PDF

Info

Publication number
KR20200123214A
KR20200123214A KR1020207027294A KR20207027294A KR20200123214A KR 20200123214 A KR20200123214 A KR 20200123214A KR 1020207027294 A KR1020207027294 A KR 1020207027294A KR 20207027294 A KR20207027294 A KR 20207027294A KR 20200123214 A KR20200123214 A KR 20200123214A
Authority
KR
South Korea
Prior art keywords
flow path
sliding
downstream
sliding gate
plate
Prior art date
Application number
KR1020207027294A
Other languages
English (en)
Other versions
KR102408212B1 (ko
Inventor
유이치 즈카구치
Original Assignee
닛폰세이테츠 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 닛폰세이테츠 가부시키가이샤 filed Critical 닛폰세이테츠 가부시키가이샤
Publication of KR20200123214A publication Critical patent/KR20200123214A/ko
Application granted granted Critical
Publication of KR102408212B1 publication Critical patent/KR102408212B1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D41/00Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
    • B22D41/14Closures
    • B22D41/22Closures sliding-gate type, i.e. having a fixed plate and a movable plate in sliding contact with each other for selective registry of their openings
    • B22D41/28Plates therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/18Controlling or regulating processes or operations for pouring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D41/00Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
    • B22D41/14Closures
    • B22D41/22Closures sliding-gate type, i.e. having a fixed plate and a movable plate in sliding contact with each other for selective registry of their openings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D41/00Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
    • B22D41/14Closures
    • B22D41/22Closures sliding-gate type, i.e. having a fixed plate and a movable plate in sliding contact with each other for selective registry of their openings
    • B22D41/24Closures sliding-gate type, i.e. having a fixed plate and a movable plate in sliding contact with each other for selective registry of their openings characterised by a rectilinearly movable plate

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)
  • Continuous Casting (AREA)

Abstract

이 슬라이딩 게이트는, 각각의 플레이트에 있어서의 유로 구멍의 유로 축선 방향과 미끄럼 이동면 수직 하류 방향 사이의 유로 축선 경사 각도 α가 5° 이상 75° 이하이고, 유로 축선 방향을 미끄럼 이동면에 투영한 미끄럼 이동면 유로 축선 방향이 플레이트 상호 간에 상이하고, 하류로 감에 따라 시계 방향 혹은 반시계 방향으로 변화된다. 그리고 슬라이딩 게이트의 유로 구멍 내에서 용융 금속이 선회류를 형성한다. 또한 슬라이딩 게이트의 하류측의 주입관 내에 있어서도 용융 금속이 선회류를 형성한다.

Description

슬라이딩 게이트
본 발명은, 강 등의 용융 금속의 연속 주조에 있어서의, 레이들로부터 턴디쉬, 혹은 턴디쉬로부터 몰드로의 용융 금속의 주입 과정에 있어서, 용융 금속의 유량을 조정하는 슬라이딩 게이트에 관한 것이다. 구체적으로는, 슬라이딩 게이트를 이용하여 용융 금속류를 선회시키는 방법에 관한 것이다.
본원은, 2018년 4월 11일에 일본에 출원된 일본 특허 출원 제2018-075947호에 기초하여 우선권을 주장하며, 그 내용을 여기에 원용한다.
강 등의 용융 금속의 연속 주조에 있어서, 도 1에 도시한 바와 같이 레이들(14)로부터 턴디쉬(15)에 용융 금속(21)을 주입하고, 또한 턴디쉬(15)로부터 주형(16)에 용융 금속(21)을 주입한다. 각각의 용융 금속(21)의 주입 과정에 있어서, 용융 금속(21)의 유량을 조정하기 위하여 슬라이딩 게이트(1)가 사용된다. 슬라이딩 게이트(1)는 통상, 2매 또는 3매의 플레이트(2)로 이루어지며, 각각의 플레이트(2)에는, 용융 금속(21)이 통과하는 유로 구멍(6)이 마련된다. 도 10, 도 11은, 슬라이딩 게이트(1)가 3매의 플레이트로 이루어지는 경우를 도시하고 있다. 접촉하는 플레이트 상호 간에 미끄럼 이동이 가능하며, 3매의 플레이트 중의 1매는, 미끄럼 이동면(30)을 따라 이동 가능하게 마련되어서 슬라이드판(4)이라 칭해진다. 나머지 2매의 플레이트(2)는, 슬라이딩 게이트(1)가 설치되는 레이들(14) 혹은 턴디쉬(15)에 대하여 상대 이동하지 않아서 고정판(상측 고정판(3), 하측 고정판(5))이라 칭해진다. 슬라이드판(4)을 미끄럼 이동시킴으로써, 인접하는 플레이트(2)(고정판) 사이의 유로 구멍(6)이 중첩된 개구부의 개구 면적을 조정하고, 이것에 의하여 용융 금속(21)의 유량 조정을 행함과 함께, 슬라이딩 게이트(1)의 개폐를 행할 수 있다. 도 10은, 개구부가 완전 개방인 경우, 도 11은, 개구부가 1/2 개방도인 경우를 나타내고 있다.
레이들(14)의 저부에 마련된 슬라이딩 게이트(1)의 하부에는 롱 노즐(12) 등의 주입관(11)이 마련되어 있다. 레이들(14)의 슬라이딩 게이트(1)로부터 유출된 용융 금속(21)은, 턴디쉬(15)에 주입될 때, 주입관(11) 내부의 유로를 경유하여 턴디쉬(15) 내로 유도된다. 또한 턴디쉬(15)의 저부에 마련된 슬라이딩 게이트(1)의 하부에는 침지 노즐(13) 등의 주입관(11)이 마련되어 있다. 턴디쉬(15)의 슬라이딩 게이트(1)로부터 유출된 용융 금속(21)은, 주형(16) 내에 주입될 때, 주입관(11) 내부의 유로를 경유하여 주형(16) 내에 유도된다.
레이들(14)의 저부의 슬라이딩 게이트(1)로부터 유출되는 용융 금속(21)은, 슬라이딩 게이트(1)를 통과하는 시점에서 이미 하류측을 향한 유속을 갖고 있으며, 주입관(11) 내를 낙하하는 과정에서 용융 금속(21)의 유속이 더 증대된다. 턴디쉬(15) 내에 주입된 용융 금속(21)은, 턴디쉬(15)의 저부를 고속도로 통과하는 흐름을 형성하여, 용융 금속(21) 중에 포함되는 비금속 개재물이 턴디쉬(15) 내에서 충분히 부상 분리될 기회를 얻지 못하여 비금속 개재물이 용융 금속(21)과 함께 직접 주형(16) 내로 유입되게 되어서, 주조편의 품질 저하의 원인으로 된다.
주입관(11) 내에 있어서 용융 금속(21)의 흐름을 선회시키면, 유동하는 용융 금속(21)의 운동 에너지의 일부를 선회 유속에 분배하여, 하방을 향하는 용융 금속(21)의 유속을 저감할 수 있다. 이것에 의하여, 주입관(11)으로부터 턴디쉬(15) 내에 토출되는, 하방을 향한 흐름의 최대 유속이 저하되어, 토출류에 의한 턴디쉬(15) 내의 유동의 난류를 억제할 수 있는 것이 알려져 있다. 예를 들어 특허문헌 1에는, 레이들로부터 턴디쉬로의 주입에 이용되는 롱 노즐 내에 선회 부여 기구를 마련하는 방법이 개시되어 있다.
턴디쉬(15)의 저부의 슬라이딩 게이트(1)를 경유하여 침지 노즐(13) 등의 주입관(11)으로부터 주형(16) 내에 용융 금속(21)을 주입할 때, 침지 노즐(13)의 내부의 유로에 비금속 개재물이 부착되는 것이 알려져 있다. 특허문헌 2에 있어서는, 침지 노즐 내 유로의 노즐 협착이나 폐색을 저감하기 위하여, 턴디쉬로부터 주형으로의 주입 과정에 있는 중간 노즐의 형상을 고안하여 침지 노즐 내에 선회류를 부여하는 방법이 개시되어 있다.
또한 특허문헌 3에는, 턴디쉬로부터 주형으로의 주입에 이용되는 침지 노즐의 내부에 선회 부여 기구(블레이드)를 마련하는 방법이 개시되어 있다. 또한 특허문헌 4에는, 슬라이딩 게이트의 유로에 절결을 마련하여 용강을 선회시키는 방법이 개시되어 있다.
일본 특허 공개 제2006-346688호 공보 일본 특허 공개 평07-303949호 공보 일본 특허 공개 제2000-237852호 공보 일본 특허 제3615437호 공보
특허문헌 1이나 특허문헌 4의 방법은, 벽면 근방의 흐름에 한정적으로 선회를 부여하는 것이어서, 얻어지는 선회가 약한 것이거나, 홈이나 절결이 용손되어서 선회 부여 효과를 유지할 수 없는 것이 문제였다.
특허문헌 2의 방법은, 선회를 부여하는 기구의 형상이 복잡하여 제조가 곤란한 것이 문제였다.
특허문헌 3의 방법은, 침지 노즐 내의 선회 부여 기구 및 그 주위가 비금속 개재물에 의하여 폐색되기 쉬운 것이 문제였다.
본 발명은, 이와 같은 종래 기술의 문제점을 해소하여, 용융 금속을 주입하는 주입관 내에 있어서 충분한 강도의 선회류를, 주입관 상부에 배설된 슬라이딩 게이트의 구조를 고안함으로써, 콤팩트하고 평이한 기구로, 유로의 폐색 위험성을 증가시키는 일 없이 부여할 수 있는, 슬라이딩 게이트의 제공을 목적으로 한다.
본 발명은 상기 사정을 감안하여 이루어진 것이며, 후술하는 각 양태를 채용한다. 또한 본 발명에서는, 레이들로부터 턴디쉬로 용강을 주입하는 롱 노즐 등의 주입관, 턴디쉬로부터 주형 내로 용융 금속을 주입하는 침지 노즐 등의 주입관을 총칭하여 간단히 「주입관」이라 칭한다.
본 발명자는, 주입관 내의 유로를 유하하는 용융 금속에 선회 방향의 유속을 부여하여 하류 방향으로의 유속을 저감하는 데에 있어서, 종래 기술의 문제점을 해소하는 방법에 대하여 고찰과 실험을 거듭하였다. 그때, 유로의 폐색을 방지하는 관점에서, 유로를 이분하는 블레이드와 같은 구조물을 유로 내에 내삽하는 것은 피하였다. 그리고, 주입관과, 그 상부에 배설된 슬라이딩 게이트를 포함한 기존의 유로를 구성하는 부분 중에서, 유로를 급격히 조여서 격심한 흐름을 부여하고 있는 슬라이딩 게이트에 주목하여 그 형상을 고안함으로써, 주입관 내의 용융 금속류에 선회를 부여하기로 하였다.
그 제1 이유는, 슬라이딩 게이트 내에서 조여진, 소단면이고 고속의 흐름을 대상으로 함으로써, 선회 부여 기구를 콤팩트하게 구성할 수 있는 것이다. 그 제2 이유는, 주입관의 유로 내에 있어서 하강류에 둘레 방향 유속을 부여하고자 하면, 주입관 내의 유동이 난류로 되어 주입관 내화물의 손상이나 비금속 개재물의 부착을 촉진할 우려가 있다. 이에 비해, 본래 격심한 흐름을 생기게 하고 있는 슬라이딩 게이트 내에서는 새로이 흐트러짐이 생길 위험성이 적기 때문이다. 또한 슬라이딩 게이트의 복수 매의 플레이트에 뚫리는 다른 방향의 경사 구멍을 조합함으로써, 1개의 부재로는 형성하는 것이 어려운 복잡한 유로 구조를 실현할 수 있는 것이다.
본 발명은 이러한 관점에서 고안된 것이며, 슬라이딩 게이트의 플레이트에 뚫리는 유로 구멍의 형상을 고안하여 선회류를 얻는 것이다. 본 발명에 있어서는, 유로 폐색이나 유로벽 용손을 일으키지 않도록 개개의 유로의 단면 형상을 복잡하게 하지 않는 것에 유의하였다.
즉, 본 발명이 요지로 하는 바는 이하와 같다.
(1) 본 발명의 일 양태는, 용융 금속이 통과하는 유로 구멍이 형성된 복수 매의 플레이트를 갖고, 상기 복수 매의 플레이트 중의 적어도 1매의 플레이트가 미끄럼 이동 가능한 슬라이드판이고, 상기 용융 금속의 유량 조정에 이용되는 슬라이딩 게이트이며,
상기 복수 매의 플레이트의 각각에 있어서의 상기 유로 구멍은, 상기 플레이트의 표면 중, 통과하는 상기 용융 금속의 상류측에 위치하는 상류측 표면에 상류측 표면 개공을 형성하고, 하류측에 위치하는 하류측 표면에 하류측 표면 개공을 형성하고, 상기 상류측 표면 개공의 도형의 무게 중심으로부터 상기 하류측 표면 개공의 도형의 무게 중심을 향하는 방향을 유로 축선 방향으로 하였을 때,
상기 복수 매의 플레이트 미끄럼 이동면에 수직한 하류 방향인 미끄럼 이동면 수직 하류 방향과 상기 유로 축선 방향과의 사이의 유로 축선 경사 각도 α가 5° 이상 75° 이하이고,
상기 유로 축선 방향을 상기 미끄럼 이동면에 투영한 방향을 미끄럼 이동면 유로 축선 방향이라 칭하고, 상기 슬라이딩 게이트를 폐쇄로 할 때의 상기 슬라이드판의 미끄럼 이동 방향을 미끄럼 이동 폐쇄 방향이라 칭하고, 상기 미끄럼 이동 폐쇄 방향에 대하여, 상기 미끄럼 이동면 유로 축선 방향이, 상기 미끄럼 이동면 수직 하류 방향으로 보아서 시계 방향으로 이루는 각도를 ±180도의 범위 내인 유로 축선 회전 각도 θ라 칭하고, 상기 유로 축선 회전 각도 θ가, 서로 인접하는 상기 복수 매의 플레이트 간에 다르고, 상기 복수 매의 플레이트의 매수를, 1 이상의 정수 N을 이용하여 합계로 N매로 하고, 가장 상류측에 있는 상기 플레이트로부터 헤아려서 N매째의 상기 플레이트에 걸쳐 상기 복수 매의 플레이트의 상기 유로 축선 회전 각도 θ를 차례로 θ1, θ2, … θN으로 하고, 각도 ΔθnNN+1(n은 1 이상의 정수이며 플레이트 매수-1까지)로 하였을 때, 상기 각도 Δθn이 모두 10° 이상이고 170° 미만, 또는 상기 각도 Δθn이 모두 -170° 초과이고 -10° 이하이다.
(2) 상기 (1)에 기재된 슬라이딩 게이트에 있어서, 상기 복수 매의 플레이트의 합계 매수가 2매 혹은 3매이고, 상기 슬라이드판의 매수가 1매여도 된다.
본 발명의 상기 양태에 따르면, 용융 금속의 유량 조정에 이용되는 슬라이딩 게이트에 있어서, 각각의 플레이트에 있어서의 유로 구멍의 유로 축선 방향과 미끄럼 이동면 수직 하류 방향 사이의 유로 축선 경사 각도 α가 5° 이상 75° 이하이고, 유로 축선 방향을 미끄럼 이동면에 투영한 미끄럼 이동면 유로 축선 방향이 플레이트 상호 간에 상이하고, 하류로 감에 따라 시계 방향 혹은 반시계 방향으로 변화된다. 이 구성에 따르면, 슬라이딩 게이트의 유로 구멍 내에서 용융 금속이 선회류를 형성한다. 그리고 슬라이딩 게이트의 하류측의 주입관 내에 있어서도 용융 금속이 선회류를 형성하기 때문에, 종래의 슬라이딩 게이트와 비교하여 하류 방향을 향하는 최대 유속을 억제하는 것이 가능해진다.
도 1은 연속 주조 장치의 레이들, 턴디쉬, 주형과 슬라이딩 게이트의 관계의 일례를 도시하는 개념 종단면도이다.
도 2는 본 발명의 일 실시 형태에 따른 슬라이딩 게이트를 도시하는 도면이며, (A)는 상측 고정판, (B)는 슬라이드판, (C)는 하측 고정판의 각각의 평면도이다. (D)는 슬라이딩 게이트와 주입관을 조합한 정면도이다. (E)는 (D)의 E-E 화살표 방향으로부터 본 도면이고, (F)는 (A)의 F-F 화살표 방향으로부터 본 단면도이다.
도 3은 동 슬라이딩 게이트를 도시하는 도면이며, (A)는 (D)의 A-A 화살표 방향으로부터 본 도면, (B)는 (D)의 B-B 화살표 방향으로부터 본 도면, (C)는 (D)의 C-C 화살표 방향으로부터 본 도면, (D)는 슬라이딩 게이트와 주입관을 조합한 정면도, (E)는 (D)의 E-E 화살표 방향으로부터 본 도면이다.
도 4는 동 슬라이딩 게이트 내에 있어서의 용융 금속의 흐름을 도시하는 도면이며, (A)는 (D)의 A-A 화살표 방향으로부터 본 도면, (B)는 (D)의 B-B 화살표 방향으로부터 본 도면, (C)는 (D)의 C-C 화살표 방향으로부터 본 도면, (D)는 슬라이딩 게이트와 주입관을 조합한 정면도, (E)는 (D)의 E-E 화살표 방향으로부터 본 도면이다.
도 5는 상기 실시 형태에 따른 슬라이딩 게이트의 변형예를 도시하는 도면이며, (A)는 상측 고정판, (B)는 슬라이드판, (C)는 슬라이딩 게이트와 주입관을 조합한 정면도, (D)는 (C)의 D-D 화살표 방향으로부터 본 도면, (E)는 (A)의 E-E 화살표 방향으로부터 본 단면도이다.
도 6은 상기 실시 형태에 따른 슬라이딩 게이트의 다른 변형예를 도시하는 도면이며, (A)는 (C)의 A-A 화살표 방향으로부터 본 도면, (B)는 (C)의 B-B 화살표 방향으로부터 본 도면, (C)는 슬라이딩 게이트와 주입관을 조합한 정면도, (D)는 (C)의 D-D 화살표 방향으로부터 본 도면이다.
도 7은 상기 실시 형태에 따른 슬라이딩 게이트의 또 다른 변형예를 도시하는 도면이며, 동 슬라이딩 게이트에 구비되는 상측 고정판의 일례를 도시하고, (A)는 평면도, (B)는 정면도, (C)는 측면도, (D)는 (A)의 D-D 화살표 방향으로부터 본 단면도이다.
도 8은 비교예의 슬라이딩 게이트를 도시하는 도면이며, (A)는 상측 고정판, (B)는 슬라이드판, (C)는 슬라이딩 게이트와 주입관을 조합한 정면도, (D)는 (C)의 D-D 화살표 방향으로부터 본 도면, (E)는 (A)의 E-E 화살표 방향으로부터 본 단면도이다.
도 9는 비교예의 슬라이딩 게이트를 도시하는 도면이며, (A)는 A-A 화살표 방향으로부터 본 도면, (B)는 B-B 화살표 방향으로부터 본 도면, (C)는 슬라이딩 게이트와 주입관을 조합한 정면도, (D)는 (C)의 D-D 화살표 방향으로부터 본 도면이다.
도 10은 종래의 슬라이딩 게이트를 도시하는 도면이며, (A)는 상측 고정판, (B)는 슬라이드판, (C)는 하측 고정판의 각각의 평면도이다. (D)는 슬라이딩 게이트와 주입관을 조합한 정면도이다. (E)는 (D)의 E-E 화살표 방향으로부터 본 도면, (F)는 (A)의 F-F 화살표 방향으로부터 본 단면도이다.
도 11은 종래의 슬라이딩 게이트를 도시하는 도면이며, (A)는 (D)의 A-A 화살표 방향으로부터 본 도면, (B)는 (D)의 B-B 화살표 방향으로부터 본 도면, (C)는 (D)의 C-C 화살표 방향으로부터 본 도면, (D)는 슬라이딩 게이트와 주입관을 조합한 정면도, (E)는 (D)의 E-E 화살표 방향으로부터 본 도면이다.
도 1 내지 도 11에 기초하여 본 발명의 실시 형태 및 그 변형예에 대하여 설명한다. 또한 이하의 설명에 있어서, 종래 기술과 본 실시 형태 및 그 변형예의 대응 관계를 명확히 설명하기 위하여 동일한 참조 부호를 사용하고 있다. 그러나 참조 번호가 동일하더라도, 도 10 및 도 11에 관한 설명은 종래 기술을 나타내고, 도 1 내지 도 9에 관한 설명은 본 발명의 실시 형태 및 그 변형예를 나타낸다.
강 등의 용융 금속의 연속 주조에 있어서의 레이들(14)로부터 턴디쉬(15), 혹은 턴디쉬(15)로부터 주형(16)으로의 용융 금속(21)의 주입 과정에 있어서, 용융 금속(21)의 유량을 조정할 목적으로 슬라이딩 게이트(1)가 사용된다. 2매 혹은 3매의 플레이트(2)를 겹쳐서 구성된 슬라이딩 게이트(1)에 있어서, 각 플레이트(2)에는 유로 구멍(6)이 각각 마련되어 있다. 슬라이딩 게이트(1)를 구성하는 복수 매의 플레이트 중의 슬라이드판(4)을 미끄럼 이동시키고, 각 플레이트(2)의 유로 구멍(6) 간의 중첩에 의하여 슬라이딩 게이트(1)가 「개방」으로 되어 있을 때, 유로 구멍(6)의 상류측으로부터 하류측을 향하여 용융 금속(21)이 유통한다. 플레이트(2)의 미끄럼 이동면(30)에 수직으로 하류 방향을 향하는 방향(이하, 미끄럼 이동면 수직 하류 방향(32)이라 칭함)은, 통상은 위로부터 아래를 향하여 연직 하방을 향하고 있다. 한편, 수평 연속 주조의 경우에는, 미끄럼 이동면 수직 하류 방향(32)은 수평 방향을 향하고 있다. 이하에서는, 기본적으로 미끄럼 이동면(30)이 수평이고, 미끄럼 이동면 수직 하류 방향(32)이 연직 하방인 경우를 예로 들어 설명하기로 한다.
플레이트(2)의 유로 구멍(6)은, 종래 구성의 경우, 도 10, 도 11에 도시한 바와 같이, 통상은 그 내주 형상이 원통형이고, 원통의 축선 방향은 미끄럼 이동면 수직 하류 방향(32)에 평행으로 구성되어 있다. 이에 비해 본 실시 형태에서는, 도 2 내지 도 9에 도시한 바와 같이, 유로 구멍(6)의 중심 축선이 향하는 방향을, 미끄럼 이동면 수직 하류 방향(32)으로부터 어떤 각도를 가진 경사 구멍으로 하고 있다. 또한 본 실시 형태에서는, 미끄럼 이동면(30)에 투영한 경사 구멍의 방향을 2매 내지는 3매의 플레이트 간에 서로 다른 방향으로 한 것을 적절히 조합하고 있다. 이 구성에 의하여, 슬라이딩 게이트(1) 및 그 하류측의 주입관(11) 내부의 용융 금속류에 대하여, 하류측을 향하는 흐름뿐 아니라 둘레 방향 유속을 부가하여 선회류를 형성한다.
유로 구멍(6)의 단면 형상으로서, 통상은 축선 방향에 수직인 단면이 진원인 원통 형상이 이용된다. 본 실시 형태의 슬라이딩 게이트(1)에 있어서, 플레이트(2)에 형성되는 유로 구멍(6)은 원통 형상에만 한정되는 것은 아니며, 또한 유로 구멍(6)의 축선 방향에 대해서도, 플레이트(2) 내에 있어서 변화되는 것이더라도 상관없다. 그래서 먼저, 플레이트(2)에 형성된 유로 구멍(6)의 축선을 정의하기로 한다.
우선 먼저, 도 10에 의하여 종래의 슬라이딩 게이트(1)의 유로 구멍(6)에 대하여 설명한다. 도 10의 슬라이딩 게이트(1)는 3매의 플레이트(2)를 가지며, 상류측으로부터 상측 고정판(3), 슬라이드판(4), 하측 고정판(5)으로 이루어진다. 각 플레이트(2)에는, 단면이 진원인 원통 형상이며, 원통의 축선 방향이 미끄럼 이동면(30)에 대하여 수직 하류 방향(이하, 미끄럼 이동면 수직 하류 방향(32)이라 칭함)을 향한 유로 구멍(6)이 형성되어 있다. 각 플레이트(2)의 상류측 표면을 상류면(7u), 하류측 표면을 하류면(7d)이라 칭한다. 상류면(7u)에 있어서 유로 구멍(6)의 내주면이 형성하는 도형(상류측 표면 개공)을 상류 개공(8u)이라 칭한다. 또한 하류면(7d)에 있어서 유로 구멍(6)의 내주면이 형성하는 도형(하류측 표면 개공)을 하류 개공(8d)이라 칭한다. 도 10에 도시하는 예에서는, 유로 구멍(6)의 원통 형상의 축선이 미끄럼 이동면(30)에 대하여 수직이기 때문에, 도 10의 (A) 내지 (C)에 나타내는 평면으로부터 보아서는 상류 개공(8u)과 하류 개공(8d)이 겹쳐져 있다. 상류 개공(8u), 하류 개공(8d)의 형상을 각각 도형으로서 간주하면, 이들 도형의 무게 중심을 정의할 수 있다. 각각 상류측 표면 개공 도형 무게 중심을 상류 개공 무게 중심(9u), 하류측 표면 개공 도형 무게 중심을 하류 개공 무게 중심(9d)이라 칭하기로 한다. 도 10에 도시하는 예에서는, 상류 개공(8u), 하류 개공(8d) 모두 도형 형상이 진원이기 때문에, 상류 개공 무게 중심(9u), 하류 개공 무게 중심(9d)은 진원 도형의 중심과 일치하고 있다. 다음으로, 상류 개공 무게 중심(9u)과 하류 개공 무게 중심(9d)을 통과하여 하류측을 향하는 방향을 유로 축선 방향(10)으로 정의한다. 도 10에 도시하는 예에서는, 유로 축선 방향(10)이 미끄럼 이동면 수직 하류 방향(32)과 동일한 방향으로 된다. 도 10의 (F)에 있어서, 1점 쇄선으로 묘사한 선이 유로 축선 방향(10)이다.
다음으로, 도 2에 의하여, 본 실시 형태의 슬라이딩 게이트(1)의 유로 구멍(6)에 대하여 설명한다. 도 2의 슬라이딩 게이트(1)는 3매의 플레이트(2)를 가지며, 상류측으로부터 상측 고정판(3), 슬라이드판(4), 하측 고정판(5)으로 이루어진다. 각 플레이트(2)에는, 축선 방향 단면이 진원인 원통 형상이며, 원통의 축선 방향이 미끄럼 이동면 수직 하류 방향(32)으로부터 경사진 방향으로 되는 유로 구멍(6)이 형성되어 있다. 도 2의 (A) 및 (F)에 의하여, 상측 고정판(3)을 예로 들어 설명한다. 도 2의 (F)는, 도 2의 (A)의 F-F 화살표 방향으로부터 본 단면도이다. 유로 구멍(6)이 이루는 원통 형상의 축선 방향이 미끄럼 이동면 수직 하류 방향(32)에 대하여 경사져 있기 때문에, 도 2의 (A)의 평면으로부터 보아서 상류 개공(8u)과 하류 개공(8d)이 다른 위치에 그려져 있다. 축선 방향 단면이 진원이고, 축선 방향이 미끄럼 이동면 수직 하류 방향(32)으로부터 경사진 원통 형상이기 때문에, 상류 개공(8u)과 하류 개공(8d)은, 각각 약간 진원에서 벗어난 장원을 형성하고 있다. 단, 도면상에서는 편의상, 진원으로서 묘화하고 있다. 상류 개공(8u)과 하류 개공(8d) 각각의 도형의 무게 중심을 상류 개공 무게 중심(9u), 하류 개공 무게 중심(9d)으로서 정할 수 있다. 또한 상류 개공 무게 중심(9u)과 하류 개공 무게 중심(9d)을 통과하여 하류측을 향하도록 유로 축선 방향(10)을 정할 수 있다. 도 2의 (F)에 있어서, 1점 쇄선으로 묘사한 선이 유로 축선 방향(10)이다. 도 2에 도시하는 예에서는, 유로 축선 방향(10)은, 유로 구멍(6)을 형성하는, 축선 방향 단면이 진원인 원통 형상의 축선 방향과 일치하고 있다. 여기에 있어서, 플레이트(2)의 미끄럼 이동면(30)에 수직인 하류 방향(미끄럼 이동면 수직 하류 방향(32))과 유로 축선 방향(10)이 이루는 각도를 유로 축선 경사 각도 α로서 둔다. 여기서, 유로 축선 방향을 정하는 데에 원의 중심이 아니라 개공 무게 중심을 이용하고 있는 것은, 개공 형상이 진원이 아닌 경우에도 보편적으로 유로 축선 방향을 정의하기 위함이다.
도 10에 도시한 종래 기술의 예에서는, 상측 고정판(3)의 하류 개공(8d)과 슬라이드판(4)의 상류 개공(8u), 슬라이드판(4)의 하류 개공(8d)과 하측 고정판(5)의 상류 개공(8u)이 각각 일치하도록 슬라이드판(4)의 미끄럼 이동 위치가 정해져 있으며, 즉, 슬라이딩 게이트(1)는 완전 개방의 상태이다(도 10의 (D) 참조). 도 10에 도시하는 슬라이딩 게이트(1)는, 슬라이드판(4)을 도면의 좌측 방향으로 이동시킴으로써 슬라이딩 게이트(1)의 개방도를 완전 개방 상태로부터 작게 할 수 있다. 도 11은, 도 10과 동일한 슬라이딩 게이트(1)에 대하여 개방도를 1/2로 한 상태를 나타내고 있다. 슬라이드판(4)의 위치를 도면의 좌측으로 더 이동시킴으로써 슬라이딩 게이트(1)를 완전 폐쇄로 할 수 있다.
도 2, 도 3에 도시하는 예에서도 마찬가지이다. 도 2는, 슬라이딩 게이트(1)가 완전 개방이며, 상측 고정판(3)의 하류 개공(8d)과 슬라이드판(4)의 상류 개공(8u), 슬라이드판(4)의 하류 개공(8d)과 하측 고정판(5)의 상류 개공(8u)이 각각 서로 일치하도록 슬라이드판(4)의 미끄럼 이동 위치가 정해져 있다. 도 3은, 도 2와 동일한 슬라이딩 게이트(1)에 대하여 슬라이딩 게이트(1)의 개방도가 1/2인 상태를 도시하고 있다. 슬라이딩 게이트(1)를 폐쇄로 할 때 슬라이드판(4)을 미끄럼 이동시키는 방향을 이하, 「미끄럼 이동 폐쇄 방향(33)」이라 칭한다.
도 2에 도시하는 본 실시 형태에서는, 유로 축선 방향(10)이 미끄럼 이동면 수직 하류 방향(32)에 대하여 유로 축선 경사 각도 α로 경사져 있다. 그 때문에, 유로 축선 방향(10)을 미끄럼 이동면(30)에 투영한 방향을 미끄럼 이동면 유로 축선 방향(31)으로 하였을 때, 미끄럼 이동면 유로 축선 방향(31)을 정할 수 있다. 도 2의 (A) 내지 (C), (F)의 각각에 있어서, 미끄럼 이동면 유로 축선 방향(31)을 세선 화살표로 나타내고 있다. 또한 도 2의 (A) 내지 (C)에서는, 미끄럼 이동면 유로 축선 방향(31)이 유로 축선 방향(10)과 겹쳐져 있다. 또한 도 10에 도시하는 예에서는, 유로 축선 방향(10)이 미끄럼 이동면 수직 하류 방향(32)을 향하고 있기 때문에, 도 10의 (A) 내지 (C)에 나타내는 평면으로부터 보아서는 미끄럼 이동면 유로 축선 방향(31)이 나타나지 않는다.
다음으로, 미끄럼 이동면 유로 축선 방향(31)과 미끄럼 이동 폐쇄 방향(33) 사이의 각도 관계에 대하여 정의한다. 미끄럼 이동 폐쇄 방향(33)에 대하여, 미끄럼 이동면 유로 축선 방향(31)이, 미끄럼 이동면 수직 하류 방향(32)으로 보아서 시계 방향으로 이루는 각도를 유로 축선 회전 각도 θ라 칭한다. 유로 축선 회전 각도 θ는 ±180°의 범위 내의 각도로서 정의한다. 즉, 미끄럼 이동면 유로 축선 방향(31)이, 미끄럼 이동면 수직 하류 방향(32)으로 보아서 시계 방향으로 +180°를 초과하는 각도(θ')로 되었을 때는, 「θ=θ'-360°」로 하여 각도 θ를 마이너스의 값으로서 정한다. 각도 θ의 아래첨자로서, 가장 상류측의 플레이트(2)의 θ를 θ1, 그보다 하나 하류측의 플레이트(2)의 θ를 θ2, 그보다 하나 더 하류측의 플레이트(2)의 θ를 θ3으로 차례로 번호를 붙인다. 대표로 θN으로 표현할 때, N은 1 이상의 정수이며 슬라이딩 게이트(1)의 플레이트 매수까지의 수치를 의미한다. 도 2에 도시하는 예에서는, 상측 고정판(3)은 각도 θ1=-45°, 슬라이드판(4)은 각도 θ2=+90°,하측 고정판(5)은 각도 θ3=-135°로 된다.
또한 슬라이딩 게이트(1)에 있어서, 상호 접하는 2매의 플레이트(2) 간의 유로 축선 회전 각도 θ의 관계에 대하여 이하와 같이 정의한다. 즉, 복수 매의 플레이트(2)의 매수를, 1 이상의 정수 N을 이용하여 합계로 N매로 한다. 그리고 가장 상류측에 있는 플레이트(2)로부터 헤아려서 N매째의 상기 플레이트에 걸쳐 복수 매의 플레이트(2)의 유로 축선 회전 각도 θ를 차례로 θ1, θ2, … θN으로 한다. 그리고 각도 ΔθnNN+1(n은 1 이상의 정수이며 플레이트 매수-1까지)로서 Δθn을 정한다. Δθn은, 상기 θN과 마찬가지로 ±180도의 범위의 각도로서 정의한다. 즉, Δθn이 +180°를 초과하는 각도(Δθn')로 되었을 때는, 「Δθn=Δθn'-360°」로 하여 Δθn을 마이너스의 값으로서 정한다. 또한 Δθn이 -180° 미만의 각도(Δθn')로 되었을 때는, 「Δθn=Δθn'+360°」로 하여 Δθn을 플러스의 값으로서 정한다. 이것에 의하여 Δθn은 ±180°의 범위 내의 숫자로 된다. 여기서, Δθn이 0° 초과 +180° 미만인 경우에는, 상류로부터 하류를 향하여 유로 축선 회전 각도 θN이 반시계 방향으로 변화되어 있는 것을 나타낸다. 반대로 Δθn이 -180° 초과 0° 미만인 경우에는, 상류로부터 하류를 향하여 유로 축선 회전 각도 θN이 시계 방향으로 변화되어 있는 것을 나타낸다. 도 2에 도시하는 예에서는, Δθ112=-135°,Δθ2'=θ23=225°이므로 Δθ2=Δθ2'-360°=-135°로 된다. Δθ1, Δθ2 모두 -180 내지 0°의 범위 내에 있으므로, 유로 축선 회전 각도 θ가 시계 방향으로 변화되어 있는 것을 나타낸다.
이상과 같은 준비 하에, 본 실시 형태의 슬라이딩 게이트(1)가 구비해야 할 조건과 그 이유에 대하여 설명한다.
종래의 슬라이딩 게이트(1)에 있어서는, 도 10, 도 11에 도시한 바와 같이, 유로 축선 방향(10)이 미끄럼 이동면(30)에 수직이며, 즉, 유로 축선 경사 각도 α가 0°여서 기울기를 갖고 있지 않았다. 그에 비해 본 실시 형태는, 유로 축선 방향(10)이 미끄럼 이동면 수직 하류 방향(32)에 대하여 경사져 있어서 유로 축선 경사 각도 α가 0°가 아닌 것을 제1 특징으로 한다. 유로 축선이 미끄럼 이동면 수직 하류 방향(32)에 대하여 경사져 있는 점에서, 플레이트 내를 흐르는 용융 금속은, 미끄럼 이동면 수직 하류 방향(32)의 속도 성분뿐 아니라, 미끄럼 이동면 수직 하류 방향(32)에 대하여 직각의 속도 성분(통상의 연속 주조이면 수평 방향의 속도 성분)을 갖게 된다. 본 실시 형태에 있어서는, 유로 축선 경사 각도 α가 5° 이상 75° 이하이다. 각도 α를 5° 이상으로 함으로써 용융 금속(21)은 충분한 수평 방향의 속도 성분을 갖게 되어, 하기에 나타낸 바와 같이 주입관(11) 내에 있어서의 선회류의 형성을 가능하게 한다. 각도 α는, 바람직하게는 10° 이상, 보다 바람직하게는 15° 이상이다. 한편, 각도 α가 지나치게 크면, 유로 구멍(6)을 형성하는 내화물의 강도 확보나 손모 억제의 관점에서 바람직하지 않으므로, 각도 α를 75° 이하로 한다. 각도 α는, 바람직하게는 65° 이하, 보다 바람직하게는 55° 이하이다.
연속 주조 중의 슬라이딩 게이트(1)의 개구 상황에 대하여, 턴디쉬(15) 내의 탕면 레벨이 일정하여 일정 주조 속도로 주조를 행하고 있는 정상 상태에 있어서는, 레이들(14)의 저부의 슬라이딩 게이트(1), 턴디쉬(15)의 저부의 슬라이딩 게이트(1) 모두, 슬라이딩 게이트(1)의 개구를 완전 개방(도 10 참조)으로 하는 것이 아니라, 개방도를 조인 상태(도 11 참조)에서 주조를 행할 수 있도록 슬라이딩 게이트(1)의 개방도 선택이 행해져 있다. 도 11은, 슬라이딩 게이트(1)의 개방도가 1/2이다. 이 경우, 슬라이딩 게이트(1)의 개구 면적은, 진원인 유로 구멍(6)의 개구 면적의 0.31배로 계산된다. 정상인 연속 주조 중에 있어서, 이와 같이 조여진 소면적이 개구 면적으로 되는 결과, 슬라이딩 게이트(1)의 슬라이드판(4)보다도 하류측에 대해서는, 유로 내를, 최대 유속이 큰 흐름이 흘러 가는 상황으로 된다.
도 3은, 도 2에 도시하는 형상의 본 실시 형태의 슬라이딩 게이트(1)(개방도 완전 개방)의 개방도를 변경하여 개방도를 1/2로 하였을 때의 슬라이딩 게이트(1)를 도시하고 있다. 도 3의 (A)는, (D)의 A-A 화살표 방향으로부터 본 도면이며, 상측 고정판(3)의 하류 개공(8d)이 일부 실선, 일부 파선으로 그려져 있고, 슬라이드판(4)에 대해서는, 상류 개공(8u(4))만이 마찬가지로 일부 실선, 일부 파선으로 그려져 있다. 도 3의 (B)는, (D)의 B-B 화살표 방향으로부터 본 도면이며, 슬라이드판(4)의 상류 개공(8u)이 전부 실선, 하류 개공(8d)이 일부 실선, 일부 파선으로 그려져 있고, 하측 고정판(5)의 상류 개공(8u)이 마찬가지로 일부 실선, 일부 파선으로, 하류 개공(8d)이 전부 파선으로 그려져 있다. 도 3의 (C)는, (D)의 C-C 화살표 방향으로부터 본 도면이며, 하측 고정판(5)의 상류 개공(8u)이 전부 실선, 하류 개공(8d)이 일부 실선, 일부 파선으로 그려져 있다.
도 3에 도시한 바와 같이 개방도를 1/2로 하였을 때의, 슬라이딩 게이트(1)의 유로 구멍(6) 내 및 주입관(11) 내의 용융 금속(21)의 흐름에 대하여, 도 4에 기초하여 설명을 행한다. 도 4에 있어서, 도 4의 (A)는, (D)의 A-A 화살표 방향으로부터 본 도면이며, 상측 고정판(3)의 하류 개공(8d)이 일부 실선, 일부 파선으로 그려져 있고, 슬라이드판(4)에 대해서는, 상류 개공(8u)만이 마찬가지로 일부 실선, 일부 파선으로 그려져 있다. 도 4의 (B)는, (D)의 B-B 화살표 방향으로부터 본 도면이며, 상측 고정판(3)의 하류 개공(8d(3))의 위치가 2점 쇄선으로 나타나고, 슬라이드판(4)의 상류 개공(8u)이 전부 실선, 하류 개공(8d)이 일부 실선, 일부 파선으로 그려져 있고, 하측 고정판(5)의 상류 개공(8u)이 마찬가지로 일부 실선, 일부 파선으로, 하류 개공(8d)이 전부 파선으로 그려져 있다. 도 4의 (C)는, (D)의 C-C 화살표 방향으로부터 본 도면이며, 슬라이드판(4)의 하류 개공(8d(4))의 위치가 2점 쇄선으로 나타나고, 하측 고정판(5)의 상류 개공(8u)이 전부 실선, 하류 개공(8d)이 일부 실선, 일부 파선으로 그려져 있다. 또한 용융 금속의 유선(18)이, 도 4의 (A) 내지 (C)에는 굵은 화살표로, (D) 및 (E)에는 굵은 파선 화살표로 나타나 있다.
도 2, 도 3의 슬라이딩 게이트(1)에 대해서는, 전술한 바와 같이, 인접하는 유로 축선 회전 각도 θN의 차 Δθn은 Δθ1=Δθ2=-135°여서, 모두 Δθn이 -180° 초과 0° 미만이기 때문에 상류로부터 하류를 향하여 유로 축선 회전 각도 θN이 시계 방향으로 변화되어 있는 것을 나타낸다. 상측 고정판(3)의 유로 구멍(6) 내를 흐르는 용융 금속류는, 도 4의 (A)에 도시한 바와 같이 상측 고정판(3)의 유로 축선 방향(10)을 따라 흐른다. 상측 고정판(3)과 슬라이드판(4)의 접촉면에서는, 상측 고정판(3)의 하류 개공(8d)(도 4의 (B)의 2점 쇄선)과 슬라이드판(4)의 상류 개공(8u)(도 4의 (B)의 실선)의 중첩부(개구부)의 소단면 내를 하류측으로 유하한다. 슬라이드판(4)의 유로 구멍(6) 내에 있어서는, 상측 고정판(3)의 하류 개공(8d)(도 4의 (B)의 2점 쇄선)과 슬라이드판(4)의 상류 개공(8u)(도 4의 (B)의 실선)의 중첩부(개구부)의 소단면으로부터 유출된 용융 금속류는, 도 4의 (B)에 유선(18)을 도시한 바와 같이, 슬라이드판(4)의 유로 구멍(6)의 내측 벽면(원통면)을 따른 선회류를 형성하고, 하류측의, 슬라이드판(4)의 하류 개공(8d)(도 4의 (C)의 2점 쇄선)과 하측 고정판(5)의 상류 개공(8u)(도 4의 (C)의 실선)의 중첩부(개구부)의 소단면으로부터, 또한 하측 고정판(5)의 유로 구멍(6) 내로 유출된다. 하측 고정판(5)의 유로 구멍(6) 내에서는, 도 4의 (C)에 유선(18)을 도시한 바와 같이, 하측 고정판(5)의 유로 구멍(6)의 내측 벽면(원통면)을 따른 선회류를 형성하고, 그대로 하류측의 주입관(11) 내로 유출되고, 도 4의 (D), (E)에 도시한 바와 같이, 유로(17) 내에서 유선(18)은 선회류를 유지한 채 주입관(11) 내를 하류측으로 이동해 간다.
도 11에 도시한 바와 같은 종래의 슬라이딩 게이트(1)를 이용한 경우, 슬라이딩 게이트(1)의 개구부로부터 유출될 때 용융 금속류가 갖고 있는 운동 에너지 전부가, 하류 방향을 향하는 유속에 소비되고 있다. 그에 비해, 도 3에 도시한 바와 같은 본 실시 형태의 슬라이딩 게이트(1)를 이용한 경우, 슬라이딩 게이트(1)로부터 유출될 때 용융 금속류의 운동 에너지는, 하류 방향을 향하는 유속과, 선회하여 주입관(11)의 내주면을 선회하는 선회 속도로 분산되므로, 도 11에 도시하는 종래의 슬라이딩 게이트(1)와 비교하여 하류 방향을 향하는 최대 유속을 억제하는 것이 가능해진다. 그 결과, 주입관(11)이 롱 노즐(12)인 경우, 주입관(11)의 하단으로부터 용융 금속(21)이 턴디쉬(15) 내의 용융 금속(21)으로 유출될 때도, 주입관(11) 내의 선회류에 기인하여 주입관(11)의 하단으로부터 반경 방향을 향하는 유속 성분이 존재하는 결과, 주입관(11)의 하단으로부터 하측 방향을 향하는 최대 유속을 억제할 수 있다.
슬라이딩 게이트(1)의 유로 구멍(6) 내에 선회류를 형성하고, 슬라이딩 게이트(1)의 하류측의 주입관 내에 있어서도 선회류를 형성하기 위한, 서로 인접하는 플레이트(2)의 유로 축선 회전 각도 θN 상호 간의 차인 각도 Δθn의 조건에 대하여 설명한다. 전술한 바와 같이, Δθn은 ±180°의 범위 내의 각도로서 정의되어 있다. 여기에 있어서, Δθn=-10° 초과이고 +10° 미만인 경우에는, 유로 축선 회전 각도 θN과 θN+1의 차이가 지나치게 작아서 선회류를 형성할 수 없다. 한편, Δθn이 +170° 이상 또는 -170° 이하인 경우, Δθn의 절대값이 지나치게 커서 도리어 선회류의 형성을 저해하게 된다. 슬라이딩 게이트(1)가 2매의 플레이트를 갖는 경우, Δθ1만이 정의되며, 이 Δθ1이 상기 조건을 만족시키고 있으면 된다. 슬라이딩 게이트(1)가 3매 이상의 플레이트를 갖는 경우, Δθ1에 더해 Δθ2, 나아가 그 이상의 Δθn이 정의된다. 그리고 Δθn이 모두 10° 이상이고 170° 미만, 또는 각도 Δθn이 모두 -170° 초과이고 -10° 이하인 것이 필요하다. 이것에 의하여, 플레이트(2)의 1매째와 2매째의 유로 축선 방향(10)이 시계 방향으로 변화될 때는 3매째 이후에 대해서도 동일하도록 시계 방향으로 변화되고, 플레이트(2)의 1매째와 2매째의 유로 축선 방향(10)이 반시계 방향으로 변화될 때는 3매째 이후에 대해서도 똑같이 반시계 방향으로 변화되므로, 슬라이딩 게이트(1) 내에서 선회류를 유효하게 형성하는 것이 가능해진다. Δθn의 보다 바람직한 범위는 30° 이상, 165° 미만, 또는 -165° 초과, -30° 이하이다.
슬라이딩 게이트(1)를 형성하는 플레이트(2)의 매수는 2매 혹은 3매이면 바람직하다. 도 2 내지 도 4에 도시하는 예는, 상술한 바와 같이 플레이트(2)의 수가 3매인 경우이다. 도 5, 도 6은, 플레이트(2)의 수가 2매이며, 상류측으로부터 1매째가 상측 고정판(3)을 구성하고, 2매째가 슬라이드판(4)을 구성하고 있다. 도 5는, 개방도가 완전 개방, 도 6은, 개방도가 1/2인 경우이다. α=51.95°,θ1=-26.57°,θ2=+26.57°이고 Δθ1=-53.14°여서, 시계 방향의 선회류를 형성할 수 있다. 슬라이딩 게이트(1)를 형성하는 플레이트(2)의 매수가 2매 혹은 3매이면 바람직한 이유는, 슬라이딩 게이트(1)의 조임 기구 발현에는 최저 2매의 플레이트(2)가 필요하고, 4장 이상의 플레이트(2)는 유량 조정에 불필요하며, 플레이트(2)의 매수의 증가에 수반하여 비용이 상승하기 때문이다.
플레이트(2)에 형성하는 유로 구멍(6)에 대해서는, 도 7에 도시한 바와 같은 형상의 유로 구멍(6)으로 할 수도 있다. 도 7은, 상측 고정판(3)의 일례를 도시한다. 플레이트(2)의 상류면(7u)으로부터 두께의 도중까지는, 유로 구멍(6)의 형상은 단면 진원의 원통 형상이며, 원통의 축선이 미끄럼 이동면 수직 하류 방향(32)을 향하고 있다. 플레이트(2)의 하류면(7d)으로부터 두께의 도중까지는, 유로 구멍(6)의 형상은 단면 진원의 원통 형상이며, 원통의 축선이 미끄럼 이동면 수직 하류 방향(32)으로부터 경사지게 형성되어 있다. 플레이트(2)의 두께 도중에 있어서, 상류면(7u)으로부터의 유로 구멍(6)과 하류면(7d)로부터의 유로 구멍(6)이 단차 없이 접속되어 있다. 이와 같은 형상의 유로 구멍(6)을 갖는 플레이트(2)에 있어서도, 도 7의 (D)에 도시한 바와 같이, 상류측 표면 개공 도형의 무게 중심(상류 개공 무게 중심(9u))으로부터 하류측 표면 개공 도형의 무게 중심(하류 개공 무게 중심(9d))을 향하는 방향을 유로 축선 방향(10)으로서 정의할 수 있다.
또한 이하에 나타내는 실시예 및 비교예에서는, 슬라이딩 게이트(1)를 구성하는 플레이트(2)의 두께는 동일하게 하였지만, 슬라이드판(4)이 가장 얇거나 하여 플레이트(2)마다 두께가 다르더라도 상관없다. 또한 이들 실시예 및 비교예에서는, 슬라이딩 게이트(1)의 각 플레이트(2)의 입구 및 출구의 유로 구멍 형상은 동일한 크기의 원인 예를 나타내었지만, 이것이 타원 혹은 장원이더라도 본 발명의 규정을 만족시키는 한, 선회류를 얻는 것이 가능하다. 혹은 그 개공 면적이 각 플레이트(2)의 입구 및 출구 간에 다르더라도 상관없다.
각도 α에 대해서는, 상측 고정판(3)의 상부에서는 0°, 하부에서는 30°이라는 식으로 도중에 각도를 부여하더라도 상관없다. 또한 점차 각도를 변경하는 것도 가능하다. 각도 α는 모든 플레이트(2)에서 동일하더라도 상관없고, 다르더라도 상관없다.
실시예
이하에, 실시예를 나타내어 본 실시 형태의 내용을 구체적으로 설명한다.
도 1은, 용융 금속의 연속 주조기의 레이들(14)(취과)로부터 주형(16)(몰드)까지의 구성을 도시한다. 실시예에서는 용융 금속(21)으로서 용강을 상정하고 있다. 본 실시 형태는, 예를 들어 레이들(14)의 슬라이딩 게이트(1)에 적용하면, 슬라이딩 게이트(1)의 하류측에 접속된 주입관(11)(롱 노즐(12)) 내에 선회류를 형성하고, 주입관(11)의 하단으로부터 턴디쉬(15) 내의 용강 중에 토출되는 토출류의 최대 유속을 저감하여, 턴디쉬(15) 내의 유동을 정류화하여 비금속 개재물의 부상 제거를 촉진하는 등의 효과를 기대할 수 있다. 본 실시예의 슬라이딩 게이트(1)의 형상을 이하에 예시한다.
여기서, 3매의 플레이트(2)를 갖는 슬라이딩 게이트(1)의 플레이트(2)를 위로부터 차례로 상측 고정판(3), 슬라이드판(4), 하측 고정판(5)이라 칭한다. 2매의 플레이트(2)를 갖는 슬라이딩 게이트(1)의 경우에는 위로부터 차례로 상측 고정판(3), 슬라이드판(4)이라 칭한다.
플레이트(2)의 미끄럼 이동면(30)에 수직인 하류 방향(미끄럼 이동면 수직 하류 방향(32))과 유로 축선 방향(10)이 이루는 유로 축선 경사 각도 α, 미끄럼 이동면 유로 축선 방향(31)이 미끄럼 이동면 수직 하류 방향(32)으로 보아서 시계 방향으로 이루는 각도인 유로 축선 회전 각도 θ(±180도의 범위)에 대하여, 가장 상류측의 플레이트(2)부터 차례로 아래첨자 1, 2(, 3)를 붙이고 있다. 유로 축선 경사 각도 α에 대해서는, 가장 상류측의 플레이트(2)의 α를 α1, 그보다 하나 하류측의 플레이트(2)의 α를 α2, 그보다 하나 더 하류측의 플레이트(2)의 α를 α3으로 차례로 번호를 붙인다. 유로 축선 회전 각도 θ에 대해서는, 가장 상류측의 플레이트(2)의 θ를 θ1, 그보다 하나 하류측의 플레이트의 θ를 θ2, 그보다 하나 더 하류측의 플레이트의 θ를 θ3으로 차례로 번호를 붙인다.
레이들(14)과 턴디쉬(15)에 대하여, 실기의 1/1인 물 모델 실험기를 이용하여 본 발명의 효과를 확인하였다. 슬라이딩 게이트(1)의 각 플레이트(2)의 두께는 35㎜, 플레이트(2)에 형성된 유로 구멍(6)의 형상은 직경 80㎜의 진원 형상이며, 유로 축선 경사 각도 α와 유로 축선 회전 각도 θ를 소정의 각도로 한 것을 사용하고 있다. 슬라이딩 게이트(1)의 하방에 마련하는 주입관(11)으로서의 롱 노즐(12)은 내경을 100㎜로 하며, 롱 노즐(12)의 하단은 턴디쉬(15) 내의 수욕 중에 침지하고 있다. 레이들(14) 내의 수면으로부터 슬라이딩 게이트(1) 위치까지의 높이는 3m, 레이들(14) 저부의 슬라이딩 게이트(1)로부터 턴디쉬(15) 내의 수면까지의 높이는 1m, 슬라이딩 게이트(1)의 슬라이드판(4)의 위치를 조정하여 개방도를 30㎜(완전 개방으로부터 50㎜ 폐쇄)로 하고, 턴디쉬(15) 내의 수면 위치를 일정 높이로 유지하면서 슬라이딩 게이트(1)로부터 정상 상태에서 물을 유출시켰다.
롱 노즐(12)의 하단 위치에 있어서, 롱 노즐(12)의 하단으로부터 턴디쉬(15) 내로 유출되는 물의 흐름 방향별 유속을 레이저 도플러법에 의하여 계측하였다. 롱 노즐(12)의 하단 위치에 있어서, 수평 방향의 유속이 존재하는 경우에는 「선회류 평가 결과」를 「GOOD」으로, 수평 방향의 유속이 존재하지 않는 경우에는 「BAD」로 표시하였다.
Figure pct00001
본 발명예 A(표 1 및 도 2 내지 도 4 참조)에서는, 3매 플레이트식의 슬라이딩 게이트(1)의 상측 고정판(3)에는 θ1=-45°의 경사 구멍, 슬라이드판(4)에는 θ2=90°의 경사 구멍, 하측 고정판(5)에는 θ3=-135°의 경사 구멍이 뚫려 있다. 유로 축선 경사 각도 α1 내지 α3은 표 1에 나타낸다. 그 조합에 의하여, 슬라이딩 게이트(1)가 완전 개방이더라도, 조여져 있더라도 용융 금속류에 둘레 방향 유속을 부여하여, 슬라이딩 게이트(1)의 하방에 설치한 주입관(11)의 유로(17) 내부에 선회류를 형성할 수 있다. 선회류 평가 결과는 GOOD이었다.
또한 본 발명예 A에서는, 상측 고정판(3) 입구(상류 개공(8u)) 바로 아래에 하측 고정판(5) 출구(하류 개공(8d))가 위치한다. 이 경우, 슬라이딩 게이트(1)의 3매의 플레이트(2)를, 도 10, 도 11에 도시하는 종래예로부터 도 2, 도 3에 도시하는 본 발명예로 교환하기만 하면, 본 발명의 적용이 가능하다.
본 발명예 B(표 1 및 도 5, 도 6 참조)에서는, 2매 플레이트식의 슬라이딩 게이트(1)의 상측 고정판(3)에는 θ1=-26.57°의 경사 구멍, 슬라이드판(4)에는 θ2=26.57°의 경사 구멍이 뚫려 있다. 유로 축선 경사 각도 α1 내지 α2는 표 1에 나타낸다. 그 조합에 의하여, 슬라이딩 게이트(1)가 완전 개방이더라도, 조여져 있더라도 용융 금속류에 둘레 방향 유속을 부여하여, 슬라이딩 게이트(1) 하방에 설치한 주입관(11)의 유로(17) 내부에 선회류를 형성할 수 있다. 또한 본 발명예 B에서는, 상측 고정판(3) 입구(상류 개공(8u))의 미끄럼 이동 궤적 바로 아래에 슬라이드판(4) 출구(하류 개공(8d))의 미끄럼 이동 궤적이 있으므로, 슬라이딩 게이트 금물의 개조가 최소한에 그친다. 선회류 평가 결과는 GOOD이었다.
비교예 C(표 1 및 도 8, 도 9 참조)는, 본 발명예 B와 유사한 구성이기는 하지만 θ1과 θ2의 차가 180° 있으므로 선회가 얻어지지 않는 예이다. 선회류 평가 결과는 BAD였다.
비교예 D(표 1 및 도 10, 도 11 참조)는, 유로 축선 경사 각도 α가 전부 0°인 통상의 슬라이딩 게이트(1)이다. 선회류 평가 결과는 BAD였다.
본 발명의 슬라이딩 게이트에 따르면, 종래 기술의 문제점을 해소하여, 용융 금속을 주입하는 주입관 내에 있어서 충분한 강도의 선회류를, 콤팩트하고 평이한 기구로, 유로의 폐색 위험성을 증가시키는 일 없이 부여할 수 있다.
1: 슬라이딩 게이트
2: 플레이트
3: 상측 고정판
4: 슬라이드판
5: 하측 고정판
6: 유로 구멍
7u: 상류면(상류측 표면)
7d: 하류면(하류측 표면)
8u: 상류 개공(상류측 표면 개공)
8d: 하류 개공(하류측 표면 개공)
9u: 상류 개공 무게 중심(상류측 표면 개공 도형 무게 중심)
9d: 하류 개공 무게 중심(하류측 표면 해구 도면 무게 중심)
10: 유로 축선 방향
11: 주입관
12: 롱 노즐
13: 침지 노즐
14: 레이들
15: 턴디쉬
16: 주형
17: 유로
18: 유선
21: 용융 금속
30: 미끄럼 이동면
31: 미끄럼 이동면 유로 축선 방향
32: 미끄럼 이동면 수직 하류 방향
33: 미끄럼 이동 폐쇄 방향
α: 유로 축선 경사 각도
θ: 유로 축선 회전 각도

Claims (2)

  1. 용융 금속이 통과하는 유로 구멍이 형성된 복수 매의 플레이트를 갖고, 상기 복수 매의 플레이트 중의 적어도 1매의 플레이트가, 미끄럼 이동 가능한 슬라이드판이고, 상기 용융 금속의 유량 조정에 사용되는 슬라이딩 게이트이며,
    상기 복수 매의 플레이트의 각각에 있어서의 상기 유로 구멍은, 상기 플레이트의 표면 중, 통과하는 상기 용융 금속의 상류측에 위치하는 상류측 표면에 상류측 표면 개공을 형성하고, 하류측에 위치하는 하류측 표면에 하류측 표면 개공을 형성하고, 상기 상류측 표면 개공의 도형의 무게 중심으로부터 상기 하류측 표면 개공의 도형의 무게 중심을 향하는 방향을 유로 축선 방향으로 하였을 때,
    상기 복수 매의 플레이트 미끄럼 이동면에 수직한 하류 방향인 미끄럼 이동면 수직 하류 방향과 상기 유로 축선 방향 사이의 유로 축선 경사 각도 α가 5° 이상 75° 이하이고,
    상기 유로 축선 방향을 상기 미끄럼 이동면에 투영한 방향을 미끄럼 이동면 유로 축선 방향이라 칭하고, 상기 슬라이딩 게이트를 폐쇄로 할 때의 상기 슬라이드판의 미끄럼 이동 방향을 미끄럼 이동 폐쇄 방향이라 칭하고, 상기 미끄럼 이동 폐쇄 방향에 대하여, 상기 미끄럼 이동면 유로 축선 방향이, 상기 미끄럼 이동면 수직 하류 방향으로 보아서 시계 방향으로 이루는 각도를 ±180도의 범위 내인 유로 축선 회전 각도 θ라 칭하고, 상기 유로 축선 회전 각도 θ가, 서로 인접하는 상기 복수 매의 플레이트 간에 다르고, 상기 복수 매의 플레이트의 매수를, 1 이상의 정수 N을 이용하여 합계로 N매로 하고, 가장 상류측에 있는 상기 플레이트로부터 헤아려서 N매째의 상기 플레이트에 걸쳐 상기 복수 매의 플레이트의 상기 유로 축선 회전 각도 θ를 차례로 θ1, θ2, … θN으로 하고, 각도 ΔθnNN+1(n은 1 이상의 정수이며 플레이트 매수-1까지)로 하였을 때, 상기 각도 Δθn이 모두 10° 이상이고 170° 미만, 또는 상기 각도 Δθn이 모두 -170° 초과이고 -10° 이하인
    것을 특징으로 하는 슬라이딩 게이트.
  2. 제1항에 있어서,
    상기 복수 매의 플레이트의 합계 매수가 2매 혹은 3매이고, 상기 슬라이드판의 매수가 1매인 것을 특징으로 하는 슬라이딩 게이트.
KR1020207027294A 2018-04-11 2019-04-10 슬라이딩 게이트 KR102408212B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JPJP-P-2018-075947 2018-04-11
JP2018075947 2018-04-11
PCT/JP2019/015592 WO2019198745A1 (ja) 2018-04-11 2019-04-10 スライディングゲート

Publications (2)

Publication Number Publication Date
KR20200123214A true KR20200123214A (ko) 2020-10-28
KR102408212B1 KR102408212B1 (ko) 2022-06-13

Family

ID=68164245

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020207027294A KR102408212B1 (ko) 2018-04-11 2019-04-10 슬라이딩 게이트

Country Status (7)

Country Link
US (1) US11491537B2 (ko)
JP (1) JP6927420B2 (ko)
KR (1) KR102408212B1 (ko)
CN (1) CN111918733B (ko)
BR (1) BR112020017674B1 (ko)
TW (1) TW201943474A (ko)
WO (1) WO2019198745A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7103170B2 (ja) * 2018-11-05 2022-07-20 日本製鉄株式会社 スライディングゲート
JP7115230B2 (ja) * 2018-11-07 2022-08-09 日本製鉄株式会社 連続鋳造用注湯装置
JP7332878B2 (ja) * 2019-09-25 2023-08-24 日本製鉄株式会社 溶融金属の注湯装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5920958A (ja) * 1982-07-28 1984-02-02 Toshiba Corp 「け」光ランプ
JPS615437A (ja) 1984-06-19 1986-01-11 Tokico Ltd 磁気デイスクの製造方法
JPH07303949A (ja) 1994-03-18 1995-11-21 Kawasaki Steel Corp 連続鋳造方法および連続鋳造用ノズル
US5518154A (en) * 1994-11-17 1996-05-21 Usx Corporation Gate and pour tube assembly for use in throttling gate valve
JP2000237852A (ja) 1999-02-19 2000-09-05 Kyushu Refract Co Ltd 浸漬ノズル
JP2006346688A (ja) 2005-06-13 2006-12-28 Kurosaki Harima Corp 旋回流ロングノズル

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH420498A (de) * 1965-03-09 1966-09-15 Concast Ag Vorrichtung zum Verändern der Lage des Giessstrahles, insbesondere beim Stranggiessen
US3912134A (en) * 1974-04-29 1975-10-14 Danieli Off Mecc Rotary sliding gate valve for molten metal
JPS5920958U (ja) * 1982-07-29 1984-02-08 黒崎窯業株式会社 負圧防止用傾斜孔を持つスライデイングノズル
CN1022811C (zh) * 1989-07-12 1993-11-24 品川白炼瓦株式会社 熔化金属的排放调节器
JP3615437B2 (ja) 1999-10-29 2005-02-02 品川白煉瓦株式会社 スライドバルブ装置
ES2254405T3 (es) * 2000-03-16 2006-06-16 Vesuvius Crucible Company Compuerta de guillotina para control de flujo de metal liquido.
JP6794268B2 (ja) * 2017-01-05 2020-12-02 黒崎播磨株式会社 スライディングノズル

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5920958A (ja) * 1982-07-28 1984-02-02 Toshiba Corp 「け」光ランプ
JPS615437A (ja) 1984-06-19 1986-01-11 Tokico Ltd 磁気デイスクの製造方法
JPH07303949A (ja) 1994-03-18 1995-11-21 Kawasaki Steel Corp 連続鋳造方法および連続鋳造用ノズル
US5518154A (en) * 1994-11-17 1996-05-21 Usx Corporation Gate and pour tube assembly for use in throttling gate valve
JPH10509650A (ja) * 1994-11-17 1998-09-22 ユーエスエックス エンジニアーズ アンド コンサルタンツ インコーポレイテッド 絞りゲート弁に使用するゲートおよび注入管組立体
JP2000237852A (ja) 1999-02-19 2000-09-05 Kyushu Refract Co Ltd 浸漬ノズル
JP2006346688A (ja) 2005-06-13 2006-12-28 Kurosaki Harima Corp 旋回流ロングノズル

Also Published As

Publication number Publication date
CN111918733A (zh) 2020-11-10
TW201943474A (zh) 2019-11-16
BR112020017674A2 (pt) 2020-12-22
BR112020017674B1 (pt) 2023-12-26
JP6927420B2 (ja) 2021-08-25
JPWO2019198745A1 (ja) 2021-02-12
US11491537B2 (en) 2022-11-08
US20210046542A1 (en) 2021-02-18
CN111918733B (zh) 2021-12-03
WO2019198745A1 (ja) 2019-10-17
KR102408212B1 (ko) 2022-06-13

Similar Documents

Publication Publication Date Title
KR102408212B1 (ko) 슬라이딩 게이트
CN103608137B (zh) 用于引导金属熔体的喷嘴
KR101108316B1 (ko) 용융 금속의 연속 주조 방법
US11052459B2 (en) Submerged entry nozzle for continuous casting
JP4938195B2 (ja) 液体金属の流量制御用スライディングゲート
JP2002239690A (ja) 連続鋳造用浸漬ノズル並びに連続鋳造方法
JP7115230B2 (ja) 連続鋳造用注湯装置
CN1040939A (zh) 三板板闸的耐火闸板
JP7196746B2 (ja) 連続鋳造用注湯装置
JP4475292B2 (ja) 溶融金属の連続鋳造用浸漬ノズルおよびそれを用いた連続鋳造方法
JP6862547B2 (ja) 連続鋳造用ノズルのためのデフレクタ
JP7103170B2 (ja) スライディングゲート
JP2022157084A (ja) スライディングゲート
JP2021041409A (ja) 溶融金属の注湯装置
JP3861861B2 (ja) 連続鋳造用浸漬ノズル及び連続鋳造方法
JP4200793B2 (ja) 連続鋳造用浸漬ノズル
JP2005021941A (ja) 溶融金属の連続鋳造装置及び連続鋳造方法
JPH02142652A (ja) 連続鋳造方法
KR20040057744A (ko) 연속주조기에서 개재물 부상을 위해 턴디쉬 내부에설치되는 주형
KR20050053941A (ko) 와류방지용 침지노즐

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant