KR20190098074A - 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지 - Google Patents

리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지 Download PDF

Info

Publication number
KR20190098074A
KR20190098074A KR1020190016080A KR20190016080A KR20190098074A KR 20190098074 A KR20190098074 A KR 20190098074A KR 1020190016080 A KR1020190016080 A KR 1020190016080A KR 20190016080 A KR20190016080 A KR 20190016080A KR 20190098074 A KR20190098074 A KR 20190098074A
Authority
KR
South Korea
Prior art keywords
secondary battery
lithium
lithium secondary
compound
aqueous electrolyte
Prior art date
Application number
KR1020190016080A
Other languages
English (en)
Other versions
KR102345312B1 (ko
Inventor
김현승
이철행
유성훈
이현영
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Publication of KR20190098074A publication Critical patent/KR20190098074A/ko
Application granted granted Critical
Publication of KR102345312B1 publication Critical patent/KR102345312B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

본 발명은 전해액 내부에서 리튬염으로부터 발생된 HF 및 PF5와 같은 분해산물 제거 효과가 우수한 화합물을 첨가제로 포함하는 리튬 이차전지용 비수전해액, 및 상기 리튬 이차전지용 비수전해액을 포함함으로써, 고온 저장 특성이 향상된 리튬 이차전지에 관한 것이다.

Description

리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지{NON-AQUEOUS ELECTROLYTE SOLUTION AND LITHIUM SECONDARY BATTERY COMPRISING THE SAME}
본 발명은 리튬염으로부터 발생된 분해 산물 제거 효과가 우수한 비수전해액 첨가제를 포함하는 리튬 이차전지용 비수전해액 및 이를 포함함으로써 고온 저장 특성이 향상된 리튬 이차전지에 관한 것이다.
정보사회의 발달로 인한 개인 IT 디바이스와 전산망이 발달하고 이에 수반하여 전반적인 사회의 전기에너지에 대한 의존도가 높아지면서, 전기 에너지를 효율적으로 저장하고 활용하기 위한 기술 개발이 요구되고 있다.
이를 위해 개발된 기술 중 여러 용도에 가장 적합한 기술이 이차전지 기반 기술이다. 이차전지의 경우 개인 IT 디바이스 등에 적용될 수 있을 정도로 소형화가 가능하며, 전기자동차, 전력 저장 장치 등에 적용될 수도 있기 때문에 이에 대한 관심이 대두되고 있다. 이런 이차전지 기술 중, 이론적으로 에너지 밀도가 가장 높은 전지 시스템인 리튬 이온 전지가 각광을 받고 있으며, 현재 여러 디바이스에 적용되고 있다.
이러한 리튬 이온 전지의 경우, 리튬 금속을 직접 시스템에 적용하였던 초창기와는 달리, 리튬을 함유하고 있는 전이금속 산화물로 이루어진 양극과, 리튬을 저장할 수 있는 음극, 전해액, 및 세퍼레이터로 구성되어 있다.
이중 전해액의 경우 리튬 이온 전지의 안정성(stability)과 안전성(safety) 등에 큰 영향을 주는 구성 성분으로 알려지면서, 이에 대해 많은 연구가 진행되고 있다.
리튬 이온 전지용 전해액의 경우, 리튬염과 이를 용해시키는 유기용매, 그리고 기능성 첨가제 등으로 구성되는데, 전지의 전기화학적 특성을 개선하기 위해서는 이 구성 요소들의 적합한 선정이 중요하다. 현재 사용되는 대표적인 리튬염으로는 LiPF6, LiBF4, LiFSI (lithium fluorosulfonyl imide, LiN(SO2F)2), LiTFSI (lithium (bis)trifluoromethanesulfonyl imide, LiN(SO2CF3)2) 또는 LiBOB (lithium bis(oxalate) borate, LiB(C2O4)2) 등이 이용되고 있으며, 유기용매의 경우에는 에스테르계 유기용매 또는 에테르계 유기용매 등이 이용되고 있다.
이러한 리튬 이온 전지의 경우, 고온에서의 충방전 혹은 저장 시의 저항 증가와 용량 감퇴가 성능의 열화에 있어서 큰 문제점으로 제시되고 있으며, 이러한 문제의 원인 중 하나로 제시되고 있는 것이 전해액의 고온에서의 열화로 발생하는 부반응, 그 중에서도 염의 고온에서의 분해로 인한 열화이다. 이러한 염의 부산물이 활성화 후 양극 및 음극의 표면에 형성된 피막을 분해시킬 경우, 피막의 부동태(passivation) 능력을 떨어뜨리는 문제가 존재하며, 이로 인하여 전해액의 추가적인 분해와 이에 수반된 자가 방전을 유발시키는 문제가 있다.
리튬 이온 전지의 전극 소재 중 특히 음극의 경우 흑연계 음극을 사용하는 경우가 대부분인데, 흑연의 경우 이의 작동 전위가 0.3 V (vs. Li/Li+) 이하로 리튬 이온 전지에 사용되는 전해액의 전기화학적 안정창보다 낮아, 현재 사용되는 전해액이 환원되어 분해된다. 이렇게 환원 분해된 산물은 리튬 이온은 투과시키지만, 전해액의 추가적인 분해를 억제하는 Solid electrolyte interphase (SEI) 막을 형성하게 된다. 그러나 상기 SEI 막이 추가적인 전해액 분해를 억제할 수 있을 정도로 충분한 부동태 능력을 갖추지 못하는 경우, 저장 중에 전해액이 추가적으로 분해되어 충전된 흑연이 자가 방전되면서, 결론적으로 전체 전지의 전위가 저하하는 현상이 나타나게 된다.
이러한 부동태 능력에 영향을 줄 수 있는 요소 중 하나는 리튬 이온 전지에 널리 사용되는 리튬염인 LiPF6의 열분해로 생성되는 HF와 PF5와 같은 산(acid)이다. 이러한 산의 공격에 의하여 전극 표면이 열화 되면서 양극에서는 전이금속 용출이 발생하여 저항이 증가하고, 레독스 센터(redox center)를 소실하여 용량이 감퇴할 수 있다. 이렇게 용출된 금속 이온의 경우 음극에 전착되어, 금속의 전착과 추가적인 전해질 분해로 인한 전자의 소모로 인한 비가역 용량의 증가가 발생하여 셀 용량 감퇴가 발생할 뿐만 아니라, 저항 증가 및 흑연 음극의 자가 방전을 유발할 수 있다.
따라서, 고온에서의 SEI 막의 부동태 능력의 유지를 위해서 환원 분해가 잘 발생할 수 있는 이중 혹은 삼중 결합을 포함하는 전해액 첨가제를 도입하거나, 열/수분 등에 인하여 발생하는 부산물, 예컨대 리튬염인 LiPF6 등으로부터 생성된 분해산물인 HF, PF5 등을 제거하여 피막의 손상을 억제하는 것이 주효한 해결책이라 할 수 있다.
한국 공개특허공보 제2013-0116036호
본 발명은 전해액 내부에서 발생할 수 있는 리튬염으로부터 발생된 분해산물 제거 효과가 우수한 비수전해액 첨가제를 포함하는 리튬 이차전지용 비수전해액을 제공하고자 한다.
또한, 본 발명은 상기 리튬 이차전지용 비수전해액을 포함함으로써, 고온 저장 특성이 향상된 리튬 이차전지를 제공하고자 한다.
상기의 목적을 달성하기 위한 본 발명의 일 실시예에서는,
리튬염;
유기용매; 및
첨가제로 하기 화학식 1로 표시되는 화합물을 포함하는 리튬 이차전지용 비수전해액을 제공한다.
[화학식 1]
Figure pat00001
상기 화학식 1에서,
Ra 내지 Rc는 각각 독립적으로 치환 또는 비치환된 탄소수 2 내지 15의 알킬렌기이다.
상기 화학식 1에서, 상기 Ra 내지 Rc는 각각 독립적으로 치환 또는 비치환된 탄소수 2 내지 10의 알킬렌기이며, 보다 구체적으로 Ra 내지 Rc는 각각 독립적으로 치환 또는 비치환된 탄소수 3 내지 7의 알킬렌기이다.
구체적으로, 상기 화학식 1에서, 상기 Ra 내지 Rc는 각각 독립적으로 -CR1H-CR2H-CR3H- (이때, R1, R2 및 R3는 각각 독립적으로 수소 또는 탄소수 1 내지 2의 알킬기이다.), -CR4H-CR5H-CR6H-CR7H- (이때, R4, R5, R6 및 R7는 각각 독립적으로 수소 또는 탄소수 1 내지 2의 알킬기이다.) 및 -CR8H-CR9H-CR10H-CR11H-CR12H- (이때, R8, R9, R10, R11 및 R12는 각각 독립적으로 수소 또는 탄소수 1 내지 2의 알킬기이다.)로 이루어진 군으로부터 선택된 적어도 하나일 수 있다.
보다 구체적으로, 상기 화학식 1에서, 상기 Ra 내지 Rc는 각각 독립적으로 -CH2-CH2-CH2-, -CH2-CH2-CH2-CH2- 및 -CH2-CH2-CH2-CH2-CH2-으로 이루어진 군으로부터 선택된 적어도 하나일 수 있다.
더욱 구체적으로, 상기 화학식 1로 표시되는 화합물은 하기 화학식 1a로 표시되는 것일 수 있다.
[화학식 1a]
Figure pat00002
상기 화학식 1로 표시되는 화합물은 비수전해액 전체 중량을 기준으로 0.1 중량% 내지 2.0 중량%, 구체적으로 0.1 중량% 내지 1.7 중량%로 포함될 수 있다.
또한, 상기 리튬 이차전지용 비수전해액은 환형 카보네이트계 화합물, 할로겐 치환된 카보네이트계 화합물, 설톤계 화합물, 설페이트계 화합물, 포스페이트계 화합물, 보레이트계 화합물, 니트릴계 화합물, 벤젠계 화합물, 아민계 화합물, 실란계 화합물 및 리튬염계 화합물로 이루어진 군으로부터 선택된 적어도 하나 이상의 부가적 첨가제를 추가로 포함할 수 있다.
또한, 본 발명의 또 다른 일 실시예에서는 본 발명의 리튬 이차전지용 비수전해액을 포함하는 리튬 이차전지를 제공한다.
본 발명에서는 충방전 시에 전지 내부에서 리튬염의 음이온 분해로 야기된 HF 또는 PF5 등의 분해산물을 제거(scavenging)할 수 있는 루이스 염기(Lewis base) 기반의 화합물을 포함하는 리튬 이차전지용 비수전해액을 제공하여, 초기 방전 용량 및 고온 저장 특성이 향상된 리튬 이차전지를 제조할 수 있다.
본 명세서에 첨부되는 다음의 도면은 본 발명의 바람직한 실시예를 예시하는 것이며, 전술한 발명의 내용과 함께 본 발명의 기술 사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니다.
도 1은 본 발명의 실험예 1에서 고온 저장 시간에 따른 셀의 OCV (Open-circuit voltage) 변화 정도를 나타낸 그래프이다.
도 2는 본 발명의 실험예 2의 리튬 이차전지 저장 시간에 따른 방전 용량율 및 저항 증가 평가 결과를 나타낸 그래프이다.
도 3은 본 발명의 실험예 3의 리튬 이차전지의 사이클에 따른 방전 용량 유지율을 나타낸 그래프이다.
이하, 본 발명을 더욱 상세하게 설명한다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
종래 리튬 이차전지는 초기 충방전 시 비수전해액이 분해되면서 양극 및 음극 표면에 부동태 능력을 가지는 피막이 형성되어 고온 저장 특성을 크게 향상시킬 수 있다. 하지만, 이러한 피막은 리튬 이온 전지에 널리 사용되는 리튬염인 LiPF6 등의 음이온 열분해로 생성되는 HF와 PF5와 같은 산에 의해 열화될 수 있다. 이러한 산의 공격에 의하여 양극에서는 전이금속 원소의 용출이 발생하면서 표면의 구조의 변화로 전극의 표면 저항이 증가하고, 레독스 센터인 금속 원소들이 소실되면서 이론 용량이 줄어들어 발현 용량이 감소할 수 있다. 또한, 이렇게 용출된 전이금속 이온의 경우 강한 환원 전위 대역에서 반응하는 음극에 전착되어, 전자를 소모할 뿐만 아니라, 전착될 때 피막을 파괴하고, 이에 따라 음극 표면이 노출되기 때문에 추가적인 전해질 분해 반응을 야기한다. 그 결과, 음극의 저항이 증가하고, 비가역 용량이 증가되면서 셀의 용량이 지속적으로 저하되시는 문제가 존재한다.
이에, 본 발명에서는 전지 내부에 비수전해액 첨가제로 루이스 염계 첨가제를 포함함으로써, 리튬염의 분해로 인하여 야기되는 산을 제거하여, 고온 저장 시 SEI 막의 열화나 양극에서의 전이금속 용출 등을 방지할 수 있는 비수전해액 및 이를 포함하는 리튬 이차전지를 제공하고자 한다.
리튬 이차전지용 비수전해액
구체적으로, 본 발명의 일 실시예에서는
리튬염;
유기용매; 및
첨가제로 하기 화학식 1로 표시되는 화합물을 포함하는 리튬 이차전지용 비수전해액을 제공한다.
[화학식 1]
Figure pat00003
상기 화학식 1에서,
Ra 내지 Rc는 각각 독립적으로 치환 또는 비치환된 탄소수 2 내지 15의 알킬렌기이다.
(1) 리튬염
먼저, 본 발명의 리튬 이차전지용 비수전해액에 있어서, 상기 리튬염은 리튬 이차전지용 전해액에 통상적으로 사용되는 것들이 제한 없이 사용될 수 있으며, 예를 들어 양이온으로 Li+를 포함하고, 음이온으로는 F-, Cl-, Br-, I-, NO3 -, N(CN)2 -, BF4 -, ClO4 -, B10Cl10 -, AlCl4 -, AlO4 -, PF6 -, CF3SO3 -, CH3CO2 -, CF3CO2 -, AsF6 -, SbF6 -, CH3SO3 -, (CF3CF2SO2)2N-, (CF3SO2)2N-, (FSO2)2N-, BF2C2O4 -, BC4O8 -, PF4C2O4 -, PF2C4O8 -, (CF3)2PF4 -, (CF3)3PF3 -, (CF3)4PF2 -, (CF3)5PF-, (CF3)6P-, C4F9SO3 -, CF3CF2SO3 -, CF3CF2(CF3)2CO-, (CF3SO2)2CH- , CF3(CF2)7SO3 - 및 SCN-로 이루어진 군으로부터 선택된 적어도 어느 하나를 들 수 있다.
구체적으로, 상기 리튬염은 LiCl, LiBr, LiI, LiBF4, LiClO4, LiB10Cl10, LiAlCl4, LiAlO4, LiPF6, LiCF3SO3, LiCH3CO2, LiCF3CO2, LiAsF6, LiSbF6, LiCH3SO3, LiFSI (Lithium bis(fluorosulfonyl)imide, LiN(SO2F)2), LiBETI (lithium bisperfluoroethanesulfonimide, LiN(SO2CF2CF3)2 및 LiTFSI (lithium (bis)trifluoromethanesulfonimide, LiN(SO2CF3)2)로 이루어진 군으로부터 선택된 단일물 또는 2종 이상의 혼합물을 포함할 수 있다. 이들 외에도 리튬 이차전지의 전해액에 통상적으로 사용되는 리튬염이 제한 없이 사용할 수 있다.
상기 리튬염은 통상적으로 사용 가능한 범위 내에서 적절히 변경할 수 있으나, 최적의 전극 표면의 부식 방지용 피막 형성 효과를 얻기 위하여, 전해액 내에 0.8 M 내지 4.0 M의 농도, 구체적으로 1.0M 내지 3.0M 농도로 포함될 수 있다.
상기 리튬염의 농도가 0.8 M 미만이면, 리튬 이차전지의 저온 출력 개선 및 고온 저장 시 사이클 특성 개선의 효과가 미미하고, 4.0 M 농도를 초과하면 비수전해액의 점도가 증가함에 따라 전해액 함침성이 저하될 수 있다.
(2) 유기용매
또한, 리튬 이차전지용 비수전해액에 있어서, 상기 유기용매로는 환형 카보네이트계 유기용매, 선형 카보네이트계 유기용매, 선형 에스테르계 유기용매 및 환형 에스테르계 유기용매로 이루어진 군으로부터 선택된 적어도 하나 이상의 유기용매를 포함할 수 있다.
구체적으로, 상기 유기용매는 환형 카보네이트계 유기용매, 선형 카보네이트계 유기용매 또는 이들의 혼합 유기용매를 포함할 수 있다.
상기 환형 카보네이트계 유기용매는 고점도의 유기용매로서 유전율이 높아 전해질 내의 리튬염을 잘 해리시킬 수 있는 유기용매로서, 그 구체적인 예로 에틸렌 카보네이트(EC), 프로필렌 카보네이트(PC), 1,2-부틸렌 카보네이트, 2,3-부틸렌 카보네이트, 1,2-펜틸렌 카보네이트, 2,3-펜틸렌 카보네이트 및 비닐렌 카보네이트로 이루어진 군으로부터 선택되는 적어도 하나 이상의 유기용매를 포함할 수 있으며, 이 중에서도 에틸렌 카보네이트를 포함할 수 있다.
또한, 상기 선형 카보네이트계 유기용매는 저점도 및 저유전율을 가지는 유기용매로서, 그 대표적인 예로 디메틸 카보네이트(dimethyl carbonate, DMC), 디에틸 카보네이트(diethyl carbonate, DEC), 디프로필 카보네이트, 에틸메틸 카보네이트(EMC), 메틸프로필 카보네이트 및 에틸프로필 카보네이트로 이루어진 군으로부터 선택되는 적어도 하나 이상의 유기용매를 사용할 수 있으며, 구체적으로 에틸메틸 카보네이트(EMC)를 포함할 수 있다.
또한, 상기 유기용매는 높은 이온 전도율을 갖는 전해액을 제조하기 위하여, 상기 환형 카보네이트계 유기용매 및 선형 카보네이트계 유기용매의 혼합 유기용매에 선형 에스테르계 유기용매 및/또는 환형 에스테르계 유기용매를 추가로 포함할 수도 있다.
이러한 선형 에스테르계 유기용매는 그 구체적인 예로 메틸 아세테이트, 에틸 아세테이트, 프로필 아세테이트, 메틸 프로피오네이트, 에틸 프로피오네이트, 프로필 프로피오네이트 및 부틸 프로피오네이트로 이루어진 군으로부터 선택되는 적어도 하나 이상의 유기용매를 들 수 있다.
또한, 상기 환형 에스테르계 유기용매로는 γ-부티로락톤, γ-발레로락톤, γ-카프로락톤, σ-발레로락톤, ε-카프로락톤과 같은 이루어진 군으로부터 선택되는 적어도 하나 이상의 유기용매를 들 수 있다.
한편, 상기 유기용매는 필요에 따라 리튬 이차전지용 전해액에 통상적으로 사용되는 유기용매를 제한 없이 추가하여 사용할 수 있다. 예를 들면, 에테르계 유기용매, 아미드계 유기용매 및 니트릴계 유기용매 중 적어도 하나 이상의 유기용매를 추가로 포함할 수도 있다.
(3) 첨가제
본 발명의 리튬 이차전지용 비수전해액은 첨가제로 하기 화학식 1로 표시되는 화합물을 포함할 수 있다.
[화학식 1]
Figure pat00004
상기 화학식 1에서,
Ra 내지 Rc는 각각 독립적으로 치환 또는 비치환된 탄소수 2 내지 15의 알킬렌기이다.
이때, 상기 화학식 1에서, Ra 내지 Rc는 각각 독립적으로 치환 또는 비치환된 탄소수 2 내지 10의 알킬렌기이며, 보다 구체적으로 Ra 내지 Rc는 각각 독립적으로 치환 또는 비치환된 탄소수 3 내지 7의 알킬렌기이다.
구체적으로, 상기 화학식 1에서, 상기 Ra 내지 Rc는 각각 독립적으로 -CR1H-CR2H-CR3H- (이때, R1, R2 및 R3는 각각 독립적으로 수소 또는 탄소수 1 내지 2의 알킬기이다.), -CR4H-CR5H-CR6H-CR7H- (이때, R4, R5, R6 및 R7는 각각 독립적으로 수소 또는 탄소수 1 내지 2의 알킬기이다.) 및 -CR8H-CR9H-CR10H-CR11H-CR12H- (이때, R8, R9, R10, R11 및 R12는 각각 독립적으로 수소 또는 탄소수 1 내지 2의 알킬기이다.)로 이루어진 군으로부터 선택된 적어도 하나 이상일 수 있다.
보다 구체적으로, 상기 화학식 1에서, 상기 Ra 내지 Rc는 각각 독립적으로 -CH2-CH2-CH2-, -CH2-CH2-CH2-CH2- 및 -CH2-CH2-CH2-CH2-CH2-으로 이루어진 군으로부터 선택된 적어도 하나 이상인 일 수 있다.
더욱 구체적으로, 상기 화학식 1의 화합물은 그 대표적인 예로 하기 화학식 1a로 표시되는 화합물을 들 수 있다.
[화학식 1a]
Figure pat00005
상기 화학식 1의 화합물은 비수전해액 전체 중량을 기준으로 0.1 중량% 내지 2.0 중량%, 구체적으로 0.1 중량% 내지 1.7 중량%, 더욱 바람직하게 0.5 중량% 내지 1.5 중량%로 포함될 수 있다.
상기 첨가제가 상기 범위로 포함되는 경우, 제반 성능이 더욱 향상된 이차전지를 제조할 수 있다. 상기 첨가제의 함량이 0.1 중량% 미만이면 HF 혹은 PF5를 제거할 수는 있으나, 시간이 지날수록 제거 효과가 미미할 수 있으며, 2.0 중량%를 초과하는 경우에는 과량의 첨가제 분해로 인하여 부반응으로 고온 저장 시 저항이 증가될 수 있다.
따라서, 상기 첨가제는 0.1 중량% 이상, 구체적으로 0.5 중량% 이상으로 포함되고, 2.0 중량% 이하, 구체적으로 1.7 중량% 이하, 더욱 구체적으로 1.5 중량% 이하로 포함되는 경우에 첨가제에 의한 부반응, 용량 저하 및 저항 증가 등의 단점을 최대한 억제하면서, 리튬염의 분해산물인 HF와 PF5 등의 산을 보다 효과적으로 제거할 수 있다.
상술한 바와 같이, 본 발명에서는 전해액 첨가제로 상기 화학식 1로 표시되는 화합물과 같이 질소 원소를 포함하는 루이스 염기 기반의 화합물을 포함으로써, 전지의 고온에서의 열화의 원인을 야기하는 부산물, 예컨대 리튬염의 분해로 인하여 발생할 수 있는 산을 제거하여, SEI 막의 열화나 양극에서의 전이금속 용출 등의 문제점을 개선할 수 있다.
예컨대, 상기 화학식 1로 표시되는 화합물의 경우, P=O 작용기가 루이스 염기로 작용하여 음이온의 분해로 생성되는 분해산물인 HF, PF5 등의 루이스 산과 반응하여 이를 제거(scavenging)할 수 있으며, 또한 P에 결합되어 있는 강한 전자 공여기(electron-donating group)인 3차 질소 원소가 이러한 루이스 염기로서의 역량을 상당히 강하게 유지할 수 있도록 한다. 따라서 루이스 산으로부터 기인하는 양극 혹은 음극 표면 피막의 화학 반응으로 인한 열화 거동을 억제할 수 있으므로, 피막의 파괴에 의한 전지의 추가적인 전해액 분해를 막을 수 있고, 나아가 이차전지의 자가 방전을 완화하여 고온 저장 특성을 향상시킬 수 있다.
(4) 부가적 첨가제
또한, 본 발명의 리튬 이차전지용 비수전해액은 고출력의 환경에서 비수전해액이 분해되어 음극 붕괴가 유발되는 것을 방지하거나, 저온 고율방전 특성, 고온 안정성, 과충전 방지, 고온에서의 전지 팽창 억제 효과 등을 더욱 향상시키기 위하여, 필요에 따라 상기 비수전해액 내에 부가적 첨가제들을 추가로 포함할 수 있다.
이러한 부가적 첨가제는 그 대표적인 예로 환형 카보네이트계 화합물, 할로겐 치환된 카보네이트계 화합물, 설톤계 화합물, 설페이트계 화합물, 포스페이트계 화합물, 보레이트계 화합물, 니트릴계 화합물, 벤젠계 화합물, 아민계 화합물, 실란계 화합물 및 리튬염계 화합물로 이루어진 군으로부터 선택된 적어도 하나 이상의 부가적 첨가제를 포함할 수 있다.
상기 환형 카보네이트계 화합물은 비닐렌카보네이트(VC) 또는 비닐에틸렌 카보네이트를 들 수 있다.
상기 할로겐 치환된 카보네이트계 화합물은 플루오로에틸렌 카보네이트(FEC))를 들 수 있다.
상기 설톤계 화합물은 1,3-프로판 설톤(PS), 1,4-부탄 설톤, 에텐설톤, 1,3-프로펜 설톤(PRS), 1,4-부텐 설톤 및 1-메틸-1,3-프로펜 설톤으로 이루어진 군으로부터 선택된 적어도 하나 이상의 화합물을 들 수 있다.
상기 설페이트계 화합물은 에틸렌 설페이트(Ethylene Sulfate; Esa), 트리메틸렌설페이트 (Trimethylene sulfate; TMS), 또는 메틸트리메틸렌설페이트 (Methyl trimethylene sulfate; MTMS)을 들 수 있다.
상기 포스페이트계 화합물은 리튬 디플루오로(비스옥살라토)포스페이트, 리튬 디플루오로포스페이트, 테트라메틸 트리메틸 실릴 포스페이트, 트리메틸 실릴 포스파이트, 트리스(2,2,2-트리플루오로에틸)포스페이트 및 트리스(트리플루오로에틸) 포스파이트로 이루어진 군으로부터 선택된 1종 이상의 화합물을 들 수 있다.
상기 보레이트계 화합물은 테트라페닐보레이트, 리튬 옥살릴디플루오로보레이트를 들 수 있다.
상기 니트릴계 화합물은 숙시노니트릴, 아디포니트릴, 아세토니트릴, 프로피오니트릴, 부티로니트릴, 발레로니트릴, 카프릴로니트릴, 헵탄니트릴, 사이클로펜탄 카보니트릴, 사이클로헥산 카보니트릴, 2-플루오로벤조니트릴, 4-플루오로벤조니트릴, 다이플루오로벤조니트릴, 트리플루오로벤조니트릴, 페닐아세토니트릴, 2-플루오로페닐아세토니트릴, 및 4-플루오로페닐아세토니트릴로 이루어진 군에서 선택되는 적어도 하나 이상의 화합물을 들 수 있다.
상기 벤젠계 화합물은 플루오로벤젠을 들 수 있고, 상기 아민계 화합물은 트리에탄올아민 또는 에틸렌 디아민 등을 들 수 있으며, 상기 실란계 화합물로 테트라비닐실란을 들 수 있다.
상기 리튬염계 화합물은 상기 비수전해액에 포함되는 리튬염과 상이한 화합물로서, LiPO2F2, LiODFB, LiBOB(리튬 비스옥살레이토보레이트(LiB(C2O4)2) 및 LiBF4로 이루어진 군으로부터 선택된 1종 이상의 화합물을 들 수 있다.
이러한 부가적 첨가제 중, 비닐렌 카보네이트, 비닐에틸렌 카보네이트 또는 숙시노 니트릴을 포함하는 경우에 이차전지의 초기 활성화 공정시 음극 표면에 보다 견고한 SEI 피막을 형성할 수 있다.
상기 LiBF4를 포함하는 경우에는 고온시의 전해액의 분해로 인하여 생성될 수 있는 가스 발생을 억제하여, 이차전지의 고온 안정성을 향상시킬 수 있다.
한편, 상기 부가적 첨가제들은 2 종 이상이 혼합되어 사용될 수 있으며, 비수전해액 전체 중량을 기준으로 0.01 내지 50 중량%, 구체적으로 0.01 내지 10 중량%로 포함될 수 있으며, 바람직하게는 0.05 내지 5 중량% 일 수 있다. 상기 부가적 첨가제의 함량이 0.01 중량% 보다 적으면 전지의 저온 출력 개선 및 고온 저장 특성 및 고온 수명 특성 개선의 효과가 미미하고, 상기 부가적 첨가제의 함량이 50 중량%를 초과하면 전지의 충방전시 전해액 내의 부반응이 과도하게 발생할 가능성이 있다. 특히, 상기 SEI 막 형성용 첨가제들이 과량으로 첨가될 시에 고온에서 충분히 분해되지 못하여, 상온에서 전해액 내에서 미반응물 또는 석출된 채로 존재하고 있을 수 있다. 이에 따라 이차전지의 수명 또는 저항특성이 저하되는 부반응이 발생될 수 있다.
리튬 이차전지
또한, 본 발명의 또 다른 일 실시예에서는 본 발명의 리튬 이차전지용 비수전해액을 포함하는 리튬 이차전지를 제공한다.
한편, 본 발명의 리튬 이차전지는 양극, 음극 및 양극과 음극 사이에 세퍼레이터가 순차적으로 적층되어 있는 전극 조립체를 형성하여 전지 케이스에 수납한 다음, 본 발명의 비수전해액을 투입하여 제조할 수 있다.
이러한 본 발명의 리튬 이차전지를 제조하는 방법은 당 기술 분야에 알려진 통상적인 방법에 따라 제조되어 적용될 수 있으며, 구체적으로 후술하는 바와 같다.
(1) 양극
상기 양극은 양극 집전체 상에 양극활물질, 바인더, 도전재 및 용매 등을 포함하는 양극 슬러리를 코팅한 다음, 건조 및 압연하여 제조할 수 있다.
상기 양극 집전체는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다.
상기 양극 활물질은 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물로서, 구체적으로는 코발트, 망간, 니켈 또는 알루미늄과 같은 1종 이상의 금속과 리튬을 포함하는 리튬 복합금속 산화물을 포함할 수 있다. 보다 구체적으로, 상기 리튬 복합금속 산화물은 리튬-망간계 산화물(예를 들면, LiMnO2, LiMn2O4 등), 리튬-코발트계 산화물(예를 들면, LiCoO2 등), 리튬-니켈계 산화물(예를 들면, LiNiO2 등), 리튬-니켈-망간계 산화물(예를 들면, LiNi1-YMnYO2(0<Y<1), LiMn2-zNizO4(0<Z<2), 리튬-니켈-코발트계 산화물(예를 들면, LiNi1-Y1CoY1O2(0<Y1<1), 리튬-망간-코발트계 산화물(예를 들면, LiCo1-Y2MnY2O2(0<Y2<1), LiMn2-z1Coz1O4(0<Z1<2), 리튬-니켈-망간-코발트계 산화물(예를 들면, Li(NipCoqMnr1)O2(0<p<1, 0<q<1, 0<r1<1, p+q+r1=1) 또는 Li(Nip1Coq1Mnr2)O4(0<p1<2, 0<q1<2, 0<r2<2, p1+q1+r2=2), 또는 리튬-니켈-코발트-전이금속(M) 산화물(예를 들면, Li(Nip2Coq2Mnr3MS2)O2(M은 Al, Fe, V, Cr, Ti, Ta, Mg 및 Mo로 이루어지는 군으로부터 선택되고, p2, q2, r3 및 s2는 각각 독립적인 원소들의 원자분율로서, 0<p2<1, 0<q2<1, 0<r3<1, 0<s2<1, p2+q2+r3+s2=1이다) 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 화합물이 포함될 수 있다. 이 중에서도 전지의 용량 특성 및 안정성을 높일 수 있다는 점에서 상기 리튬 복합금속 산화물은 LiCoO2, LiMnO2, LiNiO2, 리튬 니켈망간코발트 산화물(예를 들면, Li(Ni0.6Mn0.2Co0.2)O2, Li(Ni0.5Mn0.3Co0.2)O2, 또는 Li(Ni0.8Mn0.1Co0.1)O2 등), 또는 리튬 니켈코발트알루미늄 산화물(예를 들면, Li(Ni0.8Co0.15Al0.05)O2 등) 등일 수 있으며, 리튬 복합금속 산화물을 형성하는 구성원소의 종류 및 함량비 제어에 따른 개선 효과의 현저함을 고려할 때 상기 리튬 복합금속 산화물은 Li(Ni0.6Mn0.2Co0.2)O2, Li(Ni0.5Mn0.3Co0.2)O2, Li(Ni0.7Mn0.15Co0.15)O2 또는 Li(Ni0.8Mn0.1Co0.1)O2 등일 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
상기 양극 활물질은 양극 슬러리 중 고형분의 전체 중량을 기준으로 80 중량% 내지 99 중량%, 구체적으로 90 중량% 내지 99 중량%로 포함될 수 있다. 이때, 상기 양극 활물질의 함량이 80 중량% 이하인 경우 에너지 밀도가 낮아져 용량이 저하될 수 있다.
상기 바인더는 활물질과 도전재 등의 결합과 집전체에 대한 결합에 조력하는 성분으로서, 통상적으로 양극 슬러리 중 고형분의 전체 중량을 기준으로 1 내지 30 중량%로 첨가된다. 이러한 바인더의 예로는, 폴리비닐리덴플루오라이드, 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 테르 모노머, 스티렌-부타디엔 고무, 불소 고무, 다양한 공중합체 등을 들 수 있다.
또한, 상기 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 부여하는 물질로서, 양극 슬러리 중 고형분의 전체 중량을 기준으로 1 내지 20 중량%로 첨가될 수 있다. 
이러한 도전재는 그 대표적인 예로 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼니스 블랙, 램프 블랙, 또는 서멀 블랙 등의 탄소 분말; 결정구조가 매우 발달된 천연 흑연, 인조흑연, 또는 그라파이트 등의 흑연 분말; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본 분말, 알루미늄 분말, 니켈 분말 등의 도전성 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.
또한, 상기 용매는 NMP(N-methyl-2-pyrrolidone) 등의 유기용매를 포함할 수 있으며, 상기 양극 활물질 및 선택적으로 바인더 및 도전재 등을 포함할 때 바람직한 점도가 되는 양으로 사용될 수 있다. 예를 들면, 양극 활물질 및 선택적으로 바인더 및 도전재를 포함하는 양극 슬러리 중의 고형분 농도가 10 중량% 내지 60 중량%, 바람직하게 20 중량% 내지 50 중량%가 되도록 포함될 수 있다
(2) 음극
상기 음극은 음극 집전체 상에 음극활물질, 바인더, 도전재 및 용매 등을 포함하는 음극 슬러리를 코팅한 다음, 건조 및 압연하여 제조할 수 있다.
상기 음극 집전체는 일반적으로 3 내지 500㎛의 두께를 가진다. 이러한 음극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또한, 양극 집전체와 마찬가지로, 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
또한, 상기 음극활물질은 리튬 금속, 리튬 이온을 가역적으로 인터칼레이션/디인터칼레이션할 수 있는 탄소 물질, 금속 또는 이들 금속과 리튬의 합금, 금속 복합 산화물, 리튬을 도프 및 탈도프할 수 있는 물질 및 전이 금속 산화물로 이루어진 군으로부터 선택된 적어도 하나 이상을 포함할 수 있다.
상기 리튬 이온을 가역적으로 인터칼레이션/디인터칼레이션할 수 있는 탄소 물질로는, 리튬 이온 이차전지에서 일반적으로 사용되는 탄소계 음극 활물질이라면 특별히 제한 없이 사용할 수 있으며, 그 대표적인 예로는 결정질 탄소, 비정질 탄소 또는 이들을 함께 사용할 수 있다. 상기 결정질 탄소의 예로는 무정형, 판상, 인편상(flake), 구형 또는 섬유형의 천연 흑연 또는 인조 흑연과 같은 흑연을 들 수 있고, 상기 비정질 탄소의 예로는 소프트 카본(soft carbon: 저온 소성 탄소) 또는 하드 카본(hard carbon), 메조페이스 피치 탄화물, 소성된 코크스 등을 들 수 있다.
상기 금속 또는 이들 금속과 리튬의 합금으로는 Cu, Ni, Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al 및 Sn으로 이루어진 군에서 선택되는 금속 또는 이들 금속과 리튬의 합금이 사용될 수 있다.
상기 금속 복합 산화물로는 PbO, PbO2, Pb2O3, Pb3O4, Sb2O3, Sb2O4, Sb2O5, GeO, GeO2, Bi2O3, Bi2O4, Bi2O5, LixFe2O3(0≤x≤1), LixWO2(0≤x≤1) 및 SnxMe1-xMe'yOz (Me: Mn, Fe, Pb, Ge; Me': Al, B, P, Si, 주기율표의 1족, 2족, 3족 원소, 할로겐; 0<x≤1; 1≤y≤3; 1≤z≤8) 로 이루어진 군에서 선택되는 것이 사용될 수 있다.
상기 리튬을 도프 및 탈도프할 수 있는 물질로는 Si, SiOx(0<x≤2), Si-Y 합금(상기 Y는 알칼리 금속, 알칼리 토금속, 13족 원소, 14족 원소, 전이금속, 희토류 원소 및 이들의 조합으로 이루어진 군에서 선택되는 원소이며, Si은 아님), Sn, SnO2, Sn-Y(상기 Y는 알칼리 금속, 알칼리 토금속, 13족 원소, 14족 원소, 전이금속, 희토류 원소 및 이들의 조합으로 이루어진 군에서 선택되는 원소이며, Sn은 아님) 등을 들 수 있고, 또한 이들 중 적어도 하나와 SiO2를 혼합하여 사용할 수도 있다. 상기 원소 Y로는 Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti, Zr, Hf, Rf, V, Nb, Ta, Db, Cr, Mo, W, Sg, Tc, Re, Bh, Fe, Pb, Ru, Os, Hs, Rh, Ir, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, Sn, In, Ge, P, As, Sb, Bi, S, Se, Te, Po 및 이들의 조합으로 이루어진 군에서 선택될 수 있다.
상기 전이 금속 산화물로는 리튬 함유 티타늄 복합 산화물(LTO), 바나듐 산화물, 리튬 바나듐 산화물 등을 들 수 있다.
상기 음극 활물질은 음극 슬러리 중 고형분의 전체 중량을 기준으로 80 중량% 내지 99중량%로 포함될 수 있다.
상기 바인더는 도전재, 활물질 및 집전체 간의 결합에 조력하는 성분으로서, 통상적으로 음극 슬러리 중 고형분의 전체 중량을 기준으로 1 내지 30 중량%로 첨가된다. 이러한 바인더의 예로는, 폴리비닐리덴플루오라이드, 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 모노머, 스티렌-부타디엔 고무, 불소 고무, 이들의 다양한 공중합체 등을 들 수 있다.
상기 도전재는 음극 활물질의 도전성을 더욱 향상시키기 위한 성분으로서, 음극 슬러리 중 고형분의 전체 중량을 기준으로 1 내지 20 중량%로 첨가될 수 있다. 이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼니스 블랙, 램프 블랙, 또는 서멀 블랙 등의 탄소 분말; 결정구조가 매우 발달된 천연 흑연, 인조흑연, 또는 그라파이트 등의 흑연 분말; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본 분말, 알루미늄 분말, 니켈 분말 등의 도전성 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스커; 산화티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.
상기 용매는 물 또는 NMP, 알코올 등의 유기용매를 포함할 수 있으며, 상기 음극 활물질 및 선택적으로 바인더 및 도전재 등을 포함할 때 바람직한 점도가 되는 양으로 사용될 수 있다. 예를 들면, 음극 활물질 및 선택적으로 바인더 및 도전재를 포함하는 슬러리 중의 고형분 농도가 50 중량% 내지 75 중량%, 바람직하게 50 중량% 내지 65 중량%가 되도록 포함될 수 있다.
(3) 세퍼레이터
본 발명의 리튬 이차전지에 포함되는 상기 세퍼레이터는 일반적으로 사용되는 통상적인 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름을 단독으로 또는 이들을 적층하여 사용할 수 있으며, 또는 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포를 사용할 수 있으나, 이에 한정되는 것은 아니다.
본 발명의 리튬 이차전지의 외형은 특별한 제한이 없으나, 캔을 사용한 원통형, 각형, 파우치(pouch)형 또는 코인(coin)형 등이 될 수 있다.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.
실시예
실시예 1.
(리튬 이차전지용 비수전해액 제조)
1.2M LiPF6가 용해된 비수성 유기용매 (에틸렌 카보네이트(EC):에틸 메틸 카보네이트(EMC)=3:7부피비) 99g에 상기 화학식 1a로 표시되는 화합물 1g을 첨가하여 리튬 이차전지용 비수전해액을 제조하였다.
(코인형 하프셀 제조)
양극 활물질 (리튬 니켈-코발트-망간 산화물 (Li(Ni0.8Co0.1Mn0.1)O2)), 도전재(카본 블랙) 및 바인더(폴리비닐리덴플루오라이드)를 97.5:1:1.5 중량비로 N-메틸-2-피롤리돈 (NMP)에 투입하여 양극 슬러리 (고형분 함량 60 중량%)를 제조하였다. 상기 양극 슬러리를 두께가 15㎛인 양극 집전체 (Al 박막)에 도포하고, 건조하고 롤 프레스(roll press)를 실시하고, 양극을 제조하였다.
드라이 룸에서 상기 양극과 Li 메탈의 음극 사이에 다공성 폴리프로필렌 세퍼레이터를 개재한 다음, 상기 제조된 비수전해액을 주액하여 코인형 하프셀을 제조하였다.
실시예 2.
비수전해액 제조 시에 비수성 유기용매 98.5g에 상기 화학식 1a로 표시되는 화합물 1.5g을 첨가하는 것을 제외하고는, 상기 실시예 1과 마찬가지의 방법으로 비수전해액 및 이를 포함하는 코인형 하프셀을 제조하였다.
실시예 3.
비수전해액 제조 시에 비수성 유기용매 98g에 상기 화학식 1a로 표시되는 화합물 2g을 첨가하는 것을 제외하고는, 상기 실시예 1과 마찬가지의 방법으로 비수전해액 및 이를 포함하는 코인형 하프셀을 제조하였다.
실시예 4.
(리튬 이차전지용 비수전해액 제조)
0.7M LiPF6 및 0.3M LiFSI 가 용해된 유기용매 (에틸렌카보네이트:에틸메틸 카보네이트=3:7부피비) 90.7g에 화학식 1a로 표시되는 화합물 0.5g, 테트라비닐실란 0.1g, 리튬 디플루오르 포스페이트 1.0g 에틸렌 설포네이트 1.0g, 1,3-프로판 설톤 0.5g 및 LiBF4 0.2g 및 플루오로벤젠 6.0g을 첨가하여 리튬 이차전지용 비수전해액을 제조하였다.
(전극조립체 제조)
양극 활물질 (LiNi0.8Co0.1Mn0.1O2; NCM) 도전재(카본 블랙) 및 바인더(폴리비닐리덴플루오라이드)를 97.5:1:1.5 중량비로 N-메틸-2-피롤리돈(NMP)에 첨가하여 양극 슬러리(고형분 함량: 50 중량%)를 제조하였다. 상기 양극 슬러리를 12㎛ 두께의 양극 집전체인 알루미늄(Al) 박막에 도포 및 건조한 후, 롤 프레스(roll press)를 실시하여 양극을 제조하였다.
음극 활물질 (SiO:그라파이트=5:95 중량비), 바인더(SBR-CMC) 및 도전재(카본 블랙)를 95:3.5:1.5 중량비로 용매인 물에 첨가하여 음극 혼합물 슬러리(고형분 함량: 60 중량%)를 제조하였다. 상기 음극 혼합물 슬러리를 6㎛ 두께의 음극 집전체인 구리(Cu) 박막에 도포 및 건조한 후, 롤 프레스(roll press)를 실시하여 음극을 제조하였다.
상기 양극, 무기물 입자(Al2O3)가 도포된 폴리올레핀계 다공성 분리막 및 음극을 순차적으로 적층하여 전극조립체를 제조하였다.
(리튬 이차전지 제조)
파우치형 전지 케이스 내에 상기 조립된 전극조립체를 수납하고, 상기 리튬 이차전지용 비수전해액을 주액하여 파우치형 리튬 이차전지를 제조하였다.
비교예 1.
(리튬 이차전지용 비수전해액 제조)
비수성 유기용매 (에틸렌 카보네이트(EC):에틸 메틸 카보네이트(EMC)=3:7부피비)에 LiPF6가 1.2M이 되도록 용해하여 비수전해액을 제조하였다.
(코인형 하프셀 제조)
실시예 1의 비수전해액 대신 상기 제조된 비수전해액을 사용하는 것을 제외하고는 상기 실시예 1과 마찬가지의 방법으로 코인형 하프셀을 제조하였다.
비교예 2.
(리튬 이차전지용 비수전해액 제조)
0.7M LiPF6 및 0.3M LiFSI 가 용해된 유기용매 (에틸렌카보네이트:에틸메틸 카보네이트=3:7 부피비) 91.2g에 테트라비닐실란 0.1g, 리튬 디플루오르 포스페이트 1.0g 에틸렌 설포네이트 1.0g, 1,3-프로판 설톤 0.5g, LiBF4 0.2g, 및 플루오로벤젠 6.0g을 첨가하여 리튬 이차전지용 비수전해액을 제조하였다.
(리튬 이차전지 제조)
실시예 4의 비수전해액 대신 상기 제조된 비수전해액을 사용하는 것을 제외하고는, 상기 실시예 4와 마찬가지의 방법으로 파우치형 리튬 이차전지를 제조하였다.
실험예
실험예 1.
드라이룸에서 제조된 상기 실시예 1 내지 3의 코인형 하프셀과 비교예 1의 코인형 하프셀을 각각 6개씩 25℃ 항온조 내에 24시간 정치시킨 후, 3.00V 내지 4.25 V (vs. Li/Li+)의 전압 범주에서 0.1C 정전류-정전압(CC-CV)의 충방전을 수행하였다. 이때, CV의 전류 종료 조건을 0.05C로 설정하였다. 상기 충방전을 1 사이클로 하여 5 사이클 충방전을 실시하였다.
5 사이클 충방전을 실시한 후, 동일한 조건으로 4.25V로 충전을 상온에서 진행한 후에 코인 하프셀을 60℃ 고온 챔버 내에 정치시키면서, 각각 10시간, 15시간 및 20시간 마다 OCV (Open-circuit voltage)를 변화를 측정하고, 이를 도 1에 나타내었다.
도 1을 살펴보면, 실시예 1 내지 3에서 제조된 코인형 하프셀의 경우, 고온 저장 후 20 시간 이후에도 OCV 감소가 -0.03 V 미만으로 크지 않는 반면, 첨가제를 포함하지 않는 비수전해액을 구비한 비교예 1의 코인형 하프셀의 경우, 고온 저장 후 20 시간이 지나면 OCV 감소가 큰 것을 알 수 있다.
즉, 상기 비교예 1과 같이 OCV 변화가 큰 경우, 양극의 자가 방전이 심하고, 용량이 열화된다는 것을 의미한다. 반면에, 실시예 1 내지 3의 코인형 하프셀은 OCV 감소가 작으므로, 전지의 자가 방전이 완화되었음을 알 수 있다.
한편, 실시예 1 및 실시예 2의 코인형 하프셀에 비하여 첨가제를 2 중량% 포함하는 비수전해액을 구비한 실시예 3의 코인형 하프셀의 경우, 비교예 1의 코인형 하프셀에 비해서는 OCV 감소가 작지만, 첨가제의 분해량이 증가하면서 전극의 저항이 증가하여 실시예 1 및 실시예 2의 이차전지에 비해서는 상대적으로 OCV 감소 변화가 커진 것을 알 수 있다.
실험예 2. 고온 저장 특성 평가
상기 실시예 4과 비교예 2에서 제조된 각각의 이차전지를 0.1C CC로 활성화한 후, 디가스를 진행하였다. 이어서, 25℃ 에서 정전류-정전압(CC-CV) 충전 조건으로 4.20 V까지 0.33 C CC으로 충전한 다음 0.05 C current cut을 진행하였고, CC 조건으로 2.5 V까지 0.33 C으로 방전하였다. 상기 충방전을 1 사이클로 하여, 3 사이클을 진행하였다.
이어서, PNE-0506 충방전기(제조사: (주)PNE 솔루션, 5 V, 6 A)를 사용하여 초기 방전 용량을 측정하고, SOC 50%로 SOC를 조정한 다음, 2.5 C의 펄스(pulse)를 10 초간 인가하여, 펄스 인가 전 전압과, 인가 후 전압의 차를 통하여 초기 저항을 산출하였다.
그 다음, SOC 100까지 0.33 C CC 조건으로 재충전한 후, 60℃ 고온에서 4주 동안 저장하였다. 이때, 고온 저장 후 2주 마다 0.33 C CC의 전류로 CC-CV 충방전을 진행한 후, PNE-0506 충방전기(제조사: (주)PNE 솔루션, 5 V, 6 A)를 사용하여 고온 저장 후 방전 용량을 측정하였다.
상기 측정된 초기 방전 용량과 2주마다 측정된 고온 저장 후 방전 용량을 하기 식 (1)에 대입하여 고온 저장 후 방전 용량 유지율을 산출하고, 그 결과를 도 2에 나타내었다.
이때, 상기 고온 저장 후 2주마다 방전 용량을 측정한 다음, SOC 50%에서 2.5 C로 10초간 방전 펄스(pulse)를 준 상태에서 나타나는 전압 강하를 통하여 고온 저장 후 2주마다 저항을 계산하고, 이를 하기 식 (2)에 대입하여 저항 증가율(%)을 계산한 다음, 이를 도 2에 나타내었다. 이때, 상기 전압 강하는 PNE-0506 충방전기(제조사: (주)PNE 솔루션, 5 V, 6 A)를 사용하여 측정하였다.
식 (1): 방전 용량 유지율(%) = (고온 저장 후 2주 마다의 방전 용량/초기 방전 용량)×100
식 (2): 저항 증가율 (%) = {(고온 저장 후 2 주 마다의 저항-초기 저항)/초기 저항}×100
도 2를 살펴보면, 본 발명의 비수전해액 첨가제를 포함하는 비수전해액을 구비한 실시예 4의 이차전지는 비교예 2의 이차전지에 비하여 고온 저장 2주 후부터 방전 용량 유지율(%) 및 저항 증가율(%)이 확연히 개선된 것을 확인할 수 있다.
즉, 본 발명의 실시예 4의 비수전해액을 구비한 이차전지의 경우, 비수전해액에 포함된 리튬염(LiPF6)이 고온에서의 분해되어 형성된 리튬염 부산물(HF/PF5)을 제거할 수 있는 첨가제를 포함하고 있기 때문에, 비교예 2의 비수전해액을 구비한 이차전지에 비하여 리튬염 부산물에 의해 발생하는 양극에서의 전이금속 용출과 음극 표면의 SEI의 열화가 억제된 것으로 판단할 수 있다.
실험예 3. 사이클 특성 평가
실시예 4에서 제조된 리튬 이차전지와 비교예 2에서 제조된 리튬 이차전지를 각각 0.1C CC로 활성화한 후, 디가스를 진행하였다.
이어서, 25℃에서 정전류-정전압(CC-CV) 충전 조건으로 4.20V까지 0.33C CC으로 충전한 다음 0.05 C current cut을 진행하였고, CC 조건으로 2.5V까지 0.33 C으로 방전을 하였다. 상기 충방전을 1 사이클로 하여 3 사이클을 진행하였다.
이어서, PNE-0506 충방전기(제조사: (주)PNE 솔루션, 5V, 6A)를 사용하여 초기 방전 용량을 측정하였다.
그 다음, 45℃에서 정전류-정전압(CC-CV) 충전 조건으로 4.20 V까지 0.33 C CC으로 충전한 다음 0.05 C current cut을 진행하였고, CC 조건으로 2.50 V까지 0.33 C으로 방전하였다. 상기 충방전을 1 사이클로 하여, 50 사이클의 충방전을 실시하였다. PNE-0506 충방전기(제조사: (주)PNE 솔루션, 5V, 6A)를 사용하여 45℃에서 50 사이클 후의 방전 용량을 측정하였다.
하기 식 (3)을 이용하여 고온에서 50 사이클 후의 방전 용량 유지율(capacity retention)(%)을 산출하고, 그 결과를 하기 도 3에 나타내었다.
식 (3): 50 사이클 후의 방전 용량 유지율(%)=(50 사이클 후의 방전 용량/초기 방전 용량)×100
도 3을 참조하면, 본 발명의 비수전해액을 구비한 실시예 4의 리튬 이차전지는 비교예 2의 리튬 이차전지에 비하여 고온에서 50 사이클을 진행한 후에도 SEI 막의 파괴에 의한 비가역적인 리튬의 손실이 감소하여, 전지의 방전 용량 유지율이 개선된 것을 알 수 있다.

Claims (10)

  1. 리튬염;
    유기용매; 및
    첨가제로 하기 화학식 1로 표시되는 화합물;을 포함하는 것인 리튬 이차전지용 비수전해액.
    [화학식 1]
    Figure pat00006

    상기 화학식 1에서,
    Ra 내지 Rc는 각각 독립적으로 치환 또는 비치환된 탄소수 2 내지 15의 알킬렌기이다.
  2. 청구항 1에 있어서,
    상기 화학식 1에서, 상기 Ra 내지 Rc는 각각 독립적으로 치환 또는 비치환된 탄소수 2 내지 10의 알킬렌기인 것인 리튬 이차전지용 비수전해액.
  3. 청구항 1에 있어서,
    상기 화학식 1에서, 상기 Ra 내지 Rc는 각각 독립적으로 치환 또는 비치환된 탄소수 3 내지 7의 알킬렌기인 것인 리튬 이차전지용 비수전해액.
  4. 청구항 1에 있어서,
    상기 화학식 1에서, 상기 Ra 내지 Rc는 각각 독립적으로 -CR1H-CR2H-CR3H- (이때, R1, R2 및 R3는 각각 독립적으로 수소 또는 탄소수 1 내지 2의 알킬기이다.), -CR4H-CR5H-CR6H-CR7H- (이때, R4, R5, R6 및 R7는 각각 독립적으로 수소 또는 탄소수 1 내지 2의 알킬기이다.) 및 -CR8H-CR9H-CR10H-CR11H-CR12H- (이때, R8, R9, R10, R11 및 R12는 각각 독립적으로 수소 또는 탄소수 1 내지 2의 알킬기이다.)로 이루어진 군으로부터 선택된 적어도 하나인 것인 리튬 이차전지용 비수전해액.
  5. 청구항 1에 있어서,
    상기 화학식 1에서, 상기 Ra 내지 Rc는 각각 독립적으로 -CH2-CH2-CH2-, -CH2-CH2-CH2-CH2- 및 -CH2-CH2-CH2-CH2-CH2-으로 이루어진 군으로부터 선택된 적어도 하나인 것인 리튬 이차전지용 비수전해액.
  6. 청구항 1에 있어서,
    상기 화학식 1로 표시되는 화합물은 하기 화학식 1a로 표시되는 화합물인 것인 리튬 이차전지용 비수전해액.
    [화학식 1a]
    Figure pat00007

  7. 청구항 1에 있어서,
    상기 화학식 1로 표시되는 화합물은 비수전해액 전체 중량을 기준으로 0.1 중량% 내지 2.0 중량%로 포함되는 것인 리튬 이차전지용 비수전해액.
  8. 청구항 7에 있어서,
    상기 화학식 1로 표시되는 화합물은 비수전해액 전체 중량을 기준으로 0.1 중량% 내지 1.7 중량%로 포함되는 것인 리튬 이차전지용 비수전해액.
  9. 청구항 1에 있어서,
    상기 리튬 이차전지용 비수전해액은 환형 카보네이트계 화합물, 할로겐 치환된 카보네이트계 화합물, 설톤계 화합물, 설페이트계 화합물, 포스페이트계 화합물, 보레이트계 화합물, 니트릴계 화합물, 벤젠계 화합물, 아민계 화합물, 실란계 화합물 및 리튬염계 화합물로 이루어진 군으로부터 선택된 적어도 하나 이상의 부가적 첨가제를 추가로 포함하는 것인 리튬 이차전지용 비수전해액.
  10. 청구항 1의 리튬 이차전지용 비수전해액을 포함하는 리튬 이차전지.
KR1020190016080A 2018-02-12 2019-02-12 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지 KR102345312B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20180016782 2018-02-12
KR1020180016782 2018-02-12

Publications (2)

Publication Number Publication Date
KR20190098074A true KR20190098074A (ko) 2019-08-21
KR102345312B1 KR102345312B1 (ko) 2022-01-03

Family

ID=67547960

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190016080A KR102345312B1 (ko) 2018-02-12 2019-02-12 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지

Country Status (6)

Country Link
US (1) US11476500B2 (ko)
EP (1) EP3648233B1 (ko)
JP (1) JP7094601B2 (ko)
KR (1) KR102345312B1 (ko)
CN (1) CN110998958B (ko)
WO (1) WO2019156539A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110931862A (zh) * 2019-10-31 2020-03-27 合肥国轩高科动力能源有限公司 一种双功能电解液添加剂及含有该添加剂的锂离子电池电解液
WO2022114661A1 (ko) * 2020-11-25 2022-06-02 삼성에스디아이 주식회사 첨가제, 이를 포함하는 리튬 이차 전지용 전해액 및 리튬 이차 전지

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102242252B1 (ko) * 2017-11-13 2021-04-21 주식회사 엘지화학 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
KR20210070609A (ko) * 2019-12-05 2021-06-15 주식회사 엘지에너지솔루션 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
CN112531213A (zh) * 2020-12-09 2021-03-19 远景动力技术(江苏)有限公司 兼顾高温特性与常温循环的非水电解液、其应用及锂离子电池
DE102021106626A1 (de) 2021-03-18 2022-09-22 Volkswagen Aktiengesellschaft Batteriezelle, Elektrolytmischung und Verwendung einer Elektrolytmischung
CN113161611B (zh) * 2021-03-31 2022-07-22 松山湖材料实验室 锂离子电池用非水电解液及包含其的锂离子电池

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011129352A (ja) * 2009-12-17 2011-06-30 Nissan Motor Co Ltd 非水電解質二次電池
KR20130116036A (ko) 2012-04-13 2013-10-22 주식회사 엘지화학 안전성이 강화된 이차전지
JP2016173987A (ja) * 2015-03-16 2016-09-29 三菱化学株式会社 非水系電解液及びそれを用いた非水系電解液電池
JP6030257B1 (ja) * 2015-09-29 2016-11-24 株式会社 資生堂 化粧料
KR20170051287A (ko) * 2015-10-29 2017-05-11 주식회사 엘지화학 비수 전해액 첨가제, 이를 포함하는 비수전해액 및 이를 구비한 리튬 이차전지
KR20170052494A (ko) * 2015-11-03 2017-05-12 주식회사 엘지화학 비수전해액 첨가제, 이를 포함하는 비수전해액 및 이를 구비한 리튬 이차전지

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3716410A (en) 1971-09-27 1973-02-13 Us Air Force Lithium battery electrolyte additive and method of improving discharge rate
JPS5887779A (ja) 1981-11-20 1983-05-25 Nippon Telegr & Teleph Corp <Ntt> リチウム二次電池用非水電解液
JPH0630257B2 (ja) * 1985-03-12 1994-04-20 日立マクセル株式会社 有機電解質電池
JP4934919B2 (ja) 2000-07-14 2012-05-23 三菱化学株式会社 非水電解液及び非水電解液二次電池
KR20080047642A (ko) 2006-11-27 2008-05-30 주식회사 엘지화학 향상된 작동효율의 리튬 이차전지
KR101144595B1 (ko) 2008-07-10 2012-05-11 에스케이이노베이션 주식회사 셀룰로오스아세테이트 필름
US20120171576A1 (en) 2010-12-29 2012-07-05 Industrial Technology Research Institute Non-aqueous electrolyte and lithium secondary battery including the same
WO2012115119A1 (ja) 2011-02-22 2012-08-30 三菱化学株式会社 非水系電解液、及びそれを用いた電池
WO2013180807A2 (en) 2012-03-20 2013-12-05 Pellion Technologies, Inc. Non-aqueous electrolyte for high voltage rechargeable magnesium batteries
WO2013187073A1 (ja) 2012-06-15 2013-12-19 東ソー・エフテック株式会社 LiPF6の安定化方法、熱安定性に優れた非水系二次電池用電解液及び熱安定性に優れた非水系二次電池
KR20140073301A (ko) 2012-12-06 2014-06-16 삼성정밀화학 주식회사 리튬 이차전지용 전해액
TWI537277B (zh) 2013-02-20 2016-06-11 Lg化學股份有限公司 非水性電解質溶液及含有彼之鋰二次電池
KR20160040708A (ko) 2013-12-25 2016-04-14 아사히 가세이 가부시키가이샤 실릴기 함유 화합물을 포함하는 전해액 첨가용 조성물, 이 조성물을 포함하는 비수 축전 디바이스용 전해액 및 이 전해액을 포함하는 리튬 이온 이차 전지
US10333178B2 (en) * 2014-04-17 2019-06-25 Gotion Inc. Electrolyte compositions containing esters of dicarboxylic acids
EP2983234B1 (en) * 2014-06-13 2016-10-26 LG Chem, Ltd. Non-aqueous electrolyte and lithium secondary battery comprising same
KR101797271B1 (ko) * 2014-09-26 2017-11-13 주식회사 엘지화학 비수성 전해액 및 이를 포함하는 리튬 이차 전지
KR101797289B1 (ko) * 2014-09-26 2017-11-13 주식회사 엘지화학 비수성 전해액 및 이를 포함하는 리튬 이차 전지
JP6582880B2 (ja) 2014-12-01 2019-10-02 セントラル硝子株式会社 2価のアニオンを有するイミド酸化合物及びその製造方法
KR20170113601A (ko) 2015-02-04 2017-10-12 쓰리엠 이노베이티브 프로퍼티즈 컴파니 루이스 산:루이스 염기 착물 전해질 첨가제를 포함하는 전기화학 전지
KR101800930B1 (ko) 2015-02-06 2017-11-23 주식회사 엘지화학 비수계 리튬이차전지용 첨가제와, 이를 포함하는 비수계 전해액, 전극 및 비수계 리튬이차전지
US10587012B2 (en) 2015-03-26 2020-03-10 Basf Corporation Electrolyte compositions comprising ionic liquids and metal hydride batteries comprising same
DE102015218653A1 (de) 2015-09-28 2017-03-30 Wacker Chemie Ag Cyclische Phosphonamide als Elektrolytbestandteil für Lithium-Ionen-Batterien
CN106025355A (zh) 2016-05-17 2016-10-12 山东海容电源材料有限公司 一种阻燃型高安全非水电解液及其加工方法
CN107507998B (zh) * 2016-06-14 2020-11-06 微宏动力系统(湖州)有限公司 非水电解液二次电池抗过充方法
CN107195970A (zh) 2017-07-24 2017-09-22 华南师范大学 一种高压、快充功能电解液及其制备方法与应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011129352A (ja) * 2009-12-17 2011-06-30 Nissan Motor Co Ltd 非水電解質二次電池
KR20130116036A (ko) 2012-04-13 2013-10-22 주식회사 엘지화학 안전성이 강화된 이차전지
JP2016173987A (ja) * 2015-03-16 2016-09-29 三菱化学株式会社 非水系電解液及びそれを用いた非水系電解液電池
JP6030257B1 (ja) * 2015-09-29 2016-11-24 株式会社 資生堂 化粧料
KR20170051287A (ko) * 2015-10-29 2017-05-11 주식회사 엘지화학 비수 전해액 첨가제, 이를 포함하는 비수전해액 및 이를 구비한 리튬 이차전지
KR20170052494A (ko) * 2015-11-03 2017-05-12 주식회사 엘지화학 비수전해액 첨가제, 이를 포함하는 비수전해액 및 이를 구비한 리튬 이차전지

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110931862A (zh) * 2019-10-31 2020-03-27 合肥国轩高科动力能源有限公司 一种双功能电解液添加剂及含有该添加剂的锂离子电池电解液
WO2022114661A1 (ko) * 2020-11-25 2022-06-02 삼성에스디아이 주식회사 첨가제, 이를 포함하는 리튬 이차 전지용 전해액 및 리튬 이차 전지

Also Published As

Publication number Publication date
EP3648233B1 (en) 2024-04-03
US20210036364A1 (en) 2021-02-04
WO2019156539A1 (ko) 2019-08-15
EP3648233A4 (en) 2020-11-25
CN110998958A (zh) 2020-04-10
KR102345312B1 (ko) 2022-01-03
EP3648233A1 (en) 2020-05-06
CN110998958B (zh) 2022-10-14
JP2021501978A (ja) 2021-01-21
US11476500B2 (en) 2022-10-18
JP7094601B2 (ja) 2022-07-04

Similar Documents

Publication Publication Date Title
KR102242252B1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
KR102643744B1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
KR102345312B1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
KR20200089623A (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
KR102301670B1 (ko) 고온 저장 특성이 향상된 리튬 이차전지
KR102294866B1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
KR102434070B1 (ko) 리튬 이차전지용 비수성 전해액 및 이를 포함하는 리튬 이차전지
KR102452330B1 (ko) 비수전해액 첨가제, 이를 포함하는 리튬 이차전지용 비수전해액 및 리튬 이차전지
JP7378601B2 (ja) リチウム二次電池用非水電解液及びそれを含むリチウム二次電池
JP2022529794A (ja) リチウム二次電池用非水電解液およびこれを含むリチウム二次電池
KR20210029533A (ko) 리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬 이차전지
KR102053313B1 (ko) 리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬 이차전지
KR20210055604A (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
US20220278369A1 (en) Non-Aqueous Electrolyte Solution for Lithium Secondary Battery and Lithium Secondary Battery Including the Same
KR20200122636A (ko) 리튬 이차전지용 비수전해액 첨가제, 이를 포함하는 리튬 이차전지용 비수전해액 및 리튬 이차전지
KR20210155370A (ko) 리튬 이차전지용 비수 전해액 첨가제 및 이를 포함하는 리튬 이차전지용 비수 전해액 및 리튬 이차전지
US20220376301A1 (en) Non-Aqueous Electrolyte Solution for Lithium Secondary Battery and Lithium Secondary Battery Including the Same
KR20220010200A (ko) 리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬 이차전지
KR20200041171A (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
KR20210148715A (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
KR20210007345A (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
KR20230082579A (ko) 리튬 이차전지용 비수성 전해액 및 이를 포함하는 리튬 이차전지
KR20230031071A (ko) 비수전해액 및 이를 포함하는 리튬 이차전지
KR20210026503A (ko) 이차전지용 전해액 첨가제, 이를 포함하는 비수 전해액 및 리튬 이차전지
KR20190139446A (ko) 리튬 이차전지용 전해질 및 이를 포함하는 리튬 이차전지

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
X091 Application refused [patent]
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant