KR20180011287A - 외관 검사 장치 - Google Patents
외관 검사 장치 Download PDFInfo
- Publication number
- KR20180011287A KR20180011287A KR1020180006564A KR20180006564A KR20180011287A KR 20180011287 A KR20180011287 A KR 20180011287A KR 1020180006564 A KR1020180006564 A KR 1020180006564A KR 20180006564 A KR20180006564 A KR 20180006564A KR 20180011287 A KR20180011287 A KR 20180011287A
- Authority
- KR
- South Korea
- Prior art keywords
- light
- area sensor
- sensor camera
- inspected
- mirror
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/24—Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
- G01B11/25—Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
- G01B11/2545—Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object with one projection direction and several detection directions, e.g. stereo
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B07—SEPARATING SOLIDS FROM SOLIDS; SORTING
- B07C—POSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
- B07C5/00—Sorting according to a characteristic or feature of the articles or material being sorted, e.g. by control effected by devices which detect or measure such characteristic or feature; Sorting by manually actuated devices, e.g. switches
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/24—Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/8806—Specially adapted optical and illumination features
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/95—Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
- G01N21/9508—Capsules; Tablets
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Engineering & Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
- Length Measuring Devices By Optical Means (AREA)
Abstract
광 절단법을 채용한 외관 검사 장치에 있어서, 에리어 센서 카메라의 셔터 속도를 빠르게 하고, 고정밀도인 검사를 실현할 수 있는 외관 검사 장치를 제공한다. 검사 대상물을 반송하는 반송 수단(10)과 검사 대상물(K)의 표면 형상을 검사하는 표면 형상 검사 수단을 구비한다. 표면 형상 검사 수단은 띠 형상의 슬릿광 검사 대상물(K)의 표면에 조사하는 슬릿광 조사부(23), 슬릿광의 영상을 촬상하는 에리어 센서 카메라(22), 슬릿광의 반사광을 반송 방향 하류 측에서 수광하여 에리어 센서 카메라(22)로 이끄는 제1 광학 기구(30), 상류측에서 수광하여 에리어 센서 카메라(22)로 이끄는 제2 광학 기구(40), 그리고 에리어 센서 카메라(22)에 의해 촬상된 2개의 영상에 근거하여 검사 대상물(K) 표면의 적부를 판정하는 형상 판정부를 구비한다. 제1 광학 기구(30) 및 제2 광학 기구(40)의 각 광학 경로는 각 반사광을 에리어 센서 카메라(22)에 옆으로 나란하게 결상시킨다.
Description
본 발명은, 의약품(정제, 캡슐 등), 식품, 기계 부품이나 전자 부품 등 (이하, "검사 대상물"이라고 한다)의 외관을 검사하는 장치에 관한 것이다.
종래의 검사 대상물 표면의 외관을 검사하는 장치로서, 예를 들면, 일본 공개 특허 제2004-317126호에 개시된 장치가 알려져 있다.
상기 장치에 있어서, 검사 대상물 표면에 레이저 슬릿광을 조사하고, 조사된 레이저 슬릿광의 영상을 적절한 촬상 장치로 촬상하며, 얻어진 영상을 광 절단법에 따라 해석하여 검사 대상물 표면의 높이에 관한 정보를 취득하고, 얻어진 높이 정보에 근거하여 검사 대상물의 표면에 존재하는 상처나 결손 등을 검출하며, 또한, 검사 대상물의 체적을 산출한다.
그러나, 전술한 광 절단법을 채용한 검사에 있어서, 레이저 슬릿광을 한쪽 방향에서만 촬상하면, 검사 대상물의 표면 형상에 따라서는 촬상 방향의 사각이 되는 장소가 생기는 경우가 있어서, 해당 사각부에서는 레이저 광의 반사광을 수광할 수 없기 때문에 정확한 검사를 할 수 없는 문제가 있다. 도 18에 도시한 바와 같이, 검사 대상물(K)의 표면에 결손부(200)가 있을 경우, 카메라(201)가 실선으로 나타내는 방향에서 촬상하면 사각부(200a)가 생기지만, 그 반대 방향(2점 쇄선으로 나타내는 방향)에서 촬상하면 이러한 사각부(200a)를 촬상할 수 있다.
이를 고려하여, 본 출원인의 일본 특허 출원 제2009-281084호 및 일본 특허 출원 제2009-281087호에 있어서, 검사 대상물의 반송 방향의 전후 방향에서 상기 레이저 슬릿광을 촬상하는 외관 검사 장치를 제안하였다.
상기 외관 검사 장치는, 도 19에 도시한 바와 같이, 영상 촬상 장치(110)로서, 직선 반송부(100)의 반송로 상방에 배설된 에리어 센서 카메라(111), 띠 형태의 슬릿광을 조사하는 슬릿광 조사기(112), 이와 같은 슬릿광 조사기(112)로부터 조사된 슬릿광을 에리어 센서 카메라(111)의 직하 방향으로 이끌고, 직선 반송부(100)에 의해 반송되는 검사 대상물(K)에 조사시키는 미러(113, 114), 검사 대상물(K)에 조사된 슬릿광의 반사광을 직선 반송부(100)의 반송 방향(화살표 방향)의 하류 측으로부터 수광하고, 에리어 센서 카메라(111)로 이끄는 미러(115, 116), 그리고 동일한 반사광을 반송 방향 상류 측에서 수광하고, 에리어 센서 카메라(111)로 이끄는 미러(117, 118)를 구비한다.
상기 에리어 센서 카메라(111)는 복행 복열로 배치된 소자로 구성되는 에리어 센서를 구비하고 있으며, 상기 2개의 반사광은, 도 20에 도시한 바와 같이, 에리어 센서의 영역(일전 쇄선으로 나타내는 영역) 내에서, 그 래스터 방향과 직교하는 방향으로 늘어선 상태(세로로 나란한 상태)로, 해당 에리어 센서 위에 결상된다. 한편, 각각 2장의 미러들을 이용하여 반송 방향의 상류 측과 하류 측에서 촬상하는 종래의 장치로는 그 영상은 필연적으로 상기 세로로 나란한 상태로 에리어 센서 위에 결상된다.
또한, 에리어 센서 카메라(111)는 미리 설정한 폭의 라인 분에 대해서, 예를 들면, 도 20에 나타내는 A 및 B의 라인 폭에 대해서, 래스터 방향으로 주사하면서, 각각 휘도 데이터를 갖는 복행 복열의 화소로 이루어지는 영상 데이터로서 출력하고, 출력된 영상 데이터가 검사에 사용된다.
상술한 외관 검사 장치에 있어서, 고정밀도의 검사를 하기 위해서는 에리어 센서 카메라(111)의 셔터 속도를 빠르게 하여, 검사 대상물의 반송 방향을 따라 높은 밀도로 슬릿광의 영상을 얻을 필요가 있다.
그러나 상술한 종래의 외관 검사 장치로는, 조사된 슬릿광의 영상을 비스듬한 방향에서 촬상하는 관계상 촬상 영상은 라인 형상이 아니고, 소정 폭의 밴드 형상의 영역을 가지고 있으며, 특히, 전후 2방향으로부터의 반사광이, 세로로 나란한 상태로 에리어 센서 카메라(111)에 결상되는 것에서, 도 20에 도시한 바와 같이, A 및 B의 2개의 라인 폭 분에 대해서, 그 래스터 방향의 데이터를 출력할 필요가 있고, 이 때문에, 영상 데이터 출력에 필요한 시간이 길어지는 것에서, 고정밀도의 검사를 실시하기 위해 필요한 빠른 셔터 속도를 얻을 수 없다고 하는 문제가 있었다.
본 발명은, 전술한 문제점을 고려하여, 광 절단법을 이용한 소위 삼차원 외관 검사 장치에서, 에리어 센서 카메라의 셔터 속도를 빠르게 할 수 있고, 그 결과로, 고정밀도의 검사를 실현할 수 있는 외관 검사 장치의 제공하는 것을 그 목적으로 한다.
상기 과제를 해결하기 위하여, 본 발명에 따르면,
소정의 반송면을 따라 검사 대상물을 반송하는 반송 수단과 해당 반송 수단에 의해 반송되는 상기 검사 대상물의 표면 형상을 검사하는 표면 형상 검사 수단을 구비하는 외관 검사 장치가 제공된다.
상기 표면 형상 검사 수단은, 상기 반송 수단의 근방에 배설되며, 띠 형태의 슬릿광을 상기 반송면에 대하여 수직으로, 또한 그 조사 라인이 상기 검사 대상물의 반송 방향과 직교하도록 상기 검사 대상물 표면에 조사하는 슬릿광 조사부와,
상기 검사 대상물 표면에 조사된 슬릿광의 영상을 촬상하는 에리어 센서 카메라와,
상기 검사 대상물 표면에 조사된 슬릿광의 반사광을, 상기 검사 대상물의 반송 방향을 따른 하류 측에서 수광하여 상기 에리어 센서 카메라로 이끄는 광학 경로를 갖는 제1 광학 기구 및, 상기 반사광을 상기 반송 방향을 따른 상류 측에서 수광하여 상기 에리어 센서 카메라로 이끄는 광학 경로를 갖는 제2 광학 기구와,
상기 에리어 센서 카메라에 의해 촬상된 2개의 영상을 근거로, 상기 검사 대상물 표면의 형상 특징을 인식하여 해당 형상에 관한 적부를 판정하는 형상 판정부를 구비한다.
상기 제1 광학 기구 및 상기 제2 광학 기구의 각 광학 경로는, 상기 각 반사광을 상기 에리어 센서 카메라의 결상부에서 옆으로 나란하게 결상시키는 경로가 된다.
본 발명의 실시예들에 따른 외관 검사 장치에 의하면, 상기 반송 수단에 의해 반송되는 검사 대상물의 표면 형상이, 상기 표면 형상 검사 수단에 의해 검사된다.
즉, 우선, 반송되는 검사 대상물의 표면에, 슬릿광 조사부로부터 슬릿광이 조사된다. 조사된 슬릿광은 그 반사광이, 반송 방향의 하류 측에서 수광하는 제1 광학 기구와 상류 측에서 수광하는 제2 광학 기구의 각 광학 경로를 지나고, 에리어 센서 카메라로 이끌려 그 결상부의 미리 설정된 영역 내에서 옆으로 나란하게 결상된다.
또한, 에리어 센서 카메라는 상기 설정 영역 내에 결상된 영상에 관한 데이터를 소정의 셔터 간격마다 순차적으로 출력한다. 한편, 검사 대상물의 이동에 따라, 그 표면에 조사되는 슬릿광의 위치는 벗어나지만, 에리어 센서 카메라는 적어도 검사 대상물의 전 표면에 관한 상기 슬릿광의 영상 데이터를 상기 형상 판정부를 향하여 출력한다.
상기 형상 판정부에서는 에리어 센서 카메라로부터 수신한 검사 대상물 1개분에 관한 2개의 영상 데이터에 근거하여, 해당 검사 대상물의 표면 형상에 관하여 그 적부를 판정한다. 다시 말해, 이러한 형상 판정부는, 우선, 수신한 2개의 영상 데이터에 근거하여, 각각 광 절단법에 의해 검사 대상물 표면의 삼차원 형상에 관련되는 데이터를 산출하고, 이어서, 산출한 2개의 데이터를 합성한 후, 이 합성 데이터에 근거하여, 검사 대상물의 표면 형상에 관한 특징을 인식하고, 인식한 특징으로부터 그 형상에 관한 적부, 예를 들면, 결손의 유무나 각인이 첨부되어 있을 경우에는 그 양부(良否)에 대하여 판정한다.
본 발명에 따른 외관 검사 장치에 의하면, 제1 광학 기구 및 제2 광학 기구의 각 광학 경로를 이들을 경유하여 에리어 센서 카메라로 이끌어지는 반사광이 그 결상부에서 옆으로 나란하게 결상되는 경로로 하기 때문에, 결상부의 소정의 밴드 폭 영역 내에 2개의 상이 결상되며, 이에 따라 해당 밴드 폭의 데이터를 출력하는 것으로, 상기 2개의 영상 데이터를 동시에 출력할 수 있다.
상술한 바와 같이, 본 발명에 의하면, 2개의 영상 데이터를 동시에 출력할 수 있고, 종래의 외관 검사 장치에 비하여 그 출력 시간이 반으로 감소하기 때문에, 에리어 센서 카메라의 셔터 속도를 빠르게 할 수 있고, 나아가 고정밀도의 외관 검사를 실현할 수 있다.
또한, 상기 에리어 센서 카메라에 의해 촬상되는 2개의 영상은 상호간에 있어 상하가 같은 방향을 가지는 것이 상기 형상 판정부에서 상하 반전 처리를 할 필요가 없고, 신속한 처리를 할 수 있다고 하는 관점에서 바람직하다.
상기 상하가 같은 방향인 영상을 촬상하기 위해서는, 상기 제1 광학 기구 및 제2 광학 기구를,
상기 반송 방향과 직교하면서 또한 상기 반송면과 평행한 제1축 축 방향을 따라 배설된 반사면을 가지며, 상기 검사 대상물 표면에 조사된 슬릿광의 반사광을 상기 반사면에 수광하여 반사하는 제1 미러와,
상기 반송면과 직교하는 제2 축의 축 방향을 따라 배설된 반사면을 가지며, 상기 제1 미러에 의해 반사된 광을 수광하여 반사하는 제2 미러와,
상기 반송 방향을 따라 배설된 반사면을 가지며, 상기 제2 미러에 의해 반사된 광을 수광하여 반사하고, 해당 반사광을 상기 에리어 센서 카메라로 인도하는 제3 미러, 이러한 3개의 미러들로 구성하는 것이 적절하다.
이 경우, 제1 광학 기구 및 제2 광학 기구의 각 제1 미러를 각기 같은 앙각의 반사광을 수광하여 구성하는 것이 바람직하다. 이에 따라, 양쪽 영상에 의해 얻을 수 있는 높이 정보가 일치하게 되고, 이로 인하여 추후 보정 처리 등이 불필요하게 되며, 보다 신속하면서 동시에 정확한 검사를 수행할 수 있다.
또한, 상기 제1 광학 기구 및 상기 제2 광학 기구는, 상기 제1축과 평행한 축 주변에 상기 제1 미러를 회전시키는 제1 각도 조정부와, 상기 제2 축과 평행한 축 주변에 상기 제2 미러를 회전시키는 제2 각도 조정부를 각기 구비하는 것이 바람직하다.
상기 제1 미러 및 제2 미러의 각 반사면의 각도를 조정함에 따라, 상기 2개 반사광이 상기 에리어 센서 카메라에 옆으로 나란하게 결상되는 세로 방향 위치를 양자 간에서 일치시킬 수 있고, 그 결과, 상기 형상 판정부에서 데이터 처리를 신속히 처리하는 것이 가능해진다.
상술한 바와 같이, 본 발명에 의하면, 에리어 센서 카메라로부터 2개의 영상 데이터를 출력하는 시간을 종래의 외관 검사 장치에 비해 반으로 줄일 수 있기 때문에, 해당 에리어 센서 카메라의 셔터 속도를 빠르게 할 수 있고, 그 결과, 고해상도의 영상 데이터를 얻을 수 있으며, 고정밀도의 외관 검사를 실현할 수 있다.
도 1은 본 발명의 일 실시예에 따른 외관 검사 장치를 나타내는 정면도이다.
도 2는 본 발명의 실시예에 따른 형상 판정부의 구성을 나타내는 블록도이다.
도 3은 도 1의 A-A 방향을 따른 단면도이다.
도 4는 본 발명의 실시예에 따른 영상 촬상부를 나타내는 정면도이다.
도 5는 도 4에 도시한 영상 촬상부의 우측면도이다.
도 6은 도 4에 도시한 영상 촬상부의 평면도이다.
도 7은 본 발명의 실시예에 따른 슬릿광이 조사되는 형태를 나타내는 설명도이다.
도 8(a) 및 도 8(b)는 도 7에 도시한 슬릿광을 검사 대상물의 반송 전후 방향에서 바라본 상태를 가리키는 설명도이다.
도 9는 본 발명의 실시예에 따른 에리어 센서 카메라에 결상되는 영상을 나타내는 설명도이다.
도 10은 본 발명의 실시예에 따른 제1 광학 기구 및 제2 광학 기구의 각 미러의 각도를 조정하는 형태를 설명하기 위한 설명도이다.
도 11은 본 발명의 실시예에 따른 제1 광학 기구 및 제2 광학 기구의 각 미러의 각도를 조정하는 형태를 설명하기 위한 설명도이다.
도 12는 본 발명의 실시예에 따른 제1 광학 기구 및 제2 광학 기구의 각 미러의 각도를 조정하는 형태를 설명하기 위한 설명도이다.
도 13은 본 발명의 실시예에 따른 제1 광학 기구 및 제2 광학 기구의 각 미러의 각도를 조정하는 형태를 설명하기 위한 설명도이다.
도 14는 본 발명의 실시예에 따른 휘도 데이터 변환 처리부에 있어서의 처리를 설명하기 위한 설명도이다.
도 15는 본 발명의 실시예에 따른 휘도 데이터 변환 처리부에 있어서의 처리를 설명하기 위한 설명도이다.
도 16(a) 내지 도 16(c)는 본 발명의 실시예에 따른 영상 합성 처리부에 있어서의 처리를 설명하기 위한 설명도이다.
도 17(a) 내지 도 17(c)는 본 발명의 실시예에 따른 형상 특징 추출부에 있어서의 처리를 설명하기 위한 설명도이다.
도 18은 종래의 영상 촬상에 관한 설명도이다.
도 19는 종래의 영상 촬상 장치를 나타내는 정면도이다.
도 20은 종래의 영상 촬상 장치에 의해 촬상되는 영상을 나타내는 설명도이다.
도 2는 본 발명의 실시예에 따른 형상 판정부의 구성을 나타내는 블록도이다.
도 3은 도 1의 A-A 방향을 따른 단면도이다.
도 4는 본 발명의 실시예에 따른 영상 촬상부를 나타내는 정면도이다.
도 5는 도 4에 도시한 영상 촬상부의 우측면도이다.
도 6은 도 4에 도시한 영상 촬상부의 평면도이다.
도 7은 본 발명의 실시예에 따른 슬릿광이 조사되는 형태를 나타내는 설명도이다.
도 8(a) 및 도 8(b)는 도 7에 도시한 슬릿광을 검사 대상물의 반송 전후 방향에서 바라본 상태를 가리키는 설명도이다.
도 9는 본 발명의 실시예에 따른 에리어 센서 카메라에 결상되는 영상을 나타내는 설명도이다.
도 10은 본 발명의 실시예에 따른 제1 광학 기구 및 제2 광학 기구의 각 미러의 각도를 조정하는 형태를 설명하기 위한 설명도이다.
도 11은 본 발명의 실시예에 따른 제1 광학 기구 및 제2 광학 기구의 각 미러의 각도를 조정하는 형태를 설명하기 위한 설명도이다.
도 12는 본 발명의 실시예에 따른 제1 광학 기구 및 제2 광학 기구의 각 미러의 각도를 조정하는 형태를 설명하기 위한 설명도이다.
도 13은 본 발명의 실시예에 따른 제1 광학 기구 및 제2 광학 기구의 각 미러의 각도를 조정하는 형태를 설명하기 위한 설명도이다.
도 14는 본 발명의 실시예에 따른 휘도 데이터 변환 처리부에 있어서의 처리를 설명하기 위한 설명도이다.
도 15는 본 발명의 실시예에 따른 휘도 데이터 변환 처리부에 있어서의 처리를 설명하기 위한 설명도이다.
도 16(a) 내지 도 16(c)는 본 발명의 실시예에 따른 영상 합성 처리부에 있어서의 처리를 설명하기 위한 설명도이다.
도 17(a) 내지 도 17(c)는 본 발명의 실시예에 따른 형상 특징 추출부에 있어서의 처리를 설명하기 위한 설명도이다.
도 18은 종래의 영상 촬상에 관한 설명도이다.
도 19는 종래의 영상 촬상 장치를 나타내는 정면도이다.
도 20은 종래의 영상 촬상 장치에 의해 촬상되는 영상을 나타내는 설명도이다.
이하, 본 발명의 예시적인 실시예들에 대하여 첨부된 도면들을 참조하여 설명한다.
도 1에 도시한 바와 같이, 본 발명의 실시예에 따른 외관 검사 장치(1)는, 검사 대상물(K)을 정렬하여 공급하는 공급부(3), 공급된 검사 대상물(K)을 직선 반송하는 직선 반송부(10), 그리고 반송되는 검사 대상물(K)의 표면 형상을 검사하여 선별하는 표면 형상 검사부(20)를 구비한다.
또한, 본 발명의 실시예에 있어서의 검사 대상물(K)로서는, 의약품(정제, 캡슐 등), 식품, 기계 부품이나 전자 부품 등을 예시할 수 있지만, 이들에 한정되는 것은 아니다.
이하, 상술한 각 구성 요소(부)에 대하여 상세하게 설명한다.
공급부
상기 공급부(3)는 복수의 검사 대상물(K)이 투입되는 호퍼(4), 호퍼(4)의 하단부에서 배출되는 검사 대상물(K)에 진동을 부여해서 전진시키는 진동 피더(5), 진동 피더(5)의 반송 끝단으로부터 배출되는 검사 대상물(K)을 미끄러지게 하여 떨어뜨리는 슈트(6), 수평 회전하고, 슈트(6)로부터 공급된 검사 대상물(K)을 일렬로 정렬해서 배출하는 정렬 테이블(7), 수직면 내에서 회전하는 원반 형상의 부재를 가지고, 상기 정렬 테이블(7)로부터 배출된 검사 대상물(K)을 이러한 원반 형상 부재의 외주면에 흡착하여 반송하는 회전 반송부(8)로 이루어지며, 복수의 검사 대상물(K)을 일렬로 정렬시켜 순차적으로 상기 직선 반송부(10)로 받아 넘긴다.
직선
반송부
도 3은 도 1에 있어서의 A-A 방향을 따른 일부 단면도이며, 도 3에 도시한 바와 같이, 상기 직선 반송부(10)는 소정의 간격으로 대향하도록 배치된 측판(11, 12), 그리고 이러한 측판(11, 12)의 표면에 형성된 가이드 홈으로 안내되며, 해당 가이드 홈을 따라 주행하는 엔드리스의 환형 벨트(13, 14)를 포함한다.
측판(11, 12)에 의해 끼워진 공간은 그 상부가 개방되도록 측판(11, 12) 및 다른 부재(도시되지 않음)에 의해 폐쇄되며, 도시되지 않은 진공 펌프에 의해 부압 유지된다.
이에 따라, 상기 공간 내부가 부압 유지되어, 가이드 홈을 따라 주행하는 환형 벨트(13, 14) 사이에 부압에 의한 흡인력이 생기고, 검사 대상물(K)이 이러한 환형 벨트(13, 14) 상에 위치하면 상기 흡인력에 의해 환형 벨트(13, 14) 상에 흡인 및 흡착되어, 환형 벨트(13, 14)의 주행에 따라 동일한 주행 방향으로 반송된다.
표면 형상 검사부
상기 표면 형상 검사부(20)는 영상 촬상부(21), 형상 판정부(50) 및 선별부(60)로 구성된다.
도 4에 도시한 바와 같이, 영상 촬상부(21)는 상기 직선 반송부(10)의 반송로 상방에 배설된 에리어 센서 카메라(22), 띠 형상의 슬릿광(L1)을 조사하는 슬릿광 조사기(23), 이러한 슬릿광 조사기(23)로부터 조사된 슬릿광(L1)을 직선 반송부(10)의 반송로 위로 조사시키는 미러(24, 25), 슬릿광(L1)의 반사광(L2)을 직선 반송부(10)의 반송 방향(화살표 방향)의 하류측으로부터 수광하여 에리어 센서 카메라(22)로 이끌어 넣는 제1 광학 기구(30), 그리고 동일한 반사광(L3)을 반송 방향 상류측으로부터 수광하여 에리어 센서 카메라(22)로 이끌어 넣는 제2 광학 기구(40)를 포함한다.
슬릿광 조사기(23) 및 미러(24, 25)는 상기 슬릿광(L1)을 그 조사 라인이 직선 반송부(10)에 의해 반송되는 검사 대상물(K)의 반송 방향(화살표 방향)에 대하여 직교하도록 수직 하방으로 조사한다. 해당 슬릿광(L1)이 검사 대상물(K)의 표면에 조사된 상태를 도 7에 도시한다.
도 4 내지 도 6에 도시한 바와 같이, 상기 제1 광학 기구(30) 및 제2 광학 기구(40)는, 각기 제1 미러(31, 41) 및 제2 미러(32, 42)를 구비하며, 각각 공유의 미러로서 제3 미러(35)를 구비한다. 한편, 이와 같은 제3 미러는 예시적인 실시예와 같이 하나의 일체의 미러로 된 형태일 수도 있으며, 분리된 2개의 미러로 된 형태일 수도 있다.
*상기 제1 미러(31)는 상기 직선 반송부(10)의 반송 방향과 직교하면서, 또한 그 반송면(환형 벨트(13, 14)에 의해 형성되는 반송면)과 평행한 제1 축(가상 축)의 축 방향을 따라 설치된 반사면(31a)을 포함하며, 상기 검사 대상물(K)의 표면에 조사된 슬릿광(L1)의 반사광(L2)을 상기 하류 측으로부터 해당 반사면(31a)에 수광하여 반사하도록 구성되어 있다.
상술한 바와 동일하게, 상기 제1 미러(41)도 상기 가상의 제1 축의 축 방향을 따라 배설된 반사면(41a)을 포함하고, 상기 검사 대상물(K)의 표면에 조사된 슬릿광(L1)의 반사광(L3)을 상기 상류 측에서 해당 반사면(41a)으로 수광하여 반사하도록 구성된다.
이와 같은 제1 미러(31, 41)는 각기 상기 가상의 제1 축에 따른 회전축(3lb, 4lb)을 구비하여 이러한 회전축(3lb, 4lb)을 그 축 둘레로 회전시킴에 따라, 수평면(水平面)에 대한 상기 반사면(31a, 41a)의 각도를 조정할 수 있게 되어 있으며, 이와 같은 회전축(3lb, 4lb)이 각도 조정부로서 기능한다.
또한, 상기 제2 미러(32)는 상기 반송면과 직교하는 제2 축(가상축)의 축 방향을 따라 배설된 반사면(32a)을 가지며, 상기 제1 미러(31)에 의해 반사된 빛을 해당 반사면(32a)으로 수광하여 상기 제3 미러(35)를 향하여 반사하도록 배치되어 있다.
전술한 바와 동일하게, 상기 제2 미러(42)도 상기 가상의 제2 축의 축 방향을 따라 배설된 반사면(42a)을 가지며, 상기 제1 미러(41)에 의해 반사된 빛을 해당 반사면(42a)으로 수광하여 상기 제3 미러(35)를 향하여 반사하도록 배치된다.
이러한 제2 미러(32, 42)는 각각 상기 가상의 제2 축을 따른 회전축(32b, 42b)을 구비하며, 이 회전축(32b, 42b)을 그 축 둘레로 회전시켜 수직면에 대한 상기 반사면(32a, 42a)의 각도를 조정할 수 있게 되어 있으며, 이와 같은 회전축(32b, 42b)이 각도 조정부로서 기능한다.
상기 제3 미러(35)는 상기 반송 방향을 따라 배설된 반사면(35a)을 가지고, 상기 제2 미러(32, 42)에 의해 각각 반사된 빛을 해당 반사면(35a)으로 옆으로 나란한 상태로 수광하여 해당되는 옆으로 나란한 상태의 반사광을 상기 에리어 센서 카메라(22)로 인도한다.
상기 에리어 센서 카메라(22)는 복행 복열에 배치된 소자로 구성되는 에리어 센서를 구비하고 있으며, 상기 하류 측에서 수광되는 반사광(L2) 및 상류 측에서 수광되는 반사광(L3)이 각각 상기 제1 광학 기구(30)의 광학 경로 및 상기 제2 광학 기구(40)의 광학 경로를 지나서 해당 에리어 센서 카메라(22) 안으로 옆으로 나란한 상태로 인도되어, 그 에리어 센서 위에 옆으로 나란한 상태로 결상된다.
도 8(a) 및 도 8(b)는 슬릿광(L1)이 조사된 검사 대상물(K)을 상기 하류 측과 상류 측의 각각 육안으로 위쪽에서 비스듬하게 바라본 도면들을 도시한 것이다. 도시된 바와 같이, 검사 대상물(K)의 표면에서 반사광(L2s, L3s)은 기면(基面)으로부터의 반사광(L2b, L3b)에서 위쪽으로 쉬프트된 상태로 되어 있다. 이는 보는 방향이 슬릿광(L1)의 조사 방향과 교차하는 것에 기인하는 것으로서, 소위 광 절단법이라고 불리며, 대상표면에 조사된 슬릿광은 해당 대상표면의 높이에 따라 기면에 조사된 슬릿광에서 위쪽으로 쉬프트되어 보인다. 에리어 센서 카메라(22)에는 이러한 영상이 해당 에리어 센서 위에 결상된다.
상기 에리어 센서 카메라(22)에 의해 촬상되는 영상의 일예를 도 9에 나타낸다. 도 9는 상기 제1 광학 기구(30)의 광학 경로에 의해 인도되는 반사광(L2s, L2b)과 상기 제2 광학 기구(40)의 광학 경로에 의해 인도되는 반사광(L3s, L3b)이 에리어 센서(일점 쇄선으로 나타내는 영역)에 결상된 상태를 나타낸다.
또한, 에리어 센서는 래스터 방향으로 Xn열과 이와 수직한 방향으로 Ym행의 소자를 가지고 있으며, 상기 반사광(L2s, L2b)과 반사광(L3s, L3b)은 Yh∼Yl행(이하, 라인이라 한다)의 범위 내에서 래스터 방향으로 옆으로 나란하게 결합되도록 되어 있다. 또한, 결상되는 양 영상은 서로 좌우 반전된 상으로 되어 있다.
그리고 에리어 센서 카메라(22)는 소정의 셔터 속도 간격으로 상기 Yh∼Yl 라인 내 소자의 데이터를 래스터 방향으로 순차적으로 주사하여, 각 소자에 의해 검출된 휘도 데이터를 읽어내고, 도 9에 도시한 바와 같이, X방향의 화소 위치(Xi)와 그 열 내에서 최대 휘도를 갖는 화소 위치(Yj)로 이루어지는 위치 데이터(Xi, Yj)와 그 휘도 데이터를 연관시키는 데이터를 영상 데이터로서 형상 판정부(50)로 송신한다. 이에 따라, 모든 소자에 대해서 그 휘도 데이터를 송신할 경우에 비하여, 송신하는 데이터양이 적어져 그 송신 속도나 형상 판정부(50)에서의 처리 속도를 향상시킬 수 있으며, 신속한 처리를 할 수 있다.
또한, 에리어 센서 카메라(22)는 적어도 검사 대상물(K)의 표면에 레이저광(L1)이 조사되고 있는 동안의 상기 영상 데이터를 셔터마다 얻어진 프레임 영상으로서 상기 형상 판정부(50)로 송신한다.
그러나 상술한 바와 같이, 대상 표면에 조사된 슬릿광은, 해당 대상 표면의 높이에 따라 기면에 조사된 슬릿광에서 위쪽으로 쉬프트되어 보이지만, 이러한 쉬프트 양은 보는 각도(앙각)따라 다르다.
따라서 상기 제1 미러(31, 41)는 그 상기 앙각이 같은 각도가 되도록 상기 슬릿광(L1)의 반송로 위로의 조사 위치로부터 각각 전후 방향으로 같은 거리만큼 이격되면서, 또한 상방의 높이 위치가 같은 높이 위치가 되도록 배설되는 것이 바람직하다.
이와 같이 하면, 에리어 센서 카메라(22)에 의해 촬상되는 전후 방향 2개의 영상 간에서 이에 포함되는 높이 정보가 동일한 것이 되도록 하기 위하여 후 공정에서의 보정 처리가 불필요하게 된다.
또한, 에리어 센서 카메라(22)에 의해 촬상되는 두 영상은 상기 열 방향에 있어서의 위치가 같은 위치인 쪽이 후 공정에서의 처리상 바람직하다. 이를 위하여, 예시적인 실시예에서는, 검사를 시작하기 전에 도 10 내지 도 12에 나타내는 방법에 의해 에리어 센서 카메라(22)에 결상되는 2개의 상의 위치를 조정하고 있다.
즉, 도 10에 도시한 바와 같이, 우선, 평판 형상의 기판 상에 반원통 형상의 돌기를 형성한 테스트 피스(T)를 돌기부의 길이 방향이 상기 반송 방향을 따르도록 상기 반송 노상로 위에 올려서 설치한 후, 슬릿광 조사기(23)로부터 슬릿광을 조사한다.
다음으로, 이러한 상태에서, 제1 미러(31)의 회전축(3lb)과 제1 미러(41)의 회전축(4lb) 중에서 어느 한쪽 또는 양쪽을 회전시켜서, 도 12에 도시한 바와 같이, 수평면에 대한 각 반사면(31a, 41a)의 각도를 조정하고, 제2 미러(32, 42)에 의해 반사된 후에 제3 미러(35)에 의해 수광되는 반사광(L2, L3)의 수광 높이의 위치가 상호간에서 같은 높이 위치가 되도록 조정하면서, 동시에 도 13에 도시한 바와 같이, 이들 반사광(L2, L3)이 상기 에리어 센서의 Yh라인∼Yl라인 사이에 결상되도록 조정한다.
이어서, 도 11에 도시한 바와 같이, 제2 미러(32)의 회전축(32b)과 제2 미러(42)의 회전축(42b) 중에서 어느 한쪽 또는 양쪽을 회전시켜서, 수직면에 대한 각 반사면(32a, 42a)의 각도를 조정하며, 제3 미러(35)에서의 반사광(L2, L3)의 수평방향의 수광 위치를 조정하고, 해당 반사광(L2, L3)이 X방향으로 밀려나오는 일없이 에리어 센서 위에 결상되도록 한다.
상술한 조정에 따라, 도 13에 도시한 바와 같이, 반사광(L2, L3)이 상기 에리어 센서 상에서 Yh라인∼Yl라인 사이에, 또한 X방향으로 밀려나오지 않고, 더욱이 상호간 동일한 위치가 되도록 결상된다.
상기 형상 판정부(50)는, 도 2에 도시한 바와 같이, 영상 기억부(51), 휘도 데이터 변환 처리부(52), 영상합성 처리부(53), 형상 특징 추출 처리부(54), 형상판정 처리부(55) 및 선별 제어부(56)로 이루어진다.
영상 기억부(51)는 상기 영상 촬상부(21)로부터 수신한 영상 데이터(프레임 영상)를 각기 기억한다.
휘도 데이터 변환 처리부(52)는 영상 기억부(51)에 저장된 프레임 영상을 읽어내고, 후술하는 처리를 수행하여 높이 성분에 유래하는 위치 데이터를 그 높이 성분에 따라 설정한 휘도 데이터로 변환하며, 높이 성분이 휘도 데이터로 표현된 새로운 영상 데이터를 생성한다.
구체적으로, 휘도 데이터 변환 처리부(52)는 우선, 프레임 영상 데이터를 순차적으로 읽어내고, 각 프레임 영상에 대하여, 도 14에 도시한 바와 같이, (a)의 영역에 대해서는 래스터 방향으로 주사하며, 휘도 데이터의 존재하는 화소 위치(Xi, Yj)를 검출하고, 도 15에 도시한 바와 같이, 높이 성분에 상당하는 화소 위치에 관련되는 데이터(Yj)를 256계조의 휘도 데이터로 변환하여 화소 위치(Xi)와 휘도 데이터로 이루어지는 영상 데이터를 생성한다.
전술한 바와 동일하게, (b)의 영역에 대해서는 상기 래스터 방향과 반대 방향으로 주사하여 동일한 변환 처리를 수행하고, 화소 위치(Xi)와 휘도 데이터로 이루어지는 영상 데이터를 생성한다.
그리고 순차적으로 모든 프레임 영상에 대해서 변환하여, (a) 및 (b) 각 영역에 대하여, 각각 새로운 영상 데이터(2차원 평면의 위치 데이터와 각 위치에서의 높이 정보를 나타내는 휘도 데이터로 이루어지는 영상 데이터(이하, "휘도 영상 데이터"라고 한다)를 생성한다.
또한, 부연 설명할 필요 없이, 상기 영역 (a) 및 (b)는 상기 2방향에서 촬상된 레이저 광(L1)의 영상이 각각 존재하는 영역이며, 상술한 처리에 의하여 해당 2방향의 영상에 대해서 각기 휘도 영상 데이터가 생성된다.
또한, 도 14에 있어서의 점선은 기면(基面)에 조사된 슬릿광의 영상이며, 이후 처리에서는 불필요하므로 해당 영상 데이터에 대해서는 상술한 처리에서는 무시하고 있다.
또한, 2개의 영상은 그 상호간에서 좌우 반전된 것으로 되어 있지만, 상술한 바와 같이, 2개의 영상 간에서 그 주사 방향을 반대로 하는 것으로서 변환된 양쪽 영상을 상호간에서 정영상으로 할 수 있으며, 후 공정에서의 반전 처리가 불필요하게 된다.
상기 영상 합성 처리부(53)는 상기 휘도 데이터 변환 처리부(52)에 의해 생성된 2방향의 휘도 영상 데이터를 합성하고, 하나의 휘도 영상 데이터로 하는 처리를 수행한다. 검사 대상물(K)을 반송 방향 하류 측의 사선의 상방에서 촬상할 경우, 검사 대상물(K) 후부의 반사광이 약하고 반송 방향 상류 측의 사선 상방에서 촬상할 경우에는, 검사 대상물(K) 앞부분의 반사광이 약해지기 때문에, 이들 부분에 대한 영상 데이터가 부정확한 것이 된다.
검사 대상물(K)을 그 반송 방향 하류 측에서 촬상하여 얻어진 영상을 상기 휘도 데이터 변환 처리부(52)에 의해 변환된 영상을 도 16(a)에 나타내며, 동일하게 반송 방향 상류 측에서 촬상한 영상의 변환 영상을 도 16(b)에 나타낸다. 도 16(a)에서는 영상의 상부(흰색 선으로 표시한 부분)가 부정확하게 되어 있으며, 도 16(b)에서는 영상의 하부(흰색 선으로 표시한 부분)가 부정확하게 되어 있다. 여기서, 이들 2개의 영상을 합성, 예를 들면, 상호간에서 데이터에 결함이 있을 경우는, 존재하는 쪽 데이터를 사용하며, 서로 데이터가 존재할 경우에는, 그 평균치를 사용하는 것에 따라 도 16(c)에 도시한 바와 같은 검사 대상물(K)의 표면 전면이 정확하게 나타난 영상을 얻을 수 있다.
상기 형상 특징 추출부(54)는 상기 영상 합성 처리부(53)에 의해 생성된 합성 영상에 근거하여 형상 특징을 추출하는 처리를 한다. 구체적으로, 합성 영상을 소위 평활화 필터에 의해 평활화 처리하고, 얻어진 평활화 영상 데이터와 상기 합성 영상 데이터와의 차분(差分)을 차지한 특징 영상 데이터를 생성한다.
*합성 영상은 높이 성분을 휘도 데이터로 변환한 것으로, 휘도는 검사 대상물(K) 표면의 높이를 나타내는 것이지만, 합성 영상으로부터 평균화 영상을 빼는 것에 따라 표면의 높이 방향의 변화량이 큰 곳이 강조된 영상을 얻을 수 있다. 예를 들면, 도 17(a) 및 도 17(b)에 도시한 바와 같이, 합성 영상(도 17(a))으로부터 평활화 영상(도 17(b))을 빼는 것으로, 도 17(c)에 도시한 바와 같이, 검사 대상물(K)의 외주 윤곽과 표면(A면)에 새겨진 숫자 "678"이 농색부로서 강조된다.
상기 형상 판정 처리부(55)는 상기 형상 특징 추출부(54)에 의해 생성된 표면 형상에 관한 특징 영상에 근거하여, 이에 적정한 표면 형상에 관한 데이터를 비교하여 각인의 적부나 결함의 유무 등의 그 좋고 나쁨을 판별한다.
상기 선별 제어부(56)는 상기 형상 판정 처리부(55)에서 판정 결과를 수신하고, 불량의 판정 결과를 수신하면, 해당 불량이라고 판정된 검사 대상물(K)이 상기 선별부(60)에 도달하는 타이밍으로 해당 선별부(60)로 선별 신호를 송신한다.
상기 선별부(60)는 직선 반송부(10)의 반송 종단에 마련된 것으로서, 도시되지 않은 선별 회수 기구와 정상품 회수실 및 불량품 회수실을 구비하고, 상기 선별 제어부(56)로부터 선별 신호를 수신할 때, 상기 선별 회수 기구를 구동하며, 직선 반송부(10)의 반송 종단으로 반송된 검사 대상물(K) 중에서 정상품을 정상품 회수 실에 회수하고, 불량품을 불량품 회수실로 회수한다.
*상술한 구성을 갖는 본 발명의 실시예에 따른 외관 검사 장치(1)에 의하면, 우선, 검사 대상물(K)이 직선 반송부(10)에 의해 반송되는 사이에, 그 표면에 조사되는 슬릿광(L1)의 영상이 영상 촬상부(21)에 의해 촬상되어 촬상된 영상 데이터가 영상 촬상부(21)로부터 형상 판정부(50)로 송신된다.
이어서, 촬상된 영상에 근거하여 형상 판정부(50)에서 검사 대상물(K) 표면의 형상에 관한 적부가 자동적으로 검사되고, 검사 결과에 따라 선별부(60)에 의해 정상품과 불량품이 자동적으로 선별된다.
그리고 예시적인 실시예의 외관 검사 장치(1)에 있어서, 슬릿광(L1)의 영상을 촬상할 때, 반송 방향의 하류 측의 제1 광학 기구(30) 및 상류 측의 제2 광학 기구(40)의 양쪽 광학 경로를 지나서 인도되는 각 반사광(L2, L3)이 에리어 센서 카메라(22)의 에리어 센서에 옆으로 나란한 상태로 결상되도록 되어 있으므로, 이러한 2개의 영상 데이터를 1개의 영상에 관한 라인 폭의 분에 대해서 그 래스터 방향으로 주사하여 읽어낼 수 있으며, 종래에 비해 그 출력 시간을 반으로 줄일 수 있다.
따라서 에리어 센서 카메라(22)의 셔터 속도를 종래에 비해 2배의 속도로 할 수 있으며, 이에 따라 고해상도의 영상을 얻을 수 있다는 점에서 고정밀도의 외관 검사를 실현할 수 있다.
또한, 상기 에리어 센서 카메라(22)에 의해 촬상되는 2개의 영상은 상호간에서 상하가 같은 방향으로 되어 있으므로, 형상 판정부(50)에서 상하 반전 처리를 수행할 필요 없이 신속한 처리를 할 수 있다.
또한, 제1 광학 기구(30) 및 제2 광학 기구(40)의 각 제 1미러(31, 41)가 각각 같은 앙각의 반사광(L2, L3)을 수광하도록 구성되어 있으므로, 양쪽 영상에 의해 얻을 수 있는 높이 정보가 일치하게 되기 때문에, 후 보정 처리 등이 불필요하게 되어 보다 신속하면서 동시에 정확한 검사를 할 수 있다.
더욱이, 상기 제1 미러(31, 41)의 각 반사면(31a, 41a) 및 제2 미러(32, 42)의 각 반사면(32a, 42a)의 각 각도를 조정할 수 있도록 되어 있으므로, 상기 2개 반사광(L2, L3)이 상기 에리어 센서 카메라(22)에 결상되는 라인 방향의 위치를 양자간에 일치시킬 수 있고, 상기 형상 판정부(50)에서 위치 보정 등의 보정 처리가 불필요가 되며, 이러한 측면에서 따라 데이터 처리를 신속히 처리하는 것이 가능해진다.
상술한 바에서는, 본 발명의 실시예들에 대해서 설명하였으나, 본 발명이 취할 수 있는 구체적인 형태는 조금도 이것에 한정되는 것이 아니며, 본 발명의 범위를 벗어나지 않는 범위 내에서 다른 형태를 취할 수 있다.
1:외관 검사 장치
10:직선 반송부
20:표면 형상 검사부 21:영상 촬상부
22:에리어 센서 카메라 23:슬릿광 조사기
30:제1 광학 기구 31:제1 미러
32:제2 미러 35:제3 미러
40:제2 광학 기구 41:제1 미러
42:제2 미러 50:형상 판정부
60:선별부
20:표면 형상 검사부 21:영상 촬상부
22:에리어 센서 카메라 23:슬릿광 조사기
30:제1 광학 기구 31:제1 미러
32:제2 미러 35:제3 미러
40:제2 광학 기구 41:제1 미러
42:제2 미러 50:형상 판정부
60:선별부
Claims (4)
- 소정의 반송면을 따라 검사 대상물을 반송하는 반송 수단과 해당 반송 수단에 의해 반송되는 상기 검사 대상물의 표면형상을 검사하는 표면 형상 검사 수단을 구비하는 외관 검사 장치에 있어서,
상기 표면 형상 검사 수단은, 상기 반송 수단의 근방에 배설되며, 띠 형상의 슬릿광을 상기 반송면에 대하여 수직하면서, 그 조사 라인이 상기 검사 대상물의 반송 방향과 직교하도록 상기 검사 대상물 표면에 조사하는 슬릿광 조사부;
상기 검사 대상물 표면에 조사된 슬릿광의 영상을 촬상하는 에리어 센서 카메라;
상기 검사 대상물 표면에 조사된 슬릿광의 반사광을 상기 검사 대상물의 반송 방향을 따른 하류 측에서 수광하여 상기 에리어 센서 카메라로 인도하는 광학 경로를 갖는 제1 광학 기구 및 상기 반사광을 상기 반송 방향에 따른 상류측에서 수광하여 상기 에리어 센서 카메라로 인도하는 광학 경로를 갖는 제2 광학 기구; 및
상기 에리어 센서 카메라에 의해 촬상된 영상에 근거하여 상기 검사 대상물 표면의 형상 특징을 인식하여 해당 형상에 관한 적부를 판정하는 형상 판정부를 구비하며,
상기 제1 광학 기구 및 제2 광학 기구의 각 광학 경로는 상기 각 반사광을 상기 에리어 센서 카메라의 결상부에서 옆으로 나란하게 결상시키는 경로로 되어 있는 것을 특징으로 하는 외관 검사 장치. - 제1항에 있어서,
상기 제1 광학 기구 및 상기 제2 광학 기구는,
상기 반송 방향과 직교하면서 동시에 상기 반송면과 평행한 제1 축의 축 방향을 따라 배설된 반사면을 가지고, 상기 검사 대상물 표면에 조사된 슬릿광의 반사광을 상기 반사면에 수광하여 반사하는 제1 미러;
상기 반송면과 직교하는 제2 축의 축방향을 따라 배설된 반사면을 가지고, 상기 제1 미러에 의해 반사된 광을 수광하여 반사하는 제2 미러; 및
상기 반송 방향을 따라 배설된 반사면을 가지고, 상기 제2 미러에 의해 반사된 광을 수광하여 반사하고, 해당 반사광을 상기 에리어 센서 카메라로 인도하는 제3 미러로 구성되는 것을 특징으로 하는 외관 검사 장치. - 제2항에 있어서,
상기 제1 광학 기구 및 제2 광학 기구의 각 제1 미러는 각기 같은 앙각의 반사광을 수광하도록 구성되어 있는 외관 검사 장치. - 제2항 또는 제3항에 있어서,
상기 제1 광학 기구 및 상기 제2 광학 기구는 상기 제1 축과 평행한 축 주변으로 상기 제1 미러를 회전시키는 제1 각도 조정부; 및
상기 제2 축과 평행한 축 주변으로 상기 제2 미러를 회전시키는 제2 각도 조정부를 각각 구비하는 것을 특징으로 하는 외관 검사 장치.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JPJP-P-2010-116044 | 2010-05-20 | ||
JP2010116044A JP5563372B2 (ja) | 2010-05-20 | 2010-05-20 | 外観検査装置 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020110046346A Division KR102030543B1 (ko) | 2010-05-20 | 2011-05-17 | 외관 검사 장치 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20180011287A true KR20180011287A (ko) | 2018-01-31 |
KR101915498B1 KR101915498B1 (ko) | 2018-11-06 |
Family
ID=44117847
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020110046346A KR102030543B1 (ko) | 2010-05-20 | 2011-05-17 | 외관 검사 장치 |
KR1020180006564A KR101915498B1 (ko) | 2010-05-20 | 2018-01-18 | 외관 검사 장치 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020110046346A KR102030543B1 (ko) | 2010-05-20 | 2011-05-17 | 외관 검사 장치 |
Country Status (5)
Country | Link |
---|---|
US (1) | US8797399B2 (ko) |
EP (1) | EP2388574B1 (ko) |
JP (1) | JP5563372B2 (ko) |
KR (2) | KR102030543B1 (ko) |
CN (1) | CN102253053B (ko) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014168935A (ja) * | 2013-03-05 | 2014-09-18 | Dainippon Printing Co Ltd | 中綴検査装置 |
JP6178138B2 (ja) * | 2013-07-09 | 2017-08-09 | 池上通信機株式会社 | 3次元形状計測装置 |
JP6336735B2 (ja) * | 2013-11-11 | 2018-06-06 | 第一実業ビスウィル株式会社 | 外観検査装置 |
US10388098B2 (en) * | 2014-02-07 | 2019-08-20 | Korea Institute Of Machinery & Materials | Apparatus and method of processing anti-counterfeiting pattern, and apparatus and method of detecting anti-counterfeiting pattern |
JP6344031B2 (ja) * | 2014-04-21 | 2018-06-20 | シンフォニアテクノロジー株式会社 | パーツフィーダ用画像処理装置およびパーツフィーダ |
DE102014109682B4 (de) * | 2014-07-10 | 2016-04-28 | Bundesdruckerei Gmbh | Mobiles Terminal zum Erfassen biometrischer Daten |
CN107072880B (zh) | 2014-09-25 | 2020-01-14 | 株式会社汤山制作所 | 药剂检查辅助装置 |
JP5884956B1 (ja) * | 2014-09-25 | 2016-03-15 | 株式会社湯山製作所 | 薬剤鑑査支援装置 |
JP2017146174A (ja) * | 2016-02-17 | 2017-08-24 | 株式会社ナベル | 卵の表面検査装置 |
TWI628428B (zh) * | 2016-12-16 | 2018-07-01 | 由田新技股份有限公司 | 多視角影像擷取裝置、及其多視角影像檢測設備 |
TWI628429B (zh) * | 2016-12-27 | 2018-07-01 | 住華科技股份有限公司 | 缺陷檢測系統及方法 |
JP2019035725A (ja) * | 2017-08-22 | 2019-03-07 | 第一実業ビスウィル株式会社 | 外観検査装置 |
KR20210116777A (ko) * | 2020-03-13 | 2021-09-28 | (주)테크윙 | 전자부품 처리장비용 촬영장치 |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5473426A (en) * | 1993-03-05 | 1995-12-05 | Nikon Corporation | Defect inspection apparatus |
JPH09311109A (ja) * | 1996-05-22 | 1997-12-02 | Matsushita Electric Ind Co Ltd | 光を使用した欠陥検査方法、およびその装置 |
US6618155B2 (en) | 2000-08-23 | 2003-09-09 | Lmi Technologies Inc. | Method and apparatus for scanning lumber and other objects |
JP2002214546A (ja) * | 2000-11-15 | 2002-07-31 | Oki Electric Ind Co Ltd | 光スイッチ |
US7205529B2 (en) * | 2001-02-01 | 2007-04-17 | Marel Hf | Laser mirror vision |
AU2003202478A1 (en) * | 2002-02-27 | 2003-09-09 | Kanebo, Ltd. | Conveying equipment and inspection device |
JP4041854B2 (ja) * | 2002-04-05 | 2008-02-06 | レーザーテック株式会社 | 撮像装置及びフォトマスクの欠陥検査装置 |
AU2003252443A1 (en) * | 2002-08-01 | 2004-02-23 | Asahi Glass Company, Limited | Curved shape inspection method and device |
JP3886006B2 (ja) * | 2002-10-09 | 2007-02-28 | 株式会社ニレコ | 青果物の光沢検査装置 |
JP4093850B2 (ja) * | 2002-12-03 | 2008-06-04 | シャープ株式会社 | 光学式物体識別装置、それを用いた印刷装置および物体種類分類装置 |
JP4391082B2 (ja) * | 2002-12-20 | 2009-12-24 | 株式会社トプコン | 表面検査方法及びその装置 |
JP2004317126A (ja) * | 2003-04-10 | 2004-11-11 | Renesas Technology Corp | はんだ印刷装置 |
NL1024619C2 (nl) * | 2003-10-24 | 2005-04-27 | Staalkat Internat B V | Inrichting voor het inspecteren van objecten. |
JP5221858B2 (ja) * | 2006-08-30 | 2013-06-26 | 株式会社日立ハイテクノロジーズ | 欠陥検査装置、及び欠陥検査方法 |
TWI449898B (zh) * | 2007-02-28 | 2014-08-21 | 尼康股份有限公司 | Observation device, inspection device and inspection method |
JP5060808B2 (ja) * | 2007-03-27 | 2012-10-31 | オリンパス株式会社 | 外観検査装置 |
JP4168428B1 (ja) * | 2007-06-19 | 2008-10-22 | クオリカプス株式会社 | 被検査物の搬送装置及び外観検査装置 |
JP5232530B2 (ja) | 2008-05-23 | 2013-07-10 | 東京インキ株式会社 | 小口止め型枠 |
JP5156481B2 (ja) | 2008-05-23 | 2013-03-06 | 日立三菱水力株式会社 | 水力発電所における水車部品の摩耗診断方法及び摩耗診断システム |
JP2010032342A (ja) * | 2008-07-29 | 2010-02-12 | Mitsutoyo Corp | 斜入射干渉計 |
JP2010071782A (ja) * | 2008-09-18 | 2010-04-02 | Omron Corp | 3次元計測装置およびその方法 |
JP2010014735A (ja) * | 2009-10-20 | 2010-01-21 | Daiichi Jitsugyo Viswill Co Ltd | 外観検査装置 |
-
2010
- 2010-05-20 JP JP2010116044A patent/JP5563372B2/ja active Active
-
2011
- 2011-05-06 CN CN201110116403.9A patent/CN102253053B/zh active Active
- 2011-05-16 US US13/108,676 patent/US8797399B2/en active Active
- 2011-05-17 KR KR1020110046346A patent/KR102030543B1/ko active IP Right Grant
- 2011-05-20 EP EP11166859.6A patent/EP2388574B1/en active Active
-
2018
- 2018-01-18 KR KR1020180006564A patent/KR101915498B1/ko active IP Right Grant
Also Published As
Publication number | Publication date |
---|---|
KR101915498B1 (ko) | 2018-11-06 |
EP2388574B1 (en) | 2018-07-25 |
KR102030543B1 (ko) | 2019-10-10 |
KR20110128139A (ko) | 2011-11-28 |
US8797399B2 (en) | 2014-08-05 |
JP5563372B2 (ja) | 2014-07-30 |
CN102253053B (zh) | 2015-08-19 |
CN102253053A (zh) | 2011-11-23 |
US20110285841A1 (en) | 2011-11-24 |
EP2388574A1 (en) | 2011-11-23 |
JP2011242319A (ja) | 2011-12-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101915498B1 (ko) | 외관 검사 장치 | |
JP7026309B2 (ja) | 光学式外観検査装置、及びこれを用いた光学式外観検査システム | |
KR102246301B1 (ko) | 외관 검사 장치 | |
EP2781912B1 (en) | Inspection system | |
KR101762165B1 (ko) | 외관 검사 장치 | |
EP3465171B1 (en) | Surface inspection system and inspection method | |
KR20130045351A (ko) | 웨이퍼 톱니 자국의 3차원 조사 장치 및 방법 | |
KR101762158B1 (ko) | 외관 검사 장치 | |
JP6164603B2 (ja) | 非破壊検査装置 | |
JP2014077637A (ja) | 光透過性板状物検査システム | |
KR20150037545A (ko) | 3차원 측정 장치, 3차원 측정 방법 및 기판의 제조 방법 | |
JP4191295B2 (ja) | 半導体パッケージの検査装置 | |
JP2015132577A (ja) | 画像ピックアップ構造、該構造を適用した画像ピックアップヘッドおよび3次元形状計測装置 | |
US20090190824A1 (en) | Inspection apparatus and inspection method | |
US20140340507A1 (en) | Method of measuring narrow recessed features using machine vision | |
JP2014035241A (ja) | 3次元形状計測装置 | |
JP7332414B2 (ja) | 小型物品の面計測装置 | |
JP2019035725A (ja) | 外観検査装置 | |
KR20130113677A (ko) | 웨이퍼 검사장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A107 | Divisional application of patent | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |