KR20190084099A - 나노-스케일 패턴을 갖는 액정 회절 디바이스들 및 이를 제조하는 방법들 - Google Patents

나노-스케일 패턴을 갖는 액정 회절 디바이스들 및 이를 제조하는 방법들 Download PDF

Info

Publication number
KR20190084099A
KR20190084099A KR1020197016738A KR20197016738A KR20190084099A KR 20190084099 A KR20190084099 A KR 20190084099A KR 1020197016738 A KR1020197016738 A KR 1020197016738A KR 20197016738 A KR20197016738 A KR 20197016738A KR 20190084099 A KR20190084099 A KR 20190084099A
Authority
KR
South Korea
Prior art keywords
liquid crystal
layer
features
manufacturing
domain
Prior art date
Application number
KR1020197016738A
Other languages
English (en)
Other versions
KR102591480B1 (ko
Inventor
철우 오
마우로 멜리
크리스토프 페로즈
비크람지트 싱
프랑크 쑤
마이클 앤서니 클루그
Original Assignee
매직 립, 인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=62146668&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=KR20190084099(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 매직 립, 인코포레이티드 filed Critical 매직 립, 인코포레이티드
Priority to KR1020237035131A priority Critical patent/KR102716957B1/ko
Publication of KR20190084099A publication Critical patent/KR20190084099A/ko
Application granted granted Critical
Publication of KR102591480B1 publication Critical patent/KR102591480B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1347Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • G02F1/133726Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films made of a mesogenic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00436Shaping materials, i.e. techniques for structuring the substrate or the layers on the substrate
    • B81C1/00444Surface micromachining, i.e. structuring layers on the substrate
    • B81C1/0046Surface micromachining, i.e. structuring layers on the substrate using stamping, e.g. imprinting
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1809Diffraction gratings with pitch less than or comparable to the wavelength
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1833Diffraction gratings comprising birefringent materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1847Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1861Reflection gratings characterised by their structure, e.g. step profile, contours of substrate or grooves, pitch variations, materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3016Polarising elements involving passive liquid crystal elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B2006/0098Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings for scanning
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0132Head-up displays characterised by optical features comprising binocular systems
    • G02B2027/0134Head-up displays characterised by optical features comprising binocular systems of stereoscopic type
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • G02B2027/0174Head mounted characterised by optical features holographic
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0179Display position adjusting means not related to the information to be displayed
    • G02B2027/0185Displaying image at variable distance
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0081Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means for altering, e.g. enlarging, the entrance or exit pupil
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0093Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means for monitoring data relating to the user, e.g. head-tracking, eye-tracking
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1006Beam splitting or combining systems for splitting or combining different wavelengths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/34Stereoscopes providing a stereoscopic pair of separated images corresponding to parallactically displaced views of the same object, e.g. 3D slide viewers
    • G02B30/36Stereoscopes providing a stereoscopic pair of separated images corresponding to parallactically displaced views of the same object, e.g. 3D slide viewers using refractive optical elements, e.g. prisms, in the optical path between the images and the observer
    • G02F2001/133726
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/36Micro- or nanomaterials
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/40Materials having a particular birefringence, retardation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/24Function characteristic beam steering
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/28Function characteristic focussing or defocussing

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Liquid Crystal (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Polarising Elements (AREA)

Abstract

광학 디바이스는 제1 패턴으로 배열된 제1 복수의 액정 분자들 및 제2 패턴으로 배열된 제2 복수의 액정 분자들을 갖는 액정 층을 포함한다. 제1 및 제2 패턴은 액정 층의 길이방향 축 또는 횡축을 따라 약 20nm 내지 약 100nm의 거리만큼 서로로부터 이격된다. 제1 및 제2 복수의 액정 분자들은, 가시광 또는 적외선 파장들의 광을 방향전환할 수 있는 제1 및 제2 격자 구조들로서 구성된다.

Description

나노-스케일 패턴을 갖는 액정 회절 디바이스들 및 이를 제조하는 방법들
[0001] 본 출원은 2017년 10월 26일에 출원된 미국 정식 특허 출원 제15/795,067호 및 2016년 11월 18일에 출원된 미국 가특허 출원 제62/424,341호를 우선권으로 주장하고, 상기 출원들 둘 모두의 전체 내용들은 인용에 의해 본원에 통합된다.
[0002] 본 출원은, 하기의 특허 출원들: 2014년 11월 27일에 출원된 미국 출원 제14/555,585호; 2015년 4월 18일에 출원된 미국 출원 제14/690,401호; 2014년 3월 14일에 출원된 미국 출원 제14/212,961호; 2014년 7월 14일에 출원된 미국 출원 제14/331,218호; 및 2016년 3월 16일에 출원된 미국 출원 제15/072,290호 각각의 전체를, 인용에 의해 통합한다.
[0003] 본 개시내용은 가상 현실 및 증강 현실 이미징 및 시각화 시스템들을 포함하는 광학 디바이스들에 관한 것이다.
[0004] 현대 컴퓨팅 및 디스플레이 기술들은 소위 "가상 현실" 또는 "증강 현실" 경험들을 위한 시스템들의 개발을 용이하게 했으며, 여기서 디지털적으로 재생된 이미지들 또는 이미지들의 부분들은, 그들이 실제인 것으로 보이거나, 실제로서 지각될 수 있는 방식으로 사용자에게 제시된다. 가상 현실, 또는 "VR" 시나리오는 통상적으로 다른 실제 실세계 시각적 입력에 대한 투명성(transparency) 없는 디지털 또는 가상 이미지 정보의 프리젠테이션(presentation)을 수반하고; 증강 현실, 또는 "AR" 시나리오는 통상적으로 사용자 주위 실제 세계의 시각화에 대한 증강으로서 디지털 또는 가상 이미지 정보의 프리젠테이션을 수반한다. 혼합 현실 또는 "MR" 시나리오는 AR 시나리오의 유형이며, 통상적으로 자연 세계에 통합되고 그에 응답하는 가상 객체들을 포함한다. 예컨대, MR 시나리오에서, AR 이미지 콘텐츠는 실제 세계의 객체들에 의해 차단되거나, 그렇지 않으면, 실제 세계의 객체들과 상호작용하는 것으로나 지각될 수 있다.
[0005] 도 1을 참조하면, 증강 현실 장면(scene)(10)이 도시되며, 여기서 AR 기술의 사용자는 배경에 있는 사람들, 나무들, 빌딩들, 및 콘크리트 플랫폼(30)을 특징으로 하는 실세계 공원-형 세팅(20)을 본다. 이들 아이템들에 더하여, AR 기술의 사용자는 또한, 자신이 "가상 콘텐츠", 이를테면, 실세계 플랫폼(30) 상에 서 있는 로봇 동상(40), 및 호박벌의 의인화인 것으로 보여지는 날고 있는 만화-형 아바타 캐릭터(50)를 "보는 것"을 지각하지만, 이들 엘리먼트들(40, 50)은 실세계에 존재하지 않는다. 인간 시각 지각 시스템은 복잡하기 때문에, 다른 가상 또는 실세계 이미저리 엘리먼트들 사이에서 가상 이미지 엘리먼트들의 편안하고, 자연스럽고, 풍부한 프리젠테이션을 용이하게 하는 AR 기술을 생성하는 것은 난제이다.
[0006] 본원에 개시된 시스템들 및 방법들은 AR 및 VR 기술에 관련된 다양한 난제들을 해결한다.
[0007] 본 개시내용의 시스템들, 방법들, 및 디바이스들 각각은 여러 혁신적인 양상들을 가지며, 그 양상들 중 어떠한 단일 양상도 본원에서 개시된 바람직한 속성들을 단독으로 담당하지 않는다.
[0008] 본 출원의 청구대상의 혁신적인 양상은 제1 주 표면(major surface), 제2 주 표면 및 두께를 갖는 액정 층을 포함하는 광학 디바이스로 구현되고, 제1 및 제2 주 표면들은 횡 방향을 가로질러 연장되고, 두께는 제1 또는 제2 주 표면들의 표면 법선(surface normal)에 평행하는 방향을 따라 연장되고, 액정 층은 액정 층의 두께에 걸쳐 분산된 복수의 서브-층들을 포함하고, 복수의 서브-층들 각각은 액정 분자들의 단일 층을 포함하고, 액정 분자들 각각은 길이방향 축을 갖는다. 각각의 서브-층은 복수의 액정 분자들의 길이방향 축들이 제1 패턴을 형성하도록 배열되는 제1 도메인; 및 복수의 액정 분자들의 길이방향 축들이 제2 패턴을 형성하도록 배열되는 제2 도메인을 포함한다. 제1 도메인은 약 10nm 내지 약 50nm의 거리(D)를 갖는 도메인 갭만큼 제2 도메인으로부터 횡 방향을 따라 측방향으로 이격된다. 도메인 갭 내의 액정 분자들의 길이방향 축들은 제1 패턴에서 제2 패턴으로 점진적으로 전환된다.
[0009] 디바이스의 다양한 실시예들에서, 서브-층의 제1 도메인의 분자들의 길이방향 축들은 인접한 서브-층의 제1 도메인의 분자들의 길이방향 축들에 대해 트위스트될 수 있다. 디바이스의 다양한 실시예들은 제2 액정 층을 더 포함하고, 제2 액정 층의 액정 분자들은 제1 및 제2 도메인들에서 제1 방향 및 제2 방향에 각각 자기-정렬하도록 구성된다. 액정 층 또는 제2 액정 층은 중합 가능한 액정 재료(polymerizable liquid crystal material)를 포함할 수 있다. 디바이스의 다양한 실시예들은 제2 액정 층 위에 제3 액정 층을 더 포함할 수 있고, 제3 액정 층의 복수의 액정 분자들은 제3 방향을 따라 배열될 수 있다. 디바이스의 다양한 실시예들은 제3 액정 층 위에 제4 액정 층을 더 포함할 수 있고, 제4 액정 층의 복수의 액정들은 제3 방향에 자기-정렬하도록 구성될 수 있다. 다양한 실시예들에서, 제2 액정 층 및/또는 제4 액정 층은 도파관 위에 배치될 수 있다. 제2 액정 층 및/또는 제4 액정 층은, 입사 광 빔이 내부 전반사(total internal reflection)에 의해 도파관을 통해 전파되도록, 입사 광 빔을 도파관에 인-커플링하도록 구성된 인-커플링 광학 엘리먼트들을 포함할 수 있다. 디바이스의 다양한 실시예들은 인-커플링 광학 엘리먼트들을 통해 광을 도파관으로 지향시키도록 구성된 광 변조 디바이스를 포함할 수 있다. 제2 액정 층 및/또는 제4 액정 층은 내부 전반사에 의해 도파관을 통해 전파되는 입사 광 빔을 아웃-커플링하도록 구성된 아웃-커플링 광학 엘리먼트들을 포함할 수 있다.
[0010] 다양한 실시예들에서, 제2 액정 층 및/또는 제4 액정 층은, 내부 전반사에 의해 도파관을 통해 전파되는 광을 방향전환(redirect)하도록 구성된 직교 동공 확장기들(orthogonal pupil expanders)을 포함할 수 있고, 방향전환된 광은 내부 전반사에 의해 도파관을 통해 계속 전파된다. 디바이스의 다양한 실시예들에서, 액정 층은, 입사 광 빔이 내부 전반사에 의해 도파관을 통해 전파되도록, 입사 광 빔을 도파관에 인-커플링하도록 구성된 인-커플링 광학 엘리먼트들을 포함할 수 있다. 디바이스의 다양한 실시예들에서, 액정 층은 내부 전반사에 의해 도파관을 통해 전파되는 광 빔을 아웃-커플링하도록 구성된 아웃-커플링 광학 엘리먼트들을 포함할 수 있다. 제1 도메인 내의 복수의 액정 분자들의 길이방향 축들은 제1 방향을 따라 정렬될 수 있고, 제2 도메인 내의 복수의 액정 분자들의 길이방향 축들은 제2 방향을 따라 정렬될 수 있다. 도메인 갭 내의 액정 분자들의 길이방향 축들은 제1 방향에서 제2 방향으로 점진적으로 전환될 수 있다.
[0011] 본 출원의 청구대상의 다른 혁신적인 양상은 광학 디바이스를 제조하기 위한 방법을 포함하고, 방법은: 기판 위에 중합 가능한 액정 층을 제공하는 단계; 중합 가능한 액정 층을 패터닝하는 단계; 및 패터닝된 중합 가능한 액정 층 상에 액정 층을 증착하는 단계를 포함한다. 증착된 액정 층의 분자들은 패터닝된 중합 가능한 액정 층에 자기-정렬될 수 있다. 중합 가능한 액정 층을 패터닝하는 단계는 제1 복수의 피처들(features)을 포함하는 제1 도메인 및 제2 복수의 피처들을 포함하는 제2 도메인을 갖는 임프린트 템플릿(imprint template)에 의해 중합 가능한 액정 층을 임프린트하는 단계를 포함하고, 제1 도메인은 피처들이 전혀 없는 구역만큼 제2 도메인으로부터 이격되고, 피처들이 전혀 없는 구역의 치수는 약 20nm 내지 약 100nm의 값을 갖는다. 치수는 길이 또는 폭 중 적어도 하나를 포함할 수 있다. 제1 복수의 피처들의 폭은 약 20nm 이상이고 약 100nm 이하일 수 있다. 제2 복수의 피처들의 폭은 약 20nm 이상이고 약 100nm 이하일 수 있다. 제1 복수의 피처들의 2개의 연속적인 피처들의 중심들 간의 거리는 약 20nm 이상이고 약 100nm 이하일 수 있다. 제1 복수의 피처들의 높이는 약 10nm 이상이고 약 100nm 이하일 수 있다. 제2 복수의 피처들의 2개의 연속적인 피처들의 중심들 간의 거리는 약 20nm 이상이고 약 100nm 이하일 수 있다. 제2 복수의 피처들의 높이는 약 10nm 이상이고 약 100nm 이하일 수 있다.
[0012] 제1 도메인의 제1 복수의 피처들은 제1 패턴을 형성하도록 배열될 수 있고, 제2 도메인의 제2 복수의 피처들은 제2 패턴을 형성하도록 배열될 수 있다. 제1 패턴은 제2 패턴과 별개일 수 있다. 제1 복수의 피처들은 제1 방향을 따라 배향될 수 있고, 제2 도메인의 제2 복수의 피처들은 제2 방향을 따라 배향될 수 있다. 제1 방향은 제2 방향과 별개일 수 있다. 제1 복수의 피처들은 선형 그루브들, 곡선형 그루브들(curvilinear grooves), 선형 측면들(linear facets) 또는 곡선형 측면들 중 적어도 하나를 포함할 수 있다. 제2 복수의 피처들은 선형 그루브들, 곡선형 그루브들, 선형 측면들 또는 곡선형 측면들 중 적어도 하나를 포함할 수 있다. 임프린트 템플릿은 반도체 재료를 포함할 수 있다. 다양한 실시예들에서, 임프린트 템플릿은 광학 리소그래피(optical lithography), 나노-임프린트 또는 이온- 및 전자-빔 리소그래피 중 적어도 하나를 사용하여 제조될 수 있다.
[0013] 본 출원의 청구대상의 다른 혁신적인 양상은 액정 디바이스를 제조하는 방법에 포함된다. 방법은 기판 상에 액정 재료의 층을 증착하는 단계; 및 액정 재료의 분자들이 패턴에 자기-정렬하도록, 액정 재료의 층 상에 패턴을 임프린트하기 위해 패턴을 포함하는 임프린트 템플릿을 사용하는 단계를 포함한다. 패턴은 제1 패턴을 형성하도록 배열된 제1 복수의 피처들을 갖는 제1 도메인 및 제2 패턴을 형성하도록 배열된 제2 복수의 피처들을 갖는 제2 도메인을 포함한다. 제1 도메인은 피처들이 전혀 없는 구역만큼 제2 도메인으로부터 이격된다. 피처들이 전혀 없는 구역의 폭 또는 길이 중 적어도 하나는 약 20nm 내지 약 100nm이다.
[0014] 다양한 실시예들에서, 방법은 액정 재료의 굴절률(refractive index) 미만의 굴절률을 갖는 재료의 층을 증착하는 단계를 더 포함한다. 낮은 굴절률 재료의 층은 평탄화 템플릿(planarization template)을 사용하여 평탄화 층으로서 구성될 수 있다. 제1 복수의 피처들 또는 제2 복수의 피처들은 표면 릴리프 피처들(surface relief features)을 포함할 수 있다. 제1 복수의 피처들 또는 제2 복수의 피처들의 길이, 폭 또는 높이 중 적어도 하나는 약 10nm 내지 약 100nm일 수 있다. 제1 도메인 또는 제2 도메인은 PBPE 구조물들을 포함할 수 있다. 액정 디바이스는 메타표면(metasurface) 및/또는 메타재료(metamaterial)를 포함할 수 있다. 제1 도메인 또는 제2 도메인은 격자 어레이(grating array)를 포함한다. 다양한 실시예들에서, 제1 도메인 또는 제2 도메인은 곡선형 그루브들 또는 아크들(arcs)을 포함할 수 있다.
[0015] 방법의 다양한 실시예들에서, 액정 재료의 층을 증착하는 단계는 액정 재료의 층을 제트(jet) 증착하는 단계를 포함할 수 있다. 방법은 액정 재료의 층 위에 부가적인 액정 재료의 층을 증착하는 단계를 더 포함한다. 부가적인 액정 재료의 층은 액정 재료의 층의 패턴에 자기-정렬될 수 있다. 패턴은 부가적인 액정 재료의 층 상에 임프린트될 수 있다. 부가적인 액정 재료의 층 상에 임프린트된 패턴은 액정 재료의 층 상에 임프린트된 패턴과 상이할 수 있다. 다양한 실시예들에서, 액정 재료의 층 상에 임프린트된 패턴은 제1 파장에 작용하도록 구성될 수 있고, 그리고 부가적인 액정 재료의 층 상에 임프린트된 패턴은 제2 파장에 작용하도록 구성될 수 있다.
[0016] 본 출원의 청구대상의 또 다른 혁신적인 양상은 액정 디바이스를 제조하는 방법에 포함된다. 방법은 기판 상에 중합 가능한 액정 재료의 층을 증착하는 단계; 임프린트 템플릿을 사용하여 중합 가능한 액정 재료 상에 패턴을 임프린트하는 단계; 및 액정 재료의 분자들이 패턴에 자기-정렬되도록, 패터닝된 중합 가능한 액정 재료 상에 액정 재료의 층을 증착하는 단계를 포함한다.
[0017] 임프린트 템플릿은 제1 패턴을 형성하도록 배열된 제1 복수의 피처들을 갖는 제1 도메인 및 제2 패턴을 형성하도록 배열된 제2 복수의 피처들을 갖는 제2 도메인을 포함하는 임프린트 패턴을 포함한다. 제1 도메인은 피처들이 전혀 없는 도메인 갭 구역만큼 제2 도메인으로부터 이격된다. 도메인 갭 구역의 폭 또는 길이 중 적어도 하나는 약 20nm 내지 약 100nm이다.
[0018] 방법의 다양한 실시예들에서, 중합 가능한 액정 재료의 층을 증착하는 단계는 중합 가능한 액정 재료를 제트 증착하는 단계를 포함할 수 있다. 제1 또는 제2 복수의 피처들은 표면 릴리프 피처들을 포함할 수 있다. 제1 또는 제2 복수의 피처들은 약 10nm 내지 약 100nm의 크기를 가질 수 있다. 제1 또는 제2 도메인은 PBPE 구조물들을 포함할 수 있다. 액정 디바이스는 메타표면 및/또는 메타재료를 포함할 수 있다. 제1 또는 제2 도메인은 격자 어레이를 포함할 수 있다. 제1 또는 제2 복수의 피처들은 곡선형 그루브들 또는 아크들을 포함할 수 있다. 방법의 다양한 실시예들에서, 액정 재료의 층을 증착하는 단계는 액정 재료의 층을 제트 증착하는 단계를 포함할 수 있다.
[0019] 방법은 액정 재료의 층 위에 부가적인 액정 재료의 층을 증착하는 단계를 더 포함할 수 있다. 부가적인 액정 재료의 층은 액정 재료의 층의 패턴에 자기-정렬될 수 있다. 패턴이 부가적인 액정 재료의 층 상에 임프린트될 수 있다. 부가적인 액정 재료의 층 상에 임프린트된 패턴은 액정 재료의 층 상에 임프린트된 패턴과 상이할 수 있다. 액정 재료의 층 상에 임프린트된 패턴은 제1 파장에 작용하도록 구성될 수 있고, 그리고 부가적인 액정 재료의 층 상에 임프린트된 패턴은 제2 파장에 작용하도록 구성될 수 있다.
[0020] 본 출원의 청구대상의 또 다른 혁신적인 양상은 액정 디바이스를 제조하는 방법을 포함한다. 방법은 기판 상에 층을 증착하는 단계; 임프린트 패턴을 포함하는 임프린트 템플릿을 사용하여 층 상에 패턴을 임프린트하는 단계; 및 액정 재료의 분자들이 패턴에 자기-정렬되도록, 패터닝된 층 상에 액정 재료의 층을 증착하는 단계를 포함한다. 임프린트 패턴은 제1 패턴을 형성하도록 배열된 제1 복수의 피처들을 갖는 제1 도메인 및 제2 패턴을 형성하도록 배열된 제2 복수의 피처들을 갖는 제2 도메인을 포함한다. 제1 도메인은 피처들이 전혀 없는 도메인 갭 구역만큼 제2 도메인으로부터 이격되고, 도메인 갭 구역의 폭 또는 길이 중 적어도 하나는 약 20nm 내지 약 100nm이다.
[0021] 층은 중합 가능한 액정 재료를 포함할 수 있다. 방법의 다양한 실시예들에서, 층을 증착하는 단계는 층을 제트 증착하는 단계를 포함한다. 제1 또는 제2 복수의 피처들은 표면 릴리프 피처들을 포함할 수 있다. 제1 또는 제2 복수의 피처들은 약 10nm 내지 약 100nm의 크기를 가질 수 있다. 제1 또는 제2 도메인은 PBPE 구조물들 또는 메타표면을 포함할 수 있다. 제1 또는 제2 도메인은 격자 어레이를 포함할 수 있다. 제1 또는 제2 복수의 피처들은 곡선형 그루브들 또는 아크들을 포함할 수 있다. 다양한 실시예들에서, 액정 재료의 층을 증착하는 단계는 액정 재료의 층을 제트 증착하는 단계를 포함할 수 있다.
[0022] 방법의 다양한 실시예들은 액정 재료의 층 위에 부가적인 액정 재료의 층을 증착하는 단계를 더 포함할 수 있다. 부가적인 액정 재료의 층은 액정 재료의 층의 패턴에 자기-정렬될 수 있다. 패턴이 부가적인 액정 재료의 층 상에 임프린트될 수 있다. 부가적인 액정 재료의 층 상에 임프린트된 패턴은 액정 재료의 층 상에 임프린트된 패턴과 상이할 수 있다. 액정 재료의 층 상에 임프린트된 패턴은 제1 파장에 작용하도록 구성될 수 있고, 그리고 부가적인 액정 재료의 층 상에 임프린트된 패턴은 제2 파장에 작용하도록 구성될 수 있다.
[0023] 본 출원의 청구대상의 또 다른 혁신적인 양상은 기판; 및 기판에 인접한 제1 표면 및 제1 표면에 대향하는 제2 표면을 갖는 액정 재료의 층을 포함하는 액정 디바이스를 포함한다. 제1 표면 상의 액정 재료의 층의 제1 복수의 분자들은 제1 패턴을 형성하도록 배열되고, 그리고 제2 표면 상의 액정 재료의 층의 제2 복수의 분자들은 제2 패턴을 형성하도록 배열된다. 제1 복수의 분자들은 약 20nm 내지 약 100nm의 거리를 갖는 갭만큼 제2 복수의 분자들로부터 이격되고, 갭 내의 액정 재료의 층의 분자들은 제1 패턴에서 제2 패턴으로 점진적으로 전환되도록 배열된다. 다양한 실시예들에서, 액정 재료의 층은 편광 격자(polarization grating)로서 구성된다.
[0024] 본 출원의 청구대상의 다른 혁신적인 양상은 기판; 기판에 인접한 제1 표면 및 제1 표면에 대향하는 제2 표면을 갖는 재료; 및 재료의 제2 표면 상의 액정 재료를 포함하는 액정 디바이스를 포함한다. 재료는 제2 표면 상의 제1 패턴; 및 제2 표면 상의 제2 패턴을 포함한다. 제1 패턴은 약 20nm 내지 약 100nm의 거리를 갖는 갭만큼 제2 패턴으로부터 이격된다. 디바이스의 다양한 실시예들에서, 재료는 중합 가능한 액정 재료를 포함할 수 있다.
[0025] 본 출원의 청구대상의 혁신적인 양상은 액정 렌즈를 제조하기 위한 방법으로 구현된다. 방법은 기판 위에 임프린트 층을 제공하는 단계를 포함한다. 임프린트 층은 적어도 제1 방향을 따라 배향된 제1 복수의 피처들을 포함하는 제1 존 및 제2 방향을 따라 배향된 제2 복수의 피처들을 포함하는 제2 존을 포함한다. 제2 방향은 제1 방향에 대해 약 1도 내지 약 45도의 각도만큼 회전될 수 있다. 방법은 임프린트 층 상에 액정 층을 증착하는 단계를 더 포함하고, 증착된 액정 층의 분자들은 제1 및 제2 복수의 피처들에 자기-정렬된다. 다양한 구현들에서, 임프린트 층은 약 5개 내지 30개의 존들을 포함할 수 있다. 제1 및 제2 존들은 약 10nm 이하의 갭만큼 이격될 수 있다. 예컨대, 제1 및 제2 존들은 약 5nm 이하, 약 2nm 이하 및/또는 약 1nm 이하의 갭만큼 이격될 수 있다.
[0026] 제1 또는 제2 복수의 피처들은, 예컨대, 그루브들과 같은 나노-피처들을 포함할 수 있다. 제1 복수의 피처들 및 제2 복수의 피처들의 길이 또는 폭은 약 200nm 이하일 수 있다. 예컨대, 제1 복수의 피처들 및 제2 복수의 피처들의 길이 또는 폭은 약 100nm 이하일 수 있다. 제1 복수의 피처들 및 제2 복수의 피처들의 높이 또는 깊이는 약 200nm 이하일 수 있다. 예컨대, 제1 복수의 피처들 및 제2 복수의 피처들의 높이 또는 깊이는 약 100nm 이하일 수 있다.
[0027] 임프린트 층은 반도체 재료를 포함할 수 있다. 액정 층은 중합 가능한 액정 재료를 포함할 수 있다. 방법은, 중합 가능한 액정 재료의 분자들이 제1 및 제2 복수의 피처들에 자기-정렬된 후에, 중합 가능한 액정 재료를 중합하는 단계를 더 포함할 수 있다. 중합 가능한 액정 재료를 중합하는 단계는 중합 가능한 액정 재료를 자외선에 노출시키는 단계를 포함할 수 있다. 액정 렌즈는 회절 렌즈를 포함할 수 있다. 임프린트 층 상에 액정 층을 증착하는 단계는 액정을 제트 증착하는 단계를 포함할 수 있다.
[0028] 본 출원의 청구대상의 혁신적인 양상은 액정 렌즈로 구현된다. 액정 렌즈는 적어도 제1 방향을 따라 배향된 제1 복수의 피처들을 포함하는 제1 존 및 제2 방향을 따라 배향된 제2 복수의 피처들을 포함하는 제2 존을 포함하는 패터닝된 기판을 포함한다. 제1 복수의 피처들 및 제2 복수의 피처들은 약 100nm 이하의 치수를 갖는다. 렌즈는 패터닝된 기판 위에 액정 층을 포함하고, 액정 층의 분자들은 제1 및 제2 복수의 피처들에 자기-정렬된다. 치수는 피처의 길이, 높이, 깊이 또는 폭을 포함할 수 있다. 액정은 중합 가능한 액정을 포함할 수 있다.
[0029] 패터닝된 기판은 패터닝된 층이 위에 배치되는 기판을 포함할 수 있다. 제1 및 제2 존들은 동심원 링-형상의 존들을 포함한다. 렌즈는 약 3개 내지 30개의 존들을 포함할 수 있다. 예컨대, 렌즈는 적어도 5개의 존들을 포함할 수 있다. 존들의 폭은 패터닝된 기판의 중심으로부터의 거리에 따라 점진적으로 감소될 수 있다. 다양한 구현들에서, 존들은 그 사이에 어떠한 갭도 갖지 않을 수 있다. 일부 구현들에서, 존들 간의 갭은 5nm 이하일 수 있다. 예컨대, 존들 간의 갭은 1nm 이하일 수 있다. 렌즈는 회절 렌즈로서 구성될 수 있다. 렌즈는 포지티브 또는 네거티브 광학 파워를 제공하도록 구성될 수 있다.
[0030] 본원에 설명된 액정 디바이스들의 다양한 실시예들은 디스플레이 시스템의 도파관에 포함될 수 있다. 본원에 설명된 액정 디바이스들의 실시예들은 멀티플렉싱된 광 스트림으로부터의 적어도 하나의 광 스트림을 도파관에 선택적으로 인-커플링하고, 멀티플렉싱된 광 스트림으로부터의 하나 이상의 다른 광 스트림들을 송신하도록 구성될 수 있다. 본원에 설명된 액정 디바이스의 다양한 실시예들은 머리 장착 디스플레이의 접안렌즈에 포함될 수 있다.
[0031] 본 명세서에서 설명되는 청구 대상의 하나 이상의 실시예들의 세부사항들은, 아래의 첨부 도면들 및 설명에서 기술된다. 다른 특징들, 양상들, 및 이점들은 설명, 도면들, 및 청구항들로부터 자명해질 것이다. 다음의 도면들의 상대적인 치수들이 실척대로 도시되지 않을 수 있다는 것이 주목된다.
[0032] 도 1은 AR(augmented reality) 디바이스를 통한 AR의 사용자의 뷰를 예시한다.
[0033] 도 2는 웨어러블 디스플레이 시스템의 예를 예시한다.
[0034] 도 3은 사용자에 대한 3차원 이미저리를 시뮬레이팅하기 위한 종래의 디스플레이 시스템을 예시한다.
[0035] 도 4는 다중 깊이 평면들을 사용하여 3-차원 이미저리를 시뮬레이팅하기 위한 접근법의 양상들을 예시한다.
[0036] 도 5a 내지 도 5c는 곡률의 반경과 초점 반경 간의 관계들을 예시한다.
[0037] 도 6은 이미지 정보를 사용자에게 출력하기 위한 도파관 스택의 예를 예시한다.
[0038] 도 7은 도파관에 의해 출력된 출사 빔들의 예를 예시한다.
[0039] 도 8은 각각의 깊이 평면이 다수의 상이한 컴포넌트 컬러들을 사용하여 형성된 이미지들을 포함하는 스택된 도파관 어셈블리의 예를 예시한다.
[0040] 도 9a는 인커플링 광학 엘리먼트를 각각 포함하는 스택된 도파관들의 세트의 예의 측 단면도를 예시한다.
[0041] 도 9b는 도 9a의 복수의 스택된 도파관들의 예의 사시도를 예시한다.
[0042] 도 9c는 도 9a 및 도 9b의 복수의 스택된 도파관들의 예의 하향식 평면도를 예시한다.
[0043] 도 10a는 액정 분자들의 복수의 도메인들을 포함하는 액정 층의 예의 평면도를 예시한다. 도 10b는, 각각의 도메인의 액정 분자들의 배향을 도시하는, 도 10a에 도시된 액정 층의 확대된 평면도를 예시한다. 도 10c, 10d, 10e 및 10f는 도 10a에 도시된 액정 층의 다양한 실시예들의 측면도들을 예시한다.
[0044] 도 11a는 도 10a에 도시된 액정 층을 제조하도록 구성된 복수의 표면 피처들을 포함하는 임프린트 템플릿의 평면도를 예시한다.
[0045] 도 11b는 도 11a에 도시된 임프린트 템플릿의 측면도를 예시한다.
[0046] 도 12a-12d는 상이한 패턴들로 배열된 복수의 액정 분자들을 포함하는 액정 층을 제조하는 방법의 실시예를 예시한다. 도 12e는 복수의 액정 층들을 포함하는 스택된 액정 디바이스의 실시예를 예시한다.
[0047] 도 13a는 임프린트 템플릿의 실시예의 SEM(canning electron microscope) 이미지를 예시한다. 도 13b는, 도 13a의 임프린트 템플릿 및 도 12a-12c를 참조하여 위에 논의된 방법을 사용하여 제조된 패터닝된 PLC 층의 SEM 이미지이다. 도 13c는 도 13b에 도시된 패터닝된 PLC 층의 편광 현미경 이미지이다.
[0048] 도 14는 전기적으로 제어 가능한 액정 디바이스의 실시예를 예시한다.
[0049] 도 15a-15c는 본원에 설명된 다양한 액정 디바이스들을 제조하는 방법의 예를 예시한다.
[0050] 도 16a는 액정 재료를 포함하는 회절 렌즈의 구현의 평면도를 예시한다.
[0051] 도 16b는 교차된 편광기들 간의 렌즈의 구현의 현미경 이미지를 예시한다. 도 16b-1 및 16b-2는, 액정 렌즈의 다양한 구역들에서 길이방향 축들의 원하는 정렬을 달성하는 임프린트 층의 패턴을 도시하는 SEM(scanning electron microscope) 이미지를 도시한다.
[0052] 도 17a-17c는 액정 렌즈를 제조하는 방법의 예를 예시한다.
[0053] 도 18a는, 액정 렌즈의 구현을 제조하는 데 사용되는 임프린트 층의 SEM(scanning electron microscope) 이미지를 예시한다. 도 18b는 도 18a의 임프린트 층 위에 배치된 액정 층의 SEM(scanning electron microscope) 이미지를 예시한다.
[0054] 다양한 도면들 내의 유사한 참조 번호들 및 지정들은 유사한 엘리먼트들을 표시한다.
[0055] 액정(LC)들은, 특정 조건들 하에서 임의로 배향된 길이방향 축을 갖는 액정 분자들을 포함한다. 그러나, 특정 다른 조건들 하에서, LC 분자들은, 길이방향 축들이 평균 방향(본원에서 디렉터로 지칭됨)을 따라 배향되도록 정렬될 수 있다. 일부 액정 분자들은 길이방향 축을 중심으로 대칭일 수 있다. LC들, 상이한 파장들에 대한 상이한 광학 특성들 또는 LC를 통한 광의 전파 방향, 및 LC 분자들이 일반적으로 배향되는 방향에 대한 광의 편광에 의존한 광의 상이한 파장들 또는 편광들에 대해 상이한 광학 특성들을 가질 수 있는 이방성(anisotropic) 재료이다. 예컨대, LC 분자들은, LC 분자들의 길이방향 축들의 일반적인 배향의 방향을 따라 편광된 광이 LC 분자들의 길이방향 축들의 일반적인 배향에 수직인 방향을 따라 편광된 광의 굴절률과 상이한 굴절률을 갖는 복굴절을 나타낸다. LC 재료들의 복굴절 특성의 결과로서, 그들은 디스플레이들, 광학 통신들, 광학 데이터 저장소, 센서 등을 포함하는 다양한 시스템들에 널리 사용된다. LC 재료의 굴절률은 LC 재료의 분자들의 길이방향 축들의 배향을 변경함으로써 변경될 수 있다. 따라서, LC 재료들은 위상 격자들로서 구성될 수 있다. LC 격자 구조물들은 파장 및/또는 편광에 기반하여 상이한 방향들을 따라 광을 선택적으로 회절시키는 데 사용될 수 있다.
[0056] LC 격자 구조물들을 제조하는 하나의 방법은 기계적 방법, 이를테면, 기계적 물체(예컨대, 금속 물체, 직물, 원자간력 현미경(atomic force microscope)의 팁 등)을 사용하여 정렬 층의 표면을 러빙(rubbing) 또는 스크래칭함으로써 표면 피처들이 정렬 층(예컨대, 중합체) 상에 생성되는 러빙 프로세스를 포함한다. 정렬 층 상에 증착된 LC 재료의 층의 분자들은 격자 패턴을 형성하기 위해 정렬 층 상의 표면 피처들에 정렬된다. 그러나, 러빙 프로세스는 정렬 층의 표면에 기계적 손상을 발생시킬 수 있고 그리고/또는 액정 격자 구조물의 회절 효율을 감소시킬 수 있는 정렬 층의 표면 상의 정전하들(electrostatic charges) 또는 불순물들을 도입할 수 있다. 또한, 러빙 방법을 사용하여 복잡한 격자 구조물들(예컨대, LC 분자들의 상이한 배향들을 갖는 패턴들을 포함하는 LC 격자들)를 제조하는 것은 실현 가능하지 않을 수 있다. 부가적으로, 입사 광의 위상, 진폭 및/또는 편광을 조작하는 데 사용될 수 있는 액정 재료의 공간-변형 나노-스케일 패턴들을 제조하는 것은 실현 가능하지 않을 수 있다. 대조적으로, 본원에서 설명된 다양한 구현들은, 입사 광의 위상, 진폭 및/또는 편광을 조작하는 데 사용될 수 있는 액정 재료들의 공간-변형 나노-스케일 패턴들을 제조하는 데 사용될 수 있다. 공간-변형 나노-스케일 패턴을 갖는 액정 재료의 일부 실시예들은 액정 메타표면을 포함할 수 있다. 공간-변형 나노-스케일 패턴을 갖는 액정 재료의 다른 실시예들은 복수의 인접한 도메인들을 포함하는 액정을 포함할 수 있으며, 각각의 도메인 내의 액정 분자들은 나노-스케일 패턴을 형성하도록 배열될 수 있다.
[0057] 일부 실시예들에서, LC 격자 구조물들은 디스플레이 시스템의 구성 부분들로서 활용될 수 있다. 디스플레이 시스템은 도파관, 및 광 빔을 도파관으로 지향시키도록 구성된 이미지 주입 디바이스를 포함할 수 있다. LC 격자 구조물들은, 인-커플링 광학 엘리먼트, 아웃-커플링 광학 엘리먼트, 및 도파관 내에서 전파되는 입사 광을 수신하고 그 입사 광을 방향전환하여 방향전환된 광이 내부 전반사에 의해 도파관을 통해 계속 전파 계속되도록 하기 위한 광학 엘리먼트 중 하나 이상으로서 사용될 수 있다. 후자 타입의 광학 엘리먼트의 예들은 직교 동공 확장기(OPE)들과 같은 동공 확장기들을 포함한다.
[0058] 일부 실시예들에서, LC 격자 구조물들은 도파관 내에서 전파되는 광을 인-커플링, 아웃-커플링 및/또는 방향전환하는 데 사용될 수 있다. 광은 단일 파장의 또는 단일 범위의 파장들의 광일 수 있다. 일부 다른 실시예들에서, 광은, 상이한 광 특성들을 갖는 복수의 광 스트림들(예컨대, 각각의 스트림은 상이한 파장을 가질 수 있음)을 포함하는 멀티플렉싱된 광 스트림의 부분인 광 스트림일 수 있다. 예컨대, 도파관은, (예컨대, 제1 파장과 상이한 파장들을 갖는) 광의 하나 이상의 다른 스트림들을 실질적으로 투과시키면서, 특정 광 특성(예컨대, 제1 파장)을 갖는 광으로 형성된 광 빔을 선택적으로 방향전환하도록 구성될 수 있는 LC 격자 구조물들을 포함할 수 있다. 일부 실시예들에서, 도파관은, 하나 이상의 다른 광 스트림을 투과시키면서, 제2 광 스트림들을 선택적으로 터닝(turn)시키도록 구성된 인-커플링 광학 엘리먼트들을 포함하는 제2 도파관을 포함할 수 있는 도파관들의 스택의 부분이다. 일부 실시예들에서, 도파관의 인-커플링 LC 격자 구조물들은 광 스트림들 중 적어도 하나를 제2 도파관의 인-커플링 LC 격자 구조물들에 전송하도록 구성된다.
[0059] 이제 유사한 참조 번호들이 전반에 걸쳐 유사한 부분들을 지칭하는 도면들에 대한 참조가 이루어질 것이다. 본원에 개시된 실시예들이 일반적으로 디스플레이 시스템들을 포함하여 광학 시스템들을 포함한다는 것이 인지될 것이다. 일부 실시예들에서, 디스플레이 시스템들은 착용 가능하고, 이는 유리하게는, 보다 몰입형 VR 또는 AR 경험을 제공할 수 있다. 예컨대, 하나 이상의 도파관들(예컨대, 도파관들의 스택)을 포함하는 디스플레이들은 사용자, 착용자 및/또는 뷰어의 눈들의 전면에 포지셔닝되게 착용되도록 구성될 수 있다. 일부 실시예들에서, 도파관들의 2개의 스택들(뷰어의 각각의 눈마다 하나씩)은 각각의 눈에 상이한 이미지들을 제공하기 위해 활용될 수 있다.
예시적인 디스플레이 시스템들
[0060] 도 2는 웨어러블 디스플레이 시스템(60)의 예를 예시한다. 디스플레이 시스템(60)은 디스플레이(70), 및 그 디스플레이(70)의 기능을 지원하기 위한 다양한 기계적 및 전자적 모듈들 및 시스템들을 포함한다. 디스플레이(70)는, 디스플레이 시스템 사용자 또는 뷰어(90)에 의해 착용 가능하고 그리고 사용자(90)의 눈들의 전면에 디스플레이(70)를 포지셔닝하도록 구성된 프레임(80)에 커플링될 수 있다. 디스플레이(70)는 일부 실시예들에서, 안경류(eyewear)로 간주될 수 있다. 일부 실시예들에서, 스피커(100)는 프레임(80)에 커플링되고 사용자(90)의 외이도에 인접하게 포지셔닝되도록 구성된다(일부 실시예들에서, 도시되지 않은 다른 스피커가 선택적으로, 사용자의 다른 외이도에 인접하게 포지셔닝되어 스테레오/성형 가능(shapeable) 사운드 제어를 제공함). 일부 실시예들에서, 디스플레이 시스템은 또한 하나 이상의 마이크로폰들(110) 또는 사운드를 검출하기 위한 다른 디바이스들을 포함할 수 있다. 일부 실시예들에서, 마이크로폰은 사용자가 시스템(60)에 입력들 또는 커맨드들(예컨대, 음성 메뉴 커맨드들의 선택, 자연어 질문 등)을 제공하도록 허용하게 구성되고, 그리고/또는 다른 사람들(예컨대, 유사한 디스플레이 시스템들의 다른 사용자들)과의 오디오 통신을 허용할 수 있다. 마이크로폰은 추가로, 오디오 데이터(예컨대, 사용자 및/또는 환경으로부터의 사운드들)를 수집하기 위한 주변 센서로서 구성될 수 있다. 일부 실시예들에서, 디스플레이 시스템은 또한, 프레임(80)과 별개이고 사용자(90)의 신체(예컨대, 사용자(90)의 머리, 몸통, 사지(extremity) 등)에 부착될 수 있는 주변 센서(120a)를 포함할 수 있다. 주변 센서(120a)는, 일부 실시예들에서, 사용자(90)의 생리학적 상태를 특징화하는 데이터를 취득하도록 구성될 수 있다. 예컨대, 센서(120a)는 전극일 수 있다.
[0061] 도 2를 계속 참조하면, 디스플레이(70)는, 다양한 구성들로 장착될 수 있는, 예컨대, 프레임(80)에 고정되게 부착되거나, 사용자에 의해 착용된 헬멧 또는 모자에 고정되게 부착되거나, 헤드폰들에 내장되거나, 그렇지 않으면 사용자(90)에게 제거 가능하게 부착되는(예컨대, 백팩(backpack)-스타일 구성으로, 벨트-커플링 스타일 구성으로) 로컬 데이터 프로세싱 모듈(140)에 통신 링크(130)에 의해, 예컨대, 유선 리드 또는 무선 연결성에 의해, 동작 가능하게 커플링된다. 유사하게, 센서(120a)는 통신 링크(120b), 예컨대, 유선 리드 또는 무선 연결성에 의해 로컬 프로세서 및 데이터 모듈(140)에 동작 가능하게 커플링될 수 있다. 로컬 프로세싱 및 데이터 모듈(140)은 하드웨어 프로세서뿐 아니라, 디지털 메모리 예컨대, 비-휘발성 메모리(예컨대, 플래시 메모리 또는 하드 디스크 드라이브들)를 포함할 수 있고, 이 둘 모두는 데이터의 프로세싱, 캐싱(caching) 및 저장을 보조하기 위해 활용될 수 있다. 데이터는 a) 센서들(예컨대 프레임(80)에 동작 가능하게 커플링되거나 그렇지 않으면 사용자(90)에게 부착될 수 있음), 예컨대, 이미지 캡처 디바이스들(예컨대, 카메라들), 마이크로폰들, 관성 측정 유닛들, 가속도계들, 컴파스(compass)들, GPS 유닛들, 라디오 디바이스들, 자이로(gyro)들 및/또는 본원에서 개시된 다른 센서들로부터 캡처되고; 및/또는 b) 원격 프로세싱 모듈(150) 및/또는 원격 데이터 저장소(repository)(160)(가상 콘텐츠에 관련된 데이터를 포함함)를 사용하여 취득 및/또는 프로세싱되는(가능하게는, 이러한 프로세싱 또는 리트리벌(retrieval) 후 디스플레이(70)에 전달하기 위한) 데이터를 포함한다. 로컬 프로세싱 및 데이터 모듈(140)은 통신 링크들(170, 180)에 의해, 예컨대, 유선 또는 무선 통신 링크들을 통하여, 원격 프로세싱 모듈(150) 및 원격 데이터 저장소(160)에 동작 가능하게 커플링될 수 있어서, 이들 원격 모듈들(150, 160)은 서로 동작 가능하게 커플링되고 로컬 프로세싱 및 데이터 모듈(140)에 대한 자원들로서 이용 가능하다. 일부 실시예들에서, 로컬 프로세싱 및 데이터 모듈(140)은 이미지 캡처 디바이스들, 마이크로폰들, 관성 측정 유닛들, 가속도계들, 컴파스들, GPS 유닛들, 라디오 디바이스들 및/또는 자이로들 중 하나 이상을 포함할 수 있다. 일부 다른 실시예들에서, 이들 센서들 중 하나 이상은 프레임(80)에 부착될 수 있거나, 또는 유선 또는 무선 통신 통로들에 의해 로컬 프로세싱 및 데이터 모듈(140)과 통신하는 자립형 구조들일 수 있다.
[0062] 도 2를 계속 참조하면, 일부 실시예들에서, 원격 프로세싱 모듈(150)은 데이터 및/또는 이미지 정보를 분석 및 프로세싱하도록 구성된 하나 이상의 프로세서들을 포함할 수 있다. 일부 실시예들에서, 원격 데이터 저장소(160)는 "클라우드" 자원 구성에서 인터넷 또는 다른 네트워킹 구성을 통하여 이용 가능할 수 있는 디지털 데이터 저장 설비를 포함할 수 있다. 일부 실시예들에서, 원격 데이터 저장소(160)는 정보, 예컨대, 증강 현실 콘텐츠를 생성하기 위한 정보를 로컬 프로세싱 및 데이터 모듈(140) 및/또는 원격 프로세싱 모듈(150)에 제공하는 하나 이상의 원격 서버들을 포함할 수 있다. 일부 실시예들에서, 모든 데이터는 저장되고 모든 컴퓨테이션들은 로컬 프로세싱 및 데이터 모듈에서 수행되어, 원격 모듈로부터 완전히 자율적인 사용을 허용한다.
[0063] "3-차원" 또는 "3-D"로서 이미지의 지각은 뷰어의 각각의 눈에 이미지의 약간 상이한 프리젠테이션들을 제공함으로써 달성될 수 있다. 도 3은 사용자에 대한 3차원 이미저리를 시뮬레이팅하기 위한 종래의 디스플레이 시스템을 예시한다. 2개의 별개의 이미지들(190 및 200)(각각의 눈(210 및 220)에 대해 하나씩)이 사용자에게 출력된다. 이미지들(190, 200)은 뷰어의 시선과 평행한 광학 또는 z-축을 따라 거리(230) 만큼 눈들(210, 220)로부터 이격된다. 이미지들(190, 200)은 편평하고 눈들(210, 220)은 단일 원근조절된 상태를 가정함으로써 이미지들에 포커싱될 수 있다. 그러한 3-D 디스플레이 시스템들은 결합된 이미지에 대한 스케일 및/또는 깊이의 지각을 제공하기 위하여 이미지들(190, 200)을 결합하는데 인간 시각 시스템에 의존한다.
[0064] 그러나, 인간 시각 시스템은 더 복잡하고 현실적인 깊이의 지각을 제공하는 것이 더 어렵다는 것이 인지될 것이다. 예컨대, 종래의 "3-D" 디스플레이 시스템들의 많은 뷰어들은 그런 시스템들이 불편하다는 것을 발견하거나, 깊이 감을 전혀 지각하지 못할 수 있다. 이론에 의해 제한됨이 없이, 객체의 뷰어들은 이접운동 및 원근조절의 결합으로 인해 객체를 "3-차원"인 것으로 지각할 수 있다고 여겨진다. 서로에 대한 2개의 눈들의 이접운동(vergence) 움직임들(즉, 객체를 응시하기 위해 눈들의 시선들을 수렴하도록 동공들이 서로를 향해 또는 서로 멀어지게 움직이도록 하는 눈들의 회전)은 눈들의 렌즈들 및 동공들의 포커싱(또는 "원근조절")과 밀접하게 연관된다. 정상 조건들 하에서, 하나의 객체에서 상이한 거리의 다른 객체로 포커스를 변경하기 위해, 눈들의 렌즈들의 포커스를 변경하거나, 눈들을 원근조절하는 것은, "원근조절-이접운동 반사작용(accommodation-vergence reflex)"으로 알려진 관계 하에서, 동일한 거리에 대한 이접운동의 매칭하는 변화뿐만 아니라 동공 팽창 또는 수축을 자동으로 발생시킬 것이다. 마찬가지로, 이접운동에서의 변화는 정상 조건들하에서, 렌즈 형상 및 동공 크기의, 원근조절에서의 매칭하는 변화를 트리거할 것이다. 본원에서 언급되는 바와 같이, 다수의 스테레오스코픽 또는 "3-D" 디스플레이 시스템들은, 3-차원 원근투시가 인간 시각 시스템에 의해 지각되도록 각각의 눈에 약간 상이한 프리젠테이션들(그리고 따라서, 약간 상이한 이미지들)을 사용하여 장면을 디스플레이한다. 그러나, 그러한 시스템들은 많은 뷰어들에게 불편한데, 그 이유는 다른 것들 중에서, 그러한 시스템들이 단순히 장면의 상이한 프리젠테이션을 제공하지만, 눈들이 단일 원근조절된 상태에서 모든 이미지 정보를 보고, 그리고 "원근조절-이접운동 반사"에 반하여 작동하기 때문이다. 원근조절과 이접운동 사이의 더 양호한 매칭을 제공하는 디스플레이 시스템들은 3-차원 이미저리의 더 현실적이고 편안한 시뮬레이션들을 형성하여, 착용 지속기간을 증가시키고, 그리고 결국 진단 및 치료 프로토콜들을 준수하는데 기여할 수 있다.
[0065] 도 4는 다중 깊이 평면들을 사용하여 3-차원 이미저리를 시뮬레이팅하기 위한 접근법의 양상들을 예시한다. 도 4를 참조하면, z-축 상에서 눈들(210, 220)로부터의 다양한 거리들에 있는 객체들은, 이들 객체들이 인 포커싱(in focus)되도록 눈들(210, 220)에 의해 원근조절된다. 눈들(210, 220)은 z-축을 따라 상이한 거리들에 있는 객체들에 포커스를 맞추게 하는 특정 원근조절된 상태들을 취한다. 결과적으로, 특정 원근조절된 상태는 연관된 초점 거리를 갖는 깊이 평면들(240) 중 특정한 하나의 깊이 평면과 연관되는 것으로 말할 수 있어서, 특정 깊이 평면의 객체들 또는 객체들의 부분들은, 눈이 해당 깊이 평면에 대해 원근조절된 상태에 있을 때 인 포커싱된다. 일부 실시예들에서, 3-차원 이미저리는 눈들(210, 220) 각각에 대해 이미지의 상이한 프리젠테이션들을 제공함으로써, 그리고 또한 깊이 평면들 각각에 대응하는 이미지의 상이한 프리젠테이션들을 제공함으로써 시뮬레이팅될 수 있다. 예시의 명확성을 위해 별개인 것으로 도시되지만, 눈들(210, 220)의 시야들은 예컨대, z-축을 따른 거리가 증가함에 따라 겹쳐질 수 있다는 것이 인지될 것이다. 게다가, 예시의 용이함을 위해 평평한 것으로 도시되지만, 깊이 평면의 윤곽들은 물리적 공간에서 만곡될 수 있어서, 깊이 평면의 모든 피처들은 특정 원근조절된 상태에서 눈과 인 포커싱된다는 것이 인지될 것이다.
[0066] 객체와 눈(210 또는 220) 간의 거리는 또한, 그 눈으로 볼 때, 그 객체로부터 광의 발산량을 변경할 수 있다. 도 5a-5c는 광선들의 거리와 발산 간의 관계들을 예시한다. 객체와 눈(210) 간의 거리는, 거리가 감소하는 순서로 R1, R2 및 R3에 의해 표현된다. 도 5a-5c에 도시된 바와 같이, 광선들은, 객체에 대한 거리가 감소함에 따라 더 많이 발산하게 된다. 거리가 증가함에 따라, 광선들은 더 시준된다. 다시 말해서, 포인트(객체 또는 객체의 일부)에 의해 생성된 광 필드가 구체 파면 곡률을 가지는 것으로 말해질 수 있고, 구체 파면 곡률은, 포인트가 사용자의 눈으로부터 얼마나 멀리 떨어져 있는지의 함수이다. 곡률은 객체와 눈(210) 간의 거리가 감소함에 따라 증가한다. 결과적으로, 상이한 깊이 평면들에서, 광선들의 발산 정도는 또한 상이하고, 발산 정도는, 깊이 평면들과 뷰어의 눈(210) 간의 거리가 감소함에 따라 증가한다. 단지 하나의 눈(210)이 도 5a-5c 및 본원의 다른 도면들에서 예시의 명확성을 위해 예시되지만, 눈(210)에 대한 논의들이 뷰어의 양쪽 눈들(210 및 220)에 적용될 수 있다는 것이 인지될 것이다.
[0067] 이론에 의해 제한되지 않고서, 인간 눈이 통상적으로 깊이 지각을 제공하기 위하여 유한 수의 깊이 평면들을 해석할 수 있다고 여겨진다. 결과적으로, 지각된 깊이의 매우 믿을 만한 시뮬레이션은, 눈에, 이들 제한된 수의 깊이 평면들 각각에 대응하는 이미지의 상이한 프리젠테이션들을 제공함으로써 달성될 수 있다. 상이한 프리젠테이션들이 뷰어의 눈들에 의해 별개로 포커싱될 수 있고, 그리하여, 상이한 깊이 평면 상에 위치되는 장면에 대한 상이한 이미지 피처들에 포커스를 맞추도록 요구되는 눈의 원근조절에 기반하여 그리고/또는 상이한 깊이 평면 상의 상이한 이미지 피처들이 아웃 포커스(out of focus)되는 것을 관찰하는 것에 기반하여 깊이 단서들을 사용자에게 제공하는 것을 돕는다.
[0068] 도 6은 이미지 정보를 사용자에게 출력하기 위한 도파관 스택의 예를 예시한다. 디스플레이 시스템(250)은 복수의 도파관들(270, 280, 290, 300, 310)을 사용하여 3-차원 지각을 눈/뇌에 제공하기 위하여 활용될 수 있는 도파관들의 스택, 또는 스택된 도파관 어셈블리(260)를 포함한다. 일부 실시예들에서, 디스플레이 시스템(250)은 도 2의 시스템(60)이고, 도 6은 그 시스템(60)의 일부 부분들을 더 상세히 개략적으로 도시한다. 예컨대, 도파관 어셈블리(260)는 도 2의 디스플레이(70)의 부분일 수 있다. 디스플레이 시스템(250)은 일부 실시예들에서 광 필드(light field) 디스플레이로서 간주될 수 있다는 것이 인지될 것이다.
[0069] 도 6을 계속 참조하면, 도파관 어셈블리(260)는 또한 도파관들 사이에 복수의 피처들(320, 330, 340, 350)을 포함할 수 있다. 일부 실시예들에서, 피처들(320, 330, 340, 350)은 하나 이상의 렌즈들일 수 있다. 도파관들(270, 280, 290, 300, 310) 및/또는 복수의 렌즈들(320, 330, 340, 350)은 다양한 레벨들의 파면 곡률 또는 광선 발산으로 이미지 정보를 눈에 전송하도록 구성될 수 있다. 각각의 도파관 레벨은 특정 깊이 평면과 연관될 수 있고, 그 깊이 평면에 대응하는 이미지 정보를 출력하도록 구성될 수 있다. 이미지 주입 디바이스들(360, 370, 380, 390, 400)은 도파관들에 대한 광원으로서 기능할 수 있고, 이미지 정보를 도파관들(270, 280, 290, 300, 310)에 주입하기 위하여 활용될 수 있으며, 도파관들 각각은, 본원에 설명된 바와 같이, 눈(210)을 향하여 출력하기 위해 각각의 개개의 도파관에 걸쳐 인입 광을 분산시키도록 구성될 수 있다. 광은 이미지 주입 디바이스들(360, 370, 380, 390, 400)의 출력 표면(410, 420, 430, 440, 450)을 나가고 도파관들(270, 280, 290, 300, 310)의 대응하는 입력 표면(460, 470, 480, 490, 500)에 주입된다. 일부 실시예들에서, 입력 표면들(460, 470, 480, 490, 500) 각각은 대응하는 도파관의 에지일 수 있거나, 또는 대응하는 도파관의 주 표면의 일부일 수 있다(즉, 도파관 표면들 중 하나는 직접적으로 세계(510) 또는 뷰어의 눈(210)을 향함). 일부 실시예들에서, 단일 광 빔(예컨대, 시준된 빔)은 특정 도파관과 연관된 깊이 평면에 대응하는 특정 각도들(및 발산 양들)로 눈(210)을 향하여 지향되는 시준된 클론 빔(cloned collimated beam)들의 전체 필드를 출력하기 위하여 각각의 도파관으로 주입될 수 있다. 일부 실시예들에서, 이미지 주입 디바이스들(360, 370, 380, 390, 400) 중 하나의 이미지 주입 디바이스가 복수(예컨대, 3개)의 도파관들(270, 280, 290, 300, 310)과 연관되고 그에 광을 주입할 수 있다.
[0070] 일부 실시예들에서, 이미지 주입 디바이스들(360, 370, 380, 390, 400)은 각각 대응하는 도파관(270, 280, 290, 300, 310)에 주입을 위한 이미지 정보를 각각 생성하는 이산 디스플레이들이다. 일부 다른 실시예들에서, 이미지 주입 디바이스들(360, 370, 380, 390, 400)은 예컨대, 이미지 정보를 하나 이상의 광학 도관들(예컨대, 광섬유 케이블들)을 통하여 이미지 주입 디바이스들(360, 370, 380, 390, 400) 각각에 파이핑(pipe)할 수 있는 단일 멀티플렉싱된 디스플레이의 출력 단부들이다. 이미지 주입 디바이스들(360, 370, 380, 390, 400)에 의해 제공되는 이미지 정보는 상이한 파장들 또는 컬러들(예컨대, 본원에서 논의된 바와 같이 상이한 컴포넌트 컬러들)의 광을 포함할 수 있다는 것이 인지될 것이다.
[0071] 일부 실시예들에서, 도파관들(270, 280, 290, 300, 310)로 주입된 광은 LED(light emitting diode)와 같은 광 이미터를 포함할 수 있는 광 모듈(530)을 포함하는 광 프로젝터 시스템(520)에 의해 제공된다. 광 모듈(530)로부터의 광은 빔 분할기(550)를 통해 광 변조기(540), 예컨대, 공간 광 변조기에 지향되고 그에 의해 수정될 수 있다. 광 변조기(540)는 도파관들(270, 280, 290, 300, 310) 내로 주입되는 광의 지각된 세기를 변화시키도록 구성될 수 있다. 공간 광 변조기들의 예들은, LCOS(liquid crystal on silicon) 디스플레이들을 포함하는 LCD(liquid crystal display)들을 포함한다.
[0072] 일부 실시예들에서, 디스플레이 시스템(250)은 광을 다양한 패턴들(예컨대, 래스터 스캔, 나선형 스캔, 리사주(Lissajous) 패턴 등)로 하나 이상의 도파관들(270, 280, 290, 300, 310) 내로 그리고 궁극적으로 뷰어의 눈(210)으로 프로젝팅하도록 구성된 하나 이상의 스캐닝 섬유들을 포함하는 스캐닝 섬유 디스플레이일 수 있다. 일부 실시예들에서, 예시된 이미지 주입 디바이스들(360, 370, 380, 390, 400)은 하나 또는 복수의 도파관들(270, 280, 290, 300, 310) 내로 광을 주입하도록 구성된 단일 스캐닝 광섬유 또는 스캐닝 광섬유들의 번들(bundle)을 개략적으로 표현할 수 있다. 일부 다른 실시예들에서, 예시된 이미지 주입 디바이스들(360, 370, 380, 390, 400)은 복수의 스캐닝 광섬유들 또는 스캐닝 광섬유들의 복수의 번들(bundle)들을 개략적으로 표현할 수 있고, 이들 각각은 도파관들(270, 280, 290, 300, 310) 중 연관된 도파관 내로 광을 주입하도록 구성된다. 하나 이상의 광섬유들이 광 모듈(530)로부터 하나 이상의 도파관들(270, 280, 290, 300, 310)로 광을 송신하도록 구성될 수 있다는 것이 인지될 것이다. 예컨대, 스캐닝 섬유에서 나오는 광을 하나 이상의 도파관들(270, 280, 290, 300, 310)로 방향전환하도록, 스캐닝 섬유 또는 섬유들과 하나 이상의 도파관들(270, 280, 290, 300, 310) 사이에 하나 이상의 개재된 광학 구조들이 제공될 수 있다는 것이 인지될 것이다.
[0073] 제어기(560)는 이미지 주입 디바이스들(360, 370, 380, 390, 400), 광원(530) 및 광 변조기(540)의 동작을 포함한, 스택된 도파관 어셈블리(260)의 하나 이상의 도파관들의 동작을 제어한다. 일부 실시예들에서, 제어기(560)는 로컬 데이터 프로세싱 모듈(140)의 부분이다. 제어기(560)는 예컨대, 본원에 개시된 다양한 방식들 중 임의의 방식에 따라 도파관들(270, 280, 290, 300, 310)에 대한 이미지 정보의 타이밍 및 제공을 조절하는 프로그래밍(예컨대, 비-일시적 매체의 명령들)을 포함한다. 일부 실시예들에서, 제어기는 단일 통합 디바이스, 또는 유선 또는 무선 통신 채널들에 의해 연결되는 분산 시스템일 수 있다. 제어기(560)는 일부 실시예들에서, 프로세싱 모듈들(140 또는 150)(도 2)의 부분일 수 있다.
[0074] 도 6을 계속 참조하면, 도파관들(270, 280, 290, 300, 310)은 TIR(total internal reflection)에 의해 각각의 개개의 도파관 내에서 광을 전파시키도록 구성될 수 있다. 도파관들(270, 280, 290, 300, 310)은 각각 평면형이거나 다른 형상(예컨대, 곡선)을 가질 수 있으며, 주 최상부 및 최하부 표면들 및 이들 주 최상부와 최하부 표면들 사이에서 연장되는 에지들을 갖는다. 예시된 구성에서, 도파관들(270, 280, 290, 300, 310) 각각은 이미지 정보를 눈(210)에 출력하기 위해 각각의 개개의 도파관 내에서 전파되는 광을 도파관 밖으로 방향전환함으로써 도파관 밖으로 광을 추출하도록 구성되는 아웃-커플링 광학 엘리먼트들(570, 580, 590, 600, 610)을 포함할 수 있다. 추출된 광은 아웃-커플링된 광으로서 또한 지칭될 수 있고, 아웃-커플링 광학 엘리먼트들은 또한 광 추출 광학 엘리먼트들로서 지칭될 수 있다. 추출된 광 빔은, 도파관 내에서 전파되는 광이 광 추출 광학 엘리먼트에 부딪치는 위치들에서 도파관에 의해 출력될 수 있다. 아웃-커플링 광학 엘리먼트들(570, 580, 590, 600, 610)은 예컨대, 본원에서 추가로 논의되는 바와 같이, 회절성 광학 피처들을 포함하는 격자들일 수 있다. 설명의 용이함 및 도면 명확성을 위하여 도파관들(270, 280, 290, 300, 310)의 최하부 주 표면들에 배치된 것으로 예시되지만, 일부 실시예들에서, 아웃-커플링 광학 엘리먼트들(570, 580, 590, 600, 610)은 본원에서 추가로 논의되는 바와 같이, 최상부 및/또는 최하부 주 표면들에 배치될 수 있고, 그리고/또는 도파관들(270, 280, 290, 300, 310)의 볼륨에 직접 배치될 수 있다. 일부 실시예들에서, 아웃-커플링 광학 엘리먼트들(570, 580, 590, 600, 610)은 도파관들(270, 280, 290, 300, 310)을 형성하기 위해 투명 기판에 부착된 재료의 층에 형성될 수 있다. 일부 다른 실시예들에서, 도파관들(270, 280, 290, 300, 310)은 재료의 모놀리식 피스(piece)일 수 있고 아웃-커플링 광학 엘리먼트들(570, 580, 590, 600, 610)은 재료의 해당 피스의 표면 상에 그리고/또는 그 내부에 형성될 수 있다.
[0075] 도 6을 계속 참조하면, 본원에 논의된 바와 같이, 각각의 도파관(270, 280, 290, 300, 310)은 특정 깊이 평면에 대응하는 이미지를 형성하기 위해 광을 출력하도록 구성된다. 예컨대, 눈에 가장 가까운 도파관(270)은, (그러한 도파관(270)에 주입된) 시준된 광을 눈(210)에 전달하도록 구성될 수 있다. 시준된 광은 광학 무한대 초점 평면을 나타낼 수 있다. 위의 다음 도파관(280)은, 시준된 광이 눈(210)에 도달할 수 있기 전에 제1 렌즈(350)(예컨대, 네거티브 렌즈)를 통과하는 시준된 광을 전송하도록 구성될 수 있고; 그러한 제1 렌즈(350)는 약간 볼록한 파면 곡률을 생성하도록 구성될 수 있어서, 눈/뇌는 위의 다음 도파관(280)으로부터 오는 광을, 광학적 무한대로부터 눈(210)을 향하여 안쪽으로 더 가까운 제1 초점 평면으로부터 오는 것으로 해석한다. 유사하게, 위의 제3 도파관(290)은 자신의 출력 광을 눈(210)에 도달하기 전에 제1(350) 및 제2(340) 렌즈들 둘 모두를 통과시키고; 제1(350) 및 제2(340) 렌즈들의 결합된 광학 전력은 다른 증분 양의 파면 곡률을 생성하도록 구성될 수 있어서, 눈/뇌는 제3 도파관(290)으로부터 오는 광을, 위의 다음 도파관(280)으로부터의 광보다는 광학적 무한대로부터 사람을 향하여 안쪽으로 훨씬 더 가까운 제2 초점 평면으로부터 오는 것으로 해석한다.
[0076] 다른 도파관 층들(300, 310) 및 렌즈들(330, 320)은 유사하게 구성되는데, 스택에서 가장 높은 도파관(310)은 자신의 출력을, 사람과 가장 가까운 초점 평면을 나타내는 어그리게이트 초점 전력에 대해 자신과 눈 사이의 렌즈들 모두를 통하여 전송한다. 스택된 도파관 어셈블리(260)의 다른 측 상에서 세계(510)로부터 오는 광을 보거나/해석할 때 렌즈들(320, 330, 340, 350)의 스택을 보상하기 위하여, 보상 렌즈 층(620)은 아래의 렌즈 스택(320, 330, 340, 350)의 어그리게이트 파워를 보상하기 위하여 스택의 최상부에 배치될 수 있다. 이러한 구성은 이용 가능한 도파관/렌즈 페어링들이 존재하는 만큼 많은 지각된 초점 평면들을 제공한다. 도파관들의 아웃-커플링 광학 엘리먼트들 및 렌즈들의 포커싱 양상들 둘 모두는 정적(즉, 동적이거나 전자-활성이지 않음)일 수 있다. 일부 대안적인 실시예들에서, 어느 하나 또는 둘 모두는 전자-활성 피처들을 사용하여 동적일 수 있다.
[0077] 일부 실시예들에서, 도파관들(270, 280, 290, 300, 310) 중 둘 이상은 동일한 연관된 깊이 평면을 가질 수 있다. 예컨대, 다수의 도파관들(270, 280, 290, 300, 310)은 동일한 깊이 평면으로 세팅된 이미지들을 출력하도록 구성될 수 있거나, 또는 도파관들(270, 280, 290, 300, 310)의 다수의 서브세트들은 동일한 복수의 깊이 평면들로 세팅된 이미지들(각각의 깊이 평면에 대해 하나의 이미지가 세팅됨)을 출력하도록 구성될 수 있다. 이는 그러한 깊이 평면들에서 확장된 시야를 제공하기 위해 타일 이미지(tiled image)를 형성하는 이점들을 제공할 수 있다.
[0078] 도 6을 계속 참조하면, 아웃-커플링 광학 엘리먼트들(570, 580, 590, 600, 610)은 자신의 개별 도파관들 밖으로 광을 방향전환하고 그리고 도파관과 연관된 특정 깊이 평면에 대해 적절한 양의 발산 또는 시준으로 이 광을 출력하도록 구성될 수 있다. 결과적으로, 상이한 연관된 깊이 평면들을 가진 도파관들은 상이한 구성들의 아웃-커플링 광학 엘리먼트들(570, 580, 590, 600, 610)을 가질 수 있고, 이러한 아웃-커플링 광학 엘리먼트들(570, 580, 590, 600, 610)은 연관된 깊이 평면에 따라 상이한 양의 발산으로 광을 출력한다. 일부 실시예들에서, 광 추출 광학 엘리먼트들(570, 580, 590, 600, 610)은 특정 각도들로 광을 출력하도록 구성될 수 있는 볼류메트릭(volumetric) 또는 표면 피처들일 수 있다. 예컨대, 광 추출 광학 엘리먼트들(570, 580, 590, 600, 610)은 볼륨 홀로그램들, 표면 홀로그램들, 및/또는 회절 격자들일 수 있다. 일부 실시예들에서, 피처들(320, 330, 340, 350)은 렌즈들이 아닐 수 있고; 오히려, 이들은 단순히 스페이서들(예컨대, 공기 갭들을 형성하기 위한 클래딩(cladding) 층들 및/또는 구조들)일 수 있다.
[0079] 일부 실시예들에서, 아웃-커플링 광학 엘리먼트들(570, 580, 590, 600, 610)은 회절 패턴을 형성하는 회절 피처들 또는 "회절 광학 엘리먼트"(또한 본원에서 "DOE"로서 지칭됨)이다. 바람직하게는, DOE들은 충분히 낮은 회절 효율성을 가져서, 빔의 광의 일부만이 DOE의 각각의 교차로 인해 눈(210)을 향하여 편향되지만, 나머지는 TIR을 통하여 도파관을 통해 계속 이동한다. 따라서, 이미지 정보를 전달하는 광은 다수의 위치들에서 도파관을 나가는 다수의 관련된 퇴장 빔들로 분할되고 그 결과는 이런 특정 시준된 빔이 도파관 내에서 이리저리 바운싱되기 때문에 눈(210)을 향하는 상당히 균일한 퇴장 방출 패턴이다.
[0080] 일부 실시예들에서, 하나 이상의 DOE들은, 그것들이 활발하게 회절시키는 "온" 상태들과 그것들이 크게 회절시키지 않는 "오프" 상태들 간에 스위칭 가능할 수 있다. 예컨대, 스위칭 가능 DOE는, 마이크로액적들이 호스트 매질에서 회절 패턴을 포함하는 중합체 분산형 액정 층을 포함할 수 있고, 마이크로액적들의 굴절률은 호스트 매질의 굴절률에 실질적으로 매칭하도록 스위칭될 수 있거나(이 경우에 패턴은 입사 광을 현저하게 회절시키지 않음) 또는 마이크로액적은 호스트 매질의 인덱스에 매칭하지 않는 인덱스로 스위칭될 수 있다(이 경우 패턴은 입사 광을 활발하게 회절시킴).
[0081] 일부 실시예들에서, 예컨대, 사용자 입력들을 검출하고 그리고/또는 사용자의 생리학적 상태를 모니터링하기 위해 눈(210) 및/또는 눈(210) 주위 조직의 이미지들을 캡처하도록 카메라 어셈블리(630)(예컨대, 가시광 및 적외선 카메라들을 포함하는 디지털 카메라)가 제공될 수 있다. 본원에서 사용된 바와 같이, 카메라는 임의의 이미지 캡처 디바이스일 수 있다. 일부 실시예들에서, 카메라 어셈블리(630)는 이미지 캡처 디바이스 및 눈에 광(예컨대, 적외선)을 프로젝팅하기 위한 광원을 포함할 수 있으며, 이 광은 그 후 눈에 의해 반사되고 이미지 캡처 디바이스에 의해 검출될 수 있다. 일부 실시예들에서, 본원에서 논의되는 바와 같이, 카메라 어셈블리(630)는 프레임(80)(도 2)에 부착될 수 있고, 예컨대, 사용자의 생리학적 상태에 관한 다양한 결정들을 하기 위해 카메라 어셈블리(630)로부터의 이미지 정보를 프로세싱할 수 있는 프로세싱 모듈들(140 및/또는 150)과 전기 통신할 수 있다. 사용자의 생리학적 상태에 관한 정보가 사용자의 거동 또는 감정 상태를 결정하는 데 사용될 수 있다는 것이 인지될 것이다. 이러한 정보의 예들은 사용자의 움직임들 및/또는 사용자의 얼굴 표정들을 포함한다. 이어서, 사용자의 거동 또는 감정 상태는 거동 또는 감정 상태, 생리학적 상태 및 환경 또는 가상 콘텐츠 데이터 간의 관계들을 결정하기 위해 수집된 환경 및/또는 가상 콘텐츠 데이터로 삼각 측량될 수 있다. 일부 실시예들에서, 하나의 카메라 어셈블리(630)가 각각의 눈을 별개로 모니터링하기 위해 각각의 눈에 대해 활용될 수 있다.
[0082] 이제 도 7을 참조하면, 도파관에 의해 출력된 출사 빔들의 예가 도시된다. 하나의 도파관이 예시되지만, 도파관 어셈블리(260)(도 6) 내의 다른 도파관들이 유사하게 기능할 수 있다는 것이 인지될 것이며, 여기서 도파관 어셈블리(260)는 다수의 도파관들을 포함한다. 광(640)은 도파관(270)의 입력 표면(460)에서 도파관(270)으로 주입되고 TIR에 의해 도파관(270) 내에서 전파된다. 광(640)이 DOE(570)에 충돌하는 지점들에서, 광의 일부는 퇴장 빔들(650)로서 도파관을 나간다. 출사 빔들(650)은 실질적으로 평행한 것으로 예시되지만, 본원에 논의된 바와 같이, 이들 출사 빔들(650)은 또한 도파관(270)과 연관된 깊이 평면에 따라, 임의의 각도로 눈(210)으로 전파되도록 방향전환될 수 있다(예컨대, 발산하는 출사 빔들을 형성함). 실질적으로 평행한 출사 빔들은, 눈(210)으로부터 먼 거리(예컨대, 광학적 무한대)에 있는 깊이 평면 상에 세팅된 것으로 보이는 이미지들을 형성하도록 광을 아웃커플링하는 아웃-커플링 광학 엘리먼트들을 갖는 도파관을 나타낼 수 있다는 것이 인지될 것이다. 다른 도파관들 또는 아웃-커플링 광학 엘리먼트들의 다른 세트들은 더 발산하는 출사 빔 패턴을 출력할 수 있고, 이는 눈(210)이 망막 상에 포커싱을 맞추게 하기 위해 더 가까운 거리로 원근조절하는 것을 요구할 것이고 광학적 무한대보다 눈(210)에 더 가까운 거리로부터의 광으로서 뇌에 의해 해석될 것이다.
[0083] 일부 실시예들에서, 풀(full) 컬러 이미지는 컴포넌트 컬러들, 예컨대, 3개 이상의 컴포넌트 컬러들 각각에 이미지들을 오버레이시킴으로써 각각의 깊이 평면에 형성될 수 있다. 도 8은 각각의 깊이 평면이 다수의 상이한 컴포넌트 컬러들을 사용하여 형성된 이미지들을 포함하는 스택된 도파관 어셈블리의 예를 예시한다. 예시된 실시예는 깊이 평면들(240a-240f)을 도시하지만, 더 많거나 더 적은 깊이들이 또한 고려될 수 있다. 각각의 깊이 평면은, 제1 컬러(G)의 제1 이미지; 제2 컬러(R)의 제2 이미지; 및 제3 컬러(B)의 제3 이미지를 포함해서, 자신과 연관된 3개 이상의 컴포넌트 컬러 이미지들을 가질 수 있다. 상이한 깊이 평면들은 G, R 및 B 문자들 다음에 오는 디옵터들(dpt)에 대한 상이한 숫자들에 의해 도면에 표시된다. 단지 예들로서, 이들 문자들 각각 다음에 오는 숫자들은 디옵터들(1/m) 또는 뷰어로부터의 깊이 평면의 역 거리(inverse distance)를 표시하며, 도면들에서 각각의 박스는 개별 컴포넌트 컬러 이미지를 나타낸다. 일부 실시예들에서, 상이한 파장들의 광의 눈의 포커싱에서의 차이를 참작하기 위해, 상이한 컴포넌트 컬러들에 대한 깊이 평면들의 정확한 배치는 변동될 수 있다. 예컨대, 주어진 깊이 평면에 대한 상이한 컴포넌트 컬러 이미지들은 사용자로부터의 상이한 거리들에 대응하는 깊이 평면들 상에 배치될 수 있다. 이러한 어레인지먼트는 시력(visual acuity) 및 사용자의 편안함을 증가시킬 수 있고 그리고/또는 색수차들을 감소시킬 수 있다.
[0084] 일부 실시예들에서, 각각의 컴포넌트 컬러의 광은 하나의 전용 도파관에 의해 출력될 수 있고, 결과적으로, 각각의 깊이 평면은 그것과 연관된 다수의 도파관들을 가질 수 있다. 이러한 실시예들에서, 문자들 G, R 또는 B를 포함하는 도면들 내의 각각의 박스는 개별 도파관을 나타내는 것으로 이해될 수 있고, 3개의 도파관들이 깊이 평면 당 제공될 수 있으며, 여기서 3개의 컴포넌트 컬러 이미지들이 깊이 평면 당 제공된다. 각각의 깊이 평면과 연관된 도파관들이 설명의 용이함을 위해 이 도면에서 서로 인접한 것으로 도시되지만, 물리적 디바이스에서, 도파관들은 모두 레벨 당 하나의 도파관을 갖는 스택으로 배열될 수 있다는 것이 인지될 것이다. 일부 다른 실시예들에서, 다수의 컴포넌트 컬러들이 동일한 도파관에 의해 출력될 수 있어서, 예컨대, 단지 단일 도파관이 깊이 평면 당 제공될 수 있다.
[0085] 도 8을 계속 참조하면, 일부 실시예들에서, G는 녹색 컬러이고, R은 적색 컬러이고, B는 청색 컬러이다. 일부 다른 실시예들에서, 마젠타 및 시안을 포함하는, 다른 광의 파장들과 연관되는 다른 컬러들이 적색, 녹색 또는 청색 중 하나 이상을 대체할 수 있거나, 또는 이에 추가로 사용될 수 있다. 일부 실시예들에서, 피처들(320, 330, 340, 및 350)은 주변 환경으로부터 뷰어의 눈들로의 광을 선택적으로 차단하도록 구성된 능동 또는 수동 광학 필터들일 수 있다.
[0086] 본 개시내용 전반에 걸쳐 주어진 컬러의 광에 대한 참조는 그 주어진 컬러인 것으로서 뷰어에 의해 지각되는 광의 파장들의 범위 내의 하나 이상의 파장들의 광을 포함하는 것으로 이해될 것이란 점이 인지될 것이다. 예컨대, 적색광은 약 620-780nm 범위의 하나 이상의 파장들의 광을 포함할 수 있고, 녹색 광은 약 492-577nm 범위의 하나 이상의 파장들의 광을 포함할 수 있으며, 청색 광은 약 435-493nm 범위의 하나 이상의 파장들의 광을 포함할 수 있다.
[0087] 일부 실시예들에서, 광원(530)(도 6)은 뷰어의 시각적 지각 범위 밖의 하나 이상의 파장들, 예컨대, 적외선 및/또는 자외선 파장들의 광을 방출하도록 구성될 수 있다. 또한, 디스플레이(250)의 도파관들의 인-커플링, 아웃-커플링 및 다른 광 방향전환 구조들은, 예컨대, 이미징 및/또는 사용자 자극 애플리케이션들을 위해 사용자의 눈(210)을 향하여 디스플레이 밖으로 이 광을 지향 및 방출하도록 구성될 수 있다.
[0088] 이제 도 9a를 참조하면, 일부 실시예들에서, 도파관에 충돌하는 광은 도파관 내로 그 광을 인-커플링하기 위해 방향전환될 필요가 있을 수 있다. 인-커플링 광학 엘리먼트는 광을 그의 대응하는 도파관으로 방향전환 및 인-커플링하는 데 사용될 수 있다. 도 9a는 인-커플링 광학 엘리먼트를 각각 포함하는 복수의 스택된 도파관들 또는 스택된 도파관들의 세트(660)의 예의 측 단면도를 예시한다. 도파관들은 각각 하나 이상의 상이한 파장들, 또는 하나 이상의 상이한 파장들의 범위들의 광을 출력하도록 구성될 수 있다. 스택(660)은 스택(260)(도 6)에 대응할 수 있고, 스택(660)의 예시된 도파관들은, 이미지 주입 디바이스들(360, 370, 380, 390, 400) 중 하나 이상으로부터의 광이 인-커플링을 위해 광이 방향전환되도록 요구하는 포지션으로부터 도파관들로 주입되는 것을 제외하면, 복수의 도파관들(270, 280, 290, 300, 310)의 부분에 대응할 수 있다는 것이 인지될 것이다.
[0089] 스택된 도파관들의 예시된 세트(660)는 도파관들(670, 680, 및 690)을 포함한다. 각각의 도파관은, (도파관 상의 광 입력 영역으로서 또한 지칭될 수 있는) 연관된 인-커플링 광학 엘리먼트를 포함하며, 예컨대, 인-커플링 광학 엘리먼트(700)는 도파관(670)의 주 표면(예컨대, 상위 주 표면) 상에 배치되고, 인-커플링 광학 엘리먼트(710)는 도파관(680)의 주 표면(예컨대, 상위 주 표면) 상에 배치되며, 인-커플링 광학 엘리먼트(720)는 도파관(690)의 주 표면(예컨대, 상위 주 표면) 상에 배치된다. 일부 실시예들에서, 인-커플링 광학 엘리먼트들(700, 710, 720) 중 하나 이상은 각각의 도파관(670, 680, 690)의 최하부 주 표면 상에 배치될 수 있다(특히, 여기서 하나 이상의 인-커플링 광학 엘리먼트들은 반사성 편향 광학 엘리먼트들임). 예시된 바와 같이, 인-커플링 광학 엘리먼트들(700, 710, 720)은 그의 각각의 도파관(670, 680, 690)의 상위 주 표면(또는 다음 하위 도파관의 최상부) 상에 배치될 수 있으며, 특히, 여기서 이러한 인-커플링 광학 엘리먼트들은 투과성 편향 광학 엘리먼트들이다. 일부 실시예들에서, 인-커플링 광학 엘리먼트들(700, 710, 720)은 각각의 도파관(670, 680, 690)의 바디에 배치될 수 있다. 일부 실시예들에서, 본원에서 논의된 바와 같이, 인-커플링 광학 엘리먼트들(700, 710, 720)은 파장 선택적이어서, 이들은 하나 이상의 광 파장들을 선택적으로 방향전환하면서 다른 광 파장들을 투과시킨다. 그의 각각의 도파관(670, 680, 690)의 한 측 또는 코너 상에서 예시되지만, 인-커플링 광학 엘리먼트들(700, 710, 720)은 일부 실시예들에서, 그의 각각의 도파관(670, 680, 690)의 다른 영역들에 배치될 수 있다는 것이 인지될 것이다.
[0090] 예시된 바와 같이, 인-커플링 광학 엘리먼트들(700, 710, 720)은 서로 측방향으로 오프셋될 수 있다. 일부 실시예들에서, 각각의 인-커플링 광학 엘리먼트는, 광이 다른 인-커플링 광학 엘리먼트를 통과하지 않고 자신이 그 광을 수신하도록 오프셋될 수 있다. 예컨대, 각각의 인-커플링 광학 엘리먼트(700, 710, 720)는 도 6에 도시된 바와 같이 상이한 이미지 주입 디바이스(360, 370, 380, 390, 400)로부터 광을 수신하도록 구성될 수 있고, 다른 인-커플링 광학 엘리먼트들(700, 710, 720)로부터 분리(예컨대, 측방향으로 이격)될 수 있어서, 그것은 인-커플링 광학 엘리먼트들(700, 710, 720) 중 다른 것들로부터의 광을 실질적으로 수신하지 않는다.
[0091] 각각의 도파관은 또한 연관된 광 분배 엘리먼트들을 포함하며, 예컨대, 광 분배 엘리먼트들(730)은 도파관(670)의 주 표면(예컨대, 최상부 주 표면) 상에 배치되고, 광 분배 엘리먼트들(740)은 도파관(680)의 주 표면(예컨대, 최상부 주 표면) 상에 배치되며, 광 분배 엘리먼트들(750)은 도파관(690)의 주 표면(예컨대, 최상부 주 표면) 상에 배치된다. 일부 다른 실시예들에서, 광 분배 엘리먼트들(730, 740, 750)은 연관된 도파관들(670, 680, 690)의 최하부 주 표면 상에 각각 배치될 수 있다. 일부 다른 실시예들에서, 광 분배 엘리먼트들(730, 740, 750)은 연관된 도파관들(670, 680, 690)의 최상부 및 최하부 주 표면 둘 모두 상에 각각 배치될 수 있거나; 또는 광 분배 엘리먼트들(730, 740, 750)은 상이한 연관된 도파관들(670, 680, 690)의 최상부 및 최하부 주 표면들 중 상이한 것들 상에 각각 배치될 수 있다.
[0092] 도파관들(670, 680, 690)은, 예컨대, 기체, 액체 및/또는 고체 재료의 층들에 의해 이격되고 분리될 수 있다. 예컨대, 예시된 바와 같이, 층(760a)은 도파관들(670, 680)을 분리할 수 있고; 층(760b)은 도파관(680 및 690)을 분리할 수 있다. 일부 실시예들에서, 층들(760a 및 760b)은 저 굴절률 재료들(즉, 도파관들(670, 680, 690) 중 바로 인접한 하나를 형성하는 재료보다 낮은 굴절률을 갖는 재료들)로 형성된다. 바람직하게는, 층들(760a, 760b)을 형성하는 재료의 굴절률은 도파관들(670, 680, 690)을 형성하는 재료의 굴절률보다 0.05 이상 또는 0.10이하이다. 유리하게는, 더 낮은 굴절률 층들(760a, 760b)은 도파관들(670, 680, 690)을 통한 광의 TIR(예컨대, 각각의 도파관의 최상부 및 최하부 주 표면들 사이의 TIR)를 용이하게 하는 클래딩 층으로서 기능할 수 있다. 일부 실시예들에서, 층들(760a, 760b)은 공기로 형성된다. 예시되지는 않았지만, 예시된 도파관들의 세트(660)의 최상부 및 최하부는 바로 이웃한 클래딩 층들을 포함할 수 있다는 것이 인지될 것이다.
[0093] 바람직하게는, 제조의 용이함 및 다른 고려사항들을 위해, 도파관들(670, 680, 690)을 형성하는 재료는 유사하거나 동일하며, 층들(760a, 760b)을 형성하는 재료는 유사하거나 동일하다. 일부 실시예들에서, 도파관들(670, 680, 690)을 형성하는 재료는 하나 이상의 도파관들 간에 상이할 수 있고, 그리고/또는 층들(760a, 760b)을 형성하는 재료는 여전히 위에서 언급된 다양한 굴절률 관계들을 유지하면서 상이할 수 있다.
[0094] 도 9a를 계속 참조하여, 광선들(770, 780, 790)이 도파관들의 세트(660) 상에 입사된다. 광선들(770, 780, 790)은 하나 이상의 이미지 주입 디바이스들(360, 370, 380, 390, 400)(도 6)에 의해 도파관들(670, 680, 690) 내로 주입될 수 있다는 것이 인지될 것이다.
[0095] 일부 실시예들에서, 광선들(770, 780, 790)은 상이한 특성들, 예컨대, 상이한 파장들 또는 상이한 파장들의 범위들을 가지며, 이는 상이한 컬러들에 대응할 수 있다. 인-커플링 광학 엘리먼트들(700, 710, 720)은 각각, 입사 광이 TIR에 의해 도파관들(670, 680, 690) 중 각각의 하나를 통해 전파되도록 광을 편향시킨다.
[0096] 예컨대, 인-커플링 광학 엘리먼트(700)는, 제1 파장 또는 다양한 파장들을 갖는 광선(770)을 편향시키도록 구성될 수 있다. 유사하게, 투과된 광선(780)은 제2 파장 또는 파장들의 범위의 광을 편향시키도록 구성된 인-커플링 광학 엘리먼트(710)에 충돌하고 그에 의해 편향된다. 마찬가지로, 광선(790)은 제3 파장 또는 파장들의 범위의 광을 선택적으로 편향시키도록 구성된 인-커플링 광학 엘리먼트(720)에 의해 편향된다.
[0097] 도 9a를 계속 참조하면, 편향된 광선들(770, 780, 790)은, 이들이 대응하는 도파관(670, 680, 690)을 통해 전파되도록 편향되는데; 즉, 각각의 도파관의 인-커플링 광학 엘리먼트들(700, 710, 720)은 해당 대응하는 도파관(670, 680, 690) 내로 광을 인-커플링하도록 해당 대응하는 도파관 내로 광을 편향시킨다. 광선들(770, 780, 790)은 광이 TIR에 의해 각각의 도파관(670, 680, 690)을 통해 전파되게 하는 각도들로 편향된다. 광선들(770, 780, 790)은, 도파관의 대응하는 광 분배 엘리먼트들(730, 740, 750)에 충돌할 때까지 TIR에 의해 각각의 도파관(670, 680, 690)을 통해 전파된다.
[0098] 이제 도 9b를 참조하면, 도 9a의 복수의 스택된 도파관들의 예의 사시도를 예시한다. 위에서 언급된 바와 같이, 인-커플링된 광선들(770, 780, 790)은 인-커플링 광학 엘리먼트들(700, 710, 720)에 의해 각각 편향되고, 그 후 도파관들(670, 680, 690) 내에서 TIR에 의해 각각 전파된다. 그 후, 광선들(770, 780, 790)은 광 분배 엘리먼트들(730, 740, 750)에 각각 충돌한다. 광 분배 엘리먼트들(730, 740, 750)은, 광선들(770, 780, 790)이 아웃-커플링 광학 엘리먼트(800, 810, 820)를 향해 각각 전파되도록 이들을 편향시킨다.
[0099] 일부 실시예들에서, 광 분배 엘리먼트들(730, 740, 750)은 OPE(orthogonal pupil expander)들이다. 일부 실시예들에서, OPE들 둘 모두는 아웃-커플링 광학 엘리먼트들(800, 810, 820)로 광을 편향시키거나 분배하고, 광이 아웃-커플링 광학 엘리먼트들로 전파될 때 이 광의 빔 또는 스폿 크기를 또한 증가시킨다. 예컨대, 빔 크기가 이미 원하는 크기인 일부 실시예들에서, 광 분배 엘리먼트들(730, 740, 750)은 생략될 수 있고, 인-커플링 광학 엘리먼트들(700, 710, 720)은 아웃-커플링 광학 엘리먼트들(800, 810, 820)에 광을 직접 편향시키도록 구성될 수 있다. 예컨대, 도 9a를 참조하면, 광 분배 엘리먼트들(730, 740, 750)은 아웃-커플링 광학 엘리먼트(800, 810, 820)로 각각 대체될 수 있다. 일부 실시예들에서, 아웃-커플링 광학 엘리먼트들(800, 810, 820)은 뷰어의 눈(210)(도 7)에 광을 지향시키는 EP(exit pupil)들 또는 EPE(exit pupil expander)들이다. OPE들은 적어도 하나의 축에서 아이 박스(eye box)의 치수들을 증가시키도록 구성될 수 있고, EPE들은 OPE들의 축과 교차하는, 예컨대, 직교하는 축에서 아이 박스를 증가시키는 것일 수 있다는 것이 인지될 것이다.
[0100] 따라서, 도 9a 및 도 9b를 참조하면, 일부 실시예들에서, 도파관들의 세트(660)는 각각의 컴포넌트 컬러에 대해 도파관들(670, 680, 690); 인-커플링 광학 엘리먼트들(700, 710, 720); 광 분배 엘리먼트(예컨대, OPE들)(730, 740, 750); 및 아웃-커플링 광학 엘리먼트들(예컨대, EP들)(800, 810, 820)을 포함한다. 도파관들(670, 680, 690)은 각각의 도파관 사이에 에어 갭/클래딩 층을 갖도록 스택될 수 있다. 인-커플링 광학 엘리먼트들(700, 710, 720)은 (상이한 인-커플링 광학 엘리먼트들이 상이한 파장들의 광을 수신함에 따라) 입사 광을 자신의 도파관으로 방향전환 또는 편향시킨다. 이어서, 광은 각각의 도파관(670, 680, 690) 내에서 TIR을 초래할 각도로 전파된다. 도시된 예에서, 광선(770)(예컨대, 청색 광)은 제1 인-커플링 광학 엘리먼트(700)에 의해 편향되고, 그 후 도파관을 따라 계속 바운싱(bounce)하여, 앞서 설명된 방식으로, 광 분배 엘리먼트(예컨대, OPE들)(730) 및 그 후 아웃-커플링 광학 엘리먼트(예컨대, EP들)(800)와 상호작용한다. 광선들(780 및 790)(예컨대, 각각 녹색 및 적색 광)은 도파관(670)을 통과할 것이고, 광선(780)은 인-커플링 광학 엘리먼트(710)에 충돌하고 그에 의해 편향된다. 이어서, 광선(780)은 TIR을 통해 도파관(680)을 따라 바운싱되어, 자신의 광 분배 엘리먼트(예컨대, OPE들)(740)로 그리고 그 후 아웃-커플링 광학 엘리먼트(예컨대, EP들)(810)로 진행된다. 마지막으로, 광선(790)(예컨대, 적색 광)은 도파관(690)을 통과하여 도파관(690)의 광 인-커플링 광학 엘리먼트들(720)에 충돌한다. 광 인-커플링 광학 엘리먼트들(720)은, 광선(790)이 TIR에 의해 광 분배 엘리먼트(예컨대, OPE들)(750)로, 그리고 그 후 TIR에 의해 아웃-커플링 광학 엘리먼트(예컨대, EP들)(820)로 전파되도록 그 광선을 편향시킨다. 그 후, 아웃-커플링 광학 엘리먼트(820)는 최종적으로 광선(790)을 뷰어에 아웃-커플링하며, 이 뷰어는 또한 다른 도파관들(670, 680)로부터 아웃-커플링된 광을 수신한다.
