KR20180016423A - 하전 입자 빔 노광 장치 및 디바이스 제조 방법 - Google Patents

하전 입자 빔 노광 장치 및 디바이스 제조 방법 Download PDF

Info

Publication number
KR20180016423A
KR20180016423A KR1020177037120A KR20177037120A KR20180016423A KR 20180016423 A KR20180016423 A KR 20180016423A KR 1020177037120 A KR1020177037120 A KR 1020177037120A KR 20177037120 A KR20177037120 A KR 20177037120A KR 20180016423 A KR20180016423 A KR 20180016423A
Authority
KR
South Korea
Prior art keywords
charged particle
particle beam
electron beam
optical system
target
Prior art date
Application number
KR1020177037120A
Other languages
English (en)
Inventor
유이치 시바자키
Original Assignee
가부시키가이샤 니콘
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가부시키가이샤 니콘 filed Critical 가부시키가이샤 니콘
Publication of KR20180016423A publication Critical patent/KR20180016423A/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/3002Details
    • H01J37/3007Electron or ion-optical systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2051Exposure without an original mask, e.g. using a programmed deflection of a point source, by scanning, by drawing with a light beam, using an addressed light or corpuscular source
    • G03F7/2059Exposure without an original mask, e.g. using a programmed deflection of a point source, by scanning, by drawing with a light beam, using an addressed light or corpuscular source using a scanning corpuscular radiation beam, e.g. an electron beam
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/20Masks or mask blanks for imaging by charged particle beam [CPB] radiation, e.g. by electron beam; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70233Optical aspects of catoptric systems, i.e. comprising only reflective elements, e.g. extreme ultraviolet [EUV] projection systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70383Direct write, i.e. pattern is written directly without the use of a mask by one or multiple beams
    • G03F7/704Scanned exposure beam, e.g. raster-, rotary- and vector scanning
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70775Position control, e.g. interferometers or encoders for determining the stage position
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/7085Detection arrangement, e.g. detectors of apparatus alignment possibly mounted on wafers, exposure dose, photo-cleaning flux, stray light, thermal load
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/305Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating, or etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68764Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a movable susceptor, stage or support, others than those only rotating on their own vertical axis, e.g. susceptors on a rotating caroussel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76886Modifying permanently or temporarily the pattern or the conductivity of conductive members, e.g. formation of alloys, reduction of contact resistances
    • H01L21/76892Modifying permanently or temporarily the pattern or the conductivity of conductive members, e.g. formation of alloys, reduction of contact resistances modifying the pattern
    • H01L21/76894Modifying permanently or temporarily the pattern or the conductivity of conductive members, e.g. formation of alloys, reduction of contact resistances modifying the pattern using a laser, e.g. laser cutting, laser direct writing, laser repair

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Optics & Photonics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Electron Beam Exposure (AREA)

Abstract

전자선 레지스트가 도포된 웨이퍼 (W) 를 전자 빔으로 노광하는 전자 빔 노광 장치 (100) 는, 웨이퍼 (W) 를 유지하여 이동 가능한 스테이지 (22) 와, 전자 빔을 웨이퍼 (W) 에 조사하는 전자 빔 광학계 (32) 와, 전자 빔 광학계의 광축 방향에 관한 웨이퍼 (W) 측에 웨이퍼 (W) 에 소정의 간극을 개재하여 대향하여 배치되고, 전자 빔 광학계 (32) 로부터의 전자 빔이 통과하는 개구가 형성된 개구 부재 (16) 를 구비하고 있다.

Description

하전 입자 빔 노광 장치 및 디바이스 제조 방법{CHARGED PARTICLE BEAM EXPOSURE APPARATUS AND DEVICE MANUFACTURING METHOD}
본 발명은, 하전 입자 빔 노광 장치 및 디바이스 제조 방법에 관한 것으로, 더욱 상세하게는 타깃을 하전 입자 빔으로 노광하는 하전 입자 빔 노광 장치, 및 하전 입자 빔 노광 장치를 사용하는 디바이스 제조 방법에 관한 것이다.
반도체 소자 등의 전자 디바이스 (마이크로 디바이스) 를 제조하기 위한 리소그래피 공정에서 사용되고, 노광 빔으로서 원자외역으로부터 진공 자외역에 걸친 자외광을 사용하는 노광 장치 (이하, 자외광 노광 장치라고 한다) 에 있어서는, 해상도를 높이기 위해서, 노광 파장의 단파장화, 조명 조건의 최적화, 및 투영 광학계의 개구 수를 더욱 증대시키기 위한 액침법의 적용 등이 실시되어 왔다.
최근에는, 자외광 노광 장치의 해상 한계보다 미세한 피치의 회로 패턴을 형성하기 위해서, 자외광 노광 장치의 해상 한계보다 작은 스폿을 전자 빔으로 형성하고, 이 전자 빔의 스폿과 웨이퍼를 상대적으로 주사하는 전자 빔 노광 장치가 제안되어 있다 (예를 들어, 특허문헌 1 참조).
그런데, 종래의 전자 빔 노광 장치에서는, 전자 빔의 조사에 의해, 웨이퍼 등의 타깃이 차지 업되어, 그 표면에 대전된 전하의 영향에 의해, 전자 빔이 악영향을 받는 경우가 있었다.
미국 특허 제7,173,263호 명세서
본 발명의 제 1 양태에 의하면, 타깃을 하전 입자 빔으로 노광하는 하전 입자 빔 노광 장치로서, 상기 타깃을 유지하여 상기 하전 입자 빔에 대해 상대 이동 가능한 스테이지와, 상기 하전 입자 빔을 상기 타깃에 조사하는 하전 입자 빔 광학계와, 상기 하전 입자 빔 광학계의 상기 하전 입자 빔의 사출측이고, 또한 상기 하전 입자 빔의 주위에 배치되어, 상기 하전 입자 빔을 검출하는 하전 입자 검출 장치를 구비하는 하전 입자 빔 노광 장치가 제공된다.
본 발명의 제 2 양태에 의하면, 타깃을 하전 입자 빔으로 노광하는 하전 입자 빔 노광 장치로서, 상기 타깃을 유지하여 이동 가능한 스테이지와, 상기 하전 입자 빔을 상기 타깃에 조사하는 하전 입자 빔 광학계와, 상기 하전 입자 빔 광학계의 상기 하전 입자 빔의 사출측에 배치되어, 상기 하전 입자 빔이 통과하는 개구가 형성된 개구 부재를 구비하는 하전 입자 빔 노광 장치가 제공된다.
본 발명의 제 3 양태에 의하면, 제 1 또는 제 2 양태에 관련된 하전 입자 빔 노광 장치를 사용하여 기판을 노광하는 것과, 노광된 상기 기판을 현상하는 것을 포함하는 디바이스 제조 방법이 제공된다.
도 1 은, 제 1 실시형태에 관련된 전자 빔 노광 장치 (100) 의 구성을 개략적으로 나타내는 도면이다.
도 2 는, 도 1 의 경통의 하단부, 메트롤로지 프레임 및 개구 부재를 일부 파단하여, 스테이지와 함께 확대하여 나타내는 도면이다.
도 3(A) 는, 개구 부재를 경사 상부로부터 본 사시도, 도 3(B) 는, 개구 부재의 평면도이다.
도 4 는, 개구 부재의 도 2 의 원 A 내의 부분을 확대하여 나타내는 도면이다.
도 5 는, 도 4 의 원 B 내의 부분을 확대하여 나타내는 도면이다.
도 6 은, 반사 전자 검출 장치의 배치를 나타내는 도면임과 함께, 얼라인먼트 마크로부터의 반사 전자의 검출의 모습을 나타내는 도면이다.
도 7 은, 전자 빔 노광 장치의 제어계를 구성하는 제어 장치의 입출력 관계를 나타내는 블록도이다.
도 8 은, 개구 (16c) 의 +Y 측에 위치하는 반사면 상의 캘리브레이션 패턴의 위치를 구하는 데 있어서, 반사 전자 검출 장치 (38y1) 를 사용하여 반사 전자 (RE) 를 검출하고 있는 상태를 나타내는 도면이다.
도 9 는, 제 1 실시형태의 변형예에 대해 설명하기 위한 도면이다.
도 10 은, 제 2 실시형태에 관련된 전자 빔 노광 장치의 구성을 설명하기 위한 도면이다.
도 11 은, 제 3 실시형태에 관련된 전자 빔 노광 장치의 구성을 설명하기 위한 도면이다.
《제 1 실시형태》
이하, 제 1 실시형태에 대해, 도 1 ∼ 도 8 에 기초하여 설명한다. 도 1 에는, 제 1 실시형태에 관련된 전자 빔 노광 장치 (100) 의 구성이 개략적으로 나타나 있다. 전자 빔 노광 장치 (100) 는, 후술하는 바와 같이 전자 빔 광학계를 구비하고 있으므로, 이하, 전자 빔 광학계의 광축과 평행하게 Z 축을 취하고, Z 축과 수직인 평면 내에 서로 직교하는 Y 축 및 X 축을 취하여 설명한다.
본 실시형태에서는, 하전 입자 빔의 일례로서, 전자 빔을 사용한 구성에 대해 설명한다. 단, 하전 입자 빔은, 전자 빔에 한정되는 것이 아니고, 이온 빔 등의 하전 입자를 사용한 빔이어도 상관없다.
전자 빔 노광 장치 (100) 는, 진공 챔버 (10) 와, 진공 챔버 (10) 에 의해 구획된 노광실 (12) 의 내부에 수용된 노광 시스템 (20) 을 구비하고 있다.
노광 시스템 (20) 은, 도 1 에 나타내는 바와 같이, 웨이퍼 (W) 를 유지하여 이동 가능한 스테이지 (22) 와, 전자선용 레지스트 (감응제) 가 도포된 웨이퍼 (W) 에 전자 빔을 조사하는 전자 빔 광학계 (32) 를 갖는 전자 빔 조사 장치 (30) 를 구비하고 있다.
스테이지 (22) 는, 리니어 모터 등을 포함하는 스테이지 구동계 (24) (도 1 에서는 도시 생략, 도 7 참조) 에 의해, 도시 생략된 베이스 부재 상에서 X 축 방향 및 Y 축 방향으로 소정 스트로크로 구동됨과 함께, Z 축 방향, X 축 둘레의 회전 방향 (θx 방향), Y 축 둘레의 회전 방향 (θy 방향) 및 Z 축 둘레의 회전 방향 (θz 방향) 으로 미소 구동된다. 리니어 모터 등에서 기인되는 자장 변동의 영향에 의해, 웨이퍼 (W) 에 대한, 전자 빔 조사 장치 (30) 로부터 사출되는 전자 빔의 조사 위치가 이동 (변위) 하는 것을 가능한 한 억제하기 위해서, 리니어 모터에는 자기 실드가 실시되어, 리니어 모터로부터 웨이퍼측에 대한 자속 누설이 효과적으로 억제 내지는 방지되고 있다.
전자 빔 조사 장치 (30) 는, 도 1 에 나타내는 바와 같이, 경통 (34) 을 가지고 있다. 이 경통 (34) 은, 원통상으로 형성된다. 경통 (34) 은, 전자 빔 사출부 (34a) 와, 후술하는 전자총부 및 전자 (電磁) 렌즈를 수용하는 본체부 (34b) 와, 전자 빔 사출부 (34a) 와 본체부 (34b) 사이에 형성되는 단부 (段部) (플랜지부) 를 갖는다. 경통 (34) 은, 원환상의 판 부재로 이루어지는 메트롤로지 프레임 (40) 에 의해 하방으로부터 지지되어 있다. 보다 구체적으로는, 경통 (34) 의 전자 빔 사출부 (34a) 는, 본체부 (34b) 에 비해 직경이 작은 소경부로 형성되어 있고, 그 소경부가, 메트롤로지 프레임 (40) 의 원형의 개구 내에 삽입되어, 단부의 바닥면이 메트롤로지 프레임 (40) 의 상면에 맞닿은 상태에서, 경통 (34) 이, 메트롤로지 프레임 (40) 에 의해 하방으로부터 지지되어 있다.
메트롤로지 프레임 (40) 의 외주부에는, 중심각 120 도의 간격으로, 3 개의 유구조 (柔構造) 의 연결 부재인 매달기 지지 기구 (50a, 50b, 50c) (단, 매달기 지지 기구 (50c) 는, 도 1 에서는, 매달기 지지 기구 (50a) 의 안측에 숨겨져 있다) 의 하단이 각각 접속되어 있고, 이 매달기 지지 기구 (50a, 50b, 50c) 를 개재하여, 노광실 (12) 을 구획하는 진공 챔버 (10) 의 천판 (천정벽) 으로부터 매달기 상태로 지지되어 있다. 즉, 이와 같이 하여, 전자 빔 조사 장치 (30) 는, 진공 챔버 (10) 에 대해 3 점에서 매달기 지지되어 있다.
3 개의 매달기 지지 기구 (50a, 50b, 50c) 는, 도 1 중에서 매달기 지지 기구 (50b) 에 대해 대표적으로 나타내는 바와 같이, 각각의 상단에 형성된 수동형의 방진 패드 (52) 와, 방진 패드 (방진부) (52) 의 하단에 각각의 일단이 접속되고, 타단이 메트롤로지 프레임 (40) 에 접속된 강재로 이루어지는 와이어 (54) 를 갖는다. 방진 패드 (52) 는, 진공 챔버 (10) 의 천판에 고정되어, 각각 에어 댐퍼 또는 코일 스프링을 포함한다.
본 실시형태에서는, 외부로부터 진공 챔버 (10) 에 전달된 바닥 진동 등의 진동 중에서, 전자 빔 광학계 (32) 의 광축 (AX) 과 평행한 Z 축 방향의 진동 성분의 대부분은 방진 패드 (52) 에 의해 흡수되기 때문에, 전자 빔 광학계 (32) 의 광축 (AX) 과 평행한 방향에 있어서 높은 제진 성능이 얻어진다. 또, 매달기 지지 기구 (50a, 50b, 50c) 의 고유 진동 수는, 전자 빔 광학계 (32) 의 광축 (AX) 과 평행한 방향보다 광축 (AX) 에 수직인 방향에서 낮아지고 있다. 3 개의 매달기 지지 기구 (50a, 50b, 50c) 는 광축 (AX) 에 수직인 방향으로는 진자와 같이 진동하기 때문에, 광축 (AX) 에 수직인 방향의 제진 성능 (진공 챔버 (10) 에 외부로부터 전달된 바닥 진동 등의 진동이 전자 빔 조사 장치 (30) 에 전달되는 것을 방지하는 능력) 이 충분히 높아지도록 3 개의 매달기 지지 기구 (50a, 50b, 50c) 의 길이 (와이어 (54) 의 길이) 를 충분히 길게 설정하고 있다. 이 구조에서는 높은 제진 성능이 얻어짐과 함께 기구부의 대폭적인 경량화가 가능하지만, 전자 빔 조사 장치 (30) 와 진공 챔버 (10) 의 상대 위치가 비교적 낮은 주파수로 변화될 우려가 있다. 그래서, 전자 빔 조사 장치 (30) 와 진공 챔버 (10) 의 상대 위치를 소정 상태로 유지하기 위해서, 전자 빔 조사 장치 (30) 와 진공 챔버 (10) 사이에 비접촉 방식의 위치 결정 장치 (14) (도 1 에서는 도시 생략, 도 7 참조) 가 형성되어 있다. 이 위치 결정 장치 (14) 는, 예를 들어 국제 공개 2007/077920 등에 개시되는 바와 같이, 6 축의 가속도 센서와, 6 축의 액추에이터를 포함하여 구성할 수 있다. 위치 결정 장치 (14) 는, 제어 장치 (60) 에 의해 제어된다 (도 7 참조). 이로써, 진공 챔버 (10) 에 대한 전자 빔 조사 장치 (30) 의 X 축 방향, Y 축 방향, Z 축 방향의 상대 위치, 및 X 축, Y 축, Z 축의 둘레의 상대 회전각은, 일정한 상태 (소정 상태) 로 유지된다.
전자 빔 조사 장치 (30) 는, 도 1 에 나타나는 바와 같이, 경통 (34) 내에 적어도 일부가 형성되고, 전자를 발생시켜 가속 전원 (도시 생략) 에 의해 가속되어 전자 빔 (EB) (도 2 참조) 을 형성하는 전자총부 (36) 와, 경통 (34) 내에 소정의 위치 관계로 배치되고, 전자 빔 (EB) 의 스폿의 성형, 웨이퍼 (W) 에 대한 전자 빔 (EB) 의 조사 위치의 조정, 조사량의 조정 등을 실시하기 위한 전자 렌즈나 애퍼처 등의 각종 전극 등으로 구성된 전자 빔 광학계 (32) 등을 포함한다. 전자 렌즈에는, 포커스 코일을 갖는 전자 렌즈 (이하, 편의상, 포커스 렌즈라고 칭한다) 및 편향 코일을 갖는 전자 렌즈 (이하, 편의상, 편향 렌즈라고 칭한다) 등이 포함된다.
도 1 에서는, 전자 빔 광학계 (32) 를 구성하는, 포커스 렌즈 (32a), 편향 렌즈 (32b) 등이 대표적으로 나타나 있다. 도 7 에 나타나내는 바와 같이, 포커스 렌즈 (32a) 는, 포커스 제어부 (64) 를 통해 제어 장치 (60) 에 의해 제어되고, 편향 렌즈 (32b) 는, 전자선 편향 제어부 (66) 를 통해 제어 장치 (60) 에 의해 제어된다.
본 실시형태에서는, 전자 빔 광학계 (32) 는, 개별적으로 온 오프 가능하고, 또한 편향 가능한 n 개 (n 은 예를 들어 500) 의 빔을 조사 가능한 멀티 빔 광학계 로 이루어진다. 멀티 빔 광학계로는, 예를 들어 일본 공개특허공보 2011-258842호, 국제 공개 제2007/017255호 등에 개시되는 광학계와 동일한 구성인 것을 사용할 수 있다. 일례로서, 횡 방향 (X 방향) 으로 일렬로 배열된 500 개의 멀티 빔을 모두 온 상태 (전자 빔이 웨이퍼 (W) 에 조사되는 상태) 로 했을 때, 예를 들어 10 ㎛ × 20 ㎚ 의 노광 영역 (X 방향으로 신장되는 슬릿상의 영역) 내에 등간격으로 설정된 500 점에 전자 빔의 원형 스폿이 동시에 형성된다. 즉, 하나의 노광 영역은, 500 점의 전자 빔으로 형성된다. 또한, 전자 빔의 원형 스폿은, 자외광 노광 장치의 해상 한계보다 작은 직경 (예를 들어 직경 20 ㎚) 으로 형성된다.
본 실시형태에서는, 전자 빔 광학계 (32) 가, 상기 서술한 바와 같이 다수 (n = 500) 의 전자 빔의 스폿을 원형상으로 형성하고, 이 원형 스폿을 노광 영역 내에 배치하고, 이 노광 영역에 대해 웨이퍼 (W) 가 주사되도록 스테이지 (22) 를 소정 방향, 예를 들어 Y 축 방향으로 소정 스트로크로 등속 이동시키면서, 또한 그 다수의 전자 빔의 원형 스폿을 편향시키면서 온/오프함으로써, 웨이퍼 상의 하나의 쇼트 영역의 일부, 즉 폭 10 ㎛ 의 띠형상의 영역이 노광 (주사 노광) 된다. 그리고, 그 주사 노광을, +Y 방향과 -Y 방향으로 교대로 실시하는 교호 스캔 동작과, 교호 스캔에 있어서의 스캔 방향의 변경을 위한 Y 축 방향에 관한 웨이퍼 (W) (스테이지 (22)) 의 감속 및 가속 구간에서, 웨이퍼 (W) (스테이지 (22)) 를 X 축 방향의 일측으로 노광 영역의 X 축 방향의 사이즈와 동일한 거리 이동시키는 스테핑 동작을 반복함으로써, 웨이퍼 상의 쇼트 영역에 패턴이 형성된다.
전자 빔 조사 장치 (30) 는, 후술하는 반사 전자를 검출하는 반사 전자 검출 장치를 구비하고 있다. 전자 빔 조사 장치 (30) 는, 제어 장치 (60) 에 의해 제어된다 (도 7 참조).
제어 장치 (60) 는, 편향 렌즈 (32b) 를 제어하는 것에 의해 전자 빔 (EB) 을 편향시켜 주사할 수 있다. 또한, 편향 렌즈 (32b) 에 의해 전자 빔 (EB) 을 주사할 수 있는 범위는, 편향 렌즈 (32b) 의 편향 성능에 따라 결정할 수 있다. 예를 들어, 전자 빔 (EB) 의 주사 범위는, 적어도 경통 (34) 의 반경보다 작게 설정할 수 있다.
전자 빔 노광 장치 (100) 에서는, Z 축 방향에 관해서 전자 빔 조사 장치 (30) (전자 빔 광학계 (32)) 의 -Z 측에서 또한 스테이지 (22) 에 유지된 웨이퍼 (W) 의 +Z 측, 즉 전자 빔 조사 장치 (30) 의 전자 빔 사출측에 개구 부재 (16) 가 배치되어 있다. 개구 부재 (16) 는, 전자 빔 광학계 (32) 의 광축에 대해 교차하는 면, 예를 들어, XY 평면과 평행하게 배치되어, 메트롤로지 프레임 (40) 에 복수 (적어도 3 개) 의 지지 부재 (42) 를 개재하여 매달린 상태로 지지되어 있다. 개구 부재 (16) 는, 복수의 지지 부재 (42) 에 의해 지지된 상태에서 평면도를 유지할 수 있는 정도의 강도를 가지고 있다.
도 2 에는, 도 1 의 경통 (34) 의 하단부, 메트롤로지 프레임 (40) 및 개구 부재 (16) 가, 일부 파단된 상태에서 스테이지 (22) 와 함께 확대되어 나타나 있다. 또, 도 3(A) 및 도 3(B) 에는, 개구 부재 (16) 의 경사 상부로부터 본 사시도 및 평면도가 각각 나타나 있다. 또, 도 4 에는, 개구 부재 (16) 의 도 2의 원 A 내의 부분이 확대되어 나타나고, 도 5 에는, 도 4 의 원 B 내의 부분이 확대되어 나타나 있다.
개구 부재 (16) 는, 도 3(A) 및 도 3(B) 에 나타내는 바와 같이 거의 정방형의 판 부재로 이루어지고, 그 중심부에 원추상의 오목부 (16a) 가 형성되어 있다. 원추상의 오목부 (16a) 는, 개구 부재 (16) 의 상면 (전자 빔 광학계 (32)) 측으로부터 하면 (웨이퍼 (W)) 측을 향해, 서서히 개구의 크기가 작아지도록 형성되어 있다. 개구 부재 (16) 의 소재로는, 예를 들어 유전체가 사용되고 있다. 또한, 본 실시형태에서는, 개구 부재 (16) 로서, 유전체이고, 또한 저열팽창률의 소재, 예를 들어 제로 팽창 세라믹스 등이 사용되고 있다.
오목부 (16a) 의 중심부에는, 도 5 에 나타내는 바와 같이, 예를 들어 직경 (D) 이 100 ㎛ ∼ 200 ㎛ 정도인 단면 원형의 파낸 오목부 (16b) 가 형성되어 있고, 그 파낸 오목부 (16b) 의 저벽부의 중심에 미소한 사각형 슬릿 (또는 원형) 상의 개구 (16c) 가 형성되어 있다. 개구 (16c) 는, 노광 필드보다 약간 크고, 30 ㎛ 정도의 사이즈이다.
파낸 오목부 (16b) 의 저벽의 상면에는, 금속의 반사막 (18) 이 형성되고, 그 반사막 (18) 의 상면에 반사면 (18a) 이 형성되어 있다. 바꾸어 말하면, 반사면 (18a) 은, 개구 (16c) 의 주위에 형성되어 있다. 또, 저벽의 상면은, 전자 빔 광학계 (32) 에 대향하도록 형성되어 있다. 제 1 방향 (도 5 에서는 Y 축 방향) 에 관한 개구 (16c) 의 양측의 반사면 (18a) 에는, 제 1 방향을 주기 방향으로 하는 라인·앤드·스페이스 패턴으로 이루어지는 캘리브레이션 패턴이 형성되고, 제 2 방향 (제 1 방향과 직교하는 방향이며, 도 5 에서는 X 축 방향) 에 관한 개구 (16c) 의 양측의 반사면 (18a) 에는, 제 2 방향을 주기 방향으로 하는 라인·앤드·스페이스 패턴으로 이루어지는 캘리브레이션 패턴 (CP) (도 5 등에서는, Y 축 방향을 주기 방향으로 하는 Y 용 캘리브레이션 패턴만이 나타나 있다) 이 형성되어 있다. 각 캘리브레이션 패턴 (CP) 은, 라인부와 스페이스부에서 전자 빔의 반사율이 상이하다. 도 5 등에서는, 캘리브레이션 패턴 (CP) 은 설명의 편의상으로부터 그 두께 치수가 실제보다 현격히 두껍게 나타나 있다.
반사막 (18) 및 캘리브레이션 패턴 (CP) 이 형성된 파낸 오목부 (16b) 의 저벽 (반사막 (18) 의 두께를 포함한다) 의 두께 (t) 는, 얇으면 얇을수록 바람직하다. 본 실시형태에서는, 파낸 오목부 (16b) 의 저벽의 두께는, 일례로서 10 ㎛ ∼ 50 ㎛ 정도로 설정되어 있다.
또한, 본 실시형태에서는, 반사면 (18a) 이, XY 평면과 평행한 평면이라고 되어 있지만, 이것에 한정되지 않고, 전자 빔 광학계 (32) 의 광축 상에 중심을 갖는 측면에서 보았을 때 원호상인 곡면, 혹은 이것에 대응하는 경사면이어도 된다. 또, 반사면 (18a) 은, 제 1 방향 (Y 축 방향) 및 제 2 방향 (X 축 방향) 에서 분리되어 형성되어 있어도 된다.
설명의 전후가 바뀌었지만, 경통 (34) 의 내부에는, 도 6 에 나타내는 바와 같이, 전자 빔 광학계 (32) 의 편향 렌즈 (32b) 의 하부 근방에, 복수의 반사 전자 검출 장치 (38) 가 형성되어 있다. 바꾸어 말하면, 복수의 반사 전자 검출 장치 (38) 는, 편향 렌즈 (32b) 의 사출측으로서, 또한 하전 입자 빔의 주위에 배치되어 있다. 또한, 하전 입자 빔의 주위란, 전술한 바와 같이, 편향 렌즈 (32b) 에 의해 전자 빔 (EB) 을 주사할 수 있는 범위이다.
복수의 반사 전자 검출 장치 (38) 의 각각은, 예를 들어 반도체 검출기에 의해 구성되고, 검출한 반사 전자에 대응하는 검출 신호를 신호 처리 장치 (62) (도 7 참조) 에 보낸다. 신호 처리 장치 (62) 는, 복수의 반사 전자 검출 장치 (38) 의 검출 신호를 도시 생략한 앰프에 의해 증폭시킨 후에 신호 처리를 실시하고, 그 처리 결과를 제어 장치 (60) 에 보낸다 (도 7 참조).
복수의 반사 전자 검출 장치 (38) 는, 도 6 에 나타내는 바와 같이, 개구 부재 (16) 의 파낸 오목부 (16b) 의 내부 공간 및 개구 (16c) 를 개재하여 웨이퍼 (W) 상의 얼라인먼트 마크 (AM) 에 전자 빔 (EB) 이 조사되었을 때에 얼라인먼트 마크 (AM) 에서 발생하여, 개구 (16c) 및 파낸 오목부 (16b) 의 내부 공간을 개재하여 경통 (34) 내에 입사되는 반사 전자를 검출 가능한 위치에 각각 형성되어 있다. 웨이퍼 (W) 에 형성된 얼라인먼트 마크 (AM) 는, Y 축 방향 (제 1 방향) 을 주기 방향으로 하는 라인·앤드·스페이스 패턴 및 X 축 방향 (제 2 방향) 을 주기 방향으로 하는 라인·앤드·스페이스 패턴을 포함하는 2 차원 마크로 형성되어 있다. 도 6 에서는, 웨이퍼 (W) 상의 얼라인먼트 마크 (AM) 로부터 YZ 평면 내에서 광축에 대해 경사진 방향으로 발생하는 반사 전자를 검출하는 1 쌍의 반사 전자 검출 장치 (38y1, 38y2) 만이 나타나 있지만, 실제로는, 얼라인먼트 마크 (AM) 로부터 XZ 평면 내에서 광축에 대해 경사진 방향으로 발생하는 반사 전자를 검출하는 1 쌍의 반사 전자 검출 장치 (38x1, 38x2) 도 설치되어 있다 (도 7 참조). 본 실시형태에서는, 반사 전자 검출 장치 (38x1, 38x2, 38y1, 38y2) 는, 후술하는 빔 위치의 캘리브레이션시에도 사용된다.
스테이지 (22) 의 위치 정보는, 인코더 시스템 (28) (도 7 참조) 에 의해 계측되어 있다. 인코더 시스템 (28) 은, 도 2 에 나타내는 바와 같이, 개구 부재 (16) 의 하면 (-Z 측의 면) 의 오목부 (16a) 의 이면측의 부분 이외의 영역에 형성되고, X 축 방향 및 Y 축 방향을 주기 방향으로 하는 반사형 2 차원 격자로 이루어지는 그레이팅 (RG) 과, 그레이팅 (RG) 에 대향하여 스테이지 (22) 의 4 모서리의 부분에 각각 형성된 4 개의 헤드 (26) (이하, 편의상 헤드 (261 ∼ 264) 로 표기한다) 로 이루어진다.
반사형 2 차원 격자로는, 각각의 주기 방향에 대해, 피치가 예를 들어 1 ㎛ 인 반사형의 회절 격자가 사용되고 있다. 또한, 예를 들어 미국 특허출원 공개 제2011/0053061호 명세서 등에 개시되는 바와 같이, 그레이팅 (RG) 으로서, 4 개의 헤드 (26) 가 개별적으로 대향 가능한 4 개의 부분으로 구성된 그레이팅을 사용해도 된다.
스테이지 (22) 의 2 개의 대각선 중, 일방의 대각선 상에 위치하는 2 개의 모서리부의 근방에 X 축 방향 및 Z 축 방향을 계측 방향으로 하는 헤드 (261, 263) 가 형성되고, 타방의 대각선 상에 위치하는 2 개의 모서리부의 근방에 Y 축 방향 및 Z 축 방향을 계측 방향으로 하는 헤드 (262, 264) 가 형성되어 있다. 4 개의 헤드 (261 ∼ 264) 는, 평면에서 보았을 때 동일한 정방형 또는 장방형의 각 정점의 위치에 배치되어 있다. 도 2 에 있어서는, 4 개의 헤드 중 2 개의 헤드 (261, 262) 만이 도시되어 있다.
헤드 (261, 263) 는, 각각 그레이팅 (RG) 에 빔을 조사하여 스테이지 (22) 의 X 축 방향 및 Z 축 방향의 위치 정보를 계측하는 2 축 리니어 인코더 (281, 283) 를 구성한다. 또, 헤드 (262, 264) 는, 각각 그레이팅 (RG) 에 빔을 조사하여 스테이지 (22) 의 Y 축 방향 및 Z 축 방향의 위치 정보를 계측하는 2 축 리니어 인코더 (282, 284) 를 구성한다.
헤드 (261 ∼ 264) 의 각각으로는, 예를 들어 미국 특허 제7,561,280호 명세서에 개시되는 변위 계측 센서 헤드와 동일한 구성의 인코더 헤드를 사용할 수 있다.
상기 서술한 4 개의 2 축 리니어 인코더 (281 ∼ 284), 즉 그레이팅 (RG) 을 각각 사용하여 스테이지 (22) 의 위치 정보를 계측하는 4 개의 헤드 (261 ∼ 264) 에 의해, 인코더 시스템 (28) 이 구성되어 있다. 인코더 시스템 (28) 으로 계측되는 위치 정보는, 제어 장치 (60) 에 공급된다 (도 7 참조).
인코더 시스템 (28) 에서는, 스테이지 (22) 가 웨이퍼 (W) 에 대한 노광 및 얼라인먼트를 실시하는 영역에 있을 때에는, 4 개의 헤드 (261 ∼ 264) 중 적어도 3 개가 그레이팅 (RG) 에 항상 대향하므로, 제어 장치 (60) 는, 인코더 시스템 (28) 으로 계측되는 정보에 기초하여, 6 자유도 방향 (X 축, Y 축, Z 축, θx, θy 및 θz 의 각 방향) 에 관해서 스테이지 (22) (웨이퍼 (W)) 의 위치를 계측 가능하다.
도 7 에는, 전자 빔 노광 장치 (100) 의 제어계를 구성하는 제어 장치 (60) 의 입출력 관계가 블록도로 나타나 있다. 제어 장치 (60) 는, 마이크로 컴퓨터등을 포함하고, 도 7 에 나타나는 각 부를 포함하는 전자 빔 노광 장치 (100) 의 구성 각 부를 통괄적으로 제어한다.
상기 서술한 바와 같이 하여 구성된 전자 빔 노광 장치 (100) 에서는, 제어 장치 (60) 가 소정의 패턴 데이터 및 미리 결정된 각 묘화 파라미터에 따라, 전자 빔 광학계 (32) 로부터 사출되는 전자 빔 (EB) 및 스테이지 (22) 를 제어하여, 웨이퍼 (W) 에 대한 노광 (패턴 묘화) 을 실시한다.
그런데, 반도체 소자 등의 마이크로 디바이스가 완성되기까지는, 복수 층의 패턴을 웨이퍼 상에 중첩하여 형성할 필요가 있어, 하지층의 패턴과 묘화되는 패턴의 중첩은 중요하다.
이 때문에, 본 실시형태에서는, 웨이퍼에 대한 패턴 묘화 (웨이퍼의 노광) 에 앞서, 제어 장치 (60) 에서는, 전자선 편향 제어부 (66) 를 통해 편향 렌즈 (32b) 를 제어함으로써, 웨이퍼 상에 미리 형성되어 있는 2 개 이상의 얼라인먼트 마크 (AM) (도 6 참조) 에 대해 전자 빔 (EB) 을 순차 주사하고, 그 때에 얼라인먼트 마크 (AM) 로부터 발생한 반사 전자를 반사 전자 검출 장치 (38) 에 의해 검출한다. 얼라인먼트 마크 (AM) 에 대한 주사시에는, 전자 빔 (EB) 의 가속 전압은, 노광시 (패턴 묘화시) 와 동일한 가속 전압으로 설정된다.
도 6 에는, 일례로서, 광축과 평행한 광로 (도면 중의 실선의 광로) 를 따라 얼라인먼트 마크 (AM) 에 대해 조사된 전자 빔 (EB) 에 의한 얼라인먼트 마크 (AM) 로부터 반사 전자 검출 장치 (38y1, 38y2) 를 향하는 반사 전자 (RE) 가 나타나 있다. 제어 장치 (60) 는, 전자선 편향 제어부 (66) 로부터 얻어지는 전자선의 편향 정보 (편향 각도, 편향 방향 등의 정보를 포함한다) 와 신호 처리 장치 (62) 로부터 얻어지는 마크의 검출 신호의 처리 결과에 기초하여, 얼라인먼트 마크 (AM) 의 위치를 특정하고, 그 위치와 검출시의 인코더 시스템 (28) 으로부터 얻어지는 스테이지 좌표 정보에 기초하여, 스테이지 좌표계 상에 있어서의 얼라인먼트 마크 (AM) 의 위치를 구한다. 이와 같이 하여 구해진 2 개 이상의 얼라인먼트 마크의 스테이지 좌표계 상에 있어서의 위치에 기초하여, 웨이퍼 상의 쇼트 영역을 노광 위치 (전자 빔의 기준 상태에 있어서의 조사 위치, 즉 전자 빔 (EB) 이 광축 (AX) 상의 도 6 중의 실선의 광로를 따라 조사되었을 때의 전자 빔 (EB) 의 웨이퍼 (W) 상의 조사 위치) 에 위치시키기 위한 목표 위치 정보를 구할 수 있다. 그리고, 제어 장치 (60) 는, 웨이퍼의 노광시 (웨이퍼에 대한 패턴의 묘화시) 에, 그 취득한 목표 위치 정보에 기초하여, 웨이퍼 (스테이지 (22)) 를 이동시키면서 패턴을 묘화한다. 이와 같이 얼라인먼트 마크 (AM) 를 기준으로 함으로써, 항상, 패턴을 원하는 위치에 묘화할 수 있고, 이미 웨이퍼 (W) 에 형성된 패턴에 대해, 새롭게 묘화하는 패턴이 양호하게 중첩된다.
그런데, 전자 빔 노광 장치 (100) 의 사용 중, 예를 들어, 전자 빔 광학계 (32) 를 수용하는 경통 (34) 의 열팽창 등에서 기인하여, 전자 빔 (EB) 의 위치가 기준 상태, 예를 들어 전자 빔 (EB) 의 광로가 전자 빔 광학계 (32) 의 광축 (AX) 에 일치하는 상태로부터 드리프트하면, 상기 서술한 바와 같이 얼라인먼트 마크 (AM) 를 기준으로 하여, 전자 빔 (EB) 에 의한 웨이퍼에 대한 노광 (패턴의 묘화) 을 실시해도, 그 드리프트에서 기인하여 패턴을 원하는 위치에 묘화할 수 없게 된다. 또, 전자 빔 (EB) 의 포커스의 드리프트도 노광 불량의 원인이 된다.
그래서, 본 실시형태에서는, 제어 장치 (60) 는, 노광 개시 전의 얼라인먼트 계측시에, 얼라인먼트 마크 (AM) 의 마크 위치 정보의 계측에 앞서, 전자 빔 (EB) 의 드리프트 (위치 및 포커스) 의 캘리브레이션을 위한 초기 설정을 실시한다.
제어 장치 (60) 는, 웨이퍼 (W) 의 Z 축 방향의 위치를 노광시와 동일 위치로 설정하고, 포커스 제어부 (64) 를 통해 전술한 포커스 렌즈 (32a) 가 갖는 포커스 코일의 전류를 변화시켜 초점 위치를 변화시키면서, 얼라인먼트 마크 (AM) 를 주사하고, 반사 전자 (RE) 를 검출한 반사 전자 검출 장치 (38) (38x1, 38x2, 38y1, 38y2 중 소정의 1 개) 의 검출 신호의 변화로부터, 변화가 가장 첨예할 때를 최적인 초점 위치로서 구하고, 그 최적인 초점 위치에 대응하는 전류를 이후 포커스 코일에 공급한다.
이어서, 제어 장치 (60) 는, 반사면 (18a) 상의 4 개의 캘리브레이션 패턴 (CP) 에 대해 전자 빔 (EB) 을 편향시켜 주사하고, 각각의 캘리브레이션 패턴 (CP) 으로부터의 반사 전자를 반사 전자 검출 장치 (38x1, 38x2, 38y1, 38y2) 를 사용하여 검출하여, 전자선 편향 제어부 (66) 로부터 얻어지는 전자 빔 (EB) 의 편향 정보와 신호 처리 장치 (62) 로부터 얻어지는 캘리브레이션 패턴 (CP) 의 검출 신호의 처리 결과의 정보에 기초하여, 기준 상태에 있어서의 전자 빔 (EB) 의 위치를 기준으로 하는 캘리브레이션 패턴 (CP) 의 위치 (이하, 캘리브레이션 패턴 (CP) 의 위치 정보라고 칭한다), 즉 전자 빔 (EB) 을 기준 상태로부터 X 방향 및 Y 방향으로 각각 몇 도 혹은 어느 방향으로 편향되면 각각의 캘리브레이션 패턴 (CP) 의 중심 위치에 전자 빔 (EB) 이 조사되게 되는지의 정보를 구해 둔다. 도 8 에는, 일례로서, 개구 (16c) 의 +Y 측에 위치하는 반사면 상의 캘리브레이션 패턴 (CP) 의 위치 정보를 구하는 데 있어서, 반사 전자 검출 장치 (38y1) 를 사용하여 반사 전자 (RE) 를 검출하고 있는 상태가 나타나 있다. 여기서, 상기 서술한 캘리브레이션 패턴 (CP) 의 위치 정보의 정의로부터 분명한 바와 같이, 이후에 캘리브레이션 패턴의 위치 정보가 이 초기 설정시에 있어서의 위치 정보로부터 변화한 경우에는, 그 변화량에 따라 전자 빔의 위치가 드리프트되어 있는 것을 의미한다. 드리프트에는, 편향 각도의 어긋남, 편향 방향의 어긋남, 광축 (AX) 에 대한 어긋남 등이 포함된다. 또, 제어 장치 (60) 는, 드리프트를 검출하는 검출 장치로서 기능한다.
이 때, 제어 장치 (60) 는, 캘리브레이션 패턴 (CP) 으로부터의 반사 전자를 검출한 소정의 1 개의 반사 전자 검출기, 예를 들어 반사 전자 검출 장치 (38y1) 의 검출 신호의 변화 상태를 내부 메모리에 기억한다. 이것은, 이후에, 이 검출 신호의 변화 상태를 기준으로 하여, 전자 빔 (EB) 의 포커스의 드리프트를 검출하기 위해서이다. 또한, 모든 반사 전자 검출 장치에서, 검출 신호의 변화 상태를 내부 메모리에 기억시켜 두어도 된다.
이로써, 전자 빔 (EB) 의 드리프트 (위치 및 포커스) 의 캘리브레이션을 위한 초기 설정이 종료된다.
이 후, 전술한 얼라인먼트 마크 (AM) 의 마크 위치 정보의 계측 (얼라인먼트 계측) 을 실시한다.
그리고, 제어 장치 (60) 는, 이 얼라인먼트 계측의 결과에 기초하여, 전술한 바와 같이, 웨이퍼 상의 쇼트 영역을 노광 위치에 위치시키기 위한 목표 위치 정보를 구하고, 웨이퍼의 노광시 (웨이퍼에 대한 패턴의 묘화시) 에, 그 취득한 목표 위치 정보에 기초하여, 웨이퍼 (스테이지 (22)) 를 이동시키면서 패턴을 묘화한다. 이 웨이퍼의 노광 (패턴의 묘화) 은, 전술한 바와 같이, 웨이퍼의 주사 노광을,+Y 방향과 -Y 방향을 교대로 주사 방향으로 하여 실시하는 교호 스캔 동작과, +Y 방향의 주사 (플러스 스캔) 와 -Y 방향의 주사 (마이너스 스캔) 사이의 Y 축 방향에 관한 웨이퍼의 감속 및 가속 중에, 웨이퍼를 X 축 방향의 일측으로 노광 영역의 X 축 방향의 폭만큼 이동시키는 동작 (스테핑 동작) 을 반복함으로써, 실시된다.
그런데, 전자 빔 노광 장치 (100) 의 노광 영역의 비주사 방향 (X 축 방향) 의 사이즈는, 예를 들어, 50 ㎛ 정도이기 때문에, 1 장의 웨이퍼 혹은 1 개의 노광 영역을 노광하기 위해서는, 교호 스캔 동작을 몇 번이나 반복할 필요가 있어, 자외선 노광 장치 등과 비교하여 현격히 시간이 걸린다. 이 때문에, 1 장의 웨이퍼의 노광 중에도, 전자 빔 (EB) 의 드리프트 (위치, 포커스) 의 캘리브레이션을 실시할 필요가 있다.
그래서, 전자 빔 노광 장치 (100) 에서는, 제어 장치 (60) 가, 전술한 스테핑 동작이 실시될 때마다, 그 스테핑 동작 중에, 전술한 캘리브레이션을 위한 초기 설정시와 마찬가지로, 반사면 (18a) 상의 4 개의 캘리브레이션 패턴 (CP) 에 대해 전자 빔 (EB) 을 편향시켜 주사하고, 각각 발생한 반사 전자 (RE) 를 반사 전자 검출 장치 (38x1, 38x2, 38y1, 38y2) 를 사용하여 검출한다. 그리고, 제어 장치 (60) 는, 전자선 편향 제어부 (66) 로부터 얻어지는 전자선의 편향 정보와 신호 처리부로부터 얻어지는 캘리브레이션 패턴 (CP) 의 검출 신호의 처리 결과의 정보에 기초하여 캘리브레이션 패턴 (CP) 의 위치 정보를 구하여, 그 정보를 메모리에 축적한다.
그리고, 제어 장치 (60) 는, N 회 (N 은 자연수, 예를 들어 10 회) 분의 캘리브레이션 패턴 (CP) 의 위치 정보에 기초하여, 미리 정해진 순서에 따라 캘리브레이션 패턴 (CP) 의 위치를 산출한다. 예를 들어, 10 회 중, 초기 설정시로부터의 변화가 최대와 최소의 위치를 제외한 나머지의 위치 정보의 평균, 초기 설정시로부터의 변화가 최대의 위치 정보, 혹은 10 회분의 평균을, 캘리브레이션 패턴 (CP) 의 위치로서 구한다. 그리고, 제어 장치는, 그 산출한 위치와 상기 서술한 초기 설정시에 있어서의 캘리브레이션 패턴 (CP) 의 위치 정보를 비교함으로써 전자 빔 (EB) 의 위치의 드리프트량을 구한다. 또한, 제어 장치 (60) 는, 10 회분의 평균 대신에, 10 회보다 적은 횟수의 이동 평균을 구해도 된다.
그리고, 제어 장치 (60) 는, 전자 빔 (EB) 의 위치의 드리프트량을 구할 때마다 그 드리프트를 캘리브레이션하거나, 혹은 드리프트량이 임계값을 초과하는 경우만 그 드리프트를 캘리브레이션한다.
또, 제어 장치 (60) 는, N 회에 1 회의 비율로, 소정의 캘리브레이션 패턴 (CP) 으로부터의 반사 전자 (RE) 의 검출 신호의 변화 상태를 취득하여, 취득한 변화 상태를 초기 설정시에 메모리에 기억시킨 대응하는 검출 신호의 변화 상태와 비교하여, 전자 빔의 포커스의 드리프트량을 검출한다. 그리고, 제어 장치 (60) 는, 전자 빔 (EB) 의 포커스의 드리프트량을 구할 때마다 포커스 코일에 공급하는 전류를 조정하여 그 드리프트를 캘리브레이션하거나, 혹은 드리프트량이 임계값을 초과하는 경우만 그 드리프트를 캘리브레이션한다.
이상 설명한 바와 같이, 본 실시형태에 관련된 전자 빔 노광 장치 (100) 에 의하면, 전자 빔 광학계 (32) 의 광축 (AX) 방향 (Z 축 방향) 에 관한 웨이퍼 (W) 측에 웨이퍼 (W) 에 소정의 간극을 개재하여 대향하여 배치되고, 전자 빔 광학계 (32) 로부터의 전자 빔 (EB) 이 통과하는 개구 (16c) 가 형성된 판상의 개구 부재 (16) 를 구비하고 있는 점에서, 개구 부재 (16) 를 구비하고 있지 않은 경우와 비교하여, 전자 빔 (EB) 의 조사에 의해 웨이퍼 (W) 에 대전된 전하가 전자 빔 (EB) 의 조사 위치에 미치는 악영향을 억제할 수 있다. 또, 특히 본 실시형태에서는 개구 부재 (16) 가 유전체 (제로 팽창 세라믹스) 에 의해 형성되어 있으므로, 전자 빔 (EB) 의 조사에 의해 웨이퍼 (W) 에 대전된 전하가 전자 빔 (EB) 의 조사 위치에 미치는 악영향을 보다 효과적으로 억제할 수 있다.
또, 도 6 으로부터도 분명한 바와 같이, 웨이퍼 (W) 상의 얼라인먼트 마크 (AM) 로부터의 반사 전자를 반사 전자 검출 장치 (38) 로 검출할 때, 개구 부재 (16) 의 개구 (16c) 를 통과 가능한 취출 각도가 높은 반사 전자 (RE) 만을 검출하고, 저에너지의 반사 전자, 혹은 노광실 (12) 내의 스테이지 (22) 의 근방에 산란된 반사 전자를 검출하는 경우가 없어지므로, 결과적으로 반사 전자의 검출에 있어서의 S/N 비를 향상시킬 수 있다.
또, 본 실시형태에 관련된 전자 빔 노광 장치 (100) 에서는, 개구 부재 (16) 의 파낸 오목부의 내부 바닥면에 형성된 반사면 (18a) 상의 캘리브레이션 패턴 (CP) 에 대해 전자 빔 (EB) 을 편향시켜 주사하고, 캘리브레이션 패턴 (CP) 에서 발생하는 반사 전자 (RE) 를 반사 전자 검출 장치 (38) 로 검출함으로써, 전자 빔 (EB) 의 위치의 드리프트를 검출한다. 이 때문에, 웨이퍼 상의 얼라인먼트 마크 등을 사용하지 않고, 전자 빔 (EB) 의 위치의 드리프트를 검출하는 것이 가능해진다. 또, 전자 빔 노광 장치 (100) 에서는, 제어 장치 (60) 가, 웨이퍼의 노광 동작에 있어서의 플러스 스캔과 마이너스 스캔 사이의 스테핑 동작 중 (주사 방향에 관한 감속 및 가속 기간 중) 에 전자 빔 (EB) 의 위치의 드리프트를 검출한다. 이 때문에, 스루풋을 저하시키지 않고, 전자 빔 (EB) 의 위치의 드리프트를 검출하여, 그 드리프트의 캘리브레이션을 실시하는 것이 가능하다.
또, 전자 빔 노광 장치 (100) 에서는, 전자 빔 (EB) 의 위치의 드리프트의 검출과 함께, 전자 빔 (EB) 의 위치의 드리프트의 검출을 위해서 취득한 캘리브레이션 패턴으로부터의 반사 전자의 검출 신호의 변화에 기초하여 전자 빔의 포커스의 드리프트량을 검출하고, 필요에 따라, 전자 빔 (EB) 의 포커스의 드리프트의 캘리브레이션을 실시하는 것이 가능하다.
또한, 본 실시형태에서는, 전자 빔 (EB) 의 드리프트 (위치 및 포커스) 의 캘리브레이션을 위한 초기 설정에 있어서, 웨이퍼 (W) 상에 형성된 얼라인먼트 마크를 전자 빔으로 주사하는 경우에 대해 설명했지만, 이것에 한정되지 않고, 스테이지 (22) 상에 형성된 기준 마크를 전자 빔으로 주사하는 것으로 해도 된다. 이러한 경우에는, 웨이퍼 (W) 상에 도포된 전자선 레지스트의 영향, 및 얼라인먼트 마크의 형상 불량의 영향 등을 받을 우려가 없어진다. 이 경우에는, 얼라인먼트 마크와 기준 마크의 위치 관계를 계측하기 위한 계측 장치, 예를 들어 현미경 등이 필요하게 된다.
《변형예》
다음으로, 제 1 실시형태에 관련된 전자 빔 노광 장치의 변형예에 대해 설명한다. 본 변형예에 관련된 전자 빔 노광 장치는, 도 9 에 나타내는 바와 같이, 개구 부재 (16) 의 반사면 (18a) 상에 캘리브레이션 패턴이 형성되어 있지 않은 점이, 전술한 제 1 실시형태와 상이하지만, 그 밖의 부분의 구성은, 전술한 제 1 실시형태와 동일하다.
본 변형예에 관련된 전자 빔 노광 장치에서는, 도 9 에 나타내는 바와 같이, 제어 장치 (60) 가, 전자선 편향 제어부 (66) 를 통해 전자 빔 (EB) 을 개구와의 경계 부분 (반사면 (18a) 의 에지) 을 포함하는 범위에서 반사면 (18a) 에 대해 주사한다. 이로써, 제어 장치 (60) 는, 전술한 캘리브레이션 패턴 (CP) 의 위치 정보의 검출과 마찬가지로, 반사면 (18a) 으로부터의 반사 전자를 반사 전자 검출 장치 (38x1, 38x2, 38y1, 38y2) 를 사용하여 검출하고, 전자선 편향 제어부 (66) 로부터 얻어지는 전자 빔 (EB) 의 편향 정보와 신호 처리 장치 (62) 로부터 얻어지는 반사면 (18a) 의 검출 신호의 처리 결과의 정보에 기초하여, 전자 빔 (EB) 의 위치를 기준으로 하는 반사면 (18a) 의 에지의 위치를 검출할 수 있다.
따라서, 본 변형예에서는, 반사면 (18a) 의 에지의 위치를 상기 실시형태에 있어서의 캘리브레이션 패턴 (CP) 의 위치와 동일하게 취급함으로써, 상기 실시형태와 동일한 수법에 의해 전자 빔 (EB) 의 위치의 드리프트의 검출 및 그 캘리브레이션을 실시하는 것이 가능해진다. 본 변형예에서는, 초기 설정 및 스테핑 동작 중의 어느 것에 있어서도, 도 9 에 나타내는 바와 같이, 제어 장치 (60) 에 의해, 전자선 편향 제어부 (66) 를 통해 전자 빔 (EB) 이 반사면 (18a) 의 에지를 포함하는 범위에서 반사면 (18a) 에 대해 주사된다.
또, 반사면 (18a) 에 대해 전자 빔 (EB) 을 주사함으로써, 에지를 포함하는 반사면 (18a) 으로부터의 반사 전자의 검출 신호가 얻어지므로, 이 검출 신호의 변화에 기초하여 전자 빔의 포커스의 드리프트량을 검출하고, 필요에 따라, 전자 빔 (EB) 의 포커스의 드리프트의 캘리브레이션을 실시하는 것이 가능해진다.
또한, 상기 제 1 실시형태 및 변형예에서는, 개구 부재 (16) 의 파낸 오목부 (16b) 의 저벽의 상면에 반사면 (18a) 이 형성되어 있는 것으로 했지만, 반사면을 형성하지 않고, 오목부 (16b) 의 저벽의 상면에 그 상면과 전자 빔 (EB) 에 대한 반사율이 상이한 반사 패턴을 형성해도 된다. 이 경우에는, 그 반사 패턴을 상기 실시형태의 캘리브레이션 패턴과 동일하게 취급함으로써, 상기 실시형태와 동일한 작용 효과를 발휘할 수 있다.
또한, 상기 실시형태에서는, 개구 부재 (16) 가, 전자 빔 광학계 (32) 를 내부에 갖는 경통 (34) (전자 빔 조사 장치 (30)) 이 지지되는 메트롤로지 프레임 (40) 에 지지되어 있지만, 열의 영향이나 그 밖의 영향에 의해, 개구 부재 (16) 와 메트롤로지 프레임 (40) 의 위치 관계가 변화하는 경우가 있을 수 있다. 그래서, 예를 들어, 도 7 에 점선 (파선) 의 블록으로 나타내는 바와 같이, 메트롤로지 프레임 (40) 과 개구 부재 (16) 의 상대 위치를 계측하는 계측 장치 (90) 를 추가로 설치하고, 이 계측 장치의 계측 정보에 기초하여, 제어 장치 (60) 가, 전자 빔 (EB) 의 위치를 보정해도 된다.
또한, 상기 실시형태에서는, 개구 부재 (16) 가, 전자 빔 광학계 (32) 를 내부에 갖는 경통 (34) (전자 빔 조사 장치 (30)) 이 지지되는 메트롤로지 프레임 (40) 에 지지되어 있는 경우에 대해 설명했지만, 이것에 한정되지 않고, 개구 부재 (16) 는, 서보 제어에 의해, 전자 빔 광학계 (32) (경통 (34)) 와의 위치 관계가 일정하게 유지되어 있어도 된다. 이 경우에 있어서, 상기의 계측 장치 (90) 를 설치하여, 제어 장치 (60) 혹은 다른 컨트롤러가, 도시 생략된 액추에이터를 제어함으로써, 메트롤로지 프레임 (40) 에 대해 개구 부재 (16) 를 구동시켜, 메트롤로지 프레임 (40) 에 지지된 전자 빔 광학계 (32) (경통 (34)) 와 개구 부재 (16) 의 위치 관계를 일정하게 유지하는 것으로 해도 된다.
또, 상기 실시형태에서는, 개구 부재 (16) 의 하면 (-Z 측의 면) 에 그레이팅 (RG) 이 형성되고, 이것에 대향하여 스테이지 (22) 의 상면의 네 모서리에 4 개의 헤드 (26) 가 형성된 인코더 시스템 (28) 에 의해, 스테이지 (22) 의 위치 정보가 계측되는 경우에 대해 예시했지만, 이것에 한정되지 않고, 스테이지 (22) 에 격자부 (그레이팅) 를 형성하여, 이 격자부에 대향 가능하게 스테이지 (22) 의 외부에 헤드가 형성된 인코더 시스템에 의해, 스테이지 (22) 의 위치 정보를 계측하는 것으로 해도 된다.
또, 스테이지 (22) 의 위치 정보를 계측하는 위치 계측 장치는, 인코더 시스템에 한정되지 않고, 레이저 간섭계 시스템 등을 사용해도 된다.
《제 2 실시형태》
다음으로, 제 2 실시형태에 대해 도 10 에 기초하여 설명한다. 여기서, 전술한 제 1 실시형태에 관련된 전자 빔 노광 장치 (100) 와 동일하거나 혹은 동등한 구성 부분에 대해서는, 동일한 부호를 사용함과 함께, 그 설명을 간략하게 하거나, 혹은 생략한다.
도 10 에는, 본 제 2 실시형태에 관련된 노광 장치가 구비하는 경통 (34) 의 하단부, 메트롤로지 프레임 (40) 및 개구 부재 (16A), 그리고 스테이지 (22) 가 확대되어 나타나 있다. 본 제 2 실시형태에 관련된 전자 빔 노광 장치에서는, 전술한 개구 부재 (16) 대신에 개구 부재 (16A) 가 형성됨과 함께, 인코더 시스템 (28) 대신에, 레이저 간섭계 시스템 (128) 이 형성되어, 레이저 간섭계 시스템 (128) 에 의해 웨이퍼 (W) 를 유지하는 스테이지 (22) 의 XY 평면 내의 3 자유도 또는 6 자유도 방향에 관한 위치 정보가 계측되게 되어 있다. 그 밖의 부분의 구성은, 전술한 제 1 실시형태에 관련된 전자 빔 노광 장치 (100) 와 동일하게 되어 있다.
개구 부재 (16A) 는, 기본적으로는, 전술한 개구 부재 (16) 와 동일하게 구성되어 있지만, 다음의 점이 상이하다. 즉, 개구 부재 (16A) 에서는, 웨이퍼 (W) 에 대향하는 면 (하면, -Z 측의 면) 에 그레이팅 (RG) 이 형성되어 있지 않음과 함께, 예를 들어 적외선 센서로 이루어지는 복수의 온도 센서 (70) 가 XY 이차원 방향으로 어레이상으로 배치되어 있다. 복수의 온도 센서는, 그 하면이 개구 부재 (16A) 의 하면과 거의 동일면에 위치하는 상태에서, 개구 부재 (16A) 에 매립되어 있다.
그리고, 제어 장치 (60) 가, 웨이퍼 (W) 의 노광 동작 중에, 복수의 온도 센서 (70) 에 의해 계측된 온도 정보에 기초하여, 전자 빔 (EB) 의 웨이퍼 (W) 에 대한 조사 위치를 제어한다.
본 제 2 실시형태에 관련된 전자 빔 노광 장치에 의하면, 전술한 제 1 실시형태와 동등한 효과를 얻을 수 있는 것 외에, 제어 장치 (60) 는, 노광 동작을 중단하지 않고, 복수의 온도 센서에 의해 계측되는 웨이퍼 (W) 의 온도 정보에 기초하여, 전자 빔 (EB) 의 웨이퍼 (W) 에 대한 조사 위치를 제어할 수 있으므로, 전자 빔 (EB) 의 조사에 의해, 웨이퍼에 비선형인 열팽창이 발생한 경우에 그 웨이퍼의 비선형인 열팽창에서 기인되는 패턴의 묘화 오차를 작게 할 수 있다.
《제 3 실시형태》
다음으로, 제 3 실시형태에 대해 도 11 에 기초하여 설명한다. 여기서, 전술한 제 1, 제 2 실시형태에 관련된 전자 빔 노광 장치와 동일하거나 혹은 동등한 구성 부분에 대해서는, 동일한 부호를 사용함과 함께, 그 설명을 간략하게 하거나, 혹은 생략한다.
도 11 에는, 도 10 과 마찬가지로, 본 제 3 실시형태에 관련된 전자 빔 노광 장치가 구비하는 경통 (34) 의 하단부, 메트롤로지 프레임 (40) 및 개구 부재 (16B), 그리고 스테이지 (22) 가 확대되어 나타나 있다. 본 제 3 실시형태에 관련된 전자 빔 노광 장치에서는, 전술한 개구 부재 (16A) 대신에 개구 부재 (16B) 가 형성됨과 함께, 개구 부재 (16B) 가, 그 개구 부재 (16B) 를 광축 (AX) 과 평행한 방향 (Z 축 방향) 으로 구동 가능한 복수의 구동 장치 (80) 를 개재하여 메트롤로지 프레임 (40) 에 매달려 지지되어 있는 점이, 전술한 제 2 실시형태에 관련된 전자 빔 노광 장치와 상이하다. 그 밖의 부분의 구성은, 전술한 제 2 실시형태에 관련된 전자 빔 노광 장치와 동일하게 되어 있다.
개구 부재 (16B) 는, 개구 부재 (16A) 와 동일하게 구성되고, 마찬가지로, 복수의 온도 센서 (70) 를 가지고 있는 것 외에, 개구 부재 (16B) 자체를 냉각 가능한 구성이 채용되어 있다. 예를 들어, 개구 부재 (16B) 의 내부에 액체 유로를 형성하고, 이 액체 유로 내에 냉각액을 흘려 개구 부재 (16B) 자체를 냉각시키는 구성 등을 채용할 수 있다. 예를 들어, 냉각액을 진공 챔버의 외부에 배치된 냉각기로 냉각시키고, 그 냉각시킨 냉각액을 배관을 통해 액체 유로 내로 흘리고, 액체 유로 내를 흐른 냉각액을 배관을 통해 냉각기로 되돌리는, 순환계를 채용해도 된다.
진공 챔버의 내부는, 공기가 존재하지 않기 때문에, 공기를 통한 열전도 (전도, 대류) 는 발생하지 않지만, 개구 부재 (16B) 에 의해, 그 개구 부재 (16B) 에 대향하는 웨이퍼 (W) 를, 복사 (방사) 에 의해 냉각시키는 것은 가능하다. 또, 복사에 의한 수열량은, 열원으로부터의 거리의 제곱에 반비례한다. 본 제 3 실시형태의 경우, 개구 부재 (16B) 와 웨이퍼 (W) 의 거리의 제곱에 웨이퍼의 온도 상승률이 반비례한다.
그래서, 본 제 3 실시형태에서는, 상기의 복사에 의한 열전도의 성질에 따라, 제어 장치 (60) 가, 온도 센서 (70) 의 검출 결과에 기초하여, 구동 장치 (80) 를 제어하여 개구 부재 (16B) 를 웨이퍼 (W) 에 대해 원하는 거리까지 접근시켜, 웨이퍼 (W) 를 소정 온도까지 냉각시킨다. 이러한 웨이퍼 (W) 의 냉각은, 제어 장치 (60) 가, 예를 들어 웨이퍼의 노광 동작에 있어서의 소정 횟수 간격의 스테핑 동작 중 (주사 방향에 관한 감속 및 가속 기간 중) 에 실행하는 것으로 할 수 있다. 단, 이 경우에, 전술한 제 1 실시형태에 관련된 전자 빔 노광 장치 (100) 와 동일한 전자 빔 (EB) 의 드리프트의 검출 및 캘리브레이션을 실시하는 것으로 하면, 웨이퍼 (W) 의 냉각이 실시되는 스테핑 동작시에는, 개구 부재 (16B) 의 Z 위치가, 초기 설정시와는 변화되기 때문에, 전술한 캘리브레이션 패턴 (CP) 으로부터의 반사 전자의 검출을 실시해도 그 반사 전자의 검출 결과를, 전자 빔 (EB) 의 드리프트의 검출을 위해서 사용할 수 없다. 따라서, 웨이퍼 (W) 의 냉각이 실시되는 스테핑 동작시에는, 전자 빔 (EB) 의 드리프트의 검출을 위한 처리를 실시하지 않고, 웨이퍼 (W) 의 냉각이 실시되지 않은 스테핑 동작시, 즉 개구 부재 (16B) 의 Z 위치를 초기 설정시의 위치로 설정하는 것이 가능한 스테핑 동작시에 전자 빔 (EB) 의 드리프트의 검출을 위한 처리를 실시할 필요가 있다.
또한, 상기 제 3 실시형태에서는, 전자 빔 (EB) 의 조사에 의한 웨이퍼 (W) 의 온도 상승은, 미리 시뮬레이션 등으로 구할 수 있으므로, 이 시뮬레이션 결과에 기초하여, 웨이퍼 (W) 의 냉각을 위해, 전술한 스테핑 동작 중에 구동 장치 (80) 를 제어할 수도 있다. 이러한 경우에는, 반드시 온도 센서를 형성하지 않아도 된다. 여기서의 설명으로부터 알 수 있는 바와 같이, 본 제 3 실시형태에서는, 온도 센서를 1 개, 또는 수 개 설치해도 된다.
또, 본 제 3 실시형태에 있어서 온도 센서를 형성하지 않는 경우에는, 개구 부재 (16B) 대신에, 전술한 개구 부재 (16) 를 사용함과 함께, 레이저 간섭계 시스템 (128) 대신에, 인코더 시스템 (28) 을 채용해도 된다.
또한, 상기 제 2 및 제 3 실시형태에서는, 파낸 오목부 (16b) 의 내부 저벽의 상면에 반사면 (18a) 및 캘리브레이션 패턴 (CP) 이 형성된 개구 부재 (16A, 16B) 를 사용하는 것으로 했지만, 이것에 한정되지 않고, 파낸 오목부 (16b) 의 내부 저벽의 상면에 반사면 및 캘리브레이션 패턴의 일방 또는 양방을 갖지 않고, 개구 (16c) 만이 형성된 개구 부재를 사용해도 된다. 즉, 전자 빔 광학계 (32) 의 대략 광축 상에 개구 (16c) 가 형성되어, 웨이퍼 (W) 에 대향하는 면에 온도 센서 (70) 를 갖는 개구 부재를 사용해도 된다.
또한, 상기 각 실시형태에 있어서, 개구 부재 (16, 16A, 16B) 대신에, 오목부 (16a) 를 포함하는 중심부와, 나머지의 부분을 별도의 부재에 의해 구성해도 된다. 이 경우, 예를 들어 중심부를, 상면의 중앙에 전술한 오목부 (16a), 반사면 (18a) 및 캘리브레이션 패턴 (CP) 의 적어도 일방이 형성된 파낸 오목부 (16b), 그리고 개구 (16c) 와 동일한 부분을 갖는 원반상의 부재로 구성할 수 있다.
또, 상기 각 실시형태에 있어서, 개구 부재 (16, 16A, 16B) 가, 전자 빔 (EB) 의 드리프트를 캘리브레이션하기 위해서 사용되는 점에서, 이 개구 부재를 캘리브레이션 부재라고 바꾸어 말할 수도 있다. 또, 개구 부재 (16, 16A, 16B) 에 반사면 (18a) 이 형성되어 있는 점에서, 반사 부재라고 바꾸어 말할 수도 있다. 또한, 개구 부재 (16, 16A, 16B) 에 캘리브레이션 패턴 (CP) 이 형성되어 있는 점에서, 패턴 부재라고 바꾸어 말할 수도 있다.
또한, 상기 각 실시형태에서는, 개구 부재 (16) 에 형성된 캘리브레이션 패턴 (CP) 에 대해 전자 빔 (EB) 을 편향시켜 주사하고, 캘리브레이션 패턴 (CP) 에서 발생하는 반사 전자 (RE) 를 반사 전자 검출 장치 (38) 에 의해 검출함으로써, 전자 빔 (EB) 의 위치 등의 드리프트를 검출하는 경우에 대해 설명했지만, 전자 빔 (EB) 의 위치 등의 드리프트를 검출하는 구성은, 이러한 구성에 한정되는 것은 아니다. 예를 들어, 반사 전자 검출 장치 (38) 대신에, 전자 빔 (EB) 을 직접 검출하는 하전 입자 검출기를 사용해도 된다. 이 경우, 전술한 개구 부재 (16) 중, 캘리브레이션 패턴 (CP) 이 형성된 위치에, 캘리브레이션 패턴 (CP) 대신에 하전 입자 검출기를 배치하면 된다.
여기서, 하전 입자 검출기로는, 예를 들어, 전자를 광으로 변환하는 신틸레이터부와, 신틸레이터부가 발생시킨 광을 전기 신호로 변환하는 광전 변환 소자의 조 (組) 를 복수 배열한 구성의 제 1 하전 입자 검출기를 사용할 수 있다. 또한, 신틸레이터부와 광전 변환 소자 사이에, 신틸레이터부가 발생시킨 광을 광전 변환 소자로 유도하는 라이트 가이드를 설치해도 된다.
제 1 하전 입자 검출기에서는, 신틸레이터부는, 개구 부재 (16) 의 개구 (16c) 의 주위에 형성되어, 제 1 방향 또는 제 2 방향을 주기 방향으로 하여 배열된 복수의 신틸레이터를 구비하고 있고, 복수의 신틸레이터의 각각은 광전 변환 소자에 접속되어 있다. 광전 변환 소자로서, 예를 들어 포토 다이오드 혹은 광전자 증배관 등을 사용해도 된다.
또한, 전자 빔 (EB) 을 직접 검출하는 다른 검출기 (제 2 하전 입자 검출기) 로는, 실리콘 (Si) 박막과 포토 다이오드를 층상으로 중첩시킨 2 층 구조를 갖는 검출기를 사용할 수 있다. Si 박막에는, 제 1 방향 또는 제 2 방향을 주기 방향으로 하는 복수의 슬릿을 형성하고, Si 박막의 각 슬릿에 대향하여 포토 다이오드를 형성하여, 각각의 슬릿을 통과한 전자 빔 (EB) 을 검출할 수 있다.
또, 웨이퍼 (W) 등의 타깃에 전자 빔 (EB) 을 조사함으로써, 개구 부재 (16) 에 전하가 대전되는 현상이 일어나는 경우가 있다. 즉, 레지스트 등에서 유래하는 유기물이 개구 부재 (16) 에 부착되어, 이 유기물에 전하가 축적되는 경우가 있다. 이와 같이 개구 부재 (16) 에 전하가 축적되면, 축적된 전하에 의해 발생하는 전장 (電場) 의 영향으로, 웨이퍼 (W) 에 조사되는 전자 빔 (EB) 의 위치가 변동된다. 그래서, 개구 부재 (16) 에 대한 전하의 축적을 방지하기 위해, 개구 부재 (16) 의 표면에 도전성의 코트를 실시하여, 이 코트와 어스선을 접속하는 구성을 채용해도 된다. 도전성의 코트는, 개구 부재 (16) 의 웨이퍼 (W) 에 대향하는 면 (하면), 혹은 전자 빔 광학계 (32) 에 대향하는 면 (상면) 에 실시된다. 코트와 어스선은, 전자 빔 (EB) 에 대한 영향을 피하기 위해서, 개구 (16c) 로부터 떨어진 곳에서 접속하는 것이 바람직하다. 이 구성에 의해, 개구 부재 (16) 에 유기물이 부착되어도, 전하는 유기물에 축적되지 않고, 코트를 통해서 어스선에 흐르므로, 전자 빔 (EB) 에 대한 영향을 줄일 수 있다.
또한, 도전성의 코트를 개구 부재 (16) 의 표면에 형성하는 대신에, 개구 부재 (16) 를 전자 빔 광학계 (32) 의 광축과 직교하는 방향에 있어서 제 1 부분과 제 2 부분으로 분리 가능하게 구성하고, 제 1 부분과 제 2 부분 사이에 도전성 물질을 끼운 상태에서, 제 1 부분과 제 2 부분을 연결함으로써, 도전성 물질층을 개구 부재 (16) 에 내장하는 것이 가능해진다. 그리고, 어스선에 도전성 물질층을 접속함으로써, 개구 부재 (16) 표면의 유기물에 전하가 부착되어도, 도전성 물질층을 통해서 어스선에 흐르므로, 개구 부재 (16) 에 전하는 축적되지 않는다.
개구 부재 (16) 에 대한 전하의 축적을 방지하기 위해서, 개구 부재 (16) 에 부착된 유기물을 클리닝하는 구성을 채용해도 된다. 개구 부재 (16) 에 부착된 유기물과 반응하는 오존 등의 기체를 개구 부재 (16) 에 분사하여 반응시킴으로써 개구 부재 (16) 를 클리닝할 수 있다. 예를 들어, 스테이지 (22) 를 개구 부재 (16) 의 하방으로부터 이동 (퇴피) 시킨 후, 개구 부재 (16) 의 표면에 기체를 분사하는 급기구와, 분사된 기체를 회수하는 회수구를 갖는 클리닝 장치를 개구 부재 (16) 의 하방에 배치하면 된다.
또한, 전자 빔 광학계 (32) 의 외부 자장이 개구 부재 (16) 를 통해 전자 빔 (EB) 에 영향을 미치는 것을 억제 (방지) 하기 위해서, 개구 부재 (16) 에 외부 자장의 영향을 억제하는 구성을 채용하는 것이 바람직하다. 예를 들어, 개구 부재 (16) 의 외주를 퍼멀로이 등의 고투자율 재료로 둘러싸, 자기 실드로 하는 구성을 채용해도 된다. 이 구성에 있어서는, 실드의 재료는 개구 부재 (16) 의 재료보다 투자율이 높기 때문에, 외부로부터의 자기의 대부분이 실드 내를 통과하여 개구 부재 (16) 를 우회한다. 그래서 개구 부재 (16) 는 외부 자장으로부터 차폐된 상태가 되어, 전자 빔 (EB) 에 외부 자장이 영향을 미치는 것을 방지할 수 있다.
또한, 상기 각 실시형태에서는, 싱글 칼럼 타입의 전자 빔 광학계 (32) 를 사용하는 경우에 대해 예시했지만, 이것에 한정되지 않고, 전술한 멀티 빔 광학계로 이루어지는 광학계 칼럼을 복수 갖는 멀티 칼럼 타입의 전자 빔 광학계를 사용해도 된다. 또, 개구 부재 (16, 16A, 16B) 각각의 상면에 전술한 오목부 (16a), 파낸 오목부 (16b) 및 개구 (16c) 를, 복수의 광학계 칼럼에 대응한 배치로 형성하면 된다. 또, 전자 빔 조사 장치로서, 전자선을 성형 애퍼처로 불리는 사각형의 구멍을 몇 개의 단을 통과시킴으로써 전자선 형상을 사각형으로 바꾸는 가변 성형 빔 (사각형 빔) 을 사용하는 방식의 전자 빔 조사 장치를 사용해도 된다.
또한, 상기 각 실시형태에서는, 진공 챔버 (10) 의 내부에, 노광 시스템 (20) 의 전체가 수용된 경우에 대해 설명했지만, 이것에 한정되지 않고, 노광 시스템 (20) 중, 전자 빔 조사 장치 (30) 의 경통 (34) 의 하단부를 제외한 부분을, 진공 챔버 (10) 의 외부에 노출시켜도 된다.
또한, 상기 각 실시형태에서는, 전자 빔 조사 장치 (30) 가 메트롤로지 프레임 (40) 과 일체로, 3 개의 매달기 지지 기구 (50a, 50b, 50c) 를 개재하여 진공 챔버의 천판 (천정벽) 으로부터 매달려 지지되는 것으로 했지만, 이것에 한정되지 않고, 전자 빔 조사 장치 (30) 는, 바닥식 타입의 보디에 의해 지지되어도 된다. 또, 스테이지 (22) 에 대해, 전자 빔 조사 장치 (30) 가 이동 가능한 구성을 채용해도 된다.
또한, 상기 각 실시형태에서는, 타깃이 반도체 소자 제조용의 웨이퍼인 경우에 대해 설명했지만, 각 실시형태에 관련된 전자 빔 노광 장치는, 유리 기판 상에 미세한 패턴을 형성하여 마스크를 제조할 때에도 바람직하게 적용할 수 있다. 또, 상기 각 실시형태에서는, 하전 입자선으로서 전자 빔을 사용하는 전자 빔 노광 장치에 대해 설명했지만, 노광용의 하전 입자선으로서 이온 빔 등을 사용하는 노광 장치에도 상기 실시형태를 적용할 수 있다.
반도체 소자 등의 전자 디바이스 (마이크로 디바이스) 는, 디바이스의 기능·성능 설계를 실시하는 스텝, 실리콘 재료로부터 웨이퍼를 제작하는 스텝, 전술한 실시형태 또는 변형예의 전자 빔 노광 장치 및 그 노광 방법에 의해 웨이퍼에 대한 노광 (설계된 패턴 데이터에 따른 패턴의 묘화) 을 실시하는 리소그래피 스텝, 노광된 웨이퍼를 현상하는 현상 스텝, 레지스트가 잔존하고 있는 부분 이외의 부분의 노출 부재를 에칭에 의해 제거하는 에칭 스텝, 에칭이 완료되어 불필요해진 레지스트를 제거하는 레지스트 제거 스텝, 디바이스 조립 스텝 (다이싱 공정, 본딩 공정, 패키지 공정을 포함한다), 검사 스텝 등을 거쳐 제조된다. 이 경우, 리소그래피 스텝에서, 상기 실시형태의 노광 장치를 사용하여 전술한 노광 방법이 실행되어, 웨이퍼 상에 디바이스 패턴이 형성되므로, 고집적도의 마이크로 디바이스를 양호한 생산성으로 제조할 수 있다.
또한, 상기 실시형태에서 인용한 노광 장치 등에 관한 모든 공보, 국제 공개, 미국 특허출원 공개 명세서 및 미국 특허 명세서의 개시를 원용하여 본 명세서의 기재의 일부로 한다.
산업상 이용가능성
이상 설명한 바와 같이, 본 발명에 관련된 하전 입자 빔 노광 장치는, 반도체 소자 등의 전자 디바이스의 제조에 있어서의 리소그래피 공정에서의 사용에 적합하다. 또, 본 발명의 디바이스 제조 방법은, 마이크로 디바이스의 제조에 적합하다.
16 : 개구 부재
16c : 개구
18a : 반사면
22 : 스테이지
26 : 헤드
32 : 전자 빔 광학계
38 : 반사 전자 검출 장치
40 : 메트롤로지 프레임
60 : 제어 장치
70 : 온도 센서
80 : 구동 장치
90 : 계측 장치
100 : 전자 빔 노광 장치
AX : 광축
EB : 전자 빔
CP : 캘리브레이션 패턴
RG : 그레이팅
W : 웨이퍼

Claims (40)

  1. 타깃을 하전 입자 빔으로 노광하는 하전 입자 빔 노광 장치로서,
    상기 타깃을 유지하여 상기 하전 입자 빔에 대해 상대 이동 가능한 스테이지와,
    상기 하전 입자 빔을 상기 타깃에 조사하는 하전 입자 빔 광학계와,
    상기 하전 입자 빔 광학계의 상기 하전 입자 빔의 사출측에서, 또한 상기 하전 입자 빔의 주위에 배치되어, 상기 하전 입자 빔을 검출하는 하전 입자 검출 장치를 구비하는, 하전 입자 빔 노광 장치.
  2. 제 1 항에 있어서,
    상기 하전 입자 검출 장치는, 상기 하전 입자 빔을 반사하는 반사 부재와, 상기 반사 부재에서 반사한 하전 입자 빔을 검출하는 반사형 하전 입자 검출 장치를 포함하는, 하전 입자 빔 노광 장치.
  3. 제 2 항에 있어서,
    상기 반사 부재는, 상기 하전 입자 빔을 반사하는 반사 패턴을 갖는, 하전 입자 빔 노광 장치.
  4. 제 2 항 또는 제 3 항에 있어서,
    상기 반사 부재는, 상기 하전 입자 빔 광학계의 광축에 대해, 그 광축과 교차하는 방향으로 떨어진 위치에 배치되는, 하전 입자 빔 노광 장치.
  5. 제 4 항에 있어서,
    상기 하전 입자 빔 광학계를 제어하고, 상기 반사 부재를 향하여 상기 하전 입자 빔을 편향시키는 제어 장치를 갖는, 하전 입자 빔 노광 장치.
  6. 제 5 항에 있어서,
    상기 반사형 하전 입자 검출 장치는, 상기 하전 입자 빔 광학계와, 상기 반사 부재 사이에 배치되는, 하전 입자 빔 노광 장치.
  7. 제 5 항 또는 제 6 항에 있어서,
    상기 제어 장치는, 상기 타깃을 유지하는 상기 스테이지와 상기 하전 입자 빔 광학계를 제 1 방향으로 상대적으로 이동시키고, 상기 타깃을 상기 하전 입자 빔으로 노광하는 스캔 동작과, 상기 스테이지와 상기 하전 입자 빔 광학계를 상기 제 1 방향과 교차하는 방향으로 이동시키고, 상기 타깃의 노광 위치를 변경하는 스테핑 동작을 실행함과 함께, 상기 스테핑 동작 중에, 상기 반사 부재를 향하여 상기 하전 입자 빔을 편향시키는, 하전 입자 빔 노광 장치.
  8. 제 2 항 내지 제 7 항 중 어느 한 항에 있어서,
    상기 하전 입자 빔 광학계의 상기 하전 입자 빔의 사출측과 상기 타깃 사이에 배치되어, 상기 하전 입자 빔이 통과하는 개구가 형성된 개구 부재를 갖고,
    상기 반사 부재는, 상기 개구 부재에 형성되는, 하전 입자 빔 노광 장치.
  9. 제 8 항에 있어서,
    상기 개구 부재의 적어도 일부는, 유전체에 의해 구성되어 있는, 하전 입자 빔 노광 장치.
  10. 제 8 항 또는 제 9 항에 있어서,
    상기 개구 부재는, 상기 하전 입자 빔 광학계와의 위치 관계가 일정하게 유지되어 있는, 하전 입자 빔 노광 장치.
  11. 제 8 항 내지 제 10 항 중 어느 한 항에 있어서,
    상기 개구 부재는, 상기 하전 입자 빔 광학계가 지지되는 프레임에 지지되어 있는, 하전 입자 빔 노광 장치.
  12. 제 8 항 내지 제 11 항 중 어느 한 항에 있어서,
    상기 프레임과 상기 개구 부재의 상대 위치를 계측하는 계측 장치를 추가로 구비하는, 하전 입자 빔 노광 장치.
  13. 제 8 항 내지 제 12 항 중 어느 한 항에 있어서,
    상기 개구 부재와 상기 하전 입자 빔 광학계의 위치 관계를 조정하는 조정 장치를 추가로 구비하는, 하전 입자 빔 노광 장치.
  14. 제 1 항 내지 제 13 항 중 어느 한 항에 있어서,
    상기 하전 입자 검출 장치의 검출 결과에 기초하여, 상기 하전 입자 빔의 드리프트를 검출하는 검출 장치를 구비하는, 하전 입자 빔 노광 장치.
  15. 제 14 항에 있어서,
    상기 하전 입자 빔 광학계는, 상기 검출 장치가 검출한 상기 드리프트를 보정한 후, 상기 타깃에 상기 하전 입자 빔을 조사하는, 하전 입자 빔 노광 장치.
  16. 제 14 항 또는 제 15 항에 있어서,
    상기 제어 장치는, 연속하는 복수 회의 스테핑 동작 중에 얻어진 상기 하전 입자 검출 장치의 검출 결과에 기초하여 상기 하전 입자 빔의 드리프트를 구하는, 하전 입자 빔 노광 장치.
  17. 제 16 항에 있어서,
    상기 제어 장치는, 연속하는 복수 회의 스테핑 동작 중에 얻어진 상기 하전 입자 검출 장치의 검출 결과로부터 얻어지는 빔 위치의 기준이 되는 값의 평균 또는 이동 평균에 기초하여, 상기 하전 입자 빔의 드리프트를 구하는, 하전 입자 빔 노광 장치.
  18. 제 14 항 내지 제 17 항 중 어느 한 항에 있어서,
    상기 제어 장치는, 상기 하전 입자 빔의 위치 또는 포커스의 적어도 일방의 드리프트를 구하는, 하전 입자 빔 노광 장치.
  19. 타깃을 하전 입자 빔으로 노광하는 하전 입자 빔 노광 장치로서,
    상기 타깃을 유지하여 상기 하전 입자 빔에 대해 상대 이동 가능한 스테이지와,
    상기 하전 입자 빔을 상기 타깃에 조사하는 하전 입자 빔 광학계와,
    상기 하전 입자 빔 광학계의 상기 하전 입자 빔의 사출측에 배치되어, 상기 하전 입자 빔이 통과하는 개구가 형성된 개구 부재를 구비하는, 하전 입자 빔 노광 장치.
  20. 제 19 항에 있어서,
    상기 개구 부재의 적어도 일부는, 유전체에 의해 구성되어 있는, 하전 입자 빔 노광 장치.
  21. 제 19 항 또는 제 20 항에 있어서,
    상기 개구 부재는, 상기 하전 입자 빔 광학계와의 위치 관계가 일정하게 유지되어 있는, 하전 입자 빔 노광 장치.
  22. 제 19 항 내지 제 21 항 중 어느 한 항에 있어서,
    상기 개구 부재는, 상기 하전 입자 빔 광학계가 지지되는 프레임에 지지되어 있는, 하전 입자 빔 노광 장치.
  23. 제 22 항에 있어서,
    상기 개구 부재에는, 상기 스테이지의 위치 정보를 계측하는 위치 계측 장치의 일부가 형성되어 있는, 하전 입자 빔 노광 장치.
  24. 제 23 항에 있어서,
    상기 위치 계측 장치는, 상기 스테이지 및 상기 개구 부재의 일방에 형성된 격자부와, 상기 스테이지 및 상기 개구 부재의 타방에 상기 격자부와 대향 가능하게 형성되고, 상기 격자부에 빔을 조사하고, 상기 격자부로부터의 리턴 빔을 수광하는 헤드부를 갖는 인코더 시스템인, 하전 입자 빔 노광 장치.
  25. 제 22 항 내지 제 24 항 중 어느 한 항에 있어서,
    상기 프레임과 상기 개구 부재의 상대 위치를 계측하는 계측 장치를 추가로 구비하는, 하전 입자 빔 노광 장치.
  26. 제 19 항 내지 제 25 항 중 어느 한 항에 있어서,
    상기 개구 부재와 상기 하전 입자 빔 광학계의 위치 관계를 조정하는 조정 장치를 추가로 구비하는, 하전 입자 빔 노광 장치.
  27. 제 19 항 내지 제 26 항 중 어느 한 항에 있어서,
    상기 타깃으로부터의 반사 하전 입자가 상기 개구 부재의 상기 개구를 통해 입사 가능한 위치에 배치된 반사 하전 입자 검출 장치를 추가로 구비하는, 하전 입자 빔 노광 장치.
  28. 제 27 항에 있어서,
    상기 개구 부재의 상기 타깃과는 반대측의 면에는, 편향된 상기 하전 입자 빔을 반사하는 반사면이 상기 개구의 주위의 적어도 일부에 형성되어 있는, 하전 입자 빔 노광 장치.
  29. 제 28 항에 있어서,
    상기 반사면은, 상기 개구를 구획하는 에지부를 포함하고,
    상기 반사면을 상기 하전 입자 빔으로 주사하고, 상기 반사면에서 발생하는 반사 하전 입자를 상기 반사 하전 입자 검출 장치를 사용하여 검출한 결과에 기초하여, 상기 하전 입자 빔의 드리프트를 검출하는 검출 장치를 추가로 구비하는, 하전 입자 빔 노광 장치.
  30. 제 27 항에 있어서,
    상기 개구 부재의 상기 타깃과는 반대측의 면에는, 편향된 상기 하전 입자 빔을 반사하는 반사 패턴이 상기 개구의 주위의 적어도 일부에 형성되어 있는, 하전 입자 빔 노광 장치.
  31. 제 30 항에 있어서,
    상기 반사 패턴을 상기 하전 입자 빔으로 주사하고, 상기 반사면에서 발생하는 반사 하전 입자를 상기 반사 하전 입자 검출 장치를 사용하여 검출한 결과에 기초하여, 상기 하전 입자 빔의 드리프트를 검출하는 검출 장치를 추가로 구비하는, 하전 입자 빔 노광 장치.
  32. 제 29 항 또는 제 31 항에 있어서,
    상기 타깃을 유지하는 상기 스테이지와 상기 하전 입자 빔 광학계를 제 1 방향으로 상대적으로 이동시키고, 상기 타깃을 상기 하전 입자 빔으로 노광하는 스캔 동작과, 상기 스테이지와 상기 하전 입자 빔 광학계를 상기 제 1 방향과 교차하는 방향으로 이동시키고, 상기 타깃의 노광 위치를 변경하는 스테핑 동작을 실행함과 함께, 상기 스테핑 동작 중에, 상기 하전 입자 빔의 드리프트의 검출을 실행하는, 하전 입자 빔 노광 장치.
  33. 제 32 항에 있어서,
    연속하는 복수 회의 스테핑 동작 중에 얻어진 상기 반사 하전 입자의 검출 결과에 기초하여 상기 하전 입자 빔의 드리프트를 구하는, 하전 입자 빔 노광 장치.
  34. 제 32 항에 있어서,
    연속하는 복수 회의 스테핑 동작 중에 얻어진 상기 반사 하전 입자의 검출 결과로부터 얻어지는 빔 위치의 기준이 되는 값의 평균 또는 이동 평균에 기초하여, 상기 하전 입자 빔의 드리프트를 구하는, 하전 입자 빔 노광 장치.
  35. 제 29 항 내지 제 34 항 중 어느 한 항에 있어서,
    상기 하전 입자 빔의 위치 또는 포커스의 적어도 일방의 드리프트를 구하는, 하전 입자 빔 노광 장치.
  36. 제 19 항 내지 제 35 항 중 어느 한 항에 있어서,
    상기 개구 부재의 상기 타깃에 대향하는 면에 배치되어, 상기 타깃의 면내의 상이한 위치의 온도를 계측 가능한 복수의 온도 센서를 추가로 구비하는, 하전 입자 빔 노광 장치.
  37. 제 36 항에 있어서,
    상기 복수의 온도 센서에 의해 계측된 온도 정보에 기초하여, 상기 하전 입자 빔의 상기 타깃에 대한 조사 위치를 제어하는 제어 장치를 추가로 구비하는, 하전 입자 빔 노광 장치.
  38. 제 19 항 또는 제 20 항에 있어서,
    상기 개구 부재는, 상기 타깃을 복사에 의해 냉각 가능한 냉각 부재를 겸하고,
    상기 개구 부재를 상기 하전 입자 빔 광학계의 광축과 평행한 방향으로 구동 가능한 구동 장치와,
    상기 구동 장치를 제어하는 제어 장치를 추가로 구비하는, 하전 입자 빔 노광 장치.
  39. 제 38 항에 있어서,
    상기 타깃의 온도를 계측 가능한 온도 센서를 추가로 구비하고,
    상기 제어 장치는, 상기 온도 센서의 검출 결과에 기초하여, 상기 구동 장치를 제어하는, 하전 입자 빔 노광 장치.
  40. 제 1 항 내지 제 39 항 중 어느 한 항에 기재된 하전 입자 빔 노광 장치를 사용하여 기판을 노광하는 것과,
    노광된 상기 기판을 현상하는 것을 포함하는, 디바이스 제조 방법.
KR1020177037120A 2015-06-08 2016-06-07 하전 입자 빔 노광 장치 및 디바이스 제조 방법 KR20180016423A (ko)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2015116160 2015-06-08
JP2015116161 2015-06-08
JPJP-P-2015-116161 2015-06-08
JPJP-P-2015-116160 2015-06-08
PCT/JP2016/066825 WO2016199738A1 (ja) 2015-06-08 2016-06-07 荷電粒子ビーム露光装置及びデバイス製造方法

Publications (1)

Publication Number Publication Date
KR20180016423A true KR20180016423A (ko) 2018-02-14

Family

ID=57504503

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020177037120A KR20180016423A (ko) 2015-06-08 2016-06-07 하전 입자 빔 노광 장치 및 디바이스 제조 방법

Country Status (8)

Country Link
US (1) US10593514B2 (ko)
EP (1) EP3306646A4 (ko)
JP (1) JP6973072B2 (ko)
KR (1) KR20180016423A (ko)
CN (1) CN107710383A (ko)
HK (1) HK1243824A1 (ko)
TW (1) TWI712864B (ko)
WO (1) WO2016199738A1 (ko)

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2236529C3 (de) * 1972-07-21 1976-01-02 Max-Planck-Gesellschaft Zur Foerderung Der Wissenschaften E.V., 3400 Goettingen Drehvorrichtung hoher Genauigkeit für optische Geräte, insbesondere Elektronenmikroskope
JPS6133640Y2 (ko) * 1979-09-11 1986-10-01
JPS5746856A (en) * 1980-07-28 1982-03-17 Kasai Kogyo Co Ltd Production of interior part for car
JPS5746856U (ko) * 1980-08-29 1982-03-16
US4550258A (en) * 1982-07-27 1985-10-29 Nippon Telegraph & Telephone Public Corporation Aperture structure for charged beam exposure
JPH0652650B2 (ja) * 1985-06-24 1994-07-06 株式会社東芝 荷電ビ−ムの軸合わせ方法
JPS62287556A (ja) * 1986-06-05 1987-12-14 Toshiba Corp 荷電ビ−ムの軸合せ方法
JPH0821351B2 (ja) * 1987-06-24 1996-03-04 富士通株式会社 電子ビ−ムのアライメント方法
JPH02236939A (ja) * 1989-03-09 1990-09-19 Nikon Corp 走査型電子顕微鏡
JP2642881B2 (ja) * 1994-09-28 1997-08-20 東京大学長 低速多価イオンによる超高感度水素検出法
JP2001077002A (ja) * 1999-09-02 2001-03-23 Nikon Corp 荷電粒子ビーム露光方法、荷電粒子ビーム露光装置及び半導体デバイス製造方法
JP2001319853A (ja) * 2000-05-09 2001-11-16 Advantest Corp 電子ビームドリフト診断方法、電子ビーム露光装置
JP2002075826A (ja) * 2000-08-28 2002-03-15 Nikon Corp 荷電粒子線露光装置
JP4205390B2 (ja) * 2002-09-12 2009-01-07 キヤノン株式会社 露光装置及びデバイス製造方法
EP2302457B1 (en) 2002-10-25 2016-03-30 Mapper Lithography Ip B.V. Lithography system
JP4080297B2 (ja) * 2002-10-28 2008-04-23 株式会社アドバンテスト 電子ビーム照射装置、電子ビーム露光装置、及び不良検出方法
JP4557682B2 (ja) * 2004-11-09 2010-10-06 株式会社東芝 電子ビーム描画装置、偏向アンプ、及び電子ビーム描画方法
EP1753010B1 (en) 2005-08-09 2012-12-05 Carl Zeiss SMS GmbH Particle-optical system
JP5169221B2 (ja) 2005-12-28 2013-03-27 株式会社ニコン 露光装置及びその製造方法
US8953148B2 (en) 2005-12-28 2015-02-10 Nikon Corporation Exposure apparatus and making method thereof
EP3171220A1 (en) * 2006-01-19 2017-05-24 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
EP2050118A1 (en) * 2006-07-25 2009-04-22 Mapper Lithography IP B.V. A multiple beam charged particle optical system
EP2102883A1 (de) * 2006-12-29 2009-09-23 Yxlon International Feinfocus Gmbh Verfahren und vorrichtung zur ermittlung der ausdehnung des querschnitts eines elektronenstrahles
US7561280B2 (en) 2007-03-15 2009-07-14 Agilent Technologies, Inc. Displacement measurement sensor head and system having measurement sub-beams comprising zeroth order and first order diffraction components
JP5097823B2 (ja) * 2008-06-05 2012-12-12 株式会社日立ハイテクノロジーズ イオンビーム装置
JP5199756B2 (ja) * 2008-07-03 2013-05-15 株式会社ニューフレアテクノロジー 成形ビームのオフセット偏向量取得方法及び描画装置
US8493547B2 (en) 2009-08-25 2013-07-23 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
KR101683411B1 (ko) * 2009-12-18 2016-12-06 가부시키가이샤 니콘 기판 처리 장치의 메인터넌스 방법 및 안전 장치
JP5988537B2 (ja) 2010-06-10 2016-09-07 株式会社ニコン 荷電粒子線露光装置及びデバイス製造方法
JP5364112B2 (ja) * 2011-01-25 2013-12-11 株式会社日立ハイテクノロジーズ 荷電粒子線装置
JP5320418B2 (ja) 2011-01-31 2013-10-23 株式会社日立ハイテクノロジーズ 荷電粒子線装置
JP6293435B2 (ja) * 2013-08-08 2018-03-14 株式会社ニューフレアテクノロジー マルチ荷電粒子ビーム描画装置及びマルチ荷電粒子ビーム描画方法
JP6294758B2 (ja) * 2014-05-12 2018-03-14 株式会社ニューフレアテクノロジー 荷電粒子ビーム描画装置及び荷電粒子ビームのドーズ量異常検出方法

Also Published As

Publication number Publication date
US20180138011A1 (en) 2018-05-17
EP3306646A4 (en) 2019-01-23
EP3306646A1 (en) 2018-04-11
US10593514B2 (en) 2020-03-17
CN107710383A (zh) 2018-02-16
WO2016199738A1 (ja) 2016-12-15
TW201721290A (zh) 2017-06-16
JP6973072B2 (ja) 2021-11-24
TWI712864B (zh) 2020-12-11
HK1243824A1 (zh) 2018-07-20
JPWO2016199738A1 (ja) 2018-03-29

Similar Documents

Publication Publication Date Title
US7499180B2 (en) Alignment stage, exposure apparatus, and semiconductor device manufacturing method
KR101052848B1 (ko) 기판 표면에 관한 높이 데이터를 측정하고 획득하는 리소그래피 장치 및 방법
JP3862639B2 (ja) 露光装置
KR20090028410A (ko) 노광 시스템 및 반도체 장치의 제조 방법
US9035248B2 (en) Drawing apparatus, and method of manufacturing article
US8927949B2 (en) Measuring apparatus, drawing apparatus, and article manufacturing method
JP7114450B2 (ja) ステージ装置、及び荷電粒子線装置
JP2013118060A (ja) 荷電粒子ビーム装置
KR101487060B1 (ko) 하전 입자 빔 묘화 장치 및 물품 제조 방법
US8810770B2 (en) Exposure apparatus and article manufacturing method
KR20140130029A (ko) 묘화 장치 및 물품의 제조 방법
US20130011797A1 (en) Charged particle beam drawing apparatus and article manufacturing method
KR20180016423A (ko) 하전 입자 빔 노광 장치 및 디바이스 제조 방법
JP4343293B2 (ja) 荷電粒子線露光方法及び装置、ならびにデバイス製造方法
US9606460B2 (en) Lithography apparatus, and method of manufacturing article
US20200051774A1 (en) Charged particle beam optical system, exposure apparatus, exposure method and device manufacturing method
US20150129779A1 (en) Drawing apparatus, and method of manufacturing article
US10658157B2 (en) Exposure apparatus and exposure method, lithography method, and device manufacturing method
JP2015211119A (ja) 荷電粒子ビーム描画装置
TW201837983A (zh) 曝光裝置及微影方法、以及元件製造方法
TW201903840A (zh) 帶電粒子束光學裝置、曝光裝置、曝光方法、控制裝置、控制方法、資訊生成裝置、資訊生成方法及元件製造方法
JP2017130507A (ja) 基準部材及びキャリブレーション方法

Legal Events

Date Code Title Description
A201 Request for examination
WITB Written withdrawal of application