KR20170041283A - 가변 픽셀형 가열을 이용하는 정전 척 - Google Patents

가변 픽셀형 가열을 이용하는 정전 척 Download PDF

Info

Publication number
KR20170041283A
KR20170041283A KR1020177009195A KR20177009195A KR20170041283A KR 20170041283 A KR20170041283 A KR 20170041283A KR 1020177009195 A KR1020177009195 A KR 1020177009195A KR 20177009195 A KR20177009195 A KR 20177009195A KR 20170041283 A KR20170041283 A KR 20170041283A
Authority
KR
South Korea
Prior art keywords
esc
electrostatic chuck
processing system
semiconductor processing
support assembly
Prior art date
Application number
KR1020177009195A
Other languages
English (en)
Other versions
KR102239748B1 (ko
Inventor
비제이 디. 파케
웬델 주니어 보이드
Original Assignee
어플라이드 머티어리얼스, 인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 어플라이드 머티어리얼스, 인코포레이티드 filed Critical 어플라이드 머티어리얼스, 인코포레이티드
Publication of KR20170041283A publication Critical patent/KR20170041283A/ko
Application granted granted Critical
Publication of KR102239748B1 publication Critical patent/KR102239748B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q3/00Devices holding, supporting, or positioning work or tools, of a kind normally removable from the machine
    • B23Q3/15Devices for holding work using magnetic or electric force acting directly on the work
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67115Apparatus for thermal treatment mainly by radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67248Temperature monitoring
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N13/00Clutches or holding devices using electrostatic attraction, e.g. using Johnson-Rahbek effect

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Mechanical Engineering (AREA)

Abstract

가변 픽셀형 가열을 이용하는 정전 척들이 설명된다. 예를 들어, 정전 척(ESC)은 전면 표면 및 후면 표면을 갖는 세라믹 플레이트를 포함하고, 전면 표면은 웨이퍼 또는 기판을 지지하기 위한 것이다. 베이스는 세라믹 플레이트의 후면 표면에 커플링된다. 광 운반 매체는 베이스에 배치되고, 광 운반 매체는 픽셀형 광-기반 가열 능력을 ESC에 제공하도록 구성된다.

Description

가변 픽셀형 가열을 이용하는 정전 척{ELECTROSTATIC CHUCK WITH VARIABLE PIXELATED HEATING}
관련된 출원들에 대한 상호-참조
[0001] 본 출원은, 2013년 9월 6일에 출원된 미국 가출원 제 61/874,525 호의 이익 향유를 주장하고, 이로써 상기 미국 가출원의 전체 내용은 인용에 의해 본원에 포함된다.
[0002] 본 발명의 실시예들은 반도체 프로세싱 장비 분야에 관한 것이며, 특히, 가변 픽셀형 가열(variable pixelated heating)을 이용하는 정전 척들에 관한 것이다.
[0003] 플라즈마 에칭 또는 플라즈마 중착 챔버와 같은 플라즈마 프로세싱 챔버에서, 챔버 컴포넌트의 온도는 종종, 프로세스 동안 제어할 중요한 파라미터이다. 예를 들어, 일반적으로 척 또는 페데스탈(pedestal)로 지칭되는 기판 홀더의 온도는, 프로세스 레시피 동안, (예를 들어, 에칭 레이트(rate)를 제어하기 위해) 제어되는 다양한 온도들로 작업물(workpiece)을 가열/냉각하도록 제어될 수 있다. 유사하게, 샤워헤드/상부 전극, 챔버 라이너(liner), 배플(baffle), 프로세스 키트(kit), 또는 다른 컴포넌트들의 온도는 또한, 프로세싱에 영향을 주기 위해 프로세스 레시피 동안 제어될 수 있다. 전형적으로, 챔버 컴포넌트의 온도를 원하는 온도에서 유지하기 위해, 열 싱크(heat sink) 및/또는 열 소스(source)가 프로세싱 챔버에 커플링된다. 가열 및/또는 냉각 파워(power)를 제공하기 위해, 종종, 챔버 컴포넌트에 열적으로(thermally) 커플링된 적어도 하나의 열 전달 유체 루프(fluid loop)가 활용된다.
[0004] 열 전달 유체 루프의 긴 라인 길이들, 및 그러한 긴 라인 길이들과 연관된 큰 열 전달 유체 용적들은 온도 제어 반응 시간들에게 유해하다. 사용 현장(point-of-use) 시스템들은 유체 루프 길이들/용적들을 감소시키는 하나의 수단이다. 그러나, 물리적 공간 제약들은 불리하게, 그러한 사용 현장 시스템들의 파워 로드들(loads)을 제한한다.
[0005] 플라즈마 프로세싱 동향들이 계속해서 RF 파워 레벨들을 증가시키고, 그리고 또한 작업물 직경들을 증가시키는 상황에서(현재 300mm가 전형적이고, 450mm 시스템들은 현재 개발중인 상황), 빠른 응답 시간 및 높은 파워 로드들 양자 모두를 다루는, 온도 및/또는 RF 제어 및 분배가 플라즈마 프로세싱 분야에서 유리하다.
[0006] 본 발명의 실시예들은 가변 픽셀형 가열을 이용하는 정전 척들을 포함한다.
[0007] 실시예에서, 정전 척(ESC)은, 전면 표면 및 후면 표면을 갖는 세라믹 플레이트를 포함하고, 전면 표면은 웨이퍼 또는 기판을 지지하기 위한 것이다. 베이스는 세라믹 플레이트의 후면 표면에 커플링된다. 광 운반 매체(light carrying medium)는 베이스에 배치되고, 광 운반 매체는 픽셀형 광-기반 가열 능력을 ESC에 제공하도록 구성된다.
[0008] 다른 실시예에서, 반도체 프로세싱 시스템은 검출기, 플라즈마 점화 디바이스, 가스 유입구 디바이스, 및 진공배기 디바이스에 커플링된 챔버를 포함한다. 컴퓨팅 디바이스는 플라즈마 점화 디바이스와 커플링된다. 전압 소스는, 정전 척(ESC)을 포함하는 샘플 홀더와 커플링된다. ESC는 챔버에 배치되고, 전면 표면 및 후면 표면을 갖는 세라믹 플레이트를 포함하며, 전면 표면은 웨이퍼 또는 기판을 지지하기 위한 것이다. ESC는 또한, 세라믹 플레이트의 후면 표면에 커플링된 베이스를 포함한다. ESC는 또한, 베이스에 배치된 광 운반 매체를 포함하고, 광 운반 매체는 픽셀형 광-기반 가열 능력을 ESC에 제공하도록 구성된다.
[0009] 다른 실시예에서, 정전 척(ESC)의 온도를 제어하는 방법은, ESC의 냉각 베이스의 온도를 제어하는 것에 의해 ESC의 제 1 레벨 온도 제어를 제공하는 단계를 수반한다. 방법은 또한, ESC의 하나 또는 그 초과의 전기 가열기들의 온도를 제어하는 것에 의해 ESC의 제 2 레벨 온도 제어를 제공하는 단계를 수반한다. 방법은 또한, ESC의 광 운반 매체를 제어하는 것에 의해 ESC의 제 3 레벨 온도 제어를 제공하는 단계를 수반한다.
[0010] 도 1은, 본 발명의 실시예에 따른, 웨이퍼 또는 기판을 지지하도록 구성된 정전 척(ESC)의 부분의 단면도를 예시한다.
[0011] 도 2a는, 본 발명의 실시예에 따른, 복수의 섬유들(fibers)/광 운반 매체의 가능한 패터닝을 도시하는 평면도이다.
[0012] 도 2b는, 본 발명의 실시예에 따른, 픽셀형 광-기반 가열 능력을 갖는 정전 척(ESC)의 부분의 단면도를 예시한다.
[0013] 도 3은, 본 발명의 다른 실시예에 따른, 픽셀형 광-기반 가열 능력을 갖는 정전 척(ESC)의 부분의 단면도를 예시한다.
[0014] 도 4는, 본 발명의 몇몇 실시예들에 따른, 기판 지지부의 개략적인 측면도를 예시한다.
[0015] 도 5는, 본 발명의 실시예에 따른, 가변 픽셀형 가열을 이용하는 정전 척이 하우징될(housed) 수 있는 시스템을 예시한다.
[0016] 도 6은, 본 발명의 실시예에 따른, 예시적인 컴퓨터 시스템의 블럭도를 예시한다.
[0017] 가변 픽셀형 가열을 이용하는 정전 척들이 설명된다. 이하의 설명에서, 본 발명의 실시예들의 완전한 이해를 제공하기 위해, 특정한 척 및/또는 챔버 구성들과 같은 다수의 특정한 세부 사항들이 열거된다. 그러한 특정한 세부 사항들 없이 본 발명의 실시예들이 실행될 수 있다는 점이 당업자에게 자명할 것이다. 다른 예들에서, 척에 의해 지지되는 웨이퍼가 존재할 때의 에칭 프로세싱과 같은 잘-알려진 양태들은, 본 발명의 실시예들을 불필요하게 불분명하게 하지 않도록, 상세하게 설명되지 않는다. 또한, 도면들에 도시된 다양한 실시예들은 예시적인 표현들이며 반드시 실척으로 도시된 것은 아님이 이해될 것이다.
[0018] 본원에서 설명되는 하나 또는 그 초과의 실시예들은 가변 픽셀형 가열을 이용하는 정전 척들 또는 가변 픽셀형 가열 능력들을 갖는 정전 척들을 포함하는 시스템들에 관한 것이다. 특히, 가변 픽셀형 가열은, 섬유들 및 특정한 섬유들에 파워를 공급하기(power) 위한 제어 시스템을 사용하는 본딩된(bonded) 정전 척에 포함될 수 있다. 어플리케이션들은, 예를 들어, 반도체 프로세싱 챔버들에 포함된 것과 같은 페데스탈들 또는 정전 척들에 대한 증가된 온도 및 온도 균일성 제어를 포함할 수 있다.
[0019] 전후 맥락(context)을 제공하기 위해, 정전 척에 대한 튜닝 가능성(tunability) 및 매우 균일한 웨이퍼 온도에 대한 요구는 계속 증가한다. 그러나, 단일 척에 걸친 냉점들(cold spots) 및/또는 열점들(hot spots)로부터, 개선된 성능에 대한 제한들이 발생할 수 있다. 그러한 냉점 또는 열점 형성은, 예를 들어, 공간적 4 구역 가열기 저항 변화 또는 본드 균일성 혼탁(bond uniformity thickness)으로부터 발생할 수 있다. 이로써, 실시예에서, 페데스탈 또는 척에서 열적으로 보정(compensation)을 제어하기 위한 부가적인 튜닝 가능성이 본원에 개시된다. 그러나, 특정 실시예에서, RF 고려 사항들에 대해서, 페데스탈 또는 척 내의 부가적인 전기적 연결들의 포함 없이, 더 큰 튜닝 가능성의 구현이 달성된다.
[0020] 더 일반적으로, 정전 척킹(chucking)에 의한 웨이퍼 클램핑은, 에칭 프로세싱 동안 온도 제어를 제공하는 데에 사용되어 왔다. 웨이퍼는, 어플리케이션에 따라, 열 싱크 또는 가열기(또는 양자 모두)를 갖는 다수-층 표면 또는 세라믹 표면에 클램핑된다. 고유의(inherent) 불-균일성들 및 보조 하드웨어(예를 들어, 리프터 핀들(lifter pins), RF/DC 전극(들), 등)에 기인하여 세라믹 표면 온도는 균일하지 않다. 이러한 불-균일성은 웨이퍼로 전달되고, 에칭 프로세스에 영향을 끼친다. 종래의 척 설계들은 냉각제 레이아웃 최적화 및 다수의(최대 4 구역들) 가열기들의 도입에 집중해 왔다. 그러한 척 설계들은, 보조 하드웨어(예를 들어, 리프터 핀들, RF/DC 전극(들), 등)와 관계된, 또는 보조 하드웨어에 의해 야기되는 문제를 해결하는 데에 유용하지 않았다.
[0021] 더 구체적으로, 종래의 정전 척 온도 제어는 전형적으로, 정전 척에 포함된 하나 또는 그 초과의 전기 가열기들 및 냉각 베이스에 기초한다. 그러나, 그러한 배열체는, 어느 정도의 온도 불-균일성으로 이어지는 결함들(flaws) 또는 단점들(drawbacks)을 가질 수 있다. 예를 들어, 냉각 베이스와 세라믹 플레이트 사이의 두께 변화를 초래하는, 아래 놓인 냉각 베이스와 정전 척의 세라믹 층 사이의 본드 결함(bond imperfection)은 척에 걸친 냉점들 또는 열점들의 형성으로 이어질 수 있다. 다른 예에서, 예를 들어, 플라즈마 에칭 또는 증착 챔버에서의 플라즈마 밀도 변화는, 척 또는 페데스탈에 의해 지지되는 기판 또는 웨이퍼에 걸친 열점들 또는 냉점들의 형성으로 이어질 수 있다. 또 다른 예에서, 척 내의 전극 불-균일성은 또한, 척에 걸친 냉점들 및/또는 열점들의 형성으로 이어질 수 있다.
[0022] 상기 문제들을 다루려고 시도하는 종래의 해결법은, 미세 튜닝 온도 제어를 제공하기 위해, 정전 척 내로의 다수의 저항성 엘리먼트들의 통합을 포함했다. 저항성 엘리먼트들은 본질적으로, 온도 균일성을 제어하기 위해 냉각 베이스 및 척 내의 전기 가열기들과 함께 사용되는 보조 가열기들이다. 그러나, 그러한 저항성 가열기들의 부가는, RF 환경이 사용되는 경우에, 예를 들어, 척 또는 페데스탈 내에서 RF 전극이 액티브(active) 상태일 때, 아킹(arcing) 문제들로 이어질 수 있다.
[0023] 반면에, 본원에서 설명되는 바와 같이, 온도 균일성의 미세 튜닝을 위해, 열 저항 대신에 광 에너지가 사용된다. 광 가열에 의한 도구 개별 온도 제어(implemental discrete temperature control)의 하나 또는 그 초과의 이점들은, (1) 정전 척 또는 페데스탈의 특정 지역(들)을 가열하는 능력, (2) 특별한 천공된(perforated) 본딩은 페데스탈 또는 세라믹 척의 후면에 대한 직접 가열을 허용할 수 있음, (3) 가열이 광 기반이기 때문에 RF 인터페이스 문제 완화, (4) 냉점 맵(map)에 기초하여, 가열을 위해 오직 특정한 섬유들만이 사용되도록 허용하는 제어 시스템을 포함하지만, 이에 제한되지는 않는다. 이로써, 실시예에서, 종래의 접근법에 대한 상기 설명된 문제들을 다루기 위해, 극도의 온도 균일성을 갖는 차세대(4-구역 이상) 에칭 챔버 ESC가 설명된다. 본원에서 설명되는 실시예들은 액티브 온도 제어를 갖는 차세대 에칭 챔버 ESC들에 관한 것일 수 있다.
[0024] 일반적인 예로서, 도 1은, 본 발명의 실시예에 따른, 기판 또는 웨이퍼를 지지하도록 구성된 정전 척(ESC)의 부분의 단면도를 예시한다.
[0025] 도 1을 참조하면, 픽셀형 정전 척(100)은 정전 척 부분(102)(예를 들어, Al2O3 등의 중실형(solid) 세라믹 플레이트)을 포함한다. 정전 척 부분은 (예를 들어, RF 어플리케이션들을 위한) ESC 전극(104), 및 가열기들(104), 등과 같은 복수의 주 가열기들(106)을 포함한다. 도시된 실시예에서, 단일(single) 또는 단(mono)-극(polar) ESC 전극 구성이 사용된다. ESC 부분(102)은 본딩 층(110)을 통해 냉각 베이스(108)에 본딩된다. 복수의 섬유들/광 운반 매체(112)는 냉각 베이스(108)에 배치된다. 복수의 섬유들/광 운반 매체(112)는 제어 박스(114)에 커플링된다. 제어 박스(114)는, 연속적인 또는 펄스형 광 소스와 같은 광 소스(116)에 추가적으로 커플링될 수 있다. 이로써, 픽셀형 정전 척(100)의 구성은 정전 척의 후면 상에 섬유 광학 라우팅(fiber optic routing)을 포함한다. 이하에서 더 상세하게 설명되는 바와 같이, 제어 박스는, 도 1에 도시된 바와 같은 온도 측정 장치(118)를 포함할 수 있거나, 또는 그러한 온도 측정 장치에 커플링될 수 있다.
[0026] 다시 도 1을 참조하면, 장치(100)는 3 레벨의 온도 제어를 갖는다; 제 1 레벨은 (예를 들어, Al 본체 및 본체를 통하는 유체를 위한 능력을 갖는 칠러(chiller) 플레이트로서) 냉각 베이스(108)에 의해 제공되고, 제 2 레벨은 전기 가열기(106)에 의해 제공되며, 제 3 레벨은, 예를 들어, 광 가열에 의한 픽셀형 개별 다이(die) 제어를 이용하는 가열을 위해 광을 제공하는 섬유들/광 운반 매체(112)에 의해 제공된다. 실시예에서, 전체 3 레벨들의 온도 제어를 제공하는 것에 의해, 300mm 플레이트에 걸쳐서 1도 미만의 불-균일성이 달성될 수 있다. 예를 들어, 본 발명의 실시예에 따르면, 정전 척(ESC)은, 베이스라인(baseline) 온도 제어를 제공하기 위해, 냉각 베이스와 함께 1개 또는 그 초과의(예를 들어, 최대 8) 주 가열기들을 갖는다. 온도 분배의 미세-튜닝을 제공하기 위해, 다수의 광 가열 엘리먼트들(예를 들어, 광 파이프들, 섬유 광학들, 등)은 ESC의 후면에 포지셔닝된다. RF-관련 불-균일성을 감소시키기 위해, 미세-튜닝 광 가열기들은 저항 기반이 아니다. 따라서, 실시예에서, 개선된 RF 균일성 및/또는 개선된 온도 균일성을 갖는 에칭 프로세싱이 달성될 수 있다.
[0027] 도 2a는, 본 발명의 실시예에 따른, 복수의 섬유들/광 운반 매체의 가능한 패터닝을 도시하는 평면도이다. 도 2a를 참조하면, 냉각 베이스(108)는 복수의 섬유들/광 운반 매체(112)를 내부에 갖는다. 복수의 섬유들/광 운반 매체(112)의 포함을 위해 임의의 적합한 배열이 이루어질 수 있다. 하나의 그러한 예에서, 복수의 섬유들/광 운반 매체의 레이아웃은 ESC 부분(102)의 후면 상에 200 내지 500개의 입력 점들을 갖는다. 예시적인 목적들을 위해서 도 2a에서 매우 특정한 패턴이 도시되었지만, 다른 실시예들은 완전히 대칭적인 패턴을 포함한다. 그러한 경우에, 2a의 패턴은 오직, ESC 부분(102) 상의 냉점들을 가열하기 위해 액티브한 그러한 복수의 섬유들/광 운반 매체(112)만을 도시하는 데에 사용될 수 있다. 따라서, 도 2a는, 특정한 어플리케이션에서, 활성화된 섬유들/광 운반 매체(112)의 서브세트(subset), 또는 전체 포함된 섬유들/광 운반 매체(112)의 많은 가능성들 중 오직 하나를 예시하는 것으로 이해되어야 한다.
[0028] 도 2b는, 본 발명의 실시예에 따른, 픽셀형 광-기반 가열 능력을 갖는 정전 척(ESC)의 부분의 단면도를 예시한다. 도 2b를 참조하면, ESC 부분(102), 냉각 베이스(108), 및 본딩 층(110)이 도시된다. 부가적으로, 섬유들/광 운반 매체(112)는 ESC 부분(102)의 후면으로부터 ESC에 액세싱하는 것으로 도시된다. 실시예에서, 도시된 바와 같이, 본드 층은, ESC 부분(102)의 후면에 대한 섬유(112)의 액세스를 허용하기 위해, 천공된다. 따라서, 섬유(112)를 통해 제공되는 광 에너지는 ESC 부분(102)의 매우 국부화된(localized) 부분을 가열하는 데에 사용될 수 있다. 특정한 실시예에서, 그러한 국부화된 가열은 픽셀화된 것으로 여겨지고, ESC 상에서의 웨이퍼 프로세스들의 다이 상의 냉점들을, 다이 기준으로 또는 다른 작은 영역 기준으로 감소시키는 데에 사용된다. 그런 다음에, 특정 실시예에서, 냉각 플레이트가 세라믹에 본딩될 때, 섬유가 본드의 관통-홀에 액세스할 수 있도록, 천공들을 갖는 본딩이 사용된다.
[0029] 다른 양태에서, 광학 코팅은, 광 흡수의 효율을 증가시키기 위해, 세라믹의 후면 상에 포함될 수 있다. 또한, 또 다른 양태에서, 한쪽 파트(part)는 파워를 위해 사용되고, 다른쪽 파트는 세라믹의 후면으로부터의 온도 측정을 위해 사용되도록, 동일한 섬유 번들(bundle)이 나뉘어(with a split) 사용될 수 있다(대안적으로, 판독(read out)을 위한 위치에 의하여 분리된 측이 구현될 수 있음). 양자 모두의 양태들의 예로서, 도 3은, 본 발명의 다른 실시예에 따른, 픽셀형 광-기반 가열 능력을 갖는 정전 척(ESC)의 부분의 단면도를 예시한다. 도 3을 참조하면, ESC 부분(102), 냉각 베이스(108), 및 본딩 층(110)이 도시된다. 부가적으로, 섬유들/광 운반 매체(112)는, ESC 부분(102)의 후방(backside)으로부터 ESC에 액세싱하는 것으로 도시된다. 일 실시예에서, 도시된 바와 같이, 본드 층(110)은, ESC 부분(102)의 후방에 대한 섬유(112)의 액세스를 허용하기 위해, 천공된다. 또한, 광 흡수 코팅(199)은 ESC 부분(102)의 노출된 부분들 상에 포함된다. 따라서, 섬유(112)를 통해 제공되는 광 에너지는 ESC 부분(102)의 매우 국부화된 부분을 가열하는 데에 사용될 수 있으며, 이러한 국부화된 부분은 코팅(199)에 의해 강화된다. 다시 도 3을 참조하면, 스플리터(splitter) 또는 분리된 감지 케이블(112A)은 섬유(112)로부터 분리된 온도 검출을 위해 포함된다. 피드백 프로세스(154)는, 도 3에 도시된 바와 같이, 광소스(150), 광 소스 제어/소프트웨어 유닛(152), 및 온도 검출기 판독/출력 모듈(154) 사이의 통신을 포함할 수 있다.
[0030] 실시예에서, 섬유들/광 운반 매체(112)는, LED들, 섬유 레이저들, 또는 렌즈를 갖는 종래의 광 시스템과 같은 다양한 광 소스들 중 하나 또는 그 초과를 포함할 수 있다. 특정한 예로서, JDS Uniphase Corporation 으로부터 입수 가능한 높은 파워 8.5W 9xx nm 섬유-결합 다이오드 레이저(Fiber-Coupled Diode Laser)가 사용된다. 실시예에서, 섬유들/광 운반 매체(112) 중 하나 또는 그 초과를 통한 가열은, 우선 세라믹의 특정 위치에서의 온도에 대한 신호를 획득하는 것에 의해, 달성된다. 그런 다음에, 세라믹 하의 각각의 섬유는, (예를 들어, 웨이퍼 상의 CD 균일성을 제어하기 위해, 상이한 CD들은 1℃의 온도 증가에 대해 약 0.5나노미터의, 온도의 함수로서 획득됨) 미세 튜닝된 온도를 위해 제어된다. 웨이퍼로부터의 CDU를 섬유 상의 가열 입력으로 맵핑하는(map) 제어 시스템이 사용될 수 있다. 실시예에서, 도 1 및 2a, 2b, 및 3의 섬유들/광 운반 매체(112)를 통한 가열을 위해, 대략 1000와트(예를 들어, 200W 내지 2000W의 범위)가 사용된다. 따라서, 하나의 그러한 실시예에서, 250개의 섬유 시스템의 경우, 섬유들/광 운반 매체(112) 각각을 통해 약 4w가 제공된다.
[0031] 실시예에서, 섬유들/광 운반 매체(112)는, 섬유들/광 운반 매체(112) 중에서 선택된 것들을 통해 활성화/가열하기에 앞서 온도 검출을 위한 신호를 획득하는 데에 사용될 수 있다. 예로서, 온도 판독을 고려하여 ESC 전극 반사(reflection) 또는 방출(emission)으로부터의 방사선을 수용하도록, 섬유들/광 운반 매체(112)는 (열 소스에 부가하여) 고온계로서 사용될 수 있다. 대안적으로(도시되지 않음), 그러한 방사선은, 섬유들/광 운반 매체(112)가 세라믹 층을 통해 더 돌출되는(project) 경우에, 기판 또는 웨이퍼로부터 획득될 수 있다.
[0032] 상기 설명된 바와 같이, 광-기반 픽셀형 가열 기능은, 제 3 레벨의 가열 균일성 제어로서 정전 척에 포함될 수 있는데, 여기서, 제 1 레벨 및 제 2 레벨의 가열 균일성 제어는 냉각 베이스 및 전기 가열기들에 의해 제공된다. 예로서, 도 4는, 본 발명의 몇몇 실시예들에 따른, 광-기반 픽셀형 가열 기능을 수용하기에 적합한 기판 지지부의 개략적인 측면도를 예시한다.
[0033] 도 4는 본 발명의 몇몇 실시예들에 따른 기판 지지부(400)의 개략적인 측면도를 도시한다. 도 4에 예시된 바와 같이, 기판 지지부(400)는 기판(401)을 수용하거나 제거하기 위해 로딩 포지션에 있는 상태로 구성된다. 예를 들어, 도 4에 예시된 바와 같이 그리고 로딩 포지션에서, 기판(401)은, 기판 지지부(400) 위에서, 복수의 리프트 핀들(403) 상에 놓일 수 있다. 리프트 핀들(403)은, 예를 들어, 리프트 핀들(403)의 상대 이동(relative movement)을 용이하게 하는 리프트 핀 홀들(407)을 통해, 기판 지지부(400)의 지지 표면에 대해서 이동 가능하다. 기판 지지부(400)는 프로세스 챔버에 배치될 수 있다(챔버 벽(402)의 절단면도(cut away view)가 도 4에 예시됨). 프로세스 챔버는 임의의 적합한 기판 프로세싱 챔버일 수 있다.
[0034] 기판 지지부(400)는 본체(404)를 포함할 수 있다. 본체(404)는, 프로세스 챔버의 프로세싱 용적(408)으로부터 분리된 내부 용적(406)을 가질 수 있다. 내부 용적(406)은 대기(atmoshpere)에서, 예를 들어, 평방 인치당 약 14.7파운드(psi)에서 유지될 수 있거나, 질소(N2), 등과 같은 불활성 대기 하에서 유지될 수 있다. 내부 용적(406)은 추가로, 프로세스 챔버의 프로세싱 용적(408)에 존재할 수 있는 임의의 가스들로부터 격리되고 보호된다. 프로세스 용적(408)은 대기압 또는 부기압(subatmospheric pressure)에서 유지될 수 있다.
[0035] 내부 용적(406)은, 본체(404)의 상부 단부(405)의 정전 척(410)에 의해, 그리고 본체(404)의 하부 개구부(414)에 용접될 수 있거나(welded) 브레이징될(brazed) 수 있는 피드 스루 구조(feed through structure; 411)에 의해, 에워싸일(enclosed) 수 있다. 예를 들어, 도 4에 예시된 바와 같이, 벨로우즈(bellows; 412)는 피드 스루 구조(411)의 적어도 부분을 둘러쌀 수 있고, 프로세싱 용적(408)을 내부 용적(406) 및 챔버의 외부로부터 격리시킨다. 벨로우즈(412)는 기판 지지부(400)의 이동을 용이하게 하기 위한 가요성 섹션, 및 기판 지지부(400)에 가스들, 전력, 냉각제, 등을 제공하기 위한 통로(pathway) 양자 모두를 제공할 수 있다. 가스들, 전력, 냉각제, 등은 피드 스루 구조(411)를 통해서 제공될 수 있다.
[0036] 벨로우즈(412)는, 예를 들어, 용접 또는 브레이징에 의해, 하부 개구부(414)에서 본체(404)에 커플링될 수 있다. 벨로우즈(412)의 반대쪽 하부 단부(416)는 챔버 벽(402)의 개구부(418)에 커플링될 수 있다. 예를 들어, 도 4에 예시된 바와 같이, 벨로우즈(412)의 하부 단부(416)는, o-링(419), 또는 구리 가스켓 등을 통해 챔버 벽(402)에 커플링될 수 있는 플랜지(flange; 417)를 포함할 수 있다. o-링(419)은 챔버 벽(402)의, 프로세싱 용적을 향하는 표면 상의 그루브에 놓일 수 있다. 챔버 벽(402) 및 본체(404)에 대한 벨로우즈(412)의 다른 설계들 및 커플링이 가능하다.
[0037] 기판 지지부(400)는, 정전 척(410) 아래의 내부 용적(406)에 배치된 냉각 플레이트(434)를 포함할 수 있다. 예를 들어, 몇몇 실시예들에서, 냉각 플레이트(434)는 정전 척(410)의, 내부 용적을 향하는 표면에 직접 접촉할 수 있다. 그러나, 냉각 플레이트(434)의 이러한 실시예는, 단지 예시적인 것이며, 냉각 플레이트는 정전 척(410)과 직접 접촉하지 않을 수 있다. 냉각 플레이트(434)는, 냉각 채널들을 통해 냉각제를 순환시키기 위한 복수의 냉각 채널들(도시되지 않음)을 포함할 수 있다. 냉각제는 임의의 적합한 액체 또는 가스 냉각제를 포함할 수 있다. 몇몇 실시예들에서, 냉각제는, 피드 스루 구조(411)를 통해 냉각 플레이트(434)에 커플링된 냉각제 소스(436)를 통해 냉각 플레이트(434)에 공급될 수 있다. 예를 들어, 냉각 플레이트(434)는, 하나 또는 그 초과의 스프링들(435) 또는 임의의 적합한 맞물림 메커니즘에 의해, 정전 척(410)에 맞물릴(engaged) 수 있다.
[0038] 몇몇 실시예들에서, 냉각 플레이트(434)는 내측 및 외측 냉각 플레이트를 포함할 수 있다. 몇몇 실시예들에서, 내측 냉각 플레이트는 중앙 가스 라인 주위에 배치될 수 있고, 외측 냉각 플레이트는 복수의 외측 가스 라인들 주위에 배치될 수 있다. 예를 들어, 내측 및 외측 냉각 플레이트들은, 정전 척(410)이 어떻게 활용되는지에 따라, 예컨대, 전극(들)(426) 및/또는 하나 또는 그 초과의 가열기들(423), 등에 전력이 어떻게 제공되는지에 따라, 냉각 용량(cooling capacity)을 조정하는 데에 사용될 수 있다. 또한, 내측 및 외측 냉각 플레이트들은, 고온들로부터 기판 지지부(400)를 냉각시키거나(cool down) 기판 온도 제어를 개선하는 데에 활용될 수 있다. 예를 들어, 내측 및 외측 냉각 플레이트들은 기판(401)과 하나 또는 그 초과의 가열기들(423) 사이의 열 전달을 제어하도록 조절될(modulated) 수 있다.
[0039] 몇몇 실시예들에서, 냉각 플레이트(434)는 상부 및 하부 냉각 플레이트를 포함할 수 있다. 상부 및 하부 냉각 플레이트들은, 내측 및 외측 냉각 플레이트들에 대해 상기 논의된 바와 유사한 이점들을 제공하도록 활용될 수 있다. 상부 및 하부 냉각 플레이트들은, 상부 냉각 플레이트는 호일(foil)을 통해 정전 척(410)과 접촉하는 반면에 하부 냉각 플레이트는 상부 냉각 플레이트와 접촉하도록, 적층될(stacked) 수 있다. 상부 및 하부 냉각 플레이트들에 대한 냉각제의 유동을 독립적으로 제어하는 것에 의해서, 세라믹 본체(420)와 냉각 플레이트 조립체(434) 사이에서 가변 열 전달이 달성된다. 몇몇 실시예들에서, 상부 및 하부 냉각 플레이트들 각각은 냉각 플레이트(434)의 전체 직경에 걸쳐 균일한 냉각을 제공할 수 있다. 다른 실시예들에서, 상부 및 하부 냉각 플레이트들 각각은, 냉각 플레이트(434)의 내측 및 외측 영역들에 상이한 냉각을 제공할 수 있다. 즉, 몇몇 실시예들에서, 상부 및 하부 냉각 플레이트들은 내측 및 외측 냉각 플레이트들과 결합될(combined) 수 있다.
[0040] 따라서, 정전 척(410)은 세라믹 플레이트(420)를 포함할 수 있다. 도 4에 예시된 바와 같이, 세라믹 플레이트(420)는, 본체(404)의 상부 단부(405)와 정전 척(410) 사이에 배치된 링(422) 상에 놓일 수 있다. 예를 들어, 링(422)은 KOVAR™, 또는 임의의 적합한 재료를 포함할 수 있다. 링(422)은, 예를 들어, 링(422)을 본체(404)의 상부 단부(405) 및 정전 척(410) 양자 모두에 용접 또는 브레이징하는 것에 의해, 본체(404)의 상부 단부(405)에 정전 척(410)을 고정시킬 수 있다. 세라믹 플레이트(420)는 임의의 적합한 세라믹 재료, 예컨대, 알루미늄 니트라이드(AlN), 알루미늄 옥사이드(Al2O3), 또는 도핑된 세라믹, 예컨대, 티타니아 도핑된 알루미나 또는 칼슘 도핑된 알루미늄 니트라이드, 등을 포함할 수 있다. 도 4에 예시된 바와 같이, 세라믹 플레이트(420)는 세라믹 플레이트(420)의 기판 지지 표면에 형성된 복수의 그루브들(424)을 포함할 수 있다. 그루브들은, 예를 들어, 기판(401)의 후방 표면에 후방 가스(backside gas)를 제공하는 데에 사용될 수 있다. 세라믹 플레이트(420)는 전극 또는 복수의 전극들(426)을 더 포함할 수 있고, 여기서, 전극(들)(426)은 정전 척(410)의 프로세싱 표면(428)에 기판(401)을 고정시키는 데에 사용될 수 있다.
[0041] 도 4는 본 발명의 몇몇 실시예들에 따른 전극(들)(426)을 예시한다. 예를 들어, 상기 논의된 바와 같이, 전극(들)(426)은 기판(401)을 정전 척(410)의 프로세싱 표면(428)에 고정시키는 데에 활용될 수 있다. 예를 들어, 몇몇 실시예들에서, 전극(들)(426)은, 정전 척(410)으로부터의 제어된 디-척킹(de-chucking)을 위해, 휜(bowed) 기판들을 척킹하기 위해, 등을 위해 활용될 수 있다. 예를 들어, 디-척킹 동안, 가스는 여전히 그루브들(424)을 통해 유동할 수 있고 그리고/또는 그루브들에서의 압력은 프로세싱 용적(408)에서의 압력보다 더 높을 수 있다. 따라서, 예를 들어, 기판(401)이 정전 척(410)으로부터 점핑하는(jumping off) 것을 방지하기 위해, 복수의 전극들의 경우에, 전극들(426) 중 일부는, 기판(401)을 점진적으로(gradually) 디-척킹하기 위해, 다른 전극들에 앞서서 턴 오프될(turned off) 수 있다. 예를 들어, 척킹 동안, 더 큰 기판들, 예컨대, 300밀리미터 또는 그 초과의 기판들은 휠 수 있다. 따라서, 휜 기판을 정전 척(410)에 대해 펴기(flatten) 위해, 전극들(426) 중 일부는, 전극들(426) 중 다른 전극들보다 더 높은 파워 및/또는 주파수에서 동작될 수 있어서, 기판을 펼 수 있다.
[0042] 상기 설명된 바와 같이, 정전 척(410)은 하나 또는 그 초과의 가열기들(423)을 더 포함할 수 있다. 하나 또는 그 초과의 가열기들(423)은 하나 또는 그 초과의 파워 공급부들(425)에 커플링될 수 있고, 독립적으로 제어 가능할 수 있다. 몇몇 실시예들에서, 하나 또는 그 초과의 가열기들(423)은, 도 4에 예시된 바와 같이, 복수의 가열기들(423)을 포함할 수 있다. 예를 들어, 몇몇 실시예들에서, 복수의 가열기들(423)은 중앙 가열기, 중앙 가열기 주위에 배치된 중간 가열기, 및 중간 가열기 주위에 배치된 외측 가열기를 포함할 수 있다. 중앙, 중간, 및 외측 가열기들 각각은, 동일한 또는 개별적인 하나 또는 그 초과의 파워 공급부들(425)에 커플링될 수 있고, 온도 피드백 루프를 통해 독립적으로 제어될 수 있다. 예를 들어, 제 1 열전대(thermocouple)는, 중앙 가열기의 위치에 근접한 세라믹 플레이트(420)의 온도를 모니터링할 수 있다. 유사하게, 부가적인 열전대들은 중간 및 외측 가열기들에 대해 유사한 기능을 수행할 수 있다.
[0043] 가변 픽셀형 가열을 이용하는 정전 척은, 에칭을 위해, 샘플 근처에 에칭 플라즈마를 제공하기에 적합한 프로세싱 장비에 포함될 수 있다. 예를 들어, 도 5는, 본 발명의 실시예에 따른, 가변 픽셀형 가열을 이용하는 정전 척이 하우징될 수 있는 시스템을 예시한다.
[0044] 도 5를 참조하면, 플라즈마 에칭 프로세스를 수행하기 위한 시스템(500)은, 샘플 홀더(504)(예를 들어, 상기 설명된 바와 같은 가변 픽셀형 가열 능력을 갖는 ESC)가 장비된 챔버(502)를 포함한다. 진공배기 디바이스(506), 가스 유입구 디바이스(508), 및 플라즈마 점화 디바이스(510)는 챔버(502)와 커플링된다. 컴퓨팅 디바이스(512)는 플라즈마 점화 디바이스(510)와 커플링된다. 시스템(500)은 부가적으로, 샘플 홀더(504)와 커플링된 전압 소스(514), 및 챔버(502)와 커플링된 검출기(516)를 포함할 수 있다. 도 5에 도시된 바와 같이, 컴퓨팅 디바이스(512)는 또한, 진공배기 디바이스(506), 가스 유입구 디바이스(508), 전압 소스(514), 및 검출기(516)와 커플링될 수 있다.
[0045] 챔버(502) 및 샘플 홀더(504)는, 이온화된 가스, 즉, 플라즈마를 수용하기에 적합한 반응 챔버, 및 반응 챔버로부터 나오는 이온화된 가스 또는 대전된 종(charged species) 근처에 샘플을 가져올 수 있는 샘플 포지셔닝 디바이스를 포함할 수 있다. 진공배기 디바이스(506)는 챔버(502)를 진공배기하고 감압(de-pressurize)하기에 적합한 디바이스일 수 있다. 가스 유입구 디바이스(508)는 반응 가스를 챔버(502) 내에 주입하기에 적합한 디바이스일 수 있다. 플라즈마 점화 디바이스(510)는, 가스 유입구 디바이스(508)에 의해 챔버(502) 내로 주입된 반응 가스로부터 유도된(derived) 플라즈마를 점화하기에 적합한 디바이스일 수 있다. 검출 디바이스(516)는 프로세싱 동작의 종점(end-point)을 검출하기에 적합한 디바이스일 수 있다. 일 실시예에서, 시스템(500)은, Applied Materials® AdvantEdge 시스템에서 사용되는 Conductor 에칭 챔버 또는 관련된 챔버들과 유사하게, 또는 동일하게, 챔버(502), 샘플 홀더(504), 진공배기 디바이스(506), 가스 유입구 디바이스(508), 플라즈마 점화 디바이스(510), 및 검출기(516)를 포함한다.
[0046] 상기에서 에칭 챔버가 설명되었지만, 본원에서 설명된 것과 같은 정전 척들은, 에칭 챔버 대신에, 다른 반도체 프로세싱 챔버들에 포함될 수 있음이 이해될 것이다. 다른 적합한 반도체 프로세싱 챔버들의 예들은, 화학 기상 증착(CVD) 또는 물리 기상 증착(PVD) 프로세스 챔버들을 포함하지만, 이에 제한되지는 않는다.
[0047] 본 발명의 실시예들은 컴퓨터 프로그램 물건, 또는 소프트웨어로서 제공될 수 있는데, 이는 명령들이 저장되어 있는 기계-판독 가능한 매체를 포함할 수 있고, 이러한 명령들은 본 발명에 따른 프로세스를 수행하도록 컴퓨터 시스템(또는 다른 전자 디바이스들)을 프로그래밍하는 데에 사용될 수 있다. 기계-판독 가능한 매체는 기계(예를 들어, 컴퓨터)에 의해 판독 가능한 형태로 정보를 저장하거나 전송하기 위한 임의의 메커니즘을 포함한다. 예를 들어, 기계-판독 가능한(예를 들어, 컴퓨터-판독 가능한) 매체는 기계(예를 들어, 컴퓨터) 판독 가능한 저장 매체(예를 들어, 판독 전용 메모리("ROM"), 랜덤 액세스 메모리("RAM"), 자기 디스크 저장 매체들, 광학 저장 매체들, 플래시 메모리 디바이스들, 등), 기계(예를 들어, 컴퓨터) 판독 가능한 전송 매체(전기적, 광학적, 음향적 또는 다른 형태의 전파되는 신호들(propagated signals)(예를 들어, 적외선 신호들, 디지털 신호들, 등)), 등을 포함한다.
[0048] 도 6은, 기계로 하여금 본원에서 설명되는 방법론들 중 임의의 하나 또는 그 초과의 방법론들을 수행하게 하기 위한 명령들의 세트가 내부에서 실행될 수 있는 컴퓨터 시스템(600)의 예시적인 형태의 기계의 도식적 표현을 예시한다. 대안적인 실시예들에서, 기계는 근거리 네트워크(LAN), 인트라넷, 엑스트라넷, 또는 인터넷으로 다른 기계들에 연결될 수 있다(예를 들어, 네트워킹될 수 있다). 기계는 클라이언트-서버 네트워크 환경의 서버 또는 클라이언트 기계로서, 또는 피어(peer)-투-피어(또는 분산형) 네트워크 환경의 피어 기계로서 동작할 수 있다. 기계는 개인용 컴퓨터(PC), 태블릿 PC, 셋-탑 박스(STB), 개인용 휴대 정보 단말기(PDA), 셀룰러 전화기, 웹 기기, 서버, 네트워크 라우터, 스위치 또는 브릿지, 또는 해당 기계에 의해서 취해질 액션들을 특정하는 (순차적인 또는 다른 방식의) 명령들의 세트를 실행할 수 있는 임의의 기계일 수 있다. 또한, 단일 기계만이 예시되어 있지만, "기계"라는 용어는 또한, 본원에서 논의되는 방법론들 중 임의의 하나 또는 그 초과의 방법론들을 수행하기 위해 개별적으로 또는 공동으로(jointly) 명령들의 세트(또는 다수의 세트들)를 실행하는 기계들(예를 들어, 컴퓨터들)의 임의의 집합을 포함하는 것으로 이해되어야 한다. 일 실시예에서, 컴퓨터 시스템(600)은, 도 1과 연관되어 설명된 제어 박스(114) 및/또는 도 5와 연관되어 설명된 컴퓨팅 디바이스(512)로서 사용하기에 적합하다.
[0049] 예시적인 컴퓨터 시스템(600)은 프로세서(602), 주 메모리(604)(예를 들어, 판독-전용 메모리(ROM), 플래시 메모리, 동기식 DRAM(SDRAM) 또는 램버스 DRAM(RDRAM)과 같은 동적 랜덤 액세스 메모리(DRAM), 등), 정적 메모리(606)(예를 들어, 플래시 메모리, 정적 랜덤 액세스 메모리(SRAM), 등), 및 이차 메모리(618)(예를 들어, 데이터 저장 디바이스)를 포함하고, 이들은 버스(630)를 통해 서로 통신한다.
[0050] 프로세서(602)는, 마이크로프로세서, 중앙 처리 유닛, 등과 같은 하나 또는 그 초과의 범용 프로세싱 디바이스들을 나타낸다. 더 구체적으로, 프로세서(602)는 복합 명령 세트 컴퓨팅(CISC) 마이크로프로세서, 축소 명령 세트 컴퓨팅(RISC) 마이크로프로세서, 초장 명령어(VLIW) 마이크로프로세서, 다른 명령 세트들을 구현하는 프로세서, 또는 명령 세트들의 조합을 구현하는 프로세서들일 수 있다. 프로세서(602)는 또한, 주문형 반도체(ASIC), 필드 프로그래밍 가능한 게이트 어레이(FPGA), 디지털 신호 프로세서(DSP), 네트워크 프로세서, 등과 같은 하나 또는 그 초과의 특수-목적 프로세싱 디바이스들일 수 있다. 프로세서(602)는 본원에서 논의된 동작들을 수행하기 위해 프로세싱 로직(626)을 실행하도록 구성된다.
[0051] 컴퓨터 시스템(600)은 네트워크 인터페이스 디바이스(608)를 더 포함할 수 있다. 컴퓨터 시스템(600)은 또한, 비디오 디스플레이 유닛(610)(예를 들어, 액정 디스플레이(LCD) 또는 음극선관(CRT)), 영숫자 입력 디바이스(612)(예를 들어, 키보드), 커서 제어 디바이스(614)(예를 들어, 마우스), 및 신호 생성 디바이스(616)(예를 들어, 스피커)를 포함할 수 있다.
[0052] 이차 메모리(618)는, 본원에서 설명되는 방법론들 또는 기능들 중 임의의 하나 또는 그 초과를 구현하는 명령들의 하나 또는 그 초과의 세트들(예를 들어, 소프트웨어(622))이 저장되는 기계-액세스 가능한 저장 매체(또는 더 구체적으로 컴퓨터-판독 가능한 저장 매체)(631)를 포함할 수 있다. 소프트웨어(622)는 또한, 컴퓨터 시스템(600)에 의한 소프트웨어의 실행 동안에 주 메모리(604) 내에 및/또는 프로세서(602) 내에 완전하게 또는 적어도 부분적으로 상주(reside)할 수 있고, 주 메모리(604)와 프로세서(602)는 또한, 기계-판독 가능한 저장 매체들을 구성한다. 소프트웨어(622)는 추가로, 네트워크 인터페이스 디바이스(608)를 통해 네트워크(620)를 통해서 전송되거나 수신될 수 있다.
[0053] 기계-액세스 가능한 저장 매체(631)가 단일 매체인 것으로 예시적인 실시예에서 도시되지만, "기계-판독 가능한 저장 매체"라는 용어는, 명령들의 하나 또는 그 초과의 세트들을 저장하는 단일 매체 또는 다수의 매체들(예를 들어, 중앙형 또는 분산형 데이터베이스, 및/또는 연관된 캐쉬들 및 서버들)을 포함하는 것으로 이해되어야 한다. "기계-판독 가능한 저장 매체"라는 용어는 또한, 기계에 의해 실행하기 위한 명령들의 세트를 저장하거나 인코딩할 수 있고 그리고 기계로 하여금 본 발명의 방법론들 중 임의의 하나 또는 그 초과의 방법론들을 수행하게 하는 임의의 매체를 포함하는 것으로 이해되어야 한다. 따라서, "기계-판독 가능한 저장 매체"라는 용어는 솔리드-스테이트 메모리들, 및 광학 및 자기 매체들을 포함하지만, 이에 제한되지는 않는 것으로 이해되어야 한다.
[0054] 따라서, 가변 픽셀형 가열을 이용하는 정전 척들이 개시되었다. 실시예에서, 정전 척(ESC)은 전면 표면 및 후면 표면을 갖는 세라믹 플레이트를 포함하고, 전면 표면은 웨이퍼 또는 기판을 지지하기 위한 것이다. 베이스는 세라믹 플레이트의 후면 표면에 커플링된다. 광 운반 매체는 베이스에 배치되고, 광 운반 매체는 픽셀형 광-기반 가열 능력을 ESC에 제공하도록 구성된다.

Claims (16)

  1. 지지 조립체(support assembly)로서,
    전면 표면 및 후면 표면을 갖는 정전 척(electrostatic chuck; ESC) ― 상기 전면 표면은 웨이퍼 또는 기판을 지지하기 위한 것임 ―;
    상기 ESC 내에 배치된 광 운반 매체(light carrying medium)을 포함하고,
    상기 광 운반 매체는 픽셀형(pixelated) 광-기반 가열 능력을 상기 ESC에 제공하도록 구성되는,
    지지 조립체.
  2. 제 1 항에 있어서,
    상기 광 운반 매체는 복수의 광학 섬유들을 포함하는,
    지지 조립체.
  3. 제 2 항에 있어서,
    상기 복수의 광학 섬유들 각각은 독립적으로 제어 가능한,
    지지 조립체.
  4. 제 1 항에 있어서,
    상기 ESC는 내부에 하우징된(housed) 하나 또는 그 초과의 전기 가열기들을 포함하는,
    지지 조립체.
  5. 제 1 항에 있어서,
    상기 ESC는, 내부에 하우징된 RF 전극을 포함하는,
    지지 조립체.
  6. 제 1 항에 있어서,
    상기 ESC는 냉각 컴포넌트를 포함하는,
    지지 조립체.
  7. 제 6 항에 있어서,
    상기 ESC는, 내부에 하우징된 하나 또는 그 초과의 전기 가열기들을 포함하고, 상기 하나 또는 그 초과의 전기 가열기들 및 상기 냉각 컴포넌트는 2 레벨들의 온도 균일성 제어를 제공하며, 상기 광 운반 매체는 제 3 레벨의 온도 균일성 제어를 제공하는,
    정전 척.
  8. 제 1 항에 있어서,
    상기 광 운반 매체는, 온도 감지 능력을 제공하도록 추가적으로 구성되는,
    정전 척.
  9. 반도체 프로세싱 시스템으로서,
    진공배기(evacuation) 디바이스, 가스 유입구 디바이스, 플라즈마 점화 디바이스, 및 검출기에 커플링된 챔버;
    상기 플라즈마 점화 디바이스와 커플링된 컴퓨팅 디바이스;
    상기 챔버에 배치되는 샘플 홀더(sample holder)와 커플링된 전압 소스를 포함하고,
    상기 샘플 홀더는:
    전면 표면 및 후면 표면을 갖는 정전 척(ESC) ― 상기 전면 표면은 웨이퍼 또는 기판을 지지하기 위한 것임 ―; 및
    상기 ESC에 배치된 광 운반 매체 ― 상기 광 운반 매체는 픽셀형 광-기반 가열 능력을 상기 ESC에 제공하도록 구성됨 ―
    를 포함하는,
    반도체 프로세싱 시스템.
  10. 제 9 항에 있어서,
    상기 광 운반 매체는 복수의 광학 섬유들을 포함하는,
    반도체 프로세싱 시스템.
  11. 제 10 항에 있어서,
    상기 복수의 광학 섬유들 각각은 독립적으로 제어 가능한,
    반도체 프로세싱 시스템.
  12. 제 9 항에 있어서,
    상기 ESC는 내부에 하우징된 하나 또는 그 초과의 전기 가열기들을 포함하는,
    반도체 프로세싱 시스템.
  13. 제 9 항에 있어서,
    상기 ESC는 내부에 하우징된 RF 전극을 포함하는,
    반도체 프로세싱 시스템.
  14. 제 9 항에 있어서,
    상기 ESC는 냉각 컴포넌트를 포함하는,
    반도체 프로세싱 시스템.
  15. 제 14 항에 있어서,
    상기 ESC는 내부에 하우징된 하나 또는 그 초과의 전기 가열기들을 포함하고, 상기 하나 또는 그 초과의 전기 가열기들 및 상기 냉각 컴포넌트는 상기 ESC의 2 레벨들의 온도 균일성 제어를 제공하며, 상기 광 운반 매체는 상기 ESC의 제 3 레벨의 온도 균일성 제어를 제공하는,
    반도체 프로세싱 시스템.
  16. 제 9 항에 있어서,
    상기 광 운반 매체는 온도 감지 능력을 제공하도록 추가적으로 구성되는,
    반도체 프로세싱 시스템.
KR1020177009195A 2013-09-06 2014-08-27 가변 픽셀형 가열을 이용하는 정전 척 KR102239748B1 (ko)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201361874525P 2013-09-06 2013-09-06
US61/874,525 2013-09-06
US14/085,026 US9196514B2 (en) 2013-09-06 2013-11-20 Electrostatic chuck with variable pixilated heating
US14/085,026 2013-11-20
PCT/US2014/052997 WO2015034728A1 (en) 2013-09-06 2014-08-27 Electrostatic chuck with variable pixelated heating

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020167008963A Division KR101726665B1 (ko) 2013-09-06 2014-08-27 가변 픽셀형 가열을 이용하는 정전 척

Publications (2)

Publication Number Publication Date
KR20170041283A true KR20170041283A (ko) 2017-04-14
KR102239748B1 KR102239748B1 (ko) 2021-04-12

Family

ID=52625366

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020167008963A KR101726665B1 (ko) 2013-09-06 2014-08-27 가변 픽셀형 가열을 이용하는 정전 척
KR1020177009195A KR102239748B1 (ko) 2013-09-06 2014-08-27 가변 픽셀형 가열을 이용하는 정전 척

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR1020167008963A KR101726665B1 (ko) 2013-09-06 2014-08-27 가변 픽셀형 가열을 이용하는 정전 척

Country Status (5)

Country Link
US (1) US9196514B2 (ko)
KR (2) KR101726665B1 (ko)
CN (2) CN105637629B (ko)
TW (1) TWI564990B (ko)
WO (1) WO2015034728A1 (ko)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9681497B2 (en) 2013-03-12 2017-06-13 Applied Materials, Inc. Multi zone heating and cooling ESC for plasma process chamber
WO2014164449A1 (en) 2013-03-13 2014-10-09 Applied Materials, Inc. Multi-zone heated esc with independent edge zones
CN110085535A (zh) 2013-11-04 2019-08-02 应用材料公司 具有增加的侧面数量的传送腔室、半导体装置制造处理工具和处理方法
TW201518538A (zh) 2013-11-11 2015-05-16 Applied Materials Inc 像素化冷卻溫度控制的基板支撐組件
US10460968B2 (en) 2013-12-02 2019-10-29 Applied Materials, Inc. Electrostatic chuck with variable pixelated magnetic field
US9520315B2 (en) 2013-12-31 2016-12-13 Applied Materials, Inc. Electrostatic chuck with internal flow adjustments for improved temperature distribution
US9622375B2 (en) 2013-12-31 2017-04-11 Applied Materials, Inc. Electrostatic chuck with external flow adjustments for improved temperature distribution
US11158526B2 (en) 2014-02-07 2021-10-26 Applied Materials, Inc. Temperature controlled substrate support assembly
US9472410B2 (en) 2014-03-05 2016-10-18 Applied Materials, Inc. Pixelated capacitance controlled ESC
US9698041B2 (en) * 2014-06-09 2017-07-04 Applied Materials, Inc. Substrate temperature control apparatus including optical fiber heating, substrate temperature control systems, electronic device processing systems, and methods
CN106463404B (zh) * 2014-07-02 2019-11-19 应用材料公司 有沟槽引导式光纤加热的温度控制设备、基板温度控制系统、电子器件处理系统及处理方法
WO2016003633A1 (en) 2014-07-02 2016-01-07 Applied Materials, Inc Apparatus, systems, and methods for temperature control of substrates using embedded fiber optics and epoxy optical diffusers
WO2016014138A1 (en) 2014-07-23 2016-01-28 Applied Materials, Inc. Tunable temperature controlled substrate support assembly
US10879046B2 (en) * 2015-09-11 2020-12-29 Applied Materials, Inc. Substrate support with real time force and film stress control
US10520371B2 (en) 2015-10-22 2019-12-31 Applied Materials, Inc. Optical fiber temperature sensors, temperature monitoring apparatus, and manufacturing methods
KR20180093966A (ko) * 2015-12-10 2018-08-22 아이오니어 엘엘씨 프로세스 동작의 파라미터들을 결정하기 위한 장치 및 방법
US10973088B2 (en) * 2016-04-18 2021-04-06 Applied Materials, Inc. Optically heated substrate support assembly with removable optical fibers
US10119191B2 (en) 2016-06-08 2018-11-06 Applied Materials, Inc. High flow gas diffuser assemblies, systems, and methods
US10684159B2 (en) 2016-06-27 2020-06-16 Applied Materials, Inc. Methods, systems, and apparatus for mass flow verification based on choked flow
US10685861B2 (en) * 2016-08-26 2020-06-16 Applied Materials, Inc. Direct optical heating of substrates through optical guide
JP6811144B2 (ja) * 2017-05-30 2021-01-13 東京エレクトロン株式会社 プラズマ処理装置の静電チャックを運用する方法
JP6924618B2 (ja) * 2017-05-30 2021-08-25 東京エレクトロン株式会社 静電チャック及びプラズマ処理装置
US10361099B2 (en) 2017-06-23 2019-07-23 Applied Materials, Inc. Systems and methods of gap calibration via direct component contact in electronic device manufacturing systems
US10306776B1 (en) 2017-11-29 2019-05-28 Lam Research Corporation Substrate processing system printed-circuit control board assembly with one or more heater layers
WO2020023295A1 (en) * 2018-07-25 2020-01-30 Lam Research Corporation Substrate support temperature sensing systems and methods
US11062887B2 (en) * 2018-09-17 2021-07-13 Applied Materials, Inc. High temperature RF heater pedestals
US11107709B2 (en) 2019-01-30 2021-08-31 Applied Materials, Inc. Temperature-controllable process chambers, electronic device processing systems, and manufacturing methods
CN110211902B (zh) * 2019-06-19 2021-08-13 北京北方华创微电子装备有限公司 承载装置及工艺腔室
CN110752171B (zh) * 2019-11-01 2022-07-29 长江存储科技有限责任公司 晶圆弯曲度调整装置及方法
JP7533855B2 (ja) * 2020-01-31 2024-08-14 新光電気工業株式会社 基板固定装置
JP7429126B2 (ja) * 2020-01-31 2024-02-07 新光電気工業株式会社 基板固定装置
US20210381101A1 (en) * 2020-06-03 2021-12-09 Applied Materials, Inc. Substrate processing system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS609187B2 (ja) * 1976-09-30 1985-03-08 日本コ−タ−株式会社 弾性舗装材の舗装施工方法
JP2003031634A (ja) * 2001-07-19 2003-01-31 Shimadzu Corp 基板載置装置及び基板処理装置
JP2004134674A (ja) * 2002-10-11 2004-04-30 Toshiba Corp 基板処理方法、加熱処理装置、パターン形成方法
JP2008028354A (ja) * 2006-07-20 2008-02-07 Applied Materials Inc 急速温度勾配コントロールによる基板処理
JP2010503231A (ja) * 2006-09-11 2010-01-28 ラム リサーチ コーポレーション その場ウエハー温度測定並びに制御
KR20130126910A (ko) * 2010-11-10 2013-11-21 램 리써치 코포레이션 반도체 프로세싱을 위한 평면 가열기 구역을 구비한 가열 플레이트

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH069187B2 (ja) * 1983-12-14 1994-02-02 松下電器産業株式会社 試料加熱装置並びに常圧cvd装置および減圧cvd装置
WO1995028002A1 (en) * 1994-04-08 1995-10-19 Hitachi, Ltd. Method and device for processing semiconductor wafer
JPH09172001A (ja) * 1995-12-15 1997-06-30 Sony Corp 半導体製造装置の温度制御方法および装置
JP3554182B2 (ja) * 1998-03-31 2004-08-18 大日本スクリーン製造株式会社 温度測定装置および基板熱処理装置
US6127658A (en) * 1998-08-04 2000-10-03 Steag C.V.D. Systems, Ltd. Wafer heating apparatus and method with radiation absorptive peripheral barrier blocking stray radiation
JP2001223257A (ja) 2000-02-10 2001-08-17 Ibiden Co Ltd 半導体製造・検査装置用セラミック基板
US7030335B2 (en) * 2000-03-17 2006-04-18 Applied Materials, Inc. Plasma reactor with overhead RF electrode tuned to the plasma with arcing suppression
JP3897344B2 (ja) 2002-08-23 2007-03-22 株式会社オングストロームテクノロジーズ チャッキング状態検出方法及びプラズマ処理装置
US20050217799A1 (en) * 2004-03-31 2005-10-06 Tokyo Electron Limited Wafer heater assembly
KR20070073391A (ko) 2006-01-05 2007-07-10 삼성전자주식회사 반도체 웨이퍼의 온도 컨트롤 장치
JP4490372B2 (ja) * 2006-01-06 2010-06-23 株式会社巴川製紙所 光学接続部品の製造方法
JP5069452B2 (ja) * 2006-04-27 2012-11-07 アプライド マテリアルズ インコーポレイテッド 二重温度帯を有する静電チャックをもつ基板支持体
US8226769B2 (en) * 2006-04-27 2012-07-24 Applied Materials, Inc. Substrate support with electrostatic chuck having dual temperature zones
US9275887B2 (en) * 2006-07-20 2016-03-01 Applied Materials, Inc. Substrate processing with rapid temperature gradient control
US7723648B2 (en) * 2006-09-25 2010-05-25 Tokyo Electron Limited Temperature controlled substrate holder with non-uniform insulation layer for a substrate processing system
WO2009135137A2 (en) * 2008-05-02 2009-11-05 Applied Materials, Inc. System for non radial temperature control for rotating substrates
US8372667B2 (en) * 2009-04-20 2013-02-12 Applied Materials, Inc. Fiber laser substrate processing
KR101801117B1 (ko) * 2011-07-27 2017-11-27 삼성전자주식회사 휴대용 무선 단말기에서 안테나와 센서용 부재로 병행하는 금속체 및 이와 연동하는 장치
WO2013049589A1 (en) 2011-09-30 2013-04-04 Applied Materials, Inc. Electrostatic chuck with temperature control

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS609187B2 (ja) * 1976-09-30 1985-03-08 日本コ−タ−株式会社 弾性舗装材の舗装施工方法
JP2003031634A (ja) * 2001-07-19 2003-01-31 Shimadzu Corp 基板載置装置及び基板処理装置
JP2004134674A (ja) * 2002-10-11 2004-04-30 Toshiba Corp 基板処理方法、加熱処理装置、パターン形成方法
JP2008028354A (ja) * 2006-07-20 2008-02-07 Applied Materials Inc 急速温度勾配コントロールによる基板処理
JP2010503231A (ja) * 2006-09-11 2010-01-28 ラム リサーチ コーポレーション その場ウエハー温度測定並びに制御
KR20130126910A (ko) * 2010-11-10 2013-11-21 램 리써치 코포레이션 반도체 프로세싱을 위한 평면 가열기 구역을 구비한 가열 플레이트

Also Published As

Publication number Publication date
CN109560035A (zh) 2019-04-02
WO2015034728A1 (en) 2015-03-12
TW201521149A (zh) 2015-06-01
CN105637629A (zh) 2016-06-01
US9196514B2 (en) 2015-11-24
CN105637629B (zh) 2018-12-21
US20150070814A1 (en) 2015-03-12
KR102239748B1 (ko) 2021-04-12
KR20160054536A (ko) 2016-05-16
KR101726665B1 (ko) 2017-04-13
TWI564990B (zh) 2017-01-01

Similar Documents

Publication Publication Date Title
KR101726665B1 (ko) 가변 픽셀형 가열을 이용하는 정전 척
US10790180B2 (en) Electrostatic chuck with variable pixelated magnetic field
KR101958018B1 (ko) 진보된 rf 및 온도 균일성을 갖는 정전 척
JP7169319B2 (ja) ガス孔に開口縮小プラグを有する大電力静電チャック
US20160013065A1 (en) Plasma etching apparatus and plasma etching method
JP5320171B2 (ja) 基板処理装置
TW201519359A (zh) 可調溫度控制靜電夾組件
JP7376623B2 (ja) ウエハ処理システム向けの熱管理のシステム及び方法
CN110352482B (zh) 基板载置台及其电浆处理装置以及电浆处理方法
JP2004014752A (ja) 静電チャック、被処理体載置台およびプラズマ処理装置
US20150221481A1 (en) Electrostatic chuck with magnetic cathode liner for critical dimension (cd) tuning

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant