KR20200044997A - 파장-편이 섬유-결합 신틸레이션 검출기를 사용한 x-선 검사 - Google Patents

파장-편이 섬유-결합 신틸레이션 검출기를 사용한 x-선 검사 Download PDF

Info

Publication number
KR20200044997A
KR20200044997A KR1020207011500A KR20207011500A KR20200044997A KR 20200044997 A KR20200044997 A KR 20200044997A KR 1020207011500 A KR1020207011500 A KR 1020207011500A KR 20207011500 A KR20207011500 A KR 20207011500A KR 20200044997 A KR20200044997 A KR 20200044997A
Authority
KR
South Korea
Prior art keywords
detector
scintillation
scintillator
fiber
ray
Prior art date
Application number
KR1020207011500A
Other languages
English (en)
Inventor
아나톨리 아로드제로
죠셉 콜러라메
단-크리스티안 딘카
라젠 수드
리 고드진스
마틴 로멜
피터 로스차일드
제프리 슈베르트
Original Assignee
아메리칸 사이언스 앤 엔지니어링, 인크.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 아메리칸 사이언스 앤 엔지니어링, 인크. filed Critical 아메리칸 사이언스 앤 엔지니어링, 인크.
Priority to KR1020217004548A priority Critical patent/KR102266814B1/ko
Publication of KR20200044997A publication Critical patent/KR20200044997A/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/201Measuring radiation intensity with scintillation detectors using scintillating fibres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/2008Measuring radiation intensity with scintillation detectors using a combination of different types of scintillation detectors, e.g. phoswich
    • G01V5/22
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/06Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/2006Measuring radiation intensity with scintillation detectors using a combination of a scintillator and photodetector which measures the means radiation intensity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/2018Scintillation-photodiode combinations
    • G01T1/20181Stacked detectors, e.g. for measuring energy and positional information
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/2018Scintillation-photodiode combinations
    • G01T1/20185Coupling means between the photodiode and the scintillator, e.g. optical couplings using adhesives with wavelength-shifting fibres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T3/00Measuring neutron radiation
    • G01T3/06Measuring neutron radiation with scintillation detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T5/00Recording of movements or tracks of particles; Processing or analysis of such tracks
    • G01T5/08Scintillation chambers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14658X-ray, gamma-ray or corpuscular radiation imagers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T7/00Details of radiation-measuring instruments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers

Abstract

본 발명은 광 검출기 신호의 시간적 적분에 의해, 파장-편이 광섬유에 의해 하나 이상의 광 검출기에 결합된 신틸레이터에 기초하여 물질을 검사하기 위해 검출기 및 방법에 관한 것이다. 신틸레이션 매체의 픽셀화되지 않은 체적이 입사하는 투과 방사선의 에너지를 복수의 광학 도파관에 의해, 신틸레이션 광 추출 영역으로부터 추출되는 신틸레이션 광으로 변환한다. 이러한 기하학적 특징은 지금까지는 입사 방사선의 후방 산란 검출 및 에너지 분별을 위해 획득 불가능한 기하학적 특징을 가능케 하는, 효율적이며 콤팩트한 검출기를 제공한다. 추가의 에너지 분해 투과 구성이 왜곡 및 오정렬 보상으로서 가능해 진다.

Description

파장-편이 섬유-결합 신틸레이션 검출기를 사용한 X-선 검사 {X-Ray Inspection using Wavelength-Shifting Fiber-Coupled Scintillation Detectors}
본 출원은 2012년 2월 14일자로 출원된 미국 가특허 출원 제61/598,521호 및 제61/598,576호와, 2012년 3월 6일자로 출원된 미국 가특허 출원 제61/607,066호에 기초하여 우선권을 주장하고, 이들 모두는 본원에서 참조로 통합되었다.
본 발명은 섬유-결합 신틸레이션 검출기 및 그의 제조 방법에 관한 것이고, x-선의 효율적인 검출을 위해 섬유-결합 신틸레이션 검출기를 채용하는 x-선 검사의 시스템 및 방법에 관한 것이다.
방사선 및 입자의 섬유-결합 신틸레이션 검출기가 지난 30년의 기간에 걸쳐 채용되어 왔다. 몇몇 경우에, 신틸레이터는 이산된 신틸레이터 요소들로 구성되어, 픽셀화되고, 다른 경우에, (직교하여 교차하는 결합 섬유들과 같은) 다른 전략이 공간 해상도를 제공하기 위해 채용된다. 섬유-결합 신틸레이션 검출기의 예는 미국 특허 제6,078,052호(디필리포(DiFilippo)) 및 미국 특허 제7,326,9933호(카타기리(Katagiri) 등)에 의해 제공되고, 이들은 본원에서 참조로 통합되었다. 디필리포 및 카타기리 등에 의해 설명되어 있는 검출기는 섬유의 코어 재료에 의해 재발산되는 광이, 흔히 신틸레이터 자체로부터 이격되어 있는 간편한 위치에 배치된 광검출기로, 낮은 감쇠로 전도될 수 있도록, 파장-편이 섬유(WSF)를 채용한다. 공간 해상도가 중성자 촬상과 같은 용도에서 특히 중요하다. 공간 해상도는 또한, 본원에서 참조로 통합된, 문헌[Moiseev, et al., High efficiency plastic scintillator detector with wavelength-shifting fiber readout for the GLAST Large Area Telescope, Nucl. Instr. Meth. Phys. Res. A, vol. 583, pp. 372-81 (2007)]에 설명되어 있는 바와 같이, 고효율 세그먼트형 신틸레이션 검출기가 고에너지 우주선(cosmic ray)의 검출을 위해 WSF 판독을 채용하는 페르미 대면적 우주 망원경(Fermi Large Area Space Telescope)(이전에, GLAST) 내에서 가장 중요하다.
섬유-결합 신틸레이터 검출기가 지금까지 채용되고 있다는 맥락 때문에, 모든 공지된 섬유-결합 신틸레이터 검출기는 입자(광자 또는 질량 입자(massive particle))의 신틸레이터와의 개별적인 상호 작용에 의해 생성되는 펄스를 계수하여, 입사 입자에 의해 축적되는 에너지가 신틸레이터에 의해 재발산되는 광의 누적 플럭스에 기초하여 확인되도록 허용한다.
그러나, x-선 후방 산란 검사 시스템의 검출 요건은 기존의 섬유-결합 신틸레이션 검출기에 의해 해결되는 요건과는 완전히 다르다. 후방 산란 x-선 검사 시스템은 수하물 내부, 화물 컨테이너 내부, 차량 내, 그리고 인체 상에 숨겨진 유기 물질을 검출하기 위해 25년 이상 사용되어 왔다. 대량의 유기 물질이 x-선을 흡수하기보다는 (컴프턴(Compton) 산란에 의해) x-선을 우선적으로 산란시키기 때문에, 이러한 물질은 후방 산란 영상 내에서 더 밝은 물체로서 나타난다. 입사 x-선이 모든 방향으로 산란되는 한, 감도는 요건으로서의 공간 해상도를 훨씬 뛰어 넘고, 대부분의 산란 용도에서, 검출기 공간 해상도는 전혀 중요하지 않고, 이는 해상도가 검출에 의해서가 아닌 입사 빔에 의해 지배되기 때문이다.
x-선 산란 시스템 의해 제기되는 대면적 및 고감도의 전문적인 검출 요건은 도 1a의 측단면도 및 도 1b의 정단면도에 도시된 유형의 "종래의" 신틸레이션 검출기(100)의 경우에서 특히 성가시다. 그러한 검출기의 예는 미국 특허 제5,302,817호(요코타(Yokota))에 설명되어 있고, 본원에서 전체적으로 참조로 통합되었다. 전형적으로, 방광 박스(102)가 신틸레이션 스크린(103)으로 라이닝되고, 여기서 입사 x-선 방사선(101)이 전형적으로 전자기(EM) 스펙트럼의 일부인 UV, 가시, 또는 더 긴 파장의 신틸레이션 광으로 변환된다. 대면적-광음극 광전증배관(PMT)(105)이 포트 홀(108)을 거쳐 신틸레이션 광을 수신하도록 결합된다. 한 가지 문제점이 스크린 내에서 기원하는 신틸레이션 광의 분획이 스크린으로부터 구획된 체적 내로 투과되는 데 있다. 잔여 신틸레이션 광은 스크린 재료 내에서 소실된다. 신틸레이션 스크린(103)은 발산되는 광의 분획을 최대화하도록 설계되고, 이는 스크린(103)과 검출기 체적을 충전하는 매체(전형적으로, 공기) 사이의 계면에 대해 큰 투과 계수(T)를 보장하는 것과 동등하다. 그러나, 도 1a 및 도 1b에 도시된 종류의 종래의 후방 산란 검출기에서, 신틸레이션 스크린(103)은 또한, 신틸레이션 광이 박스(102)의 체적 내로 발산되면, 전형적으로 그가 광검출기(105)에 도달할 때까지 복수의 반사를 필요로 하기 때문에, 양호한 반사기로서 역할해야 한다. 따라서, 스크린 표면의 반사 계수(R) 또한 커야 한다. 그러나, T와 R의 합이 1로 구속되므로, T와 R은 동시에 최대화될 수 없고, 타협이 이루어져야 한다. 결과적으로, 종래의 후방 산란 검출기의 광 수집 효율은 본질적으로 낮아서, 발생된 신틸레이션 광의 수 퍼센트만이 광 검출기 내로 수집된다.
촬상 검출기에 대해, 광자 통계적 잡음은 검출기에 의해 흡수되어 영상을 발생시키기 위해 사용되는 광자의 관점에서 계산된다. 흡수되지 않고 검출기를 통과하는 임의의 광자, 또는 영상 정보를 발생시키지 않고서 흡수되는 광자도 낭비되고, 영상 내의 잡음을 감소시키는 데 기여하지 않는다. 광자가 분할될 수 없으므로, 광자는 시스템의 기본적인 양자 수준을 나타낸다. 촬상열(imaging chain)을 따라 어디에서나 영상을 나타내기 위해 사용되는 최소 개수의 양자의 관점에서 통계적 잡음을 계산하는 것이 일반적인 관례이다. 가장 적은 개수의 양자가 영상을 나타내기 위해 사용되는 촬상열을 따른 지점은 "양자 싱크"로 불린다. 양자 싱크에서의 잡음 수준이 촬상 시스템의 잡음 한도를 결정한다. 양자 싱크에서 정보 전달자(즉, 양자)의 개수를 증가시키지 않고서는, 시스템 잡음 한도가 개선될 수 없다. 열악한 광 수집이 가능하게는 2차 양자 싱크를 생성할 수 있고, 이는 말하자면 PMT 전류를 일으키는 입사 x-선의 분획을 제한한다. 또한, 이는 영상 잡음을 증가시킨다. 광 수집 효율은 광 검출기의 감지 면적을 증가시킴으로써 개선될 수 있다. 그러나, 효율을 위한 그러한 방법은 비용이 든다.
종래 기술의 x-선 신틸레이션 검출기에서 전형적으로 채용되는 신틸레이션 스크린의 구조가 이제 도 2를 참조하여 설명된다. 복합 신틸레이터(202)의 층이 예를 들어, 구조적 지지를 위한 지지체 시트(204)와 폴리에스테르로 구성된 얇은 투명 보호 필름(206) 사이에 개재된다. 복합 신틸레이터는 전형적으로 유기 매트릭스 또는 수지 내의 마이크로미터 크기의 무기 결정으로 구성된다. 결정은 실제 신틸레이션 재료이다. 희토류 원소로 도핑된 바륨 염화불소(BaFCl 또는 "BFC") 또는 가돌리늄 옥시설파이드(Gd202S 또는 "Gadox")가 이에 대한 일반적인 선택이다. 스크린의 저지능(stopping power)은, 전형적으로 단위 면적당 신틸레이터 결정의 밀리그램으로 측정되는 복합 신틸레이터 층(202)의 두께에 의해 결정된다. (BFC 또는 Gadox와 같은) 무기 신틸레이터가 높은 자가 흡수를 겪기 때문에, 복합 신틸레이터 층은 신틸레이션 광의 양호한 분획을 추출하기 위해 상당히 얇게 유지되어야 한다. 이는 스크린의 유효 저지능을 제한하고, 대략 100keV까지의 에너지를 갖는 x-선의 검출에 대해서만 적합하게 된다.
그러므로, 신틸레이션 광의 더 효율적인 추출, 수집, 검출을 제공하는 x-선 산란 검출 용도를 위한 신틸레이션 검출기를 갖는 것이 유리하다.
상기 도입부에서 간략하게 설명된 바와 같이, 파장-편이 섬유(WSF)가 신틸레이션 검출에 대해 오랫동안 채용되어 왔다. 파장 편이 섬유는 낮은 굴절률의 하나 이상의 클래딩(cladding) 층에 의해 둘러싸인, 상대적으로 높은 굴절률을 갖는 코어로 구성된다. 코어는 염료로도 불리는 파장-편이 재료를 함유한다. 섬유로 진입하는 신틸레이션 광은 염료에 의해 흡수되고, 이는 결국 더 긴 파장을 갖는 광을 발산한다. 더 긴 파장의 광은 섬유 재료 내에서 등방성으로 발산된다. 총 내부 반사는 그러한 광의 분획을 포획하고, 이를 상대적은 낮은 손실로 긴 거리에 걸쳐 전도시킨다. 이는 염료의 흡수 파장 범위(304) 및 발산 파장 범위(302)가 실질적으로 중첩하지 않아서, 파장-편이 광이 재흡수되지 않기 때문에, 도 3을 참조하여 설명되는 바와 같이 가능하다. 포획되는 분획은 섬유의 표면에서의 굴절률의 비율에 의해 결정된다. WSF의 추가의 장점은 파장 편이가 신틸레이션 광(306)을 광 검출기(PMT, 규소 증전증배기(SiPM), 또는 다중-픽셀 광자 계수기(MPPC) 등)의 감지 파장 범위 내로 이동시킬 수 있는 것이다.
신틸레이터 구조물은, 예를 들어, 다이캐스팅, (문헌[Yoshimura et al., Plastic scintillator produced by the injection-molding technique, Nucl. Instr. Meth. Phys. Res. A, vol. 406, pp. 435-41 (1998)]에 의해 설명되어 있는 바와 같은) 사출 성형, 및 (브로스(Bross) 등의 미국 특허 제7,067,079호에 설명되어 있는 바와 같은) 압출을 포함한 많은 제조 기술을 사용하여 제작되어 왔고, 이들 문헌은 본원에서 참조로 통합되었다.
본 발명의 다양한 실시예에 따르면, 후방 산란 및 투과 x-선 검사에서의 문제점에 대해 섬유-결합 신틸레이션 검출기를 적용하는 시스템 및 방법이 제공된다.
간편한 표기를 위해, 파장-편이 섬유-결합 신틸레이션 검출기는 본원에서 "Sc-WSF" 검출기로서 지칭될 수 있다.
본 발명의 제1 실시예에서, 입사하는 침투 방사선의 에너지를 신틸레이션 광으로 변환하기 위한 신틸레이션 매체의 픽셀화되지 않은 체적을 갖는 침투 방사선의 검출기가 제공된다. 검출기는 신틸레이션 매체의 픽셀화되지 않은 체적과 연속적인 신틸레이션 광 추출 영역에 걸쳐 서로에 대해 실질적으로 평행하게 정렬된 복수의 광학 도파관을 갖는다. 광학 도파관은 도파관에 의해 안내되는 광자를 검출하여 검출기 신호를 발생시키기 위해, 신틸레이션 광으로부터 도출된 광을 광 검출기로 안내한다.
본 발명의 다른 실시예에서, 검출기는 또한 규정된 기간에 걸쳐 검출기 신호를 적분하기 위한 적분 회로를 가질 수 있다.
본 발명의 대안적인 실시예에서, 입사하는 침투 방사선의 에너지를 신틸레이션 광으로 변환하기 위한 신틸레이션 매체의 체적, 및 신틸레이션 매체의 체적과 연속적인 신틸레이션 광 추출 영역에 걸쳐 서로에 대해 실질적으로 평행하게 정렬된 복수의 광학 도파관을 갖는 침투 방사선의 검출기가 제공된다. 광학 도파관은 신틸레이션 광으로부터 도출된 광을 검출기 신호를 발생시키는 광 검출기로 안내한다. 마지막으로, 규정된 기간에 걸쳐 검출기 신호를 적분하기 위한 적분 회로가 제공된다.
본 발명의 추가의 실시예에서, 상기 검출기 내의 광학 도파관은 신틸레이션 광의 파장 편이를 위해 구성될 수 있고, 특히 파장-편이 광섬유일 수 있다. 신틸레이션 매체는 바륨 염화불소와 같은 란탄족-도핑 바륨 혼합 할로겐화물을 포함할 수 있다. 광 검출기는 광전증배기를 포함할 수 있다.
본 발명의 또 다른 실시예에서, 검출기의 면적에 의해 나누어진, 상기 검출기들 중 임의의 하나의 두께의 제곱은 0.001 미만일 수 있다. 복수의 도파관들 중 적어도 하나는 클래딩이 결여될 수 있고, 신틸레이션 매체는 도파관을 특징짓는 굴절률보다 더 낮은 값의 굴절률을 특징으로 할 수 있다. 광학 도파관은 복수의 평행 평면들 내에 배치될 수 있고, 평행 평면들 각각은 복수의 광학 도파관의 하위 세트를 포함한다.
본 발명의 다른 실시예에서, 검출기는 입사 빔이 연속적으로 마주치는 신틸레이터 매체의 복수의 층을 가질 수 있고, 층들은 입사 빔에 대한 구분되는 분광 감도를 특징으로 할 수 있다. 신틸레이터의 교대하는 층들은 섬유-결합 BaFCl(Eu) 및 섬유-결합 BaFI(Eu) 중 적어도 하나와 교대하는 Li6F:ZnS(Ag)를 포함할 수 있다. 신틸레이터 매체의 복수의 층들 중 제1 층은 저에너지 x-선에 우선적으로 민감한 파장-편이 섬유-결합 검출기일 수 있고, 신틸레이터 매체의 복수의 층들 중 최종 층은 플라스틱 신틸레이터일 수 있다.
신틸레이터 매체의 세그먼트들은 입사 빔의 전파 방향에 대해 횡방향인 평면 내에 배치될 수 있고, 광섬유를 거쳐 광 검출기에 구분되게 결합될 수 있다.
본 발명의 다른 태양에 따르면, 신틸레이션 검출기를 제조하기 위한 방법이 제공되고, 방법은 광학 도파관 둘레에 신틸레이션 재료의 쉘을 압출하는 단계를 포함하고, 특정 실시예에서, 광학 도파관은 파장-편이 광섬유이다.
대안적인 실시예에서, 산란된 x-선 방사선을 검출하기 위한 방법은 다음의 단계들:
a. 복수의 개별적으로 판독되는 세그먼트를 특징으로 하는 검출기를 제공하는 단계; 및
b. 개별적으로 판독되는 세그먼트들의 하위 세트로부터 신호를 합산하는 단계
를 갖고,
하위 세트는 상대적인 신호 대 잡음에 기초하여 선택된다.
본 발명의 다른 태양에서, 산란된 x-선 방사선을 검출하기 위한 방법이 제공된다. 방법은 다음의 단계들:
a. 복수의 개별적으로 판독되는 세그먼트를 특징으로 하는 검출기를 제공하는 단계; 및
b. 개별적으로 판독되는 세그먼트들의 하위 세트로부터 신호를 합산하는 단계
를 갖고,
하위 세트는 1차 조사 빔의 공지된 위치에 기초하여 선택된다.
이동식 x-선 검사 시스템이 다른 실시예에 따라 제공된다. 검사 시스템은 플랫폼 및 지면 접촉 부재를 갖는 운반체 상에 배치되는 x-선 방사선의 공급원, 및 검사되는 대상과 상호 작용한 x-선을 검출하기 위해 검사 작업 중에 운반체 외부에서 전개되는 섬유-결합 신틸레이션 검출기를 갖는다.
이동식 x-선 검사 시스템은 또한 검사 과정 중에 검사되는 대상 위에서 전개되는 섬유-결합 신틸레이션 차양 검출기를 가질 수 있고, 차양 검출기는 검사 작업 이전에 운반체의 지붕으로부터 외부로 활주할 수 있다. 운반체의 플랫폼 아래에서 전개되는 스커트 검출기, 및 운반체보다 더 높은 공간의 검출을 위한 지붕 검출기와, 실질적으로 수평인 섬유-결합 신틸레이터 검출기 세그먼트 및 실질적으로 직립인 섬유-결합 신틸레이터 검출기 세그먼트가 또한 있을 수 있다. 실질적으로 수평인 섬유-결합 신틸레이터 검출기 세그먼트 및 실질적으로 직립인 섬유-결합 신틸레이터 검출기 세그먼트는 통합 구조물로 형성될 수 있다.
본 발명의 다른 태양에 따르면, 장치 상으로 입사하는 방사선을 검출하기 위한 장치가 제공되고, 장치는:
a. 적어도 제1 검출 신호를 발생시키기 위한 방사선에 민감한 파장-편이 섬유-결합 신틸레이션 검출기를 포함하는 복수의 실질적으로 평행한 능동 시준 베인;
b. 복수의 능동 시준기 베인들 중 실질적으로 평행한 능동 시준 베인들 사이를 통과하는 방사선을 검출하여 제2 검출 신호를 발생시키기 위한 후방 대면적 검출기; 및
c. 제1 검출 신호 및 제2 검출 신호를 수신하여 처리하기 위한 프로세서
를 포함한다.
본 발명의 대안적인 실시예에 따르면, 기저 표면 상에 배치된 대상을 검사하기 위한 하향식(top-down) 촬상 검사 시스템이 제공된다. 하향식 촬상 검사 시스템은 실질적으로 하방으로 향하는 x-선의 공급원, 및 기저 표면 위의 돌출부 내에 배치되는 선형 검출기 어레이를 갖는다. 선형 검출기 어레이는 파장-편이 섬유-결합 신틸레이션 검출기를 포함할 수 있다.
본 발명의 다른 태양에 따르면, 차량의 저면을 검사하기 위한 x-선 검사 시스템이 제공된다. x-선 검사 시스템은 섀시에 결합된 실질적으로 상방으로 향하는 x-선의 공급원, 및 차량에 의해 그리고 차량 아래에 또는 내부에 숨겨진 대상에 의해 산란되는 x-선을 검출하기 위해 섀시 상에 배치된 파장-편이 섬유-결합 신틸레이터 검출기를 갖는다. 섀시는 모터 및 수동 제어 중 적어도 하나에 의해 차량 아래에서 조종되도록 구성된다.
본 발명의 상기 특징은 첨부된 도면을 참조하여 취해지는 다음의 상세한 설명을 참조함으로써 더 쉽게 이해될 것이다.
본 발명에 따르면, 후방 산란 및 투과 x-선 검사에서의 문제점에 대해 섬유-결합 신틸레이션 검출기를 적용하는 시스템 및 방법이 제공된다.
도 1a 및 도 1b는 각각 "박스형" 종래 기술의 신틸레이션 검출기의 측단면도 및 정단면도를 도시한다.
도 2는 종래 기술의 신틸레이터 스크린의 개략도이다.
도 3은 신틸레이션 광과 전형적인 파장-편이 섬유 흡수 및 발산 스펙트럼 사이의 분광 관계를 도시한다.
도 4는 본 발명의 일 실시예에 따른, 신틸레이터 재료들 사이에 개재된 파장-편이 섬유들의 어레이의 개략적인 사시도이다.
도 5는 본 발명의 일 실시예에 따른, 신틸레이터 재료의 매트릭스 내에 매립된 파장-편이 섬유들의 어레이의 개략적인 단면도이다.
도 6a는 본 발명의 일 실시예에 따른, WSF 둘레에 압출된 원통형 신틸레이터의 사시도이다.
도 6b는 본 발명의 일 실시예에 따른, WSF 둘레에 원통형 신틸레이터를 압출하기 위한 시스템의 개략도이다.
도 6c는 본 발명의 일 실시예에 따른, 원통형 신틸레이터를 WSF와 함께 공압출하기 위한 압출기의 단면도이다.
도 7은 본 발명의 일 실시예에 따른, WSF의 복수의 열을 갖는 신틸레이션 검출기의 개략적인 단면도이다.
도 8은 본 발명의 일 실시예에 따른 파장-편이 섬유-결합 신틸레이션 검출기의 평면도이다.
도 9는 본 발명의 실시예에 따른 수납된, 지붕 및 스커트 후방 산란 검출기를 도시하고, 도 10은 검사 작업 과정 중에 전개된 동일한 검출기를 도시한다.
도 11은 본 발명의 실시예에 따른 후방 산란 검사 시스템과 함께 사용하기 위한 차양 검출기 및 스커트 검출기를 도시한다.
도 12는 본 발명의 일 실시예에 따른, 고에너지 x-선 투과 검출기로서 사용하기 위한 신틸레이터 층들의 스택의 개략적인 단면도이다.
도 13a 및 도 13b는 본 발명의 일 실시예에 따른, 2인치 높이의 과속 방지턱 내부의 층상형 투과 검출기를 도시하고, 도 13c는 과속 방지턱 프레임 내로 삽입된 검출기 조립체의 단면도를 도시한다.
도 14a는 본 발명의 일 실시예에 따른, x-선 빔의 폭을 가로지른 검출 강도의 분포의 측정을 위한 세그먼트형 x-선 투과 검출기의 사시도를 도시하고, 도 14b 및 도 14c는 도 14a의 검출기의 단부 단면도 및 전형적인 빔 프로파일을 도시한다.
도 15는 본 발명의 일 실시예에 따른, 다중 에너지 해상도를 갖는 신틸레이션 검출기의 단면도이다.
도 16은 본 발명의 일 실시예에 따른 x-선 및 열 중성자의 검출을 위한 다층 신틸레이션 검출기를 도시한다.
도 17은 능동 시준기를 구비한 검출기의 사시도를 도시한다.
도 18a 및 도 18b는 본 발명의 일 실시예에 따른 능동 시준기로서 사용되는 WSF 검출기의 사시도 및 단면도를 도시하고, 도 18c 및 도 18d는 본 발명의 추가의 실시예에 따른, 각각의 면과 부딪히는 방사선을 구분하기 위해 방광 x-선 흡수기에 의해 분리되는 독립적인 판독을 갖는 배열을 도시한다.
도 19a 및 도 19b는 각각 본 발명의 일 실시예에 따른, 보관 상태 및 전개 상태의 휴대형 스캐너로부터 접혀 나오는 복수의 검출기를 도시한다.
도 20a 및 도 20b는 본 발명에 따른 Sc-WSF 검출기에 의해, 섀시 하부 검사를 위해 차량 아래로 활주될 수 있는 후방 산란 유닛을 도시한다.
도 21a 및 도 21b는 본 발명의 일 실시예에 따른 자동차 검사 시스템과 관련된 Sc-WSF 기술에 기초한 검출기의 직각 조합의 사용을 도시한다.
본 발명의 실시예에 따르면, 신틸레이터 재료의 광학 도파관, 특히 파장-편이 섬유에 대한 광학적 결합은 유리하게는 x-선 산란 검출의 요구에 대해 특유한 것을 포함한 목적을 가능케 한다.
정의:
"영상"이라는 용어는 유형의 형태이든지 또는 인지 가능한 형태이든지 간에, 임의의 1차원 또는 다차원 표현을 지칭하고, 여기서 (x-선 투과 촬상의 경우에, 입사 빔에 의해 횡단되는 검사되는 대상의 칼럼을 통한 분획 투과 강도와 같은) 몇몇 특징의 값은 물리적 공간 내에서의 대상의 차원 좌표에 대응하는 복수의 위치 (또는 유클리드(Euclidean) 공간 내의 벡터, 전형적으로, R2)의 각각과 관련되지만, 반드시 그에 대해 1 대 1로 맵핑되지는 않는다. 영상은 컴퓨터 메모리 또는 홀로그램 매체 내의 숫자의 어레이를 포함할 수 있다. 유사하게, "촬상"은 하나 이상의 영상의 관점에서 기술되는 물리적 특징의 렌더링을 지칭한다.
"위", "아래", "상부", "하부" 등과 같은 공간 관계의 용어들은 본원에서 도면에 도시되는 바와 같은 하나의 요소의 다른 요소에 대한 관계를 설명하기 위해 설명을 용이하게 하도록 사용될 수 있다. 공간 관계의 그러한 용어들은 도면에서 설명되고 그리고/또는 도시되는 배향에 추가하여 사용 또는 작동 시의 장치의 상이한 배향들을 포함하도록 의도됨이 이해될 것이다.
하나의 요소가 다른 요소 "상에" 있거나, 다른 요소"에 연결"되거나, 다른 요소"에 결합"되는 것으로 설명되는 경우에, 이는 다른 요소 바로 위에 있거나, 다른 요소에 연결되거나 결합될 수 있거나, 대안적으로 하나 이상의 개입 요소들이 달리 규정되지 않으면 존재할 수 있다.
본원에서 사용되는 용어는 특정 실시예를 설명할 목적이고, 제한적으로 의도되지 않는다. "하나" 및 "그"와 같은 단수 형태는 복수 형태도 포함하도록 의도된다.
WSF 검출기
먼저 도 4를 참조하면, 본 발명의 일 실시예에서, 밀접하게 이격된 평행한 파장-편이 섬유(400)의 층이 복합 신틸레이션 스크린의 2개의 층(403)들 사이에 개재된다. 바람직한 신틸레이터 재료는 유로퓸-도핑 바륨 염화불소(BaFCl:Eu)이지만, BaFI:Eu 또는 (추가의 예로써 BaBrI:Eu 및 BaCsI:Eu를 포함한) 다른 란탄족-도핑 바륨 혼합 할로겐화물과 같은 다른 신틸레이터가 본 발명의 범주 내에서 사용될 수 있다. x-선 검출을 위해 채용되는 신틸레이터 재료가 전형적으로 신틸레이션 광자의 매우 강한 자가 흡수를 보이므로, 본 발명에 따른 실시예는 유리하게는 신틸레이션 신호를 여전히 효율적으로 결합시키면서, 매우 큰 체적의 신틸레이터(403)가 채용되도록 허용한다.
본 출원에서 복합 신틸레이션 스크린을 사용하는 것에 대한 하나의 장점은 섬유-결합 신틸레이션 검출기의 압출에 의한 제조를 허용하는 것이다.
복합 신틸레이터(403)는 기계적 기지를 제공하는 플라스틱 또는 다른 재료의 외부 층(404)에 의해 구조적으로 지지된다. 섬유 클래딩(401)과 복합 신틸레이터(403) 사이의 광학적 접속은 신틸레이션 광에 대해 투명한 적합한 굴절률의 굴절률 정합 재료(405)로 공극을 충전함으로써 확립된다. 충전 재료의 굴절률은 WSF 내로의 1차 광 광자의 수집 및 섬유 내에서의 파장-편이 광자의 포착을 최적화하도록 선택된다. 충전 재료(405)는, 예를 들어, 광학 그리스 또는 광학 에폭시일 수 있지만, 임의의 재료가 본 발명의 범주 내에 있다.
x-선 광자의 입사 시에, 신틸레이터(403)에 의해 발산되는 신틸레이션 광은 클래딩(401)을 거쳐 각각의 섬유의 코어(407) 내로 결합되고, 진동수가 하향 편이되고 (즉, 적색-편이), (예를 들어, 도 8에 도시된) 하나 이상의 광자 검출기(805)로 전파된다. 섬유 코어(407)로부터의 광은 광 검출기(805)를 거쳐 전류로 변환되고, 전류는 전형적으로 1 - 12㎲의 범위 내의 시간 간격 동안 적분되어, 각각의 픽셀에 대한 신호 강도를 획득한다. 검출기 신호의 적분은, 예를 들어, 적분 전치 증폭기와 같은 적분 회로(도시되지 않음)에 의해 수행될 수 있다.
이제 도 5를 참조하면, 파장-편이 섬유(400)는 신틸레이션 스크린(503)의 매트릭스 내에 매립된다. 신틸레이션 매체 내로 WSF를 매립하는 것은 가장 양호한 광학 접속을 생성한다.
이제 도 6a를 참조하여 설명되는 본 발명의 또 다른 실시예에서, 복합 신틸레이터 재료(603)는 코어(602)를 구비한 WSF(601) 둘레의 클래딩 또는 쉘처럼 도포된다. 이러한 도포는 압출식 제조 공정을 받고, 고가의 신틸레이터 재료(603)를 가장 효과적으로 사용하는 것을 허용한다. 신틸레이터 재료(603)는 신틸레이션 광에 대한 반사기로서도 작용하는 보호 층(604)에 의해 밀봉된다. 본 발명의 범주 내에서, 클래딩은 신틸레이터가 섬유보다 더 낮은 굴절률을 가지며 신틸레이터-섬유 결합이 필수적인 매끄러움 및 강건함을 가지면, 생략될 수 있다.
파장-편이 중합체 광섬유가 도 6b에 도시된 시스템 개략도를 참조하여 이제 설명되는 본 발명의 일 실시예에 따라 제조될 수 있다. WSF 중합체 용융물(606), 저굴절률 클래딩 중합체 용융물(608), 및 인이 매립된 광학적으로 투명한 중합체 용융물(610)의 공급원들이 모두 압력 하에서, 압출 구역(614) 내의 공압출 다이(612) 내로 공급되어, 공압출된다. 예를 들어, 건조 공기 또는 질소와 같은 건조 기체(611)가 냉각을 위해 압출되는 섬유 상으로 분무된다. (예를 들어, TiO2와 같은) 광 반사 안료를 갖는 중합체 용융물(616)이 신틸레이터-코팅 WSF(613) 위의 광 반사 재킷을 위해 압력 하에서 압출 다이(618) 내로 공급된다. 결과적인 신틸레이터-장입 WSF(620)는 권취기(622)에 의해 보관을 위해 권취된다. 도 6c는 신틸레이터-코팅 WSF의 제조를 위한, 본 발명의 실시예에 따라 사용하기 위한, 공압출 시스템의 단면도를 도시한다. WSF 중합체 용융물(606)이 저굴절률 클래딩 중합체 용융물(608) 및 인이 매립된 광학적으로 투명한 중합체 용융물(610)과 함께, 공압출 다이(612) 내로 주입된다. 광 반사 안료(616)를 갖는 중합체 용융물이 압력 하에서 압출 다이(618) 내로 공급된다. 완성된 섬유는 WSF 코어(602), 저굴절률 클래딩(601), 신틸레이터-장입 클래딩(603), 및 반사 코팅(604)을 갖는다.
본 발명에 따른 신틸레이션 검출기의 모든 실시예에 대해, 신틸레이터 재료의 두께가 검출되는 방사선의 에너지에 대해 최적화되는 것이 유리하다. 설계는 2차 양자 싱크를 회피하기에 충분한 광 수집을 보장해야 한다. 특히, 본원에서 설명되는 본 발명의 실시예는 두께가 그의 면적에 비해 상당한 검출기를 제공한다.
정의: 본 설명의 목적으로 그리고 임의의 첨부된 특허청구범위에서, 신틸레이션 검출기에 적용될 때의 "두께"라는 용어는 검출기의 시계의 도심을 따른 또는 그에 대해 평행한 치수에서의 검출기의 평균 규모를 나타낸다. 검출기에 적용될 때의 면적이라는 용어, 또는 동등하게는 "활성 면적"이라는 용어는 검출기의 시계 내의 방사선의 모든 전파 벡터의 도심에 대해 횡방향인 평면 내에서 측정된 검출기의 크기를 지칭한다.
본 발명의 실시예, 8개만큼 많은 WSF 층을 구비한 실시예는 0.001 미만의 활성 검출기 면적에 대한 검출기 두께의 제곱의 비율을 갖는다. 예를 들어, 48" x 12"의 면적을 구비한 8-층 검출기는 0.5" 이하의 두께를 가져서, 검출기 면적에 대한 두께의 제곱의 비율은 0.0005이다. 이러한 두께 제곱 대 면적 비율은 전형적으로 신틸레이터 광이 광 검출기에 의해 직접 검출되는 경우의 후방 산란 검출기에 대해 비교할 만한 비율의 10배, 또는 그보다 더 크거나 더 작다.
도 7에 도시된 본 발명의 추가의 실시예에 따르면, 검출기의 유효 저지능은 WSF(400)의 복수의 층(701, 702)들 (또는 다른 광학 도파관들)을 조합함으로써 증가되어, 입사 방사선의 경로를 따른 신틸레이터 재료(403)의 깊이를 증가시킬 수 있다.
본 발명에 따른 파장-편이 신틸레이터 검출기의 일 실시예가 도 8에 도시되어 있다. 파장-편이 섬유(801)들이 신틸레이터 재료(803) 내에 매립되고, 광과 결합하여, 이를 광전증배관(805)에 의해 검출되도록 진동수에 있어서 하향 편이시킨다.
지금까지 설명된 다양한 실시예에 따르면, WSF의 단부들은 결속되어 적어도 하나의 광 검출기에 광학적으로 결합된다. 적합한 광 검출기의 예는 PMT 및 규소 광전증배기(SiPM)를 포함한다.
본원에서 설명되는 본 발명의 검출기의 장점은 검출의 효율, 및 구현예의 낮은 기하학적 프로파일을 포함한다. 이는 검출 시스템을 설계하는 데 있어서 더 큰 자유도를 허용하고, 완전히 새로운 공간 구속 용도를 가능케 한다. 검출기 구조물의 기계적 가요성은 촬상되는 대상이 검출기 체적에 의해 둘러싸이는 구현예와 같이, 검출기 표면을 용도에 일치하게 성형하는 것을 허용한다. 낮은 프로파일은 또한 부근의 x-선 촬상 시스템으로부터의 원치 않는 산란 방사선(혼선)의 검출을 최소화하기 위한 방식으로 검출기 영역을 배향시키거나 차폐하는 것을 상대적으로 쉽게 한다.
신틸레이터의 큰 영역에 걸친 신틸레이션 광의 추출은 큰 폭 대 깊이 종횡비의 검출기를 가능케 한다. 특히, 0.1sr 또는 그 이상의 공간 각도와 대면하는 검출기가 본 발명의 실시예에 의해 가능해 진다.
전형적인 후방 산란 x-선 촬상 시스템에서, x-선 펜슬 빔이 촬상되는 목표를 선형 운동으로 스캔하고, 세장형 방사선 검출기가 x-선 공급원의 출구 개구의 양 측면 상에 배열된다. 펜슬 빔이 이동할 때, 빔에 가장 가까운 검출기 영역은 전형적으로 가장 강한 신호를 수신하고, 빔으로부터 더 멀리 있는 검출기 영역은 덜 강한 신호를 수신한다. 검출기 영역이 개별적으로 판독 가능한 섹션으로 세그먼트화되면, 검출 시스템의 신호 대 잡음비는 양호한 신호 대 잡음비를 갖는 세그먼트만을 판독하고 합산된 신호에 우세하게 잡음을 부여하는 세그먼트는 무시함으로써 개선될 수 있다. 부여하는 검출기 세그먼트의 선택은 실제로 검출되는 신호에 기초하여 또는 펜슬 빔의 공지된 위치에 기초하여 이루어질 수 있다.
압출에 의한 신틸레이터 제조의 장점
도 6a - 도 6c를 참조하여 위에서 설명된 압출 또는 "자동화된 코팅" 공정은 편평한 배킹 상에 BaFCl(Eu)와 같은 다결정 신틸레이션 재료를 안착시키는 전형적인 방법과 극명한 대조를 이룬다. 위에서 교시된 바와 같이, 신틸레이터의 균일한 두께로 코팅된 개별 파장-편이 섬유를 제조하는 압출 방법은 Sc-WSF 검출기의 형상에 대한 제약이 총 내부 반사에 의한 섬유 내에서의 완전한 포착의 요건에 의해 주로 지배되도록 형상화될 수 있는 섬유를 제작한다. 균일하게 코팅된 결합 섬유의 개념은 공간이 중요한 경우에, 후방 산란 (BX) 검출기, 특히 휴대형 및 로봇 장착형 검출기의 설계에 더 큰 자유도를 준다.
산란된 x-선의 기하학적 효율을 증가시키기 위한 전개 가능한 검출기
예를 들어, 본원에서 참조로 통합된 스위프트(Swift) 등의 미국 특허 제5,764,683호 및 찰머스(Chalmers) 등의 미국 특허 제7,099,434호에 설명되어 있는 것과 같은 몇몇 이동식 x-선 시스템은 승용차 및 트럭을 일 측면으로부터 검사하기 위해 후방 산란 x-선(BX)의 방법을 사용한다. 전자는 작동 중에 운반체 외부에서 전개되는 검출기를 사용하고, 후자는 엔클로저, 즉 운반체의 외피 내에 완전히 포함된 검출기 영역을 사용한다. 양자는 산란된 x-선을 검출하는 효율을 최대화하기 위해 대면적 검출기를 사용한다. 찰머스의 '434 특허의 교시에 따른 제품의 경우의 지면형 후방 산란 검출기 커버리지는 목표와 대면하는 엔클로저의 내부 표면의 20평방 피트 정도를 커버한다. 이러한 은폐형 검출기 영역은 높거나 낮은 목표로부터 산란되는 방사선을 수집하기 위한 상대적으로 열악한 기하학적 효율을 갖는다. 광전증배기에 의한 신틸레이션 광의 직접 포착을 위해 필요한, 그러한 검출기의 본질적으로 깊은 기하학적 프로파일은 밴 외부에서의 전개에 대해 불리하다.
정의: 본원에서 사용되는 바와 같이, 그리고 임의의 첨부된 특허청구범위에서, "대면적 검출기"라는 용어는 동등하게, 적어도 π 스테라디안의 공간 각도를 특징으로 하는, 검사를 받는 대상 상의 일 지점으로부터 관찰할 때 2개의 직교하는 횡단 방향들 각각에서 적어도 30°의 개방각과 대면하는 임의의 단일 검출기 또는 임의의 검출기 모듈을 지칭한다.
"운반체"는 장비를 하나의 위치에서 다른 위치로 운송하기 위해 사용되는 휠, 트랙, 접지면, 활주부 등과 같은 지면 접촉 부재 상에 지탱되는 플랫폼을 특징으로 하는 임의의 장치이다.
본 발명의 실시예에 따른 Sc-WSF 검출기는 검출 효율을 실질적으로 향상시키는 위치에서 밴 외부에서 빠르게 전개될 수 있는 대면적 검출기의 방해받지 않는 보관을 실현 가능하게 한다.
이제 도 9를 참조하면, 대면적 Sc-WSF 차양 검출기(1101)가 후방 산란 검사 밴(1103)의 지붕 상에 보관되어, 적재 위치에 도시되어 있고, 얇은 스커트 검출기(1105)가 후방 산란 검사 밴의 휠 위의 적재 위치에 도시되어 있다. 도 10에서, 지붕 검출기 및 스커트 검출기는 각각 더 높은 목표 및 더 낮은 목표를 검출하기 위해 입체각을 증가시키도록 전개되어 도시되어 있고; 차양 검출기는 검사 과정 중에 검사되는 대상 위에서 전개되고, 스커트 검출기는 운반체의 플랫폼 아래에서 적어도 부분적으로 전개된다. 도 11을 참조하여 설명되는 본 발명의 다른 실시예에서, 차양 검출기(1301)는 승용차(1303)의 트렁크 또는 먼 측면 내의 밀수품의 검출을 위한 것과 같이, 낮고 가까운 목표를 위해 전개될 수 있다. 차양 검출기(1301)는 검사 작업 이전에 운반체의 지붕으로부터 외부로 활주될 수 있다. 도 11은 또한 가까운 차량의 타이어, 휠 수납부, 및 내부를 효율적으로 조사하기 위해 사용되는 Sc-WSF 스커트 검출기(1105)의 전개를 도시한다.
스캐닝 x-선 펜슬 빔의 투과 검출을 위한 이중 에너지 검출기 및 다중 에너지 검출기
x-선의 스캐닝 펜슬 빔은 후방 산란 방사선을 분석함으로써 내부 대상을 드러낼 뿐만 아니라, 몇몇 용도에서, 투과 (TX) 방사선 및 전방 산란 (FX) 방사선의 동시 분석에 의해 추가의 정보를 획득할 수 있다. TX 검출기 및 FX 검출기는 펜슬 빔의 단면적이 신호의 적분 시간과 함께 픽셀 크기를 한정하므로, 세그먼트화될 필요가 없다. 또한, TX 검출기 및 FX 검출기는, 대부분의 용도에서, TX x-선 또는 FX x-선의 플럭스가 펄스 계수에 대해 너무 높으므로, 총 에너지 검출기일 필요만 있을 뿐이다. 신틸레이션 스크린은 그러한 스캐닝 빔 용도를 위한 전통적인 검출기이다. Sc-WSF 검출기는 다음의 예가 명확하게 하는 바와 같이, 현재의 TX 신틸레이션 검출기 및 FX 신틸레이션 검출기의 적용 범위를 실질적으로 확장시킨다.
적어도 250keV까지의 x-선 빔에 대한 TX
예를 들어, BaFCl(Eu) 또는 Gadox로 만들어진 전통적인 신틸레이션 스크린의 흡수 효율은 ~80keV 위의 x-선 에너지에 대해 50% 아래로 떨어진다. 2개의 층에 대한 50% 지점은 약 100keV이다. 이와 다르게, Sc-WSF 검출기는 검출기의 프로파일을 실질적으로 증가시키지 않고서 신틸레이터의 2개를 초과하는 층으로 만들어질 수 있다. 4개의 층을 구비한 비용 효과적인 Sc-WSF 검출기가 표준 140keV x-선 튜브에 의해 발생되는 스캐닝 x-선 빔을 갖는 TX에 대해 사용될 수 있다. 도 12에 도시된 바와 같으며 도면 부호 1400에 의해 전체적으로 표시된 9-층 검출기와 같은 다층 검출기가 포털을 통한 차량의 x-선 검사 시에 사용되는 것과 같은, 표준 225keV x-선 튜브(도시되지 않음)에 의해 발산되는 검출 x-선(1402)에 대해 고도로 효과적일 수 있다. 신틸레이터 재료의 층(1404)들, 및 광 검출기(1408)에 결합된 WSF 섬유(1406)가 도시되어 있다.
3면 포털 검사 시의 하향식 촬상기를 위한 운송 가능한 TX 검출기
다층 투과 (TX) 검출기의 얇은 프로파일은 도로상 투과 (TX) 검출기를 실현 가능하게 한다. 도 13a 및 도 13b는 최대로 적재된 트랙터 트레일러를 지지하기에 충분히 강하며, 전개를 위해 지면의 굴착을 요구하지 않는 2인치 높이의 과속 방지턱(1131) 내부의 그러한 검출기를 도시한다. 침투 방사선의 공급원(1132)이 과속 방지턱(1131)의 프레임(1136) 또는 기저 표면 위의 유사한 돌출부 내의 선형 검출기 조립체(1135) 상으로 입사하는 팬(fan) 빔(1134)을 발산한다. 검출기 조립체(1135)는 높은 원자 번호의 베인(1138)에 의해 분리되는 신틸레이터 재료(1137)의 세그먼트들을 포함한다. 예를 들어 도 4를 참조하여 위에서 설명된 바와 같이, 신틸레이션 광은 파장-편이 광섬유(1139)에 의해 광 검출기에 결합된다.
스캔 빔 강도 프로파일을 결정하기 위한 세그먼트형 TX 검출기
이제 도 14a 및 도 14b를 참조하면, 입사 x-선(1143)의 스캔 빔 강도 프로파일을 측정하기 위한, 도면 부호 1141에 의해 전체적으로 표시된 세그먼트형 투과 검출기가 도시되어 있다. (투과 시에 사용되는) Sc-WSF 검출기(1141)의 스캐닝 펜슬 빔의 평면과의 정렬은 TX 검출기가 이동식 보안 시스템을 위해 전개되었을 때 중대한 문제점을 제시한다. 도 14b는 검출기의 도심 위치를 결정하기 위해 각각의 픽셀의 투과 강도 및 빔 폭을 가로지른 선형 분포를 동시에 측정하기 위한 수단을 제공하는, WSF의 섬유(1145)들의 독립적인 판독을 갖는 수직 Sc-WSF 검출기(1141)(적절하다면, "투과 검출기" 또는 "TX 검출기"로 본원에서 달리 지칭됨)의 단면을 도시한다. 섬유(1145)들은 다발(1147)로 PMT와 같은 개별 광 검출기(1149)로 유도된다. 강도의 분포는 산란 물질에 관한 유용한 정보를 포함하며, 투과 강도로서 간주되는 내부 산란 방사선의 측정을 제공하는 전방 산란 강도를 획득하기 위해 확장될 수 있다.
검출기 평면과 스캐닝 x-선의 평면의 상대 위치는 자동으로 제어될 수 있다. 이러한 개념을 위한 검출기가 도 14a에 개략적으로 도시되어 있다. 반사 표면(1148)이 광 검출기(1149)에 대한 말단에서 검출기(1141)의 단부에 제공될 수 있다.
투과 신호에 대한 단일 데이터 채널에 의해, (팬 형상의 조사 x-선 빔에 대해 횡방향인) 교통 방향을 따른 공간 해상도는 다음의 2개의 치수 중 더 작은 것에 의해 결정된다: 감지 검출기 영역의 폭 또는 TX 검출기를 가로지른 빔 크기. (발견적 목적으로, 언더샘플링의 경우는 이러한 설명에서 고려되지 않는다.) 그러나, 공간 해상도는 도 14c를 참조하여 이제 설명되는 바와 같이, 감지 검출기 영역을 좁힘으로써 개선될 수 있다. 본 발명의 실시예에 따르면, (검출기 선을 따른) 교통의 방향을 가로지른 공간 해상도는 복수의 채널(도 14c의 A, B, C)과 관련된 검출기 어레이(1450) 중 복수의 검출기를 채용하고 그들의 감지 영역들을 삽간(interlace)함으로써 향상된다. 삽간 패턴의 피치는 검출기를 따른 빔 폭에 의존한다. 이상적으로, 피치(즉, 단일 채널("A")과 관련된 2개의 검출기(1451, 1454)들 사이의 간격)는 동일한 검출 채널의 2개의 검출기 세그먼트들이 동시에 빔으로부터 직접적인 방사선을 수신하지 않기에 충분히 커야 한다. 빔 강도 프로파일은 도면 부호 1456에 의해 도시되어 있다. 실현 가능한 목적으로, 요건은 픽셀들 사이의 일정량의 혼선이 허용 가능하므로, 그렇게 엄격하지 않다. 복수의 결과적인 영상들이 하나의 더 높은 해상도의 영상을 생성하기 위해, 본 기술 분야에 공지된 방법을 포함한 임의의 방법을 채용하여 삽간될 필요가 있다. 검출기에서의 공간 해상도의 개선은 플럭스를 희생하여 나오고, 따라서 신호 대 잡음을 고려하여 제한됨을 알아야 한다.
본 발명의 범주 내의 다른 구성은 유리하게는 쉽게 설치되고 정렬되는 L-형상 검출기를 형성하기 위해, 도 14a에 도시된 수직 검출기(1141)의 도 13b의 수평 도로 검출기(1135)와의 조합을 포함한다.
본 발명의 또 다른 실시예에서, 투과 검출기 어레이(1450)는 (수직, 수평, L-형상 등의 기하학적 배향에 관계없이) 도 14c의 B, C, 및 A와 같은 복수의 유닛으로 세그먼트화된다. 도시된 바와 같이, 빔 프로파일(1456)은 측정된 강도들의 비율이 1이 되도록 B 및 A에 대해 대칭이다. 어떠한 이유로, 정렬이 변화하면, 그러한 비율은 극적으로 변화한다. 조사 x-선 펜슬 빔이 상하로 스캔할 때 정렬이 왜곡되면, B/A의 비율의 변화가 왜곡도 및 측방향 편이 모두를 측정한다. 수집된 데이터는 그 다음 한 라인씩 그러한 편이에 대해 교정될 수 있다.
물질 식별을 위한 이중 에너지 TX 검출기 및 다중 에너지 TX 검출기
신틸레이터의 전방 층 및 후방 층으로부터의 신호들을 분리하는 것은 전방 층이 각각의 픽셀의 저에너지 성분의 측정을 제공하고, 후방 층이 고에너지 성분의 측정을 제공하도록 허용한다. 전방 신틸레이터와 후방 신틸레이터 사이에 흡수 재료의 층을 넣는 것은 저에너지 성분과 고에너지 성분 사이의 차이를 향상시키기 위한 표준 방식이고, 이는 Sc-WSF 검출기에서 쉽게 행해진다.
Sc-WSF 검출기는 플라스틱 신틸레이터 검출기의 상부 상에서 BaFCl-WSF와 같은 Sc-WSF의 층으로 구성된 이중 에너지 검출기를 실현 가능하게 하고; BaFCl은 저에너지 x-선에 민감하고 고에너지 x-선에는 민감하지 않고, 플라스틱 검출기는 고에너지 x-선에 민감하고 저에너지 x-선에 매우 둔감하다.
대안적이며 잠재적으로 더 효과적인 물질 분별기가 Sc-WSF의 2개를 초과하는 독립적인 층들을 사용함으로써 만들어질 수 있고, 각각의 층에 대한 분리된 판독을 갖는다. 적절한 두께의 구리와 같은 수동 흡수체가 세그먼트형 검출기에서 실현되는 바와 같이, 이중 에너지 용도를 향상시키기 위해 상부 Sc-WSF 이후에 삽입될 수 있다. 대안적으로, 중간 신틸레이터는 능동 흡수 층으로서 사용될 수 있다. 3개의 독립적인 파라미터의 측정은 횡단된 물질들의 평균 원자 번호 및 빔 경화의 정도의 측정을 얻도록 허용한다. Sc-WSF는 성분의 개수에 따라 증가하는 각각의 픽셀에 대한 3개를 초과하는 에너지 값을 획득하기 위해 추가로 확장될 수 있고, 통계적 불확실성이 제한이 된다. 도 12에 도시된 검출기(1400)는 그러한 검출기의 극단적인 예이다.
이중 에너지 TX의 중요한 용도는 공항 터미널에서의 x-선 개인 스캐너를 위한 것이다. BX와 동시에 TX 영상을 제공하는 것은 검사를 위해 유용한 것으로 입증되었다. TX 영상에 이중 에너지를 추가하는 것은 지금까지 주로 종래의 검출기에 의해 부여되는 크기 구속 때문에 비현실적이었다. Sc-WSF는 그러한 구속을 제거하며, 성능을 현저하게 개선할 것을 약속하고, 이는 구분되는 에너지 감도를 갖는 복수의 검출기들이 도 15에 도시된 바와 같이 적층될 수 있기 때문이고, 여기서 이중 (또는 다중) 에너지 검출기(1500)가 더 높은 에너지 x-선에 민감한 플라스틱 신틸레이터(1502)의 슬래브의 전방에 위치되는 입사 x-선(1501)의 더 낮은 에너지 성분에 민감한 Sc-WSF 검출기(1508)를 포함한다. Sc-WSF 검출기(1508)는 WS 섬유(1506)의 2개의 층에 의해 판독되는 신틸레이터(1504)를 포함한다.
감마 및 중성자 방사선의 콤팩트한 방사선 검출기
Sc-WSF 방법은 중성자 및 감마 선(1601)의 작고, 가볍고, 저렴한 모니터를 실현 가능하게 한다. BaFCl(Eu)-WSF는 감마 방사선에 매우 민감하지만 중성자에는 둔감하고, Li6F:ZnS(Ag)-WSF는 감마 선에 둔감하고 열 중성자를 검출하는 데는 매우 민감하다. 도 16은 광섬유(1604)를 거쳐 단일 광 검출기(도시되지 않음)에 의해 판독되는 BaFCl(Eu)의 하나 이상의 층(1602), 및 제2의 독립적인 광 검출기(도시되지 않음)에 의해 판독되는 Li6F:ZnS(Ag)-WSF의 하나 이상의 층(1606)으로 구성된 다층 "대그우드(Dagwood)" 적층체를 도시하고, 능동 요소들이 1 또는 2센티미터 이하의 두께를 점유한다. 폴리에틸렌과 같은 중성자 감속재(1612)의 적절한 층이 중성자를 검출하기 위한 효율을 향상시키기 위해 Li6F:ZnS(Ag)-WSF의 각 측면 상에 위치될 수 있다. 알루미늄 포일과 같은 광학 반사 포일(1608)이 신틸레이션을 각각의 검출기 영역으로 국한시킨다.
본원에서 참조로 통합된 발명의 명칭이 "능동 시준기를 구비한 검출기(Detector with Active Collimators)"인 미국 특허 출원 제13/163,854호(로칠드(Rothschild))가 도 17에 도시된 바와 같이, 검사되는 대상의 근접장 및 원격장으로부터의 산란을 구분함으로써 검사의 깊이를 증가시키는 후방 산란 검출기 모듈(30)을 설명한다. 능동 시준 베인(31)들의 세트의 각도는 스캔되는 대상의 유형 및/또는 거리에 의존하여, 공장에서 한번 조정될 수 있거나, 그를 동적으로 조정하기 위해 제공되는 임의의 종류의 전자-기계식 장치에 부착될 수 있다. 시준 베인으로부터의 신틸레이션 광은 하나 이상의 광 검출기에 의해 (예를 들어, 검출기의 전방 격실의 상부 및 바닥에 위치된 PMT(32)에 의해) 검출된다. 검출기의 후방 격실(36)은 광 배플(34)에 의해 전방 격실(35)로부터 광학적으로 격리되고, 후방 격실(36) 내에서 검출된 x-선으로부터의 신틸레이션 광은 하나 이상의 광 검출기의 제2 세트(예를 들어, 검출기의 후방면 상에 장착된 PMT(37))에 의해 수집된다. 후방 격실은 예를 들어 신틸레이션 인(phosphor) 스크린으로 라이닝될 수 있거나, 본 발명의 다른 실시예에서, 플라스틱 또는 액체 신틸레이터를 포함할 수 있다.
표준 후방 산란 유닛에 대한 유용한 추가는 신틸레이터로 만들어진 "베니션 블라인드" 시준기이다. 슬랫들은 박스 검출기가 더 깊은 내부 대상을 우선적으로 검출하도록, 슬랫들 사이의 갭을 통해 직접 진입하지 않는 방사선을 차단한다. 능동 시준기는 거절된 방사선을 기록한다. 능동 시준기로부터의 광은 PMT에 의해 검출되고, 이의 수집 효율은 시준기들 사이의 갭이 감소함에 따라 빠르게 감소한다. PMT 및 신틸레이터 베인을 Sc-WSF 검출기로 구성된 베인으로 교체하는 것은 주요 단점을 해결하고, 베니션 블라인드 시준기를 실현 가능하게 한다. 첫째로, 광 수집은 베인들 사이의 갭 폭과 독립적이다. 둘째로, 능동 시준기로부터 광을 수집하기 위해 사용되는 PMT 또는 규소 광전증배기의 능동 영역은 대체로 필요한 PMT의 능동 영역보다 훨씬 더 작아서, 광 검출기의 비용이 더 작다. 셋째로, WSF 다발의 단부에서의 광 검출기의 배치는 광 수집의 효율에 대해 중요하지 않다. 넷째로, 각각의 슬랫으로부터의 WSF로부터의 신호는 독립적으로 처리될 수 있어서, 검사되는 대상의 내부에 대한 정보를 최대화하기 위한 상당한 범위를 제공한다. 다섯째로, 각각의 베인의 전방 및 후방 상의 얇은 신틸레이터 스크린으로부터의 광은 독립적인 WSF에 의해 수집될 수 있고, 이는 깊이 분별을 현저하게 개선할 수 있다.
도 18c 및 도 18d는 신틸레이터의 각 측면으로부터 충돌하는 x-선에 민감한 능동 WSF 시준기(181)를 (각각 사시도 및 단면도로) 도시한다. 양 신틸레이터 영역(182)으로부터의 신틸레이션 광은 파장-편이 광섬유(183)를 거쳐 광 검출기에 결합된다. 도 18a 및 도 18b는 각각의 면과 부딪히는 방사선을 구분하기 위해 방광 x-선 흡수체(189)에 의해 분리되는 독립적인 판독부(187)를 구비한 능동 WSF 시준기(185)를 (각각 사시도 및 단면도로) 도시한다. 예를 들어, 각각의 시준기(185)는, 일 실시예에서, cm2당 60mg BaFCl:Eu의 면적 밀도를 각각 포함하는 Sc-WSF 검출기(182)의 2개의 층으로 구성될 수 있다. 방광 x-선 흡수체(189)는 구조적 지지를 또한 제공하는 주석의 얇은 층으로 구성될 수 있다.
소형 후방 산란 검사 시스템을 위한 검출기
Sc-WSF 검출기의 두께는 낮은 중량 및 전력이 동인이 되는 용도에 대한 고유한 잠재력을 제공한다. 도 19a 및 도 19b를 참조하면, 휴대형 촬상 시스템(193)이 그러한 용도의 일례이다. 전력 요건, 검사 시간, 및 영상의 품질이 모두 검출의 입체각에 의해 영향을 받는다. 예를 들어, 10cm x 10cm(100cm2)의 단면적을 갖는 전통적인 검출기가 중량이 약 0.5킬로그램이다. 중량이 이의 2배 이하인 Sc-WSF의 10cm 입방체가 이러한 예에서 20배 증가한 적어도 2,000cm2의 후방 산란 검출 영역을 제시하도록 펼쳐질 수 있는, 각각 5mm 미만의 두께인 개별적인 Sc-WSF 10cm x 10cm 검출기들로 만들어질 수 있다. 추가의 검출 커버리지는 휴대형 시스템의 성능의 10배 개선을 이룰 수 있다.
본원에서 설명되는 Sc-WSF 검출기의 얇은 프로파일은 입체적인 검출기를 타이트한 공간 내로 맞추는 것을 제공한다. 예를 들어, 검출기는 제약된 공항 검사 공간 내로 맞춰지도록 구속되는 개인 스캐너를 위해 구성될 수 있다.
도 19는 4개의 검출기(191)가 특히 검사되는 대상 내에 더 깊이 숨겨진 물품에 대해, 검출 효율을 실질적으로 증가시키기 위해 휴대형 스캐너(193)의 외부로 펼쳐지거나 활주되는 예를 도시한다. 후방 산란 검출기(195)는 방사되는 빔(197)을 관통시킨다.
정지 차량의 저면의 후방 산란 검사
휴대용 x-선 후방 산란 시스템에 의한 차량의 저면의 검사는 특별한 문제점을 제시한다. 승용차의 노면 간격은 8" 미만이고, 6"만큼 작을 수 있다. 포털과 같은 고정식 검사 시스템은 검출기를 지면 내에 위치시킬 수 있거나, 위에서 설명된 바와 같이, Sc-WSF를 사용하여 지면 상에 위치될 수 있다. 그러나, 많은 지역에서 보안을 위해 필요한 이동식 차량 하부 검사 시스템은 개발되지 않았다. 검사자는 연료 탱크 내의 밀수품은 놓치거나, 위험하지 않은 것으로 보이도록 위장된, 거울 및 카메라와 같은 수동 검사 도구에 의존한다.
Sc-WSF 검출기는 6" 미만 높이의 x-선 후방 산란 시스템을 실현 가능하게 한다. 실현 가능한 시스템의 개요가 이제 도 20a 및 도 20b를 참조하여 설명된다. x-선 공급원은 양극을 가로지른 전자 빔의 전자기 스캐너(221)로 구성된다. 전자기 스캐너(221)는 전자 모듈(223)에 의해 구동된다. x-선은, 예를 들어, 1회 통과 시에 저면의 30"에 걸치는 개구(225)들의 선형 어레이에 의해 시준된다. Sc-WSF 검출기(227)는 차량(229)으로부터 후방 산란되는 x-선(236)을 검출하기 위해 x-선 튜브의 각 측면 상에 장착된다. 전원, 펄스, 및 영상 프로세서가 적절하게 장착될 수 있다. 휠(232) 상의 검사 유닛(230)의 섀시(234)가 모터 또는 수동 제어에 의해 차량(229) 아래에서 조종되도록 구성될 수 있다.
L-형상 검출기 어레이 세그먼트에 의한 이동식 투과 검사
본 발명의 다른 태양에 따르면, 도면 부호 240에 의해 전체적으로 표시된 이동식 검사 시스템이 이제 도 21a 및 도 21b를 참조하여 설명된다. 침투 방사선의 공급원(도시되지 않고, 본원에서 제한적이지 않게 x-선의 관점에서 설명됨)이, 전형적으로 그 자신의 전력 하에서 움직일 수 있는 이동식 검사 유닛(241) 내에서 운반되지만, 이는 또한 본 발명의 범주 내에서 견인되거나 달리 운송될 수 있다. 침투 방사선의 빔(242)이 스위프형(swept) 펜슬 빔 또는 팬 빔으로서 이동식 검사 유닛(241)으로부터 발산되고, 각각의 경우에 도 21a에서 대표적인 빔(242)으로서 표시된 평면 내에서 발산된다. 도시된 바와 같이 차량이거나 (견인식 화물과 같은) 다른 것일 수 있는 검사되는 대상(244)은 검사 과정 중에 빔(242)을 횡단하고, 횡단 과정에서, 이제 추가로 설명되는 바와 같이, 통합형 L-형상 검출기 유닛(245) 위를 통과한다. 검출기 유닛(245)은 도 21b에서 표시된 바와 같이, 수평 세그먼트(246) 및 직립 세그먼트(247)를 갖는다.
L-형상 검출기 유닛(245)의 수평 세그먼트(246) 및 직립 세그먼트(247) 각각은 도 12를 참조하여 위에서 설명된 바와 같이, 물질 식별을 제공하기 위해, 검출된 x-선의 이중 에너지 해상도 또는 더 일반적으로 다중 에너지 해상도를 제공하는, 복수의 평행 층(249)으로 구성될 수 있다. 추가로, 직립 검출기 어레이 세그먼트(247)는 도 14a - 도 14c를 참조하여 위에서 설명된 바와 같이, 빔에 대한 검출기의 왜곡도 또는 측방향 편이의 표시를 제공하기 위해, 빔(242)의 방향에 대해 횡방향인 방향으로 그리고 검사되는 대상(244)과 빔(242) 사이의 상대 운동의 방향을 실질적으로 따라, 복수의 검출기 세그먼트(248)를 가질 수 있다. 통합형 L-형상 검출기 유닛(245)은 이동식 검사 유닛(241)에 탑재되어 또는 견인되거나 달리 동반되는 트레일러(250) 상에서, 검사 장소로 운반될 수 있고, 검사 장소에서 전개 시에 부분적으로 조립될 수 있다. 정렬 레이저(251)와 같은 추가적인 정렬 보조구가 이동식 검사 유닛(241) 및 빔(242)에 대한 검출기 유닛(245)의 적절한 위치 및 배향을 확립할 때 채용될 수 있다.
본원에서 제시된 예가 방법 단계 또는 시스템 요소들의 특정 조합을 포함하는 경우에, 그러한 단계들 및 그러한 요소들은 x-선 검출의 동일한 목적을 달성하기 위해 다른 방식들로 조합될 수 있음을 이해하여야 한다. 추가로, 단일 장치 특징부들이 청구항의 분리되어 언급된 요소들의 요건들을 충족시킬 수 있다. 본원에서 설명되는 본 발명의 실시예들은 단지 예시적으로 의도되고; 변경 및 변형이 본 기술 분야의 당업자에게 명백할 것이다. 모든 그러한 변경 및 변형은 임의의 첨부된 특허청구범위에서 한정되는 바와 같은 본 발명의 범주 내에 있도록 의도된다.
401: 섬유 클래딩
403: 복합 신틸레이터

Claims (7)

  1. 검사되는 대상을 검사하기 위한 이동식 x-선 검사 시스템이며,
    a. 플랫폼 및 지면 접촉 부재를 갖는 운반체 상에 배치되는 x-선 방사선의 공급원; 및
    b. 검사되는 대상과 상호 작용한 x-선을 검출하기 위해 검사 작업 중에 운반체 외부에서 전개되는 섬유-결합 신틸레이션 검출기
    를 포함하는 이동식 x-선 검사 시스템.
  2. 제1항에 있어서, 검사 과정 중에 검사되는 대상 위에서 전개되는 섬유-결합 신틸레이션 차양 검출기를 추가로 포함하는 이동식 x-선 검사 시스템.
  3. 제2항에 있어서, 차양 검출기는 검사 작업 이전에 운반체의 지붕으로부터 외부로 활주하는 이동식 x-선 검사 시스템.
  4. 제1항에 있어서, 운반체의 플랫폼 아래에서 전개되는 스커트 검출기를 추가로 포함하는 이동식 x-선 검사 시스템.
  5. 제1항에 있어서, 운반체보다 더 높은 공간의 검출을 위한 지붕 검출기를 추가로 포함하는 이동식 x-선 검사 시스템.
  6. 제1항에 있어서, 실질적으로 수평인 섬유-결합 신틸레이터 검출기 세그먼트 및 실질적으로 직립인 섬유-결합 신틸레이터 검출기 세그먼트를 추가로 포함하는 이동식 x-선 검사 시스템.
  7. 제6항에 있어서, 실질적으로 수평인 섬유-결합 신틸레이터 검출기 세그먼트 및 실질적으로 직립인 섬유-결합 신틸레이터 검출기 세그먼트는 통합 구조물로 형성되는 이동식 x-선 검사 시스템.
KR1020207011500A 2012-02-14 2013-02-04 파장-편이 섬유-결합 신틸레이션 검출기를 사용한 x-선 검사 KR20200044997A (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020217004548A KR102266814B1 (ko) 2012-02-14 2013-02-04 파장-편이 섬유-결합 신틸레이션 검출기를 사용한 x-선 검사

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US201261598521P 2012-02-14 2012-02-14
US201261598576P 2012-02-14 2012-02-14
US61/598,576 2012-02-14
US61/598,521 2012-02-14
US201261607066P 2012-03-06 2012-03-06
US61/607,066 2012-03-06
PCT/US2013/024585 WO2013122763A1 (en) 2012-02-14 2013-02-04 X-ray inspection using wavelength-shifting fiber-coupled scintillation detectors

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020147025181A Division KR102105727B1 (ko) 2012-02-14 2013-02-04 파장-편이 섬유-결합 신틸레이션 검출기를 사용한 x-선 검사

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020217004548A Division KR102266814B1 (ko) 2012-02-14 2013-02-04 파장-편이 섬유-결합 신틸레이션 검출기를 사용한 x-선 검사

Publications (1)

Publication Number Publication Date
KR20200044997A true KR20200044997A (ko) 2020-04-29

Family

ID=48945537

Family Applications (4)

Application Number Title Priority Date Filing Date
KR1020207011500A KR20200044997A (ko) 2012-02-14 2013-02-04 파장-편이 섬유-결합 신틸레이션 검출기를 사용한 x-선 검사
KR1020207011502A KR102293638B1 (ko) 2012-02-14 2013-02-04 파장-편이 섬유-결합 신틸레이션 검출기를 사용한 x-선 검사
KR1020147025181A KR102105727B1 (ko) 2012-02-14 2013-02-04 파장-편이 섬유-결합 신틸레이션 검출기를 사용한 x-선 검사
KR1020217004548A KR102266814B1 (ko) 2012-02-14 2013-02-04 파장-편이 섬유-결합 신틸레이션 검출기를 사용한 x-선 검사

Family Applications After (3)

Application Number Title Priority Date Filing Date
KR1020207011502A KR102293638B1 (ko) 2012-02-14 2013-02-04 파장-편이 섬유-결합 신틸레이션 검출기를 사용한 x-선 검사
KR1020147025181A KR102105727B1 (ko) 2012-02-14 2013-02-04 파장-편이 섬유-결합 신틸레이션 검출기를 사용한 x-선 검사
KR1020217004548A KR102266814B1 (ko) 2012-02-14 2013-02-04 파장-편이 섬유-결합 신틸레이션 검출기를 사용한 x-선 검사

Country Status (18)

Country Link
US (4) US9285488B2 (ko)
EP (1) EP2825904B1 (ko)
JP (6) JP2015513075A (ko)
KR (4) KR20200044997A (ko)
CN (3) CN104204854B (ko)
BR (1) BR112014019517B1 (ko)
CA (2) CA2864354C (ko)
CL (1) CL2014002144U1 (ko)
DE (2) DE202013012100U1 (ko)
ES (4) ES2685971T3 (ko)
GT (1) GT201400009U (ko)
HK (3) HK1202633A1 (ko)
IL (3) IL234076B (ko)
MX (1) MX337476B (ko)
PE (1) PE20150237Z (ko)
PL (2) PL125062U1 (ko)
RU (1) RU2606698C2 (ko)
WO (1) WO2013122763A1 (ko)

Families Citing this family (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9958569B2 (en) 2002-07-23 2018-05-01 Rapiscan Systems, Inc. Mobile imaging system and method for detection of contraband
US10532228B2 (en) * 2010-04-16 2020-01-14 Maureen Petterson Multi-color charged particle detector apparatus and method of use thereof
US10898732B2 (en) * 2010-04-16 2021-01-26 Maureen Petterson Multi-color charged particle detector apparatus and method of use thereof
US8884236B2 (en) * 2010-06-21 2014-11-11 American Science And Engineering, Inc. Detector with active collimators
EP3270185B1 (en) 2011-02-08 2023-02-01 Rapiscan Systems, Inc. Covert surveillance using multi-modality sensing
US10670740B2 (en) 2012-02-14 2020-06-02 American Science And Engineering, Inc. Spectral discrimination using wavelength-shifting fiber-coupled scintillation detectors
ES2685971T3 (es) * 2012-02-14 2018-10-15 American Science And Engineering, Inc. Inspección de rayos X usando detectores de centelleo acoplados mediante fibra con desplazamiento de longitud de onda
US9182361B2 (en) 2013-05-28 2015-11-10 Ann Arbor Digital Devices Inc. Digital X-ray imaging system with still and video capture modes
RO130582B1 (ro) * 2014-01-23 2021-12-30 Mb Telecom Ltd. S.R.L. Sistem şi metodă pentru inspecţia completă şi neintruzivă a aeronavelor
US20150241578A1 (en) * 2014-02-27 2015-08-27 Saint-Gobain Ceramics & Plastics, Inc. Scintillator stack, device including the scintillator stack, and method for making the scintillator stack
US9707710B2 (en) 2014-02-27 2017-07-18 Saint-Gobain Ceramics And Plastics, Inc. Scintillator stack, device including the scintillator stack, and method for making the scintillator stack
WO2015175751A1 (en) 2014-05-16 2015-11-19 American Science And Engineering, Inc. Source for intra-pulse multi-energy x-ray cargo inspection
US11266006B2 (en) 2014-05-16 2022-03-01 American Science And Engineering, Inc. Method and system for timing the injections of electron beams in a multi-energy x-ray cargo inspection system
US10459111B2 (en) * 2014-05-23 2019-10-29 Radiabeam Technologies, Llc System and method for adaptive X-ray cargo inspection
CN104035123B (zh) * 2014-06-27 2017-02-15 中国电子科技集团公司第八研究所 一种基于闪烁体与光纤耦合的β表面污染探测装置及方法
WO2016003547A1 (en) 2014-06-30 2016-01-07 American Science And Engineering, Inc. Rapidly relocatable modular cargo container scanner
CN105425273A (zh) * 2014-09-17 2016-03-23 中国科学技术大学 一种用于测量高通量x射线能谱的吸收体阵列的装置及方法
CN107209282B (zh) * 2014-11-20 2019-12-20 爱康公司 X射线扫描系统和方法
GB2549891B (en) * 2015-01-20 2021-09-08 American Science & Eng Inc Dynamically adjustable focal spot
DE102015101764A1 (de) * 2015-02-06 2016-08-11 Thermo Fisher Scientific Messtechnik Gmbh Vorrichtung und Verfahren zur Detektion von radioaktiver Strahlung
US10156642B2 (en) 2015-03-04 2018-12-18 Rapiscan Systems, Inc. Multiple energy detector
JP6746603B2 (ja) * 2015-03-20 2020-08-26 ラピスカン システムズ、インコーポレイテッド 手持ち式携帯型後方散乱検査システム
US9753151B2 (en) 2015-07-31 2017-09-05 General Electric Company Light guide array for pet detector fabrication methods and apparatus
EP3347705A4 (en) * 2015-09-10 2019-09-11 American Science & Engineering, Inc. BACK-UP CHARACTERIZATION USING ADAPTIVE INTERLAYER ELECTROMAGNETIC X-RAY SCANNING
WO2017048239A1 (en) 2015-09-15 2017-03-23 Halliburton Energy Services, Inc. Downhole photon radiation detection using scintillating fibers
CN108450029B (zh) 2015-11-09 2021-07-20 美国科学及工程股份有限公司 移动x射线扫描速度控制
CN109416316A (zh) * 2016-06-21 2019-03-01 深圳源光科技有限公司 生物感测器
GB2552537B (en) * 2016-07-28 2020-05-27 Smiths Heimann Sas Inspection system with source of radiation and method
EP3505919A4 (en) * 2016-08-25 2020-04-22 Beijing Hualixing Technology Development Co., Ltd. IMAGING DEVICE FOR USE IN VEHICLE SECURITY MONITORING AND ASSOCIATED METHOD
CN106290427A (zh) * 2016-10-17 2017-01-04 北京君和信达科技有限公司 背散射成像方法及系统
CN106483153A (zh) * 2016-12-23 2017-03-08 同方威视技术股份有限公司 双能探测器及辐射检查系统
CN106526688A (zh) * 2016-12-28 2017-03-22 同方威视技术股份有限公司 背散射检查车
US10393680B2 (en) * 2017-01-18 2019-08-27 The Boeing Company X-ray sidescatter inspection of laminates
CN110199373B (zh) 2017-01-31 2021-09-28 拉皮斯坎系统股份有限公司 大功率x射线源与操作方法
WO2018156718A1 (en) * 2017-02-25 2018-08-30 Anatoly Glass, LLC. Converter plate for producing polychromatic light
US10770195B2 (en) 2017-04-05 2020-09-08 Viken Detection Corporation X-ray chopper wheel assembly
DE102017108535A1 (de) * 2017-04-21 2018-10-25 Grünbeck Wasseraufbereitung GmbH Membranmodul sowie Vorrichtung und Verfahren zur Detektion von Ablagerungen in einem Membranmodul
US20180321418A1 (en) * 2017-05-08 2018-11-08 Saint-Gobain Ceramics & Plastics, Inc. Article including a body including a fluorescent material and a wavelength shifting fiber, a radiation detector including the article, and a method of using the same
JP2018141767A (ja) * 2017-07-13 2018-09-13 三菱電機プラントエンジニアリング株式会社 タイヤハウス汚染検査装置およびタイヤハウス汚染自動検査方法
CN108227027B (zh) * 2017-12-29 2020-12-01 同方威视技术股份有限公司 车载背散射检查系统
CN108008458B (zh) * 2017-12-29 2020-09-08 同方威视技术股份有限公司 车载背散射检查系统
US10114131B1 (en) 2018-01-05 2018-10-30 Consolidated Nuclear Security, LLC Scintillator based fiber optic plate for neutron imaging applications and the like
CN111699413A (zh) * 2018-02-02 2020-09-22 维肯检测公司 用于x射线反向散射成像的具有可移除检测器的系统和套件
WO2019245636A1 (en) * 2018-06-20 2019-12-26 American Science And Engineering, Inc. Wavelength-shifting sheet-coupled scintillation detectors
IL260956B (en) * 2018-08-02 2022-01-01 Applied Materials Israel Ltd Electron detection sensor
DE102018220135A1 (de) * 2018-11-23 2020-05-28 Siemens Healthcare Gmbh Röntgendetektor, Bildgebungsvorrichtung und Verfahren zum Betrieb eines Röntgendetektors
US11112370B2 (en) * 2019-01-04 2021-09-07 The Boeing Company Reconfigurable backscatter detector
GB2595389B (en) * 2019-01-08 2023-04-26 American Science & Eng Inc Spectral discrimination using wavelength-shifting fiber-coupled scintillation detectors
CN109828300B (zh) * 2019-01-31 2023-05-05 兰州空间技术物理研究所 一种小型化全向空间粒子探测器
CN109655874B (zh) * 2019-02-25 2020-04-10 衡阳师范学院 闪烁室测氡装置和方法
US10830714B1 (en) * 2019-07-26 2020-11-10 The Boeing Company Portable X-ray backscattering system
JP2022542383A (ja) * 2019-07-29 2022-10-03 サン-ゴバン セラミックス アンド プラスティクス,インコーポレイティド プラスチック波長シフトファイバおよびその作製方法
JPWO2021085401A1 (ko) * 2019-10-31 2021-05-06
CN110988964B (zh) * 2019-12-09 2022-11-22 上海大学 复合型光纤辐射探测器
RU2730392C1 (ru) * 2020-01-14 2020-08-21 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") Сцинтилляционный детектор нейтронов
US11193898B1 (en) 2020-06-01 2021-12-07 American Science And Engineering, Inc. Systems and methods for controlling image contrast in an X-ray system
WO2021247615A1 (en) 2020-06-02 2021-12-09 Viken Detection Corporation X-ray imaging apparatus and method
US11175245B1 (en) 2020-06-15 2021-11-16 American Science And Engineering, Inc. Scatter X-ray imaging with adaptive scanning beam intensity
EP3933881A1 (en) 2020-06-30 2022-01-05 VEC Imaging GmbH & Co. KG X-ray source with multiple grids
EP4215949A1 (en) * 2020-09-16 2023-07-26 Kuraray Co., Ltd. Plastic scintillation fiber and method for manufacturing same
EP4231057A1 (en) * 2020-10-15 2023-08-23 Kuraray Co., Ltd. Plastic scintillating fiber and production method therefor
US11340361B1 (en) 2020-11-23 2022-05-24 American Science And Engineering, Inc. Wireless transmission detector panel for an X-ray scanner
EP4105691A1 (en) 2021-06-16 2022-12-21 Soletanche Freyssinet Gamma and neutron radiation detector
CN114180291B (zh) * 2021-11-10 2022-08-05 深圳市日联科技有限公司 叠片电池视觉纠偏装置及纠偏方法

Family Cites Families (152)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4045672A (en) 1975-09-11 1977-08-30 Nihon Denshi Kabushiki Kaisha Apparatus for tomography comprising a pin hole for forming a microbeam of x-rays
US4242583A (en) 1978-04-26 1980-12-30 American Science And Engineering, Inc. X-ray imaging variable resolution
US4259582A (en) * 1979-11-02 1981-03-31 Albert Richard D Plural image signal system for scanning x-ray apparatus
JPS60159675A (ja) * 1984-01-31 1985-08-21 Shimadzu Corp 放射線検出器
US4788436A (en) 1986-12-24 1988-11-29 Walter Koechner Radiation sensitive optical fiber and detector
US5281820A (en) * 1988-07-12 1994-01-25 Hoechst Aktiengesellschaft Radiation detector
DE3841136A1 (de) * 1988-12-07 1990-06-13 Hoechst Ag Strahlungsdetektor
JPH03257391A (ja) * 1990-03-08 1991-11-15 Mitsubishi Atom Power Ind Inc X線照射分布計測装置
US5784507A (en) * 1991-04-05 1998-07-21 Holm-Kennedy; James W. Integrated optical wavelength discrimination devices and methods for fabricating same
US5302817A (en) 1991-06-21 1994-04-12 Kabushiki Kaisha Toshiba X-ray detector and X-ray examination system utilizing fluorescent material
JPH0627249A (ja) * 1992-07-13 1994-02-04 Toshiba Corp 放射線検査装置
US5420959A (en) 1992-12-17 1995-05-30 Nanoptics Incorporated High efficiency, high resolution, real-time radiographic imaging system
JP3496958B2 (ja) * 1993-09-01 2004-02-16 富士写真フイルム株式会社 放射線検出器、画像読出処理条件決定方法および照射野認識方法
JPH07211877A (ja) * 1994-01-21 1995-08-11 Hamamatsu Photonics Kk 放射線像検出器及び放射線像検出装置
FR2716012B1 (fr) * 1994-02-09 1996-04-12 Corning Inc Procédé et dispositif d'assemblage d'extrémités de fibres optiques disposées en nappe.
US5600144A (en) * 1994-05-10 1997-02-04 Trustees Of Boston University Three dimensional imaging detector employing wavelength-shifting optical fibers
FR2725722B1 (fr) * 1994-10-14 1997-01-03 Atochem Elf Sa Copolymere fluore a tenue thermique amelioree, son procede de preparation et son utilisation comme revetement protecteur de substrats
CN1161103A (zh) * 1995-06-27 1997-10-01 菲利浦电子有限公司 X射线检测器
GB2303938A (en) * 1995-07-31 1997-03-05 Stc Submarine Systems Ltd Optical fibre cable having kingwire bearing extruded thermoplastic elastomer layers
US5764683B1 (en) * 1996-02-12 2000-11-21 American Science & Eng Inc Mobile x-ray inspection system for large objects
JP3813656B2 (ja) * 1996-03-07 2006-08-23 株式会社東芝 光ファイバ型大面積放射線モニタ
DE19610538A1 (de) * 1996-03-18 1997-09-25 Deutsches Krebsforsch Strahlungsermittlungsvorrichtung
JPH10232284A (ja) * 1997-02-19 1998-09-02 Toshiba Corp 波長シフト型放射線センサおよび放射線検出装置
JPH10288671A (ja) * 1997-04-15 1998-10-27 Toshiba Corp 位置検出型放射線検出装置
US6078052A (en) 1997-08-29 2000-06-20 Picker International, Inc. Scintillation detector with wavelength-shifting optical fibers
EP1012586A2 (en) 1997-09-09 2000-06-28 American Science & Engineering, Inc. A tomographic inspection system
US5968425A (en) * 1997-10-28 1999-10-19 The United States Of America As Represented By The United States Department Of Energy Methods for the continuous production of plastic scintillator materials
US6151381A (en) 1998-01-28 2000-11-21 American Science And Engineering, Inc. Gated transmission and scatter detection for x-ray imaging
JPH11271453A (ja) * 1998-03-25 1999-10-08 Toshiba Corp 放射線弁別測定方法および放射線弁別測定装置
JP2923500B1 (ja) * 1998-06-04 1999-07-26 株式会社東芝 放射線検出器および放射線計測システム、並びに放射線計測プログラムを記録したコンピュータ読み取り可能な記録媒体
US6621888B2 (en) 1998-06-18 2003-09-16 American Science And Engineering, Inc. X-ray inspection by coherent-scattering from variably disposed scatterers identified as suspect objects
US6442233B1 (en) 1998-06-18 2002-08-27 American Science And Engineering, Inc. Coherent x-ray scatter inspection system with sidescatter and energy-resolved detection
EP1113291A4 (en) * 1998-07-15 2002-03-06 Keiichi Kuroda RADIATION IMAGING DEVICE
EP1135700B1 (en) 1998-11-30 2005-03-02 American Science & Engineering, Inc. Fan and pencil beams from a common source for x-ray inspection
US6453007B2 (en) 1998-11-30 2002-09-17 American Science And Engineering, Inc. X-ray inspection using co-planar pencil and fan beams
US6320933B1 (en) 1998-11-30 2001-11-20 American Science And Engineering, Inc. Multiple scatter system for threat identification
US6249567B1 (en) * 1998-12-01 2001-06-19 American Science & Engineering, Inc. X-ray back scatter imaging system for undercarriage inspection
US6421420B1 (en) 1998-12-01 2002-07-16 American Science & Engineering, Inc. Method and apparatus for generating sequential beams of penetrating radiation
EP1147406A1 (en) 1998-12-22 2001-10-24 American Science & Engineering, Inc. Unilateral hand-held x-ray inspection apparatus
US6459764B1 (en) * 1999-01-27 2002-10-01 American Science And Engineering, Inc. Drive-through vehicle inspection system
JP2000235078A (ja) * 1999-02-15 2000-08-29 Toshiba Corp 放射線検出用構造体と、それを用いた放射線検出器および放射線検査装置
JP2000304865A (ja) * 1999-04-23 2000-11-02 Hitachi Ltd 光伝送式放射線計測装置及びその計測システム
US6391434B1 (en) * 1999-05-06 2002-05-21 General Electric Company Composite scintillator material and method of manufacture
JP4313895B2 (ja) * 1999-06-04 2009-08-12 株式会社東芝 放射線検出装置
JP2001013254A (ja) 1999-06-29 2001-01-19 Mitsubishi Heavy Ind Ltd 平板状中性子線検出器及びこれを用いた中性子源計測装置
JP2001013250A (ja) 1999-06-30 2001-01-19 Toshiba Corp 汚染検査装置
US6546072B1 (en) 1999-07-30 2003-04-08 American Science And Engineering, Inc. Transmission enhanced scatter imaging
US7010094B2 (en) * 2000-02-10 2006-03-07 American Science And Engineering, Inc. X-ray inspection using spatially and spectrally tailored beams
US6459761B1 (en) 2000-02-10 2002-10-01 American Science And Engineering, Inc. Spectrally shaped x-ray inspection system
JP4351780B2 (ja) * 2000-02-15 2009-10-28 株式会社東芝 放射線検出装置
US6671451B1 (en) 2000-03-10 2003-12-30 Wired Japan Co., Ltd. Optical fiber, optical fiber cable, and radiation detecting system using such
US8325871B2 (en) 2000-03-28 2012-12-04 American Science And Engineering, Inc. Radiation threat detection
US6576907B1 (en) * 2000-06-01 2003-06-10 Elgems Ltd. High count rate gamma camera system
JP2002071816A (ja) * 2000-08-29 2002-03-12 Japan Atom Energy Res Inst 2次元放射線および中性子イメージ検出器
US6907281B2 (en) * 2000-09-07 2005-06-14 Ge Medical Systems Fast mapping of volumetric density data onto a two-dimensional screen
JP4552020B2 (ja) * 2001-01-29 2010-09-29 独立行政法人 日本原子力研究開発機構 放射線および中性子イメージ検出器
US6658087B2 (en) 2001-05-03 2003-12-02 American Science And Engineering, Inc. Nautical X-ray inspection system
JP4203710B2 (ja) * 2001-12-28 2009-01-07 株式会社日立メディコ X線画像処理装置
US6542580B1 (en) * 2002-01-15 2003-04-01 Rapiscan Security Products (Usa), Inc. Relocatable X-ray imaging system and method for inspecting vehicles and containers
US7122804B2 (en) * 2002-02-15 2006-10-17 Varian Medical Systems Technologies, Inc. X-ray imaging device
US20040256565A1 (en) * 2002-11-06 2004-12-23 William Adams X-ray backscatter mobile inspection van
US8503605B2 (en) 2002-07-23 2013-08-06 Rapiscan Systems, Inc. Four sided imaging system and method for detection of contraband
US7369643B2 (en) * 2002-07-23 2008-05-06 Rapiscan Security Products, Inc. Single boom cargo scanning system
US9958569B2 (en) 2002-07-23 2018-05-01 Rapiscan Systems, Inc. Mobile imaging system and method for detection of contraband
US8275091B2 (en) 2002-07-23 2012-09-25 Rapiscan Systems, Inc. Compact mobile cargo scanning system
US6853707B2 (en) * 2002-09-05 2005-02-08 Agilent Technologies, Inc. Shielded x-ray detector
US7099434B2 (en) 2002-11-06 2006-08-29 American Science And Engineering, Inc. X-ray backscatter mobile inspection van
US7505556B2 (en) 2002-11-06 2009-03-17 American Science And Engineering, Inc. X-ray backscatter detection imaging modules
US20090257555A1 (en) 2002-11-06 2009-10-15 American Science And Engineering, Inc. X-Ray Inspection Trailer
US6927397B2 (en) * 2002-12-03 2005-08-09 Universities Research Association, Inc. Systems and methods for detecting neutrons
US6909098B2 (en) * 2002-12-03 2005-06-21 Universities Research Association Inc. Systems and methods for detecting nuclear radiation in the presence of backgrounds
US7067079B2 (en) 2002-12-03 2006-06-27 Universities Research Association, Inc. Extruded plastic scintillator including inorganic powders
US7149393B2 (en) * 2002-12-09 2006-12-12 Eastman Kodak Company Apparatus and method for forming a fiber optic faceplate
DE60313364T2 (de) * 2002-12-10 2008-01-03 Commonwealth Scientific And Industrial Research Organisation Radiographisches gerät
US6965662B2 (en) 2002-12-17 2005-11-15 Agilent Technologies, Inc. Nonplanar x-ray target anode for use in a laminography imaging system
US20040140431A1 (en) * 2003-01-21 2004-07-22 Cti Pet Systems, Inc. Multi-application highly reflective grid array
US20050058242A1 (en) 2003-09-15 2005-03-17 Peschmann Kristian R. Methods and systems for the rapid detection of concealed objects
US7054408B2 (en) * 2003-04-30 2006-05-30 General Electric Company CT detector array having non pixelated scintillator array
US7366282B2 (en) 2003-09-15 2008-04-29 Rapiscan Security Products, Inc. Methods and systems for rapid detection of concealed objects using fluorescence
US7856081B2 (en) 2003-09-15 2010-12-21 Rapiscan Systems, Inc. Methods and systems for rapid detection of concealed objects using fluorescence
JP4406699B2 (ja) 2003-08-29 2010-02-03 独立行政法人 日本原子力研究開発機構 光ファイバを利用した放射線及び中性子検出器
JP2005214869A (ja) 2004-01-30 2005-08-11 Toshiba Corp 当量線量型放射線検出器
US7115875B1 (en) 2004-02-17 2006-10-03 Photodetection Systems, Inc. PET scanner with photodetectors and wavelength shifting fibers
DK1733213T3 (da) 2004-04-09 2010-05-03 American Science & Eng Inc Eliminering af cross-talk i en tilbagespredningsinspektionsportal der omfatter flere kilder, ved at sikre at kun en kilde afgiver stråling ad gangen
US7505562B2 (en) 2006-04-21 2009-03-17 American Science And Engineering, Inc. X-ray imaging of baggage and personnel using arrays of discrete sources and multiple collimated beams
WO2005103759A1 (en) 2004-04-20 2005-11-03 Forimtech Sa Large area radiation imaging detector
US7141799B1 (en) * 2005-03-30 2006-11-28 Ut-Battelle, Llc Fiber optic thermal/fast neutron and gamma ray scintillation detector
US7471764B2 (en) 2005-04-15 2008-12-30 Rapiscan Security Products, Inc. X-ray imaging system having improved weather resistance
DE102005017557B4 (de) * 2005-04-16 2010-11-04 Mirion Technologies (Rados) Gmbh Leichtgewichtiger Flächendetektor für Teilchenstrahlung kontaminierter Objekte
US7335891B2 (en) * 2005-06-27 2008-02-26 General Electric Company Gamma and neutron radiation detector
EP1949139A2 (en) 2005-10-24 2008-07-30 American Science & Engineering, Inc. X-ray inspection based on scatter detection
KR100773993B1 (ko) * 2006-03-10 2007-11-08 (주)케이디티 광여기 시트
WO2007109860A1 (en) * 2006-03-29 2007-10-04 Australian Nuclear Science & Technology Organisation Measurement of hydraulic conductivity using a radioactive or activatable tracer
JP4455534B2 (ja) * 2006-05-09 2010-04-21 株式会社東芝 放射線検出器およびその製造方法
US8842808B2 (en) 2006-08-11 2014-09-23 American Science And Engineering, Inc. Scatter attenuation tomography using a monochromatic radiation source
EP2049888B1 (en) 2006-08-11 2014-05-14 American Science & Engineering, Inc. X-ray inspection with contemporaneous and proximal transmission and backscatter imaging
US7924979B2 (en) 2006-08-23 2011-04-12 American Science And Engineering, Inc. Scatter attenuation tomography
MX2009001939A (es) 2006-08-23 2009-03-05 American Science & Eng Inc Tomografia de atenuacion por dispersion.
AU2007351440B2 (en) * 2006-10-24 2012-12-06 Thermo Niton Analyzers Llc Apparatus for inspecting objects using coded beam
GB0626055D0 (en) * 2006-12-29 2007-11-07 Bae Systems Plc Detection of ionising radiation
US7842908B2 (en) * 2007-08-14 2010-11-30 Raytheon Company Sensor for eye-safe and body-fixed semi-active laser guidance
WO2009067394A2 (en) * 2007-11-19 2009-05-28 American Science And Engineering, Inc. Multiple image collection and synthesis for personnel screening
US8314399B2 (en) * 2008-02-07 2012-11-20 General Electric Company Radiation detector with optical waveguide and neutron scintillating material
GB0803640D0 (en) 2008-02-28 2008-04-02 Rapiscan Security Products Inc Scanning systems
US8598534B2 (en) * 2008-03-13 2013-12-03 Koninklijke Philips N.V. Low-power TDC-ADC and anger logic in radiation detection applications
US20090230925A1 (en) 2008-03-14 2009-09-17 Nathan Nathan Power Saver
US8017906B2 (en) * 2008-04-08 2011-09-13 Robert Sigurd Nelson Slit and slot scan, SAR, and compton devices and systems for radiation imaging
GB0809107D0 (en) 2008-05-20 2008-06-25 Rapiscan Security Products Inc Scannign systems
GB0810638D0 (en) 2008-06-11 2008-07-16 Rapiscan Security Products Inc Photomultiplier and detection systems
WO2010005977A2 (en) * 2008-07-07 2010-01-14 University Of Florida Research Foundation, Inc. Method and apparatus for x-ray radiographic imaging
JP2008304947A (ja) * 2008-09-11 2008-12-18 Sumitomo Bakelite Co Ltd 光導波路および光導波路構造体
CN101710182A (zh) * 2008-09-19 2010-05-19 圣戈本陶瓷及塑料股份有限公司 形成闪烁设备的方法
US7795650B2 (en) * 2008-12-09 2010-09-14 Teledyne Scientific & Imaging Llc Method and apparatus for backside illuminated image sensors using capacitively coupled readout integrated circuits
WO2010129926A1 (en) 2009-05-07 2010-11-11 The Regents Of The University Of California Novel lanthanide doped barium mixed halide scintillators
US8275092B1 (en) 2009-06-15 2012-09-25 American Science And Engineering, Inc. Three-dimensional mapping based on scattered penetrating radiation
US8824632B2 (en) * 2009-07-29 2014-09-02 American Science And Engineering, Inc. Backscatter X-ray inspection van with top-down imaging
CN102483383A (zh) 2009-07-29 2012-05-30 美国科技工程公司 自上向下x 光检查拖车
WO2011044266A2 (en) * 2009-10-07 2011-04-14 Saint-Gobain Ceramics & Plastics, Inc. System and method to detect target radiation
CN102686999B (zh) * 2009-10-29 2017-02-08 拉皮斯坎系统股份有限公司 移动式飞机检查系统
GB2488079B (en) 2009-12-03 2015-05-27 Rapiscan Systems Inc Time of flight backscatter imaging system
US8199875B2 (en) * 2009-12-11 2012-06-12 General Electric Company System and method of acquiring multi-energy CT imaging data
JP5548892B2 (ja) * 2010-01-08 2014-07-16 独立行政法人日本原子力研究開発機構 ピクセル型二次元イメージ検出器
JP2011158291A (ja) * 2010-01-29 2011-08-18 Hamamatsu Photonics Kk 放射線像変換パネル
CN201754188U (zh) * 2010-02-03 2011-03-02 中国原子能科学研究院 塑料闪烁体探测器光电倍增管固定装置
MX2012009921A (es) 2010-02-25 2012-12-17 Rapiscan Systems Inc Un sistema de inspeccion basado en espectroscopia de rayos x de alta energia y metodos para determinar el numero atomico de materiales.
MX2012009922A (es) 2010-02-26 2012-12-17 Rapiscan Systems Inc Sistema portatil integrado de punto de control.
JP2011227044A (ja) * 2010-03-30 2011-11-10 Fujifilm Corp 放射線撮影装置
JP2010181412A (ja) * 2010-03-15 2010-08-19 Toshiba Corp 放射線弁別測定方法および放射線弁別測定装置
JP5376528B2 (ja) * 2010-05-06 2013-12-25 独立行政法人日本原子力研究開発機構 放射線および中性子イメージ検出器
WO2011159911A2 (en) 2010-06-18 2011-12-22 Saint-Gobain Ceramics & Plastics, Inc. Radiation detection system including a scintillating material and an optical fiber and method of using the same
US8884236B2 (en) 2010-06-21 2014-11-11 American Science And Engineering, Inc. Detector with active collimators
GB2482024A (en) * 2010-07-16 2012-01-18 Symetrica Ltd Radiation Detector
US8796636B2 (en) * 2010-09-13 2014-08-05 Parttec, Ltd. Neutron detector having enhanced absorption and bifurcated detection elements
US8592775B2 (en) * 2010-10-27 2013-11-26 Partec, Ltd. Radiation detector having a ribbed scintillator
EP3270185B1 (en) 2011-02-08 2023-02-01 Rapiscan Systems, Inc. Covert surveillance using multi-modality sensing
US8908831B2 (en) 2011-02-08 2014-12-09 Rapiscan Systems, Inc. Covert surveillance using multi-modality sensing
MX2013009142A (es) 2011-02-08 2013-10-01 American Science & Eng Inc Analisis de energia de retrodispersion para la clasificacion de materiales basado en no conmutatividad posicional.
BR112013026050A2 (pt) 2011-04-15 2017-02-14 American Science & Eng Inc sistema de retrodispersão com tamanho variável de matriz de detectores
WO2013116058A1 (en) 2012-02-02 2013-08-08 American Science And Engineering, Inc. Convertible scan panel for x-ray inspection
CN104170051B (zh) 2012-02-03 2017-05-31 拉皮斯坎系统股份有限公司 组合散射和透射的多视图成像系统
ES2685971T3 (es) * 2012-02-14 2018-10-15 American Science And Engineering, Inc. Inspección de rayos X usando detectores de centelleo acoplados mediante fibra con desplazamiento de longitud de onda
JP6114981B2 (ja) 2012-10-17 2017-04-19 株式会社リガク X線発生装置
KR102167245B1 (ko) 2013-01-31 2020-10-19 라피스캔 시스템스, 인코포레이티드 이동식 보안검사시스템
US9417060B1 (en) 2013-07-25 2016-08-16 American Science And Engineering, Inc. X-ray theodolite
US9535019B1 (en) 2013-10-04 2017-01-03 American Science And Engineering, Inc. Laterally-offset detectors for long-range x-ray backscatter imaging
WO2015158646A1 (en) * 2014-04-17 2015-10-22 Koninklijke Philips N.V. Radiation detector with photosensitive elements that can have high aspect ratios
WO2016003547A1 (en) 2014-06-30 2016-01-07 American Science And Engineering, Inc. Rapidly relocatable modular cargo container scanner
CN104597479A (zh) * 2014-12-30 2015-05-06 中国原子能科学研究院 中子位置探测装置
JP2018506032A (ja) 2015-01-16 2018-03-01 ラピスカン システムズ、インコーポレイテッド 対象材料の検出のための非侵入型検査システム及び方法
EP3347705A4 (en) 2015-09-10 2019-09-11 American Science & Engineering, Inc. BACK-UP CHARACTERIZATION USING ADAPTIVE INTERLAYER ELECTROMAGNETIC X-RAY SCANNING
WO2018064434A1 (en) 2016-09-30 2018-04-05 American Science And Engineering, Inc. X-ray source for 2d scanning beam imaging
CN207752159U (zh) * 2017-09-27 2018-08-21 清华大学 阵列式大面积总放探测装置

Also Published As

Publication number Publication date
US9285488B2 (en) 2016-03-15
HK1203632A1 (en) 2015-10-30
ES1153636Y (es) 2016-07-08
RU2606698C2 (ru) 2017-01-10
IL234076A0 (en) 2014-09-30
JP7138751B2 (ja) 2022-09-16
JP2018136343A (ja) 2018-08-30
US20190383953A1 (en) 2019-12-19
ES2685971T3 (es) 2018-10-15
JP2020060590A (ja) 2020-04-16
GT201400009U (es) 2015-07-08
EP2825904A1 (en) 2015-01-21
JP6525477B2 (ja) 2019-06-05
IL234076B (en) 2018-06-28
BR112014019517A8 (pt) 2017-07-11
CN107193034A (zh) 2017-09-22
JP2021167846A (ja) 2021-10-21
MX2014009790A (es) 2014-09-12
US20170315242A1 (en) 2017-11-02
US20160170044A1 (en) 2016-06-16
ES1153636U (es) 2016-03-31
PL125062U1 (pl) 2016-12-19
US9658343B2 (en) 2017-05-23
CN104204854B (zh) 2017-05-10
KR102266814B1 (ko) 2021-06-17
CN113302521A (zh) 2021-08-24
CA3080221A1 (en) 2013-08-22
KR20200044998A (ko) 2020-04-29
PL125720U1 (pl) 2017-10-23
DE202013012103U1 (de) 2015-06-03
KR102105727B1 (ko) 2020-05-29
DE202013012100U1 (de) 2015-05-06
PE20150237Z (es) 2015-02-12
ES1154460U (es) 2016-04-13
JP6203367B2 (ja) 2017-09-27
US20130208857A1 (en) 2013-08-15
KR20210021117A (ko) 2021-02-24
CA2864354C (en) 2023-02-28
CN104204854A (zh) 2014-12-10
MX337476B (es) 2016-03-04
IL259730A (en) 2018-07-31
CA2864354A1 (en) 2013-08-22
KR20140123996A (ko) 2014-10-23
JP2017040665A (ja) 2017-02-23
IL259737B (en) 2021-09-30
JP2018155764A (ja) 2018-10-04
WO2013122763A1 (en) 2013-08-22
CL2014002144U1 (es) 2014-12-19
RU2014133352A (ru) 2016-04-10
ES1153640U (es) 2016-03-31
JP2015513075A (ja) 2015-04-30
ES1154460Y (es) 2016-07-08
HK1244541A1 (zh) 2018-08-10
HK1202633A1 (en) 2015-10-02
BR112014019517A2 (pt) 2021-05-04
BR112014019517B1 (pt) 2022-05-10
EP2825904A4 (en) 2016-08-03
EP2825904B1 (en) 2018-07-04
ES1153640Y (es) 2016-07-08
IL259737A (en) 2018-07-31
KR102293638B1 (ko) 2021-08-24
US10209372B2 (en) 2019-02-19

Similar Documents

Publication Publication Date Title
JP7138751B2 (ja) 波長シフトファイバ結合シンチレーション検出器を用いるx線検査
US11579327B2 (en) Handheld backscatter imaging systems with primary and secondary detector arrays
WO2020145999A1 (en) Spectral discrimination using wavelength-shifting fiber-coupled scintillation detectors

Legal Events

Date Code Title Description
A107 Divisional application of patent
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
X091 Application refused [patent]
AMND Amendment
X601 Decision of rejection after re-examination
A107 Divisional application of patent