[0101] 도 9c는 도 9a 및 도 9b의 복수의 스택된 도파관들의 예의 하향식 평면도를 예시한다. 예시된 바와 같이, 각각의 도파관의 연관된 광 분배 엘리먼트(730, 740, 750) 및 연관된 아웃-커플링 광학 엘리먼트(800, 810, 820)와 함께, 도파관들(670, 680, 690)은 수직으로 정렬될 수 있다. 그러나, 본원에서 논의된 바와 같이, 인-커플링 광학 엘리먼트들(700, 710, 720)은 수직으로 정렬되지 않고; 오히려, 인-커플링 광학 엘리먼트들은 바람직하게는, 중첩되지 않는다(예컨대, 하향식 도면에서 보여지는 바와 같이 측방향으로 이격됨). 본원에서 추가로 논의되는 바와 같이, 이러한 중첩되지 않는 공간적 어레인지먼트는 일대일 기반으로 상이한 자원들로부터 상이한 도파관으로의 광의 주입을 용이하게 하고, 그리하여 특정 광원이 특정 도파관에 고유하게 커플링되도록 허용한다. 일부 실시예들에서, 중첩되지 않는 공간적으로-분리된 인-커플링 광학 엘리먼트들을 포함하는 어레인지먼트는 시프트된 동공 시스템으로서 지칭될 수 있고, 이러한 어레인지먼트들의 인-커플링 광학 엘리먼트들은 서브 동공들에 대응할 수 있다.
액정 격자들
[0102] 액정들은, 분자들이 특정 방향을 따라 정렬될 수 있는 막대들 또는 판들과 같이 종종 성형되는 부분적으로 정렬된 재료들이다. 액정의 분자들이 배향되는 방향 및 패턴은 (예컨대, 입체(steric) 및/또는 앵커링 에너지 상호작용들을 통해) 분자들과 상호작용하는 템플릿 패턴의 사용에 의해 조작될 수 있다. 게다가, 액정 재료들은 카이랄 도펀트들(chiral dopants) 및/또는 RM(reactive mesogen)들을 포함할 수 있다. 카이랄 도펀트들은 액정 재료의 두께에 걸쳐 액정 분자들의 회전을 발생시킬 수 있고, 반응성 메조겐들은 액정 분자들의 배향들 및 포지션들이 중합을 통해 고정될 수 있게 할 수 있다. 회전은 도 10c에 도시된 바와 같이 트위스트 각도(Φ)에 대응하는 증분들에 의한 것일 수 있다.
[0103] 본원에서 설명된 바와 같이, 도 9a 및 9b를 참조하여 위에 논의된 인-커플링 광학 엘리먼트들(700, 710, 720); 광 분배 엘리먼트들(예컨대, OPE들)(730, 740, 750); 아웃-커플링 광학 엘리먼트들(예컨대, EP들)(800, 810, 820)은 도파관들(670, 680, 690) 내부 및/또는 외부로 광을 조종하기 위한 액정 격자 구조물들을 포함할 수 있다. 액정 격자 구조물은, 바람직하게는, 예컨대, 광이 TIR에 의해 도파관을 통해 전파되도록 도파관 내로의 광의 인-커플링을 가능하게 하기 위해, 격자의 법선에 대해 큰 각도들로 광을 회절 또는 방향전환할 수 있다. 부가적으로, 액정 격자 구조물들이 광범위한 입사각들에 대해 높은 회절 효율들을 갖는 것이 바람직할 수 있다. 일부 타입들의 액정 격자들, 즉, 편광 격자들은, TIR에 의해 도파관 내로 광을 안내할 수 있는 큰 회절 각도들에서 광범위한 입사각들에 걸쳐 높은 회절 효율들을 나타낼 수 있다. 그러나, 포토-정렬 및 마이크로-러빙 기술을 포함하는 종래의 정렬 방법들은 대량 제조(volume manufacturing)를 위한 스케일링에 대한 난제들 및 LC 재료들의 공간적 패턴들에서의 근본적인 한계들을 갖는다. 서브-파장 피처들(예컨대, 나노-스케일 패턴들)을 갖는 임프린트 템플릿들과의 LC 정렬은 대량 제조를 허용하고 그리고/또는 임의의 공간적 패턴들을 생성하기 위한 유연성을 제공할 수 있다.
[0104] 종래의 회절 격자들의 다양한 실시예들은 단지 작은 범위의 파장들에 대해 높은 회절 효율들을 달성할 수 있다. 따라서, 그들은 광대역 동작이 가능하지 않을 수 있다. 서브-파장 피처들을 포함하는 메타표면들이 입사 광의 위상, 진폭 및/또는 편광을 변경함으로써 광학 파면을 성형할 수 있다는 것이 밝혀졌다. LC 분자들이 메타표면을 형성하는 나노-스케일 피처들을 갖는 임프린트 템플릿을 사용하여 정렬되는 LC 재료는 액정 벌크 재료의 광학 특성들과 상이한 광학 특성들을 가질 수 있는 액정 메타표면을 획득하는 데 사용될 수 있다. 예컨대, 액정 메타표면은 광대역이고, 광범위한 입사각들로 입사하는 광범위한 파장으로 인입 광을 고효율로 회절시키는 능력을 갖는다. 예컨대, LC 메타표면은 적색, 녹색 및 청색 파장들의 인입 광을 대략 동일한 회절 효율로 원하는 방향을 따라 회절시킬 수 있다. LC 메타표면의 예들은 액정 메타재료들 및/또는 액정 기반 PBPE(Pancharatnam-Berry phase optical element)들을 포함할 수 있다.
[0105] 본원에서 논의된 나노-임프린트 기술을 사용하는 액정 분자들의 정렬은, 이웃하는 정렬 패턴들 사이의 액정 분자 디렉터의 점진적 전환(예컨대, 연속 전환)을 갖는 복수의 별개의 정렬 패턴들을 갖는 액정 재료를 제조하는 데 사용될 수 있다. 다양한 실시예들에서, 격자 주기는 동일한 방향을 따라 배향된 길이방향 축들을 갖는 격자 구조물의 2개의 연속적인 액정 분자들의 중심들 사이의 거리를 나타낼 수 있다. 복수의 이웃하는 정렬 패턴들을 갖는 액정 재료들의 일부 실시예들에서, 격자 주기는 각각의 정렬 패턴의 연속적인 액정 분자들의 중심들 사이의 거리를 나타낼 수 있다.
[0106] 유리하게는, 본원에서 논의되는 다양한 액정 격자 구조물들은 바람직하게는 광범위한 입사각들(예컨대, 표면 법선을 중심으로 적어도 약 ± 20도 사이, 표면 법선을 중심으로 적어도 약 ± 30도 사이, 표면 법선을 중심으로 적어도 약 ± 45도 사이 등)에 대해 높은 회절 효율을 제공하도록 구성된다. 예컨대, 액정 격자 구조물들은 약 400nm 내지 약 700nm의 파장들에 대한 표면 법선에 대해 약 ± 50도 사이의 각도로 입사되는 광에 대해 적어도 약 10%(예컨대, 적어도 20%, 30%, 40%, 50%, 60% 또는 75%)의 회절 효율을 제공하도록 구성될 수 있다. 따라서, 본원에서 설명된 액정 격자 구조물들은 유리하게는 광의 입사각에 대해 낮은 민감도를 가질 수 있다. 일부 실시예들에서, 본원에서 논의된 액정 격자 구조물들은 협대역이 되도록 구성된다. 예컨대, 본원에서 논의된 액정 격자 구조물들은 약 400nm 내지 약 450nm; 약 450nm 내지 약 500nm; 약 500nm 내지 약 550nm; 약 550nm 내지 약 600nm; 약 600nm 내지 약 650nm; 약 650nm 내지 약 700nm의 가시광 스펙트럼 범위의 파장들을 회절시키도록 구성될 수 있다. 일부 다른 실시예들에서, 본원에서 논의된 액정 격자 구조물들은 광대역이 되도록 구성된다. 예컨대, 본원에서 논의된 액정 격자 구조물들은 약 400nm 내지 약 700nm의 가시광 스펙트럼 범위의 파장들을 회절시키도록 구성될 수 있다. 다른 예로서, 본원에서 논의된 액정 격자 구조물들은 약 250nm 내지 400nm의 자외선 스펙트럼 범위의 파장들을 회절시키도록 구성될 수 있다. 또 다른 예로서, 본원에서 논의된 액정 격자 구조물들은 적외선 스펙트럼 범위, 이를테면, 예컨대, 약 700nm 내지 1 미크론, 약 1 미크론 내지 3 미크론, 약 1.5 미크론 내지 5 미크론, 약 3 미크론 내지 10 미크론 또는 이들 범위들의 임의의 조합 또는 이들 범위들 내의 임의의 서브범위 또는 서브-범위들의 조합의 파장들을 회절시키도록 구성될 수 있다. 다른 예로서, 격자 구조물들은 약 300nm 내지 약 10㎛의 범위의 파장을 갖는 입사 광을 회절시키도록 구성될 수 있다. 바람직하게는, 본원에서 논의되는 액정 격자 구조물들이 디스플레이 애플리케이션들에서 채용될 때, 격자 구조물은 (예컨대, 적색, 녹색 및/또는 청색 스펙트럼 범위들의) 가시광선을 회절시키도록 구성된다. 다양한 실시예들에서, 액정 격자 구조물들은, 넓은 회절 각도들, 예컨대, 격자 구조물이 형성될 수 있는 도파관 내의 TIR에 적합한 각도들로, 광이 격자 구조물로부터 멀어져 전파되도록, (이를테면, 적색, 녹색 및/또는 청색 스펙트럼 범위들의) 가시광을 회절시킬 수 있다. 본원에서 논의된 액정 격자 구조물들은, 격자 구조물이 동작하도록 구성된 파장 범위에 의존하여 약 100nm 내지 약 100㎛ 범위의 격자 주기를 가질 수 있다. 예컨대, 격자 구조물의 주기는 약 10nm 내지 약 50nm; 약 20nm 내지 약 60nm; 약 30nm 내지 약 70nm; 약 40nm 내지 약 80nm; 약 50nm 내지 약 90nm; 약 60nm 내지 약 100nm; 약 100nm 내지 약 200nm; 약 200nm 내지 약 350nm; 약 330nm 내지 약 410nm; 약 370nm 내지 약 480nm; 약 450nm 내지 약 510nm; 약 500nm 내지 약 570nm; 약 550nm 내지 약 700nm; 약 650nm 내지 약 1㎛; 약 980nm 내지 약 3㎛; 약 1.3㎛ 내지 약 3.2㎛; 약 2.3㎛ 내지 약 5㎛; 약 5㎛ 내지 약 10㎛; 약 5㎛ 내지 약 20㎛; 약 15㎛ 내지 약 45㎛; 약 25㎛ 내지 약 60㎛; 약 35㎛ 내지 약 75㎛; 약 45㎛ 내지 약 100㎛ 또는 이들 범위들의 임의의 조합 또는 이들 범위들 내의 임의의 서브범위들 또는 서브-범위들의 조합일 수 있다.
[0107] 격자 구조물들은, 액정 재료의 아래에 놓일 수 있는 패터닝된 정렬 층을 사용하여 중합 가능한 액정 재료의 층의 액정 분자들을 정렬시키는 것을 포함하지만, 이에 한정되지 않는 다양한 방법들을 사용하여 제조될 수 있다. 정렬 층은 임프린트 기술을 사용하거나 광학 방법들을 사용함으로써 패터닝될 수 있다.
[0108] 위에 논의된 바와 같이, 일부 실시예들에서, 액정 격자 구조물들은 도파관 스택들(260)(도 6) 또는 (660)(도 9a-9c)의 다양한 도파관들에 대해 광 방향전환 엘리먼트들을 형성할 수 있다. 예컨대, 이러한 액정 격자 구조물들은 유리하게도 인-커플링 광학 엘리먼트들(3012, 3014, 3016 및/또는 3018)(도 8a-8e) 및/또는 인-커플링 광학 엘리먼트들(700, 710, 720); 광 분배 엘리먼트들(730, 740, 750); 및/또는 아웃-커플링 광학 엘리먼트들(800, 810, 820)(도 9a-9c)을 형성하도록 적용될 수 있다. AR 디스플레이 시스템들 이외에, 액정 격자 구조물들은, 회절 광학 엘리먼트들이 활용되는 다른 애플리케이션들에 적용될 수 있다. 예컨대, 액정 격자 구조물들은 VR 디스플레이 시스템들, 평면 패널 컴퓨터 모니터들 또는 텔레비전들, 점멸식 표지들(illuminated signs), 이미징 시스템들 등을 포함하는 다른 광학 시스템들에서 광을 스티어링하는 데 활용될 수 있다.
[0109] 도 10a는 서로 인접하는 복수의 도메인들(예컨대, 도메인들(1001a, 1001b, 1001c, 1001d, 1001e 및 1001f))을 포함하는 액정 층(1000)의 예의 하향식 사시도를 예시한다. 각각의 도메인 내의 액정 분자들의 길이방향 축들은 일반적으로 동일한 방향을 따라 배향될 수 있다. 인접한 도메인들 내의 액정 분자들의 길이방향 축들은 동일한 방향을 따라 배향될 필요는 없다. 예컨대, 도메인(1001a)에 인접하는 각각의 도메인(1001b, 1001d) 내의 액정 분자들의 길이방향 축들은, 도메인(1001a)의 액정 분자들의 길이방향 축들이 배향되는 방향과 상이한 방향을 따라 배향된다. 도 10a에 예시된 실시예에서, 9개의 도메인들만이 예시되지만, 다른 실시예들은 9개보다 더 적거나 더 많은 도메인들을 가질 수 있다. 또한, 액정 분자들의 길이방향 축들의 3개의 상이한 배향들만이 도 10a에 도시되지만, 다른 실시예들은 3개보다 많거나 적은 상이한 배향들을 갖는 도메인들을 포함할 수 있다. 부가적으로, 액정 층들의 다양한 실시예들에서, 상이한 도메인들은 상이한 형상들 및/또는 크기들을 가질 수 있다. 다양한 실시예들에서, 상이한 도메인들은 상이한 형상들(예컨대, 정사각형, 직사각형, 육각형, 팔각형, 타원형, 원형 등)을 가질 수 있다. 다양한 실시예들에서, 상이한 도메인들은 불규칙한 형상들을 가질 수 있다.
[0110] 도 10b는 도 10a에 예시된 액정 층(1000)의 확대된 평면도를 예시한다. 도 10b의 이러한 평면도는, 본원에서 최상부-서브층으로 지칭될 수 있는 액정 층(1000)의 최상부 상의 액정 분자들을 도시한다. 최상부 또는 최상위 액정 분자들 아래의(예컨대, 최상부 또는 최상위 서브층 아래의) 액정 분자들은 도 10c에 도시된 바와 같이 상이한 배향들을 가질 수 있다. 도 10c-10f는 액정 층(1000)의 축(X-X')을 따르는 액정 분자들의 단면도를 예시한다. 액정 층(1000)은 도 10c-10f에 도시된 단면도에서 볼 수 있는 2개의 주 표면들(1002a 및 1002b)을 갖는다. 2개의 주 표면들(1002a 및 1002b)은 표면 법선(1003)에 의해 교차된다. 2개의 주 표면들(1002a 및 1002b)은 x-y 평면에서 연장되고, 표면 법선(1003)은 z-축에 평행하게 연장된다. 도 10b에 도시된 확대된 평면도에서 알 수 있듯이, 제1 도메인(1001a) 내의 최상위 액정 분자들의 길이방향 축들은 일반적으로 y-축에 평행하게 배향된다. 제2 도메인(1001b) 내의 액정 분자들의 길이방향 축들은 일반적으로 y-축에 대해 일정 각도(예컨대, 약 30도 내지 60도)로 배향된다. 제3 도메인(1001c) 내의 액정 분자들의 길이방향 축들은 일반적으로 y- 및 z-축에 수직으로 배향된다.
[0111] 액정 층(1000)은, 예컨대, 서브-층들(1010a, 1010b, 1010c 및 1010d)과 같은 복수의 서브-층들을 갖는 것으로 간주될 수 있다. 각각의 서브층(예컨대, 1010a, 1010b, 1010c 또는 1010d)은 공통 평면에 배열된 복수의 액정 분자들에 의해 규정될 수 있으며, 따라서 각각의 서브층은 단지 단일 액정 분자 두께일 수 있다. 서브층들은, 모든 서브층들의 총 두께와 동일한 두께(T)를 갖는 액정 재료의 어그리게이트 층을 형성한다. 3/4개의 서브-층들이 예시되지만, 액정 층(1000)이 더 많거나 더 적은 서브층들을 포함할 수 있음이 인지될 것이다.
[0112] 다양한 실시예들에서, 액정 층(1000)은 카이랄 네마틱 액정 재료를 포함할 수 있다. 예컨대, 액정 재료의 복수의 서브층들은 콜레스테릭 액정 재료를 포함할 수 있다. 카이랄 재료들을 포함하는 액정 층(1000)의 실시예들에서, 액정 분자들은, 도 10c에 도시된 바와 같이, 액정 층(1000)의 서브-층(예컨대, 1010a)의 액정 분자(예컨대, 1005a)의 길이방향 축과, 인접한 서브-층(예컨대, 1010b)의 아래에 놓인 액정 분자(예컨대, 1005b)의 길이방향 축 사이의 각도 회전에 의해 정의된 트위스트 각도(Φ)를 가질 수 있다. 액정 재료는 또한 중합 가능할 수 있다. 본원에서 논의된 바와 같이, 액정 재료는, 예컨대, 액정질 디-아크릴레이트(liquid crystalline di-acrylate)와 같은 RM(reactive mesogen)을 포함할 수 있다. 또한 본원에서 논의된 바와 같이, 액정 층(1000)은 카이랄 도펀트들을 포함할 수 있다. 카이랄 도펀트들의 예들은 콜레스테릴 벤조에이트, 콜레스테릴 노나노에이트, 콜레스테릴 클로라이드 및 콜레스테릴 오레일 카보네이트를 포함한다.
[0113] 그러나, 액정은 카이랄 액정 재료일 필요는 없다. 도 10d 내지 도 10f에 도시된 바와 같이, 서브-층(1010a)의 분자들의 길이방향 축들은 아래에 놓인 서브-층들(1010b 또는 1010c)의 분자들에 대해 트위스트되지 않는다. 액정 분자들의 길이방향 축들은 x, y 또는 z-축 중 어느 하나를 따라 정렬될 수 있다. 예컨대, 도 10d에 도시된 바와 같이, 액정 분자들의 길이방향 축은 y-축에 평행하게 정렬된다. 다른 예로서, 도 10e에 도시된 바와 같이, 액정 분자들의 길이방향 축은 x-축에 평행하게 정렬된다. 또 다른 예로서, 도 10f에 도시된 바와 같이, 액정 분자들의 길이방향 축은 z-축에 평행하게 정렬된다. 도 10c 내지 도 10f에 도시된 측면도들은 도 10a 또는 도 10b와 동일하게 대응할 수 있다.
[0114] 도 10a 및 도 10b를 참조하면, 상이한 정렬 패턴들을 갖는 인접 도메인들 사이에 작은 도메인 갭('d')을 도입하는 것이 바람직할 수 있다. 상이한 정렬 패턴들을 갖는 인접한 도메인들 사이의 작은 갭의 존재는 유리하게는 액정 층(1000)의 제조 동안 도메인 경계를 따른 디스클리네이션들 또는 다른 표면 결함들의 발생을 감소시킬 수 있다. 액정 층(1000)의 도메인 경계들을 따른 디스클리네이션들 또는 다른 표면 결함들의 감소는 원하지 않는 광 산란 및 다른 바람직하지 않은 광학 효과들을 감소시킬 수 있다. 도메인 갭('d')은 인접한 한 쌍의 도메인들의 가장 가까운 에지들 사이의 최단 거리를 나타낼 수 있다. 예컨대, 예시된 실시예에서, 도메인(1001e)과 도메인(1001b) 사이의 도메인 갭은 d1이고, 도메인(1001e)과 도메인(1001d) 사이의 도메인 거리는 d2이고, 도메인(1001e)과 도메인(1001f) 사이의 도메인 거리는 d3이다. 상이한 정렬 패턴들을 갖는 인접한 도메인들 사이의 도메인 갭('d')은 상이한 정렬 패턴들을 갖는 인접한 도메인들 사이에서 액정 분자들의 길이방향 축들의 점진적 전환을 달성하고, 도메인 경계를 따라 디스클리네이션들 또는 다른 표면 결함들의 발생을 감소시키도록 구성될 수 있다. 예컨대, 상이한 정렬 패턴들을 갖는 인접한 도메인들 사이의 도메인 갭('d')은 상이한 정렬 패턴들을 갖는 인접한 도메인들 사이에서 액정 분자들의 길이방향 축들의 연속적인 전환을 달성하도록 구성될 수 있다. 액정 분자들의 연속적인 전환을 달성하도록 구성된, 상이한 정렬 패턴들을 갖는 인접한 도메인들 사이의 도메인 갭은 200nm 미만일 수 있다. 예컨대, 상이한 정렬 패턴들을 갖는 인접한 도메인들 사이의 도메인 갭은 약 1nm 내지 약 20nm, 약 5nm 내지 약 30nm, 약 10nm 내지 약 50nm, 약 25nm 내지 약 75nm, 약 45nm 내지 약 100nm, 약 60nm 내지 약 120nm, 약 80nm 내지 약 150nm, 100nm 내지 약 200nm 또는 이들 범위들의 임의의 조합 또는 이들 범위 내의 임의의 서브범위 또는 서브-범위들의 조합일 수 있다. 위에 논의된 바와 같이, 도메인 갭들은, 각각의 도메인 내의 액정 분자들의 길이방향 축들이 각각의 패턴의 정렬 패턴에 따라 정렬되지만, 인접한 도메인들 사이의 갭들 내의 액정 분자들의 길이방향 축들이 인접한 도메인들 사이의 액정 분자들의 길이방향 축의 일반적으로 매끄러운 또는 연속적인 전환과 같은 그래디언트(gradient) 또는 단계적 전환(graded transition)을 제공하도록 배향되도록 구성된다.
[0115] 액정 층(1000)은 표면 릴리프 피처들을 포함하는 정렬 층을 사용하여 제조될 수 있다. 정렬 층의 표면 릴리프 피처들은 정렬 층 상에 증착된 액정 재료의 분자들의 정렬을 유도할 수 있다. 특정 조건들 하에서, 정렬 층의 표면 릴리프 구조물들에 의해 제공되는 앵커링 에너지(W)는 수학식(
Figure pct00001
)으로 주어지며, 여기서 K는 액정 재료의 변형 상수(deformation constant)이고, D는 정렬 층의 표면 릴리프 피처들의 깊이이고, Λ는 표면 릴리프 피처들의 폭 또는 피치(2개의 연속적인 표면 릴리프 피처들 사이의 거리)이다. 보편성의 어떠한 손실도 없이, 위에 논의된 앵커링 에너지(W)는 액정 표면의 평면에서 초기 방향에서 원하는 방향으로 LC 분자들의 길이방향 축들을 변경하는 데 요구되는 에너지의 척도를 제공할 수 있다. 위의 수학식으로부터, 표면 릴리프 구조물들의 폭 또는 피치(Λ)가 감소됨에 따라(패턴의 동일한 종횡비, 즉, 깊이/주기
Figure pct00002
가 일정하다고 가정함), 더 높은 앵커링 에너지가 표면 릴리프 피처들에 의해 제공된다는 것이 주목된다.
[0116] 따라서, 표면 릴리프 피처들을 포함하는 정렬 층은, 액정 분자들이 표면 릴리프 피처들에 의해 형성된 패턴에 정렬되는 액정 디바이스들을 제조하는 데 사용될 수 있다. 정렬 층의 표면 릴리프 피처들은, 대략 수 나노미터, 수 백 나노미터 및/또는 수 미크론의 길이 스케일들을 따라 폭, 피치 및/또는 방향에서 변경될 수 있는 매우 다양한 그루브 기하학적 구조들을 포함할 수 있다. 위에서 논의된 앵커링 에너지가 표면 릴리프 피처들의 폭 또는 피치의 정육면체에 반비례하기 때문에, 표면 릴리프 피처들의 폭 또는 피치의 작은 변동들을 만듦으로써 액정의 표면에 걸쳐 앵커링 에너지의 큰 변동들이 획득될 수 있다. 예컨대, 제1 패턴을 형성하도록 배열된 제2 세트의 표면 릴리프 피처들을 포함하는 제2 도메인으로부터의 표면 릴리프 피처들을 포함하지 않는 구역만큼 이격된, 제1 패턴을 형성하도록 배열된 제1 세트의 표면 릴리프 피처들을 포함하는 제1 도메인을 포함하는 정렬 층의 실시예가 고려된다. 이러한 정렬 층의 실시예는, 액정 분자들의 길이방향 축들이 제1 세트의 표면 릴리프 피처들의 방향들을 따라 정렬되는 제1 도메인, 및 액정 분자들의 길이방향 축들이 제2 세트의 표면 릴리프 피처들의 방향들을 따라 정렬되는 제2 도메인을 갖는 액정 디바이스를 제조하는 데 사용될 수 있다. 제1 및 제2 도메인들 사이의 액정 디바이스의 구역 내의 액정 분자들의 길이방향 축들은 제1 세트의 표면 릴리프 피처들의 방향들로부터 제2 세트의 표면 릴리프 피처들의 방향들로 점진적으로 전환될 수 있다. 도메인 갭은, 제1 도메인의 액정 분자들의 길이방향 축들의 배향과 제2 도메인의 액정 분자들의 길이방향 축들 사이의 전환이 급격하거나 불연속이지 않고 일반적으로 매끄럽도록 선택될 수 있다. 예컨대, 표면 릴리프 피처들을 포함하지 않는 정렬 층의 구역에 대응하는 도메인 갭은, 제1 도메인의 액정 분자들의 길이방향 축들의 배향과 제2 도메인의 액정 분자들의 길이방향 축들의 배향 사이의 전환이 연속적이도록, 선택될 수 있다.
[0117] 액정 분자들이 대략 수 나노미터, 수백 나노미터 및/또는 수 미크론의 길이 스케일들을 따라 폭 또는 주기 및/또는 방향에서 변동될 수 있는 매우 다양한 그루브 기하학적 구조들에 정렬되는 액정 디바이스를 제조하는 방법의 실시예에서, 정렬 층은 반응성 메조겐(RM)으로 또한 알려진 중합 가능한 액정(PLC)을 포함할 수 있다. 정렬 층은 대략 수 나노미터, 수백 나노미터 및/또는 수 미크론의 길이 스케일들을 따라 폭, 주기 및 길이에서 변동될 수 있는 매우 다양한 그루브들을 포함하는 임프린트 템플릿과 PLC 재료의 층을 접촉시킴으로써 제조될 수 있다. PLC 층의 분자들의 길이방향 축들은 임프린트 템플릿의 그루브에 자기-정렬될 수 있다. 예컨대, PLC 층의 분자들의 길이방향 축들은, 열의 인가시에, UV 광의 조사(irradiation) 시에 그리고/또는 충분한 시간 경과 후에 임프린트 템플릿의 그루브들에 자기-정렬될 수 있다. 일단 PLC 층의 분자들의 길이방향 축들이 임프린트 템플릿의 그루브들에 자기-정렬되면, PLC 층은, 예컨대, 열 및/또는 UV 조명의 조사에 의해 중합된다. 중합은 유리하게는, PLC 층이 임프린트 템플릿으로부터 분리된 후조차도, PLC 층의 분자들의 배향이 유지되도록, PLC 층의 분자들의 길이방향 축들을 고정시킨다.
[0118] 대략 수 나노미터, 수백 나노미터 및/또는 수 미크론의 치수들(예컨대, 길이, 폭 및/또는 깊이)을 갖는 표면 릴리프 피처들 및/또는 표면 릴리프 연속적인 피처들 사이의 방향 및/또는 주기가 대략 수 나노미터, 수백 나노미터 및/또는 수 미크론의 길이 스케일들을 따라 변경되는 복잡한 기하학적 패턴들을 형성하도록 배열된 표면 릴리프 피처들을 포함하는 정렬 층을 제조하기 위해 임프린트 템플릿을 사용하는 것은, 예컨대, 러빙 방법 또는 포토-정렬 방법과 같은 다른 액정 제조 방법들에 비해 유리할 수 있다. 예컨대, 위에 논의된 바와 같이, 저해상도 방법들인 일부 마이크로-러빙 방법들을 사용하여 대략 수 나노미터, 수백 나노미터의 치수들(예컨대, 길이, 폭 및/또는 깊이)을 갖는 표면 릴리프 피처를 생성하는 것은 실현 가능하지 않을 수 있다. 부가적으로, 일부 러빙 방법들을 사용하여 대량 제조를 달성하는데 필요한 스루풋으로 정렬 층을 제조하는 것이 가능하지 않을 수 있다. 액정 분자들의 균일한 정렬 및 불균일한 정렬을 갖는 정렬 층을 제조하기 위해 포토-정렬 방법이 사용될 수 있지만, 일부 경우들에서, 포토-정렬 방법을 사용하여 복잡한 공간 패턴들을 갖는 정렬 층을 생성하는 것이 실현 가능하지 않을 수 있다. 러빙 방법들과 유사하게, 일부 포토-정렬 방법들을 사용하여 복잡한 공간 LC 패턴들의 대량 제조를 달성하는 데 필요한 스루풋을 달성하는 것이 어렵다.
[0119] 도 11a는, 예컨대, 도 10a에 도시된 층(1000)과 같은 액정 층(1000)을 제조하는 데 사용될 수 있는 복수의 피처들을 포함하는 임프린트 템플릿(1100)의 실시예의 평면도를 예시한다. 도 11b는 축(B-B')을 따른 임프린트 템플릿(1100)의 단면도를 예시한다. 임프린트 템플릿(1100)은 복수의 도메인들(예컨대, 1101a, 1101b 및 1101c)을 포함한다. 복수의 도메인들 각각은 복수의 표면 릴리프 피처들을 포함한다. 표면 릴리프 피처들은 선형 또는 곡선 세장형 그루브들 및/또는 돌출부들, 프리즘들, 아크들, 양각 범프(raised bump)들 또는 함몰부(depression)를 포함할 수 있다. 복수의 도메인들 각각의 표면 릴리프 피처들은 간단하거나 복잡한 기하학적 패턴을 형성하도록 배열될 수 있다. 표면 릴리프 피처들의 어레인지먼트는 원하는 광학 효과를 달성하기 위해 입사 광의 진폭, 위상 및/또는 편광을 조작하여도록 구성될 수 있다.
[0120] 다양한 실시예들에서, 도메인들 각각은 서브-파장 피처들을 포함할 수 있다. 이러한 실시예들에서, 표면 릴리프 피처들의 크기 또는 인접한 표면 릴리프 피처들 사이의 갭은 대략 수 나노미터, 수백 나노미터 또는 수 미크론의 짧은 길이 스케일들을 가질 수 있다. 예컨대, 복수의 도메인 각각의 각각의 표면 릴리프 피처의 폭('λ')은 약 20nm 내지 약 100nm, 약 30nm 내지 약 90nm, 약 40nm 내지 약 80nm, 약 50nm 내지 약 75nm, 약 60nm 내지 약 70nm 또는 이들 범위들의 임의의 조합 또는 이들 범위들 내의 임의의 서브범위 또는 서브-범위들의 조합일 수 있다. 다른 예로서, 복수의 도메인들 각각의 연속적인 피처들 사이의 갭('Λ')은 약 20nm 내지 약 100nm, 약 30nm 내지 약 90nm, 약 40nm 내지 약 80nm, 약 50nm 내지 약 75nm, 약 60nm 내지 약 70nm, 또는 이들 범위들의 임의의 조합 또는 이들 범위들 내의 임의의 서브범위 또는 서브-범위들의 조합일 수 있다. 보편성을 어떠한 손실도 없이, 연속적인 피처들 간의 갭('Λ')은 피치에 대응할 수 있다. 또 다른 예로서, 복수의 도메인들 각각의 피처들의 깊이(또는 높이)('D')는 약 10nm 내지 약 100nm, 약 20nm 내지 약 90nm, 약 30nm 내지 약 80nm, 약 40nm 내지 약 75nm, 약 50nm 내지 약 70nm, 또는 이들 범위들의 임의의 조합 또는 이들 범위들 내의 임의의 서브범위 또는 서브-범위들의 조합일 수 있다.
[0121] 다양한 실시예들에서, 인접한 도메인들 사이의 도메인 갭('d')은 약 10nm 내지 약 100nm, 약 20nm 내지 약 90nm, 약 30nm 내지 약 80nm, 약 40nm 내지 약 75nm, 약 50nm 내지 약 70nm 또는 이들 범위들의 임의의 조합 또는 이들 범위들 내의 임의의 서브범위 또는 서브-범위들의 조합일 수 있다. 다양한 실시예들에서, 표면 릴리프 피처들을 포함하는 복수의 도메인들은, 각각의 쌍의 인접한 도메인들 사이의 도메인 갭('d')이 균일하도록, 임프린트 템플릿(1100)의 표면에 걸쳐 정사각형 그리드로서 배열될 수 있다. 다른 실시예들에서, 표면 릴리프 피처들을 포함하는 복수의 도메인들은, 상이한 쌍들의 인접한 도메인들 사이의 도메인 갭('d')이 균일하지 않도록, 임프린트 템플릿(1100)의 표면에 걸쳐 불규칙하게 배열될 수 있다. 위에 논의된 바와 같이, 인접한 도메인들 사이에 도입된 도메인 갭은, 액정의 제조 동안 도메인 경계들을 따라 발생할 수 있는 디스클리네이션 또는 다른 표면 결함들을 감소시키는데 도움을 줄 수 있다.
액정 디바이스를 제조하는 예시적인 방법
[0122] 도 12a 내지 도 12d는 본원에서 설명된 다양한 액정 디바이스들을 제조하는 방법의 예를 예시한다. 도 12a를 참조하면, PLC(polymer liquid crystal) 층(1203)이 기판(1201) 위에 배치된다. 기판(1201)은 광학적으로 투과성인 것이 바람직하다. 기판(1201)에 적합한 재료들의 예들은 유리, 석영, 사파이어, 인듐 주석 산화물(ITO), 또는 폴리카보네이트, 폴리아세테이트 및 아크릴을 포함하는 중합 재료들을 포함한다. 일부 실시예들에서, 기판(1201)은 가시광 파장들 또는 적외선 파장들 중 적어도 하나의 광에 대해 투과성일 수 있다. 기판은 한 쌍의 주 표면 및 주위 에지들을 포함할 수 있다. 주 표면은 기판의 가장 큰 영역 표면일 수 있거나 또는 각각이 다른 표면들보다 더 큰 영역들을 갖는 한 쌍의 유사한 크기의 대향 표면들 중 하나일 수 있다. 액정 디바이스들은 기판의 주 표면들 상에 또는 주 표면들에 대해 입사되는 광을 반사, 굴절, 회절 또는 그렇지 않다면 방향전환하도록 구성될 수 있다.
[0123] 일부 실시예들에서, PLC 층(1203)은, 예컨대, 액정 분자들과의 입체적 상호작용들 및/또는 포토-정렬 층에 의해 후속하여 증착된 액정 분자들에 가해지는 앵커링 에너지로 인해, 액정 분자들이 특정 배향 또는 패턴을 취하게 하는 정렬 층으로서 구성된다. PLC 층(1203)은 중합 가능한 액정 재료들(반응성 메조겐)을 포함할 수 있다. 일부 실시예들에서, PLC 층(1203)은 Azo-함유 중합체들을 포함할 수 있다. PLC 층(1203)은, 예컨대, 스핀-코팅 프로세스 또는 제트 증착에 의해 기판의 주 표면들 중 하나 상에 배치될 수 있다. PLC 층(1203)은 약 10nm 내지 10㎛의 두께를 가질 수 있다.
[0124] 도 12a 및 12b에 도시된 바와 같이, PLC 층의 노출된 표면이 임프린트 템플릿(1205)과 접촉하도록 유도함으로써 PLC 층(1203)이 복수의 표면 릴리프 피처들로 임프린트된다. 임프린트 템플릿(1205)은 PLC 층의 노출된 표면 상에 임프린트된 피처들의 역(inverse)인 피처들을 포함할 수 있다. 다양한 실시예들에서, 임프린트 템플릿(1205)은 서브-파장 치수들의 피처들을 포함할 수 있다. 예컨대, 임프린트 템플릿(1205)은 대략 수 나노미터, 수백 나노미터 및/또는 수 미크론의 치수들(예컨대, 길이, 폭 및/또는 깊이)을 갖는 피처들을 포함할 수 있다. 예컨대, 임프린트 템플릿(1205)은 약 20nm 이상이고 약 100nm 이하의 길이를 갖는 피처들을 포함할 수 있다. 또 다른 예로서, 임프린트 템플릿(1205)은 약 20nm 이상이고 약 100nm 이하의 폭을 갖는 피처들을 포함할 수 있다. 또 다른 예로서, 임프린트 템플릿(1205)은 약 10nm 이상이고 약 100nm 이하의 깊이를 갖는 피처들을 포함할 수 있다. 다양한 실시예들에서, 피처들의 길이 및/또는 폭은 피처들의 깊이보다 더 클 수 있다. 그러나, 일부 실시예들에서, 깊이는 피처들의 길이 및/또는 폭과 대략 동일할 수 있다. 임프린트 템플릿(1205)의 각각의 도메인의 피처들은, 연속적인 피처들 간의 방향 및/또는 주기가 대략 수 나노미터, 수백 나노미터 및/또는 수 미크론의 길이 스케일을 따라 변하는 각각의 도메인 내에서 복잡한 기하학적 패턴들을 형성하도록 배열될 수 있다. 다양한 실시예들에서, 임프린트 템플릿(1205)은 복수의 이격된 도메인들을 포함할 수 있다. 각각의 도메인은 서브-파장 치수들을 갖는 복수의 피처들을 포함할 수 있다. 각각의 도메인은 도메인 갭만큼 이웃하는 도메인으로부터 이격될 수 있다. 도메인 갭은 약 10nm 내지 약 100nm, 약 20nm 내지 약 90nm, 약 30nm 내지 약 80nm, 약 40nm 내지 약 75nm, 약 50nm 내지 약 70nm 또는 이들 범위들의 임의의 조합 또는 이들 범위들 내의 임의의 서브범위 또는 서브-범위들의 조합의 값을 가질 수 있다. 다양한 구현들에서, 도메인 갭은 10nm 이하 및/또는 100nm 이상일 수 있다. 예컨대, 도메인 갭은 5nm 이하, 2nm 이하, 1nm 이하 또는 0nm 이상이고 10nm 이하의 값일 수 있다. 임프린트 템플릿(1205)은 도 11a 및 도 11b를 참조하여 위에 논의된 임프린트 템플릿(1100)과 유사한 특징들을 가질 수 있다. 예컨대, 임프린트 템플릿(1205)의 복수의 도메인들은, 이웃하는 도메인들 사이의 도메인 갭이 균일하도록, 임프린트 템플릿(1205)의 표면에 걸쳐 정사각형 그리드로 배열될 수 있다. 다른 예로서, 임프린트 템플릿(1505)의 복수의 도메인들은 동심 원형 또는 타원형 구역들로 배열될 수 있다. 다른 실시예들에서, 복수의 도메인들은, 이웃하는 도메인들 사이의 도메인 갭이 균일하지 않도록, 임프린트 템플릿(1205)의 표면에 걸쳐 불규칙하게 배열될 수 있다.
[0125] 서브-파장 피처들을 갖는 임프린트 템플릿(1205)은 광학 리소그래피, 나노-임프린트 및 이온- 및 전자-빔 리소그래피를 포함하는 나노-패터닝 기술을 사용하여 설계 및 제조될 수 있다. 다양한 실시예들에서, 임프린트 템플릿은 실리콘 또는 유리 재료와 같은 반도체 재료를 포함할 수 있다.
[0126] PLC 층(1203)이 임프린트 템플릿(1205)의 피처들과 직접 접촉할 때, PLC 층(1203)의 액정 분자들의 길이방향 축들은 임프린트 템플릿의 피처들에 정렬된다. 이러한 방식으로, PLC 층의 노출된 표면은 임프린트 템플릿의 패턴에 대응하거나 상보적인 패턴으로 임프린트된다. PLC 층(1203)의 노출된 표면이 임프린트 템플릿(1205)에 의해 패터닝된 후, PLC 층(1203)이 중합된다. PLC 층(1203)의 중합은 도 12b에 도시된 바와 같은 자외선(UV) 조사에 대한 노출, 열의 인가, 시간의 경과 등을 포함하지만 이에 제한되지 않는 다양한 방법들에 의해 달성될 수 있다. 도 12c에 도시된 바와 같이 PLC 층(1203)이 임프린트 템플릿으로부터 분리된 후에조차, PLC 층(1203)의 중합은 유리하게도 PLC 층(1203)의 액정 분자들의 길이방향 축들의 배향을 고정시킬 수 있다.
[0127] 패터닝된 PLC 층(1203)의 중합 후, 액정 재료의 층(1207)은 중합된 패터닝된 PLC 층(1203) 위에 배치된다. 액정 층은 스핀-코팅, 슬롯-코팅, 바-코팅 또는 제트 증착에 의해 PLC 층(1203) 위에 증착될 수 있다. 액정 재료의 층(1207)은 약 10nm 내지 10 미크론의 두께를 가질 수 있다. 액정 재료의 층(1207)은 도핑되거나 또는 도핑되지 않은 액정 재료를 포함할 수 있다. 다양한 실시예들에서, 액정 재료의 층(1207)은 중합 가능한 액정 재료, 중합체-안정화 액정 재료 또는 중합 불가한 액정 재료일 수 있다.
[0128] 액정 재료의 층(1207)의 분자들의 길이방향 축들 자체는 PLC 층(1203) 상에 임프린트된 패턴에 정렬된다. 따라서, PLC 층(1203)은 액정 재료의 층(1207)의 정렬 층으로서 기능한다. 일부 실시예들에서, 액정 재료의 층(1207)의 분자들의 길이방향 축들의 정렬은 열의 인가 및/또는 충분한 시간의 경과에 의해 가능하게 될 수 있다. 액정 재료의 층(1207)을 위한 정렬 층으로서 PLC 층(1203)을 사용하는 것은 몇몇의 이점들을 가질 수 있다. 제1 이점은, 중합 가능한 액정 재료를 포함하지 않는 정렬 층들과 비교하여, PLC 층(1203)이 액정 재료의 층(1207)에 대해 더 강한 정렬 조건들을 제공할 수 있다는 것이다. 제2 이점은, PLC 층(1203)의 재료가 액정 재료의 층(1207)의 재료와 유사한 광학 특성들을 가질 때, 균질한 계면(homogeneous interface)이 달성될 수 있다는 것이다. 이것은, 유리하게는 PLC 층(1203)과 액정 재료의 층(1207) 사이의 경계로부터의 굴절들/회절들을 감소시킬 수 있다.
[0129] 도 12e에 도시된 바와 같이, 부가적인 액정 층들(1211 및 1215)을 위한 정렬 층들로서 기능하는 부가적인 PLC 층들(1209 및 1213)은 도 12a 내지 도 12d의 프로세스들을 반복함으로써 정렬된 액정 재료의 층(1207) 위에 연속적으로 증착될 수 있다. 예컨대, 제2 PLC 층(1209)은 액정 재료의 층(1207) 위에 배치되고, 후속하여 임프린트 템플릿으로 패터닝되고 중합된다. 액정 재료의 제2 층(1211)은 패터닝되고 중합된 PLC 층(1209) 위에 배치되고, 액정 재료의 제2 층(1211)의 분자들이 제2 PLC 층(1209) 상에 임프린트된 패턴에 정렬되도록 자기-조직화되도록 허용된다. 제2 PLC 층(1213)은 액정 재료의 층(1209) 위에 배치되고, 후속하여 임프린트 템플릿으로 패터닝되고 중합된다. 액정 재료의 제3 층(1215)은 패터닝되고 중합된 PLC 층(1213) 위에 배치되고, 액정 재료의 제3 층(1215)의 분자들이 제3 PLC 층(1213) 상에 임프린트된 패턴에 정렬되도록 자기-조직화되도록 허용된다. 이러한 시퀀스는 추가의 액정 층들에 대해 반복될 수 있다. 바람직하게는, 부가적인 PLC 층들(1209 및 1213)은 중합 가능한 액정 재료들(반응성 메조겐들)을 포함할 수 있다. 바람직하게는, 액정 재료(1207, 1211 및 1215)는 중합 가능한 액정 재료들(반응성 메조겐들)을 포함할 수 있다. PLC 층들(1209 및/또는 1213) 상에 임프린트된 패턴은 PLC 층(1203) 상에 임프린트된 패턴과 상이할 수 있다. 그러나, 일부 실시예들에서, PLC 층들(1209 및/또는 1213) 상에 임프린트된 패턴은 PLC 층(1203) 상에 임프린트된 패턴과 동일할 수 있다. 다양한 실시예들에서, 액정 층들(예컨대, 층(1207) 또는 층(1211)) 상의 패턴의 효과를 감소시키기 위한 부가적인 PLC 층들을 아래에 제공하기 전에, 얇은 산화막(수 nm 내지 수백 nm 범위의 두께를 가짐)과 같은 절연층이 액정 재료의 층들(예컨대, 층(1207) 또는 층(1211)) 위에 증착될 수 있다. 일부 실시예들에서, 평탄화 템플릿은, 부가적인 PLC 층들을 제공하기 전에, 액정 재료의 층들(예컨대, 층(1207), 층(1211) 또는 층(1215))의 노출된 표면을 평탄화하는 데 사용될 수 있다.
[0130] 도 13a는 임프린트 템플릿의 실시예의 SEM(canning electron microscope) 이미지를 예시한다. 임프린트 템플릿은 도메인 갭만큼 서로 이격된 3개의 도메인들(1301, 1303 및 1305)을 포함한다. 제1 도메인(1301)과 제2 도메인(1303) 사이의 도메인 갭은 d1이고, 제2 도메인(1302)과 제3 도메인(1305) 사이의 도메인 갭은 d2이다. 3개의 도메인들(1301, 1303 및 1305) 각각은 복수의 피처들을 포함한다. 복수의 피처들 각각의 치수(예컨대, 길이, 폭 또는 깊이)는 100nm 미만이다. 도메인 갭들(d1 및 d2)은 100nm 이하이다. 도 13b는, 도 13a의 임프린트 템플릿 및 도 12a-12c를 참조하여 위에 논의된 방법을 사용하여 제조된 패터닝된 PLC 층의 SEM 이미지이다. 도 13c는 도 13b에 도시된 패터닝된 PLC 층의 편광 현미경 이미지이다. 도 13c는 편광 현미경의 편광기/분석기에 대한 상대적인 LC 배향들을 나타내는 그레이-스케일 패턴을 도시한다. 편광 현미경 이미지가 실질적으로 정렬 결함들(즉, 디스클리네이션들)이 없는 LC 정렬을 나타내는 균일한 패턴을 나타낸다는 것이 도 13c으로부터 알게 된다.
[0131] 본원에서 설명된 방법들은 서브-파장 피처들을 갖는 액정 층을 포함하는 전기적으로 제어 가능한 액정 디바이스들을 제조하는 데 사용될 수 있다. 도 14는, 분자들이 패터닝된 정렬 층(1403)에 정렬되는 액정 층(1407)이 2개의 전극 층들(1420 및 1425) 사이에 샌드위치된 전기적으로 제어 가능한 액정 디바이스의 실시예를 예시한다. 일부 실시예들에서, 정렬 층(1403)은 패터닝된 중합 가능한 액정 층을 포함할 수 있다. 일부 실시예들에서, 정렬 층(1403)은, LC 재료들과 나노-스케일 표면 구조물들과 직접 정렬시키는 패터닝된 중합체 층을 포함할 수 있다. 2개의 전극 층들(1420 및 1425)은 가시광 스펙트럼 범위(예컨대, 약 400nm 내지 약 700nm)의 광에 대해 투과성인 재료(예컨대, ITO(Indium Tin Oxide))를 포함할 수 있다. 다양한 실시예들에서, 2개의 전극 층들(1420 및 1425) 각각은, ITO(1404a 및 1404b)의 층으로 각각 코팅된 기판(1401a 및 1401b)을 포함할 수 있다. 다양한 실시예들에서, 전기적으로 제어 가능한 액정 디바이스는, 2개의 전극 층들 및 패터닝된 정렬 층(1403)을 포함하는 액정 셀 구조물을 구성함으로써 제조될 수 있다. 층(1407)을 형성하는 액정 재료는, 전기적으로 제어 가능한 액정 디바이스를 제조하기 위해 셀 구조물 내에 주입될 수 있다. 정렬 층(1403)은 약 20nm 내지 약 10 미크론의 두께를 가질 수 있다. 액정 층(1407)은 약 100nm 내지 10 미크론의 두께를 가질 수 있다. 정렬 층(1403)은, 위에 논의된 템플릿(1100) 및/또는 템플릿(1205)과 유사한 복수의 서브-파장 피처들을 포함하는 임프린트 템플릿을 사용하여 패터닝될 수 있다. 예컨대, 정렬 층(1403)을 패터닝하는 데 사용되는 임프린트 템플릿은 복수의 이격된 도메인들을 포함할 수 있다. 각각의 도메인은 대략 수 나노미터, 수백 나노미터 또는 수 미크론의 치수(예컨대, 길이, 폭 및/또는 깊이)를 갖는 복수의 피처들을 포함할 수 있다. 위에 논의된 바와 같이, 정렬 층(1403)은, 정렬 층(1403)의 분자들의 길이방향 축들을 고정시키기 위해 패터닝 후에 중합될 수 있다. 액정 층(1407)의 분자들은 정렬 층(1403) 상에 임프린트된 패턴에 자기-조직화되도록 허용될 수 있다. 자기-조직화 후에, 액정 층(1407)의 분자들은 임프린트 템플릿의 별개의 도메인들에 대응하는 별개의 도메인을 형성하고, 각각의 도메인 내의 액정 분자들의 길이방향 축들은 대응하는 도메인 내의 개별 피처들의 방향들을 따라 정렬된다. 인접한 도메인들 사이의 갭들 내의 액정 분자들의 길이방향 축들은, 임의의 급격한 불연속성들 없이, 하나의 도메인 내의 분자들의 길이방향 축들의 배향으로부터 인접한 도메인의 길이방향 축의 배향으로 점진적으로 전환될 수 있다. 예컨대, 인접하는 도메인들 사이의 갭들 내의 액정 분자들의 길이방향 축들은 하나의 도메인 내의 분자들의 길이방향 축들의 배향으로부터 인접한 도메인의 길이방향 축의 배향으로 실질적으로 연속적으로 점진적으로 전환될 수 있다. 다양한 실시예들에서, 액정 층(1407)은 복잡한 공간-변형 나노-스케일 패턴들을 포함할 수 있다.
[0132] 하나 이상의 도메인들 내의 액정 분자들의 길이방향 축들의 배향은 전극 층들(1420 및 1425) 양단에 전압을 인가함으로써 변동될 수 있다. 특정 조건들 하에서, 예컨대, LC 분자들은 전극 층들(1420 및 1425)에 걸쳐 전기장들의 방향을 따라 정렬된다. 따라서, 전극층들(1420 및 1425) 양단에 전압을 인가함으로써, 액정 층(1407) 내의 격자 구조물은 스위칭 온 또는 스위칭 오프될 수 있다.
[0133] 도 15a-15c는 본원에 설명된 다양한 액정 디바이스들을 제조하는 방법의 예를 예시한다. 방법은 기판(1501) 위에 임프린트 층(1505)을 제공하는 단계를 포함한다. 임프린트 층(1505) 및 기판(1501)의 다양한 물리적 및/또는 화학적 특징들은 위에 논의된 임프린트 템플릿(1205) 및 기판(1201)과 각각 유사할 수 있다. 예컨대, 많은 경우들에서, 기판(1501)은 광학적으로 투과성이다. 기판(1501)에 적합한 재료들의 예들은 유리, 석영, 사파이어, 인듐 주석 산화물(ITO), 또는 폴리카보네이트, 폴리아세테이트 및 아크릴을 포함하는 중합 재료들을 포함한다. 일부 구현들에서, 기판(1501)은 가시광 파장들 또는 적외선 파장들 중 적어도 하나의 광에 대해 투과성일 수 있다. 기판은 한 쌍의 주 표면들 및 주위 에지들을 포함할 수 있다. 주 표면은 기판의 가장 큰 영역 표면일 수 있거나 또는 다른 표면들(예컨대, 에지들)보다 더 큰 영역들을 각각 갖는 한 쌍의 유사한 크기의 대향 표면들 중 하나일 수 있다. 액정 디바이스들은 기판의 주 표면들 상에 또는 주 표면들에 대해 입사되는 광을 반사, 굴절, 회절 또는 그렇지 않다면 방향전환하도록 구성될 수 있다.
[0134] 임프린트 층(1505)은 기판(1501)의 주 표면 위에 배치될 수 있다. 위에 논의된 바와 같이, 임프린트 층(1505)은 서브-파장 치수들을 갖는 피처들을 포함할 수 있다. 예컨대, 임프린트 층(1505)은 대략 수 나노미터, 수백 나노미터 및/또는 수 미크론의 치수들(예컨대, 길이, 폭 및/또는 깊이)을 갖는 피처들을 포함할 수 있다. 다른 예로서, 임프린트 층(1505)은 약 20nm 이상이고 약 100nm 이하의 길이를 갖는 피처들을 포함할 수 있다. 또 다른 예로서, 임프린트 층(1505)은 약 20nm 이상이고 약 100nm 이하의 폭을 갖는 피처들을 포함할 수 있다. 또 다른 예로서, 임프린트 층(1505)은 약 10nm 이상이고 약 100nm 이하의 깊이를 갖는 피처들을 포함할 수 있다. 다양한 실시예들에서, 피처들의 길이 및/또는 폭은 피처들의 깊이보다 더 클 수 있다. 그러나, 일부 실시예들에서, 깊이는 피처들의 길이 및/또는 폭과 대략 동일할 수 있다. 그러나, 비록 이러한 범위들을 벗어난 치수들을 갖는 피처들이 또한 가능하다.
[0135] 임프린트 층(1505)의 각각의 도메인의 피처들은, 연속적인 피처들 간의 방향 및/또는 주기가 대략 수 나노미터, 수백 나노미터 및/또는 수 미크론의 길이 스케일을 따라 변하는 각각의 도메인 내에서 복잡한 기하학적 패턴들을 형성하도록 배열될 수 있다. 다양한 실시예들에서, 임프린트 층(1505)은 복수의 이격된 도메인을 포함할 수 있다. 각각의 도메인은 서브-파장 치수들을 갖는 복수의 피처들을 포함할 수 있다. 각각의 도메인은 도메인 갭만큼 이웃하는 도메인으로부터 이격될 수 있다. 다양한 실시예들에서, 도메인 갭은 약 10nm 내지 약 100nm, 약 20nm 내지 약 90nm, 약 30nm 내지 약 80nm, 약 40nm 내지 약 75nm, 약 50nm 내지 약 70nm 또는 이들 범위들의 임의의 조합 또는 이들 범위들 내의 임의의 서브범위 또는 서브-범위들의 조합의 값을 가질 수 있다. 다양한 구현들에서, 도메인 갭은 10nm 이하 및/또는 100nm 이상일 수 있다. 예컨대, 도메인 갭은 5nm 이하, 2nm 이하, 1nm 이하 또는 0nm 이상이고 10nm 이하의 값일 수 있다. 일부 구현들에서, 임프린트 템플릿(1505)의 복수의 도메인들은, 이웃하는 도메인들 사이의 도메인 갭이 균일하도록, 임프린트 템플릿(1505)의 표면에 걸쳐 정사각형 그리드로 배열될 수 있다. 일부 구현들에서, 임프린트 템플릿(1505)의 복수의 도메인들은 동심 원형 또는 타원형 구역들로 배열될 수 있다. 복수의 도메인들은, 이웃하는 도메인들 사이의 도메인 갭이 균일하지 않도록, 임프린트 템플릿(1505)의 표면에 걸쳐 불규칙하게 배열될 수 있다. 임프린트 층(1505)은 위에 논의된 임프린트 템플릿(1100) 및/또는 임프린트(1205)와 유사한 특징들을 가질 수 있다.
[0136] 서브-파장 피처들을 갖는 임프린트 층(1505)은 광학 리소그래피, 나노-임프린트 및 이온- 및 전자-빔 리소그래피를 포함하는 나노-패터닝 기술을 사용하여 설계 및 제조될 수 있다. 다양한 실시예들에서, 임프린트 층(1505)은 포토레지스트, 실리콘 또는 유리 재료와 같은 반도체 재료를 포함할 수 있다.
[0137] 중합 가능한 액정(PLC) 층(1503)은 임프린트 층(1505) 위에 배치된다. PLC 층(1503)은 스핀-코팅 프로세스 또는 제트 증착에 의해 임프린트 층(1505) 위에 배치될 수 있다. PLC 층(1503)은 약 10nm 내지 10㎛의 두께를 가질 수 있다. PLC 층(1503)은 중합 가능한 액정 재료들(예컨대, 반응성 메조겐) 및/또는 Azo-함유 중합체들을 포함할 수 있다. 임프린트 층(1505)은, PLC 층(1503)의 액정 분자들이 임프린트 층(1505)의 패턴에 정렬시키게 하는 정렬 층으로서 역할을 한다. PLC 층(1503)이 임프린트 층(1505)의 피처들과 접촉할 때, PLC 층(1503)의 액정 분자들의 길이방향 축들은 임프린트 층(1505)의 피처들에 정렬될 수 있다. 이러한 방식으로, PLC 층(1503)의 표면은 임프린트 층(1503)의 패턴에 대응하는 패턴으로 임프린트된다. 임프린트 층(1505)의 패턴으로의 PLC 층(1503)의 액정 분자들의 정렬은 액정 분자들과의 입체적 상호작용들, 및/또는 임프린트 층(1505)에 의한 증착된 액정 분자들에 가해지는 앵커링 에너지에 기인할 수 있다. PLC 층(1503)은 임프린트 층(1505) 상에 증착된 후에 중합될 수 있다. PLC 층(1503)의 중합은 자외선(UV) 조사에 대한 노출, 열의 인가, 시간의 경과 또는 이들의 조합들을 포함하지만 이에 제한되지 않는 다양한 방법들에 의해 달성될 수 있다. PLC 층(1503)의 중합은 유리하게는 PLC 층(1503)의 액정 분자들의 길이방향 축들의 배향을 고정시킬 수 있다.
[0138] 패터닝된 PLC 층(1503)의 중합 후, 액정 재료의 다른 층(1520)은 중합된 패터닝된 PLC 층(1503) 위에 배치된다. 액정 재료의 층(1520)은 스핀-코팅, 슬롯-코팅, 바-코팅, 블레이드-코팅, 제트 증착 또는 가능하게는 다른 방법들에 의해 PLC 층(1503) 위에 증착될 수 있다. 액정 재료의 층(1520)은 약 10nm 내지 10 미크론의 두께를 가질 수 있다. 액정 재료의 층(1520)은 도핑되거나 또는 도핑되지 않은 액정 재료를 포함할 수 있다. 다양한 실시예들에서, 액정 재료의 층(1520)은 중합 가능한 액정 재료, 중합체-안정화 액정 재료 또는 중합 불가한 액정 재료일 수 있다.
[0139] 액정 재료의 층(1520)의 분자들의 길이방향 축들 자체는 PLC 층(1503) 상에 임프린트된 패턴에 정렬된다. 다양한 구현들에서, 임프린트 층(1505)과 접촉하는 액정 재료의 층(1520)의 서브-층의 분자들만이 임프린트 층(1505)의 패턴에 정렬된 그들의 길이방향 축들을 가질 수 있다. 액정 재료의 층(1520)의 다른 서브-층들은 도 10c를 참조하여 위에 논의된 바와 같이 상이한 배향들을 가질 수 있다. 따라서, PLC 층(1503)은 액정 재료의 층(1520)에 대한 정렬 층으로서 기능한다. 일부 실시예들에서, 액정 재료의 층(1520)의 분자들의 길이방향 축들의 정렬은 열의 인가 및/또는 충분한 시간의 경과에 의해 가능하게 될 수 있다.
[0140] 위에 논의된 바와 같이, 액정 재료의 층(1520)을 위한 정렬 층으로서 PLC 층(1503)을 사용하는 것은 몇몇의 이점들을 가질 수 있다. 제1 이점은, 중합 가능한 액정 재료를 포함하지 않는 정렬 층들과 비교하여, PLC 층(1503)이 액정 재료의 층(1520)에 대해 더 강한 정렬 조건들을 제공할 수 있다는 것이다. 제2 이점은, PLC 층(1503)의 재료가 액정 재료의 층(1520)의 재료와 유사한 광학 특성들을 가질 때, 균질한 계면이 달성될 수 있다는 것이다. 이것은, 유리하게는 PLC 층(1503)과 액정 재료의 층(1520) 사이의 경계로부터의 굴절들/회절들을 감소시킬 수 있다.
[0141] 본원에서 논의된 방법들은 액정 메타재료들 또는 액정 메타표면들을 제조하는 데 사용될 수 있다. 상이한 이격된 도메인들 ― 도메인은 복수의 서브-파장 스케일 패턴을 포함함 ― 을 포함하는 액정 층들의 다양한 실시예들은, 기판으로서 투과성 도파관 또는 도파관 자체에 인접할 수 있는 기판 상에 형성될 수 있다. 이러한 실시예들에서, 서브-파장 스케일 패턴을 갖는 액정 층들은, 예컨대, 회절된 광이 액정 층에 인접하게 배치된 도파관의 안내 모드에 커플링될 수 있도록, 도파관의 법선에 대해 약 ± 30도 사이의 각도로 입사하는 광을 회절시키도록 구성될 수 있다. 일부 실시예들에서, 도파관은, 임의의 개재 층들 없이, 액정 층에 직접 인접하게 배치될 수 있다. 일부 다른 실시예들에서, 개재 층들은 도파관과 도파관에 인접한 액정 층 사이에 배치될 수 있다. 일부 이러한 실시예들에서, 서브-파장 스케일 패턴을 갖는 액정 층들은 또한 도파관을 통해 전파되는 광을 아웃-커플링하도록 구성될 수 있다. 서브-파장 스케일 패턴을 갖는 액정 층들은, 자신들이 광범위한 파장들(예컨대, 가시광 스펙트럼의 적색/녹색/청색 스펙트럼 범위 내의 파장들)에 걸쳐 광을 효율적으로 회절시킬 수 있도록, 파장 선택적이거나 광대역이 될 수 있도록 협대역이 되도록 구성될 수 있다. 본원에서 논의된 방법들은 다른 액정 디바이스들을 제조하는 데 사용될 수 있다. 예컨대, 본원에서 논의된 방법들은 아래에 논의되는 회절 액정 렌즈의 구현들을 제조하는 데 사용될 수 있다.
회절 액정 렌즈
[0142] 도 16a는 액정 재료를 포함하는 회절 렌즈(1600)의 구현의 평면도를 예시한다. 렌즈(1600)는, 예컨대, x-y 평면 내의 존들(1605 및 1610)과 같은 복수의 존들을 포함한다. 복수의 존들의 수는 2 내지 약 50개일 수 있다. 예컨대, 복수의 존들의 수는 3개 이상, 5개 이상, 8개 이상, 10개 이상, 15개 이상, 18개 이상, 22개 이상, 50개 이하, 42개 이하, 30개 이하, 20개 이하 또는 이러한 값들로 정의된 범위들/서브-범위들 내의 임의의 수일 수 있다. 렌즈(1600)의 복수의 존들 각각의 액정 재료의 분자들은 특정 배향 또는 그 주위의 범위를 따라 배향된다. 인접한 존들 내의 액정 재료의 분자들의 배향은 상이할 수 있다. 예컨대, 렌즈(1600)에서, 존(1605) 내의 액정 분자들의 길이방향 축들은 y-축에 평행하게 정렬될 수 있는 반면, 존(1610) 내의 액정 분자들의 길이방향 축들은 시계 방향으로 y-축에 대해 약 18도의 각도만큼 회전될 수 있다. 도 16a에 도시된 렌즈(1600)에서, 연속 존들 각각의 분자들의 길이방향 축들은, 선행 존의 액정 분자들의 길이방향 축들에 대해 시계 방향으로 약 18도의 각도만큼 회전될 수 있다. 다른 렌즈 구현들에서, 존 내의 액정 분자들의 길이방향 축들과 선행 존 내의 액정 분자들의 길이방향 축들 사이의 각도는 18도 이외의 각도일 수 있다. 예컨대, 존 내의 액정 분자들의 길이방향 축들과 선행 존 내의 액정 분자들의 길이방향 축들 사이의 각도는 약 45도 이하일 수 있다. 예컨대, 존 내의 액정 분자들의 길이방향 축들과 선행 존 내의 액정 분자들의 길이방향 축들 사이의 각도는 약 1도 이상, 약 2도 이상, 약 5도 이상, 약 10도 이하, 약 17도 이하, 약 20도 이하, 약 25도 이하, 30도 이하, 약 35도 이하, 약 40도 이하 및/또는 약 45도 이하 또는 이들 값들 중 임의의 값에 의해 정의되는 임의의 범위 내의 임의의 각도일 수 있다.
[0143] 도 16a에 도시된 렌즈(1600)의 구현에서, 액정 분자들의 길이방향 축들의 방향과 y-축 사이의 각도는, 제10 존(1655) 내의 액정 분자들이 제1 존(1605) 내의 액정 분자들과 동일한 배향을 갖도록, 고정된 양(예컨대, 18도)만큼 점진적으로 증가한다. 그러나, 이웃하는 존들 내의 액정 분자들의 길이방향 축들의 배향의 각도 차이는 고정되거나 일정할 필요는 없다. 대신에, 이웃하는 존들 사이의 액정 분자들의 길이방향 축들의 배향 각도의 차이가 렌즈에 걸쳐 변동될 수 있다. 예컨대, 2개의 이웃하는 존들 사이의 액정 분자들의 길이방향 축들의 배향의 각도 차이는 35도일 수 있는 반면에, 2개의 다른 이웃하는 존들 사이의 액정 분자들의 길이방향 축들의 배향의 각도 차이는 10도일 수 있다. 따라서, 액정 렌즈의 다양한 구현들에서, 연속적인 존들 사이의 액정 분자들의 길이방향 축들의 배향의 각도 차이는 가변적이고, 일정하지 않고, 및/또는 랜덤일 수 있다.
[0144] 복수의 존들은 링 형상 또는 환형일 수 있다. 복수의 존들은 동심원일 수 있다. 예컨대, 도 16a에서, 제1 존(1605)은 다른 복수의 존들에 의해 둘러싸인 중앙 존으로서 구성된다. 복수의 존들은 도 16a에 도시된 바와 같이 동심원 링들 또는 환형들일 수 있다. 그러나, 다른 구현들에서, 복수의 존들은 타원형일 수 있거나 가능하게는 다른 형상들을 가질 수 있다. 복수의 존들은 폐쇄된 곡선들일 필요는 없다. 대신에, 복수의 존들 중 일부는 개방된 곡선들(예컨대, 아크들)일 수 있다. 다양한 구현들에서, 복수의 존들의 폭은, 제1(또는 중앙) 존으로부터의 거리가 증가함에 따라 감소될 수 있다. 따라서, 제1(또는 중앙) 존의 폭은 가장 클 수 있고, 각각의 연속적인 존의 폭은 연속적으로 감소될 수 있다. 복수의 존들의 폭은, 중앙 존 및/또는 렌즈의 중심으로부터의 거리가 증가함에 따라 선형적으로 또는 비-선형적으로 감소될 수 있다. 복수의 존들의 폭은 일부 경우들에서 수학식에 의해 결정(govern)될 수 있다.
[0145] 다양한 구현들에서, 구역들 및 그 안에 포함된 피처들은, 예컨대, 복수의 존들이 광학 파워를 갖는 렌즈와 같은 광학 엘리먼트를 형성하도록 하는 형상, 크기, 배향 등을 갖도록 구성된다. 이러한 광학 파워는 포지티브 또는 네거티브일 수 있다. 광학 파워는 또한 입사 광의 편광에 따라 포지티브 또는 네거티브일 수 있다. 예컨대, 광학 파워는 우회전 원형 편광된 광(right-handed circular polarized light)에 대해 포지티브인 반면에, 좌회전 원형 편광된 광에 대해 네거티브이고, 그 역도 가능하다. 이러한 광학 엘리먼트, 예컨대, 렌즈는 회절 렌즈와 같은 회절 광학 엘리먼트일 수 있다.
[0146] 복수의 존들 각각은 위에 논의된 바와 같이 도메인으로 간주될 수 있다. 복수의 존들은 약 1nm 내지 약 200nm의 갭(도메인 갭에 대응함)을 갖고서 서로 이격될 수 있다. 그러나, 다양한 구현들에서, 복수의 존들은, 그들이 5.0nm 미만 또는 1.0nm 미만의 갭만큼 이격되도록 배열될 수 있다. 예컨대, 일부 구현들에서, 복수의 존 사이에 어떠한 갭도 존재하지 않는다. 다시 말해서, 인접한 존들 사이의 갭은 0일 수 있다. 도메인 갭은 이웃하는 존들 내의 액정 분자들의 길이방향 축들의 배향의 각도 차이에 따라 변할 수 있다. 따라서, 이웃하는 존들 사이의 액정 분자들의 길이방향 축들의 배향의 차이에 따라, 갭은 0 내지 약 200nm일 수 있다.
[0147] 도 16b는 렌즈(1600)의 양측에 배치된 교차된 편광기들 사이의 렌즈(1600)의 현미경 이미지를 예시한다. 교차된 편광기들은, 편광 축들이 서로 직교하게 배치된 선형 편광기들일 수 있다. 교차된 편광기는, 편광을 상이한 양들만큼 회전하는 상이한 구역들을, 광의 편광이 편광기 배향과 얼마나 매칭하는지에 따라 상이한 강도들을 갖는 것으로 도시할 것이다. 광의 편광이 편광기와 더 많이 매칭할수록, 광이 더 밝고, 그 역도 가능하다. 렌즈(1600)의 현미경 이미지를 획득하기 위해, 2개의 교차된 편광기들 중 하나를 통해 투과된 원형으로 편광된 광은 렌즈(1600)에 입사된다. 렌즈(1600)의 출력은 2개의 교차된 편광기들 중 다른 하나를 통해 투과되고, 현미경을 통해 관찰된다. 도 16b의 도시된 이미지의 어두운 구역들(예컨대, 구역(1660)) 내의 액정 분자들의 길이방향 축들의 배향은 편광기들의 광학 축들에 평행하거나 수직이다. 도 16b에 도시된 이미지의 밝은 구역들(예컨대, 구역(1662)) 내의 액정 분자들의 길이방향 축들의 배향은 편광기들의 광학 축들에 대해 대략 ± 45도이다. 더 밝은 구역과 더 어두운 구역 사이의 변동은, 특정 구역 내의 액정 분자들의 상이한 배향들 및 복굴절의 광학 축에 의해 발생되는 편광 배향의 변동과 연관된다.
[0148] 복수의 존들 내의 복수의 액정들의 길이방향 축들의 정렬은 위에 논의된 바와 같은 임프린트 층을 사용함으로써 달성될 수 있다. 도 16b-1은, 존들(1605 및 1610)을 포함하는 구역(1664) 내의 복수의 액정들의 길이방향 축들의 원하는 정렬을 달성하는 임프린트 층(1670)의 패턴을 보여주는 SEM(scanning electron microscope) 이미지를 도시한다. 도 16b-2의 SEM 이미지는 구역(1666) 내의 복수의 액정들의 길이방향 축들의 원하는 정렬을 달성하는 임프린트 층(1670)의 패턴을 도시한다. 임프린트 층(1670)의 구역(1672)은, y-축에 평행하는 피처들(예컨대, 그루브들)을 포함한다. 결과적으로, 임프린트 층(1670)의 구역(1672)과 중첩하는 액정 분자들의 길이방향 축들은 존(1605)을 형성하기 위해 y-축에 평행하게 정렬된다. 임프린트 층(1670)의 구역(1674)은 y-축에 대해 각도(예컨대, 약 18도)만큼 시계 방향으로 회전되는 피처들(예컨대, 그루브들)을 포함한다. 따라서, 임프린트 층(1670)의 구역(1674)과 중첩하는 액정 분자들의 길이방향 축들은, 존(1610)을 형성하기 위해 y-축에 대하여 각도(예컨대, 약 18도)만큼 시계 방향으로 회전된다. 임프린트 층(1670)의 구역들(1680, 1682, 1684, 1686, 및 1688)은 피처들(예컨대, 그루브들)의 상이한 어레인지먼트들을 보여준다. 임프린트 층(1670)의 구역들(1680, 1682, 1684, 1686 및 1688)과 중첩하는 액정 분자들의 길이방향 축들은 개개의 구역들(1680, 1682, 1684, 1686 및 1688) 내의 그루브들에 평행하게 정렬될 것이다.
[0149] 임프린트 층(1670)의 다양한 구역들(1672, 1674, 1680, 1682, 1684, 1686 및 1688) 내의 피처들은 서브-파장 크기일 수 있다. 예컨대, 임프린트 층(1670)의 다양한 구역들(1672, 1674, 1680, 1682, 1684, 1686 및 1688) 내의 피처들의 길이, 높이, 폭 및/또는 깊이는 대략 수 나노미터, 수백 나노미터 또는 수 미크론일 수 있다. 다른 예로서, 임프린트 층(1670)의 다양한 구역들(1672, 1674, 1680, 1682, 1684, 1686 및 1688) 내의 피처들의 길이, 높이, 폭 및/또는 깊이는 약 20nm 내지 약 100nm, 약 30nm 내지 약 90nm, 약 40nm 내지 약 80nm, 약 50nm 내지 약 75nm, 약 60nm 내지 약 70nm 또는 이들 범위들의 임의의 조합 또는 이들 범위들 내의 임의의 서브범위 또는 서브-범위들의 조합일 수 있다. 다양한 구현들에서, 임프린트 층(1670)의 다양한 구역들(1672, 1674, 1680, 1682, 1684, 1686 및 1688) 내의 피처들의 길이, 높이, 폭 및/또는 깊이는 약 20nm 이하 또는 약 100nm 이상일 수 있다. 예컨대, 임프린트 층(1670)의 다양한 구역들(1672, 1674, 1680, 1682, 1684, 1686 및 1688) 내의 피처들의 길이, 높이, 폭 및/또는 깊이는 1nm 이상 5nm 이상, 10nm 이상, 15nm 이상, 100nm 이하, 125nm 이하, 150nm 이하, 200nm 이하, 250nm 이하, 1 미크론 이하 또는 이들 값들에 의해 정의된 임의 범위/서브-범위 내의 값일 수 있다.
[0150] 도 17a 내지 도 17c는 렌즈(1600)를 제조하는 방법의 예를 예시한다. 방법은 기판(1701) 위에 임프린트 층(1670)을 제공하는 단계를 포함한다. 임프린트 층(1670) 및 기판(1701)의 다양한 물리적 및/또는 화학적 특징들은 위에 논의된 액정 층(1203) 및 기판(1201)과 각각 유사할 수 있다. 예컨대, 다양한 경우들에서, 기판(1701)은 광학적으로 투과성 및/또는 투명하다. 기판(1701)에 적합한 재료들의 예들은 유리, 석영, 사파이어, 인듐 주석 산화물(ITO), 또는 폴리카보네이트, 폴리아세테이트 및 아크릴을 포함하는 중합 재료들을 포함한다. 일부 실시예들에서, 기판(1701)은 가시광 파장들 또는 적외선 파장들 중 적어도 하나의 광에 대해 투과성일 수 있다. 기판은 한 쌍의 주 표면들 및 주위 에지들을 포함할 수 있다. 주 표면은 기판의 가장 큰 영역 표면일 수 있거나 또는 다른 표면들(예컨대, 에지들)보다 더 큰 영역들을 각각 갖는 한 쌍의 유사한 크기의 대향 표면들 중 하나일 수 있다. 액정 디바이스들은 기판의 주 표면들 상에 또는 주 표면들에 대해 입사되는 광을 반사, 굴절, 회절 또는 그렇지 않다면 방향전환하도록 구성될 수 있다.
[0151] 임프린트 층(1670)은 기판(1701)의 주 표면 위에 배치될 수 있다. 위에 논의된 바와 같이, 임프린트 층(1670)은 피처들(예컨대, 그루브들)을 포함하는 복수의 존들을 포함한다. 피처들은 서브-파장 치수들을 가질 수 있다. 예컨대, 임프린트 층(1670)은 대략 수 나노미터, 수백 나노미터 및/또는 수 미크론의 치수들(예컨대, 길이, 폭 및/또는 깊이)을 갖는 피처들을 포함할 수 있다. 다른 예로서, 임프린트 층(1670)은 약 20nm 이상이고 약 100nm 이하의 길이를 갖는 피처들을 포함할 수 있다. 또 다른 예로서, 임프린트 층(1670)은 약 20nm 이상이고 약 100nm 이하의 폭을 갖는 피처들을 포함할 수 있다. 또 다른 예로서, 임프린트 층(1670)은 약 10nm 이상이고 약 100nm 이하의 깊이를 갖는 피처들을 포함할 수 있다. 다양한 실시예들에서, 피처들의 길이 및/또는 폭은 피처들의 깊이보다 더 클 수 있다. 그러나, 일부 실시예들에서, 깊이는 피처들의 길이 및/또는 폭과 대략 동일할 수 있다. 이러한 범위들을 벗어난 치수들이 또한 가능하다.
[0152] 다양한 구현들에서, 복수의 존들 각각의 피처들은 동일한 방향을 따라 배향된다. 복수의 존들 중 하나의 존 내의 피처들이 배향되는 방향은, 복수의 존들 중 하나에 인접한 존 내의 피처들이 배향되는 방향에 대해 일정 각도만큼 회전될 수 있다. 복수의 존들 도메인은 약 1nm 내지 약 100nm, 약 20nm 내지 약 90nm, 약 30nm 내지 약 80nm, 약 40nm 내지 약 75nm, 약 50nm 내지 약 70nm 또는 이들 범위들의 임의의 조합 또는 이들 범위들 내의 임의의 서브범위 또는 서브-범위들의 조합의 값을 갖는 갭만큼 서로 이격될 수 있다. 일부 구현들에서, 복수의 존들은 약 5nm 또는 1nm 미만의 갭만큼 이격될 수 있다. 일부 구현들에서, 복수의 존들은 어떠한 갭도 없이(또는 0nm의 갭만큼) 이격될 수 있다. 복수의 존들은 링 형상일 수 있고, 동심원으로 배열될 수 있다. 복수의 존들의 폭은, 임프린트 층(1705)의 중심으로부터의 거리가 증가함에 따라 감소될 수 있다.
[0153] 서브-파장 피처들을 갖는 임프린트 층(1705)은 광학 리소그래피, 나노-임프린트 및 이온- 및 전자-빔 리소그래피를 포함하는 나노-패터닝 기술을 사용하여 제조될 수 있다. 다양한 실시예들에서, 임프린트 층(17505)은 포토레지스트, 실리콘 또는 유리 재료와 같은 반도체 재료를 포함할 수 있다.
[0154] 액정(LC) 층(1703)은 임프린트 층(1705) 위에 배치된다. 액정 층(1703)은 중합 가능한 액정 층일 수 있다. LC 층(1703)은 스핀-코팅 프로세스, 슬롯-다이 코팅 프로세스, 바-코팅 프로세스, 블레이드-다이 코팅 프로세스 또는 제트 증착에 의해 임프린트 층(1705) 위에 배치될 수 있다. LC 층(1703)은 약 10nm 내지 10 미크론의 두께를 가질 수 있다. LC 층(1503)은 중합 가능한 액정 재료들(예컨대, 반응성 메조겐) 및/또는 Azo-함유 중합체들을 포함할 수 있다. 임프린트 층(1705)은, LC 층(1703)의 액정 분자들이 임프린트 층(1705)의 패턴에 정렬시키게 하는 정렬 층으로서 역할을 한다. LC 층(1703)이 임프린트 층(1705)의 피처들과 접촉할 때, LC 층(1703)의 액정 분자들의 길이방향 축들은 임프린트 층(1705)의 피처들과 정렬할 수 있다. 이러한 방식으로, LC 층(1703)의 표면은 임프린트 층(1705)의 패턴에 대응하는 패턴으로 임프린트된다. LC 층(1703)은 임프린트 층(1505) 상에 증착된 후에 중합될 수 있다. LC 층(1703)의 중합은, 이를테면, 도 17c에 개략적으로 예시된 자외선(UV) 조사(1710)에 대한 노출, 열의 인가, 시간의 경과 또는 이들의 조합들을 포함하지만 이에 제한되지 않는 다양한 방법들에 의해 달성될 수 있다. LC 층(1703)의 중합은 유리하게는 LC 층(1703)의 액정 분자들의 길이방향 축들의 배향을 고정시킬 수 있다.
[0155] 도 18a는 실리콘(Si)을 포함하는 기판 상에 제공된 임프린트 층(1670)의 SEM(scanning electron microscope) 이미지를 예시한다. 도 18a에 도시된 바와 같이, 임프린트 층(1670)은 제1 방향을 따라 배향된 제1 복수의 피처들을 갖는 제1 존 및 제1 방향과 상이한 제2 방향을 따라 배향된 제2 복수의 피처들을 포함하는 제2 존을 포함한다. 제1 및 제2 존들은 1nm 미만의 갭(예컨대, 갭이 없음)만큼 이격된다.
[0156] 도 18b는 임프린트 층(1670) 위에 배치된 액정 층(1703)의 SEM(scanning electron microscope) 이미지를 예시한다. 제1 존과 중첩하는 액정 층(1703)의 부분 내의 액정 분자들의 길이방향 축들은 제1 방향을 따라 정렬되고, 제2 구역과 중첩하는 액정 층(1703)의 부분 내의 액정 분자들의 길이방향 축들은 제2 방향을 따라 정렬된다.
[0157] 다양한 실시예들이 다양한 애플리케이션들, 이를테면, 이미징 시스템들 및 디바이스들, 디스플레이 시스템들 및 디바이스들, 공간 광 변조기들, 액정 기반 디바이스들, 편광기들, 도파관 플레이트들 등으로 구현되거나 이들과 연관될 수 있다는 것이 고려된다. 본원에 설명된 구조들, 디바이스들 및 방법들은 디스플레이들, 이를테면, 증강 및/또는 가상 현실에 사용될 수 있는 웨어러블 디스플레이들(예컨대, 머리 장착 디스플레이들)에서 특히 용도를 발견할 수 있다. 더 일반적으로, 설명된 실시예들은, 동적(이를테면, 비디오)이든 정적(이를테면, 스틸 이미지들)이든, 그리고 텍스처이든, 그래픽이든 또는 그림이든 이미지를 디스플레이하도록 구성될 수 있는 임의의 디바이스, 장치, 또는 시스템으로 구현될 수 있다. 그러나, 설명된 실시예들이 다양한 전자 디바이스들, 이를테면: 모바일 전화들, 멀티미디어 인터넷 인에이블드 셀룰러 전화들, 모바일 텔레비전 수신기들, 무선 디바이스들, 스마트폰들, 블루투스® 디바이스들, PDA(personal data assistant)들, 무선 전자 메일 수신기들, 핸드-헬드 또는 휴대용 컴퓨터들, 넷북들, 노트북들, 스마트북들, 태블릿들, 프린터들, 복사기들, 스캐너들, 팩시밀리 디바이스들, GPS(global positioning system) 수신기들/내비게이터들, 카메라들, 디지털 미디어 플레이어들(이를테면, MP3 플레이어들), 캠코더들, 게임 콘솔들, 손목 시계들, 클록(clock)들, 계산기들, 텔레비전 모니터들, 평판 디스플레이들, 전자 판독 디바이스들(예컨대, e-판독기들), 컴퓨터 모니터들, 자동차 디스플레이들(주행기록계 및 속도계 디스플레이들, 등을 포함함), 조종석 제어부들 및/또는 디스플레이들, 카메라 뷰 디스플레이들(이를테면, 차량의 후방 뷰 카메라의 디스플레이), 전자 사진들, 전자 빌보드(billboard)들 또는 신호들, 프로젝터들, 건축 구조들, 마이크로파들, 냉장고들, 스테레오 시스템들, 카세트 레코더들 또는 플레이어들, DVD 플레이어들, CD 플레이어들, VCR들, 라디오들, 휴대용 메모리 칩들, 와셔(washer)들, 드라이어들, 와셔/드라이어들, 파킹 미터들, 머리 장착 디스플레이들 및 다양한 이미징 시스템들(그러나 이에 제한되지 않음)에 포함되거나 이들과 연관될 수 있다는 것이 고려된다. 따라서, 교시들은 도면들에만 묘사된 실시예들로 제한되도록 의도되는 것이 아니라, 대신 당업자에게 쉽게 자명할 넓은 응용성을 가진다.
[0158] 본 개시내용에서 설명된 실시예들에 대한 다양한 수정들은 당업자들에게 자명할 수 있으며, 본원에서 정의된 일반적인 원리들은 본 개시내용의 사상 또는 범위를 벗어나지 않으면서 다른 실시예들에 적용될 수 있다. 다양한 변화들이 설명된 발명에 대해 행해질 수 있으며, 등가물들이 본 발명의 실제 사상 및 범위를 벗어나지 않으면서 대체될 수 있다. 부가적으로, 다수의 수정들은, 특정 상황, 재료, 재료의 조성, 프로세스, 프로세스 동작(들) 또는 단계(들)를 본 발명의 목적(들), 사상 또는 범위에 적응시키도록 행해질 수 있다. 그러한 모든 수정들은, 본 개시내용과 연관된 청구항들의 범위 내에 있는 것으로 의도된다.
[0159] "예시적인"이란 단어는, "예, 경우 또는 예시로서 기능하는" 것을 의미하도록 본원에서 배타적으로 사용된다. "예시적인" 것으로서 본원에서 설명되는 어떠한 실시예도 다른 실시예들에 비해 바람직하거나 또는 유리한 것으로 해석될 필요는 없다. 부가적으로, 당업자는 , "상부" 및 "하부", "위" 및 "아래" 등의 용어들이 때때로 도면들을 설명하는 것을 용이하게 하기 위해 사용되고 그리고 적당하게 배향된 페이지 상에서 도면의 배향에 대응하는 상대적 포지션들을 표시하고, 그리고 이들 구조들이 구현될 때 본원에 설명된 구조들의 적절한 배향을 반영하지 않을 수 있다는 것을 인지할 것이다.
[0160] 별개의 실시예들의 맥락에서 본 명세서에 설명된 소정의 특징들은 또한, 단일 실시예의 결합으로 구현될 수 있다. 대조적으로, 단일 실시예의 맥락에서 설명된 다양한 특징들은 또한, 별개로 다수의 실시예들로 또는 임의의 적절한 서브조합으로 구현될 수 있다. 또한, 특징들이 소정의 결합들에서 동작하는 것으로 위에서 설명되고 심지어 초기에는 그와 같이 청구될 수도 있지만, 청구된 결합으로부터의 하나 이상의 특징들은 일부 경우들에서, 그 결합으로부터 삭제될 수 있으며, 청구된 결합은 서브결합 또는 서브결합의 변동으로 안내될 수 있다.
[0161] 유사하게, 동작들이 특정한 순서로 도면들에 도시될 수 있지만, 원하는 결과들을 달성하기 위해, 그러한 동작들이 도시된 특정한 순서 또는 순차적인 순서로 수행될 필요가 없거나, 모든 예시된 동작들이 수행될 필요가 없다는 것이 이해되어야 한다. 추가로, 도면들은 흐름도의 형태로 하나 이상의 예시적인 프로세스들을 개략적으로 도시할 수 있다. 그러나, 도시되지 않은 다른 동작들이, 개략적으로 예시된 예시적인 프로세스들에 통합될 수 있다. 예컨대, 하나 이상의 부가적인 동작들은, 예시된 동작들 중 임의의 동작 이전, 이후, 그와 동시에, 또는 그 사이에서 수행될 수 있다. 소정의 환경들에서, 멀티태스킹 및 병렬 프로세싱이 유리할 수 있다. 또한, 위에서 설명된 실시예들에서의 다양한 시스템 컴포넌트들의 분리는 모든 실시예들에서 그러한 분리를 요구하는 것으로서 이해되지는 않아야 하며, 설명된 프로그램 컴포넌트들 및 시스템들이 일반적으로, 단일 소프트웨어 제품에 함께 통합되거나 다수의 소프트웨어 제품들에 패키징될 수 있음이 이해되어야 한다. 부가적으로, 다른 실시예들은 다음의 청구항들의 범위 내에 있다. 일부 경우들에서, 청구항들에서 열거된 액션들은, 상이한 순서로 수행될 수 있으며, 그럼에도 불구하고 원하는 결과들을 달성할 수 있다.
[0162] 본 발명은, 본 발명의 디바이스들을 사용하여 수행될 수 있는 방법들을 포함한다. 방법들은, 그러한 적절한 디바이스를 제공하는 동작을 포함할 수 있다. 그러한 제공은 최종 사용자에 의해 수행될 수 있다. 다시 말해서, "제공하는" 동작은 단지, 최종 사용자가 본 방법에서 필수적인 디바이스를 제공하도록 획득, 액세스, 접근, 포지셔닝, 셋-업, 활성화, 파워-업 또는 달리 동작하는 것을 요구한다. 본원에서 인용된 방법들은, 논리적으로 가능한 임의의 순서의 인용된 이벤트들뿐만 아니라 인용된 순서의 이벤트들로 수행될 수 있다.
[0163] 본 발명의 예시적인 양상들은, 재료 선택 및 제조에 대한 세부사항들과 함께 위에서 기술되었다. 본 발명의 다른 세부사항들에 대해, 이들은, 위에서-참조된 특허들 및 공개공보들과 관련하여 인지될 뿐만 아니라 당업자들에 의해 일반적으로 알려지거나 인지될 수 있다. 이들은 공통적으로 또는 논리적으로 이용되는 바와 같은 부가적인 동작들의 관점들에서 본 발명의 방법-기반 양상들에 적용될 수 있다.
[0164] 부가적으로, 본 발명이 다양한 피처들을 선택적으로 포함하는 여러 개의 예들을 참조하여 설명되었지만, 본 발명은, 본 발명의 각각의 변동에 대해 고려된 바와 같이 설명되거나 표시된 것으로 제한되지 않을 것이다. 다양한 변화들이 설명된 발명에 대해 행해질 수 있으며, (본원에서 인용되었는지 또는 일부 간략화를 위해 포함되지 않았는지 여부에 관계없이) 등가물들이 본 발명의 실제 사상 및 범위를 벗어나지 않으면서 대체될 수 있다. 부가적으로, 다양한 값들이 제공되는 경우, 그 범위의 상한과 하한 사이의 모든 각각의 개재 값 및 그 언급된 범위 내의 임의의 다른 언급된 또는 개재 값이 본 발명 내에 포함되는 것으로 해석된다.
[0165] 또한, 설명된 본 발명의 변동들의 임의의 선택적인 피처가 본원에 설명된 피처들 중 임의의 하나 이상에 독립적으로 또는 그에 결합하여 기술되고 청구될 수 있다는 것이 고려된다. 단수 아이템에 대한 참조는, 복수의 동일한 아이템들이 존재하는 가능성을 포함한다. 보다 구체적으로, 본원 및 본원에 연관된 청구항들에서 사용된 바와 같이, 단수 형태들은, 명확하게 달리 언급되지 않으면 복수의 지시 대상들을 포함한다. 다시 말해서, 단수들의 사용은 본 개시내용과 연관된 청구항들뿐 아니라 위의 설명의 청구대상 아이템 중 "적어도 하나"를 허용한다. 이 청구항들이 임의의 선택적인 엘리먼트를 배제하도록 작성될 수 있다는 것에 추가로 주의한다. 따라서, 이런 서술은 청구항 엘리먼트들의 나열과 관련하여 "오로지", "오직" 등 같은 그런 배타적인 용어의 사용, 또는 "부정적" 제한의 사용을 위한 선행 기초로서 역할을 하도록 의도된다.
[0166] 그런 배타적 용어의 사용 없이, 본 개시내용과 연관된 청구항들에서 "포함하는"이라는 용어는, 주어진 수의 엘리먼트들이 그런 청구항들에 열거되는지, 또는 특징의 부가가 그 청구항들에 기술된 엘리먼트의 성질을 변환하는 것으로 간주될 수 있는지 여부에 무관하게 임의의 부가적인 엘리먼트의 포함을 허용할 수 있다. 본원에 구체적으로 정의된 바를 제외하고, 본원에 사용된 모든 기술적 및 과학적 용어들은 청구항 유효성을 유지하면서 가능한 한 일반적으로 이해되는 의미로 넓게 제공되어야 한다.
[0167] 본 발명의 범위는 제공된 예들 및/또는 본원 명세서로 제한되는 것이 아니라, 오히려 본 개시내용과 연관된 청구항 문언의 범위에 의해서만 제한된다.

Claims (110)

  1. 제1 주 표면(major surface), 제2 주 표면 및 두께를 갖는 액정 층을 포함하는 광학 디바이스로서,
    상기 제1 주 표면 및 상기 제2 주 표면은 횡 방향을 가로질러 연장되고, 상기 두께는 상기 제1 주 표면 또는 상기 제2 주 표면의 표면 법선(surface normal)에 평행하는 방향을 따라 연장되고, 상기 액정 층은 상기 액정 층의 두께에 걸쳐 분산된 복수의 서브-층들을 포함하고, 상기 복수의 서브-층들 각각은 액정 분자들의 단일 층을 포함하고, 상기 액정 분자들 각각은 길이방향 축을 갖고,
    각각의 서브-층은:
    복수의 액정 분자들의 길이방향 축들이 제1 패턴을 형성하도록 배열되는 제1 도메인; 및
    복수의 액정 분자들의 길이방향 축들이 제2 패턴을 형성하도록 배열되는 제2 도메인을 포함하고,
    상기 제1 도메인은 약 10nm 내지 약 50nm의 거리(D)를 갖는 도메인 갭만큼 상기 제2 도메인으로부터 상기 횡 방향을 따라 측방향으로 이격되고, 상기 도메인 갭 내의 상기 액정 분자들의 길이방향 축들은 상기 제1 패턴에서 상기 제2 패턴으로 점진적으로 전환되는,
    광학 디바이스.
  2. 제1 항에 있어서,
    상기 서브-층의 제1 도메인의 분자들의 길이방향 축들은 인접한 서브-층의 제1 도메인의 분자들의 길이방향 축들에 대해 트위스트될 수 있는,
    광학 디바이스.
  3. 제1 항에 있어서,
    제2 액정 층을 더 포함하고,
    상기 제2 액정 층의 액정 분자들은 상기 제1 도메인 및 상기 제2 도메인에서 상기 제1 방향 및 상기 제2 방향에 각각 자기-정렬하도록 구성되는,
    광학 디바이스.
  4. 제3 항에 있어서,
    상기 액정 층 또는 상기 제2 액정 층은 중합 가능한 액정 재료(polymerizable liquid crystal material)를 포함하는,
    광학 디바이스.
  5. 제3 항에 있어서,
    상기 제2 액정 층 위에 제3 액정 층을 더 포함하고,
    상기 제3 액정 층의 복수의 액정 분자들은 제3 방향을 따라 배열되는,
    광학 디바이스.
  6. 제5 항에 있어서,
    상기 제3 액정 층 위에 제4 액정 층을 더 포함하고,
    상기 제4 액정 층의 복수의 액정들은 상기 제3 방향에 자기-정렬하도록 구성되는,
    광학 디바이스.
  7. 제3 항 또는 제6 항에 있어서,
    상기 제2 액정 층 및/또는 상기 제4 액정 층은 도파관 위에 배치되는,
    광학 디바이스.
  8. 제7 항에 있어서,
    상기 제2 액정 층 및/또는 상기 제4 액정 층은, 입사 광 빔이 내부 전반사(total internal reflection)에 의해 상기 도파관을 통해 전파되도록, 상기 입사 광 빔을 상기 도파관에 인-커플링하도록 구성된 인-커플링 광학 엘리먼트들을 포함하는,
    광학 디바이스.
  9. 제8 항에 있어서,
    상기 인-커플링 광학 엘리먼트들을 통해 광을 상기 도파관으로 지향시키도록 구성된 광 변조 디바이스를 더 포함하는,
    광학 디바이스.
  10. 제7 항에 있어서,
    상기 제2 액정 층 및/또는 상기 제4 액정 층은 내부 전반사에 의해 상기 도파관을 통해 전파되는 입사 광 빔을 아웃-커플링하도록 구성된 아웃-커플링 광학 엘리먼트들을 포함하는,
    광학 디바이스.
  11. 제7 항에 있어서,
    상기 제2 액정 층 및/또는 상기 제4 액정 층은, 내부 전반사에 의해 상기 도파관을 통해 전파되는 광을 방향전환(redirect)하도록 구성된 직교 동공 확장기들(orthogonal pupil expanders)을 포함하고, 상기 방향전환된 광은 내부 전반사에 의해 상기 도파관을 통해 계속 전파되는,
    광학 디바이스.
  12. 제1 항에 있어서,
    상기 액정 층은, 입사 광 빔이 내부 전반사에 의해 도파관을 통해 전파되도록, 상기 입사 광 빔을 상기 도파관에 인-커플링하도록 구성된 인-커플링 광학 엘리먼트들을 포함하는,
    광학 디바이스.
  13. 제1 항에 있어서,
    상기 액정 층은 내부 전반사에 의해 도파관을 통해 전파되는 광 빔을 아웃-커플링하도록 구성된 아웃-커플링 광학 엘리먼트들을 포함하는,
    광학 디바이스.
  14. 제1 항에 있어서,
    상기 제1 도메인 내의 상기 복수의 액정 분자들의 길이방향 축들은 제1 방향을 따라 정렬되고, 상기 제2 도메인 내의 상기 복수의 액정 분자들의 길이방향 축들은 제2 방향을 따라 정렬되고, 그리고
    상기 도메인 갭 내의 상기 액정 분자들의 길이방향 축들은 상기 제1 방향에서 상기 제2 방향으로 점진적으로 전환되는,
    광학 디바이스.
  15. 광학 디바이스를 제조하기 위한 방법으로서,
    기판 위에 중합 가능한 액정 층을 제공하는 단계;
    상기 중합 가능한 액정 층을 패터닝하는 단계; 및
    상기 패터닝된 중합 가능한 액정 층 상에 액정 층을 증착하는 단계를 포함하고,
    상기 증착된 액정 층의 분자들은 상기 패터닝된 중합 가능한 액정 층에 자기-정렬되고, 그리고
    상기 중합 가능한 액정 층을 패터닝하는 단계는 제1 복수의 피처들(features)을 포함하는 제1 도메인 및 제2 복수의 피처들을 포함하는 제2 도메인을 갖는 임프린트 템플릿(imprint template)에 의해 상기 중합 가능한 액정 층을 임프린트하는 단계를 포함하고, 상기 제1 도메인은 피처들이 전혀 없는 구역만큼 상기 제2 도메인으로부터 이격되고, 상기 피처들이 전혀 없는 구역의 치수는 약 20nm 내지 약 100nm의 값을 갖는,
    광학 디바이스를 제조하기 위한 방법.
  16. 제15 항에 있어서,
    상기 치수는 길이 또는 폭 중 적어도 하나를 포함하는,
    광학 디바이스를 제조하기 위한 방법.
  17. 제15 항에 있어서,
    상기 제1 복수의 피처들의 폭은 약 20nm 이상이고 약 100nm 이하인,
    광학 디바이스를 제조하기 위한 방법.
  18. 제15 항에 있어서,
    상기 제2 복수의 피처들의 폭은 약 20nm 이상이고 약 100nm 이하인,
    광학 디바이스를 제조하기 위한 방법.
  19. 제15 항에 있어서,
    상기 제1 복수의 피처들의 2개의 연속적인 피처들의 중심들 간의 거리는 약 20nm 이상이고 약 100nm 이하인,
    광학 디바이스를 제조하기 위한 방법.
  20. 제15 항에 있어서,
    상기 제1 복수의 피처들의 높이는 약 10nm 이상이고 약 100nm 이하인,
    광학 디바이스를 제조하기 위한 방법.
  21. 제15 항에 있어서,
    상기 제2 복수의 피처들의 2개의 연속적인 피처들의 중심들 간의 거리는 약 20nm 이상이고 약 100nm 이하인,
    광학 디바이스를 제조하기 위한 방법.
  22. 제15 항에 있어서,
    상기 제2 복수의 피처들의 높이는 약 10nm 이상이고 약 100nm 이하인,
    광학 디바이스를 제조하기 위한 방법.
  23. 제15 항에 있어서,
    상기 제1 도메인의 제1 복수의 피처들은 제1 패턴을 형성하도록 배열되고, 상기 제2 도메인의 제2 복수의 피처들은 제2 패턴을 형성하도록 배열되는,
    광학 디바이스를 제조하기 위한 방법.
  24. 제23 항에 있어서,
    상기 제1 패턴은 상기 제2 패턴과 별개인,
    광학 디바이스를 제조하기 위한 방법.
  25. 제15 항에 있어서,
    상기 제1 복수의 피처들은 제1 방향을 따라 배향되고, 상기 제2 도메인의 제2 복수의 피처들은 제2 방향을 따라 배향되는,
    광학 디바이스를 제조하기 위한 방법.
  26. 제25 항에 있어서,
    상기 제1 방향은 상기 제2 방향과 별개인,
    광학 디바이스를 제조하기 위한 방법.
  27. 제15 항에 있어서,
    상기 제1 복수의 피처들은 선형 그루브들, 곡선형 그루브들(curvilinear grooves), 선형 측면들(linear facets) 또는 곡선형 측면들 중 적어도 하나를 포함하는,
    광학 디바이스를 제조하기 위한 방법.
  28. 제15 항에 있어서,
    상기 제2 복수의 피처들은 선형 그루브들, 곡선형 그루브들, 선형 측면들 또는 곡선형 측면들 중 적어도 하나를 포함하는,
    광학 디바이스를 제조하기 위한 방법.
  29. 제15 항에 있어서,
    상기 임프린트 템플릿은 반도체 재료를 포함하는,
    광학 디바이스를 제조하기 위한 방법.
  30. 제15 항에 있어서,
    광학 리소그래피(optical lithography), 나노-임프린트 또는 이온- 및 전자-빔 리소그래피 중 적어도 하나를 사용하여 상기 임프린트 템플릿을 제조하는 단계를 더 포함하는,
    광학 디바이스를 제조하기 위한 방법.
  31. 액정 디바이스를 제조하는 방법으로서,
    기판 상에 액정 재료의 층을 증착하는 단계; 및
    상기 액정 재료의 분자들이 패턴에 자기-정렬하도록, 상기 액정 재료의 층 상에 상기 패턴을 임프린트하기 위해 패턴을 포함하는 임프린트 템플릿을 사용하는 단계를 포함하고,
    상기 패턴은 제1 패턴을 형성하도록 배열된 제1 복수의 피처들을 갖는 제1 도메인 및 제2 패턴을 형성하도록 배열된 제2 복수의 피처들을 갖는 제2 도메인을 포함하고,
    상기 제1 도메인은 피처들이 전혀 없는 구역만큼 상기 제2 도메인으로부터 이격되고, 그리고
    상기 피처들이 전혀 없는 구역의 폭 또는 길이 중 적어도 하나는 약 20nm 내지 약 100nm인,
    액정 디바이스를 제조하는 방법.
  32. 제31 항에 있어서,
    상기 액정 재료의 굴절률(refractive index) 미만의 굴절률을 갖는 재료의 층을 증착하는 단계를 더 포함하는,
    액정 디바이스를 제조하는 방법.
  33. 제32 항에 있어서,
    낮은 굴절률 재료의 층은 평탄화 템플릿(planarization template)을 사용하여 평탄화 층으로서 구성되는,
    액정 디바이스를 제조하는 방법.
  34. 제31 항에 있어서,
    상기 제1 복수의 피처들 또는 상기 제2 복수의 피처들은 표면 릴리프 피처들(surface relief features)을 포함하는,
    액정 디바이스를 제조하는 방법.
  35. 제31 항에 있어서,
    상기 제1 복수의 피처들 또는 상기 제2 복수의 피처들의 길이, 폭 또는 높이 중 적어도 하나는 약 10nm 내지 약 100nm인,
    액정 디바이스를 제조하는 방법.
  36. 제31 항에 있어서,
    상기 제1 도메인 또는 상기 제2 도메인은 PBPE 구조물들을 포함하는,
    액정 디바이스를 제조하는 방법.
  37. 제31 항에 있어서,
    상기 액정 디바이스는 메타표면(metasurface)을 포함하는,
    액정 디바이스를 제조하는 방법.
  38. 제31 항에 있어서,
    상기 액정 디바이스는 메타재료(metamaterial)를 포함하는,
    액정 디바이스를 제조하는 방법.
  39. 제31 항에 있어서,
    상기 제1 도메인 또는 상기 제2 도메인은 격자 어레이(grating array)를 포함하는,
    액정 디바이스를 제조하는 방법.
  40. 제31 항에 있어서,
    상기 제1 도메인 또는 상기 제2 도메인은 곡선형 그루브들 또는 아크들(arcs)을 포함하는,
    액정 디바이스를 제조하는 방법.
  41. 제31 항에 있어서,
    상기 액정 재료의 층을 증착하는 단계는 상기 액정 재료의 층을 제트(jet) 증착하는 단계를 포함하는,
    액정 디바이스를 제조하는 방법.
  42. 제31 항에 있어서,
    상기 액정 재료의 층 위에 부가적인 액정 재료의 층을 증착하는 단계를 더 포함하는,
    액정 디바이스를 제조하는 방법.
  43. 제42 항에 있어서,
    상기 부가적인 액정 재료의 층은 상기 액정 재료의 층의 패턴에 자기-정렬되는,
    액정 디바이스를 제조하는 방법.
  44. 제42 항에 있어서,
    패턴은 상기 부가적인 액정 재료의 층 상에 임프린트되는,
    액정 디바이스를 제조하는 방법.
  45. 제44 항에 있어서,
    상기 부가적인 액정 재료의 층 상에 임프린트된 패턴은 상기 액정 재료의 층 상에 임프린트된 패턴과 상이한,
    액정 디바이스를 제조하는 방법.
  46. 제44 항에 있어서,
    상기 액정 재료의 층 상에 임프린트된 패턴은 제1 파장에 작용하도록 구성되고, 그리고 상기 부가적인 액정 재료의 층 상에 임프린트된 패턴은 제2 파장에 작용하도록 구성되는,
    액정 디바이스를 제조하는 방법.
  47. 액정 디바이스를 제조하는 방법으로서,
    기판 상에 중합 가능한 액정 재료의 층을 증착하는 단계;
    임프린트 템플릿을 사용하여 상기 중합 가능한 액정 재료 상에 패턴을 임프린트하는 단계; 및
    상기 액정 재료의 분자들이 상기 패턴에 자기-정렬되도록, 패터닝된 중합 가능한 액정 재료 상에 액정 재료의 층을 증착하는 단계를 포함하고,
    상기 임프린트 템플릿은 제1 패턴을 형성하도록 배열된 제1 복수의 피처들을 갖는 제1 도메인 및 제2 패턴을 형성하도록 배열된 제2 복수의 피처들을 갖는 제2 도메인을 포함하는 임프린트 패턴을 포함하고,
    상기 제1 도메인은 피처들이 전혀 없는 도메인 갭 구역만큼 상기 제2 도메인으로부터 이격되고, 그리고
    상기 도메인 갭 구역의 폭 또는 길이 중 적어도 하나는 약 20nm 내지 약 100nm인,
    액정 디바이스를 제조하는 방법.
  48. 제47 항에 있어서,
    상기 중합 가능한 액정 재료의 층을 증착하는 단계는 상기 중합 가능한 액정 재료를 제트 증착하는 단계를 포함하는,
    액정 디바이스를 제조하는 방법.
  49. 제47 항에 있어서,
    상기 제1 복수의 피처들 또는 상기 제2 복수의 피처들은 표면 릴리프 피처들을 포함하는,
    액정 디바이스를 제조하는 방법.
  50. 제47 항에 있어서,
    상기 제1 복수의 피처들 또는 상기 제2 복수의 피처들은 약 10nm 내지 약 100nm의 크기를 갖는,
    액정 디바이스를 제조하는 방법.
  51. 제47 항에 있어서,
    상기 제1 도메인 또는 상기 제2 도메인은 PBPE 구조물들을 포함하는,
    액정 디바이스를 제조하는 방법.
  52. 제47 항에 있어서,
    상기 액정 디바이스는 메타표면을 포함하는,
    액정 디바이스를 제조하는 방법.
  53. 제47 항에 있어서,
    상기 액정 디바이스는 메타재료를 포함하는,
    액정 디바이스를 제조하는 방법.
  54. 제47 항에 있어서,
    상기 제1 도메인 또는 상기 제2 도메인은 격자 어레이를 포함하는,
    액정 디바이스를 제조하는 방법.
  55. 제47 항에 있어서,
    상기 제1 복수의 피처들 또는 상기 제2 복수의 피처들은 곡선형 그루브들 또는 아크들을 포함하는,
    액정 디바이스를 제조하는 방법.
  56. 제47 항에 있어서,
    상기 액정 재료의 층을 증착하는 단계는 상기 액정 재료의 층을 제트 증착하는 단계를 포함하는,
    액정 디바이스를 제조하는 방법.
  57. 제47 항에 있어서,
    상기 액정 재료의 층 위에 부가적인 액정 재료의 층을 증착하는 단계를 더 포함하는,
    액정 디바이스를 제조하는 방법.
  58. 제47 항에 있어서,
    상기 부가적인 액정 재료의 층은 상기 액정 재료의 층의 패턴에 자기-정렬되는,
    액정 디바이스를 제조하는 방법.
  59. 제47 항에 있어서,
    패턴이 상기 부가적인 액정 재료의 층 상에 임프린트되는,
    액정 디바이스를 제조하는 방법.
  60. 제59 항에 있어서,
    상기 부가적인 액정 재료의 층 상에 임프린트된 패턴은 상기 액정 재료의 층 상에 임프린트된 패턴과 상이한,
    액정 디바이스를 제조하는 방법.
  61. 제59 항에 있어서,
    상기 액정 재료의 층 상에 임프린트된 패턴은 제1 파장에 작용하도록 구성되고, 그리고 상기 부가적인 액정 재료의 층 상에 임프린트된 패턴은 제2 파장에 작용하도록 구성되는,
    액정 디바이스를 제조하는 방법.
  62. 액정 디바이스를 제조하는 방법으로서,
    기판 상에 층을 증착하는 단계;
    임프린트 패턴을 포함하는 임프린트 템플릿을 사용하여 상기 층 상에 패턴을 임프린트하는 단계; 및
    액정 재료의 분자들이 상기 패턴에 자기-정렬되도록, 패터닝된 층 상에 상기 액정 재료의 층을 증착하는 단계를 포함하고,
    상기 임프린트 패턴은 제1 패턴을 형성하도록 배열된 제1 복수의 피처들을 갖는 제1 도메인 및 제2 패턴을 형성하도록 배열된 제2 복수의 피처들을 갖는 제2 도메인을 포함하고,
    상기 제1 도메인은 피처들이 전혀 없는 도메인 갭 구역만큼 상기 제2 도메인으로부터 이격되고, 그리고
    상기 도메인 갭 구역의 폭 또는 길이 중 적어도 하나는 약 20nm 내지 약 100nm인,
    액정 디바이스를 제조하는 방법.
  63. 제62 항에 있어서,
    상기 층은 중합 가능한 액정 재료를 포함하는,
    액정 디바이스를 제조하는 방법.
  64. 제62 항에 있어서,
    상기 층을 증착하는 단계는 상기 층을 제트 증착하는 단계를 포함하는,
    액정 디바이스를 제조하는 방법.
  65. 제62 항에 있어서,
    상기 제1 복수의 피처들 또는 상기 제2 복수의 피처들은 표면 릴리프 피처들을 포함하는,
    액정 디바이스를 제조하는 방법.
  66. 제62 항에 있어서,
    상기 제1 복수의 피처들 또는 상기 제2 복수의 피처들은 약 10nm 내지 약 100nm의 크기를 갖는,
    액정 디바이스를 제조하는 방법.
  67. 제62 항에 있어서,
    상기 제1 도메인 또는 상기 제2 도메인은 PBPE 구조물들 또는 메타표면을 포함하는,
    액정 디바이스를 제조하는 방법.
  68. 제62 항에 있어서,
    상기 제1 도메인 또는 상기 제2 도메인은 격자 어레이를 포함하는,
    액정 디바이스를 제조하는 방법.
  69. 제62 항에 있어서,
    상기 제1 복수의 피처들 또는 상기 제2 복수의 피처들은 곡선형 그루브들 또는 아크들을 포함하는,
    액정 디바이스를 제조하는 방법.
  70. 제62 항에 있어서,
    상기 액정 재료의 층을 증착하는 단계는 상기 액정 재료의 층을 제트 증착하는 단계를 포함하는,
    액정 디바이스를 제조하는 방법.
  71. 제62 항에 있어서,
    상기 액정 재료의 층 위에 부가적인 액정 재료의 층을 증착하는 단계를 더 포함하는,
    액정 디바이스를 제조하는 방법.
  72. 제71 항에 있어서,
    상기 부가적인 액정 재료의 층은 상기 액정 재료의 층의 패턴에 자기-정렬되는,
    액정 디바이스를 제조하는 방법.
  73. 제71 항에 있어서,
    패턴이 상기 부가적인 액정 재료의 층 상에 임프린트되는,
    액정 디바이스를 제조하는 방법.
  74. 제73 항에 있어서,
    상기 부가적인 액정 재료의 층 상에 임프린트된 패턴은 상기 액정 재료의 층 상에 임프린트된 패턴과 상이한,
    액정 디바이스를 제조하는 방법.
  75. 제73 항에 있어서,
    상기 액정 재료의 층 상에 임프린트된 패턴은 제1 파장에 작용하도록 구성되고, 그리고 상기 부가적인 액정 재료의 층 상에 임프린트된 패턴은 제2 파장에 작용하도록 구성되는,
    액정 디바이스를 제조하는 방법.
  76. 액정 디바이스로서,
    기판; 및
    상기 기판에 인접한 제1 표면 및 상기 제1 표면에 대향하는 제2 표면을 갖는 액정 재료의 층을 포함하고,
    상기 제1 표면 상의 상기 액정 재료의 층의 제1 복수의 분자들은 제1 패턴을 형성하도록 배열되고, 그리고 상기 제2 표면 상의 상기 액정 재료의 층의 제2 복수의 분자들은 제2 패턴을 형성하도록 배열되고, 상기 제1 복수의 분자들은 약 20nm 내지 약 100nm의 거리를 갖는 갭만큼 상기 제2 복수의 분자들로부터 이격되고, 상기 갭 내의 상기 액정 재료의 층의 분자들은 상기 제1 패턴에서 상기 제2 패턴으로 점진적으로 전환되도록 배열되는,
    액정 디바이스.
  77. 제76 항에 있어서,
    상기 액정 재료의 층은 편광 격자(polarization grating)로서 구성되는,
    액정 디바이스.
  78. 제76 항에 있어서,
    디스플레이 시스템의 도파관에 포함되는,
    액정 디바이스.
  79. 제78 항에 있어서,
    멀티플렉싱된 광 스트림으로부터의 적어도 하나의 광 스트림을 상기 도파관에 선택적으로 인-커플링하고, 상기 멀티플렉싱된 광 스트림으로부터의 하나 이상의 다른 광 스트림들을 송신하도록 구성되는,
    액정 디바이스.
  80. 제76 항에 있어서,
    머리 장착 디스플레이의 접안렌즈(eyepiece)에 포함되는,
    액정 디바이스.
  81. 액정 디바이스로서,
    기판;
    상기 기판에 인접한 제1 표면 및 상기 제1 표면에 대향하는 제2 표면을 갖는 재료 ― 상기 재료는:
    상기 제2 표면 상의 제1 패턴; 및
    상기 제2 표면 상의 제2 패턴을 포함하고,
    상기 제1 패턴은 약 20nm 내지 약 100nm의 거리를 갖는 갭만큼 상기 제2 패턴으로부터 이격됨 ― ; 및
    상기 재료의 제2 표면 상의 액정 재료를 포함하는,
    액정 디바이스.
  82. 제81 항에 있어서,
    상기 재료는 중합 가능한 액정 재료를 포함하는,
    액정 디바이스.
  83. 제31 항, 제47 항, 제62 항 또는 제81 항 중 어느 한 항에 있어서,
    머리 장착 디스플레이의 접안렌즈에 포함되는,
    액정 디바이스.
  84. 제83 항에 있어서,
    멀티플렉싱된 광 스트림으로부터의 적어도 하나의 광 스트림을 상기 접안렌즈의 도파관에 선택적으로 인-커플링하고, 상기 멀티플렉싱된 광 스트림으로부터의 하나 이상의 다른 광 스트림들을 송신하도록 구성되는,
    액정 디바이스.
  85. 제1 항 또는 제15 항에 있어서,
    머리 장착 디스플레이의 접안렌즈에 포함되는,
    광학 디바이스.
  86. 제85 항에 있어서,
    멀티플렉싱된 광 스트림으로부터의 적어도 하나의 광 스트림을 상기 접안렌즈의 도파관에 선택적으로 인-커플링하고, 상기 멀티플렉싱된 광 스트림으로부터의 하나 이상의 다른 광 스트림들을 송신하도록 구성되는,
    광학 디바이스.
  87. 액정 렌즈를 제조하기 위한 방법으로서,
    기판 위에 임프린트 층을 제공하는 단계 ― 상기 임프린트 층은 적어도 제1 방향을 따라 배향된 제1 복수의 피처들을 포함하는 제1 존 및 제2 방향을 따라 배향된 제2 복수의 피처들을 포함하는 제2 존을 포함함 ― ; 및
    상기 임프린트 층 상에 액정 층을 증착하는 단계를 포함하고,
    상기 증착된 액정 층의 분자들은 상기 제1 복수의 피처들 및 상기 제2 복수의 피처들에 자기-정렬되는,
    액정 렌즈를 제조하기 위한 방법.
  88. 제87 항에 있어서,
    상기 제1 존 및 상기 제2 존은 약 5nm 이하의 갭만큼 이격되는,
    액정 렌즈를 제조하기 위한 방법.
  89. 제87 항에 있어서,
    상기 제1 복수의 피처들 또는 상기 제2 복수의 피처들은 그루브들을 포함하는,
    액정 렌즈를 제조하기 위한 방법.
  90. 제87 항에 있어서,
    상기 제2 방향은 상기 제1 방향에 대해 약 1도 내지 약 45도의 각도만큼 회전되는,
    액정 렌즈를 제조하기 위한 방법.
  91. 제87 항에 있어서,
    상기 임프린트 층은 반도체 재료를 포함하는,
    액정 렌즈를 제조하기 위한 방법.
  92. 제87 항에 있어서,
    상기 액정 층은 중합 가능한 액정 재료를 포함하는,
    액정 렌즈를 제조하기 위한 방법.
  93. 제91 항에 있어서,
    상기 중합 가능한 액정 재료의 분자들이 상기 제1 복수의 피처들 및 상기 제2 복수의 피처들에 자기-정렬된 후에, 상기 중합 가능한 액정 재료를 중합하는 단계를 더 포함하는,
    액정 렌즈를 제조하기 위한 방법.
  94. 제92 항에 있어서,
    상기 중합 가능한 액정 재료를 중합하는 단계는 상기 중합 가능한 액정 재료를 자외선에 노출시키는 단계를 포함하는,
    액정 렌즈를 제조하기 위한 방법.
  95. 제87 항 내지 제93 항 중 어느 한 항에 있어서,
    상기 렌즈는 회절 렌즈를 포함하는,
    액정 렌즈를 제조하기 위한 방법.
  96. 제87 항 내지 제93 항 중 어느 한 항에 있어서,
    상기 임프린트 층 상에 액정 층을 증착하는 단계는 상기 액정을 제트 증착하는 단계를 포함하는,
    액정 렌즈를 제조하기 위한 방법.
  97. 제87 항에 있어서,
    상기 제1 복수의 피처들 및 상기 제2 복수의 피처들의 길이 또는 폭은 약 100nm 이하인,
    액정 렌즈를 제조하기 위한 방법.
  98. 제87 항에 있어서,
    상기 제1 복수의 피처들 및 상기 제2 복수의 피처들의 높이 또는 깊이는 약 100nm 이하인,
    액정 렌즈를 제조하기 위한 방법.
  99. 액정 렌즈로서,
    적어도 제1 방향을 따라 배향된 제1 복수의 피처들을 포함하는 제1 존 및 제2 방향을 따라 배향된 제2 복수의 피처들을 포함하는 제2 존을 포함하는 패터닝된 기판 ― 상기 제1 복수의 피처들 및 상기 제2 복수의 피처들은 약 100nm 이하의 치수를 가짐 ― ; 및
    상기 패터닝된 기판 위의 액정 층을 포함하고,
    상기 액정 층의 분자들은 상기 제1 복수의 피처들 및 상기 제2 복수의 피처들에 자기-정렬되는,
    액정 렌즈.
  100. 제99 항에 있어서,
    상기 패터닝된 기판은 패터닝된 층이 위에 배치되는 기판을 포함하는,
    액정 렌즈.
  101. 제99 항 또는 제100 항에 있어서,
    적어도 상기 제1 존 및 상기 제2 존은 동심원 링-형상의 존들을 포함하는,
    액정 렌즈.
  102. 제99 항 또는 제101 항에 있어서,
    적어도 5개의 존들을 포함하는,
    액정 렌즈.
  103. 제99 항 또는 제102 항에 있어서,
    상기 존들의 폭은 상기 패터닝된 기판의 중심으로부터의 거리에 따라 점진적으로 감소되는,
    액정 렌즈.
  104. 제99 항 또는 제103 항에 있어서,
    상기 존들은 그 사이에 어떠한 갭도 갖지 않는,
    액정 렌즈.
  105. 제99 항 또는 제103 항에 있어서,
    상기 존들 간의 갭은 1nm 이하인,
    액정 렌즈.
  106. 제99 항 또는 제103 항에 있어서,
    상기 존들 간의 갭은 5nm 이하인,
    액정 렌즈.
  107. 제99 항 내지 제106 항 중 어느 한 항에 있어서,
    상기 치수는 상기 피처의 길이 또는 폭을 포함하는,
    액정 렌즈.
  108. 제99 항 내지 제107 항 중 어느 한 항에 있어서,
    상기 액정은 중합된 액정을 포함하는,
    액정 렌즈.
  109. 제99 항 내지 제108 항 중 어느 한 항에 있어서,
    상기 렌즈는 회절 렌즈를 포함하는,
    액정 렌즈.
  110. 제99 항 내지 제109 항 중 어느 한 항에 있어서,
    광학 파워(optical power)를 제공하도록 구성되는,
    액정 렌즈.
KR1020197016738A 2016-11-18 2017-11-13 나노-스케일 패턴을 갖는 액정 회절 디바이스들 및 이를 제조하는 방법들 KR102591480B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020237035131A KR102716957B1 (ko) 2016-11-18 2017-11-13 나노-스케일 패턴을 갖는 액정 회절 디바이스들 및 이를 제조하는 방법들

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201662424341P 2016-11-18 2016-11-18
US62/424,341 2016-11-18
US15/795,067 2017-10-26
US15/795,067 US11067860B2 (en) 2016-11-18 2017-10-26 Liquid crystal diffractive devices with nano-scale pattern and methods of manufacturing the same
PCT/US2017/061369 WO2018093730A1 (en) 2016-11-18 2017-11-13 Liquid crystal diffractive devices with nano-scale pattern and methods of manufacturing the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020237035131A Division KR102716957B1 (ko) 2016-11-18 2017-11-13 나노-스케일 패턴을 갖는 액정 회절 디바이스들 및 이를 제조하는 방법들

Publications (2)

Publication Number Publication Date
KR20190084099A true KR20190084099A (ko) 2019-07-15
KR102591480B1 KR102591480B1 (ko) 2023-10-18

Family

ID=62146668

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020197016738A KR102591480B1 (ko) 2016-11-18 2017-11-13 나노-스케일 패턴을 갖는 액정 회절 디바이스들 및 이를 제조하는 방법들

Country Status (10)

Country Link
US (3) US11067860B2 (ko)
EP (2) EP3542214B1 (ko)
JP (2) JP7173967B2 (ko)
KR (1) KR102591480B1 (ko)
CN (2) CN110192145B (ko)
AU (1) AU2017362910B2 (ko)
CA (1) CA3044436A1 (ko)
IL (3) IL307438A (ko)
TW (1) TWI769191B (ko)
WO (1) WO2018093730A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022186464A1 (ko) * 2021-03-03 2022-09-09 포항공과대학 자극 반응형 동적 메타-홀로그래픽 소자
US11650372B2 (en) 2020-09-21 2023-05-16 Corning Incorporated Optical coupling device having diffraction gratings for coupling light with a light guide and fabrication method thereof

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102688893B1 (ko) 2014-09-29 2024-07-29 매직 립, 인코포레이티드 상이한 파장의 광을 도파관 밖으로 출력하기 위한 아키텍쳐 및 방법
NZ773812A (en) 2015-03-16 2022-07-29 Magic Leap Inc Methods and systems for diagnosing and treating health ailments
IL295566B2 (en) 2015-06-15 2024-01-01 Magic Leap Inc Display system with optical components for coupling multiple light streams
EP4273615A3 (en) 2016-04-08 2024-01-17 Magic Leap, Inc. Augmented reality systems and methods with variable focus lens elements
KR20240027162A (ko) 2016-05-12 2024-02-29 매직 립, 인코포레이티드 이미징 도파관을 통해 분배된 광 조작
US11067860B2 (en) 2016-11-18 2021-07-20 Magic Leap, Inc. Liquid crystal diffractive devices with nano-scale pattern and methods of manufacturing the same
CN110192146B (zh) 2016-11-18 2022-09-23 奇跃公司 空间可变液晶衍射光栅
WO2018094096A1 (en) 2016-11-18 2018-05-24 Magic Leap, Inc. Multilayer liquid crystal diffractive gratings for redirecting light of wide incident angle ranges
EP3542213A4 (en) 2016-11-18 2020-10-07 Magic Leap, Inc. WAVE GUIDE LIGHT MULTIPLEXER USING CROSSED GRIDS
CN110249256B (zh) 2016-12-08 2023-03-03 奇跃公司 基于胆甾型液晶的衍射装置
EP3555700B1 (en) 2016-12-14 2023-09-13 Magic Leap, Inc. Patterning of liquid crystals using soft-imprint replication of surface alignment patterns
US10371896B2 (en) * 2016-12-22 2019-08-06 Magic Leap, Inc. Color separation in planar waveguides using dichroic filters
CN115586652A (zh) 2017-01-23 2023-01-10 奇跃公司 用于虚拟、增强或混合现实系统的目镜
EP4328865A3 (en) 2017-02-23 2024-06-05 Magic Leap, Inc. Variable-focus virtual image devices based on polarization conversion
AU2018239264B2 (en) 2017-03-21 2023-05-18 Magic Leap, Inc. Eye-imaging apparatus using diffractive optical elements
CN110945415B (zh) * 2017-05-17 2022-09-13 元平台技术有限公司 用于偏振旋转的液晶盒
AU2018338222A1 (en) 2017-09-21 2020-03-19 Magic Leap, Inc. Augmented reality display with waveguide configured to capture images of eye and/or environment
CA3084011C (en) 2017-12-15 2024-06-11 Magic Leap, Inc. Eyepieces for augmented reality display system
JP6975257B2 (ja) 2017-12-28 2021-12-01 富士フイルム株式会社 光学素子および導光素子
US10817052B1 (en) * 2018-01-09 2020-10-27 Facebook Technologies, Llc Eye emulator devices
WO2019194291A1 (ja) * 2018-04-05 2019-10-10 富士フイルム株式会社 光学素子および導光素子
US10877214B2 (en) * 2018-05-04 2020-12-29 Facebook Technologies, Llc Diffraction gratings for beam redirection
JP7336470B2 (ja) 2018-06-15 2023-08-31 マジック リープ, インコーポレイテッド プレチルト角を伴う液晶光学要素を用いた広視野偏光スイッチ
CN112703437A (zh) * 2018-07-24 2021-04-23 奇跃公司 具有减轻反弹引起的光损失的衍射光学元件以及相关的系统和方法
CN116560088A (zh) 2018-09-14 2023-08-08 奇跃公司 用于外部光管理的系统和方法
CN111123535B (zh) * 2018-10-31 2021-06-11 上海微电子装备(集团)股份有限公司 一种光学准直系统
JP2022509083A (ja) 2018-11-20 2022-01-20 マジック リープ, インコーポレイテッド 拡張現実ディスプレイシステムのための接眼レンズ
US11199721B1 (en) * 2018-12-18 2021-12-14 Facebook Technologies, Llc Polarization volume hologram lens
WO2020257469A1 (en) 2019-06-20 2020-12-24 Magic Leap, Inc. Eyepieces for augmented reality display system
CN115104015A (zh) * 2020-02-11 2022-09-23 威尔乌集团 用于高保真表面特征测量的偏振测量相机
US11639559B2 (en) * 2020-02-25 2023-05-02 Meta Platforms Technologies, Llc High refractive index optical device formed based on solid crystal and fabrication method thereof
US20220146889A1 (en) * 2020-11-06 2022-05-12 Japan Display Inc. Liquid crystal optical element
CN112162427B (zh) * 2020-11-10 2021-05-11 中国科学院长春光学精密机械与物理研究所 一种初始态为va态的液晶偏振光栅
EP4256002A1 (en) * 2020-12-03 2023-10-11 The Regents of the University of California Devices comprising a liquid crystal layer and uses thereof
US20220321849A1 (en) * 2021-04-02 2022-10-06 Samsung Electronics Co., Ltd. Display device and electronic device including the same
US11609421B2 (en) 2021-04-12 2023-03-21 Toyota Motor Engineering & Manufacturing North America, Inc. Fluid filled active metasurface
CN117480420A (zh) * 2021-04-16 2024-01-30 奇跃公司 组合光学部件中的纳米图案封装功能、方法和工艺
CN115236901A (zh) * 2021-04-22 2022-10-25 华为技术有限公司 一种用于控制电磁波的装置
EP4329947A1 (en) * 2021-04-30 2024-03-06 Magic Leap, Inc. Imprint lithography process and methods on curved surfaces
US20220357484A1 (en) * 2021-05-10 2022-11-10 Juejun Hu Methods and Systems for Metasurface-Based Nanofabrication
WO2023009838A1 (en) * 2021-07-29 2023-02-02 Meta Platforms Technologies, Llc Sensing with liquid crystal polarization holograms and metasurface
CN114859607A (zh) * 2022-04-25 2022-08-05 北京京东方技术开发有限公司 超透镜及其制作方法和显示装置
GB2620124A (en) * 2022-06-28 2024-01-03 Envisics Ltd Light turning element
US11796819B1 (en) * 2022-06-30 2023-10-24 Meta Platforms, Inc. Liquid crystal based metasurfaces for optical systems, methods, and devices

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002357804A (ja) * 2001-06-01 2002-12-13 Nippon Hoso Kyokai <Nhk> 回折型液晶レンズ及び多焦点回折型液晶レンズ
JP2008090259A (ja) * 2006-03-01 2008-04-17 Citizen Holdings Co Ltd 撮像レンズ装置
JP2014508320A (ja) * 2011-01-27 2014-04-03 ピクセルオプティクス, インコーポレイテッド 液晶配向層を備える可変光学素子
JP2014528597A (ja) * 2011-10-07 2014-10-27 ノース・キャロライナ・ステイト・ユニヴァーシティ 広帯域偏光変換のためのマルチツイストリターダおよび関連製造方法
WO2016054092A1 (en) * 2014-09-29 2016-04-07 Magic Leap, Inc. Architectures and methods for outputting different wavelength light out of waveguides

Family Cites Families (259)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1239371A (en) 1917-07-20 1917-09-04 Henry R Evans Combined reflector and source of light in the same.
US4693544A (en) 1982-12-14 1987-09-15 Nippon Sheet Glass Co., Ltd. Optical branching device with internal waveguide
GB8318863D0 (en) 1983-07-12 1983-08-10 Secr Defence Thermochromic liquid crystal displays
JPS62269174A (ja) 1986-05-18 1987-11-21 Ricoh Co Ltd カラ−複写機における光路分割・色分解光学装置
US4991924A (en) 1989-05-19 1991-02-12 Cornell Research Foundation, Inc. Optical switches using cholesteric or chiral nematic liquid crystals and method of using same
JPH0384516A (ja) 1989-08-29 1991-04-10 Fujitsu Ltd 3次元表示装置
US5082354A (en) 1989-08-29 1992-01-21 Kaiser Aerospace And Electronics Corporation Optical switch and color selection assembly
GB2249387B (en) 1990-10-11 1995-01-25 Holtronic Technologies Ltd Apparatus for and a method of transverse position measurement in proximity lithographic systems
SG50586A1 (en) * 1991-07-26 2000-05-23 Rolic Ag Liquid crystal display cell
DE69221102T2 (de) 1991-12-20 1998-01-08 Fujitsu Ltd Flüssigkristall-Anzeigevorrichtung mit verschiedenen aufgeteilten Orientierungsbereichen
US6222525B1 (en) 1992-03-05 2001-04-24 Brad A. Armstrong Image controllers with sheet connected sensors
US6219015B1 (en) 1992-04-28 2001-04-17 The Board Of Directors Of The Leland Stanford, Junior University Method and apparatus for using an array of grating light valves to produce multicolor optical images
FR2707781B1 (fr) 1993-07-16 1995-09-01 Idmatic Sa Carte souple équipée d'un dispositif de contrôle de validité.
US5544268A (en) 1994-09-09 1996-08-06 Deacon Research Display panel with electrically-controlled waveguide-routing
US6014197A (en) 1995-02-28 2000-01-11 U.S. Philips Corporation Electro-optical device wherein orientation layers have grating structure and comprises birefringent material with refractive indices equal to electro-optic medium
US5825448A (en) 1995-05-19 1998-10-20 Kent State University Reflective optically active diffractive device
EP0756193B1 (de) * 1995-07-28 2016-02-17 Rolic AG Verfahren zur Erzeugung von Kippwinkeln in photoorientierten Polymernetzwerkschichten
US5670988A (en) 1995-09-05 1997-09-23 Interlink Electronics, Inc. Trigger operated electronic device
US5745207A (en) * 1995-11-30 1998-04-28 Matsushita Electric Industrial Co., Ltd. Active matrix liquid crystal display having electric fields parallel to substrates
JP3649818B2 (ja) * 1996-09-19 2005-05-18 富士通ディスプレイテクノロジーズ株式会社 液晶表示装置
US5915051A (en) 1997-01-21 1999-06-22 Massascusetts Institute Of Technology Wavelength-selective optical add/drop switch
US6214439B1 (en) 1997-04-08 2001-04-10 3B S.P.A. Composite laminate, method for decorating panels with the laminate, and panel obtained by the method
KR100262825B1 (ko) 1997-08-13 2000-08-01 구자홍 투사형디스플레이장치
US6181393B1 (en) 1997-12-26 2001-01-30 Kabushiki Kaisha Toshiba Liquid crystal display device and method of manufacturing the same
JP3393072B2 (ja) 1998-08-27 2003-04-07 日本電信電話株式会社 表示装置
US6188462B1 (en) 1998-09-02 2001-02-13 Kent State University Diffraction grating with electrically controlled periodicity
US6785447B2 (en) 1998-10-09 2004-08-31 Fujitsu Limited Single and multilayer waveguides and fabrication process
US6690845B1 (en) 1998-10-09 2004-02-10 Fujitsu Limited Three-dimensional opto-electronic modules with electrical and optical interconnections and methods for making
US6334960B1 (en) 1999-03-11 2002-01-01 Board Of Regents, The University Of Texas System Step and flash imprint lithography
US6723396B1 (en) 1999-08-17 2004-04-20 Western Washington University Liquid crystal imprinting
JP2001091715A (ja) 1999-09-27 2001-04-06 Nippon Mitsubishi Oil Corp 複合回折素子
US6873087B1 (en) 1999-10-29 2005-03-29 Board Of Regents, The University Of Texas System High precision orientation alignment and gap control stages for imprint lithography processes
GB9928126D0 (en) 1999-11-30 2000-01-26 Secr Defence Bistable nematic liquid crystal device
EP1139152A1 (en) * 2000-03-27 2001-10-04 Hewlett-Packard Company, A Delaware Corporation Liquid crystal alignment structure
EP1139150A1 (en) * 2000-03-27 2001-10-04 Hewlett-Packard Company, A Delaware Corporation Liquid crystal alignment structure
US7460200B2 (en) 2000-03-27 2008-12-02 Helwett-Packard Development Company, L.P. Liquid crystal alignment
EP1306715B1 (en) 2000-07-05 2008-05-14 Sony Corporation Image display element, and image display device
IL137625A0 (en) 2000-08-01 2001-10-31 Sensis Ltd Detector for an electrophoresis apparatus
WO2002042999A2 (en) 2000-11-03 2002-05-30 Actuality Systems, Inc. Three-dimensional display systems
US6795138B2 (en) 2001-01-11 2004-09-21 Sipix Imaging, Inc. Transmissive or reflective liquid crystal display and novel process for its manufacture
EP1227347A1 (en) 2001-01-29 2002-07-31 Rolic AG Optical device and method for manufacturing same
US6735224B2 (en) 2001-03-01 2004-05-11 Applied Optoelectronics, Inc. Planar lightwave circuit for conditioning tunable laser output
GB2374081B (en) 2001-04-06 2004-06-09 Central Research Lab Ltd A method of forming a liquid crystal polymer layer
KR100701442B1 (ko) 2001-05-10 2007-03-30 엘지.필립스 엘시디 주식회사 잉크젯 방식 액정 도포방법
JP4122762B2 (ja) 2001-11-28 2008-07-23 ソニー株式会社 偏光選択性ホログラム光学素子及び画像表示装置
US6542671B1 (en) 2001-12-12 2003-04-01 Super Light Wave Corp. Integrated 3-dimensional multi-layer thin-film optical couplers and attenuators
US6998196B2 (en) 2001-12-28 2006-02-14 Wavefront Technology Diffractive optical element and method of manufacture
GB0201132D0 (en) 2002-01-18 2002-03-06 Epigem Ltd Method of making patterned retarder
JP2003232910A (ja) 2002-02-13 2003-08-22 Sony Corp 回折格子素子およびその製造方法、並びにこれを用いた偏光選択装置
JP3768901B2 (ja) 2002-02-28 2006-04-19 松下電器産業株式会社 立体光導波路の製造方法
GB0215153D0 (en) 2002-07-01 2002-08-07 Univ Hull Luminescent compositions
US6900881B2 (en) 2002-07-11 2005-05-31 Molecular Imprints, Inc. Step and repeat imprint lithography systems
US7070405B2 (en) 2002-08-01 2006-07-04 Molecular Imprints, Inc. Alignment systems for imprint lithography
US6982818B2 (en) 2002-10-10 2006-01-03 Nuonics, Inc. Electronically tunable optical filtering modules
AU2003278314A1 (en) 2002-10-17 2004-05-04 Zbd Displays Ltd. Liquid crystal alignment layer
JP3551187B2 (ja) 2002-11-28 2004-08-04 セイコーエプソン株式会社 光学素子及び照明装置並びに投射型表示装置
FI114946B (fi) 2002-12-16 2005-01-31 Nokia Corp Diffraktiivinen hilaelementti diffraktiohyötysuhteen tasapainottamiseksi
JP4194377B2 (ja) 2003-01-15 2008-12-10 株式会社リコー 光機能素子の作製方法
TW556031B (en) 2003-01-17 2003-10-01 Chunghwa Picture Tubes Ltd Non-rubbing liquid crystal alignment method
JP2004247947A (ja) 2003-02-13 2004-09-02 Olympus Corp 光学装置
US7341348B2 (en) 2003-03-25 2008-03-11 Bausch & Lomb Incorporated Moiré aberrometer
EP2030562A3 (en) 2003-06-06 2009-03-25 The General Hospital Corporation Process and apparatus for a wavelength tuning source
US7400447B2 (en) 2003-09-03 2008-07-15 Canon Kabushiki Kaisha Stereoscopic image display device
US7058261B2 (en) 2003-09-04 2006-06-06 Sioptical, Inc. Interfacing multiple wavelength sources to thin optical waveguides utilizing evanescent coupling
US8009358B2 (en) 2003-10-17 2011-08-30 Explay Ltd. Optical system and method for use in projection systems
US7122482B2 (en) 2003-10-27 2006-10-17 Molecular Imprints, Inc. Methods for fabricating patterned features utilizing imprint lithography
KR20060104994A (ko) 2003-11-27 2006-10-09 아사히 가라스 가부시키가이샤 광학적 등방성을 갖는 액정을 사용한 광학 소자
US7385660B2 (en) 2003-12-08 2008-06-10 Sharp Kabushiki Kaisha Liquid crystal display device for transflector having opening in a first electrode for forming a liquid crystal domain and openings at first and second corners of the domain on a second electrode
US7430355B2 (en) 2003-12-08 2008-09-30 University Of Cincinnati Light emissive signage devices based on lightwave coupling
US8076386B2 (en) 2004-02-23 2011-12-13 Molecular Imprints, Inc. Materials for imprint lithography
GB2411735A (en) 2004-03-06 2005-09-07 Sharp Kk Control of liquid crystal alignment in an optical device
US20050232530A1 (en) 2004-04-01 2005-10-20 Jason Kekas Electronically controlled volume phase grating devices, systems and fabrication methods
US7929094B2 (en) 2004-04-22 2011-04-19 Sharp Kabushiki Kaisha Vertically-aligned liquid crystal display device having a rugged structure which is in contact with the liquid crystal layer
US7140861B2 (en) 2004-04-27 2006-11-28 Molecular Imprints, Inc. Compliant hard template for UV imprinting
JP4631308B2 (ja) 2004-04-30 2011-02-16 ソニー株式会社 画像表示装置
JP2005316314A (ja) 2004-04-30 2005-11-10 Casio Comput Co Ltd 撮像装置
JP4792028B2 (ja) 2004-06-03 2011-10-12 モレキュラー・インプリンツ・インコーポレーテッド ナノスケール製造技術における流体の分配およびドロップ・オン・デマンド分配技術
USD514570S1 (en) 2004-06-24 2006-02-07 Microsoft Corporation Region of a fingerprint scanning device with an illuminated ring
EP1784988A1 (en) 2004-08-06 2007-05-16 University of Washington Variable fixation viewing distance scanned light displays
TWI282002B (en) * 2004-10-26 2007-06-01 Au Optronics Corp A multi-domain vertical alignment liquid crystal display device
JP4720424B2 (ja) 2004-12-03 2011-07-13 コニカミノルタホールディングス株式会社 光学デバイスの製造方法
US7206107B2 (en) 2004-12-13 2007-04-17 Nokia Corporation Method and system for beam expansion in a display device
EP1825306B1 (en) 2004-12-13 2012-04-04 Nokia Corporation System and method for beam expansion with near focus in a display device
US7585424B2 (en) 2005-01-18 2009-09-08 Hewlett-Packard Development Company, L.P. Pattern reversal process for self aligned imprint lithography and device
JP2006201388A (ja) 2005-01-19 2006-08-03 Nagaoka Univ Of Technology 光回折液晶素子
JP2006215186A (ja) 2005-02-02 2006-08-17 Ricoh Co Ltd 回折素子とその製造方法および回折素子を用いた偏光選択装置
CN101133348B (zh) 2005-03-01 2010-09-08 荷兰聚合物研究所 介晶膜中的偏振光栅
US8537310B2 (en) 2005-03-01 2013-09-17 North Carolina State University Polarization-independent liquid crystal display devices including multiple polarization grating arrangements and related devices
JP2006252638A (ja) 2005-03-09 2006-09-21 Asahi Glass Co Ltd 偏光回折素子および光ヘッド装置
US7573640B2 (en) 2005-04-04 2009-08-11 Mirage Innovations Ltd. Multi-plane optical apparatus
US20080043334A1 (en) 2006-08-18 2008-02-21 Mirage Innovations Ltd. Diffractive optical relay and method for manufacturing the same
US8696113B2 (en) 2005-10-07 2014-04-15 Percept Technologies Inc. Enhanced optical and perceptual digital eyewear
US11428937B2 (en) 2005-10-07 2022-08-30 Percept Technologies Enhanced optical and perceptual digital eyewear
US20070081123A1 (en) 2005-10-07 2007-04-12 Lewis Scott W Digital eyewear
EP1843198A1 (en) * 2006-03-03 2007-10-10 Université Laval Method and apparatus for spatially modulated electric field generation and electro-optical tuning using liquid crystals
JP2007265581A (ja) 2006-03-30 2007-10-11 Fujinon Sano Kk 回折素子
ITTO20060303A1 (it) 2006-04-26 2007-10-27 Consiglio Nazionale Ricerche Lettera di incarico segue
JP5104755B2 (ja) * 2006-07-05 2012-12-19 株式会社ニコン 光学ローパスフィルタ、カメラ、撮像装置、および光学ローパスフィルタの製造方法
US20080043166A1 (en) 2006-07-28 2008-02-21 Hewlett-Packard Development Company Lp Multi-level layer
EP2095171A4 (en) 2006-12-14 2009-12-30 Nokia Corp DISPLAY DEVICE HAVING TWO OPERATING MODES
US20110002143A1 (en) 2006-12-28 2011-01-06 Nokia Corporation Light guide plate and a method of manufacturing thereof
US8160411B2 (en) 2006-12-28 2012-04-17 Nokia Corporation Device for expanding an exit pupil in two dimensions
CN101222009A (zh) 2007-01-12 2008-07-16 清华大学 发光二极管
US7394841B1 (en) 2007-01-18 2008-07-01 Epicrystals Oy Light emitting device for visual applications
TWI360005B (en) * 2007-02-09 2012-03-11 Chimei Innolux Corp Liquid crystal display panel and manufacturing met
JP4765962B2 (ja) 2007-02-27 2011-09-07 セイコーエプソン株式会社 液晶装置の製造方法
JP5096026B2 (ja) 2007-03-23 2012-12-12 日本放送協会 液晶表示素子の製造方法
US8339566B2 (en) 2007-04-16 2012-12-25 North Carolina State University Low-twist chiral liquid crystal polarization gratings and related fabrication methods
US8305523B2 (en) 2007-04-16 2012-11-06 North Carolina State University Multi-layer achromatic liquid crystal polarization gratings and related fabrication methods
EP2158518B1 (en) 2007-06-14 2015-01-14 Nokia Corporation Displays with integrated backlighting
EP2012173A3 (en) 2007-07-03 2009-12-09 JDS Uniphase Corporation Non-etched flat polarization-selective diffractive optical elements
US20140300695A1 (en) 2007-08-11 2014-10-09 Massachusetts Institute Of Technology Full-Parallax Acousto-Optic/Electro-Optic Holographic Video Display
US8355610B2 (en) 2007-10-18 2013-01-15 Bae Systems Plc Display systems
JP4395802B2 (ja) 2007-11-29 2010-01-13 ソニー株式会社 画像表示装置
US8508848B2 (en) 2007-12-18 2013-08-13 Nokia Corporation Exit pupil expanders with wide field-of-view
WO2009084604A1 (ja) 2007-12-27 2009-07-09 Asahi Glass Co., Ltd. 液晶素子および光ヘッド装置および可変光変調素子
CN101566760B (zh) * 2008-04-23 2010-09-29 清华大学 液晶显示屏
US8757812B2 (en) 2008-05-19 2014-06-24 University of Washington UW TechTransfer—Invention Licensing Scanning laser projection display devices and methods for projecting one or more images onto a surface with a light-scanning optical fiber
EP2163923B1 (en) 2008-09-12 2014-12-17 JDS Uniphase Corporation Optical vortex retarder micro-array
JP5651595B2 (ja) 2008-10-09 2015-01-14 ノース・キャロライナ・ステイト・ユニヴァーシティ 複数の偏光回折格子配置を有する偏光無依存型液晶ディスプレイ装置及び関連装置
JP5198577B2 (ja) * 2008-10-21 2013-05-15 シャープ株式会社 配向膜、配向膜材料および配向膜を有する液晶表示装置ならびにその形成方法
EP2373924B2 (en) 2008-12-12 2022-01-05 BAE Systems PLC Improvements in or relating to waveguides
WO2010070772A1 (ja) 2008-12-19 2010-06-24 株式会社有沢製作所 液晶フィルタ、位相差板及び光学ローパスフィルタ
WO2010095568A1 (ja) 2009-02-20 2010-08-26 凸版印刷株式会社 位相型回折素子、その製造方法、および撮像装置
AU2010238336B2 (en) 2009-04-14 2014-02-06 Bae Systems Plc Optical waveguide and display device
JP2010271565A (ja) 2009-05-22 2010-12-02 Seiko Epson Corp 頭部装着型表示装置
US8178011B2 (en) 2009-07-29 2012-05-15 Empire Technology Development Llc Self-assembled nano-lithographic imprint masks
KR101630322B1 (ko) 2009-08-26 2016-06-14 엘지디스플레이 주식회사 액정 표시 소자의 배향막 제조 방법
JP2011071500A (ja) 2009-08-31 2011-04-07 Fujifilm Corp パターン転写装置及びパターン形成方法
US8233204B1 (en) 2009-09-30 2012-07-31 Rockwell Collins, Inc. Optical displays
US11320571B2 (en) 2012-11-16 2022-05-03 Rockwell Collins, Inc. Transparent waveguide display providing upper and lower fields of view with uniform light extraction
JP5059079B2 (ja) 2009-10-21 2012-10-24 キヤノン株式会社 積層型回折光学素子および光学系
US8467133B2 (en) 2010-02-28 2013-06-18 Osterhout Group, Inc. See-through display with an optical assembly including a wedge-shaped illumination system
US20110213664A1 (en) 2010-02-28 2011-09-01 Osterhout Group, Inc. Local advertising content on an interactive head-mounted eyepiece
US20120249797A1 (en) 2010-02-28 2012-10-04 Osterhout Group, Inc. Head-worn adaptive display
US20120206485A1 (en) 2010-02-28 2012-08-16 Osterhout Group, Inc. Ar glasses with event and sensor triggered user movement control of ar eyepiece facilities
JP5631776B2 (ja) 2010-03-03 2014-11-26 株式会社東芝 照明装置およびこれを備えた液晶表示装置
US9753297B2 (en) 2010-03-04 2017-09-05 Nokia Corporation Optical apparatus and method for expanding an exit pupil
BR112012026329A2 (pt) 2010-04-16 2019-09-24 Flex Lighting Ii Llc sinal compreendendo um guia de luz baseado em película
NL2006747A (en) 2010-07-26 2012-01-30 Asml Netherlands Bv Imprint lithography alignment method and apparatus.
JP2012073522A (ja) 2010-09-29 2012-04-12 Toppan Printing Co Ltd 位相型回折素子、その製造方法、および撮像装置
JP2012073515A (ja) 2010-09-29 2012-04-12 Dainippon Printing Co Ltd 位相差フィルム、偏光子付き位相差フィルム、および液晶表示装置
WO2012062681A1 (de) 2010-11-08 2012-05-18 Seereal Technologies S.A. Anzeigegerät, insbesondere ein head-mounted display, basierend auf zeitlichen und räumlichen multiplexing von hologrammkacheln
US9304319B2 (en) 2010-11-18 2016-04-05 Microsoft Technology Licensing, Llc Automatic focus improvement for augmented reality displays
EP2656135B1 (en) 2010-12-24 2022-05-04 Magic Leap, Inc. Freeform waveguide prism
US10156722B2 (en) 2010-12-24 2018-12-18 Magic Leap, Inc. Methods and systems for displaying stereoscopy with a freeform optical system with addressable focus for virtual and augmented reality
EP3047949A1 (en) 2011-01-14 2016-07-27 JX Nippon Oil & Energy Corporation Diffraction grating, method for producing diffraction grating and method for producing mold
WO2012111558A1 (ja) 2011-02-15 2012-08-23 シャープ株式会社 液晶表示装置
US9046729B2 (en) 2011-03-24 2015-06-02 The Hong Kong University Of Science And Technology Cholesteric liquid crystal structure
JP5837766B2 (ja) 2011-03-25 2015-12-24 株式会社有沢製作所 光回折素子及び光学ローパスフィルタ
JP2012215614A (ja) 2011-03-31 2012-11-08 Toppan Printing Co Ltd 位相型回折素子およびその製造方法並びにそれを用いた撮像装置
CA2835120C (en) 2011-05-06 2019-05-28 Magic Leap, Inc. Massive simultaneous remote digital presence world
US8548290B2 (en) 2011-08-23 2013-10-01 Vuzix Corporation Dynamic apertured waveguide for near-eye display
EP2760363A4 (en) 2011-09-29 2015-06-24 Magic Leap Inc TACTILE GLOVE FOR HUMAN COMPUTER INTERACTION
GB201117480D0 (en) 2011-10-10 2011-11-23 Palikaras George Filter
US8885161B2 (en) 2011-10-12 2014-11-11 Spectroclick, Inc. Energy dispersion device
CA3207408A1 (en) 2011-10-28 2013-06-13 Magic Leap, Inc. System and method for augmented and virtual reality
WO2013066306A1 (en) 2011-10-31 2013-05-10 Hewlett-Packard Development Company, L.P. Luminescent stacked waveguide display
JP6250547B2 (ja) 2011-11-23 2017-12-20 マジック リープ, インコーポレイテッドMagic Leap,Inc. 3次元仮想現実および拡張現実表示システム
US9575366B2 (en) 2011-12-29 2017-02-21 The Hong Kong University Of Science And Technology Fast switchable and high diffraction efficiency grating ferroelectric liquid crystal cell
JP5957972B2 (ja) 2012-03-07 2016-07-27 セイコーエプソン株式会社 虚像表示装置
US8848289B2 (en) 2012-03-15 2014-09-30 Google Inc. Near-to-eye display with diffractive lens
EP2831497A2 (en) 2012-03-29 2015-02-04 École Polytechnique Fédérale de Lausanne (EPFL) Methods and apparatus for imaging with multimode optical fibers
NZ700887A (en) 2012-04-05 2016-11-25 Magic Leap Inc Wide-field of view (fov) imaging devices with active foveation capability
CN106125308B (zh) 2012-04-25 2019-10-25 罗克韦尔柯林斯公司 用于显示图像的装置和方法
CN102683803B (zh) 2012-04-28 2015-04-22 深圳光启高等理工研究院 一种基于超材料卫星天线的商业液晶显示屏
US20130314765A1 (en) 2012-05-25 2013-11-28 The Trustees Of Boston College Metamaterial Devices with Environmentally Responsive Materials
US8989535B2 (en) 2012-06-04 2015-03-24 Microsoft Technology Licensing, Llc Multiple waveguide imaging structure
CN115494654A (zh) 2012-06-11 2022-12-20 奇跃公司 使用波导反射器阵列投射器的多深度平面三维显示器
US9671566B2 (en) 2012-06-11 2017-06-06 Magic Leap, Inc. Planar waveguide apparatus with diffraction element(s) and system employing same
KR102117138B1 (ko) 2012-07-27 2020-06-01 시리얼 테크놀로지즈 에스.에이. 경사 입사각을 위한 편광 격자
US8911080B2 (en) 2012-08-27 2014-12-16 Johnson & Johnson Vision Care, Inc. Usage compliance indicator for contact lenses
US8885997B2 (en) 2012-08-31 2014-11-11 Microsoft Corporation NED polarization system for wavelength pass-through
WO2014037036A1 (en) 2012-09-05 2014-03-13 Seereal Technologies S.A. Controllable diffraction device for a light modulator device
JP2015534108A (ja) 2012-09-11 2015-11-26 マジック リープ, インコーポレイテッド 人間工学的な頭部搭載型ディスプレイデバイスおよび光学システム
US9345402B2 (en) 2012-09-11 2016-05-24 Augmented Vision, Inc. Compact eye imaging and eye tracking apparatus
CN102890366B (zh) * 2012-10-16 2015-12-02 京东方科技集团股份有限公司 半透半反液晶显示面板及其制作方法、液晶显示装置
US9933684B2 (en) 2012-11-16 2018-04-03 Rockwell Collins, Inc. Transparent waveguide display providing upper and lower fields of view having a specific light output aperture configuration
US9671538B2 (en) 2012-11-19 2017-06-06 The Arizona Board Of Regents On Behalf Of The University Of Arizona Optical elements comprising cholesteric liquid crystal polymers
US9664824B2 (en) 2012-12-10 2017-05-30 Bae Systems Plc Display comprising an optical waveguide and switchable diffraction gratings and method of producing the same
KR102507206B1 (ko) 2013-01-15 2023-03-06 매직 립, 인코포레이티드 초고해상도 스캐닝 섬유 디스플레이
US8873149B2 (en) 2013-01-28 2014-10-28 David D. Bohn Projection optical system for coupling image light to a near-eye display
JP6078370B2 (ja) 2013-02-14 2017-02-08 本田技研工業株式会社 鞍乗型車両
US9939682B2 (en) * 2013-02-15 2018-04-10 E-Vision, Llc Liquid crystal alignment layers and method of fabrication
KR102067759B1 (ko) 2013-02-15 2020-01-17 삼성전자주식회사 파이버 스캐닝 프로젝터
KR20230173231A (ko) 2013-03-11 2023-12-26 매직 립, 인코포레이티드 증강 및 가상 현실을 위한 시스템 및 방법
US10386558B2 (en) 2013-03-13 2019-08-20 Imagineoptix Corporation Polarization conversion systems with geometric phase holograms
KR102560629B1 (ko) 2013-03-15 2023-07-26 매직 립, 인코포레이티드 디스플레이 시스템 및 방법
WO2014155288A2 (en) 2013-03-25 2014-10-02 Ecole Polytechnique Federale De Lausanne (Epfl) Method and apparatus for head worn display with multiple exit pupils
US9411210B2 (en) 2013-03-28 2016-08-09 Panasonic Intellectual Property Management Co., Ltd. Image display device
US10150918B2 (en) 2013-04-15 2018-12-11 Kent State University Patterned liquid crystal alignment using ink-jet printed nanoparticles and use thereof to produce patterned, electro-optically addressable devices; ink-jet printable compositions
JP2014224846A (ja) 2013-05-15 2014-12-04 セイコーエプソン株式会社 表示装置
DE102013105246B4 (de) 2013-05-22 2017-03-23 Leonhard Kurz Stiftung & Co. Kg Optisch variables Element
US10262462B2 (en) 2014-04-18 2019-04-16 Magic Leap, Inc. Systems and methods for augmented and virtual reality
US9874749B2 (en) 2013-11-27 2018-01-23 Magic Leap, Inc. Virtual and augmented reality systems and methods
US9664905B2 (en) 2013-06-28 2017-05-30 Microsoft Technology Licensing, Llc Display efficiency optimization by color filtering
US9952042B2 (en) 2013-07-12 2018-04-24 Magic Leap, Inc. Method and system for identifying a user location
KR102089661B1 (ko) 2013-08-27 2020-03-17 삼성전자주식회사 와이어 그리드 편광판 및 이를 구비하는 액정 표시패널 및 액정 표시장치
JP6171740B2 (ja) 2013-09-02 2017-08-02 セイコーエプソン株式会社 光学デバイス及び画像表示装置
AU2014337171B2 (en) 2013-10-16 2018-11-15 Magic Leap, Inc. Virtual or augmented reality headsets having adjustable interpupillary distance
JP6268941B2 (ja) 2013-11-06 2018-01-31 凸版印刷株式会社 偽造防止用デバイスおよびその製造方法
CN103558704B (zh) 2013-11-22 2016-05-11 深圳超多维光电子有限公司 液晶透镜的驱动方法和相应的立体显示装置
US9857591B2 (en) 2014-05-30 2018-01-02 Magic Leap, Inc. Methods and system for creating focal planes in virtual and augmented reality
CN107329259B (zh) 2013-11-27 2019-10-11 奇跃公司 虚拟和增强现实系统与方法
KR102067229B1 (ko) 2013-11-27 2020-02-12 엘지디스플레이 주식회사 액정표시장치 및 그 제조방법
JP6321180B2 (ja) 2013-12-19 2018-05-09 ビ−エイイ− システムズ パブリック リミテッド カンパニ−BAE SYSTEMS plc 導波路における、および、導波路に関連した改良
US9836122B2 (en) 2014-01-21 2017-12-05 Osterhout Group, Inc. Eye glint imaging in see-through computer display systems
CN111552079B (zh) 2014-01-31 2022-04-15 奇跃公司 多焦点显示系统和方法
EP3712680B1 (en) 2014-01-31 2022-07-13 Magic Leap, Inc. Multi-focal display system and method
US10203762B2 (en) 2014-03-11 2019-02-12 Magic Leap, Inc. Methods and systems for creating virtual and augmented reality
US10620700B2 (en) 2014-05-09 2020-04-14 Google Llc Systems and methods for biomechanically-based eye signals for interacting with real and virtual objects
USD759657S1 (en) 2014-05-19 2016-06-21 Microsoft Corporation Connector with illumination region
CN106662754B (zh) 2014-05-30 2021-05-25 奇跃公司 用于采用虚拟或增强现实装置生成虚拟内容显示的方法和系统
USD752529S1 (en) 2014-06-09 2016-03-29 Comcast Cable Communications, Llc Electronic housing with illuminated region
WO2016019123A1 (en) 2014-07-31 2016-02-04 North Carolina State University Bragg liquid crystal polarization gratings
US10746994B2 (en) 2014-08-07 2020-08-18 Microsoft Technology Licensing, Llc Spherical mirror having a decoupled aspheric
KR102213662B1 (ko) 2014-08-22 2021-02-08 삼성전자주식회사 음향광학 소자 어레이
US20160077338A1 (en) 2014-09-16 2016-03-17 Steven John Robbins Compact Projection Light Engine For A Diffractive Waveguide Display
US9494799B2 (en) 2014-09-24 2016-11-15 Microsoft Technology Licensing, Llc Waveguide eye tracking employing switchable diffraction gratings
US20160097930A1 (en) 2014-10-06 2016-04-07 Steven John Robbins Microdisplay optical system having two microlens arrays
WO2016082031A1 (en) 2014-11-24 2016-06-02 Lensvector Inc. Liquid crystal beam control device with improved zone transition and method of manufacture thereof
CN104460115B (zh) 2014-12-31 2017-09-01 苏州大学 一种多视角像素指向型背光模组及裸眼3d显示装置
EP3245551B1 (en) 2015-01-12 2019-09-18 DigiLens Inc. Waveguide light field displays
EP3062142B1 (en) 2015-02-26 2018-10-03 Nokia Technologies OY Apparatus for a near-eye display
NZ773812A (en) 2015-03-16 2022-07-29 Magic Leap Inc Methods and systems for diagnosing and treating health ailments
US10591869B2 (en) 2015-03-24 2020-03-17 Light Field Lab, Inc. Tileable, coplanar, flat-panel 3-D display with tactile and audio interfaces
JP2018509660A (ja) 2015-03-25 2018-04-05 エシロル アンテルナショナル(コンパーニュ ジェネラル ドプテーク) 一体形成されたスペーシング構造体を備え、液晶を含む光学物品の中間層を形成する薄膜配向層
EP3278169B1 (en) 2015-04-02 2022-05-04 University of Rochester Freeform nanostructured surface for virtual and augmented reality near eye display
USD758367S1 (en) 2015-05-14 2016-06-07 Magic Leap, Inc. Virtual reality headset
IL295566B2 (en) 2015-06-15 2024-01-01 Magic Leap Inc Display system with optical components for coupling multiple light streams
KR102390375B1 (ko) * 2015-08-26 2022-04-25 삼성전자주식회사 백라이트 유닛 및 이를 포함한 입체 영상 표시 장치
JP6876683B2 (ja) 2015-09-23 2021-05-26 マジック リープ, インコーポレイテッドMagic Leap,Inc. 軸外イメージャを用いた眼の撮像
WO2017079329A1 (en) 2015-11-04 2017-05-11 Magic Leap, Inc. Dynamic display calibration based on eye-tracking
KR102404944B1 (ko) * 2015-11-06 2022-06-08 삼성디스플레이 주식회사 표시 기판 및 이를 포함하는 액정 표시 장치
DE102015122055B4 (de) 2015-12-17 2018-08-30 Carl Zeiss Ag Optisches System sowie Verfahren zum Übertragen eines Quellbildes
CN108474984B (zh) * 2016-01-21 2021-04-20 夏普株式会社 液晶面板的制造方法、相位差板的制造方法及线栅偏光板
USD805734S1 (en) 2016-03-04 2017-12-26 Nike, Inc. Shirt
USD794288S1 (en) 2016-03-11 2017-08-15 Nike, Inc. Shoe with illuminable sole light sequence
CN105849628A (zh) 2016-03-23 2016-08-10 香港应用科技研究院有限公司 用于全息透视显示器的相位调制器
US20170277003A1 (en) 2016-03-23 2017-09-28 Hong Kong Applied Science and Technology Research Institute Company Limited Phase modulator for holographic see through display
US20170373459A1 (en) 2016-06-27 2017-12-28 University Of Central Florida Research Foundation, Inc. Volume polarization grating, methods of making, and applications
JP2018004950A (ja) 2016-07-01 2018-01-11 フォーブ インコーポレーテッド 映像表示システム、映像表示方法、映像表示プログラム
US10551622B2 (en) 2016-10-26 2020-02-04 Microsoft Technology Licensing, Llc Field of view tiling in waveguide-based near-eye displays
CN106444177B (zh) * 2016-10-28 2019-03-15 京东方科技集团股份有限公司 显示面板及显示装置
CN110192146B (zh) 2016-11-18 2022-09-23 奇跃公司 空间可变液晶衍射光栅
EP3542213A4 (en) 2016-11-18 2020-10-07 Magic Leap, Inc. WAVE GUIDE LIGHT MULTIPLEXER USING CROSSED GRIDS
US11067860B2 (en) 2016-11-18 2021-07-20 Magic Leap, Inc. Liquid crystal diffractive devices with nano-scale pattern and methods of manufacturing the same
WO2018094096A1 (en) 2016-11-18 2018-05-24 Magic Leap, Inc. Multilayer liquid crystal diffractive gratings for redirecting light of wide incident angle ranges
CN110249256B (zh) 2016-12-08 2023-03-03 奇跃公司 基于胆甾型液晶的衍射装置
EP3555700B1 (en) 2016-12-14 2023-09-13 Magic Leap, Inc. Patterning of liquid crystals using soft-imprint replication of surface alignment patterns
US10746999B2 (en) 2016-12-28 2020-08-18 Magic Leap, Inc. Dual depth exit pupil expander
US10545346B2 (en) 2017-01-05 2020-01-28 Digilens Inc. Wearable heads up displays
AU2018212570B2 (en) 2017-01-27 2023-03-16 Magic Leap, Inc. Antireflection coatings for metasurfaces
US11243450B2 (en) 2017-01-30 2022-02-08 The Charles Stark Draper Laboratory, Inc. Saw modulator having optical power component for extended angular redirection of light
EP4328865A3 (en) 2017-02-23 2024-06-05 Magic Leap, Inc. Variable-focus virtual image devices based on polarization conversion
WO2018175488A1 (en) 2017-03-21 2018-09-27 Magic Leap, Inc. Stacked waveguides having different diffraction gratings for combined field of view
AU2018239264B2 (en) 2017-03-21 2023-05-18 Magic Leap, Inc. Eye-imaging apparatus using diffractive optical elements
AU2018338222A1 (en) 2017-09-21 2020-03-19 Magic Leap, Inc. Augmented reality display with waveguide configured to capture images of eye and/or environment
WO2020069026A1 (en) 2018-09-26 2020-04-02 Magic Leap, Inc. Diffractive optical elements with optical power

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002357804A (ja) * 2001-06-01 2002-12-13 Nippon Hoso Kyokai <Nhk> 回折型液晶レンズ及び多焦点回折型液晶レンズ
JP2008090259A (ja) * 2006-03-01 2008-04-17 Citizen Holdings Co Ltd 撮像レンズ装置
JP2014508320A (ja) * 2011-01-27 2014-04-03 ピクセルオプティクス, インコーポレイテッド 液晶配向層を備える可変光学素子
JP2014528597A (ja) * 2011-10-07 2014-10-27 ノース・キャロライナ・ステイト・ユニヴァーシティ 広帯域偏光変換のためのマルチツイストリターダおよび関連製造方法
WO2016054092A1 (en) * 2014-09-29 2016-04-07 Magic Leap, Inc. Architectures and methods for outputting different wavelength light out of waveguides

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11650372B2 (en) 2020-09-21 2023-05-16 Corning Incorporated Optical coupling device having diffraction gratings for coupling light with a light guide and fabrication method thereof
WO2022186464A1 (ko) * 2021-03-03 2022-09-09 포항공과대학 자극 반응형 동적 메타-홀로그래픽 소자

Also Published As

Publication number Publication date
EP4235264A2 (en) 2023-08-30
US11067860B2 (en) 2021-07-20
IL299643A (en) 2023-03-01
TW201833642A (zh) 2018-09-16
TWI769191B (zh) 2022-07-01
IL266670A (en) 2019-07-31
EP3542214A1 (en) 2019-09-25
WO2018093730A1 (en) 2018-05-24
CN110192145A (zh) 2019-08-30
CA3044436A1 (en) 2018-05-24
US20180143470A1 (en) 2018-05-24
KR102591480B1 (ko) 2023-10-18
AU2017362910A1 (en) 2019-06-06
CN110192145B (zh) 2022-06-10
AU2017362910B2 (en) 2022-11-17
IL299643B1 (en) 2023-11-01
EP3542214A4 (en) 2020-07-08
US20230296945A1 (en) 2023-09-21
CN114935862A (zh) 2022-08-23
JP7173967B2 (ja) 2022-11-16
US11693282B2 (en) 2023-07-04
JP2019536100A (ja) 2019-12-12
IL266670B2 (en) 2023-06-01
IL307438A (en) 2023-12-01
IL299643B2 (en) 2024-03-01
EP3542214B1 (en) 2023-06-14
EP4235264A3 (en) 2023-10-25
KR20230147771A (ko) 2023-10-23
US20210341775A1 (en) 2021-11-04
JP7560520B2 (ja) 2024-10-02
JP2022176352A (ja) 2022-11-25

Similar Documents

Publication Publication Date Title
JP7560520B2 (ja) ナノスケールパターンを有する液晶回折デバイスおよびそれを製造するための方法
KR102581320B1 (ko) 넓은 입사 각도 범위들의 광을 방향전환시키기 위한 다중층 액정 회절 격자들
KR102716957B1 (ko) 나노-스케일 패턴을 갖는 액정 회절 디바이스들 및 이를 제조하는 방법들
JP2024149550A (ja) ナノスケールパターンを有する液晶回折デバイスおよびそれを製造するための方法
NZ794153A (en) Liquid crystal diffractive devices with nano-scale pattern and methods of manufacturing the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant