WO1995028002A1 - Method and device for processing semiconductor wafer - Google Patents
Method and device for processing semiconductor wafer Download PDFInfo
- Publication number
- WO1995028002A1 WO1995028002A1 PCT/JP1995/000701 JP9500701W WO9528002A1 WO 1995028002 A1 WO1995028002 A1 WO 1995028002A1 JP 9500701 W JP9500701 W JP 9500701W WO 9528002 A1 WO9528002 A1 WO 9528002A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light
- semiconductor substrate
- heating
- processing
- light source
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67098—Apparatus for thermal treatment
- H01L21/67115—Apparatus for thermal treatment mainly by radiation
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/48—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
- C23C16/481—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation by radiant heating of the substrate
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/02—Epitaxial-layer growth
- C30B25/10—Heating of the reaction chamber or the substrate
- C30B25/105—Heating of the reaction chamber or the substrate by irradiation or electric discharge
Definitions
- the present invention relates to a semiconductor substrate processing method and apparatus, and more particularly to a processing heating method and apparatus applied when heating a substrate in a semiconductor production line.
- a doped element is diffused or surface-oxidized on the surface of a semiconductor substrate, or an insulating thin film such as a silicon oxide film or a wiring thin film such as a doped polysilicon film or a metal film is formed on the substrate surface.
- a heating energy source is placed away from a thin film forming apparatus, and the energy emitted from the heating energy source is transported by an energy transport medium to heat the semiconductor substrate. .
- the present invention substantially uniforms the temperature distribution of the heated substrate when the substrate is heated by transporting projected energy from an energy source located remotely from the substrate or the heating energy source.
- the present invention relates to a method and apparatus that can be effectively used in the process of heating a substrate by reducing energy loss in the processes of incidence, transport, emission and irradiation of energy emitted from a substrate.
- a light source as the optimum heating energy source, and to transport the irradiation light from the light source by an optical fiber or the like.
- a clean room has the role of creating an atmosphere with very little dust and at the same time creating a constant temperature and humidity.
- it is necessary to heat the surface of the semiconductor substrate in order to process the semiconductor as a demand from the semiconductor manufacturing process. Therefore, A large number of devices are installed to dissipate a large amount of heat into the atmosphere in the clean room, and the capacity of the clean room air conditioning equipment must also be designed to be large.
- the above-described optical heating apparatus for semiconductor substrates generally includes a lamp, which is a light emitter that serves as a heat source, in the apparatus, and heats the substrate with the light emitted by the lamp.
- the heating lamps emit not only light with wavelengths that are efficiently absorbed by the substrate, but also light with long wavelengths, that is, infrared rays.
- Si substrates are virtually transparent to infrared radiation and do not absorb it.
- the long-wavelength component may raise the temperature of the atmospheric gas in the heating furnace, thereby indirectly heating the substrate.
- the former batch-type heating furnace has the characteristic of being able to heat the entire furnace at a constant temperature and uniformity. Moved to heating furnace.
- the single-wafer heating furnace has the characteristic of being able to rapidly change the temperature of the substrate, but the energy input from the heating lamp is large compared to the energy required to heat the substrate, resulting in poor energy efficiency.
- CVD Chemical Vapor Deposition
- damage caused by heat generated from the lamp such as a light transmission window that is heated and easily cracked, may be damaged by the light caused by the reactive gas.
- Deposition on the transmissive window and fogging of the light transmissive window due to etching during self-cleaning further reduce the light transmittance.
- Single-wafer equipment is generally disadvantageous in terms of throughput, but because the processing time required for a single operation is short, it is preferred when high-mix, low-volume production is required. It's becoming Therefore, in a single-wafer heating apparatus, it is normal to perform rapid heating and rapid cooling in order to increase the throughput even a little. Rapid heating requires more energy than batch equipment with quasi-static heating. In this way, the single-wafer heat treatment apparatus performs rapid heating, and after reaching a certain processing temperature, the light irradiation energy is rapidly reduced in order to maintain the temperature. The rate of energy inflow into the substrate during rapid heating is such that the attained heating temperature as it is is much higher than the target temperature.
- the target temperature can be reached with the minimum amount of energy because the temperature is raised quasi-statically. That is, when the energy required for processing one substrate in a batch system is compared with the energy required for processing one substrate in a single-wafer system, the latter is larger.
- the heating device also needs to be provided with a cooling mechanism with a large cooling capacity in order to maintain the device temperature against a large thermal input, even if it is for a short time. For this reason, the equipment becomes larger, more energy is required for cooling, and more energy is dissipated into the clean room, so the capacity of the clean room air conditioning equipment is also increased.
- the light source and the substrate heating section are separated via a light transport medium, only the heat generated from the light source is efficiently exhausted, and the heat generated in the substrate heating section is minimized. can be suppressed. As a result, it will be possible to curb the increase in the scale of equipment in the semiconductor production line and to save energy.
- the technique of arranging the light source unit away from the medium to be heated and using a light transport medium such as an optical fiber to transport light between them to heat the medium to be heated is not necessarily new.
- Japanese Patent Application Laid-Open No. 4-296092 discloses a method in which a group of linearly bundled optical fibers for transmitting high-temperature light generated by a light heat source and a printed circuit board to be reflowed are covered to form a printed circuit board. Equipped with a substrate mask with light-transmitting holes so that only the necessary parts of the substrate are irradiated, and a means for moving the optical fiber group with respect to the stationary printed circuit board, the heat resistance is weak.
- a reflow apparatus having a local heating function for a plurality of types of electronic parts has been disclosed with the intention of handling electronic parts and improving productivity.
- a photocurable insulating resin is applied onto a circuit board on which wiring electrodes facing protruding electrodes of a semiconductor chip to be mounted are formed, thereby forming a semiconductor chip.
- the position of the optical fiber is fixed in the mounting area, and the semiconductor chip is mounted on the substrate.
- Ultraviolet rays pass through the optical fiber embedded in the resin between the chip and substrate to cure the uncured resin between the chip and substrate.
- 6-9187 discloses that a plurality of window holes are provided in a sample table on which a sample to be heated is placed, and the tip of an optical fiber is inserted into each of the window holes, and the optical fiber is An infrared light source whose supply amount can be arbitrarily controlled is provided at the rear end of the sample, and a heating device that improves the uniformity of the temperature distribution of the sample and a CVD device that requires heating are disclosed.
- the problem to be solved by the present invention is to provide a specific method and apparatus for actually heating a semiconductor substrate in an actual clean room.
- the present invention provides a semiconductor substrate processing stage installed in a clean room in which the temperature and humidity are controlled in a clean atmosphere and the interior of which is kept substantially vacuum, and a clean room thermally isolated from the processing stage.
- heating energy generating means installed in a place having an atmosphere different from that of the room; power supply means for supplying power to the heating energy generating means; power control means for controlling the power supplied to the power supply means; Heating energy generating means and processing stages
- a semiconductor substrate processing apparatus comprising: a heating energy transport medium connecting a heating energy transport medium comprising a plurality of optical fibers having a predetermined length; are opposed to the heating energy generating means, the other end face portions of the plurality of optical fibers are opposed to the semiconductor substrate placed in the processing stage, and One of the end face portions is bundled together, and the other end face portion is spaced apart so as to substantially evenly cover the surface of the semiconductor substrate.
- a semiconductor substrate processing method and apparatus are provided in which heating energy is incident and energy emitted from the other end surface is irradiated
- the heating energy generating means is a lamp light source, in particular, the light used for heating the substrate is a sharp emission spectrum whose main component is light energy of a selected wavelength that can be absorbed by the substrate to be processed. It is best to use a light source with a torque.
- the present invention includes a processing stage for a plurality of semiconductor substrates installed in a clean room, and a heating energy generating means thermally isolated from the processing stage and installed in a place having an atmosphere different from that of the clean room. , provides an apparatus for processing semiconductor substrates that are connected n:1 by a heating energy transport medium.
- a plurality of optical fibers are arranged substantially in parallel, and the distance between adjacent optical fiber end face portions or the energy emitted from the end face portions of the optical fibers to the semiconductor substrate is measured.
- a semiconductor substrate processing method and apparatus that satisfies hZD ⁇ 1.1, where D is the distance between the centers of the spots, and h is the distance between the end surface of the optical fiber and the semiconductor substrate.
- the arrangement density of the optical fibers arranged in the peripheral part of the semiconductor substrate is higher than the arrangement density of the optical fibers arranged in the central part of the substrate.
- the present invention provides a cooling means for keeping the light transport medium at 200° C. or less and suppressing the light transport loss due to the change in the light absorption wavelength characteristics due to the temperature rise to about 100 dB/km or less.
- the present invention reduces the energy density of the light energy transported in the light transport medium to 10 kW/mm 2 or less to suppress the light transport loss to about 100 dBZ km or less, or the irradiation light transported in the light transport medium.
- a semiconductor substrate that heats the substrate by transporting the light emitted from the light source by suppressing the light transport loss to about 100 dBZ km or less by reducing the light intensity density of the semiconductor substrate to 10E7 lumen Z mm2 or less.
- a processing method and apparatus are provided.
- the present invention is a semiconductor substrate processing apparatus characterized in that a plurality of optical fibers are connected in series, and the core diameter of the optical fiber is the same or larger as it goes from the light incident side to the light emitting side to the substrate. It provides
- the present invention is a semiconductor substrate processing apparatus in which the energy transport medium is installed in a substantially straight line under the floor of the clean room, is bent substantially directly below the processing stage, and is guided to the processing stage. It provides
- the semiconductor substrate processing means is provided with a light transmission window for separating the substrate placed inside the processing means from the space inside the processing means and the space outside the processing means, and the end portion of the optical fiber is light transmission. Placed facing each other in the vicinity of the window, light passes through the light transmission window.
- a method and apparatus for treating semiconductor substrates by irradiation is provided.
- the heating energy transport medium is composed of a plurality of optical fibers having a predetermined length, and a fiber for light amount monitoring is provided along the plurality of optical fibers, and based on the monitored light amount.
- a power control means controls power supplied to a power supply means to achieve a desired amount of light.
- a conical condensing rod is provided at the tip of the starting end surface of each of the plurality of optical fibers, and the conical condensing rod has a conical hollowed-out central portion.
- a method and apparatus for processing a semiconductor substrate in which the thickness of the glass is substantially equal between the time when the light enters and is led into the fiber, and the outer and inner reflecting surfaces are parallel to each other. It is.
- the heating energy transport medium is composed of a plurality of optical fibers having a predetermined length, and the end surfaces of the plurality of optical fibers are partially inserted and coupled into the housing of the semiconductor substrate processing apparatus.
- a light introduction rod is arranged at the tip of each end surface portion, and a semiconductor substrate processing method and apparatus are provided in which the substrate is irradiated with the light of the optical fiber.
- FIG. 1 is a cross-sectional view of one production line in a semiconductor manufacturing process to which the light transport type substrate heating apparatus of the present invention is applied
- FIG. FIG. 3 is an apparatus configuration diagram showing that a lamp is directly installed in a processing apparatus including a heat treatment process and the apparatus is installed in a clean room
- FIG. Fig. 3(a) is a sectional view parallel to the axial direction of the heating lamp
- Fig. 3(b) is a sectional view of the heating lamp.
- FIG. 4(a) is an example of semiconductor manufacturing equipment.
- FIG. 4(b) is a detailed cross-sectional view of the apparatus when the processing apparatus including the substrate heating process by light transport of the present invention is applied to all CVD apparatuses
- FIG. 5(a) is an enlarged view of the vicinity of the optical fiber end surface for explaining the incidence of light on the end surface of the optical fiber 130
- FIG. 5(b) is a
- FIG. 6 is a partial cross-sectional view of a rod having a rod
- FIG. 6 is a diagram specifically showing the absorption wavelength characteristics of the optical fiber used in the present invention, that is, the characteristics of light transport loss at each wavelength.
- FIG. 7 (a) is an explanation for studying how the illuminance distribution on the substrate changes when the distance D between the light spot centers (between the optical fibers) and the distance h between the light source and the substrate are changed.
- FIG. 7(b) is a diagram showing the relationship between the variation in illuminance and the distance D between the light sources and the distance h between the light source and the substrate
- FIG. 11 is an explanatory diagram of the case of dividing into two, FIG. 11 is a cross-sectional view of the end face and the connection part when n optical fibers are connected in series, and FIG. 12 is a Si wafer
- FIG. 13 is a diagram showing the absorption wavelength characteristics of the lamp
- FIG. 13 is a diagram showing the emission spectrum of a lamp specifically used as an embodiment of the present invention
- FIG. 15 shows the emission spectrum of a metal halide lamp specifically used as another example
- FIG. FIG. 16 is a diagram showing the emission spectrum of the lamp
- FIG. 16 shows lamp radiant light when a metal halide lamp is used as an embodiment of the present invention.
- FIG. 17 is a diagram showing a condensing system
- FIG. 17 is a diagram showing a condensing system
- FIG. 17 is a diagram for effectively condensing a ring-shaped luminance distribution with the center of the two bright spots of the lamp as the focal point in the condensing system of FIG.
- Fig. 18 is a diagram showing the optical system of the lamp
- Fig. 18 is a block diagram of a system for monitoring the lamp light intensity and feedback control of the lamp power supply
- FIG. 20 is a conceptual diagram of distributing and supplying light to a plurality of heat treatment apparatuses
- FIG. 20 is a cross-sectional view showing an example of a heat treatment apparatus for heating a wafer with light emitted from a fiber. Best Mode for Carrying Out the Invention
- the heating energy source is not limited to light, but in the following examples, an example using a light source lamp as the heating energy source will be described. Heating a workpiece by delivering light from a remote location is described in the aforementioned patent publications.
- each optical fiber Infrared light emitted from a halogen lamp which is normally used, has a power of about 1 kW.
- Heat generation, a decrease in the transmittance of the optical fiber due to the heat generation, and further heat generation and loss due to the decrease in transmittance are repeated, eventually leading to a catastrophic result such as thermal destruction of the optical fiber.
- the optical fiber is protected by a resin such as plastic, a serious situation such as a fire due to ignition may occur. There are many tasks that must be done.
- not only as a means for heating the substrate but also in the method described in Japanese Patent Publication No.
- each optical fiber needs a seal for isolating the space inside the heat treatment apparatus in which the substrate is set from the outside of the apparatus.
- a further problem of the present invention is how to arrange the optical fiber with respect to the substrate in order to heat the substrate uniformly and quickly to a desired temperature with little heat loss. It is to solve what the heating method should be considering the loss and the loss at the time of heating light transportation.
- a high-density light quantity that has not been used in the past is incident on the optical fiber, and the loss in the optical fiber is minimized during transportation, eliminating the risk of heat generation in the optical fiber.
- the present invention transports light from a light source isolated from the clean room to the heat treatment stage through an optical fiber.
- the light source has a heating lamp inside, and the light from it is collected and transported to the heat treatment device by an optical fiber.
- the light emitted by the lamp is focused by a focusing optics onto an area smaller than the core diameter of the optical fiber or the outer diameter of the optical fiber bundle. and is injected into the optical fiber.
- a plurality of optical fibers are terminated in the vicinity of the light irradiation window so as to face the light irradiation window. radiates toward the substrate through and heats the substrate.
- the light is emitted by irradiating a spot with a diameter equal to or slightly smaller than the diameter of the core on the end face of the fiber. Also, the loss of the transported light is suppressed to about 100 dBZkm by setting the limiting incident angle to 40 degrees or less.
- the substrate temperature distribution is desirable to be within ⁇ 5% in order to satisfy standard conditions such as film thickness after substrate heat treatment, and the variation in illuminance distribution should be suppressed within ⁇ 10%.
- D the distance between the light sources or the distance between the light spots irradiated on the substrate
- h the distance between the light source and the substrate.
- the temperature distribution uniformity of the substrate can be improved.
- the heat released from the wafer is the greatest at the peripheral portion. Therefore, the uniformity of the wafer temperature distribution is improved by maximizing the amount of heat applied to the outer peripheral portion of the wafer.
- the center of the light spot from the optical fiber is arranged at the vertex of a regular polygon that is in contact with the outer periphery of the wafer and is formed by the number of optical fibers. .
- the fiber is also cooled by providing a jacket through which cooling water flows to generate heat due to heat loss in the optical transport path from the light source to the heating stage.
- a sharp peak whose main component is an emission distribution between about 0.6111 and 1.0 m is used as a heating light source.
- a lamp with a square emission spectrum Use a lamp with a square emission spectrum.
- FIG. 1 is a cross-sectional view of one manufacturing line in a semiconductor manufacturing process to which the light transport type substrate heating apparatus of the present invention is applied.
- the light source is installed outside the clean room, and only the energy required to heat the substrate is selected in advance in the light source to eliminate unnecessary heat generation inside the equipment and inside the clean room.
- FIG. 10 is a blunt configuration diagram showing that the divergence of energy is suppressed as much as possible. Even if the light source is installed at a location away from the clean room, the greater the distance, the greater the heat loss during light transportation, so it is not limited to a certain distance range. Naturally. What is necessary is that the light source section and the substrate processing section are thermally shielded.
- a processing apparatus 100 including a heat treatment process to which the present invention is applied is clean.
- the clean room is partitioned by a work area partition wall 250 into an equipment installation area 210 with a cleanliness level of class 100 to 1000 and a work area 220 with a cleanliness level of class 10 or lower. there is This working area partition wall 250 is not an essential component in the present invention, and may be provided as required.
- the clean room 200 has a HEPA filter (High Efficiency Particulate Air filter) 610 on the ceiling and a grating 500 on the floor so that downflow is always formed. Clean air is supplied by an air conditioner 600.
- the clean room has a clean air supply space 230 above the equipment installation area and work area, and an underfloor area 240 below the grating floor.
- the underfloor area 240 is used as a space for installing piping for supply and discharge of electricity, water, etc. required for semiconductor manufacturing.
- a light source 300 as means for heating a semiconductor substrate in a processing apparatus 100 including a heat treatment process is arranged separately from the clean room.
- the light source is internally provided with a heating lamp 310, from which light is collected and transported by an optical fiber 130 to a processing apparatus 100 including a heat treatment process.
- the light source is supplied with power from a lamp power source 700 (which includes power supply means and power control means, not shown) via a power cable 710, and cooling water is circulated from a cooling water circulation device 800. Cooling water is supplied through the pipe 810.
- the light emitted by the heating lamp 310 is diverted from the core diameter of the optical fiber 130 or the outer diameter of the optical fiber bundle by a condensing system such as a reflecting mirror and a lens installed in the light source 300.
- the light is condensed into a small area and is incident on the optical fiber.
- the condensed radiant light for heating the substrate is transported via the optical fiber 130 to the processing equipment 100 including the heat treatment process installed in the clean room 200, and the heat treatment process is carried out.
- a substrate placed in a processing apparatus 100 including Here, the optical energy that did not contribute to substrate heating is The amount of heat released into the clean room 200 and absorbed by the air conditioner 600 is extremely small.
- the light source unit 300 uses a heating lamp 310 that emits only the light energy of the wavelength component necessary for heating the substrate, or uses a filter to minimize the loss in the optical fiber 130.
- the heat radiation from the heat lamp 310 in the light source 300 is cooled by the cooling water circulation device 800, but the light source 300 is kept in a clean room such as 200. Since it is not installed in a place that requires temperature control, there is no particular need for cooling by the air conditioner 600.
- FIG. 2 is a device configuration diagram showing that a lamp is directly installed in a processing device including a conventional heat treatment process and the device is installed in a clean room.
- a processing apparatus including a conventional heat treatment process it is possible to heat a substrate placed in a vacuum or a gas atmosphere different from the atmosphere by using a window material such as a quartz plate that transmits infrared rays, and at the same time, the space in which the substrate is placed can be separated from the outside air.
- the light source was installed directly on the side facing the substrate with respect to the window material through the window material for shielding.
- FIG. 2 devices and parts similar to those in FIG. 1 are explained using the same attached numerals.
- a substrate heating lamp 910 is arranged inside a processing apparatus 900 including a heat treatment process installed in a clean room 200 .
- the heating light source lamp 910 that is conventionally used is a halogen lamp, and as will be described later, it has an emission spectrum that includes components with wavelengths considerably longer than the absorption region of the Si wafer.
- the energy used to heat the Si wafer is about 5% of the power energy input to the halogen lamp, and the other 95% is wasted heat, and the circulating cooling water in the heating device is 800 or radiated into the clean room and absorbed by the air conditioner 600 of the clean room 200.
- This In addition to the electric power equipment 700 for the main body of the heating equipment, it will be equipped with an air conditioning equipment 600 for suppressing the temperature rise in the clean room 200, which is extremely inefficient production equipment.
- the energy substantially used for heating the substrate is effectively selected in advance in the light source unit and transported by the optical fiber. Since the power energy input to the lamp is suppressed to about 5%, there is almost no heat radiation into the clean room. Therefore, the air conditioning equipment for suppressing the temperature rise in the clean room can be made more compact than before.
- the heating lamp used in the embodiments of the present invention is a high-pressure sodium lamp or a metal halide lamp, which has a luminous spectrum matching the absorption wavelength of the silicon substrate, and the luminous efficiency itself. Approximately 30% of the total heat dissipation is about 30%, so as a result, the amount of wasted heat dissipation can be reduced to about 110% compared to the conventional method.
- FIG. 3 is a cross-sectional view illustrating the state of condensing the lamp and the radiant light of the light source part of the present invention, (a) is a cross-sectional view parallel to the axial direction with respect to the heating lamp, (b ) is a sectional view perpendicular to the axial direction with respect to the heating lamp.
- a high-pressure discharge lamp called a HID lamp (High Intensity Discharge Lamp) such as a high-pressure sodium lamp or a metal halide lamp is used unlike a conventional halogen lamp.
- HID lamp High Intensity Discharge Lamp
- the lamp of the light source unit 300 shown in FIG. 3 has a rod-shaped luminous body, and emits light radially from the center of the rod, which is divided into the cross section of the core of the optical fiber 130 and the substance by an appropriate optical system.
- the light is focused on a spot of approximately the same or slightly smaller area.
- an ellipse or a paraboloid A convergent luminous flux 330 is produced by a reflecting mirror 320 molded into a shape and water-cooled, and a condensed luminous flux 350 to one point is produced by a cylindrical lens 340.
- the shape of the cylindrical lens 340 By making the shape of the cylindrical lens 340 to have a lens action also in the longitudinal direction, it becomes possible to collect light from such a rod-shaped light emitter to one point with one optical system. .
- a converging light beam is condensed on the end surface of the optical fiber 130 by the second cylindrical lens. It is also possible to obtain the light to enter the optical fiber.
- the cooling means for the light source unit 300 is provided by introducing cooling water from the cooling water circulator 800 into the cooling water jacket 810 formed behind the reflecting mirror 320. achieved.
- a pair of cooling water jackets 820 are formed above and below the converging light flux 330, and cooling water is introduced into them to cool and at the same time hold the cylindrical lens 340.
- optical fibers are arranged in a line and the above-mentioned sheet A configuration in which parallel light beams are incident may be used, or a convergent light beam may be incident on the end face of a bundle of optical fibers.
- metal halide lamps such as those shown in FIGS. 16 to 18 are suitable for the method and apparatus of the present invention. Details of this will be described later.
- FIG. 4(a) is a detailed cross-sectional view of a CVD apparatus as an example of a semiconductor manufacturing apparatus when the processing apparatus including the substrate heating process by light transport of the present invention is applied.
- (b) is an enlarged detailed cross-sectional view of the end face portion of the optical fiber.
- 401 is a CVD reactor
- 402 is a gas chamber
- 403 is a semiconductor substrate
- 404 is a light irradiation window
- 405 is an O-ring seal
- 406 is a non-seal.
- An active gas introduction pipe, 130 an optical fiber
- 408 a reflector and 409 a connector.
- a silicon wafer is used as the substrate 403, and this wafer is placed inside a water-cooled CVD reactor 401 with the wafer surface facing upward.
- 402 is a gas shower having a water cooling mechanism, CVD gas is sprayed onto the wafer 403, and the CVD gas is exhausted from an exhaust port.
- an O-ring seal 405 is installed on the contact surface with the light irradiation window 404 made of quartz in order to keep the inside of the CVD reactor 401 airtight.
- Inert gas is introduced into the chamber to suppress excessive film formation.
- a plurality of optical fibers 130, 130 terminate in the vicinity of the light irradiation window 404 and face it.
- radiated light from the heating light source 300 transported via the optical fiber 130 is transmitted through the optical fiber 130 fixed by the connector 409 to the water-cooled reflecting mirror.
- the wafer 403 is heated by being irradiated from the end face toward the substrate 403 through the light irradiation window 404 made of quartz.
- a CVD film is formed by bringing the CVD gas into contact with the heated wafer.
- this embodiment shows the case of application to a CVD apparatus, it can also be used as a thermal annealing furnace by evacuating the inside of the reactor or introducing an inert gas or hydrogen gas without introducing the CVD gas. It can also be used as a thermal oxidation furnace by introducing oxygen gas instead of CVD gas.
- FIG. 5(a) shows an enlarged view of the vicinity of the end face of the optical fiber 130 in order to explain the incidence of light on the end face of the optical fiber 130.
- FIG. The optical fiber 130 consists of a coating layer 131, a clad 132 and a core 133 from the outer periphery.
- Fig. 3 the entire optical system for condensing light from the light source has been explained. A method of irradiating a spot with a small diameter and making it incident is efficient. Also, at this time, as shown in the figure, it is necessary to reduce the incident angle of light in consideration of the method of condensing light from the light source.
- a bundle which is a bundle of many fibers
- a compound eye lens is installed on the end face of the optical fiber, and the incident light from the light source is condensed inside the core cross section to reduce the loss at the bundle end face and then onto the bundle. It may be condensed. It doesn't necessarily have to be a compound eye type lens. It is also possible to form a lens portion by molding or the like on the end surface of each optical fiber. Furthermore, by using fibers with a shape that minimizes the ineffective cross section that occurs between the fiber cores when the cross-sectional shape of the optical fibers is bundled into a square or regular hexagon, A method of condensing light on the bundle after reducing the loss at the end face of the bundle may also be used.
- the light emitting part can be a point light source as much as possible. Close lamps are preferred. However, a lamp having an optimum emission wavelength and high luminous efficiency for heating a Si wafer is not necessarily a point light source.
- Light source heating lamp 3 1 0 The rear part is equipped with an ellipsoidal mirror 320 (cold mirror) with a relatively small eccentricity that reflects the light from the lamp forward without spreading it too much.
- the surface of this elliptical mirror 320 is specially coated to reflect light (unnecessary infrared light) in the emission wavelength region longer than 1.2 m, which is the absorption band of Si.
- a forward reflecting mirror 321 having a spherical surface is used to reflect backward the light emitted from the heating lamp 310 and reflected from the reflecting mirror 320 and spread over a desired angle. Efficiency can be further improved by providing An opening 322 for extracting light is formed in the central axis of the forward reflecting mirror 321.
- These elliptical mirrors 320 and forward elliptical mirror 321 are provided with coolers 810, 810 to prevent overheating. As shown in the figure, the elliptical mirror (reflector 310) is hit by a perpendicular drawn from the focal point (the brightest part of the arc or the center of the arc) to the major axis of the ellipse (light transport axis).
- the NA of the optical fiber that captures the condensed light is 0.53, the diameter of the fiber is 7 mm (bundle type), the lamp is a metal halide lamp (575 W), and the elliptical mirror (between focal points) is used.
- the metal halide lamp used in the device of the present invention has an emission wavelength region shorter than 1.2 m, which is the absorption band of Si, and emits about three times as much light as the conventionally used halogen lamp. Because of its efficiency, it is suitable as a light source for heating Si wafers. For this reason, if an elliptical mirror with two focal points is used to form an image at the other focal point, the light will not converge to a single point and form a ring-like shape. luminance distribution appears (see Fig. 5 (b)). In FIG. 5(b), shaded areas indicate areas with high brightness. This ring-shaped brightness distribution corresponds to the high-brightness portions (two places) between the lamp electrodes.
- a conical light-collecting end with a hollowed-out central portion is provided. I came up with 324 words that I had.
- the condensing conical mouth pad 324 is in contact with the bundle end face of the ⁇ 7 optical fiber 130 on the output side. It should be noted that the dimensions of each part, especially the angles, are not drawn accurately in the illustration.
- this condensing conical rod 324 since the thickness of the glass is substantially equal and the inner and outer reflecting surfaces are parallel during the period from when the light is incident to when it is guided into the fiber, Even if the light incident on the aperture is reflected, it is possible to suppress the increase in the angle of reflection that occurs at each reflection. It is possible to convert the image into a circular condensed image with the ring width as the radius. Therefore, when the conical rod of the present invention was used, the light collection efficiency could be improved by about 10 times compared to when it was not used.
- FIG. 17 shows an example using this truncated conical mouthpiece. Since the light source portion is substantially the same as that of FIG. 16, no particular explanation will be given, but the same parts are given the same attached numerals.
- An opening 322 for extracting light is formed in the central axis of the forward reflecting mirror 321, and preferably, an optical lens means 323 for reducing NA is formed in the opening 322 (preferred embodiment as a concave lens).
- These elliptical mirrors 320 and forward elliptical mirror 321 are provided with coolers 810, 810 to prevent overheating. Furthermore, it is possible to provide lamp cooling means 820 for cooling the heating lamps 310 .
- the lamp cooling means 820 be configured so that cooling air can be supplied from the outside. by this Therefore, by changing the flow rate of the cooling air according to the desired output of the heating lamp 310 and adjusting the lamp temperature from the outside, the responsiveness of the light amount from the lamp (to control the lamp light amount, When the supplied power is changed, it is possible to improve the followability of the lamp light amount to it. In addition, by utilizing this high responsiveness, it is possible to rapidly decrease the light intensity of the lamp by forcibly cooling the lamp rapidly during dimming.
- the light emitted forward from the light source is applied to the condensing aperture pad 324 having the above-described structure, and a mechanical shutter mechanism 325 can be provided in the middle thereof.
- This shutter mechanism 325 completely shuts off the transported light path, but closing the shutter when the lamp is bright increases the heat load on the shutter. It is preferable to close the shutter after falling to .
- LC low-dust liquid crystal
- a voltage controlled shutter (not shown) can also be used.
- the LC element is made by sandwiching LC with refractive index anisotropy and polymer between glass coated with a transparent conductive film.
- the light is scattered due to the difference in refractive index between the polymer and the LC.
- the molecular light distribution is aligned in the direction of the electric field, and the refractive index matches that of the polymer, so the light travels straight (transmits). Therefore, in the uncharged state, the light incident on the fiber is less than 3% of the charged light due to irregular reflection by the LC element, and L
- the C element plays the role of a shutter.
- considering the durability and heat resistance of LC molecules it is necessary to reduce the lamp output as much as possible when the shutter is closed. By using such a shutter function, it is possible to prevent thermal damage to the fiber end face.
- the condensing aperture pad 324 is cooled by a cooler 830 on its outer circumference.
- the light efficiently condensed by the condensing rod 324 enters the optical fiber 130 .
- the heating lamp is a 575 W metal halide lamp, and 19 fibers with an NA of 0.53 and a core diameter of 0.14 are cut into a circle of about 0.7 mm.
- the light was focused on the bundled end.
- the metal halide lamp emits light
- the distance between the two points with the highest luminance is about 5.2 mm in the case of the discharge between the electrodes of 7 mm.
- About 60% of the imaged light quantity is contained in a ring with an outer diameter of 0.15 mm and an inner diameter of 0.8 mm (ring width is 3.5 nun).
- ring width is 3.5 nun.
- only about 6% of the light is collected on a circle of ⁇ 7. Therefore, by inserting the above-mentioned conical mouth pad between the end of the 07 fiber and the focal point of the ellipse, we were able to improve the light collection efficiency by about 10 times.
- the light intensity of the condensed light is not distributed in the center of the circle, but rather on the circumference of the circle. is.
- the 19 fibers instead of bundling the 19 fibers into a circular shape of about 07, they are arranged on a circle of ⁇ 11.5 where the distribution of the imaged light is the highest, resulting in a circular shape.
- the light collection efficiency can be improved more than bundling.
- the ratio of the light intensity irradiated on the circumference of ⁇ 11.5 to the average light intensity irradiated in the circle of ⁇ 7 is approximately 3x more light collection efficiency was able to improve
- the reflection loss between the fiber core material and the covering material is defined as R(0) and is expressed by the following equation (1.2).
- Equation (1.3) the light transmittance T(0) at the incident angle ⁇ can be expressed by Equation (1.3).
- L, d, and ⁇ A in order to suppress the loss of the light of the incident angle ⁇ to about 100 dBZkm, we propose the permissible range of the amount of loss caused by the above three respectively.
- ⁇ is the extinction coefficient
- L is the fiber length
- d is the core profile
- 0 is the angle of incidence of the input light
- A is the reflection loss rate for one reflection.
- L In order to satisfy ⁇ ( ⁇ ) ⁇ 0. 0 1 (loss due to absorption by the core material is 1% or less), L must satisfy the relationship of formula (1.4) (however, ⁇ 0 ⁇ 2 and vinegar ).
- L d and S In order to satisfy R(5) ⁇ 0.01 (reflection loss of 2% or less), L d and S must satisfy the following formula (1.5).
- FIG. 6 is a diagram specifically showing the absorption wavelength characteristics of the optical fiber used in the present invention, that is, the characteristics of light transport loss at each wavelength. However, it shows that light transport is possible with relatively little loss between about 0.6 ⁇ m and 1.0m.
- the loss increases by 4 dB, and even if the temperature rises below this temperature, the power to settle down to the equilibrium temperature below 200 °C due to natural cooling. Temperature rises. Therefore, keeping the temperature in the optical fiber below 200°C is a very important condition.
- the temperature in the optical fiber at the branching point below 200° C. corresponds to suppressing the optical transport loss to around 100 dBZkin or below based on the loss calculation described later.
- the energy density of the light energy injected into the optical fiber to satisfy this condition is equivalent to suppressing it to 10 kW/mm 2 or less.
- suppressing the light energy density to 10 kW/mm 2 or less corresponds to suppressing the light amount density of the irradiation light to 10E7 lumen/mm 2 or less.
- Fig. 7 (a) is an explanation for examining how the illuminance distribution on the substrate changes when the distance D between the light spot centers (between the optical fibers) and the distance h between the light source and the substrate are changed. It is a diagram.
- the relationship between the distance D between the light sources (between the optical fibers) and the distance h between the light source and the substrate is obtained to keep the variation in the illuminance distribution within a certain range.
- the surface light source can be regarded as a point light source.
- T(0) is a function determined by the structure of the optical fiber used as the light source, and represents the transmittance for incident light in the ⁇ direction (equation 1.3).
- the irradiance E(0) in the direction 0 from the light source at dS is given by equation (2.2).
- the variation in the illuminance distribution is taken into consideration.
- the illuminance of a point on the square can be obtained by adding the illuminance from the two light sources using Equation (2.3), assuming illumination from only two fibers.
- the square is divided into 25 areas so that the heat conduction on the substrate can also be considered, and the average value of the illuminance in each area is obtained. This means that the unevenness of illuminance in one area is smoothed out by heat conduction.
- Fig. 7 (b) shows the relationship between the variation in illuminance and the distance D between the light sources and the distance h between the light source and the substrate.
- the temperature distribution of the substrate be within ⁇ 5% in order to meet the standard conditions such as film thickness after substrate heat treatment. Therefore, the variation in illuminance distribution must be suppressed within ⁇ 10%.
- the light spot from the optical fiber is placed inside the regular polygon that is in contact with the outer periphery of the substrate and is formed by the number of optical fibers arranged on the outer periphery of the substrate. By aligning the center, the substrate can be heated with maximum heating efficiency without reducing the uniformity of the temperature distribution of the heated substrate.
- the arrangement density of light spots from the optical fiber arranged on the outer periphery of the substrate is higher than the arrangement density of light spots from the optical fiber arranged in the central portion of the substrate, the temperature distribution uniformity of the substrate can be improved.
- the center of the spot of the light emitted from the optical fiber onto the substrate is located on the polygon circumscribing the outer circumference of the substrate.
- the optical fiber is arranged so as to be located inside, and the substrate is heated by maximizing the heating efficiency without reducing the temperature distribution uniformity of the heated substrate.
- optical fibers to be arranged on the outer circumference For example, if the number of optical fibers to be arranged on the outer circumference is 6, 6 optical fibers are arranged at the vertexes of a hexagon (preferably a regular hexagon) that circumscribes the outer circumference of the board, and 1 is placed at the center of the board. of optical fibers.
- the uniformity of the temperature distribution of the substrate can be improved.
- the distribution density of the optical fibers can be arranged closer to the outer circumference, or the light source can be selected so that the light amount of the light spot from one optical fiber increases toward the outer circumference.
- the light spot emitted from the optical fiber should all be contained within the wafer.
- the maximum temperature is reached, and the uniformity of the temperature distribution of the wafer is significantly impaired.
- the uniformity of the wafer temperature distribution can be improved only by maximizing the amount of heat applied.
- a positive multiplicity of points in contact with the outer periphery of the wafer formed by the number of optical fibers is required.
- the amount of light is about 20% of the emitted light energy.
- Figures 9 and 10 show examples in which light spots are arranged at the vertices of a regular n-sided polygon where n is 6 and 12, respectively.
- Significant improvement. Therefore, the heating efficiency can be further improved by installing a reflecting mirror 408 as shown in FIG.
- adjacent spots of the plurality of light spots irradiated on the substrate are not overlapped with each other, but the arrangement of the light spots must be such. It doesn't have to be. What is necessary is the relationship between the amount of heat given to the substrate from the irradiated light spot, the amount of heat escaping from the substrate by heat dissipation, and the amount of heat given to the substrate by the heat in the chamber in which the substrate is held. The point is that the entire substrate is heated uniformly. For this reason, although not shown, it is also possible to irradiate a plurality of light spots partially overlapping each other.
- the spots can be arranged so that the degree of overlapping of the spots is increased toward the outer periphery of the wafer and decreased at the inner periphery. This is because, as mentioned above, heat escapes more easily at the outer periphery of the wafer. 4. How to control the temperature of the board surface
- the lamp power supply is controlled after monitoring the lamp light intensity and grasping the lamp output, and the uniform stabilization of the temperature of the heating substrate is achieved.
- FIG. Fig. 18 (a) shows the overall configuration of this control method
- Fig. 18 (b) shows the lamp light amount monitoring fiber in that case between the bundled fibers.
- the attached numbers are the same as those in Fig. 17.
- the light emitted from the opening 322 of the forward reflecting mirror 321 is directed to the fiber 130 .
- One of the noddle-type fins 130 is used as the lamp light intensity monitor 730.
- the lamp light intensity monitor fiber 730 is directed toward the light source with its end aligned with the light transport fiber, and sends the irradiated light to the power meter 710 .
- the noometer 710 monitors the amount of irradiation light.
- the monitor light quantity is input to the control computer 720, the desired light quantity is compared with the monitored light quantity, and the lamp light source power supply 700 is feedback-controlled based on the comparison.
- the fiber for lamp light intensity monitor needs only to grasp the relative light intensity, the fiber diameter may be small. Therefore, it is possible to utilize the non-effective area portion of the heating optical transport bundle (large fiber diameter) and incorporate the monitoring fiber.
- the emitted light from the monitor fiber is measured with a power meter.
- This technology can be used not only for controlling substrate heating temperature, but also for the gradual reduction of lamp light intensity due to aging of the lamp.
- the lamp light quantity attenuates with the lighting time. For example, in the case of a metal halide lamp, after 750 hours of lighting, the amount of light becomes 70% of the initial amount. Therefore, if the substrate heating temperature is controlled by the open loop, the change in the lamp light intensity over time transformation cannot be ignored. Therefore, as described above, it is effective to monitor the temporal change of the lamp light intensity and control the lamp output.
- the light source 300 is arranged at the same level as the underfloor area 240 of the clean room 200, and the optical fiber 130 is arranged linearly in the underfloor area.
- the semiconductor processing chamber and the heating unit for it are arranged in a ratio of 1:1.
- heat can be supplied from one heating unit to a plurality of processing chambers.
- the total facility distance of the optical fiber for light transport can be shortened, and a plurality of heating units (not shown) are arranged to configure the processing chamber to heating unit in an n:n ratio.
- the total heat treatment time for the entire semiconductor process is Efficient use of the light source lamps in consideration of the total number of lamps reduces the number of times the lamps flicker and extends the life of the lamps, as well as reducing the number of lamps. 6. How to cool heat generated due to heat loss in the light transport path from the light source to the heating stage
- the cooling water from the cooling water circulator 800 can be piped to also cool the installed fibers (not shown). Since the bent portion 135 generates a large amount of heat, it is particularly preferable to cool it.
- FIG. 11 shows an enlarged cross-sectional view of an end face and a connecting portion when n optical fibers are connected in series.
- the core diameter of the optical fiber is made the same or larger as it goes from the light incident side to the light emitting side to the substrate, that is, as it goes downstream in the light flow. If the fiber is made smaller or the center of the axis is shifted even if the diameter is the same, loss will be caused by the area where the fiber on the incident side does not touch the fiber on the emitting side at the spliced part, and a large amount of heat will be generated at the spliced part. will occur. This means that the amount of heat dissipated will be concentrated in the connector, which has a small heat capacity, and a serious situation equivalent to the heat generation of optical fibers will occur. 8. What kind of light should be used as a heat source?
- Fig. 12 is a diagram showing the absorption wavelength characteristics of a Si wafer, where the vertical axis is the absorption coefficient - The horizontal axis indicates the wavelength. Since Si is a semiconductor, the incident wavelength is shorter than about 1.2 m, which corresponds to the bandgap, and longer than about 1.2 m, which corresponds to the intrinsic free carrier absorption region. The behavior with respect to light energy is completely different. That is, on the wavelength side shorter than 1.2 m, light is always converted into heat even at room temperature, but on the wavelength side longer than 1.2 m, the absorption coefficient changes depending on the temperature of the wafer, and the absorption coefficient changes depending on the wafer temperature.
- a heating light source it is desirable to use a light source having a distribution only in wavelengths shorter than 1.2 m.
- a light emission spectrum having characteristics close to a line spectrum or in other words, having a sharp-edged spectrum, has a sharp-edged emission spectrum. It is defined as light and used below.
- the main component is the light emission distribution between about 0.6 m and 1.0 m as a heating light source, combined with the lamp wavelength that matches the absorption characteristics of the Si wafer. It is desirable to use a lamp with a sharp and sharp emission spectrum.
- the optimal lamp type may change.
- the light to be transported is generally considered to be a laser beam.
- HID lamp of a high-pressure sodium lamp and a metal halide lamp which will be described later
- a lamp having a sharp emission spectrum is used as a lamp of a heating light source.
- FIG. 13 shows the luminescence spectrum of a lamp specifically used as an embodiment of the present invention, and the lamp is a high-pressure sodium lamp having a sharp luminescence spectrum as shown. Using.
- FIG. 14 shows the emission spectrum of a lamp specifically used as another embodiment of the present invention. Using.
- HID lamps high-pressure sodium lamps and metal halide lamps
- the metal halide lamp has a sharp emission spectrum at approximately 0.85 m and 0.9 m, and a wide band emission spectrum centered at 0.5 m. It has a kutor. Therefore, when a metal halide lamp is used as a heating light source, a high-pressure sodium lamp has a large loss, but it can be manufactured so that the transport loss does not reach about 100 dBZkm or less.
- FIG. 15 is a diagram showing an emission spectrum of a halogen lamp conventionally used for substrate heating, which is a comparative example of the present invention. As shown, it has a wide energy distribution that varies with the temperature of the illuminant according to Planck's blackbody radiation equation.
- the emitted light is Although its peak wavelength shifts with body temperature, it has a very broad bandwidth from 0.4111 to 3111 when used at emission temperatures typically between 2500 and 4000 K. is wide and the loss in the optical fiber is significant. Also, the value of the loss is not constant because the peak wavelength shifts with the emission temperature, but at least all components with wavelengths longer than 1.1 m are lost, so the transport loss is 20% or more. Become. Also, even if it is transported by Yoshinba, there is little absorption by silicon wafers.
- heat escape from the heated wafer is not particularly considered, for example, to keep a 5-inch Si wafer at 500°C in vacuum requires about 300 W, 1,000° C. In order to keep it at C, it is necessary to keep applying heat of about 2,000 W to the wafer. Calculating the heating efficiency such as the luminous efficiency of the lamp and the reflectance of the Si wafer, only about 5% of the energy input to the lamp contributes to the heating of the wafer, and it takes about 6 hours to maintain the temperature at 500 °C. In order to keep the kW at 1,000°C, a huge amount of energy of about 40 kW is input. But this This is because it is assumed that 100% of the radiant heat from the wafer escapes to the outside as heat. It is possible to improve the heating efficiency by supplying only the energy for maintaining the set temperature from the suppressed energy input port.
- a quartz light beam is provided on the rear surface side of the wafer for blocking the atmosphere from the vacuum, as in the embodiment of the present invention described above.
- a unit structure Fig. 4 (a) that can reflect most of the radiant heat from the wafer on the surface other than the light output part to the processing chamber is adopted (Fig. 4). 20 (b)).
- a plurality of fiber light emitting units 410 are provided.
- This fiber light emitting unit 410 is provided with a connector 409 for connecting the tip of each light transport fiber 130 to the processing device, and the tip of the optical fiber transmits light into the processing chamber.
- a quartz rod 411 is provided to be introduced into the chamber.
- the diameter of the quartz head is slightly larger than that of the optical fiber, and an O-ring is provided around it to block vacuum.
- the surface 412 of the inner surface of the processing chamber other than the quartz rod is a mirror surface capable of reflecting most of the radiant heat in order to minimize heat escape due to thermal radiation from the wafer surface side.
- the wafer facing surface 413 of the gas shower 402 provided above the wafer is a mirror surface capable of reflecting most of the radiant heat.
- heat loss is cut by about 60% compared to when heat escape is not taken into consideration, and when kept at 500°C, it is about 2.4 kW. (Energy saving of about 3.6 kW), and energy input of about 16 kff 24 kW at 1,000 °C).
- the latter method has a further improvement in thermal efficiency of about 10% due to the loss of reflection loss at the quartz window.
- the use of fluorine-based rubber with a low refractive index further improves the heating efficiency.
- the processing stage is arranged by transporting the heating energy from the heating energy generating means installed in a place thermally isolated from the semiconductor substrate processing stage by the heating energy transport medium. It does not dissipate a large amount of heat in the cleaning room that is not used to heat the substrate.
- the light used for heating the substrate is made more efficient by using a light source having a sharp emission spectrum whose main component is light energy of a selected wavelength that can be absorbed by the substrate to be processed. It is possible to heat the substrate effectively.
- a processing stage for a plurality of semiconductor substrates installed in a clean room and a heating energy generating means installed in a place thermally isolated from the processing stage are separated by a heating energy transport medium n: By connecting with 1, effective use of energy becomes possible.
- the plurality of optical fibers are arranged substantially parallel, and the distance between the end surfaces of adjacent optical fibers or the distance between the centers of the energy spots irradiated from the end surfaces of the optical fibers onto the semiconductor substrate is defined as a constant distance.
- D where h is the distance between the end surface of the optical fiber and the semiconductor substrate, hZD ⁇ l.
- the optical spot from the optical fiber arranged on the outer periphery of the substrate By making the light quantity density or arrangement density of the light spot higher than the light quantity density or arrangement density of the light spots from the optical fiber arranged in the central part of the substrate, the temperature distribution uniformity of the substrate is improved, and the predetermined processing is performed. There is an effect that it is possible to easily realize uniform processing over a widest possible range on a semiconductor substrate of the type.
- the optical transport medium since the optical transport medium is installed under the floor of the clean room, the optical fiber can be pulled out from the apparatus under the floor. It is disadvantageous to bend the optical fiber with a small curvature in order to efficiently transport as much energy as possible as in the present invention. has the effect of being able to reduce.
- the light transport medium since the light transport medium is installed in a substantially straight line under the floor of the clean room, and is bent almost right under the processing stage and guided to the processing stage, it is possible to lay the most ideal optical fiber. This has the effect of enabling efficient transport of light energy.
- the processing apparatus is provided with a light-transmitting window that isolates the space inside the apparatus from the space outside the apparatus, and the terminal end of the light-transporting medium faces the vicinity of the light-transmitting window.
- the light transport medium is kept at 200° C. or less, and the light transport loss due to the change in the light absorption wavelength characteristics due to the temperature rise is suppressed to about 100 dBZkin or less, and the irradiation light from the light source is reduced. Since the substrate is heated during transport, loss is always kept low even when transporting a large amount of light energy, so damage to the There is an effect that there is no
- the energy density of the light energy transported in the light transport medium is set to 10 kff / mm 2 or less, or the light intensity density of the irradiated light is set to 10E7 lumen / mm 2 or less, and the light transport medium is kept at 200 °C or less, and the light transport loss due to the change in light absorption wavelength characteristics due to the temperature rise is suppressed to about 100 dB Z km or less, and the irradiated light from the light source is transported to heat the substrate. Therefore, the fiber is not destroyed by excessive light energy, and the fiber is not overheated.
- the radiated light from the heating light source when the radiated light from the heating light source is condensed and then incident on the end face of the optical fiber, the total reflection condition obtained from the refractive index of the core and the clad of the optical fiber and the light inside the optical fiber due to oblique incidence
- the transport loss in the optical fiber is reduced to 100 dBZ Since the substrate is heated by transporting the irradiation light from the light source, the light transport energy in the fiber does not suffer excessive loss, and stable transport can be performed. Therefore, there is an effect that a predetermined process can be stably performed.
- the light transport medium is configured by connecting a plurality of optical fibers in series, and the core diameter of the optical fiber is made the same or larger from the light incident side to the light emitting side toward the substrate. This has the effect of reducing the loss of light energy during transport at the connecting portion.
- the present invention provides a semiconductor substrate processing stage installed in a clean room in which the temperature and humidity are controlled in a clean atmosphere, and a semiconductor substrate placed on the processing stage, which is isolated from the processing stage for heating.
- a light source for generating heating energy installed in a place with an atmosphere different from that of the clean room, and a light transport medium for connecting the light source and the processing stage are provided for heating the substrate.
- the object of the present invention is to provide a processing apparatus for a semiconductor substrate having a sharp emission spectrum whose main component is light energy of a selected wavelength that can be absorbed by the substrate to be processed.
- the heating energy transport medium is composed of a plurality of optical fibers having a predetermined length, and a fiber for light amount monitoring is provided along the plurality of optical fibers, and based on the monitored light amount.
- the substrate temperature can be controlled with extremely high accuracy by controlling the power supplied to the power supply means by the power control means in order to achieve the desired amount of light.
- the present invention provides a conical shape in which the central portion is hollowed out in a conical shape at the tip of the starting end face of a plurality of optical fibers, and the thickness of the glass between the time when light is incident and guided into the fiber. Efficient light collection can be achieved by providing a conical condensing rod in which the distances are substantially equal and the outer and inner reflecting surfaces are parallel to each other.
- the heating energy transport medium is composed of a plurality of optical fibers having a predetermined length, and the end surfaces of the plurality of optical fibers are partially inserted and coupled into the housing of the semiconductor substrate processing apparatus.
- a light introduction rod is arranged at the tip of each terminal surface, and efficient light irradiation can be achieved by irradiating the substrate with the light of the optical fiber.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Toxicology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Mechanical Engineering (AREA)
- Cleaning Or Drying Semiconductors (AREA)
Abstract
A light source used for heating a semiconductor wafer is installed at a place where the atmosphere is different from that in the clean room where the processing apparatus are provided, outside the clean room. The light energy from the light source is sent through an optical fiber so as to heat the wafer uniformly. The main component of the light emitted from the light source has wavelengths that are efficiently absorbed by the wafer. Since the temperature distribution of the wafer is uniform, high-quality processings can be performed. Moreover, since the optical fiber is used, excessive heat is not generated in the clean room. The cost of the facility of the clean room, its operating cost and the sizes of the processing apparatus and the clean room can be reduced, and therefore, the manufacturing cost of the wafer can be reduced.
Description
明 細 detail
半導体基板の処理方法及び装置 Semiconductor substrate processing method and apparatus
技術分野 Technical field
本発明は、 半導体基板の処理方法及び装置に関し、 特に、 半導体の生 産ライ ンにおいて、 基板を加熱する際に適用される処理加熱方法及び装 置に関する。 具体的には、 半導体基板表面に ドープした元素の拡散や表 面酸化、 あるいは基板表面にシリ コン酸化膜などの絶縁薄膜、 ドープさ れたポリ シリ コン膜ゃ金属膜などの配線薄膜を形成する場合に、 半導体 基板を加熱するために、 加熱エネルギ源は薄膜形成装置より離して配置 し、 該加熱エネルギ源から出射したエネルギをエネルギ輸送媒体により 輸送して半導体基板を加熱をする方法及び装置に関する。 TECHNICAL FIELD The present invention relates to a semiconductor substrate processing method and apparatus, and more particularly to a processing heating method and apparatus applied when heating a substrate in a semiconductor production line. Specifically, a doped element is diffused or surface-oxidized on the surface of a semiconductor substrate, or an insulating thin film such as a silicon oxide film or a wiring thin film such as a doped polysilicon film or a metal film is formed on the substrate surface. In order to heat a semiconductor substrate, a heating energy source is placed away from a thin film forming apparatus, and the energy emitted from the heating energy source is transported by an energy transport medium to heat the semiconductor substrate. .
さらに、 本発明は、 基板から離れた場所に設置されたエネルギ源から の投射エネルギを輸送して基板を加熱する際に、 加熱される基板の温度 分布を実質的に均一にし、 あるいは加熱エネルギ源から出射したェネル ギの入射、 輸送、 出射及び照射の過程での損失を少なく して基板加熱を 行うプロセスに有効に利用できる方法及び装置に関する。 Further, the present invention substantially uniforms the temperature distribution of the heated substrate when the substrate is heated by transporting projected energy from an energy source located remotely from the substrate or the heating energy source. The present invention relates to a method and apparatus that can be effectively used in the process of heating a substrate by reducing energy loss in the processes of incidence, transport, emission and irradiation of energy emitted from a substrate.
本発明において、 最適な加熱エネルギ源としては光源を用い、 光源か らの照射光を光フアイバ等により輸送するのが良い。 背景技術 In the present invention, it is preferable to use a light source as the optimum heating energy source, and to transport the irradiation light from the light source by an optical fiber or the like. Background technology
一般に、 半導体はク リ一ンルーム内で製造される。 ク リーンル一ムは 塵埃の非常に少ない雰囲気を作ると同時に、 一定の温度、 湿度を作り出 す役目を持っている。 その反面、 半導体製造工程からの要求として半導 体を処理加工するためには半導体基板面を加熱する必要がある。 従って、
ク リーンルーム内で雰囲気に大きな熱量を逸散する装置を多数設けるこ とになり、 ク リーンルームの空調設備の能力も大きなものに設計しなけ ればならない。 Generally, semiconductors are manufactured in clean rooms. A clean room has the role of creating an atmosphere with very little dust and at the same time creating a constant temperature and humidity. On the other hand, it is necessary to heat the surface of the semiconductor substrate in order to process the semiconductor as a demand from the semiconductor manufacturing process. Therefore, A large number of devices are installed to dissipate a large amount of heat into the atmosphere in the clean room, and the capacity of the clean room air conditioning equipment must also be designed to be large.
従来から行われている半導体基板の加熱には、 数枚から数 1 0 0枚の 複数の基板をまとめて石英製の炉体の中に入れ、 炉体外からのヒータな どから発せられる赤外光の照射により炉体内全体の温度が均一になるよ うにして加熱するホッ トウオール型の加熱炉(バッチ加熱)を用いる方法 と、 水冷された炉体に 1枚だけ設置された基板を炉体近傍に配置したラ ンプからの光を石英窓を通して直接あるいはサセプタを介して照射加熱 するコールドウォール型の加熱炉(枚葉加熱) を用いる方法があった。 半導体基板の上記光加熱装置は、 一般に加熱源となる発光体であるラ ンプを装置内に備え、 これが発する光によって基板を加熱する。 実際に は、 加熱用のランプから発するのは、 基板に効率良く吸収される波長の 光だけでなく、 波長の長い光、 即ち赤外線も含まれる。 赤外線に対して は多くの場合には S i 基板は実質的には透明で、 これを吸収することは 無い。 しかし、 波長の長い成分は、 この加熱処理が真空中でないのであ れば、 加熱炉体内の雰囲気気体の温度を上昇させ、 以て基板を間接的に 加熱する事はある。 In conventional heating of semiconductor substrates, several to several hundred substrates are put together in a quartz furnace, and infrared light emitted from a heater outside the furnace is used. A method using a hot-wall type heating furnace (batch heating) that heats the entire furnace by irradiating light so that the temperature of the entire furnace becomes uniform. There was a method using a cold-wall heating furnace (single-wafer heating) in which light from a lamp placed nearby is irradiated and heated directly through a quartz window or via a susceptor. The above-described optical heating apparatus for semiconductor substrates generally includes a lamp, which is a light emitter that serves as a heat source, in the apparatus, and heats the substrate with the light emitted by the lamp. In practice, the heating lamps emit not only light with wavelengths that are efficiently absorbed by the substrate, but also light with long wavelengths, that is, infrared rays. In many cases, Si substrates are virtually transparent to infrared radiation and do not absorb it. However, if the heat treatment is not performed in a vacuum, the long-wavelength component may raise the temperature of the atmospheric gas in the heating furnace, thereby indirectly heating the substrate.
前者のバッチ式の加熱炉は炉全体の温度を一定温度に、 均一に加熱し 易いという特徴があるが、 基板の大口径化、 プロセスの枚葉化に伴い、 徐々に後者の枚葉式の加熱炉に移行している。 枚葉式の加熱炉は急速に 基板の温度を変えられるという特徴を有するが、 基板が加熱されるた.め のエネルギに対し、 加熱用ランプから投入されるエネルギが大きくエネ ルギの効率が悪く、 ランプからの発熱によるダメージ、 例えば光透過窓 が加熱され割れやすく なつたり、 炉体に反応性ガスを導入する C V D (Chemical Vapor Depos ition)反応炉等の場合には、 反応性ガスによる光
透過窓への堆積やセルフク リーニング時のエツチングによる光透過窓の 曇りが益々光の透過性を低下させるといった問題が生ずる。 The former batch-type heating furnace has the characteristic of being able to heat the entire furnace at a constant temperature and uniformity. Moved to heating furnace. The single-wafer heating furnace has the characteristic of being able to rapidly change the temperature of the substrate, but the energy input from the heating lamp is large compared to the energy required to heat the substrate, resulting in poor energy efficiency. In the case of a CVD (Chemical Vapor Deposition) reactor in which a reactive gas is introduced into the furnace body, damage caused by heat generated from the lamp, such as a light transmission window that is heated and easily cracked, may be damaged by the light caused by the reactive gas. Deposition on the transmissive window and fogging of the light transmissive window due to etching during self-cleaning further reduce the light transmittance.
枚葉式の装置は一般にはスループッ ト的には不利であるが、 一回に必 要とする処理時間が短いので、 少量多品種の生産が要求される場合には 好んで使用されるようになってきた。 そこで、 枚葉式の加熱装置ではス ループッ トを少しでも稼ぐために、 急速に加熱を行い、 また、 急速に冷 却を行うことが通常である。 急速に加熱を行う際には、 準静的な加熱を 行うバッチ式の装置に比較してより多くのエネルギを必要とする。 この ように枚葉式の熱処理装置では急速な加熱を行い、 一定の処理温度に達 した後には、 温度保持状態にするために光照射エネルギを急減させる。 急速加熱の時のエネルギの基板への流入レー トは、 そのままでの到達加 熱温度が目的の温度より も遥かに高い温度となる。 バッチ処理であれば、 準静的に昇温を行うので最小のエネルギで目的の温度に達することがで きる。 即ち、 バッチ式において基板 1枚の処理に必要なエネルギと、 枚 葉式の装置で基板 1枚に必要なエネルギとを比較すると、 後者の方が大 きくなる。 Single-wafer equipment is generally disadvantageous in terms of throughput, but because the processing time required for a single operation is short, it is preferred when high-mix, low-volume production is required. It's becoming Therefore, in a single-wafer heating apparatus, it is normal to perform rapid heating and rapid cooling in order to increase the throughput even a little. Rapid heating requires more energy than batch equipment with quasi-static heating. In this way, the single-wafer heat treatment apparatus performs rapid heating, and after reaching a certain processing temperature, the light irradiation energy is rapidly reduced in order to maintain the temperature. The rate of energy inflow into the substrate during rapid heating is such that the attained heating temperature as it is is much higher than the target temperature. In batch processing, the target temperature can be reached with the minimum amount of energy because the temperature is raised quasi-statically. That is, when the energy required for processing one substrate in a batch system is compared with the energy required for processing one substrate in a single-wafer system, the latter is larger.
また、 今後さらに枚葉化が進み連続するプロセスの加熱が同時に行わ れる様になると、 加熱時のピーク電力に合わせて電源設備を施設せねば ならず、 半導体生産ライ ンの規模が増大してしまい、 加熱装置も、 短時 間であるにせよ、 大きな熱的な入力に対して装置温度を保っために、 大 きな冷却能力のある冷却機構を備える必要性が出てく る。 このために装 置は大型化し、 また冷却に要するエネルギも大きくなり、 ク リーンルー 厶に逸散されるエネルギも大きくなるために、 ク リーンルームの空調設 備も能力の大きなる。 In addition, in the future, as single wafer processing progresses and continuous processes are heated at the same time, power supply equipment must be installed to match the peak power during heating, and the scale of the semiconductor production line will increase. , the heating device also needs to be provided with a cooling mechanism with a large cooling capacity in order to maintain the device temperature against a large thermal input, even if it is for a short time. For this reason, the equipment becomes larger, more energy is required for cooling, and more energy is dissipated into the clean room, so the capacity of the clean room air conditioning equipment is also increased.
さらに、 この枚葉加熱の装置台数が増えると、 ランプからの余分な排 熱による半導体生産ラインの温度上昇を抑えるための空調設備が増大化
し、 加熱装置本体の電力設備に加え空調設備まで規模が増大するといつ た極めて非効率な生産設備を抱えることになる。 以上で述べたことは、 装置での不要な発熱、 または排熱が少しでも大きいと、 そのためにク リ 一ンルームの床面積、 装置価格、 装置の複雑さ、 ク リーンルーム用役等 に何倍にもなつて跳ね反ってく ることを示している。 Furthermore, as the number of single-wafer heating devices increases, so does the need for air-conditioning equipment to suppress temperature rises in semiconductor production lines due to excess heat exhausted from lamps. However, if the scale of the equipment increases from the electric power equipment for the main body of the heating equipment to the air conditioning equipment, the company will end up with extremely inefficient production equipment. As mentioned above, if unnecessary heat generated in the equipment or waste heat is even a little large, it will increase the clean room floor area, equipment price, equipment complexity, clean room utilities, etc. by many times. It also shows that it bounces back as it grows.
上記の課題を解決するためには、 光源部と基板加熱処理部を光輸送媒 体を介して分離し、 光源部からの発熱のみを効率的に排熱し、 基板加熱 処理部での発熱は極力抑えることが考えられる。 これにより、 半導体生 産ラインの設備規模の増大を抑え省エネを図ることが可能となる。 In order to solve the above problems, the light source and the substrate heating section are separated via a light transport medium, only the heat generated from the light source is efficiently exhausted, and the heat generated in the substrate heating section is minimized. can be suppressed. As a result, it will be possible to curb the increase in the scale of equipment in the semiconductor production line and to save energy.
ところで、 光源部を被加熱媒体から離して配置しておき、 その間を光 フアイバ等の光輸送媒体を用いて光を輸送して被加熱媒体を加熱しょう とする技術自体は必ずしも新しいものではない。 By the way, the technique of arranging the light source unit away from the medium to be heated and using a light transport medium such as an optical fiber to transport light between them to heat the medium to be heated is not necessarily new.
例えば、 特開平 4 — 2 9 6 0 9 2号公報には、 光熱源で発生した高熱 光を伝送する直線状に束ねられた光ファイバ群とリフローされるプリ ン ト基板を覆い、 プリ ン ト基板の必要な部分のみが照射されるように透光 孔があけられている基板マスクと、 静止しているプリ ン ト基板に対して 光ファイバ群を移動させる手段とを備え、 耐熱性が弱い電子部品べの対 応と生産性の向上を意図して、 複数種類の電子部品の局所加熱機能も合 わせ有するリフロー装置が開示されている。 For example, Japanese Patent Application Laid-Open No. 4-296092 discloses a method in which a group of linearly bundled optical fibers for transmitting high-temperature light generated by a light heat source and a printed circuit board to be reflowed are covered to form a printed circuit board. Equipped with a substrate mask with light-transmitting holes so that only the necessary parts of the substrate are irradiated, and a means for moving the optical fiber group with respect to the stationary printed circuit board, the heat resistance is weak. A reflow apparatus having a local heating function for a plurality of types of electronic parts has been disclosed with the intention of handling electronic parts and improving productivity.
また、 特開平 4 — 8 2 2 4 0号公報には、 実装する半導体チップの突 起電極と相対する配線電極が形成された回路基板上に、 光硬化性絶縁樹 脂を塗布し、 半導体チップ搭載領域に光ファイバを位置固定させ、 基板 上に半導体チップを搭載する。 チップと基板間の樹脂内に埋め込まれた 光フアイバ内に紫外線を通過させ、 チップと基板間に介在する未硬化の 樹脂を硬化させる。 上記により、 樹脂の加熱硬化工程を不要にする半導 体装置の製造方法が開示されている。
さらに、 特公平 6 - 9 1 8 7号公報には、 加熱される試料を設置する 試料台に複数個の窓孔を設け、 該窓孔に光フアイバの先端部をそれぞれ 挿入し、 該光フアイバの後端部には供給量を任意に制御することのでき る赤外光の光源を設け、 試料の温度分布均一性を向上させた加熱装置及 び加熱を必要とする C V D装置が開示されている。 Further, in Japanese Patent Application Laid-Open No. 4-82240, a photocurable insulating resin is applied onto a circuit board on which wiring electrodes facing protruding electrodes of a semiconductor chip to be mounted are formed, thereby forming a semiconductor chip. The position of the optical fiber is fixed in the mounting area, and the semiconductor chip is mounted on the substrate. Ultraviolet rays pass through the optical fiber embedded in the resin between the chip and substrate to cure the uncured resin between the chip and substrate. The above discloses a method of manufacturing a semiconductor device that eliminates the need for a resin heat-curing step. Furthermore, Japanese Patent Publication No. 6-9187 discloses that a plurality of window holes are provided in a sample table on which a sample to be heated is placed, and the tip of an optical fiber is inserted into each of the window holes, and the optical fiber is An infrared light source whose supply amount can be arbitrarily controlled is provided at the rear end of the sample, and a heating device that improves the uniformity of the temperature distribution of the sample and a CVD device that requires heating are disclosed. there is
しかしながら、 このような加熱方法を実際のク リ一ンルームに於いて 具体的に半導体基板を加熱しょう とすると、 まだまだ解決すべき問題点 が数多く存在する。 そこで、 本発明が解決しょう とする課題は、 実際の ク リーンルームに於いて、 実際に半導体基板を加熱するための具体的方 法及び装置を提供することである。 However, when such a heating method is used to specifically heat a semiconductor substrate in an actual clean room, there are still many problems to be solved. Therefore, the problem to be solved by the present invention is to provide a specific method and apparatus for actually heating a semiconductor substrate in an actual clean room.
特に、 上述したように、 半導体製造装置が置かれる高清浄、 即ち塵埃 の無い、 そして一定の気温と湿度を維持している環境、 またはそれに準 ずる環境での不要なエネルギの逸散を低減することである。 または排熱 の大きな装置は結局は大きな装置価格、 床面積、 複雑さ、 大きな用役の 設置、 及び運転費用を要するために、 不要な排熱を低減する必要がある ということである。 以上の問題点を解決することから、 ク リーンルーム 建設費用、 そしてその運転費用の低減が図れ、 以て、 半導体製造コス ト の本質的な低減を可能とするものである。 発明の開示 In particular, as mentioned above, it reduces unnecessary energy dissipation in the highly clean, i.e., dust-free, and constant temperature and humidity environments in which semiconductor manufacturing equipment is placed, or similar environments. That is. Or, the need to reduce unwanted waste heat, as equipment with high waste heat ultimately requires high equipment cost, floor space, complexity, large utility installations, and operating costs. By solving the above problems, it is possible to reduce clean room construction costs and clean room operating costs, thereby making it possible to substantially reduce semiconductor manufacturing costs. Invention disclosure
本発明は、 清浄な雰囲気で温度と湿度とが管理されたク リ一ンルーム 内に設置され内部を実質的真空に保持された半導体基板の処理ステージ と、 処理ステージから熱的に隔離されク リーンルームとは異なる雰囲気 の場所に設置された加熱エネルギ発生手段と、 加熱エネルギ発生手段に 対して電力を供給するための電力供給手段と、 電力供給手段に供給する 電力を制御する電力制御手段と、 加熱エネルギ発生手段と処理ステ一ジ
とを連結する加熱エネルギ輸送媒体とを備えた半導体基板の処理装置に おいて、 加熱エネルギ輸送媒体は所定長さを有した複数本の光フアイバ から成り、 複数本の光フアイバの一方の端面部は加熱エネルギ発生手段 に向けて対向させられており、 複数本の光フアイバの他方の端面部は処 理ステージ内に載置されている半導体基板に対向させられており、 複数 本の光フアイバの一方の端面部は一つに束ねられており、 他方の端面部 は半導体基板面を略均一にカバーするように距離を離して配置されてお り、 複数本の光フアイバの一方の端面部から加熱エネルギを入射して、 他方の端面部からの出射エネルギを半導体基板面上に照射して、 基板全 面を均一に加熱するようにした半導体基板の処理方法及び装置を提供す るものである。 The present invention provides a semiconductor substrate processing stage installed in a clean room in which the temperature and humidity are controlled in a clean atmosphere and the interior of which is kept substantially vacuum, and a clean room thermally isolated from the processing stage. heating energy generating means installed in a place having an atmosphere different from that of the room; power supply means for supplying power to the heating energy generating means; power control means for controlling the power supplied to the power supply means; Heating energy generating means and processing stages A semiconductor substrate processing apparatus comprising: a heating energy transport medium connecting a heating energy transport medium comprising a plurality of optical fibers having a predetermined length; are opposed to the heating energy generating means, the other end face portions of the plurality of optical fibers are opposed to the semiconductor substrate placed in the processing stage, and One of the end face portions is bundled together, and the other end face portion is spaced apart so as to substantially evenly cover the surface of the semiconductor substrate. A semiconductor substrate processing method and apparatus are provided in which heating energy is incident and energy emitted from the other end surface is irradiated onto the surface of the semiconductor substrate to uniformly heat the entire surface of the substrate. .
本発明における、 加熱エネルギ発生手段としてはランプ光源、 特に、 基板加熱に用いる光はその処理対象の基板が吸収することの出来る選ば れた波長の光エネルギを主成分とした尖状の発光スぺク トルを有する光 源を用いるのが最適である。 In the present invention, the heating energy generating means is a lamp light source, in particular, the light used for heating the substrate is a sharp emission spectrum whose main component is light energy of a selected wavelength that can be absorbed by the substrate to be processed. It is best to use a light source with a torque.
また、 本発明は、 ク リーンルーム内に設置された複数の半導体基板の 処理ステージと、 処理ステージから熱的に隔離されク リーンルームとは 異なる雰囲気の場所に設置された加熱エネルギ発生手段とが、 加熱エネ ルギ輸送媒体によって n : 1で接続されている半導体基板の処理装置を 提供するものである。 Further, the present invention includes a processing stage for a plurality of semiconductor substrates installed in a clean room, and a heating energy generating means thermally isolated from the processing stage and installed in a place having an atmosphere different from that of the clean room. , provides an apparatus for processing semiconductor substrates that are connected n:1 by a heating energy transport medium.
さらに、 本発明は、 具体的には、 複数の光ファイバは略平行に配置さ れ、 各々隣接する光ファイバ終端面部間の距離、 或いは光ファイバの終 端面部から半導体基板状に照射されるエネルギスポッ ト中心間の距離を 一定距離 D、 光ファイバの終端面と半導体基板との距離を hとすると、 h Z D≥ 1 . 1 とした半導体基板の処理方法及び装置を提供するもので あ o
また、 本発明は、 複数本の光ファイバの他方の端面部を距離を離して 配置する際に、 半導体基板外周部に配置する光フアイバからのエネルギ スポッ 卜のエネルギ密度を基板中央部分に配置する光フアイバからのェ ネルギスポッ 卜のエネルギ密度より も高くするために、 半導体基板外周 部に配置する光フアイバの配置密度を基板中央部分に配置する光ファィ バの配置密度よりも高く した半導体基板の処理方法及び装置を提供する ものである。 Further, in the present invention, specifically, a plurality of optical fibers are arranged substantially in parallel, and the distance between adjacent optical fiber end face portions or the energy emitted from the end face portions of the optical fibers to the semiconductor substrate is measured. Provided is a semiconductor substrate processing method and apparatus that satisfies hZD≥1.1, where D is the distance between the centers of the spots, and h is the distance between the end surface of the optical fiber and the semiconductor substrate. Further, according to the present invention, when the other end faces of the plurality of optical fibers are arranged at a distance, the energy density of the energy spots from the optical fibers arranged in the outer periphery of the semiconductor substrate is arranged in the central portion of the substrate. In order to make the energy density of the energy spots from the optical fibers higher than that of the energy spots, the arrangement density of the optical fibers arranged in the peripheral part of the semiconductor substrate is higher than the arrangement density of the optical fibers arranged in the central part of the substrate. A method and apparatus are provided.
また、 本発明は、 光輸送媒体を 2 0 0 °C以下に保持して温度上昇に伴 う光吸収波長特性の変化による光輸送損失を 1 0 0 dB/ km 以下程度に 抑えるための冷却手段を備え、 光源からの照射光を輸送して、 基板を加 熱する半導体基板の処理方法及び装置を提供するものである。 In addition, the present invention provides a cooling means for keeping the light transport medium at 200° C. or less and suppressing the light transport loss due to the change in the light absorption wavelength characteristics due to the temperature rise to about 100 dB/km or less. A semiconductor substrate processing method and apparatus for heating the substrate by transporting irradiation light from a light source.
また、 本発明は、 光輸送媒体において輸送する光エネルギのエネルギ 密度を 1 0 kW/ mm 2以下にして光輸送損失を 1 0 0 dBZ km以下程度に 抑えるか、 光輸送媒体において輸送する照射光の光量密度を 1 0 E 7ル ーメ ン Z mm 2以下にして光輸送損失を 1 0 0 dBZ km以下程度に抑え、光 源からの照射光を輸送して、 基板を加熱する半導体基板の処理方法及び 装置を提供するものである。 Further, the present invention reduces the energy density of the light energy transported in the light transport medium to 10 kW/mm 2 or less to suppress the light transport loss to about 100 dBZ km or less, or the irradiation light transported in the light transport medium. A semiconductor substrate that heats the substrate by transporting the light emitted from the light source by suppressing the light transport loss to about 100 dBZ km or less by reducing the light intensity density of the semiconductor substrate to 10E7 lumen Z mm2 or less. A processing method and apparatus are provided.
また、 本発明は、 複数本の光ファイバを直列に接続して、 光の入射側 から基板への放射側に行くに従い光ファイバのコア径を同じもしくは大 きく した特徴とする半導体基板の処理装置を提供するものである。 Further, the present invention is a semiconductor substrate processing apparatus characterized in that a plurality of optical fibers are connected in series, and the core diameter of the optical fiber is the same or larger as it goes from the light incident side to the light emitting side to the substrate. It provides
また、 本発明は、 エネルギ輸送媒体はク リーンルームの床下部に略直 線状に施設され、 処理ステ一ジの略真下で曲げられて処理ステージにま で導かれている半導体基板の処理装置を提供するものである。 Further, the present invention is a semiconductor substrate processing apparatus in which the energy transport medium is installed in a substantially straight line under the floor of the clean room, is bent substantially directly below the processing stage, and is guided to the processing stage. It provides
また、 本発明は、 半導体基板処理手段は内部に載置された基板を処理 手段内の空間と処理手段外の空間とに遮断する光透過窓を設け、 光ファ ィバの終端部は光透過窓の近傍に対峙して配置し、 光透過窓を通して光
照射する半導体基板の処理方法及び装置を提供するものである。 Further, according to the present invention, the semiconductor substrate processing means is provided with a light transmission window for separating the substrate placed inside the processing means from the space inside the processing means and the space outside the processing means, and the end portion of the optical fiber is light transmission. Placed facing each other in the vicinity of the window, light passes through the light transmission window. A method and apparatus for treating semiconductor substrates by irradiation is provided.
また、 本発明は、 加熱エネルギ輸送媒体は所定長さを有した複数本の 光フアイバから成り、 複数本の光フアイバに沿わせて光量モニタ用のフ アイバを設け、 モニタされた光量に基づいて、 所望の光量を達成するた めに電力制御手段によって電力供給手段に供給する電力を制御する半導 体基板の処理方法及び装置を提供するものである。 Further, according to the present invention, the heating energy transport medium is composed of a plurality of optical fibers having a predetermined length, and a fiber for light amount monitoring is provided along the plurality of optical fibers, and based on the monitored light amount. According to another aspect of the present invention, there is provided a semiconductor substrate processing method and apparatus in which a power control means controls power supplied to a power supply means to achieve a desired amount of light.
また、 本発明は、 複数本の光ファイバの始端面部の先端部には円錐状 の集光ロッ ドが設けられ、 この円錐状の集光ロッ ドは中央部が円錐状に く り抜かれた円錐状を呈し、 光が入射してからファイバ内に導かれる間 のガラス肉厚が実質的に等しく し、 外周反射面と内周反射面とが平行と した半導体基板の処理方法及び装置を提供するものである。 Further, in the present invention, a conical condensing rod is provided at the tip of the starting end surface of each of the plurality of optical fibers, and the conical condensing rod has a conical hollowed-out central portion. Provided is a method and apparatus for processing a semiconductor substrate in which the thickness of the glass is substantially equal between the time when the light enters and is led into the fiber, and the outer and inner reflecting surfaces are parallel to each other. It is.
また、 本発明は、 加熱エネルギ輸送媒体としては所定長さを有した複 数本の光フアイバから成り、 複数本の光フアイバの終端面部は半導体基 板処理装置のハウジング内に一部挿入結合されており、 かつ各々の終端 面部の先端には光導入ロッ ドが配置され、 光ファイバの光を基板に照射 する半導体基板の処理方法及び装置を提供するものである。 図面の簡単な説明 Further, according to the present invention, the heating energy transport medium is composed of a plurality of optical fibers having a predetermined length, and the end surfaces of the plurality of optical fibers are partially inserted and coupled into the housing of the semiconductor substrate processing apparatus. A light introduction rod is arranged at the tip of each end surface portion, and a semiconductor substrate processing method and apparatus are provided in which the substrate is irradiated with the light of the optical fiber. Brief description of the drawing
第 1図は、 本発明の光輸送型基板加熱装置を適用した半導体製造プロ セスにおける一つの製造ライ ンの断面図であり、 第 2図は、 本発明の比 較例として、 従来から行われている加熱処理プロセスを含む処理装置に 直接ランプを設置してク リーンルーム内に装置を設置したことを示す装 置構成図であり、 第 3図は、 本発明の光源部分のランプ及び放射光を集 光している様子を説明する断面図であり、.第 3図(a )は加熱ランプに対 して軸方向に平行な断面図であり、第 3図(b )は加熱ランプに対して軸 方向に垂直な断面図であり、 第 4図(a ) は、 半導体製造装置の一例とし
ての C V D装置に対して本発明の光輸送による基板加熱処理プロセスを 含む処理装置を適用した場合の装置詳細断面図で、 第 4図(b ) は、 光フ アイバの終端面部分の拡大詳細断面図であり、 第 5図( a )は、 光フアイ ノく 1 3 0の端面への光の入射を説明するために光ファイバ端面付近の拡 大図であり、 第 5図(b )は、 2点の中心を焦点にした楕円鏡を用いても う一方の焦点に結像させた際の輝度分布の状態図であり、 第 5図( c )は 円錐台状の集光端部を有したロッ ドの一部断面図であり、 第 6図は具体 的に本発明で用いた光フアイバの吸収波長特性、 すなわち各波長におけ る光輸送損失の特性を示した図であり、 第 7図(a ) は、 光スポッ ト中心 (光フアイバ間)の距離 D及び光源と基板との距離 hを変化させた時に基 板上の照度分布がどのようになるかを検討する際の説明図で、 第 7図 ( b ) は、 照度のバラツキと光源間距離 D ·光源と基盤との距離 hとの関 係を示す図であり、 第 8図は、 本発明の加熱される基板に対する光ファ ィバの配列方法を示す図であり、 基板外周を n = 3に分割した場合の説 明図であり、 第 9図は、 本発明の加熱される基板に対する光ファイバの 配列方法を示す図であり、 基板外周を n = 6に分割した場合の説明図で あり、 第 1 0図は、 本発明の加熱される基板に対する光ファイバの配列 方法を示す図で、 基板外周を n = 1 2に分割した場合の説明図であり、 第 1 1図は、 n本の光ファイバを直列に接続したときの端面及び接続部 の断面 ίέ大図であり、 第 1 2図は、 S i ウェハの吸収波長特性を示す図 であり、 第 1 3図は、 本発明で一実施例として具体的に用いたランプの 発光スぺク トルを示す図であり、 第 1 4図は、 本発明で別の実施例とし て具体的に用いたメタルハラィ ドランプの発光スぺク トルを示す図であ り、 第 1 5図は、 本発明の比較例である従来から基板加熱に用いられて きたハロゲンランプの発光スぺク トルを示す図であり、 第 1 6図は、 本 発明の実施例としてメタルハラィ ドランプを用いた場合のランプ放射光
集光系図を示す図であり、 第 1 7図は、 第 1 6図の集光系において、 ラ ンプの輝点 2点の中心を焦点においてリ ング状の輝度分布を有効に集光 するための光学系を示した図であり、 第 1 8図は、 ランプ光量をモニタ し、 ランプ電源をフィ一ドバック制御する方式の構成図であり、 第 1 9 図は、 1台の加熱ユニッ トから複数台の熱処理装置へ光を分配供給する 概念図であり、 第 2 0図は、 ファイバから出射した光でウェハを加熱す る場合の加熱処理装置の一例を示した断面図である。 発明を実施するための最良の形態 FIG. 1 is a cross-sectional view of one production line in a semiconductor manufacturing process to which the light transport type substrate heating apparatus of the present invention is applied, and FIG. FIG. 3 is an apparatus configuration diagram showing that a lamp is directly installed in a processing apparatus including a heat treatment process and the apparatus is installed in a clean room, and FIG. Fig. 3(a) is a sectional view parallel to the axial direction of the heating lamp, and Fig. 3(b) is a sectional view of the heating lamp. FIG. 4(a) is an example of semiconductor manufacturing equipment. FIG. 4(b) is a detailed cross-sectional view of the apparatus when the processing apparatus including the substrate heating process by light transport of the present invention is applied to all CVD apparatuses, and FIG. 5(a) is an enlarged view of the vicinity of the optical fiber end surface for explaining the incidence of light on the end surface of the optical fiber 130, and FIG. 5(b) is a , and are state diagrams of the luminance distribution when an image is formed at the other focal point using an elliptical mirror whose focal point is the center of the two points. FIG. 6 is a partial cross-sectional view of a rod having a rod, and FIG. 6 is a diagram specifically showing the absorption wavelength characteristics of the optical fiber used in the present invention, that is, the characteristics of light transport loss at each wavelength. Fig. 7 (a) is an explanation for studying how the illuminance distribution on the substrate changes when the distance D between the light spot centers (between the optical fibers) and the distance h between the light source and the substrate are changed. In the figure, FIG. 7(b) is a diagram showing the relationship between the variation in illuminance and the distance D between the light sources and the distance h between the light source and the substrate, and FIG. FIG. 9 is a diagram showing a method of arranging optical fibers, and an explanatory diagram when the circumference of a substrate is divided into n=3, and FIG. 9 shows a method of arranging optical fibers with respect to a heated substrate of the present invention. FIG. 10 is an explanatory diagram when the substrate circumference is divided into n=6, and FIG. FIG. 11 is an explanatory diagram of the case of dividing into two, FIG. 11 is a cross-sectional view of the end face and the connection part when n optical fibers are connected in series, and FIG. 12 is a Si wafer FIG. 13 is a diagram showing the absorption wavelength characteristics of the lamp, FIG. 13 is a diagram showing the emission spectrum of a lamp specifically used as an embodiment of the present invention, and FIG. FIG. 15 shows the emission spectrum of a metal halide lamp specifically used as another example, and FIG. FIG. 16 is a diagram showing the emission spectrum of the lamp, and FIG. 16 shows lamp radiant light when a metal halide lamp is used as an embodiment of the present invention. FIG. 17 is a diagram showing a condensing system, and FIG. 17 is a diagram for effectively condensing a ring-shaped luminance distribution with the center of the two bright spots of the lamp as the focal point in the condensing system of FIG. Fig. 18 is a diagram showing the optical system of the lamp, Fig. 18 is a block diagram of a system for monitoring the lamp light intensity and feedback control of the lamp power supply, FIG. 20 is a conceptual diagram of distributing and supplying light to a plurality of heat treatment apparatuses, and FIG. 20 is a cross-sectional view showing an example of a heat treatment apparatus for heating a wafer with light emitted from a fiber. Best Mode for Carrying Out the Invention
一般的に半導体基板を加熱する場合に要求されることは、 基板を所望 の温度に均一に早く加熱することが必要であり、 また温度管理の幅も厳 しく制限されるものである。 そこで本発明の課題は、 加熱エネルギ源を 処理ステージから隔離して、 処理ステージからの不要なエネルギの逸散 を低減し、 基板を所望の温度に均一に早く加熱することができる半導体 基板の加熱処理装置を提供することである。 この本発明の課題からする と、 加熱エネルギ源としては光に限られるものではないが、 以下の実施 例においては、 加熱エネルギ源として光源ランプを用いた例を説明する。 離れた位置から光を運搬してきて処理対象物を加熱することは、 前述 の特許公報において記載されている。 しかしながら、 上記の従来例では、 基板を所定の温度にまで加熱するためには、 基板に対して光ファイバを どのように配置するべきか、 あるいはどの程度の出力の光源を用いれば いいのか、 光源の入射側での光入射時の損失及び光フアイバ中を加熱光 が輸送される間の損失を考慮した設計はどうあるべきか、 等々について はいずれも考えられていない。 In general, when heating a semiconductor substrate, it is necessary to heat the substrate uniformly and rapidly to a desired temperature, and the range of temperature control is also severely restricted. SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to heat a semiconductor substrate by isolating the heating energy source from the processing stage, reducing unnecessary energy dissipation from the processing stage, and uniformly and quickly heating the substrate to a desired temperature. It is to provide a processing device. In view of the object of the present invention, the heating energy source is not limited to light, but in the following examples, an example using a light source lamp as the heating energy source will be described. Heating a workpiece by delivering light from a remote location is described in the aforementioned patent publications. However, in the conventional example described above, in order to heat the substrate to a predetermined temperature, it is necessary to determine how the optical fiber should be arranged with respect to the substrate, or what output light source should be used. There is no consideration of how the design should take into account the loss when the light is incident on the incident side of the optical fiber and the loss while the heating light is being transported through the optical fiber.
ところが、 一例として 5インチ径のシリコンウェハを 1 0本の光ファ ィバを用いて 5 0 0 °Cまで加熱しょう とした場合、 光ファイバ一本あた
りに投入する赤外光の放射ランプは、 通常用いられるハロゲンランプで は約 1 kWにも及び、光入射時の損失及び光フアイバ中を加熱光が輸送さ れる間の損失による光フアイバ自信の発熱、 及び発熱に伴う光フアイバ の透過率の低下、 さらに透過率の低下に伴う発熱と損失が繰り返され、 やがては光ファイバの熱破壊といった破局的な結末を迎える。 さらには、 光ファイバをプラスチックの様な樹脂で保護していた場合には、 発火に よる火災といった深刻な事態が発生する事もあり得るもので、 実際のプ 口セスに適用するためには解決しなければならない課題が山積している。 さらに、 基板の加熱手段として検討だけでなく、 特公平 6 - 9 1 8 7 号公報に記載されたような方法に於いては、 半導体処理装置として成り 立っためには、 光フアイバの先端を直に基板設置台に挿入する構成のた めに、 基板を設置する加熱処理装置内の空間を装置外と遮断するための シ一ルが各光フアイバに対して必要となるものであった。 However, as an example, when trying to heat a silicon wafer with a diameter of 5 inches to 500°C using 10 optical fibers, each optical fiber Infrared light emitted from a halogen lamp, which is normally used, has a power of about 1 kW. Heat generation, a decrease in the transmittance of the optical fiber due to the heat generation, and further heat generation and loss due to the decrease in transmittance are repeated, eventually leading to a catastrophic result such as thermal destruction of the optical fiber. Furthermore, if the optical fiber is protected by a resin such as plastic, a serious situation such as a fire due to ignition may occur. There are many tasks that must be done. Furthermore, not only as a means for heating the substrate, but also in the method described in Japanese Patent Publication No. 6-9187, it is necessary to straighten the tip of the optical fiber in order to function as a semiconductor processing apparatus. Because of the configuration in which the optical fibers are inserted into the substrate mounting table at the same time, each optical fiber needs a seal for isolating the space inside the heat treatment apparatus in which the substrate is set from the outside of the apparatus.
そこで、 本発明のさらなる課題は、 基板を所望の温度に均一に早く、 しかも少ない熱損失で加熱するために、 基板に対して光ファイバをどの ように配置するのが適当か、 光入射時の損失及び加熱光輸送時での損失 を考慮した加熱方法はどうあるべきかを解決することである。 Therefore, a further problem of the present invention is how to arrange the optical fiber with respect to the substrate in order to heat the substrate uniformly and quickly to a desired temperature with little heat loss. It is to solve what the heating method should be considering the loss and the loss at the time of heating light transportation.
さらに、 本発明では従来用いられてこなかった様な高密度の光量を光 ファイバに入射し、 輸送する上で光フアイバでの損失を最小限に抑え、 光フアイバでの発熱による危険性を排除した。 Furthermore, in the present invention, a high-density light quantity that has not been used in the past is incident on the optical fiber, and the loss in the optical fiber is minimized during transportation, eliminating the risk of heat generation in the optical fiber. .
本発明は、 これによつて、 加熱処理装置内の半導体基板を加熱する手 段として、 ク リーンルームから隔離して配置された光源から加熱処理ス テージにまで光ファイバにより光を輸送するもので、 光源は内部に加熱 ランプを設け、 それからの光を集光して光ファイバによって加熱処理装 置まで輸送する。 ランプで発光した光は集光光学系によって光ファイバ のコア径または光ファイバ ·バン ドルの外径よりも小さい面積に集光さ
れて光ファイバに入射される。 複数本の光フアイバは光照射窓の近傍で、 それに対向して終端し、 これによつて光ファイバを経由して輸送されて きた加熱光源からの放射光は、 光フアイバの端面から光照射窓を通して 基板に向かって照射され、 基板を加熱する。 As a means for heating a semiconductor substrate in a heat treatment apparatus, the present invention transports light from a light source isolated from the clean room to the heat treatment stage through an optical fiber. The light source has a heating lamp inside, and the light from it is collected and transported to the heat treatment device by an optical fiber. The light emitted by the lamp is focused by a focusing optics onto an area smaller than the core diameter of the optical fiber or the outer diameter of the optical fiber bundle. and is injected into the optical fiber. A plurality of optical fibers are terminated in the vicinity of the light irradiation window so as to face the light irradiation window. radiates toward the substrate through and heats the substrate.
予め光源部において、 実質的に基板の加熱に用いられるエネルギを有 効に選択して光フアイバで輸送するため、 加熱処理装置における発熱は ランプに投入される電力エネルギの約 5 %程度に抑えられるため、 ク リ ーンルーム内への放熱は殆どない。 Since the energy used for heating the substrate is effectively selected in advance in the light source and transported by the optical fiber, heat generation in the heat treatment equipment is suppressed to about 5% of the power energy input to the lamp. Therefore, almost no heat is dissipated into the clean room.
光フアイバに極めて高いエネルギの光を効率よく入射させるためには、 フアイバ端面のコア径と同一径あるいはそれより僅かだけ小さい径のス ポッ トを照射して入射させる。 また、 制限入射角を 4 0度以下として輸 送する光の損失を 1 0 0 dBZkm程度に抑えるようにした。 In order to make extremely high-energy light incident on the optical fiber efficiently, the light is emitted by irradiating a spot with a diameter equal to or slightly smaller than the diameter of the core on the end face of the fiber. Also, the loss of the transported light is suppressed to about 100 dBZkm by setting the limiting incident angle to 40 degrees or less.
基板の温度分布は、 基板熱処理後の膜厚等の規格条件を満たすために 土 5 %以内が望ましく、 照度分布のバラツキは土 1 0 %以内に抑えると よい。 ファイバ間の距離とファイバ端面とウェハ間の関係について、 光 源間の距離、 或いは基板上に照射された光スポッ ト間の距離を D、 光源 と基盤との距離を hとすると、 h / D≥ l . lを満たす必要がある。 The substrate temperature distribution is desirable to be within ±5% in order to satisfy standard conditions such as film thickness after substrate heat treatment, and the variation in illuminance distribution should be suppressed within ±10%. Regarding the distance between the fibers and the relationship between the fiber end face and the wafer, let D be the distance between the light sources or the distance between the light spots irradiated on the substrate, and h be the distance between the light source and the substrate. ≥ l . l must be satisfied.
また、 基板外周部に配置する光ファイバからの光スポッ 卜の配置密度 を基板中央部部に配置する光フアイバからの光スポッ 卜の配置密度より も高くすることにより、 基板の温度分布均一性を向上させる事ができる。 そのためには、 光フアイバの分布密度を外周ほど密に配置することと、 1本の光ファイバからの光スポッ 卜の光量を外周ほど大きくなるように 光源を選ぶことが考えられる。 Further, by making the arrangement density of light spots from the optical fiber arranged in the outer peripheral part of the substrate higher than the arrangement density of the light spots from the optical fiber arranged in the central part of the substrate, the temperature distribution uniformity of the substrate can be improved. can be improved. For this purpose, it is conceivable to arrange the distribution density of the optical fibers closer to the outer circumference and to select the light source so that the light amount of the light spot from one optical fiber increases toward the outer circumference.
実際のウェハではウェハからの熱の放出は周辺部が最も大きいため、 ウェハ外周部に与える熱量が最大となるようにしてウェハ温度分布の均 一性を向上する。 この時、 ウェハ外周部の全ての点において、 これより
もウェハ中心に向かって内側の点より も与える熱量を多くするためには、 光フアイバの数で形成されるウェハ外周に接する正多角形の頂点に光フ アイバからの光スポッ ト中心を配列する。 In an actual wafer, the heat released from the wafer is the greatest at the peripheral portion. Therefore, the uniformity of the wafer temperature distribution is improved by maximizing the amount of heat applied to the outer peripheral portion of the wafer. At this time, at all points on the outer circumference of the wafer, In order to give more heat than points inside the wafer center, the center of the light spot from the optical fiber is arranged at the vertex of a regular polygon that is in contact with the outer periphery of the wafer and is formed by the number of optical fibers. .
加熱処理装置から隔離された光源から、 光を運搬する場合はなるべく 直線距離による輸送ができるようにする。 光源はク リーンルームの床下 領域と同じ高さのレベルに配置し、 光フアイバは直線的に床下領域内に 施設し、加熱処理装置のほぼ直下の曲げ部において R = 5 0 cm程度以上 の大きな曲率によって曲げてそのまま加熱処理装置に導く。 光源から加 熱ステージまでの光搬送経路での熱損失による発熱のために冷却水を流 すジャケッ トを施設してファイバも冷却する。 When transporting light from a light source that is isolated from the heat treatment equipment, it should be possible to transport the light over a straight line as much as possible. The light source was placed at the same level as the underfloor area of the clean room, the optical fiber was installed linearly in the underfloor area, and the large radius of R = 50 cm or more was installed at the bend almost directly under the heat treatment equipment. It is bent according to the curvature and guided to the heat treatment device as it is. The fiber is also cooled by providing a jacket through which cooling water flows to generate heat due to heat loss in the optical transport path from the light source to the heating stage.
光ファイバの吸収波長特性を考慮して、 S i ウェハの吸収特性に適合 するランプ波長とも合わせ、加熱光源としては約 0 . 6 111から 1 . 0 m の間の発光分布を主成分とした尖状の発光スぺク トルを有したランプを 使用する。 In consideration of the absorption wavelength characteristics of optical fibers, and combined with a lamp wavelength that matches the absorption characteristics of Si wafers, a sharp peak whose main component is an emission distribution between about 0.6111 and 1.0 m is used as a heating light source. Use a lamp with a square emission spectrum.
以下、 添付図面に従って本発明の実施例を説明する。 第 1図は、 本発 明の光輸送型基板加熱装置を適用した半導体製造プロセスにおける一つ の製造ラインの断面図で、 基板加熱処理プロセスを含む処理部のみをク リ一ンルーム(製造ライン)内に設置し、光源部はク リーンルームの外に 設置すると共に基板を加熱するのに必要なエネルギのみを予め光源部に おいて選択し、 装置内及びク リーンルーム内での発熱といった余分なェ ネルギの発散を極力抑えたことを示すブラン ト構成図である。 光源部を ク リーンルームから離れた箇所に設置するとは言っても、 その距離が遠 くなればなる程、 光輸送時の熱損失は大きくなるから、 それなりの距離 の範囲に限定されることは当然である。 必要なことは、 光源部と基板処 理部との間が熱的に遮蔽されていることである。 Embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1 is a cross-sectional view of one manufacturing line in a semiconductor manufacturing process to which the light transport type substrate heating apparatus of the present invention is applied. The light source is installed outside the clean room, and only the energy required to heat the substrate is selected in advance in the light source to eliminate unnecessary heat generation inside the equipment and inside the clean room. FIG. 10 is a blunt configuration diagram showing that the divergence of energy is suppressed as much as possible. Even if the light source is installed at a location away from the clean room, the greater the distance, the greater the heat loss during light transportation, so it is not limited to a certain distance range. Naturally. What is necessary is that the light source section and the substrate processing section are thermally shielded.
本発明を適用した加熱処理プロセスを含む処理装置 1 0 0はク リーン
ルーム 2 0 0内に設置されている。 ク リ一ンルームは作業域仕切り壁 2 5 0によって、 清浄度がクラス 1 0 0から 1 0 0 0程度の装置設置領域 2 1 0 とクラス 1 0以下の作業領域 2 2 0 とに区画されている。 この作 業域仕切り壁 2 5 0は、 本発明においては必須の構成ではなく、 必要に 応じて設ければよい。 ク リーンルーム 2 0 0は、 天井面に H E P Aフィ ルタ(High Efficiency Particulate Air fi lter) 6 1 0を配設し、 床面 はグレーティ ング 5 0 0 となし、 常にダウンフローが形成されるように 空調機器 6 0 0によって清浄空気を供給している。 ク リ一ンルームは装 置設置領域と作業領域の上部に清浄空気供給スペース 2 3 0を設け、 グ レーティ ング床面の下方には床下領域 2 4 0が設けられている。 床下領 域 2 4 0は半導体製造に必要な電気、 水等の供給排出の配管を施設する スペースとして利用される。 加熱処理プロセスを含む処理装置 1 0 0内 の半導体基板を加熱する手段としての光源 3 0 0はク リーンルームから 隔離して配置されている。 光源は内部に加熱ランプ 3 1 0を設け、 それ からの光を集光して光ファイバ 1 3 0によって加熱処理プロセスを含む 処理装置 1 0 0まで輸送する。光源はランプ用電源 7 0 0 (図示してない カ^電力供給手段と電力制御手段を含んでいる)から電源ケーブル 7 1 0 を介して電源が供給され、 冷却水循環装置 8 0 0から冷却水循環用配管 8 1 0を通して冷却水が供給されている。 A processing apparatus 100 including a heat treatment process to which the present invention is applied is clean. Located in Room 200. The clean room is partitioned by a work area partition wall 250 into an equipment installation area 210 with a cleanliness level of class 100 to 1000 and a work area 220 with a cleanliness level of class 10 or lower. there is This working area partition wall 250 is not an essential component in the present invention, and may be provided as required. The clean room 200 has a HEPA filter (High Efficiency Particulate Air filter) 610 on the ceiling and a grating 500 on the floor so that downflow is always formed. Clean air is supplied by an air conditioner 600. The clean room has a clean air supply space 230 above the equipment installation area and work area, and an underfloor area 240 below the grating floor. The underfloor area 240 is used as a space for installing piping for supply and discharge of electricity, water, etc. required for semiconductor manufacturing. A light source 300 as means for heating a semiconductor substrate in a processing apparatus 100 including a heat treatment process is arranged separately from the clean room. The light source is internally provided with a heating lamp 310, from which light is collected and transported by an optical fiber 130 to a processing apparatus 100 including a heat treatment process. The light source is supplied with power from a lamp power source 700 (which includes power supply means and power control means, not shown) via a power cable 710, and cooling water is circulated from a cooling water circulation device 800. Cooling water is supplied through the pipe 810.
ここで、 加熱ランプ 3 1 0で発光した光は光源 3 0 0に設置した反射 鏡やレンズ等の集光系によって光フアイバ 1 3 0のコア径または光ファ ィバ ·バン ドルの外径よりも小さい面積に集光され光フアイバに入射さ れる。 集光された基板加熱用の放射光は、 ク リーンルーム 2 0 0内に設 置された加熱処理プロセスを含む処理装置 1 0 0まで光ファイバ 1 3 0 を経由して輸送され、 加熱処理プロセスを含む処理装置 1 0 0に設置さ れた基板を加熱する。 ここで、 基板加熱に寄与しなかった光エネルギは
ク リーンルーム 2 0 0内への放熱となり空調機器 6 0 0に吸収される力 その量は極僅かである。 一方、 光源部 3 0 0では基板加熱に必要な波長 成分の光エネルギのみを放射する加熱ランプ 3 1 0を使用するか、 ある いはフィルタを用いて光ファイバ 1 3 0での損失を最小限に抑えるよう にしてあり、 光源 3 0 0における加熱ランプ 3 1 0からの放熱は冷却水 循環装置 8 0 0によつて冷却されるが、 光源 3 0 0はク リーンルーム 2 0 0のような温調を必要とする場所には設置されていないため、 特に空 調機器 6 0 0による冷却を行う必要はない。 Here, the light emitted by the heating lamp 310 is diverted from the core diameter of the optical fiber 130 or the outer diameter of the optical fiber bundle by a condensing system such as a reflecting mirror and a lens installed in the light source 300. The light is condensed into a small area and is incident on the optical fiber. The condensed radiant light for heating the substrate is transported via the optical fiber 130 to the processing equipment 100 including the heat treatment process installed in the clean room 200, and the heat treatment process is carried out. A substrate placed in a processing apparatus 100 including Here, the optical energy that did not contribute to substrate heating is The amount of heat released into the clean room 200 and absorbed by the air conditioner 600 is extremely small. On the other hand, the light source unit 300 uses a heating lamp 310 that emits only the light energy of the wavelength component necessary for heating the substrate, or uses a filter to minimize the loss in the optical fiber 130. The heat radiation from the heat lamp 310 in the light source 300 is cooled by the cooling water circulation device 800, but the light source 300 is kept in a clean room such as 200. Since it is not installed in a place that requires temperature control, there is no particular need for cooling by the air conditioner 600.
ここで、 本発明の比較例として、 従来から行われている加熱処理プロ セスを含む処理装置に直接ランプを設置してク リーンルーム内に装置を 設置したことを示す装置構成図を第 2図に示す。 従来の加熱処理プロセ スを含む処理装置では、 石英板等の赤外線を透過させる窓材により真空 あるいは大気とは異なるガス雰囲気中に設置した基板を加熱できるのと 同時に基板を設置した空間を外気と遮断するための窓材を通して、 窓材 に対して基板と対抗する側に直接光源を設置していた。 第 2図において は、 第 1図と同様な装置 · 部品については同一の添付数字を用いて説明 する。 Here, as a comparative example of the present invention, FIG. 2 is a device configuration diagram showing that a lamp is directly installed in a processing device including a conventional heat treatment process and the device is installed in a clean room. shown in In a processing apparatus including a conventional heat treatment process, it is possible to heat a substrate placed in a vacuum or a gas atmosphere different from the atmosphere by using a window material such as a quartz plate that transmits infrared rays, and at the same time, the space in which the substrate is placed can be separated from the outside air. The light source was installed directly on the side facing the substrate with respect to the window material through the window material for shielding. In FIG. 2, devices and parts similar to those in FIG. 1 are explained using the same attached numerals.
従来方法では、 ク リーンルーム 2 0 0内に設置されている加熱処理プ 口セスを含む処理装置 9 0 0の内部に基板加熱用のランプ 9 1 0を配置 している。 従来用いられている加熱光源用のランプ 9 1 0はハロゲンラ ンプであり、 後述するが、 S i ウェハの吸収域'よりはかなり長波長の成 分を含む発光スぺク トルを有するため、 実際に S i ウェハの加熱に用い られるエネルギは、 ハロゲンランプに投入される電力エネルギの約 5 % 程度であり、 それ以外の 9 5 %は無駄な発熱となり、 加熱装置内の循環 冷却水 8 0 0に吸収されるか、 もしくはク リーンルーム内へ放熱され、 ク リーンルーム 2 0 0の空調設備 6 0 0で吸収される。 このことは、 加
熱装置本体の電力設備 7 0 0に加え、 ク リーンルーム 2 0 0の温度上昇 を抑えるための空調機器 6 0 0を備えるといった極めて非効率な生産設 備を抱えることになる。 In the conventional method, a substrate heating lamp 910 is arranged inside a processing apparatus 900 including a heat treatment process installed in a clean room 200 . The heating light source lamp 910 that is conventionally used is a halogen lamp, and as will be described later, it has an emission spectrum that includes components with wavelengths considerably longer than the absorption region of the Si wafer. The energy used to heat the Si wafer is about 5% of the power energy input to the halogen lamp, and the other 95% is wasted heat, and the circulating cooling water in the heating device is 800 or radiated into the clean room and absorbed by the air conditioner 600 of the clean room 200. This In addition to the electric power equipment 700 for the main body of the heating equipment, it will be equipped with an air conditioning equipment 600 for suppressing the temperature rise in the clean room 200, which is extremely inefficient production equipment.
上記に対して、 本発明の装置構成では、 予め光源部において、 実質的 に基板の加熱に用いられるエネルギを有効に選択して光フアイバで輸送 するため、 加熱処理プロセスを含む処理装置における発熱はランプに投 入される電力エネルギの約 5 %程度に抑えられるため、 ク リーンルーム 内への放熱は殆どない。 従って、 ク リーンルームの温度上昇を抑えるた めの空調設備は従来と比較してコンパク 卜に出来る。 さらに、 本発明の 実施例で用いている加熱用ランプは高圧ナ ト リウムランプまたはメタル ハライ ドランプであり、 これはシリコン基板の吸収波長に合った発光ス ぺク トルを有し、 また発光効率そのものも約 3 0 %程度もあるため、 結 果的に従来と比較して無駄な放熱量も約 1 1 0に低減できることにな o In contrast to the above, in the apparatus configuration of the present invention, the energy substantially used for heating the substrate is effectively selected in advance in the light source unit and transported by the optical fiber. Since the power energy input to the lamp is suppressed to about 5%, there is almost no heat radiation into the clean room. Therefore, the air conditioning equipment for suppressing the temperature rise in the clean room can be made more compact than before. Furthermore, the heating lamp used in the embodiments of the present invention is a high-pressure sodium lamp or a metal halide lamp, which has a luminous spectrum matching the absorption wavelength of the silicon substrate, and the luminous efficiency itself. Approximately 30% of the total heat dissipation is about 30%, so as a result, the amount of wasted heat dissipation can be reduced to about 110% compared to the conventional method.
第 3図は、 本発明の光源部分のランプ及び放射光を集光している様子 を説明する断面図であり、 (a )は加熱ランプに対し、 軸方向に平行な断 面図、 (b )は加熱ランプに対し、 軸方向に垂直な断面図である。 FIG. 3 is a cross-sectional view illustrating the state of condensing the lamp and the radiant light of the light source part of the present invention, (a) is a cross-sectional view parallel to the axial direction with respect to the heating lamp, (b ) is a sectional view perpendicular to the axial direction with respect to the heating lamp.
加熱光源としてのランプ 3 1 0には、 従来のハロゲンランプとは異な り、 高圧ナト リウムランプあるいはメタルハラィ ドランプのような H I Dランプ(High I ntensi ty Discharge Lamp)と呼ばれる高圧放電ランプを 用いた。 As the lamp 310 as a heating light source, a high-pressure discharge lamp called a HID lamp (High Intensity Discharge Lamp) such as a high-pressure sodium lamp or a metal halide lamp is used unlike a conventional halogen lamp.
このランプの光学的特性及び集光機構の詳細は後述する。 第 3図に示 す光源ュニツ ト 3 0 0のランプは発光体が棒状であり、 棒状中心から放 射状に発光し、 それを適当な光学系によって光ファイバ 1 3 0のコア断 面と実質的に同一あるいはそれよりも僅かに小さい面積のスポッ 卜に集 光きせる。 そのための、 一つの実施例として、 先ず楕円あるいは放物面
の形状に成型され水冷された反射鏡 3 2 0によつて収束光束 3 3 0を作 り、 シリ ン ドリカルレンズ 3 4 0によつて一点への集光光束 3 5 0を作 る。 これは、 シリ ン ドリカルレンズ 3 4 0の長手方向にもレンズ作用を 持たせる形状にすることにより、 このような棒状の発光体から一点への 集光を一つの光学系で行うことが可能となる。 また、 これ以外にも、 第 1のシリ ン ドリカルレンズを用いて一旦シー ト状の平行光を得た後、 第 2のシリ ン ドリカルレンズにより光ファイバ、 1 3 0の端面上に集光する 収束光束を得て光フアイバに光を入射することもできる。 この光源ュニ ッ ト 3 0 0の冷却手段は冷却水循環装置 8 0 0からの冷却水を反射鏡 3 2 0の背面に形成される冷却水ジャケッ ト 8 1 0内に導入することによ つて達成される。 また、 収束光束 3 3 0の上下を一対の冷却水ジャケッ ト 8 2 0を形成し、 その中に冷却水を導入して冷却すると同時にシリ ン ドリカルレンズ 3 4 0を保持するようにする。 The details of the optical characteristics and condensing mechanism of this lamp will be described later. The lamp of the light source unit 300 shown in FIG. 3 has a rod-shaped luminous body, and emits light radially from the center of the rod, which is divided into the cross section of the core of the optical fiber 130 and the substance by an appropriate optical system. The light is focused on a spot of approximately the same or slightly smaller area. For that purpose, as an example, first, an ellipse or a paraboloid A convergent luminous flux 330 is produced by a reflecting mirror 320 molded into a shape and water-cooled, and a condensed luminous flux 350 to one point is produced by a cylindrical lens 340. By making the shape of the cylindrical lens 340 to have a lens action also in the longitudinal direction, it becomes possible to collect light from such a rod-shaped light emitter to one point with one optical system. . In addition to this, after once obtaining a sheet-like parallel light using the first cylindrical lens, a converging light beam is condensed on the end surface of the optical fiber 130 by the second cylindrical lens. It is also possible to obtain the light to enter the optical fiber. The cooling means for the light source unit 300 is provided by introducing cooling water from the cooling water circulator 800 into the cooling water jacket 810 formed behind the reflecting mirror 320. achieved. In addition, a pair of cooling water jackets 820 are formed above and below the converging light flux 330, and cooling water is introduced into them to cool and at the same time hold the cylindrical lens 340.
図示の実施例においては、 一本の光ファイバ 1 3 0に対して一つの光 源ユニッ ト 3 0 0を用いた例を示したが、 光ファイバを一列に並べ、 そ れに上述のシー ト状平行光を入射する構成にしてもよいし、 束状の光フ アイバ端面に収束光束を入射する構成にしてもよい。 In the illustrated embodiment, an example of using one light source unit 300 for one optical fiber 130 is shown, but the optical fibers are arranged in a line and the above-mentioned sheet A configuration in which parallel light beams are incident may be used, or a convergent light beam may be incident on the end face of a bundle of optical fibers.
本発明者等は、 その後の研究開発により、 本発明の方法及び装置には 第 1 6図から第 1 8図に示したようなメタルハラィ ドランプが好適であ ることを発見した。 これについての詳細は後述する。 Through subsequent research and development, the present inventors discovered that metal halide lamps such as those shown in FIGS. 16 to 18 are suitable for the method and apparatus of the present invention. Details of this will be described later.
第 4図(a )は、 半導体製造装置の一例としての C V D装置に対して、 本発明の光輸送による基板加熱処理プロセスを む処理装置を適用した 場合の ^置詳細断面図で、 第 4図(b )は、 光ファイバの終端面部分の拡 大詳細断面図である。 FIG. 4(a) is a detailed cross-sectional view of a CVD apparatus as an example of a semiconductor manufacturing apparatus when the processing apparatus including the substrate heating process by light transport of the present invention is applied. (b) is an enlarged detailed cross-sectional view of the end face portion of the optical fiber.
ここで、 4 0 1は C V Dリアクタ、 4 0 2はガスシャヮ一、 4 0 3は 半導体基板、 4 0 4は光照射窓、 4 0 5は 0リ ングシール、 4 0 6は不
活性ガス導入パイプ、 1 3 0は光ファイバ、 4 0 8は反射鏡、 4 0 9は コネク夕を示す。 Here, 401 is a CVD reactor, 402 is a gas chamber, 403 is a semiconductor substrate, 404 is a light irradiation window, 405 is an O-ring seal, and 406 is a non-seal. An active gas introduction pipe, 130 an optical fiber, 408 a reflector, and 409 a connector.
図示するように、 基板 4 0 3 としてはシリ コンのウェハが用いられ、 このウェハはウェハ表面を上側に向けて、 水冷された C V D リアクタ 4 0 1の内部に設置されている。 4 0 2は水冷機構を有するガスシャワー で、 C V Dガスがウェハ 4 0 3に吹き付けられ、 C V Dガスは排気口か ら排気される。 この時、 C V D リアクタ 4 0 1の内部の気密性を保持す るために石英製の光照射窓 4 0 4 との接触面には Oリ ングシール 4 0 5 が設置されている。 またウェハ裏面や外周部へのデバイスに関係しない 部分への余分な成膜は、 剥がれやすく異物不良を発生させやすいことか ら、 ウェハ裏面の空間にウェハ表面側の空間よりも陽圧となるように不 活性ガスを導入し余分な成膜を抑えている。 As shown in the figure, a silicon wafer is used as the substrate 403, and this wafer is placed inside a water-cooled CVD reactor 401 with the wafer surface facing upward. 402 is a gas shower having a water cooling mechanism, CVD gas is sprayed onto the wafer 403, and the CVD gas is exhausted from an exhaust port. At this time, an O-ring seal 405 is installed on the contact surface with the light irradiation window 404 made of quartz in order to keep the inside of the CVD reactor 401 airtight. In addition, excessive film deposition on areas not related to the device on the wafer backside or outer periphery is likely to peel off and cause foreign matter defects. Inert gas is introduced into the chamber to suppress excessive film formation.
複数本の光ファイバ 1 3 0 , 1 3 0は光照射窓 4 0 4の近傍で、 それ に対向して終端している。 これによつて光ファイバ 1 3 0を経由して輸 送されてきた加熱光源 3 0 0からの放射光は、 水冷された反射鏡にコネ クタ 4 0 9で固定された光ファイバ 1 3 0の端面から石英製の光照射窓 4 0 4を通して基板 4 0 3に向かって照射され、 ウェハ 4 0 3を加熱す る。 加熱されたウェハに C V Dガスが接触することにより C V D膜が形 成される。 本実施例は C V D装置に適用した場合を示したが、 C V Dガ スの導入を行わず、 リアクタ内を真空にするあるいは不活性ガスや水素 ガスを導入することにより熱ァニール炉としても使用可能であり、 C V Dガスの代わりに酸素ガスを導入する事により、 熱酸化炉としても使用 可能である。 A plurality of optical fibers 130, 130 terminate in the vicinity of the light irradiation window 404 and face it. As a result, radiated light from the heating light source 300 transported via the optical fiber 130 is transmitted through the optical fiber 130 fixed by the connector 409 to the water-cooled reflecting mirror. The wafer 403 is heated by being irradiated from the end face toward the substrate 403 through the light irradiation window 404 made of quartz. A CVD film is formed by bringing the CVD gas into contact with the heated wafer. Although this embodiment shows the case of application to a CVD apparatus, it can also be used as a thermal annealing furnace by evacuating the inside of the reactor or introducing an inert gas or hydrogen gas without introducing the CVD gas. It can also be used as a thermal oxidation furnace by introducing oxygen gas instead of CVD gas.
本発明のような、 光輸送による基板加熱処理プロセスを含む処理方式 を実際の半導体製造プロセスに適用する場合に考えなければならないこ とは以下の通りである。
1. 加熱エネルギ源としての光源からの光を如何にして効率よく光ファ ィバに対して入射させるか The following points must be considered when applying a processing system including a substrate heating process using light transport, as in the present invention, to an actual semiconductor manufacturing process. 1. How to make the light from the light source as the heating energy source efficiently enter the optical fiber
2. 光フアイバ内を輸送される光の損失を如何にして少なくするか 2. How to reduce the loss of light transported in the optical fiber
3. 光フアイバから出射される光を基板に対して如何にして照射するか 4. 基板面の温度コン トロールを如何にするか 3. How to irradiate the substrate with the light emitted from the optical fiber 4. How to control the temperature of the substrate surface
5. 光源から加熱ステージまでの光搬送経路を如何にして施設するか 5. How to install the light transport path from the light source to the heating stage
6. 光源から加熱ステージまでの光搬送経路での熱損失による発熱を如 何にして冷却するか 6. How to cool heat generated due to heat loss in the light transport path from the light source to the heating stage
7. どのような光ファイバを用いるか 7. What kind of optical fiber to use
8. どのような光を加熱源とするか 8. What kind of light should be used as a heat source?
9. 加熱ステージ周辺での排熱を如何にするか 9. How to exhaust heat around the heating stage
以下、 これらの項目について順次説明する。 These items will be described in order below.
1 .加熱エネルギ源としての光源からの光を如何にして効率よく光ファ ィバに対して入射させるか。 1. How to make the light from the light source as the heating energy source efficiently enter the optical fiber.
まず初めに、 光ファイバ端面の面積が小さいために、 如何にして光を 効率的に集光し、 入射するかが問題とされる。 ここで第 5図(a )では、 光ファイバ 1 3 0の端面への光の入射を説明するために光ファイバ端面 付近の拡大図を示した。 光ファイバ 1 3 0は外周から被覆層 1 3 1、 ク ラッ ド 1 3 2、 コア 1 3 3から成っている。 第 3図において、 光源から の集光光学系全体については説明したが、 光フアイバに極めて高いエネ ルギの光を効率よく入射させるためには、 フアイバ端面のコア径と同一 径あるいはそれより僅かだけ小さい径のスポッ トを照射して、 入射させ る方法が効率的である。 またこのときは、 図示してあるように、 光源か らの集光方法を考慮して光の入射角度を小さ くする必要がある。 First of all, since the area of the end surface of the optical fiber is small, the problem is how to efficiently collect and enter the light. Here, FIG. 5(a) shows an enlarged view of the vicinity of the end face of the optical fiber 130 in order to explain the incidence of light on the end face of the optical fiber 130. FIG. The optical fiber 130 consists of a coating layer 131, a clad 132 and a core 133 from the outer periphery. In Fig. 3, the entire optical system for condensing light from the light source has been explained. A method of irradiating a spot with a small diameter and making it incident is efficient. Also, at this time, as shown in the figure, it is necessary to reduce the incident angle of light in consideration of the method of condensing light from the light source.
また、 多数のファイバを束ねたバン ドルと呼ばれるものを配置し、 そ
れぞれのコア以外の部分の端面を反射率の高い物質で被覆して、 バン ド ル端面での損失を少なく した上でバン ドル上に集光させる方法もある。 In addition, we arrange what is called a bundle, which is a bundle of many fibers, and There is also a method of covering the end faces of portions other than the respective cores with a highly reflective material to reduce the loss at the bundle end face and concentrating the light onto the bundle.
また、 図示しないが、 光ファイバの端面に複眼型レンズを設置し、 光 源からの入射する光をコア断面より内側に集光させ、 バン ドル端面での 損失を少なく した上でバン ドル上に集光させても良い。 必ずしも、 複眼 型のレンズでなければいけない訳ではない。 各々の光フアイバの端面部 に、 成形等によってレンズ部を形成することによつても可能である。 さ らに、 光フアイバの断面形状を正方形や正 6角形の様に束ねていったと きにフアイバのコア同士の間に発生する非有効断面が最小化するような 形状のファイバを用いることにより、 バン ドル端面での損失を少なく し た上でバン ドル上に集光させる方法を用いても良い。 In addition, although not shown, a compound eye lens is installed on the end face of the optical fiber, and the incident light from the light source is condensed inside the core cross section to reduce the loss at the bundle end face and then onto the bundle. It may be condensed. It doesn't necessarily have to be a compound eye type lens. It is also possible to form a lens portion by molding or the like on the end surface of each optical fiber. Furthermore, by using fibers with a shape that minimizes the ineffective cross section that occurs between the fiber cores when the cross-sectional shape of the optical fibers is bundled into a square or regular hexagon, A method of condensing light on the bundle after reducing the loss at the end face of the bundle may also be used.
本発明のように、 楕円鏡あるいは放物面鏡とレンズの組み合わせのよ うな集光手段を用いて、 ファイバ端に集光して入射させる場合のランプ としては、 発光部分が限りなく点光源に近いランプが好ましい。 しかし ながら、 必ずしも S i ウェハを加熱するために最適な発光波長及び高い 発光効率を有するランプが点光源になる訳ではない。 As in the present invention, in the case of using a condensing means such as an elliptical mirror or a combination of a parabolic mirror and a lens to condense and enter the light at the end of the fiber, the light emitting part can be a point light source as much as possible. Close lamps are preferred. However, a lamp having an optimum emission wavelength and high luminous efficiency for heating a Si wafer is not necessarily a point light source.
従って、 アーク長が長い(4 mm以上)光の集光時に、集光点での広がり をできるだけ抑え、 集光効率を高める必要がある。 そこで、 楕円鏡を用 いて集光する場合を考えると、 ランプ光源のアークが点とみなせない場 合、 楕円鏡の離心率が大きければ(焦点距離が長ければ)、 集光点での焦 点のぼけが大きくなり、 楕円鏡の離心率が小さければ、 相対的に N Aが 大きくなる。 また、 楕円鏡のみで集光する場合、 前方方向の光の多くを 損失してしまう。 そこで、 集光光を固有の N A及び固有の径を持つファ ィバを用いて取り込むときには、 ファイバの N Aを考慮し、 焦点ぼけを 最小限に抑え、 集光効率を向上させる集光系を考慮する必要がある。 今、 第 1 6図を用いて実施例を説明する。 光源の加熱ランプ 3 1 0の
後方部にはランプからの光をあまり広げずに前方に反射させる比較的小 さな離心率を有した楕円鏡 3 2 0 (コールドミラ一)を備えている。 この 楕円鏡 3 2 0は表面が特殊コ一ティ ングされており、 S i の吸収帯であ る 1 . 2 m よりも長波長の発光波長域の光(不要な赤外光)を反射しな いように構成されている。 加熱ランプ 3 1 0からの発光及び反射鏡 3 2 0からの反射光で、 所望の角度以上に広がった前方方向の光を後方に反 射させるために、 球面を有した前方反射鏡 3 2 1を設けると更に効率を 上げられる。 この前方反射鏡 3 2 1の中心軸には光を取り出すための開 口部 3 2 2が形成されている。 これ等の楕円鏡 3 2 0及び前方楕円鏡 3 2 1は過熱を防ぐために冷却器 8 1 0, 8 1 0を備えている。図示のよう に、楕円鏡(反射鏡 3 1 0 )を焦点(アークの輝度が最も高い部分またはァ 一クの中心)から楕円長軸(光輸送軸)に対して引いた垂線で力ッ 卜し、こ れが固有の N Aを満たすようにし、 前方方向から逃げた光は、 前方反射 鏡 3 2 0 (球面鏡)で戻す集光光学系を採用し、 集光効率の向上を図った。 この実施例では、集光光を取り込む光フアイバの N Aを 0 . 5 3、 フアイ ノ 径を 7 mm (バン ドル型)、 ランプ.としてメタルハライ ドランプ( 5 7 5 W)、 楕円鏡(焦点間の距離 1 2 0、 離心率 0 . 7、 N A = 0 . 5 3 ( 2 0 = 6 4 )の長径を 8 5、 短径を 6 0、 球面鏡径を 7 2 とした時の集光系を 示している。 これによつて、 固有の N Aを満たし、 アーク長 4 nun以上で の集光効率を 5 0 %以上とすることができた。 Therefore, when condensing light with a long arc length (4 mm or more), it is necessary to suppress the spread at the condensing point as much as possible and increase the condensing efficiency. Therefore, considering the case of using an elliptical mirror to focus light, if the arc of the lamp light source cannot be regarded as a point, if the eccentricity of the elliptical mirror is large (if the focal length is long), the focal point at the condensing point will be If the blurring becomes large and the eccentricity of the elliptical mirror is small, the NA becomes relatively large. Also, when focusing only with an elliptical mirror, much of the light in the forward direction is lost. Therefore, when taking in condensed light using a fiber with a specific NA and a specific diameter, consider the NA of the fiber, minimize defocus, and consider a condensing system that improves the condensing efficiency. There is a need to. An embodiment will now be described with reference to FIG. Light source heating lamp 3 1 0 The rear part is equipped with an ellipsoidal mirror 320 (cold mirror) with a relatively small eccentricity that reflects the light from the lamp forward without spreading it too much. The surface of this elliptical mirror 320 is specially coated to reflect light (unnecessary infrared light) in the emission wavelength region longer than 1.2 m, which is the absorption band of Si. It is configured so that A forward reflecting mirror 321 having a spherical surface is used to reflect backward the light emitted from the heating lamp 310 and reflected from the reflecting mirror 320 and spread over a desired angle. Efficiency can be further improved by providing An opening 322 for extracting light is formed in the central axis of the forward reflecting mirror 321. These elliptical mirrors 320 and forward elliptical mirror 321 are provided with coolers 810, 810 to prevent overheating. As shown in the figure, the elliptical mirror (reflector 310) is hit by a perpendicular drawn from the focal point (the brightest part of the arc or the center of the arc) to the major axis of the ellipse (light transport axis). However, this satisfies the inherent NA, and the light that has escaped from the front direction is returned by the forward reflecting mirror 320 (spherical mirror), and a condensing optical system is adopted to improve the condensing efficiency. In this example, the NA of the optical fiber that captures the condensed light is 0.53, the diameter of the fiber is 7 mm (bundle type), the lamp is a metal halide lamp (575 W), and the elliptical mirror (between focal points) is used. The distance is 120, the eccentricity is 0.7, NA = 0.53 (20 = 64), the major axis is 85, the minor axis is 60, and the spherical mirror diameter is 72. As a result, it was possible to satisfy the inherent NA and achieve a light collection efficiency of 50% or more at an arc length of 4 nun or more.
本発明の装置に用いるメタルハラィ ドランプは、 S i の吸収帯である 1 . 2 mよりも短波長の発光波長域を有し、従来から用いられてきたハ ロゲンランプと比較して約 3倍の発光効率を有するため、 S i ウェハの 加熱を目的とした光源に適しているが、 上述したように、 電極間に輝度 の高い部分が 2ケ所存在する。 このため、 2点の中心を焦点にした楕円 鏡を用いてもう一方の焦点に結像させると、 一点に集光せずにリ ング状
の輝度分布が現れる(第 5図(b )参照)。 第 5図(b )において、 網掛けの 部分が輝度の高い部分を示している。 このリ ング状の輝度分布はランプ 電極間の輝度の高い部分(2ケ所)に対応している。 そこで、 この光ファ ィバ端に更に効率的に集光するために、 第 5図( c )に示したように、 中 央部が円錐状にく り抜かれた円錐状の集光端部を有した口ッ ド 3 2 4を 考え出した。 この集光円錐状口ッ ド 3 2 4は出射側は ø 7の光ファイバ 1 3 0のバン ドル端面に対接している。 尚、 図示したものでは、 各部の 寸法、 特に角度、 については正確には描かれていない。 この集光円錐状 ロッ ド 3 2 4では、 光が入射してからフアイバ内に導かれる間、 ガラス の肉厚が実質的に等しく外周反射面と内周反射面とが平行であるために、 口ッ ドに入射した光が反射しても反射毎に生じる反射角の増大を抑える ことができるために、 入射側と出射側の N Aを変化させずにリ ング状の 集光像を、 リ ング幅を半径とした円状の集光像に変換することが可能と なるものである。 従って、 本発明の円錐状のロッ ドを用いた場合には、 それを用いない場合と比較して、 約 1 0倍集光効率を向上させることが できた。 The metal halide lamp used in the device of the present invention has an emission wavelength region shorter than 1.2 m, which is the absorption band of Si, and emits about three times as much light as the conventionally used halogen lamp. Because of its efficiency, it is suitable as a light source for heating Si wafers. For this reason, if an elliptical mirror with two focal points is used to form an image at the other focal point, the light will not converge to a single point and form a ring-like shape. luminance distribution appears (see Fig. 5 (b)). In FIG. 5(b), shaded areas indicate areas with high brightness. This ring-shaped brightness distribution corresponds to the high-brightness portions (two places) between the lamp electrodes. Therefore, in order to focus the light on the end of the optical fiber more efficiently, as shown in Fig. 5(c), a conical light-collecting end with a hollowed-out central portion is provided. I came up with 324 words that I had. The condensing conical mouth pad 324 is in contact with the bundle end face of the ø7 optical fiber 130 on the output side. It should be noted that the dimensions of each part, especially the angles, are not drawn accurately in the illustration. In this condensing conical rod 324, since the thickness of the glass is substantially equal and the inner and outer reflecting surfaces are parallel during the period from when the light is incident to when it is guided into the fiber, Even if the light incident on the aperture is reflected, it is possible to suppress the increase in the angle of reflection that occurs at each reflection. It is possible to convert the image into a circular condensed image with the ring width as the radius. Therefore, when the conical rod of the present invention was used, the light collection efficiency could be improved by about 10 times compared to when it was not used.
具体的に、 この円錐台形状の口ッ ドを用いた例を第 1 7図に示す。 光 源部分は第 1 6図のものと実質的に同一であるので特に説明はしないが、 同一の部分は同一の添付数字を付した。 前方反射鏡 3 2 1の中心軸には 光を取り出すための開口部 3 2 2が形成され、 好ましくはその開口部 3 2 2に N Aを小さくするための光学レンズ手段 3 2 3 (望ましい実施例 としては凹レンズ)を備えている。これ等の楕円鏡 3 2 0及び前方楕円鏡 3 2 1は過熱を防ぐために冷却器 8 1 0, 8 1 0を備えている。 さらに、 加熱ランプ 3 1 0を冷却するためにランプ冷却手段 8 2 0を供えること が可能である。 このランプ冷却手段 8 2 0は、 詳細を説明しないが、 外 部より冷却用の空気を供給できる構成とすることが望ましい。 これによ
つて、 加熱ランプ 3 1 0の所望出力に応じて冷却空気の流量を変化させ て、 ランプ温度を外から調節することにより、 ランプからの光量の応答 性(ランプ光量を制御するために、ランプに供給する電源電力を変化させ る際に、それに対するランプ光量の追随性)を上げることができる。また、 この高い応答性を利用して、 減光時にランプを強制的に急速冷却させて 減光すると、 ランプ光量を急速に立ち下げることもできる。 光源から前 方に照射された光は前述の構成を備えた集光口ッ ド 3 2 4に照射される が、 その中間部に機械式のシャッター機構 3 2 5を備えることができる。 このシャッター機構 3 2 5は、 輸送される光路を完全に遮断するもので あるが、 ランプの増光時にシャッターを閉じることはシャッターの熱負 荷があまりにも大きいので、 上述の手法でランプ光量を急速に立ち下げ てからシャッターを閉じるようにすると好ましい。 Specifically, FIG. 17 shows an example using this truncated conical mouthpiece. Since the light source portion is substantially the same as that of FIG. 16, no particular explanation will be given, but the same parts are given the same attached numerals. An opening 322 for extracting light is formed in the central axis of the forward reflecting mirror 321, and preferably, an optical lens means 323 for reducing NA is formed in the opening 322 (preferred embodiment as a concave lens). These elliptical mirrors 320 and forward elliptical mirror 321 are provided with coolers 810, 810 to prevent overheating. Furthermore, it is possible to provide lamp cooling means 820 for cooling the heating lamps 310 . Although the details of the lamp cooling means 820 will not be described, it is desirable that the lamp cooling means 820 be configured so that cooling air can be supplied from the outside. by this Therefore, by changing the flow rate of the cooling air according to the desired output of the heating lamp 310 and adjusting the lamp temperature from the outside, the responsiveness of the light amount from the lamp (to control the lamp light amount, When the supplied power is changed, it is possible to improve the followability of the lamp light amount to it. In addition, by utilizing this high responsiveness, it is possible to rapidly decrease the light intensity of the lamp by forcibly cooling the lamp rapidly during dimming. The light emitted forward from the light source is applied to the condensing aperture pad 324 having the above-described structure, and a mechanical shutter mechanism 325 can be provided in the middle thereof. This shutter mechanism 325 completely shuts off the transported light path, but closing the shutter when the lamp is bright increases the heat load on the shutter. It is preferable to close the shutter after falling to .
メカニカルな光シャッタ一を用いた場合に、 機械摺動部から発生した 塵埃により光入射フアイバ端面が熱損傷する可能性も考え、 フアイバ寿 命の延長も考えて、 低発塵な液晶(L C )電位制御シャッター(図示せず) を用いることもできる。 このように液晶電位制御シャッターを用いるこ とによって、 低発塵であると共にメカニカルシャッターよりも可変範囲 が広く、 応答速度が速く、 コンパク ト性にも優れているものが提供でき る。 L C素子の構造と動作原理については、 よく知られていることであ るが、 以下、 簡単に説明する。 L C素子は透明導電膜をコーティ ングし たガラスの間に屈折率異方性を有した L C及び高分子を挟持したもので あるが、 L C層が無電荷状態では、 L C分子が復屈折性を示し、 高分子 と L Cの屈折率に差異が生じるため光は散乱する。 一方、 L C層に電界 が印可されると、 分子配光が電界方向に配列し、 高分子と屈折率が一致 するため光は直進(透過)する。 よって、 無電荷状態では L C素子による 乱反射により、 ファイバに入射される光が荷電時の 3 %以下となり、 L
C素子はシャッターの役割を果たす。 但し、 L C分子の耐久性 ·耐熱性 も考え、 シャッター閉時にはランプ出力を限りなく小さ くする必要があ る。 このようなシャッター機能を用いることにより、 ファイバ端面の熱 損傷を防ぐことが可能である。 Considering the possibility of thermal damage to the end face of the light incident fiber due to dust generated from mechanical sliding parts when a mechanical optical shutter is used, considering the extension of the fiber life, we developed a low-dust liquid crystal (LC). A voltage controlled shutter (not shown) can also be used. By using the liquid crystal potential control shutter in this way, it is possible to provide a shutter that generates less dust, has a wider variable range than a mechanical shutter, has a high response speed, and is excellent in compactness. The structure and operating principle of the LC element are well known, but will be briefly explained below. The LC element is made by sandwiching LC with refractive index anisotropy and polymer between glass coated with a transparent conductive film. light is scattered due to the difference in refractive index between the polymer and the LC. On the other hand, when an electric field is applied to the LC layer, the molecular light distribution is aligned in the direction of the electric field, and the refractive index matches that of the polymer, so the light travels straight (transmits). Therefore, in the uncharged state, the light incident on the fiber is less than 3% of the charged light due to irregular reflection by the LC element, and L The C element plays the role of a shutter. However, considering the durability and heat resistance of LC molecules, it is necessary to reduce the lamp output as much as possible when the shutter is closed. By using such a shutter function, it is possible to prevent thermal damage to the fiber end face.
集光口ッ ド 3 2 4は外周を冷却器 8 3 0により冷却されている。 集光 ロッ ド 3 2 4により、 効率的に集光された光は光フアイバ 1 3 0に入射 される。 The condensing aperture pad 324 is cooled by a cooler 830 on its outer circumference. The light efficiently condensed by the condensing rod 324 enters the optical fiber 130 .
第 1 7図の実施例では、 加熱ランプは 5 7 5 Wのメタルハラィ ドラン プを用い、 N Aが 0 . 5 3でコアの直径が 0 1 . 4のファイバ 1 9本を約 0 7の円形に束ねた端に集光させた。 この時、 メタルハラィ ドランプの 発光時、電極間 7 mmの放電では輝度の高い 2点間の距離は約 5 . 2 mmと なり、 本発明で用いた楕円鏡でこの光を結像させると、 結像した光量の 約 6割が外径 0 1 5、内径 0 8 (リ ング幅は 3 . 5 nun)のリ ングに収まる。 一方、 ø 7の円上には約 6 %しか集光しない。 そこで、 0 7のファイバ 端と楕円の焦点の間に、 上記円錐状口ッ ドを挿入することで、 集光効率 を約 1 0倍向上させることができた。 In the embodiment of FIG. 17, the heating lamp is a 575 W metal halide lamp, and 19 fibers with an NA of 0.53 and a core diameter of 0.14 are cut into a circle of about 0.7 mm. The light was focused on the bundled end. At this time, when the metal halide lamp emits light, the distance between the two points with the highest luminance is about 5.2 mm in the case of the discharge between the electrodes of 7 mm. About 60% of the imaged light quantity is contained in a ring with an outer diameter of 0.15 mm and an inner diameter of 0.8 mm (ring width is 3.5 nun). On the other hand, only about 6% of the light is collected on a circle of ø7. Therefore, by inserting the above-mentioned conical mouth pad between the end of the 07 fiber and the focal point of the ellipse, we were able to improve the light collection efficiency by about 10 times.
さらに、 図示しないが、 上記の円錐状ロッ ドを揷入する方法とは別の 方法で集光効率を向上させることも可能である。 即ち、 集光した光の光 量は円の中心ではなく円周上に高く分布するため、 通常フアイバを円形 に束ねる代わりに光量密度の高い円周上にフアイバ端を配置することに より達成可能である。 Furthermore, although not shown, it is also possible to improve the light collection efficiency by a method other than the method of inserting the conical rod described above. In other words, the light intensity of the condensed light is not distributed in the center of the circle, but rather on the circumference of the circle. is.
具体的には、 1 9本のファイバを約 0 7の円形状には束ねずに、 結像 レた光の分布が最も高い ø 1 1 . 5の円周上に並べることで、円形状に束 ねるよりも集光効率を向上させ.ることができる。 ここで、 光を受ける端 面の面積は変化していないため、 ø 7の円内に照射された平均光量に対 する φ 1 1 . 5の円周上に照射された光量の比である約 3倍の集光効率
を向上させることができた。 Specifically, instead of bundling the 19 fibers into a circular shape of about 07, they are arranged on a circle of ø11.5 where the distribution of the imaged light is the highest, resulting in a circular shape. The light collection efficiency can be improved more than bundling. Here, since the area of the end surface that receives the light does not change, the ratio of the light intensity irradiated on the circumference of φ11.5 to the average light intensity irradiated in the circle of ø7 is approximately 3x more light collection efficiency was able to improve
2 .光ファイバ内を輸送される光の損失を如何にして少なくするか 2. How to reduce the loss of light transported in the optical fiber
次に、 本発明において加熱光源からの放射光を光フアイバ端面に入射 する場合、 如何に入射時及び輸送時の損失を最小限に抑えるかというこ とについて以下に説明する。 ここで、 説明のために第 5図( a )の光ファ ィバ端面付近の拡大図を用いる。 Next, in the present invention, when the radiant light from the heating light source is incident on the end surface of the optical fiber, how to minimize the loss at the time of incidence and during transportation will be explained below. Here, an enlarged view near the end face of the optical fiber in FIG. 5(a) is used for explanation.
光ファイバ内を輸送される光の損失を少なくするために考えるときは、 以下のような事項について検討する必要がある。 特に、 高密度な光を光 ファイバを用いて輸送する場合、 輸送中の損失量が、 ファイバを破壊す るほどの熱を発する可能性がある。 よつて光が光フアイバ中を透過する ことにより生ずる損失を充分考慮する必要がある。 以下、 入射角 0の光 の損失を 1 0 %程度に抑える為の光フアイバの性質と入射角度の満たす べき関係を求める。 When considering how to reduce the loss of light transported in an optical fiber, the following items need to be considered. In particular, when high-density light is transported using optical fibers, the amount of loss during transport may generate enough heat to destroy the fibers. Therefore, it is necessary to fully consider the loss caused by light passing through the optical fiber. In the following, we will find the relationship that should be satisfied between the properties of the optical fiber and the incident angle in order to suppress the loss of light with an incident angle of 0 to about 10%.
ファイバ軸を光線が通過する場合、 ファイバ透過による入射角 0の光 の損失原因として以下の 3つが挙げられる。 When a light ray passes through the fiber axis, there are three causes for the loss of light with an incident angle of 0 due to fiber transmission.
①フレネル反射損失 F ( 0 ) ① Fresnel reflection loss F ( 0 )
屈折率の異なる物質間の境界面で生ずる反射による損失で F ( 0 )とす o The loss due to reflection occurring at the interface between substances with different refractive indices is F (0) o
②芯材の吸収による損失 P ( 0 ) (2) Loss due to core material absorption P ( 0 )
ファイバ芯材の吸収による損失で P ( 0 )とし、 次式( 1 . 1 ) により表 わされる。
a:吸光係数 The loss due to absorption by the fiber core material is P(0) and is expressed by the following equation (1.1). a: extinction coefficient
n0:光ファイバコア部の屈折率 n 0 : Refractive index of optical fiber core
θ。 : sin6 = w。sin8。を た"^角 θ. : sin6 = w. sin8. "^ corner
③芯材と被覆材との間での反射損失 (3) Reflection loss between core material and covering material
ファイバ芯材と被覆材との間での反射損失で R ( 0 )とし、 次式( 1. 2 ) により表わされる。 The reflection loss between the fiber core material and the covering material is defined as R(0) and is expressed by the following equation (1.2).
R(Q) = 1-(1-A)K(Q) ( 1. 2 )R(Q) = 1-(1-A) K(Q) ( 1. 2 )
A: 1回の反射による反射損失比率 A: Reflection loss ratio for one reflection
Κ(θ) = - Χ ίΒΠθ0:全反射回数 Κ(θ) = - Χ ίBΠθ 0 : Number of total reflections
d d
F ( 0 ), Ρ (θ ), R(0 )はそれぞれ損失率を表わす。 以上 3つによる 光の損失を考慮して、入射角 Θの光透過率 T (0 )を求めると、式( 1. 3 ) で表せる。 F ( 0 ), Ρ (θ ), and R(0 ) represent loss rates, respectively. Considering the loss of light due to the above three factors, the light transmittance T(0) at the incident angle Θ can be expressed by Equation (1.3).
Γ(θ ) = (1 - (0 ))2 (1 - A)K^ exp (――) Π .3 ) Γ(θ ) = (1 - (0 )) 2 (1 - A) K ^ exp (――) Π . 3 )
cos6。 cos6.
ここで、入射角 Θの光の損失を 1 0 0 dBZkm程度に抑える為の 、 L、 d、 Θ Aの満たすべき関係を求める為、 上記 3つから生ずる損失量の 許容できる範囲をそれぞれで案分を定めて以下の検討を行った。 ここで、 αは吸光係数、 Lはファイバ長さ、 dはコア外形、 0は投入光の入射角、 Aは 1回の反射による反射損失率である。 Here, in order to find the relationship that should be satisfied by , L, d, and ΘA in order to suppress the loss of the light of the incident angle Θ to about 100 dBZkm, we propose the permissible range of the amount of loss caused by the above three respectively. We set aside a few minutes and conducted the following examinations. where α is the extinction coefficient, L is the fiber length, d is the core profile, 0 is the angle of incidence of the input light, and A is the reflection loss rate for one reflection.
①フレネル反射損失については、 (1) For Fresnel reflection loss,
F (^ )≤ 0. 0 1 (フレネル反射損失 1 %以下) の条件を満たすことが 必要である。 It is necessary to satisfy the condition of F (^ ) ≤ 0. 0 1 (Fresnel reflection loss 1% or less).
②芯材の咴収については、 (2) Regarding collection of the core material,
Ρ (θ )≤ 0. 0 1 (芯材の吸収による損失 1 %以下) を満たすには、 、 Lは式( 1. 4 ) なる関係を満たすことが必要である(但し η 0≤ 2 とす
る) 。 In order to satisfy Ρ (θ ) ≤ 0. 0 1 (loss due to absorption by the core material is 1% or less), , L must satisfy the relationship of formula (1.4) (however, η 0 ≤ 2 and vinegar ).
oL =≤ 0.005 ( 1. 4 )oL = ≤ 0.005 (1.4)
③芯材と被覆材との間での反射損失については、 (3) Reflection loss between the core material and the covering material is
R(5 ) ≤ 0. 0 1 (反射損失 2 %以下) を満たすには、 L d、 Sは以 下の式( 1. 5 ) なる関係を満たすことが必要である。 In order to satisfy R(5) ≤ 0.01 (reflection loss of 2% or less), L d and S must satisfy the following formula (1.5).
0.1 0.1
— X tan6 ( 1. 5 ) d " A — Xtan6(1.5)d"A
'以上の検討結果を用い、 あるファイバにおける光の損失を 1 0 %程度 に抑える為の入射角の制限範囲を求めると、 = 1 0 E - 5 [cm] 、 L = 5 [m] 、 d = 1 [ram] , A = 0. 0 0 0 0 1、 n 0 = 1. 4 5のファイ ノく を用いた場合には、 入射角 0の制限範囲として 0≤ 4 0 ° となり、 つま り、 開口角 8 0 ° 以下の条件が導かれる。 これ以上の開口角を有した収 束光を入射させると、 高工ネルギの光を輸送する媒体としては極めて厳 しくな 。 'Using the results of the above study, when the limiting range of the incident angle for suppressing the optical loss in a certain fiber to about 10% is obtained, = 10 E - 5 [cm], L = 5 [m], d = 1 [ram], A = 0.00001, and n0 = 1.45, the limiting range for the zero incident angle is 0 ≤ 40°, that is, , leading to the condition that the aperture angle is 80° or less. When convergent light with an aperture angle larger than this is incident, it becomes extremely difficult as a medium for transporting light with high energy.
第 6図は、 具体的に本発明で用いた光ファイバの吸収波長特性、 すな わち各波長における光輸送損失の特性を示した図であり、 縦軸に吸収係 数、 横軸に波長を表しているが、 約 0. 6 ^ mから 1. 0 mの間で比較 的損失が少なく光輸送が出来ることを示している。 FIG. 6 is a diagram specifically showing the absorption wavelength characteristics of the optical fiber used in the present invention, that is, the characteristics of light transport loss at each wavelength. However, it shows that light transport is possible with relatively little loss between about 0.6^m and 1.0m.
従来行われてきた光フアイバによる光輸送、 例えば光通信のごとき光 輸送では、 光量密度が低いため光ファイバ内での損失は単にシグナル強 度の低下そのものが問題にざれてきたが、 本発明のように極めて光量密 度が高い場合(具体的な定量的な説明は後述する)には、損失に伴う光フ アイバ自身の温度上昇及び温度上昇に伴う光の透過率の減少が大きな問 題となる。 上記したように、 光ファイバでの損失が大きいと、 光フアイ バの熱破壊といった破局的な結末、 さらには、 被覆材質の発火による火 災といった深刻な事態が発生する事もあり得る。
ここで、 この破局的な現象が発生する可能性の分岐点を考察すると、 第 6図に示したように光フアイバ内の温度が約 2 0 0 °Cになると室温と 比較して約 0 . 4 d Bの損失の増大となり、この温度以下では温度上昇し ても自然冷却により 2 0 0 °C以下での平衡温度に落ちつく力 2 0 0 °C 以上では温度上昇に伴う損失の増大により益々温度が上昇する。 従って、 光ファイバ内の温度を 2 0 0 °C以下に抑えることは極めて重要な条件と なる。 In the conventional optical transport using optical fibers, for example, optical transport such as optical communication, since the light quantity density is low, the loss in the optical fiber is simply a decrease in the signal intensity itself, which has been a problem. When the light intensity density is extremely high (a detailed quantitative explanation will be given later), the temperature rise of the optical fiber itself due to loss and the decrease in light transmittance due to the temperature rise are major problems. Become. As described above, if the loss in the optical fiber is large, it may lead to a catastrophic result such as thermal destruction of the optical fiber, or even a serious situation such as a fire due to ignition of the coating material. Here, considering the branch point of the possibility of this catastrophic phenomenon occurring, as shown in FIG. The loss increases by 4 dB, and even if the temperature rises below this temperature, the power to settle down to the equilibrium temperature below 200 °C due to natural cooling. Temperature rises. Therefore, keeping the temperature in the optical fiber below 200°C is a very important condition.
さらに、 この分岐点となる光フアイバ内の温度を 2 0 0 °C以下に抑え ることは、後述する損失計算に基づき、光輸送損失を 1 0 0 dBZ kin以下 程度に抑えることに相当する。 また、 この条件を満たすための光フアイ バに投入する光エネルギのエネルギ密度は、 1 0 kW/ mm 2以下に抑える ことに相当する。 また、 この光エネルギ密度を 1 0 kW/ mm 2以下に抑え ることは、照射光の光量密度を 1 0 E 7ルーメ ン/ mm 2以下にすることに 相当する。 Furthermore, keeping the temperature in the optical fiber at the branching point below 200° C. corresponds to suppressing the optical transport loss to around 100 dBZkin or below based on the loss calculation described later. Also, the energy density of the light energy injected into the optical fiber to satisfy this condition is equivalent to suppressing it to 10 kW/mm 2 or less. Further, suppressing the light energy density to 10 kW/mm 2 or less corresponds to suppressing the light amount density of the irradiation light to 10E7 lumen/mm 2 or less.
上記で求めた光フアイバ中における損失を抑えるための条件として、 制限入射角よりも浅い角度で入射する事以外に、 至極当然ではあるが、 入射時の損失を最小限にするためには、 上記 1で述べたように、 入射す る放射光の集光断面は必ず光フアイバ端面のコア径以内に入れる事が必 須である。 As a condition for suppressing the loss in the optical fiber obtained above, in addition to incident at an angle shallower than the limit incident angle, it is quite natural, but in order to minimize the loss at the time of incidence, the above As mentioned in 1, it is essential that the incident synchrotron radiation cross-section be within the core diameter of the end face of the optical fiber.
3 .光フアイバから出射される光を基板に対して如何にして照射するか ファイバ間の距離とファイバ端面とウェハ間の関係については、 ゥェ ハの温度分布を考慮すると、 光の放射角度が小さ くなる程、 温度均一性 を取るためには、 フアイバ間距離を小さ くするか、 フアイバと被放射物 との距離を大きくする必要がある。 3. How to irradiate the substrate with the light emitted from the optical fiber Regarding the distance between the fibers and the relationship between the fiber end face and the wafer, considering the temperature distribution of the wafer, the light emission angle is As the distance becomes smaller, it is necessary to reduce the inter-fiber distance or increase the distance between the fiber and the radiated object in order to obtain temperature uniformity.
ここでは、 本発明における加熱工程を含む処理装置部における基板へ
の光照射方法について説明する。 先ず、 ウェハを十分な温度分布均一性 を以て加熱するためには、 光放射部分における複数のフアイバの配置、 すなわちフアイバ間の距離及びフアイバ端面とウェハ間の距離をどのよ うに設定するのが良いかについて以下に述べる。 Here, to the substrate in the processing equipment section including the heating process in the present invention will be described. First, in order to heat the wafer with sufficient uniformity of temperature distribution, how should the arrangement of the plurality of fibers in the light emitting portion, that is, the distance between the fibers and the distance between the end face of the fiber and the wafer be set? is described below.
第 7図(a ) は光スポッ ト中心(光ファイバ間) の距離 D及び光源と基 板との距離 hを変化させた時に基板上の照度分布がどのようになるかを 検討する際の説明図である。 Fig. 7 (a) is an explanation for examining how the illuminance distribution on the substrate changes when the distance D between the light spot centers (between the optical fibers) and the distance h between the light source and the substrate are changed. It is a diagram.
以下の手法で、 照度分布のバラツキをある範囲内に収めるための光源 間(光フアイバ間)距離 D ·光源と基盤との距離 hの関係を求める。 まず、 1つの光源から基板(被放射物) への放射照度 E [W/m2 ] を求める。 ここで、 円板面光源の径 dが光源と基板との距離 hより十分小さい時 は、 面光源を点光源とみなし得る。 すると、 点光源から距離 hにある基 板上微少面積 d S方向への放射強度を L 7Γ ( d 2 )2とし、 d Sの法線 方向が光の方向に対してなす角を 0 とすると、 d Sの放射照度 Eは、 次 式(2. 1 ) で表わされる。
Using the following method, the relationship between the distance D between the light sources (between the optical fibers) and the distance h between the light source and the substrate is obtained to keep the variation in the illuminance distribution within a certain range. First, find the irradiance E [W/m 2 ] from one light source to the substrate (irradiated object). Here, when the diameter d of the disc surface light source is sufficiently smaller than the distance h between the light source and the substrate, the surface light source can be regarded as a point light source. Then, if the radiation intensity in the dS direction of a small area on the substrate at a distance h from the point light source is L7Γ(d2) 2 , and the angle that the normal direction of dS makes with the light direction is 0, then , dS, the irradiance E is expressed by the following equation (2.1).
今、 0方向の光源からの放射強度を L 7T (d Z 2 )2 x T (0 )とする。 但し T(0 )は光源として用いる光ファイバ構造により決定される関数で あり、 Θ方向の入射光に対する透過率を表わす(式 1. 3 )。 このような光 源に対して基板が距離 hで平行に位置する場合、 d Sにおける光源から 0方向の放射照度 E (0 )は式(2. 2 )で表わせる。 Now let the radiant intensity from the light source in direction 0 be L 7T (d Z 2 ) 2 x T (0 ). However, T(0) is a function determined by the structure of the optical fiber used as the light source, and represents the transmittance for incident light in the Θ direction (equation 1.3). When the substrate is positioned parallel to such a light source at a distance h, the irradiance E(0) in the direction 0 from the light source at dS is given by equation (2.2).
j、, cos3eリ j, , cos 3 e
£(θ) = Ιπ(一-))^ Xχ——-τ; -χΓ(θ) (2. 2 ) £(θ) = Ι π (1-))^ Xχ——- τ ; -χΓ(θ) (2. 2 )
2ノ h' 2 h'
ここで具体的に、 α = 1 0 E - 5 [cm] ヽ L = 5 [m] d = 1 [ram] 、 A == 0. 0 0 0 0 1の光ファィバを甩いた場合を考える この時、入射角
0方向の光の損失を 1 0 0 dBZ km 程度にする為の入射角 Θの条件は S ≤ 4 0 ° (開口角 8 0 ° )である。 Here, specifically, consider the case where an optical fiber with α = 10 E - 5 [cm] ヽ L = 5 [m] d = 1 [ram] and A == 0.00001 is fed. time, angle of incidence The condition for the incident angle Θ to make the loss of light in the 0 direction about 100 dBZ km is S ≤ 40° (aperture angle 80°).
さて、 上記の 2つの光ファイバが距離 Dの間隔で存在する場合、 基板 上の一辺の長さが Dである正方形(ただしこの正方形の向かい合う辺の 中点の垂線上に光源があるものとする)における照度分布のバラツキ考 慮する。 正方形上のある点の照度は、 2つのファイバのみから照射され ると仮定した場合、式(2 . 3 )を用いて 2つの光源からの照度の足し合わ せで求めることができる。 今、 基板上の熱伝導も考慮できるよう正方形 を 2 5のエリアに分け、 1つのエリァにおける照度の平均値をそれぞれ 求めた。 これは、 1つのエリア中の照度のばらつきを熱伝導により平滑 化したことを意味する。 Now, if the above two optical fibers exist at a distance of D, a square with a side length of D on the substrate (provided that the light source is on the perpendicular to the midpoint of the opposite sides of this square) ), the variation in the illuminance distribution is taken into consideration. The illuminance of a point on the square can be obtained by adding the illuminance from the two light sources using Equation (2.3), assuming illumination from only two fibers. Now, the square is divided into 25 areas so that the heat conduction on the substrate can also be considered, and the average value of the illuminance in each area is obtained. This means that the unevenness of illuminance in one area is smoothed out by heat conduction.
ここで照度分布のバラツキは 2 5のエリァの照度の最大値と最小値の 差を正方形全体における照度の平均値で割ったもので評価した。 照度の バラツキと光源間距離 D ·光源と基盤との距離 h との関係を評価したも のを第 7図(b )に示す。 Here, the variation in the illuminance distribution was evaluated by dividing the difference between the maximum and minimum illuminance values of the 25 areas by the average illuminance value for the entire square. Fig. 7 (b) shows the relationship between the variation in illuminance and the distance D between the light sources and the distance h between the light source and the substrate.
基板の温度分布は、 基板熱処理後の膜厚等の規格条件を満たすために 土 5 %以内が望ましい。 よって照度分布のバラツキは ± 1 0 %以内に抑 える必要がある。 上記のファイバを用いた場合、 光源間(光ファイバ間) 距離 D *光源と基板との距離 hの関係として第 7図(b ) より h Z D≥ l 1を満たす必要があると言える。 It is desirable that the temperature distribution of the substrate be within ±5% in order to meet the standard conditions such as film thickness after substrate heat treatment. Therefore, the variation in illuminance distribution must be suppressed within ±10%. When the above fiber is used, it can be said that it is necessary to satisfy h Z D ≥ l 1 from Fig. 7(b) as the relationship of distance D between light sources (between optical fibers) * distance h between light source and substrate.
上記加熱される基板がォリフラを除く部分がほぼ円形である場合には、 基板外周部に配置する光フアイバの数で形成される基板外周に接する正 多角形の内側に光ファイバからの光スポッ ト中心を配列することにより、 加熱される基板の温度分布均一性を低下させずに加熱効率を最大にして 基板を加熱することができる。 If the portion of the substrate to be heated is substantially circular except for the forifla, the light spot from the optical fiber is placed inside the regular polygon that is in contact with the outer periphery of the substrate and is formed by the number of optical fibers arranged on the outer periphery of the substrate. By aligning the center, the substrate can be heated with maximum heating efficiency without reducing the uniformity of the temperature distribution of the heated substrate.
また、 基板外周部に配置する光フアイバからの光スポッ トの配置密度
を基板中央部部に配置する光フアイバからの光スポッ 卜の配置密度より も高くすることにより、 基板の温度分布均一性を向上させる事ができる。 以上のように、 加熱される基板がォリフラを除く部分がほぼ円形であ る場合には、 光フアイバから基板上に照射される光のスポッ 卜の中心が、 基板外周円に外接する多角形より内部に位置するように光ファイバを配 置し、 加熱される基板の温度分布均一性を低下させずに加熱効率を最大 にして基板を加熱する。 例えば、 外周部に配置する光ファイバの数を 6 とすると、基板外周円に外接する 6角形(正 6角形が望ましい)の頂点に 6本の光フアイバ中心を配置し、 基板中心部分に 1本の光ファイバを配 置する。 In addition, the arrangement density of light spots from the optical fiber arranged on the outer periphery of the substrate is higher than the arrangement density of light spots from the optical fiber arranged in the central portion of the substrate, the temperature distribution uniformity of the substrate can be improved. As described above, when the substrate to be heated has a substantially circular shape except for the fall flat, the center of the spot of the light emitted from the optical fiber onto the substrate is located on the polygon circumscribing the outer circumference of the substrate. The optical fiber is arranged so as to be located inside, and the substrate is heated by maximizing the heating efficiency without reducing the temperature distribution uniformity of the heated substrate. For example, if the number of optical fibers to be arranged on the outer circumference is 6, 6 optical fibers are arranged at the vertexes of a hexagon (preferably a regular hexagon) that circumscribes the outer circumference of the board, and 1 is placed at the center of the board. of optical fibers.
また、 基板外周部に配置するを基板中央部部に配置する光フアイバか らの光スポッ 卜の光量密度よりも高くすることにより、 基板の温度分布 均一性を向上させる事ができる。 そのためには、 光ファイバの分布密度 を外周ほど密に配置すること、 または 1本の光フアイバからの光スポッ 卜の光量を外周ほど大きくなるように光源を選ぶこともできる。 Further, by making the light quantity density of the light spot from the optical fiber arranged in the central portion of the substrate higher than that arranged in the peripheral portion of the substrate, the uniformity of the temperature distribution of the substrate can be improved. For that purpose, the distribution density of the optical fibers can be arranged closer to the outer circumference, or the light source can be selected so that the light amount of the light spot from one optical fiber increases toward the outer circumference.
第 8図は、 本発明の加熱される棊板に対する光フアイバの配列方法を 示す図であり、 基板外周を n = 3に分割した場合の説明図である。 第 9 図は、 本発明の加熱される基板に対する光フアイバの配列方法を示す図 であり、 基板外周を n = 6に分割した場合の説明図である。 第 1 0図は、 本発明の加熱される基板に対する光フアイバの配列方法を示す図であり、 基板外周を n = 1 2に分割した場合の説明図である。 FIG. 8 is a diagram showing a method of arranging optical fibers with respect to a heated board according to the present invention, and is an explanatory diagram when the circumference of the substrate is divided into n=3. FIG. 9 is a diagram showing a method of arranging optical fibers on a substrate to be heated according to the present invention, and is an explanatory diagram when the outer periphery of the substrate is divided into n=6. FIG. 10 is a diagram showing a method of arranging optical fibers on a substrate to be heated according to the present invention, and is an explanatory diagram when the outer periphery of the substrate is divided into n=12.
輸送された光エネルギをウェハの加熱に最大効率で活用するためには、 光フアイバから放射された光スポッ トを全てウェハ内に収めるべきであ ると考えられるが、 これではウェハ中心の温度が最高温度となり、 ゥェ ハの温度分布の均一性が著しぐ損なわれる。 さらに、 実際のウェハでは ウェハからの熱の放出は周辺部が最も大きいため、 ウェハ外周部に与え
る熱量が最大となるようにして初めてウェハ温度分布の均一性が向上で きる。 この時、 ウェハ外周部の全ての点において、 これよりもウェハ中 心に向かつて内側の点より も与える熱量を多くするためには、 光フアイ バの数で形成されるウェハ外周に接する正多角形の頂点に光フアイバか らの光スポッ ト中心を配列することが好適である。 ただし、 それ以上光 フアイバから照射された光スポッ 卜の中心をウェハ外周部から離すと、 加熱効率を下げることになり、 従って、 上記したように、 正多角形の頂 点に光ファイバからの光スポッ 卜中心を配列することにより、 ウェハの 温度分布均一性と加熱効率の両方の観点で満足することが可能となる。 しかし、 実際のウェハ上に形成されるデバイスは、 完全にウェハ外周部 最端まで使用ないこともあり、 光スポッ ト中心の位置は上記した点より もウェハ中心に向かって内側の位置となっても差し支えないことがある。 ここで、 第 8図はウェハ外周部を光ファイバを 3本用いて 3点の光ス ポッ ト(n = 3 )で分割照射加熱した例を示したが、実際に直接ウェハ上 に照射される光量は放射された光エネルギの 2割程度である。 第 9図及 び第 1 0図には夫々 nを 6及び 1 2 とした場合の正 n角形の頂点に光ス ポッ トを配置した場合の例を示したが、 nが増えるに従い加熱効率が大 幅に向上する。 そこでウェハ外に放射された光も反射させて再度ウェハ に放射されるべく、 第 4図に示したような反射鏡 4 0 8を設置し加熱効 率を更に向上させることができる。 In order to make the most efficient use of the transported light energy for heating the wafer, it is thought that the light spot emitted from the optical fiber should all be contained within the wafer. The maximum temperature is reached, and the uniformity of the temperature distribution of the wafer is significantly impaired. Furthermore, in an actual wafer, since the heat emitted from the wafer is the largest at the periphery, The uniformity of the wafer temperature distribution can be improved only by maximizing the amount of heat applied. At this time, in order to give more heat to all points on the outer periphery of the wafer than to the points on the inner side toward the center of the wafer, a positive multiplicity of points in contact with the outer periphery of the wafer formed by the number of optical fibers is required. It is preferred to align the light spot centers from the optical fibers at the vertices of the square. However, if the center of the light spot irradiated from the optical fiber is moved further away from the outer periphery of the wafer, the heating efficiency will be lowered. By arranging the spot centers, it is possible to satisfy both the uniformity of the wafer temperature distribution and the heating efficiency. However, since devices formed on an actual wafer may not be used completely up to the outermost edge of the wafer, the position of the center of the light spot is positioned inside the above point toward the center of the wafer. There are some things that are acceptable. Here, Fig. 8 shows an example in which the outer circumference of the wafer is heated by split irradiation with three light spots (n = 3) using three optical fibers. The amount of light is about 20% of the emitted light energy. Figures 9 and 10 show examples in which light spots are arranged at the vertices of a regular n-sided polygon where n is 6 and 12, respectively. Significant improvement. Therefore, the heating efficiency can be further improved by installing a reflecting mirror 408 as shown in FIG.
また、 上記でも述べた様に、 ウェハの温度分布を均一化するためには ウェハ外周部の方がウェハ中心部よりも多くの熱量を与えるために、 第 4図の本発明の実施例では、 ガスを導入し、 基板外周部に配置する光フ アイバからの光スポッ 卜の光量密度を基板中央部部に配置する光ファィ バからの光スポッ トの光量密度よりも高く した例を示している。 また、 同様の効果は、 基板外周部に配置する光ファイバからの光スポッ 卜の配
置密度を基板中央部部に配置する光フアイバからの光スポッ 卜の配置密 度よりも高くすることによつても得ることが出来る。 Also, as described above, in order to make the temperature distribution of the wafer uniform, more heat is applied to the outer peripheral portion of the wafer than to the central portion of the wafer. It shows an example in which a gas is introduced and the light intensity density of the light spot from the optical fiber arranged in the outer peripheral part of the substrate is made higher than the light intensity density of the light spot from the optical fiber arranged in the central part of the substrate. . A similar effect can also be obtained by distributing light spots from the optical fibers arranged on the outer periphery of the substrate. It can also be obtained by making the placement density higher than the placement density of the light spots from the optical fibers arranged in the central portion of the substrate.
尚、 本発明における実施例では、 基板状に照射された複数個の光スポ ッ トは、 隣接するスポッ ト同士では重なり合わないものを説明したが、 必ずしもこのような光スポッ 卜の配置でなければならない訳ではない。 必要なのは、 照射される光スポッ 卜から基板に与えられる熱量と、 基板 から放熱によって逃げる熱量と、 基板が保持されているチヤンバー内の 熱によつて基板に与えられる熱量との関連に於いて、 基板全体が均一に 加熱されることである。 このことからして、 図示はしないが、 複数の光 スポッ トを一部重ならせて照射することも可能である。 また、 スポッ ト の重なり具合を、 ウェハの外周部ほど多く し、 内周部は少なくするよう にスポッ トを配置することもできる。 これは、 前述したようにウェハの 外周ほど熱が逃げやすいためである。 4 .基板面の温度コン トロールを如何にするか In the embodiments of the present invention, adjacent spots of the plurality of light spots irradiated on the substrate are not overlapped with each other, but the arrangement of the light spots must be such. It doesn't have to be. What is necessary is the relationship between the amount of heat given to the substrate from the irradiated light spot, the amount of heat escaping from the substrate by heat dissipation, and the amount of heat given to the substrate by the heat in the chamber in which the substrate is held. The point is that the entire substrate is heated uniformly. For this reason, although not shown, it is also possible to irradiate a plurality of light spots partially overlapping each other. Also, the spots can be arranged so that the degree of overlapping of the spots is increased toward the outer periphery of the wafer and decreased at the inner periphery. This is because, as mentioned above, heat escapes more easily at the outer periphery of the wafer. 4. How to control the temperature of the board surface
前述したように、 バッチ式で半導体基板を加熱を伴った処理をするに は急速に加熱することも必要であるが、 処理を安定させるためにも基板 面の温度コン トロールが必要である。 As mentioned above, rapid heating is necessary for batch processing of semiconductor substrates, but temperature control of the substrate surface is also necessary to stabilize the processing.
これについては、 光源のエネルギを制御する方法と、 輸送路中で制御 する方法があるが、 ここではランプ光量をモニタして光源のエネルギを 制御する方法を説明する。 つまり、 ランプ光量をモニタして、 ランプ出 力を把握した上でランプ電源を制御し、 加熱基板の温度の均一安定化を 図るものである。 Regarding this, there are a method of controlling the energy of the light source and a method of controlling it in the transportation route, but here we will explain the method of controlling the energy of the light source by monitoring the lamp light amount. In other words, the lamp power supply is controlled after monitoring the lamp light intensity and grasping the lamp output, and the uniform stabilization of the temperature of the heating substrate is achieved.
この方式の実施例を第 1 8図に示す。 第 1 8図(a )には、 この制御方 法の全体構成図が示されており、 第 1 8図(b )には、 その場合のランプ 光量モニタ用ファイバを束ねられたファイバの間に配置した例を示して
いる。 光源部分は実質的に第 1 6図で示したものと同様であるので、 こ こで再度説明することはしない。 添付数字は第 1 7図と同じものを使用 している。 前方反射鏡 3 2 1の開口部 3 2 2から出射した光はファイバ — 1 3 0に照射される。 ノく ン ドル型ファイノく 1 3 0の内の 1本のフア イ バをランプ光量モニタ用 7 3 0 として用いる。 ランプ光量モニタ用ファ ィバ 7 3 0は、 光輸送用のファイバと端部を揃えて光源に向けられ、 照 射された光をパワーメータ 7 1 0に送る。 ノ ヮ一メータ 7 1 0において は照射光量をモニタする。 モニタ光量は制御コンピュータ 7 2 0に入力 され、 所望の光量とモニタ一した光量とを比較し、 その比較に基づいて ランプ光源電源 7 0 0をフィー ドバック制御する。 An embodiment of this system is shown in FIG. Fig. 18 (a) shows the overall configuration of this control method, and Fig. 18 (b) shows the lamp light amount monitoring fiber in that case between the bundled fibers. Show me an example of placing there is Since the light source portion is substantially the same as that shown in FIG. 16, it will not be described again here. The attached numbers are the same as those in Fig. 17. The light emitted from the opening 322 of the forward reflecting mirror 321 is directed to the fiber 130 . One of the noddle-type fins 130 is used as the lamp light intensity monitor 730. The lamp light intensity monitor fiber 730 is directed toward the light source with its end aligned with the light transport fiber, and sends the irradiated light to the power meter 710 . The noometer 710 monitors the amount of irradiation light. The monitor light quantity is input to the control computer 720, the desired light quantity is compared with the monitored light quantity, and the lamp light source power supply 700 is feedback-controlled based on the comparison.
このように、 ランプ光を入射させるバン ドル型ファィバの内の 1本の ファイバをランプ光量モニタ用として用いるためには、 光輸送のための ファイバの径よりも小さな径とする必要がある。 しかし、 ランプ出力が 大きく、 アーク長の長い光を入射させる場合、 低損失集光 ·輸送をする ためにはファイバ径を大きくする必要がある。 しかし、 ランプ光量モニ 夕用ファイバは、 相対光量を把握すれば良いので、 ファイバ径が小さ く ても良い。 従って、 加熱用光輸送バン ドル(フ ァ イバ径大)の非有効面積 部分を利用し、 モニタ用ファイバを組み込むことが可能である。 モニタ 用フアイバからの出射光はパワーメータで測定される。 測定結果よりラ ンプ入力条件を再考し、 ランプ出力を安定に保つことにより、 基板到達 光量を ± 5 %以内に抑えることができる。 In this way, in order to use one of the bundle-type fibers for injecting lamp light as a lamp light amount monitor, it is necessary to make the diameter smaller than the diameter of the fiber for light transport. However, when the lamp output is large and light with a long arc length is incident, it is necessary to increase the fiber diameter for low-loss light collection and transport. However, since the fiber for lamp light intensity monitor needs only to grasp the relative light intensity, the fiber diameter may be small. Therefore, it is possible to utilize the non-effective area portion of the heating optical transport bundle (large fiber diameter) and incorporate the monitoring fiber. The emitted light from the monitor fiber is measured with a power meter. By reconsidering the lamp input conditions based on the measurement results and keeping the lamp output stable, the amount of light reaching the substrate can be suppressed to within ±5%.
この技術は、 常诗の基板加熱温度の制御にも利用できるが、 ランプの 経年変化によるランプ光量の漸減にも対応できる。 ランプ光量は連続点 灯の場合、 点灯時間と共に減衰していく。 例えば、 メタルハラィ ドラン プの場合、 点灯時間 7 5 0時間で初期の 7 0 %光量になる。 よって、 ォ —プンループで基板加熱温度制御を行つた場合は、 ランプ光量の経時変
化は無視できないものとなる。 従って、 以上のように、 ランプ光量の経 時変化をモニタし、 ランプ出力の制御を行うことが有効になるものであ o 5 .光源から加熱ステージまでの光搬送経路を如何にして施設するか This technology can be used not only for controlling substrate heating temperature, but also for the gradual reduction of lamp light intensity due to aging of the lamp. In the case of continuous lighting, the lamp light quantity attenuates with the lighting time. For example, in the case of a metal halide lamp, after 750 hours of lighting, the amount of light becomes 70% of the initial amount. Therefore, if the substrate heating temperature is controlled by the open loop, the change in the lamp light intensity over time transformation cannot be ignored. Therefore, as described above, it is effective to monitor the temporal change of the lamp light intensity and control the lamp output.
光源 3 0 0から加熱ステージまでの光輸送経路を如何に構成するかは、 光輸送の効率とプロセス全体の排熱処理の効率性を考え実現させなけれ ばならない。 従って、 加熱処理プロセスを含んだ処理装置 1 0 0から隔 離された光源 3 0 0から、 光を運搬する場合はなるべく直線距離による 輸送ができるようにしなければならない(第 1図) 。 さらに、 光ファイバ 1 3 0を曲げることによる熱損失を少なくするために、 フアイバの曲げ 回数も少なく しなければならない。 このようなことを総合的に考慮する と、 光源 3 0 0はク リーンルーム 2 0 0の床下領域 2 4 0 と同じ高さの レベルに配置し、 光ファイバ 1 3 0は直線的に床下領域 2 4 0内に施設 し、 加熱処理プロセスを含んだ処理装置 1 0 0のほぼ直下の曲げ部 1 3 5において R = 5 0 c m程度以上の大きな曲率によって曲げてそのまま 加熱処理プロセスを含んだ処理装置 1 0 0に導くのが最適である。 How to configure the light transport path from the light source 300 to the heating stage must be realized in consideration of the efficiency of light transport and the efficiency of exhaust heat treatment in the entire process. Therefore, when transporting the light from the light source 300 separated from the processing equipment 100 including the heat treatment process, it must be possible to transport the light by a straight distance as much as possible (Fig. 1). Furthermore, in order to reduce the heat loss caused by bending the optical fiber 130, the number of bends of the fiber should also be reduced. Considering these things comprehensively, the light source 300 is arranged at the same level as the underfloor area 240 of the clean room 200, and the optical fiber 130 is arranged linearly in the underfloor area. Treatment equipment including heat treatment process installed in 240 Bent part 135 almost directly under 100 with a large curvature of about R = 50 cm or more and treated including heat treatment process Best to lead to device 1 0 0.
以上の実施例では、 半導体処理チャンバとそれに対する加熱ュニッ ト とは 1 : 1で配置された例を説明したが、 加熱源を処理チャンバから離 して配置することができるのであるから、 第 1 9図(a )で示すように一 つの加熱ュニッ 卜から複数の処理チヤ ンバに熱を供給することができる, また、 第 1 9図(b )において示すように、 光分配切り替え装置 1 9 0を 用いれば、 光輸送用の光フアイバのトータルの施設距離も短ぐて済むし、 加熱ュニッ 卜も複数配置(図示せず)して、 処理チャ ンバ対加熱ュニッ ト を n : nで構成し、 熱源としての加熱ュニッ 卜も選択的に使用するよう に構成できる。 このように、 半導体プロセス全体の熱処理時間をトータ
ルで考慮し、 効率よく光源ランプを使用することによって、 ランプ点滅 回数が減少しランプ寿命を延ばすことができる他、 ランプ本数も少なく することができる。 6 .光源から加熱ステージまでの光搬送経路での熱損失による発熱を如 何にして冷却するか In the above embodiments, the semiconductor processing chamber and the heating unit for it are arranged in a ratio of 1:1. As shown in Figure 9(a), heat can be supplied from one heating unit to a plurality of processing chambers. By using , the total facility distance of the optical fiber for light transport can be shortened, and a plurality of heating units (not shown) are arranged to configure the processing chamber to heating unit in an n:n ratio. , can also be configured to selectively use a heating unit as a heat source. In this way, the total heat treatment time for the entire semiconductor process is Efficient use of the light source lamps in consideration of the total number of lamps reduces the number of times the lamps flicker and extends the life of the lamps, as well as reducing the number of lamps. 6. How to cool heat generated due to heat loss in the light transport path from the light source to the heating stage
光源 3 0 0から加熱ステージまでの光搬送経路での熱損失による発熱 を如何に冷却するかも大きな課題となる。 これを解決するには、 冷却水 循環装置 8 0 0からの冷却水を施設したファイバも冷却するように配管 することができる(図示無し) 。 曲げ部 1 3 5は発熱が大きいので、特に 冷却をすることが好適である。 How to cool the heat generated by the heat loss in the light transport path from the light source 300 to the heating stage is also a big issue. To solve this, the cooling water from the cooling water circulator 800 can be piped to also cool the installed fibers (not shown). Since the bent portion 135 generates a large amount of heat, it is particularly preferable to cool it.
7 .どのような光フアイバを用いるか 7. What kind of optical fiber to use
次に、 加熱光源からの放射光を複数本の光フアイバを直列に接続して 輸送する方法について説明する。 第 1 1図は、 n本の光ファイバを直列 に接続したときの端面及び接続部の.断面拡大図を示す。 光の入射側から 基板への放射側に行くに従って、 すなわち光の流れの下流に行くに従つ て、 光ファイバのコア径は同じか大きくする。 もし、 小さく したり同じ 径であつても軸中心がずれた場合には、 接続部において入射側のファィ バが放射側のファイバに接しない面積分だけ損失となり、 接続部におい て多量の発熱が生ずる事になる。 これは、 熱容量の小さなコネクタ部分 で逸散する熱量が集中することになり、 光フアイバの発熱と同等の深刻 な事態が発生する。 8 .どのような光を加.熱源とするか Next, a method of transporting light emitted from a heating light source by connecting a plurality of optical fibers in series will be described. FIG. 11 shows an enlarged cross-sectional view of an end face and a connecting portion when n optical fibers are connected in series. The core diameter of the optical fiber is made the same or larger as it goes from the light incident side to the light emitting side to the substrate, that is, as it goes downstream in the light flow. If the fiber is made smaller or the center of the axis is shifted even if the diameter is the same, loss will be caused by the area where the fiber on the incident side does not touch the fiber on the emitting side at the spliced part, and a large amount of heat will be generated at the spliced part. will occur. This means that the amount of heat dissipated will be concentrated in the connector, which has a small heat capacity, and a serious situation equivalent to the heat generation of optical fibers will occur. 8. What kind of light should be used as a heat source?
第 1 2図は、 S i ウェハの吸収波長特性を示す図で、 縦軸に吸収係数-
横軸に波長を示したものである。 S i は半導体であるために、 バン ドギ ヤップに相当する約 1 . 2 より短波長側領域と、真性自由キヤ リア吸 収域に相当する約 1 . 2 mより長波長側の波長領域では入射光ェネル ギに対する挙動が全く異なる。すなわち、 1 . 2 mより短波長側では室 温からでも常に光が熱に変換されるが、 1 . 2 mより長波長側ではゥェ ハの温度によって吸収係数が変化し、 通常のプロセス温度では殆ど透過 するため、 C V D リアクタゃ装置周辺へ放熱するといった無駄なェネル ギとして放出される。従って、加熱光源としては 1 . 2 mより短波長に しか分布を持たない光源を使用することが望ましい。 Fig. 12 is a diagram showing the absorption wavelength characteristics of a Si wafer, where the vertical axis is the absorption coefficient - The horizontal axis indicates the wavelength. Since Si is a semiconductor, the incident wavelength is shorter than about 1.2 m, which corresponds to the bandgap, and longer than about 1.2 m, which corresponds to the intrinsic free carrier absorption region. The behavior with respect to light energy is completely different. That is, on the wavelength side shorter than 1.2 m, light is always converted into heat even at room temperature, but on the wavelength side longer than 1.2 m, the absorption coefficient changes depending on the temperature of the wafer, and the absorption coefficient changes depending on the wafer temperature. Since most of the heat is transmitted through the CVD reactor, it is released as wasted energy by dissipating heat to the surroundings of the CVD reactor. Therefore, as a heating light source, it is desirable to use a light source having a distribution only in wavelengths shorter than 1.2 m.
本発明において、 このように半導体基板が吸収することのできる領域 の波長の光エネルギを主成分とした発光スぺク トルを有した光であって、 特に線スぺク 卜ラムに近い特性を有した光を発光源として用いるのが好 ましいことが分かった。 本発明においては、 このように線スぺク トラム に近い特性を有した、 別の言い方をすると、 先端の尖ったスぺク トラム を有したものを尖状の発光スぺク トルを有した光と定義して以下使用す る。 そして、 光フアイバの吸収波長特性を考慮すると、 上記 S i ウェハ の吸収特性に適合するランプ波長とも合わせ、 加熱光源としては約 0 . 6 mから 1 . 0 mの間の発光分布を主成分とした尖状の発光スぺク トルを有したランプを使用することが望ましい。 In the present invention, light having an emission spectrum whose main component is light energy in a wavelength region that can be absorbed by a semiconductor substrate, and in particular characteristics close to a line spectrum. It has been found that it is preferable to use the light possessed by the material as a light source. In the present invention, a light emission spectrum having characteristics close to a line spectrum, or in other words, having a sharp-edged spectrum, has a sharp-edged emission spectrum. It is defined as light and used below. Considering the absorption wavelength characteristics of the optical fiber, the main component is the light emission distribution between about 0.6 m and 1.0 m as a heating light source, combined with the lamp wavelength that matches the absorption characteristics of the Si wafer. It is desirable to use a lamp with a sharp and sharp emission spectrum.
ただし、 将来は光ファイバの材料としてもつと高帯域で透過性に優れ たものが開発された場合には、 最適なランプの種類が変わる可能性もあ る。 しかし、 一般的に光ファイバのコア材及びクラッ ド材、 さらにこれ らの屈折率を考慮した光ファイバの設計では、 輸送しょう とする光はレ However, in the future, if an optical fiber material with a higher bandwidth and superior transmittance is developed, the optimal lamp type may change. However, in designing an optical fiber that takes into consideration the core and cladding materials of the optical fiber, and their refractive indices, the light to be transported is generally considered to be a laser beam.
—ザ光のような単一波長でバン ド幅が極めて狭いものが望ましいが、 ゥ ェハを加熱するだけの発光強度を持ちかつコストの点でも許容されるラ ンプを設計すべきであることには変わりない。
本発明では、 後述する高圧ナト リウムランプ及びメタルハラィ ドラン プの H I Dランプと呼ばれる高圧放電ランプとして、 加熱光源のランプ に尖状スぺク トルの発光スぺク トルを有するランプを用い、 光ファイバ 内での輸送損失を 1 0 0 dBZ km 以下程度に抑えて光源からの照射光を 輸送して基板を加熱することにした。 -It is desirable to have a single wavelength and extremely narrow bandwidth like laser light, but we should design a lamp that has enough luminous intensity to heat the wafer and is also affordable from the point of view of cost. does not change. In the present invention, as a high-pressure discharge lamp called HID lamp of a high-pressure sodium lamp and a metal halide lamp, which will be described later, a lamp having a sharp emission spectrum is used as a lamp of a heating light source. We decided to heat the substrate by transporting the light emitted from the light source while keeping the transport loss at 100 dBZ km or less.
第 1 3図には、 本発明で一実施例として具体的に用いたランプの発光 スぺク トルを示し、 ランプとしては図示の尖状発光スぺク トルを有した 高圧ナ ト リウムランプを用いた。 FIG. 13 shows the luminescence spectrum of a lamp specifically used as an embodiment of the present invention, and the lamp is a high-pressure sodium lamp having a sharp luminescence spectrum as shown. Using.
第 1 4図には、 本発明で別の実施例として具体的に用いたランプの発 光スぺク トルを示し、 ランプとしては図示の尖状発光スぺク トルを有し たメタルハライ ドランプを用いた。 FIG. 14 shows the emission spectrum of a lamp specifically used as another embodiment of the present invention. Using.
本発明の具体的な光源として、 高圧ナト リウムランプ及びメタルハラ イ ドランプの H I Dランプと呼ばれる高圧放電ランプを用いたが、 高圧 ナ 卜 リゥムランプにはおよそ 0 . 6 m及び 0 . 8 mに尖状の発光スぺ ク トルを有し、 上記の光ファイバの吸収波長特性との関係から光フアイ バ中での損失は殆どない。 また、 メタルハライ ドランプにはおよそ 0 . 8 5 i m及び 0 . 9 ^ mに尖状の発光スぺク トルを有し、 それ以外に 0 . 5 mを中心としたバン ド幅の広い発光スぺク トルを有する。 従って、 メタルハラィ ドランプを加熱光源として用いた場合には高圧ナトリウム ランプょりは損失が大きいが、輸送損失が 1 0 0 dBZkm以下程度までに は至らないように製作することができる。 As a specific light source of the present invention, high-pressure discharge lamps called HID lamps, which are high-pressure sodium lamps and metal halide lamps, were used. It has an emission spectrum, and there is almost no loss in the optical fiber due to the relationship with the absorption wavelength characteristics of the optical fiber. In addition, the metal halide lamp has a sharp emission spectrum at approximately 0.85 m and 0.9 m, and a wide band emission spectrum centered at 0.5 m. It has a kutor. Therefore, when a metal halide lamp is used as a heating light source, a high-pressure sodium lamp has a large loss, but it can be manufactured so that the transport loss does not reach about 100 dBZkm or less.
第 1 5図は、 本発明の比較例である従来から基板加熱に用いられてき たハロゲンランプの発光スぺク トルを示す図である。 これでは図示した ように、 プランクの黒体輻射の式に従って、 発光体の温度によって変化 する幅の広いエネルギ分布を有している。 FIG. 15 is a diagram showing an emission spectrum of a halogen lamp conventionally used for substrate heating, which is a comparative example of the present invention. As shown, it has a wide energy distribution that varies with the temperature of the illuminant according to Planck's blackbody radiation equation.
従来のハロゲンランプでは、 プランクの黒体輻射の式に従って、 発光
体の温度によってそのピーク波長はシフ 卜するが、 通常 2 5 0 0 から 4 0 0 0 Kの発光温度で使用される場合には、 0 . 4 111から 3 111に亘 り非常にバン ド幅が広く光ファイバ中での損失が著しい。 また、 その損 失の値は発光温度でピーク波長がシフ 卜するため一定とはならないが、 少なく とも 1 . 1 ^ mより長波長の成分は全て損失となるため輸送損失 は 2 0 %以上になる。 また、 よしんば輸送されてもシリコンウェハでの 吸収は少ない。 In a conventional halogen lamp, according to Planck's blackbody radiation formula, the emitted light is Although its peak wavelength shifts with body temperature, it has a very broad bandwidth from 0.4111 to 3111 when used at emission temperatures typically between 2500 and 4000 K. is wide and the loss in the optical fiber is significant. Also, the value of the loss is not constant because the peak wavelength shifts with the emission temperature, but at least all components with wavelengths longer than 1.1 m are lost, so the transport loss is 20% or more. Become. Also, even if it is transported by Yoshinba, there is little absorption by silicon wafers.
9 .加熱ステージ周辺での排熱を如何にするか 9. How to exhaust heat around the heating stage
加熱ステージ周辺での排熱を如何にするかも、 実際のプロセスでは大 切なことである。 How to exhaust heat around the heating stage is also important in the actual process.
5 0〜 1 0 0枚のウェハをまとめて炉体の中で加熱するバッチ式のゥ ェハ加熱では、 ウェハからの熱の逃げを最小限に抑えてあるために、 加 熱効率が特に問題になることは無かった。 しかし、 最近のウェハの大口 径化、 ウェハ 1枚毎の品質管理の必要性の高まりからウェハ 1枚づっ処 理する枚葉加熱では加熱効率の低さは極めて重大である。 従来のバッチ 式加熱では多量のウェハをまとめて処理するために 1時間で数十枚のゥ ェハが処理可能であるが、 枚葉式で同じスループッ トを確保しょう とし た場合、 急速急冷加熱が必要となるためランプ加熱が必須となる。 In batch-type wafer heating, in which 50 to 100 wafers are heated together in a furnace body, heat escape from the wafers is kept to a minimum, so heating efficiency is a particular problem. there was nothing to be done. However, due to the recent increase in diameter of wafers and the increasing need for quality control for each wafer, the low heating efficiency of single-wafer heating, which processes wafers one by one, is extremely important. With conventional batch heating, several tens of wafers can be processed in an hour in order to process a large number of wafers at once. lamp heating is essential.
一方、 加熱されたウェハからの熱の逃げを特に考慮しない場合、 例え ば 5ィンチの S i ウェハを真空中で 5 0 0てに保っためには約 3 0 0 W、 1 , 0 0 0 °Cに保っためには約 2, 0 0 0 Wの熱量をウェハに与え続ける 必要がある。 ランプの発光効率及び S i ウェハの反射率等の加熱効率を 計算すると、 ランプに投入したエネルギの約 5 %しかウェハの加熱に寄 与せず、 5 0 0 °Cに保っためには約 6 k W、 1, 0 0 0 °Cに保っためには 約 4 0 kWもの膨大なエネルギを投入することになる。 しかし、 これはゥ
ェハからの輻射熱が 1 0 0 %外部に熱として逃げると仮定したからであ つて、 例えば魔法瓶のような熱の逃げを極力抑えた系の中にウェハを設 置し、 最小限の面積に抑えたエネルギ投入口から設定温度に保持するた めのエネルギのみを与えるようにすることで加熱効率を向上させること が可能となる。 On the other hand, if heat escape from the heated wafer is not particularly considered, for example, to keep a 5-inch Si wafer at 500°C in vacuum requires about 300 W, 1,000° C. In order to keep it at C, it is necessary to keep applying heat of about 2,000 W to the wafer. Calculating the heating efficiency such as the luminous efficiency of the lamp and the reflectance of the Si wafer, only about 5% of the energy input to the lamp contributes to the heating of the wafer, and it takes about 6 hours to maintain the temperature at 500 °C. In order to keep the kW at 1,000°C, a huge amount of energy of about 40 kW is input. But this This is because it is assumed that 100% of the radiant heat from the wafer escapes to the outside as heat. It is possible to improve the heating efficiency by supplying only the energy for maintaining the set temperature from the suppressed energy input port.
さらに、 第 2 0図( a )及び(b )に示す実施例においては、 以上で説明 した本発明の実施例のように、 ウェハ裏面側に大気を真空を遮断するた めの石英製の光透過窓を挟んでフアイバ出射端から光を出射させる方式 (第 4図(a ) )の代わりに、 処理室への光出射部以外の面はウェハからの 輻射熱を殆ど反射できるュニッ ト構造(第 2 0図(b ) )とした。 Furthermore, in the embodiment shown in FIGS. 20(a) and (b), a quartz light beam is provided on the rear surface side of the wafer for blocking the atmosphere from the vacuum, as in the embodiment of the present invention described above. Instead of the method in which light is emitted from the fiber output end through a transmission window (Fig. 4 (a)), a unit structure (Fig. 4 (a)) that can reflect most of the radiant heat from the wafer on the surface other than the light output part to the processing chamber is adopted (Fig. 4). 20 (b)).
第 2 0図( a )に示した例では、 複数のファイバ光出射ュニッ 卜 4 1 0 を設けている。 このファイバ光出射ュニッ 卜 4 1 0は、 各々光輸送ファ ィバ 1 3 0の先端部分を処理装置に対して結合するコネクタ 4 0 9が設 けられ、 光ファイバ先端部には光を処理室内に導入する石英ロッ ド 4 1 1を設けている。 石英口ッ ドの径は光フアイバ径ょりも僅かに大きく、 その周辺は真空遮断のために Oリ ングが設けられている。 処理室内面は 石英ロッ ド以外の面 4 1 2は、 ウェハ表面側からの熱輻射による熱の逃 げを極力抑えるために、 輻射熱を殆ど反射できる鏡面としている。 さら に、 ウェハ表面側からの熱輻射による熱の逃げを極力抑えるためにゥェ ハ上方に設けたガスシャヮ一 4 0 2のウェハ対向面 4 1 3を輻射熱を殆 ど反射できる鏡面としている。 この対策を施すことで、 熱の逃げを考慮 していなかった場合と比較して、 熱の損失を約 6 0 %カッ トして、 5 0 0 °Cに保つ場合には約 2 . 4 kW (約 3 . 6 kWの省エネ)、 1, 0 0 0 °Cでは 約 1 6 kff 2 4 kWの省エネ)のエネルギの投入まで削減できた。 石英 窓を用いる方式と石英ロッ ドを用いる方式では、 後者の方が石英窓での 反射ロズがなくなった分、 さらに熱効率が 1 0 %程度向上する。
さらに、 石英口ッ ド 4 1 1の周囲に配置された 0 リ ングを、 ファイノく' 内での全反射条件(N A = 0 . 5 3 )の光が上記石英口ッ ド内で漏れて〇 リ ングでの熱吸収を起こさせないようにするために、 屈折率の低いフッ 素系ゴムを使用すると加熱効率が更にァップする。 産業上の利用可能性 In the example shown in FIG. 20(a), a plurality of fiber light emitting units 410 are provided. This fiber light emitting unit 410 is provided with a connector 409 for connecting the tip of each light transport fiber 130 to the processing device, and the tip of the optical fiber transmits light into the processing chamber. A quartz rod 411 is provided to be introduced into the chamber. The diameter of the quartz head is slightly larger than that of the optical fiber, and an O-ring is provided around it to block vacuum. The surface 412 of the inner surface of the processing chamber other than the quartz rod is a mirror surface capable of reflecting most of the radiant heat in order to minimize heat escape due to thermal radiation from the wafer surface side. Furthermore, in order to minimize the escape of heat due to heat radiation from the wafer surface side, the wafer facing surface 413 of the gas shower 402 provided above the wafer is a mirror surface capable of reflecting most of the radiant heat. By taking this measure, heat loss is cut by about 60% compared to when heat escape is not taken into consideration, and when kept at 500°C, it is about 2.4 kW. (Energy saving of about 3.6 kW), and energy input of about 16 kff 24 kW at 1,000 °C). Between the method using a quartz window and the method using a quartz rod, the latter method has a further improvement in thermal efficiency of about 10% due to the loss of reflection loss at the quartz window. In addition, the 0-ring arranged around the quartz head 411 was set so that the light under the condition of total reflection (NA = 0.53) inside the fin was leaked in the quartz head. In order to prevent heat absorption in the ring, the use of fluorine-based rubber with a low refractive index further improves the heating efficiency. Industrial applicability
本発明では、 半導体基板の処理ステージから熱的に隔離され場所に設 置された加熱エネルギ発生手段からの加熱エネルギを、 加熱エネルギ輸 送媒体によって輸送することによって、 処理ステージを配置しているク リ一ンルーム内に基板の加熱に用いられない大きな熱量を逸散させるこ とがない。 In the present invention, the processing stage is arranged by transporting the heating energy from the heating energy generating means installed in a place thermally isolated from the semiconductor substrate processing stage by the heating energy transport medium. It does not dissipate a large amount of heat in the cleaning room that is not used to heat the substrate.
本発明においては、 基板加熱に用いる光はその処理対象の基板が吸収 することの出来る選ばれた波長の光エネルギを主成分とした尖状の発光 スペク トルを有する光源を用いることによって、 より効率的な基板の加 熱が可能となる。 In the present invention, the light used for heating the substrate is made more efficient by using a light source having a sharp emission spectrum whose main component is light energy of a selected wavelength that can be absorbed by the substrate to be processed. It is possible to heat the substrate effectively.
また、 ク リーンルーム内に設置された複数の半導体基板の処理ステ一 ジと、 処理ステージから熱的に隔離された場所に設置された加熱エネル ギ発生手段とが、 加熱エネルギ輸送媒体によって n : 1で接続すること により、 エネルギの有効利用が可能となる。 Further, a processing stage for a plurality of semiconductor substrates installed in a clean room and a heating energy generating means installed in a place thermally isolated from the processing stage are separated by a heating energy transport medium n: By connecting with 1, effective use of energy becomes possible.
さらに、 複数の光ファイバは略平行に配置され、 各々隣接する光ファ ィバ終端面部間の距離、 或いは光フアイバの終端面部から半導体基板状 に照射されるエネルギスポッ ト中心間の距離を一定距離 D、 光ファイバ の終端面と半導体基板との距離を hとすると、 h Z D≥ l . 1 としたこ とにより、 基板の温度分布の均一性を向上させ、 処理対象である半導体 基板上での処理を均一に行うことが出来るという効果がある。 Furthermore, the plurality of optical fibers are arranged substantially parallel, and the distance between the end surfaces of adjacent optical fibers or the distance between the centers of the energy spots irradiated from the end surfaces of the optical fibers onto the semiconductor substrate is defined as a constant distance. D, where h is the distance between the end surface of the optical fiber and the semiconductor substrate, hZD≥l. There is an effect that the treatment can be performed uniformly.
また、 本発明では、 基板外周部に配置する光フアイバからの光スポッ
卜の光量密度あるいは配置密度を基板中央部分に配置する光フアイバか らの光スポッ 卜の光量密度あるいは配置密度より も高くすることにより、 基板の温度分布均一性を向上させ、 所定の処理を対象とする半導体基板 上で最大限に広い範囲で均一に行うことが、 容易に実現できるという効 果がある。 Further, in the present invention, the optical spot from the optical fiber arranged on the outer periphery of the substrate By making the light quantity density or arrangement density of the light spot higher than the light quantity density or arrangement density of the light spots from the optical fiber arranged in the central part of the substrate, the temperature distribution uniformity of the substrate is improved, and the predetermined processing is performed. There is an effect that it is possible to easily realize uniform processing over a widest possible range on a semiconductor substrate of the type.
本発明は、 光輸送媒体は上記ク リ一ンルームの床下部に施設されたこ とにより装置より床下に光ファイバを引き出すことが出来る。 本発明の ごとくできるだけ大きなエネルギを効率良く輸送させるには光ファイバ を小さな曲率で曲げることは不利であり、 床下にファイバを通すことで、 大きな曲率で曲げることが出来、 以てファイバでの伝送ロスを低減でき るという効果を有する。 また、 光輸送媒体はク リ一ンルームの床下部に ほぼ直線状に施設され、 処理ステージのほぼ真下で曲げられて該処理ス テージにまで導かれるので最も理想に近い光フアイバの敷設が可能とな り、 光エネルギの効率の良い輸送が可能となる効果を有する。 さらに 本発明では、 処理装置において装置内の空間と装置外の空間とに遮断す る光透過窓を設け、 光輸送媒体の終端部は光透過窓の近傍に対峙したの で、 例えば真空装置の内部に処理の対象とする半導体基板がおかれてい る場合であっても、 真空中へ向かって効率良く光エネルギを輸送するこ とが可能である。 またこのような構造であれば、 光ファイバ 1本 1本を 真空シールする必要がなく、 更に、 基板の温度分布を良好なものにする ための調整も行いやすい。 また、 メ ンテナンスも、 真空の外から行うの で、 扱いやすい装置として効果的である。 According to the present invention, since the optical transport medium is installed under the floor of the clean room, the optical fiber can be pulled out from the apparatus under the floor. It is disadvantageous to bend the optical fiber with a small curvature in order to efficiently transport as much energy as possible as in the present invention. has the effect of being able to reduce In addition, since the light transport medium is installed in a substantially straight line under the floor of the clean room, and is bent almost right under the processing stage and guided to the processing stage, it is possible to lay the most ideal optical fiber. This has the effect of enabling efficient transport of light energy. Furthermore, in the present invention, the processing apparatus is provided with a light-transmitting window that isolates the space inside the apparatus from the space outside the apparatus, and the terminal end of the light-transporting medium faces the vicinity of the light-transmitting window. Even when a semiconductor substrate to be processed is placed inside, it is possible to efficiently transport light energy toward the vacuum. Moreover, with such a structure, it is not necessary to vacuum-seal each optical fiber, and furthermore, it is easy to make adjustments to improve the temperature distribution of the substrate. Also, since maintenance is performed from outside the vacuum, it is effective as an easy-to-handle device.
本発明では、 光輸送媒体を 2 0 0 °C以下に保持して温度上昇に伴う光 吸収波長特性の変化による光輸送損失を 1 0 0 dBZ kin 以下程度に抑え て、 光源からの照射光を輸送して基板を加熱するので大きな光エネルギ を輸送する際であっても常に損失を低く抑えられるので、 に損傷を与え
ないという効果がある。 In the present invention, the light transport medium is kept at 200° C. or less, and the light transport loss due to the change in the light absorption wavelength characteristics due to the temperature rise is suppressed to about 100 dBZkin or less, and the irradiation light from the light source is reduced. Since the substrate is heated during transport, loss is always kept low even when transporting a large amount of light energy, so damage to the There is an effect that there is no
また本発明では、 光輸送媒体において輸送する光エネルギのエネルギ 密度を 1 0 kff / mm 2以下にするか、 照射光の光量密度を 1 0 E 7ルーメ ン / mm 2以下にして、 光輸送媒体を 2 0 0 °C以下に保持して温度上昇に 伴う光吸収波長特性の変化による光輸送損失を 1 0 0 dB Z km 以下程度 に抑え、 光源からの照射光を輸送して基板を加熱するので、 過剰な光ェ ネルギ-によるフアイバの破壊が生じない、またフアイバが過熱すること 無く、 常に一定した処理を行うことが出来るという効果がある。 Further, in the present invention, the energy density of the light energy transported in the light transport medium is set to 10 kff / mm 2 or less, or the light intensity density of the irradiated light is set to 10E7 lumen / mm 2 or less, and the light transport medium is kept at 200 °C or less, and the light transport loss due to the change in light absorption wavelength characteristics due to the temperature rise is suppressed to about 100 dB Z km or less, and the irradiated light from the light source is transported to heat the substrate. Therefore, the fiber is not destroyed by excessive light energy, and the fiber is not overheated.
& さらに本発明では、 加熱光源からの放射光を集光したのち光フアイ バ端面に入射させる時に、 光ファイバのコアとクラッ ドの屈折率から求 められる全反射条件及び斜め入射による光フアイバ内での反射回数の増 大及び行路長の増大に伴う反射損失及び吸収損失から求められる入射角 度よりも内側から放射光を入射させることにより、 光ファイバ内での輸 送損失を 1 0 0 dBZ km以下程度に抑え、光源からの照射光を輸送して基 板を加熱するので、 ファイバでの光輸送エネルギは過剰な損失を被るこ とが無く、 安定した輸送を行うことが出来、 このことにより所定の処理 を安定して行うことが出来るという効果がある。 &Furthermore, in the present invention, when the radiated light from the heating light source is condensed and then incident on the end face of the optical fiber, the total reflection condition obtained from the refractive index of the core and the clad of the optical fiber and the light inside the optical fiber due to oblique incidence The transport loss in the optical fiber is reduced to 100 dBZ Since the substrate is heated by transporting the irradiation light from the light source, the light transport energy in the fiber does not suffer excessive loss, and stable transport can be performed. Therefore, there is an effect that a predetermined process can be stably performed.
さらに本発明では、 光輸送媒体を複数本の光ファイバを直列に接続し て構成し、 光の入射側から基板への放射側に行く に従い光フアイバのコ ァ径を同じもしくは大きく したのでファイバの接続部分おける輸送中の 光エネルギの損が少なくできる効果がある。 Furthermore, in the present invention, the light transport medium is configured by connecting a plurality of optical fibers in series, and the core diameter of the optical fiber is made the same or larger from the light incident side to the light emitting side toward the substrate. This has the effect of reducing the loss of light energy during transport at the connecting portion.
本発明は、 清浄な雰囲気で温度と湿度とが管理されたク リ一ンルーム 内に設置された半導体基板の処理ステージと、 処理ステージに載置され た半導体基板を加熱するために処理ステージから隔離されてク リーンル 一ムとは異なる雰囲気の場所に設置された加熱エネルギを発生する光源 と、 光源と処理ステージとを連結する光輸送媒体を備え、 基板加熱に用
いる光はその処理対象の基板が吸収することの出来る選ばれた波長の光 エネルギを主成分とした尖状の発光スぺク トルを有した半導体基板の処 理装置を提供するものである。 The present invention provides a semiconductor substrate processing stage installed in a clean room in which the temperature and humidity are controlled in a clean atmosphere, and a semiconductor substrate placed on the processing stage, which is isolated from the processing stage for heating. A light source for generating heating energy installed in a place with an atmosphere different from that of the clean room, and a light transport medium for connecting the light source and the processing stage are provided for heating the substrate. The object of the present invention is to provide a processing apparatus for a semiconductor substrate having a sharp emission spectrum whose main component is light energy of a selected wavelength that can be absorbed by the substrate to be processed.
また、 本発明は、 加熱エネルギ輸送媒体は所定長さを有した複数本の 光フアイバから成り、 複数本の光フアイバに沿わせて光量モニタ用のフ アイバを設け、 モニタされた光量に基づいて、 所望の光量を達成するた めに電力制御手段によって電力供給手段に供給する電力を制御すること により、 極めて精度高く基板温度を制御できる。 Further, according to the present invention, the heating energy transport medium is composed of a plurality of optical fibers having a predetermined length, and a fiber for light amount monitoring is provided along the plurality of optical fibers, and based on the monitored light amount. The substrate temperature can be controlled with extremely high accuracy by controlling the power supplied to the power supply means by the power control means in order to achieve the desired amount of light.
また、 本発明は、 複数本の光ファイバの始端面部の先端部には中央部 が円錐状にく り抜かれた円錐状を呈し、 光が入射してからフアイバ内に 導かれる間のガラス肉厚が実質的に等しく し、 外周反射面と内周反射面 とが平行とした円錐状の集光ロッ ドを設けることによって、 効率よい集 光ができる。 In addition, the present invention provides a conical shape in which the central portion is hollowed out in a conical shape at the tip of the starting end face of a plurality of optical fibers, and the thickness of the glass between the time when light is incident and guided into the fiber. Efficient light collection can be achieved by providing a conical condensing rod in which the distances are substantially equal and the outer and inner reflecting surfaces are parallel to each other.
また、 本発明は、 加熱エネルギ輸送媒体としては所定長さを有した複 数本の光フアイバから成り、 複数本の光フアイバの終端面部は半導体基 板処理装置のハウジング内に一部挿入結合されており、 かつ各々の終端 面部の先端には光導入ロッ ドが配置され、 光ファイバの光を基板に照射 することにより、 効率の良い光照射が達成できる。
Further, according to the present invention, the heating energy transport medium is composed of a plurality of optical fibers having a predetermined length, and the end surfaces of the plurality of optical fibers are partially inserted and coupled into the housing of the semiconductor substrate processing apparatus. A light introduction rod is arranged at the tip of each terminal surface, and efficient light irradiation can be achieved by irradiating the substrate with the light of the optical fiber.
Claims
1. 清浄な雰囲気で温度と湿度とが管理されたク リーンルームと、 該 ク リーンルーム内に設置され内部を実質的真空に保持された半導体基板 の処理ステージと、 該処理ステージから熱的に隔離され上記ク リーンル 一厶とは異なる雰囲気の場所に設置された加熱エネルギ発生手段と、 該 加熱エネルギ発生手段に対して電力を供給するための電力供給手段と、 該電力供給手段に供給する電力を制御する電力制御手段と、 上記加熱ェ ネルギ発生手段と処理ステージとを連結する加熱エネルギ輸送媒体とを 備えており、 該加熱エネルギ輸送媒体は所定長さを有した複数本の光フ アイバから成り、 該複数本の光フアイバの一方の端面部は上記加熱エネ ルギ発生手段に向けて対向させられており、 上記複数本の光フアイバの 他方の端面部は上記処理ステージ内に載置されている半導体基板に対向 させられており、 上記複数本の光フアイバの一方の端面部は一つに束ね られており、 他方の端面部は半導体基板面を略均一にカバーするように 距離を離して配置されており、 上記複数本の光フアイバの一方の端面部 (以下、 始端面部)から加熱エネルギを入射して、 他方の端面部(以下、 終 端面部)からの出射エネルギを半導体基板面上に照射することを特徴と する半導体基板の処理装置。 1. A clean room in which the temperature and humidity are controlled in a clean atmosphere, a processing stage for semiconductor substrates installed in the clean room and the interior of which is kept substantially vacuum, and thermally generated from the processing stage. Heating energy generating means isolated and installed in a place having an atmosphere different from that of the clean room, power supplying means for supplying power to the heating energy generating means, and power supplied to the power supplying means. and a heating energy transport medium connecting the heating energy generating means and the processing stage, wherein the heating energy transport medium is composed of a plurality of optical fibers having a predetermined length. One end surface of the plurality of optical fibers is opposed to the heating energy generating means, and the other end surface of the plurality of optical fibers is placed in the processing stage. One end surface of the plurality of optical fibers is bundled together, and the other end surface is spaced apart so as to substantially evenly cover the surface of the semiconductor substrate. The plurality of optical fibers are arranged such that heating energy is incident from one end face portion (hereinafter referred to as the start end face portion) of the plurality of optical fibers, and emitted energy from the other end face portion (hereinafter referred to as the end face portion) is emitted onto the surface of the semiconductor substrate. A processing apparatus for a semiconductor substrate, characterized by irradiating light onto the substrate.
2. ク リーンルーム内に設置された半導体基板の処理ステージと、 該処 理ステージから熱的に隔離され上記ク リ一ンルームとは異なる雰囲気の 場所に設置された加熱エネルギ発生手段とが、 加熱エネルギ輸送媒体に よって 1 : 1で接続されていることを特徴とする請求の範囲第 1項記載 の半導体基板の処理装置。 2. A semiconductor substrate processing stage installed in a clean room and a heating energy generating means thermally isolated from the processing stage and installed in a place having an atmosphere different from that of the clean room are heated. 2. The apparatus for processing semiconductor substrates according to claim 1, wherein the apparatus is connected 1:1 by an energy transport medium.
3. ク リーンルーム内に設置された複数の半導体基板の処理ステージと、 該処理ステージから熱的に隔離され上記ク リ一ンルームとは異なる雰囲
気の場所に設置された加熱エネルギ発生手段とが、 加熱エネルギ輸送媒 体によって n : 1で接続されていることを特徴とする請求の範囲第 1項 記載の半導体基板の処理装置。 3. A plurality of semiconductor substrate processing stages installed in a clean room, and an atmosphere that is thermally isolated from the processing stages and different from the clean room. 2. The semiconductor substrate processing apparatus according to claim 1, wherein the heating energy generating means installed in the air is connected at an n:1 ratio by means of a heating energy transport medium.
4. 複数の光ファイバは略平行に配置され、 各々隣接する光ファイバ 終端面部間の距離は一定距離 Dだけ離されており、 上記光ファイバの終 端面と半導体基板との距離を hとすると、 h Z D≥ l . 1 としたことを 特徴とする請求の範囲第 1項〜第 3項の内の一つに記載の半導体基板の 処理装置。 4. A plurality of optical fibers are arranged substantially parallel, and the distance between adjacent optical fiber end faces is separated by a certain distance D. If h is the distance between the end faces of the above optical fibers and the semiconductor substrate, 4. The semiconductor substrate processing apparatus according to claim 1, wherein hZD≥l.1.
5. 複数本の光フアイバの終端面部から半導体基板状に照射されるェ ネルギスポッ 卜中心間の距離を Dとし、 上記光ファイバの終端面と半導 体基板との距離を hとすると、 h Z D≥ l . 1 としたことを特徴とする 請求の範囲第 1項〜第 3項の内の一つに記載の半導体基板の処理装置。 5. Let D be the distance between the centers of the energy spots irradiated onto the semiconductor substrate from the end face of a plurality of optical fibers, and h be the distance between the end face of the optical fiber and the semiconductor substrate, then h Z D 4. The semiconductor substrate processing apparatus according to any one of claims 1 to 3, characterized in that ≥l.1.
6. 加熱エネルギ発生手段としてランプ光源を用いたことを特徴とす る請求の範囲第 1項〜第 5項の内の一つに記載の半導体基板の処理装置 c 6. The semiconductor substrate processing apparatus c according to any one of claims 1 to 5, characterized in that a lamp light source is used as the heating energy generating means.
7. 複数本の光ファイバの終端面部を距離を離して配置する際に、 半 導体基板外周部に配置する光フアイバの配置密度を基板中央部分に配置 する光フアイバの配置密度よりも高く したことを特徴とする請求の範囲 第 1項〜第 6項の内の一つに記載の半導体基板の処理装置。 7. When arranging the end faces of a plurality of optical fibers at a distance, the arrangement density of the optical fibers arranged on the periphery of the semiconductor substrate is higher than the arrangement density of the optical fibers arranged on the central part of the substrate. The semiconductor substrate processing apparatus according to any one of claims 1 to 6, characterized by:
8. 複数本の光ファイバの終端面部を距離を離して配置する際に、 半 導体基板外周部に配置する光フアイバからのェネルギスポッ トのェネル ギ密度を基板中央部分に配置する光ファイバからのエネルギスポッ 卜の エネルギ密度よりも高く したことを特徴とする請求の範囲第 1項〜第 6 項の内の一つに記載の半導体基板の処理装置。 8. When arranging the end faces of multiple optical fibers at a distance, the energy density of the energy spot from the optical fibers arranged at the periphery of the semiconductor substrate is compared with the energy density from the optical fibers arranged at the center of the substrate. 7. The semiconductor substrate processing apparatus according to claim 1, wherein the energy density is higher than that of the spot.
9. 光輸送媒体は上記加熱光源からの放射光を複数本の光フアイバを 直列に接続して構成し、 光の入射側から基板への放射側に行く に従い光 ファイバのコア径を同じもしくは大きく したことを特徴とする請求の範
囲第 6項記載の半導体基板の処理装置。 9. The light transport medium is composed of a plurality of optical fibers connected in series for the light emitted from the heating light source, and the core diameter of the optical fiber is the same or larger as it goes from the light incident side to the light emitting side to the substrate. Claims characterized in that 7. The semiconductor substrate processing apparatus according to item 6.
10. 光輸送媒体を 2 0 0 °C以下に保持して温度上昇に伴う光吸収波長 特性の変化による光輸送損失を 1 0 0 dB/ km 以下程度に抑えるための 冷却手段を備え、 光源からの照射光を輸送して、 基板を加熱することを 特徴とする請求の範囲第 6項記載の半導体基板の処理装置。 10. Equipped with a cooling means for keeping the light transport medium at 200°C or less and suppressing the light transport loss due to changes in light absorption wavelength characteristics due to temperature rise to about 100 dB/km or less, 7. The semiconductor substrate processing apparatus according to claim 6, wherein the substrate is heated by transporting the irradiation light.
11. 光輸送媒体において輸送する光エネルギのエネルギ密度を 1 0 kW Z IMI 2以下にして光輸送損失を 1 0 0 dBZ km以下程度に抑え、光源から の照射光を輸送して、 基板を加熱することを特徴とする請求の範囲第 6 項記載の半導体基板の処理方法。 11. Reduce the energy density of the light energy transported in the light transport medium to 10 kW Z IMI 2 or less, suppress the light transport loss to about 100 dBZ km or less, transport the irradiation light from the light source, and heat the substrate. 7. The method of processing a semiconductor substrate according to claim 6, characterized in that:
12. 光輸送媒体において輸送する照射光の光量密度を 1 0 E 7ルーメ ン Z mm 2以下にして光輸送損失を 1 0 0 dBZ km以下程度に抑え、光源か らの照射光を輸送して、 基板を加熱することを特徴とする請求の範囲第 6項記載の半導体基板の処理方法。 12. The light intensity density of the irradiated light transported in the light transport medium is 10E7 lumen Z mm2 or less, and the light transport loss is suppressed to about 100 dBZ km or less, and the irradiated light from the light source is transported. 7. The method of treating a semiconductor substrate according to claim 6, wherein the substrate is heated.
13. 清浄な雰囲気で温度と湿度とが管理されたク リーンルーム内に設 置された半導体基板の処理ステージと、 該処理ステージに載置された半 導体基板を加熱するために処理ステージから隔離されて上記ク リーンル 一ムとは異なる雰囲気の場所に設置された加熱エネルギを発生する光源 と、 該光源と処理ステージとを連結する光輸送媒体を用いる半導体基板 の処理方法であって、 上記加熱光源からの放射光を集光したのち光ファ ィバ端面に入射させる時に、 光ファイバのコアとクラッ ドの屈折率から 求められる全反射条件及び斜め入射による光フアイバ内での反射回数の 増大及び行路長の増大に伴う反射損失及び吸収損失から求められる入射 角度よりも内側から放射光を入射させることにより、 光ファイバ内での 輸送損失を 1 0 0 dBZ km以下程度に抑え、光源からの照射光を輸送して、 基板を加熱することを特徴とする半導体基板の処理方法。 13. A semiconductor substrate processing stage installed in a clean room in which the temperature and humidity are controlled in a clean atmosphere, and a semiconductor substrate placed on the processing stage, which is separated from the processing stage for heating. A semiconductor substrate processing method using a light source that generates heating energy and is installed in a place having an atmosphere different from that of the clean room, and a light transport medium that connects the light source and a processing stage, the method comprising the steps of: When the radiated light from the light source is condensed and then incident on the end face of the optical fiber, the total reflection condition determined from the refractive index of the core and clad of the optical fiber, the increase in the number of reflections in the optical fiber due to oblique incidence, and By making the synchrotron radiation incident from inside the incident angle determined from the reflection loss and absorption loss accompanying the increase in the path length, the transport loss in the optical fiber is suppressed to about 100 dBZ km or less, and the irradiation from the light source is reduced. A method of treating a semiconductor substrate, comprising the step of heating the substrate by transporting light.
14. 清浄な雰囲気で温度と湿度とが管理されたク リーンルーム内に設
置された半導体基板の処理ステージと、 該処理ステージから隔離されて 上記ク リ一ンルームとは異なる雰囲気の場所に設置された加熱エネルギ 発生手段と、 該加熱エネルギ発生手段と処理ステージとを連結するエネ ルギ輸送媒体とを備えており、 該エネルギ輸送媒体は上記ク リ一ンルー ムの床下部に施設されていることを特徴とする半導体基板の処理装置。14. Installed in a clean room where the temperature and humidity are controlled in a clean atmosphere. a processing stage for a semiconductor substrate placed thereon, a heating energy generating means isolated from the processing stage and installed in a place having an atmosphere different from that of the clean room, and the heating energy generating means and the processing stage are connected to each other. and an energy transport medium, wherein the energy transport medium is installed under the floor of the clean room.
15. 加熱エネルギ発生手段としてランプ光源を用いたことを特徴とす る請求の範囲第 1 4項記載の半導体基板の処理装置。 15. The semiconductor substrate processing apparatus according to claim 14, wherein a lamp light source is used as the heating energy generating means.
16. エネルギ輸送媒体はク リ一ンルームの床下部に略直線状に施設さ れ、 処理ステージの略真下で曲げられて該処理ステージにまで導かれる ことを特徴とする請求の範囲第 1 4項或いは第 1 5項記載の半導体基板 の処理装置。 16. The scope of claim 14, characterized in that the energy transport medium is installed in a substantially straight line under the floor of the clean room, is bent substantially directly under the treatment stage, and is led to the treatment stage. Alternatively, the semiconductor substrate processing apparatus according to item 15.
17. 清浄な雰囲気で温度と湿度とが管理されたク リーンルームと、 該 ク リーンルーム内に設置され内部を実質的真空に保持された半導体基板 処理手段と、 該処理手段から熱的に隔離され上記ク リーンルームとは異 なる雰囲気の場所に設置された加熱エネルギ発生手段と、 該加熱エネル ギ発生手段に対して電力を供給するための電力供給手段と、 該電力供給 手段に供給する電力を制御する電力制御手段と、 上記加熱エネルギ発生 手段と処理ステージとを連結する加熱エネルギ輸送媒体とを備えており、 上記加熱エネルギ発生手段としてはランプ光源を用い、 上記加熱エネル ギ輸送媒体としては所定長さを有した複数本の光ファイバから成り、 該 複数本の光フアイバの始端面部は上記光源に向'けて対向させられており、 上記複数本の光フアイバの終端面部は上記処理ステージ内に載置されて いる半導体基板に対向させられており、 上記複数本の光ファイバの始端 面部は一つに束ねられており、 終端面部は半導体基板面を略均一にカバ 一するように距離を離して配置されており、 上記処理手段は内部に載置 された基板を処理手段内の空間と処理手段外の空間とに遮断する光透過
窓を設け、 上記光ファイバの終端部は上記光透過窓の近傍に対峙して配 置されていることを特徴とする半導体基板の処理装置。 17. A clean room in which the temperature and humidity are controlled in a clean atmosphere, a semiconductor substrate processing means installed in the clean room and the interior of which is kept substantially vacuum, and thermally isolated from the processing means. heating energy generating means installed in a place having an atmosphere different from that of the clean room; power supply means for supplying power to the heating energy generating means; and power supplied to the power supply means. and a heating energy transport medium connecting the heating energy generating means and the processing stage, wherein the heating energy generating means is a lamp light source, and the heating energy transport medium is It consists of a plurality of optical fibers having a predetermined length, the leading end face portions of the plurality of optical fibers are opposed to the light source, and the terminal end face portions of the plurality of optical fibers are the processing stage. The plurality of optical fibers are opposed to the semiconductor substrate placed inside, the leading end face portions of the plurality of optical fibers are bundled together, and the terminating end face portions are separated from each other so as to substantially evenly cover the semiconductor substrate surface. are separated from each other, and the processing means has a light-transmitting device that blocks the substrate placed inside between the space inside the processing means and the space outside the processing means. 1. A processing apparatus for semiconductor substrates, wherein a window is provided, and the end portion of the optical fiber is arranged in the vicinity of the light transmission window so as to face each other.
18. 半導体基板処理手段内に載置された基板を光照射によって加熱す る方法であって、 光源からの照射光を光輸送媒体を経由し、 基板を加熱 することを特徴とする半導体基板の処理方法。 18. A method of heating a substrate placed in a semiconductor substrate processing means by light irradiation, wherein the substrate is heated by irradiating light from a light source via a light transport medium. Processing method.
19. 清浄な雰囲気で温度と湿度とが管理されたク リーンルーム内に設 置された半導体基板処理手段と、 該処理手段から隔離されて上記ク リ一 ンルームとは異なる雰囲気の場所に設置された加熱エネルギを発生する 光源と、 該光源と加熱処理装置とを連結する光輸送媒体とを用いた半導 体基板の処理方法であって、 上記光輸送媒体によって輸送された光は処 理手段内の空間と処理手段外の空間とに遮断する光透過窓を通して光照 射し、 上記処理手段内に載置された基板を加熱することを特徴とする半 導体基板の処理方法。 19. A semiconductor substrate processing means installed in a clean room in which the temperature and humidity are controlled in a clean atmosphere, and a place separated from the processing means and installed in a place with an atmosphere different from that of the clean room. and a light transport medium connecting the light source and a heat treatment device, wherein the light transported by the light transport medium is transferred to the processing means. A method of processing a semiconductor substrate, comprising heating a substrate placed in the processing means by irradiating light through a light transmitting window that blocks an inner space and a space outside the processing means.
20. 清浄な雰囲気で温度と湿度とが管理されたク リーンルーム内に設 置された半導体基板の処理ステージと、 該処理ステージに載置された半 導体基板を加熱するために処理ステージから隔離されて上記ク リーンル 一ムとは異なる雰囲気の場所に設置された加熱エネルギを発生する光源 と、 該光源と処理ステージとを連結する光輸送媒体を備えており、 基板 加熱に用いる光はその処理対象の基板が吸収することの出来る選ばれた 波長の光エネルギを主成分とした尖状の発光スぺク トルを有したことを 特徴とする半導体基板の処理装置。 20. A semiconductor substrate processing stage installed in a clean room where the temperature and humidity are controlled in a clean atmosphere, and a semiconductor substrate placed on the processing stage, which is separated from the processing stage for heating. and a light source for generating heating energy installed in a place having an atmosphere different from that of the clean room; 1. A processing apparatus for semiconductor substrates, characterized by having a sharp emission spectrum whose main component is light energy of a selected wavelength that can be absorbed by a target substrate.
21. 光輸送媒体が光ファイバであり、 該光ファイバの始端部は集光光 学系を介して光源に対峙させ、 その終端部は加熱処理媒体に対峙させる ように構成 、 上記集光光学系は光源から.の光を上記光フアイバのコア 径と実質的に等しい径に集光させて入射させるように構成したことを特 徵とする請求の範囲第 2 0項記載の半導体基板の処理装置。
21. The optical transport medium is an optical fiber, the leading end of the optical fiber faces the light source via a light-condensing optical system, and the terminal end faces the heat treatment medium, the light-condensing optical system The apparatus for processing semiconductor substrates according to claim 20 is characterized in that the light from the light source is condensed into a diameter substantially equal to the core diameter of the optical fiber and is incident thereon. .
22. 清浄な雰囲気で温度と湿度とが管理された製造ライ ン内に設置さ れた半導体基板の処理装置と、 該処理装置内に載置された半導体基板を 加熱するために上記処理装置から隔離されて上記製造ラインとは異なる 雰囲気の場所に設置された加熱光源と、 該加熱光源と処理装置とを連結 する光輸送媒体を備えており、 基板加熱に用いる光はその処理基板を加 熱するのに必要なエネルギを持った波長の光のみを製造ラインの外で選 択して上記光輸送媒体によって上記処理装置にまで輸送して、 上記処理 装.置及び製造ライン内での余分なエネルギの発散を抑えたことを特徴と する半導体基板の処理装置。 22. A semiconductor substrate processing apparatus installed in a production line where the temperature and humidity are controlled in a clean atmosphere, and a device for heating the semiconductor substrate placed in the processing apparatus. A heating light source which is isolated and installed in a place with an atmosphere different from that of the production line, and a light transport medium which connects the heating light source and the processing apparatus are provided, and the light used for substrate heating heats the processing substrate. Only the light of wavelengths having the energy necessary for the processing is selected outside the production line and transported to the processing equipment by the optical transport medium, thereby eliminating excess energy within the processing equipment and the production line. A semiconductor substrate processing apparatus characterized by suppressing energy dissipation.
23. 加熱光源のランプに尖状発光スぺク トルを有するランプを用い、 光ファィバ内での輸送損失を 1 0 0 dBZ kni 以下程度に抑えて光源から の照射光を輸送して、 基板を加熱することを特徴とする請求の範囲第 2 3項から第 2 6項の内の一つに記載の半導体基板の処理装置。 23. A lamp with a sharp emission spectrum is used as the lamp of the heating light source, and the irradiation light from the light source is transported while suppressing the transport loss in the optical fiber to about 100 dBZ kni or less to heat the substrate. 27. The semiconductor substrate processing apparatus according to any one of claims 23 to 26, wherein heating is performed.
24. 光輸送媒体の光フアイバが複数本のフアイバを束ねてなるバン ド ル形状であり、 該バン ドルの始端部のコア以外の部分を反射率の高い物 質で被覆し、 ファイバのコア同士の間に発生する非有効断面への放射光 の入射による損失を低減して光輸送効率を向上させたことを特徴どする 請求の範囲第 2 0項〜第 2 3項の内の一つに記載の半導体基板の処理装 置。 24. The optical fiber of the light transport medium is in the form of a bundle consisting of a bundle of multiple fibers, and the portion other than the core at the starting end of the bundle is coated with a highly reflective substance, and the fiber cores are separated from each other. According to any one of claims 20 to 23, the light transport efficiency is improved by reducing the loss caused by the incidence of the radiated light on the ineffective cross section generated between the A processing apparatus for a semiconductor substrate as described above.
25. 光輸送媒体の光ファイバが複数本のファイバを束ねてなるバン ド ル形状であり、 該バン ドルを構成する各光ファイバの始端部にそのユア 中心と一致させて集光レンズを形成してバン ドルの始端部に複眼型レン ズを設置し、 ファイバのコア同士の間に発生する非有効断面への放射光 の入射を排除して光輸送効率を向上させたことを特徴とする請求の範囲 第 2 0項〜第 2 4項の内の一つに記載の半導体基板の処理装置。 25. The optical fiber of the light transport medium is in the shape of a bundle formed by bundling a plurality of fibers, and a condensing lens is formed at the leading end of each optical fiber that constitutes the bundle by aligning it with the center of the fiber. A compound eye lens is installed at the beginning of the bundle to eliminate the incidence of synchrotron radiation on the ineffective cross section generated between the cores of the fibers, thereby improving the light transport efficiency. Scope The semiconductor substrate processing apparatus according to any one of items 20 to 24.
26. 光輸送媒体の光フアイバが複数本のフアイバを束ねてなるバン ド
δ 1 26. A band consisting of multiple optical fibers bundled together as an optical transport medium δ1
ル形状であり、 各光フアイバの断面形状を最密充填の配列が可能な図形 にする事により、 フアイバのコア同士の間に発生する非有効断面を最小 化し光輸送効率を向上させたことを特徴とする請求の範囲第 2 0項〜第 2 6項の内の一^ ^に記載の半導体基板の処理装置。 By making the cross-sectional shape of each optical fiber into a shape that enables close-packing arrangement, the ineffective cross-section generated between fiber cores is minimized and the light transport efficiency is improved. The semiconductor substrate processing apparatus according to any one of claims 20 to 26.
27. 上記細密充填が可能な図形は六角形であることを特徴とした請求 項 2 6記載の半導体基板の処理装置。 27. The apparatus for processing semiconductor substrates according to claim 26, wherein the figure capable of close packing is a hexagon.
28. 清浄な雰囲気で温度と湿度とが管理されたク リーンルームと、 該 ク リーンルーム内に設置され内部を実質的真空に保持された半導体基板 の処理ステージと、 該処理ステージから熱的に隔離され上記ク リーンル 一ムとは異なる雰囲気の場所に設置された加熱エネルギ発生手段と、 該 加熱エネルギ発生手段に対して電力を供給するための電力供給手段と、 該電力供給手段に供給する電力を制御する電力制御手段と、 上記加熱ェ ネルギ発生手段と処理ステージとを連結する加熱エネルギ輸送媒体とを 備えており、 該加熱エネルギ輸送媒体は所定長さを有した複数本の光フ アイバから成り、 該複数本の光ファイバに沿わせて光量モニタ用のファ ィバを設け、 上記複数本の光フアイバの始端面部及び上記光量モニタ用 のフアイバの一方の端部は上記加熱エネルギ発生手段に向けて対向させ られており、 上記複数本の光フアイバの終端面部は上記処理ステージ内 に載置されている半導体基板に対向させられ、 且つ上記光量モニタ用の ファイバの他方の端部はパワーメタの入力端子に接続されており、 上記 複数本の光ファイバの始端面部は一つに束ねられており、 終端面部は半 導体基板面を略均一にカバーするように £巨離を離して配置されており、 上記複数本の光フアイバの始端面部から加熱エネルギを入射して、 終端 面部からの出射エネルギを半導体基板面上に照射し、 上記パワーメータ によりモニタされた光量に基づいて、.所望の光量を達成するために上記 電力制御手段によって上記電力供給手段に供給する電力を制御すること
を特徴とする半導体基板の処理装置。 28. A clean room in which the temperature and humidity are controlled in a clean atmosphere, a processing stage for semiconductor substrates installed in the clean room and the interior of which is kept substantially vacuum, and a thermal process from the processing stage A heating energy generating means isolated and installed in a place having an atmosphere different from that of the clean room, a power supply means for supplying power to the heating energy generating means, and power supplied to the power supplying means. and a heating energy transport medium connecting the heating energy generating means and the processing stage, wherein the heating energy transport medium is composed of a plurality of optical fibers having a predetermined length. A fiber for light amount monitoring is provided along the plurality of optical fibers, and the leading end surfaces of the plurality of optical fibers and one end of the light amount monitoring fiber are connected to the heating energy generating means. The end faces of the plurality of optical fibers are opposed to the semiconductor substrate placed in the processing stage, and the other end of the light amount monitoring fiber is a power meta. The plurality of optical fibers are connected to an input terminal, and the starting end faces of the plurality of optical fibers are bundled together, and the terminating end faces are spaced apart from each other so as to substantially evenly cover the surface of the semiconductor substrate. The semiconductor substrate surface is irradiated with heat energy emitted from the terminal end face of each of the plurality of optical fibers, and a desired light quantity is obtained based on the light quantity monitored by the power meter. controlling power supplied to the power supply means by the power control means to achieve A semiconductor substrate processing apparatus characterized by:
29. 清浄な雰囲気で温度と湿度とが管理されたク リーンルームと、 該 ク リーンルーム内に設置され内部を実質的真空に保持された半導体基板 処理手段と、 該処理手段から熱的に隔離され上記ク リーンルームとは異 なる雰囲気の場所に設置された加熱エネルギ発生手段と、 該加熱エネル ギ発生手段に対して電力を供給するための電力供給手段と、 該電力供給 手段に供給する電力を制御する電力制御手段と、 上記加熱エネルギ発生 手段と処理ステージとを連結する加熱エネルギ輸送媒体とを備えており、 上記加熱エネルギ発生手段としてはランプ光源を用い、 さらに該ランプ 光源としては電極間に輝度の高い部分が 2ケ所有したメタルハライ ドラ ンプを用い、 上記加熱エネルギ輸送媒体としては所定長さを有した複数 本の光フアイバから成り、 該複数本の光フアイバの始端面部は上記光源 に向けて対向させられており、 その先端部には上記複数本の光フアイバ の終端面部は上記処理ステージ内に載置されている半導体基板に対向さ せられており、 上記複数本の光ファイバの始端面部は一つに束ねられて おり、 その先端部には円錐状の集光ロッ ドが設けられ、 終端面部は半導 体基板面を略均一にカバーするように距離を離して配置されていること を特徴とする半導体基板の処理装置。 29. A clean room in which the temperature and humidity are controlled in a clean atmosphere, a semiconductor substrate processing means installed in the clean room and the interior of which is kept substantially vacuum, and thermally isolated from the processing means heating energy generating means installed in a place having an atmosphere different from that of the clean room; power supply means for supplying power to the heating energy generating means; and power supplied to the power supply means. and a heating energy transport medium connecting the heating energy generating means and the processing stage, wherein the heating energy generating means is a lamp light source, and the lamp light source is between the electrodes. A metal halide lamp having two high-brightness portions is used in the lamp, and the heating energy transport medium is composed of a plurality of optical fibers having a predetermined length. The end faces of the plurality of optical fibers are opposed to the semiconductor substrate placed in the processing stage, and the end faces of the plurality of optical fibers are opposed to the semiconductor substrate placed in the processing stage. The starting end faces are bundled together, a conical condensing rod is provided at the end, and the end faces are spaced apart so as to substantially evenly cover the surface of the semiconductor substrate. A semiconductor substrate processing apparatus characterized by:
30. 光ファイバの始端面部の先端部に設けられた円錐状の集光ロッ ド は中央部が円錐状にく り抜かれた円錐状を呈し、 光が入射してからファ ィバ内に導かれる間のガラス肉厚が実質的に等しく し、 外周反射面と内 周反射面とが平行としたことを特徴とする請求の範囲第 2 9項記載の半 導体基板の処理装置。 30. The conical condensing rod provided at the tip of the starting end face of the optical fiber has a conical shape with the central part hollowed out, and the light is guided into the fiber after being incident. 29. The apparatus for processing semiconductor substrates according to claim 29, wherein the thickness of the glass between them is substantially equal, and the outer and inner reflecting surfaces are parallel to each other.
31. 光源の加熱ランプ後方部にはランプからの光を前方に反射する楕 円鏡と、 加熱ランプからの発光及び反射鏡反射光で、 所望の角度以上に 広がった前方方向の光を後方に反射させるための球面反射鏡とを供え、
該楕円鏡及び球面反射鏡には過熱を防ぐための冷却器が備えられ、 上記 球面反射鏡には光を取り出すための開口部が形成されていることを特徴 とする請求の範囲第 2 9項或いは第 3 0項記載の半導体基板の処理装置。31. At the back of the heat lamp of the light source, there is an elliptical mirror that reflects the light from the lamp forward, and the light emitted from the heat lamp and the light reflected by the reflector reflects the forward light that spreads over a desired angle to the rear. and a spherical reflector for reflecting, Claim 29, wherein the elliptical mirror and the spherical reflecting mirror are equipped with a cooler to prevent overheating, and the spherical reflecting mirror is formed with an opening for extracting light. Alternatively, the semiconductor substrate processing apparatus according to item 30.
32. 楕円鏡の表面は、 S i の吸収帯である 1 . 2 mよりも長波長の発 光波長域の光を反射しないように特殊コーティ ングされていることを特 徴とする請求の範囲第 3 1項記載の半導体基板の処理装置。 32. A claim characterized in that the surface of the elliptical mirror is specially coated so as not to reflect the light in the emission wavelength range longer than 1.2 m, which is the absorption band of Si. The semiconductor substrate processing apparatus according to item 31.
33. 加熱ランプは S i の吸収帯である 1 . 2 mよりも短波長の発光波 長域を有し、 該加熱ランプに対しての冷却空気供給手段を備えたことを 特徴とする請求範囲第 2 9項〜第 3 2項の内の一つに記載の半導体基板 の処理装置。 33. A claim characterized in that the heating lamp has an emission wavelength region shorter than 1.2 m, which is the absorption band of Si, and is equipped with means for supplying cooling air to the heating lamp. The semiconductor substrate processing apparatus according to any one of Items 29 to 32.
34. 清浄な雰囲気で温度と湿度とが管理されたク リーンルーム内に設 置された半導体基板の処理ステージと、 該処理ステージに載置された半 導体基板を加熱するために処理ステージから隔離されて上記ク リーンル 一厶とは異なる雰囲気の場所に設置された加熱エネルギを発生する光源 とを用いた半導体基板の処理方法において、 上記光源で処理対象の基板 が吸収することの出来る選ばれた波長の光エネルギを主成分とした尖状 の発光スぺク トルを有した光を発生させ、 該発生した光は上記光源と処 理ステージとを連結する光輸送媒体を通して輸送し、 上記光源で発生し たエネルギを上記処理ステージに載置した半導体基板に照射することを 特徴とする半導体基板の処理方法。 34. A semiconductor substrate processing stage installed in a clean room in which the temperature and humidity are controlled in a clean atmosphere, and a semiconductor substrate placed on the processing stage, which is separated from the processing stage for heating. and a light source that generates heating energy and is installed in a place with an atmosphere different from that of the clean room. light having a sharp emission spectrum whose main component is light energy of a wavelength is generated, the generated light is transported through a light transport medium connecting the light source and the processing stage, and the light source A method of processing a semiconductor substrate, comprising irradiating a semiconductor substrate placed on the processing stage with the generated energy.
35. 清浄な雰囲気で温度と湿度とが管理された製造ライ ン内に設置さ れた半導体基板の処理装置と、 該処理装置内に載置された半導体基板を 加熱するために上記処理装置から隔離されて上記製造ラインとは異なる 雰囲気の場所に設置された加熱光源とを用いた半導体基板の処理方法に おいて、 基板加熱に用いる光は製造ライ ンの外で選択されて、 その処理 基板を加熱するのに必要なエネルギを持った波長の光のみを発生させ、
該発生した光は上記光源と処理装置とを連結する光輸送媒体を通して輸 送し、 上記光源で発生したエネルギを上記処理装置内に載置した半導体 基板に照射することを特徴とする半導体基板の処理方法。 35. A processing equipment for semiconductor substrates installed in a production line where the temperature and humidity are controlled in a clean atmosphere, and heat from the processing equipment for heating the semiconductor substrates placed in the processing equipment. In a method for processing a semiconductor substrate using a heating light source which is isolated and installed in a place having an atmosphere different from that of the manufacturing line, the light used for heating the substrate is selected outside the manufacturing line, and the substrate is processed. generate only light of wavelengths with the energy required to heat the The generated light is transported through a light transport medium connecting the light source and the processing device, and the energy generated by the light source is applied to the semiconductor substrate placed in the processing device. Processing method.
36. 清浄な雰囲気で温度と湿度とが管理されたク リ一ンルームと、 該 ク リ一ンルーム内に設置され内部を実質的真空に保持された半導体基板 処理手段と、 該処理手段から熱的に隔離され上記ク リーンルームとは異 なる雰囲気の場所に設置された加熱エネルギ発生手段と、 該加熱エネル ギ発生手段に対して電力を供給するための電力供給手段と、 該電力供給 手段に供給する電力を制御する電力制御手段と、 上記加熱エネルギ発生 手段と処理ステージとを連結する加熱エネルギ輸送媒体とを備えており、 上記加熱エネルギ発生手段としてはランプ光源を用い、 上記加熱エネル ギ輸送媒体としては所定長さを有した複数本の光フアイバから成り、 該 複数本の光フアイバの始端面部は上記光源に向けて対向させられており、 上記複数本の光フアイバの終端面部は上記処理ステージ内に載置されて いる半導体基板に対向させられており、 上記複数本の光ファイバの始端 面部は一つに束ねられており、 終罈面部は半導体基板面を略均一にカバ 一するように距離を離して配置されており、 上記処理手段は内部に載置 された基板を処理手段内の空間と処理手段外の空間とに遮断するハウジ ングを形成しており、 上記光フアイバの終端面部は上記ハウジング内に 一部揷入結合されており、 かつ各々の終端面部の先端には光導入ロッ ド が配置され、 上記光フアイバの光を基板に照射するように構成されてい ることを特徴とする半導体基板の処理装置。
36. A clean room in which the temperature and humidity are controlled in a clean atmosphere, a semiconductor substrate processing means installed in the clean room and the interior of which is kept substantially in a vacuum, and thermal heat generated from the processing means. a heating energy generating means isolated from the clean room and installed in a place having an atmosphere different from that of the clean room; a power supply means for supplying power to the heating energy generating means; and a heating energy transport medium connecting the heating energy generating means and the processing stage, wherein a lamp light source is used as the heating energy generating means, and the heating energy transport medium is composed of a plurality of optical fibers having a predetermined length, the starting end surfaces of the plurality of optical fibers are opposed to the light source, and the terminal end surfaces of the plurality of optical fibers are the processing stage. The plurality of optical fibers are opposed to the semiconductor substrate placed inside, and the starting end surfaces of the plurality of optical fibers are bundled together, and the end end surfaces are arranged so as to substantially uniformly cover the semiconductor substrate surface. The processing means is arranged at a distance, and the processing means forms a housing that isolates the substrate placed inside between the space inside the processing means and the space outside the processing means, and the end face portion of the optical fiber. is partially inserted into the housing, and a light introduction rod is arranged at the tip of each terminal surface, and is configured to irradiate the substrate with the light of the optical fiber. and semiconductor substrate processing equipment.
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7105194A JPH07283091A (en) | 1994-04-08 | 1994-04-08 | Method and system for processing semiconductor substrate |
JP6/71053 | 1994-04-08 | ||
JP7105394A JPH07283096A (en) | 1994-04-08 | 1994-04-08 | Method and system for processing semiconductor substrate |
JP6/71051 | 1994-04-08 | ||
JP6/71052 | 1994-04-08 | ||
JP6/71050 | 1994-04-08 | ||
JP7105094A JPH07283090A (en) | 1994-04-08 | 1994-04-08 | Method and system for processing semiconductor substrate |
JP7105294A JPH07283095A (en) | 1994-04-08 | 1994-04-08 | Method and system for processing semiconductor substrate |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1995028002A1 true WO1995028002A1 (en) | 1995-10-19 |
Family
ID=27465312
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP1995/000701 WO1995028002A1 (en) | 1994-04-08 | 1995-04-10 | Method and device for processing semiconductor wafer |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO1995028002A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002099853A2 (en) * | 2001-05-31 | 2002-12-12 | Motorola, Inc., A Corporation Of The State Of Delaware | Temperature-controlled chuck and method for controlling the temperature of a substantially flat object |
CN109560035A (en) * | 2013-09-06 | 2019-04-02 | 应用材料公司 | Support component and semiconductor processing system |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60126821A (en) * | 1983-12-14 | 1985-07-06 | Matsushita Electric Ind Co Ltd | Sample heating device, normal pressure cvd device and vacuum cvd device |
JPS6425985A (en) * | 1987-07-20 | 1989-01-27 | Anelva Corp | Reduced-pressure vapor growing device |
-
1995
- 1995-04-10 WO PCT/JP1995/000701 patent/WO1995028002A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60126821A (en) * | 1983-12-14 | 1985-07-06 | Matsushita Electric Ind Co Ltd | Sample heating device, normal pressure cvd device and vacuum cvd device |
JPS6425985A (en) * | 1987-07-20 | 1989-01-27 | Anelva Corp | Reduced-pressure vapor growing device |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002099853A2 (en) * | 2001-05-31 | 2002-12-12 | Motorola, Inc., A Corporation Of The State Of Delaware | Temperature-controlled chuck and method for controlling the temperature of a substantially flat object |
WO2002099853A3 (en) * | 2001-05-31 | 2003-02-20 | Motorola Inc | Temperature-controlled chuck and method for controlling the temperature of a substantially flat object |
CN109560035A (en) * | 2013-09-06 | 2019-04-02 | 应用材料公司 | Support component and semiconductor processing system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6876816B2 (en) | Heating device, heat treatment apparatus having the heating device and method for controlling heat treatment | |
US6437290B1 (en) | Heat treatment apparatus having a thin light-transmitting window | |
US7949237B2 (en) | Heating configuration for use in thermal processing chambers | |
US6860634B2 (en) | Temperature measuring method, heat treating device and method, computer program, and radiation thermometer | |
JP5338723B2 (en) | Heating device | |
WO2001027962A2 (en) | Lamp apparatus and method for effectively utilizing light from an aperture lamp | |
JPH1056008A (en) | Substrate heating device | |
US6825615B2 (en) | Lamp having a high-reflectance film for improving directivity of light and heat treatment apparatus having such a lamp | |
US11680338B2 (en) | Linear lamp array for improved thermal uniformity and profile control | |
US8005352B2 (en) | Heat treating device | |
US6862404B1 (en) | Focused photon energy heating chamber | |
WO1995028002A1 (en) | Method and device for processing semiconductor wafer | |
JPH07283096A (en) | Method and system for processing semiconductor substrate | |
JPH07283090A (en) | Method and system for processing semiconductor substrate | |
JPH07283095A (en) | Method and system for processing semiconductor substrate | |
US5368647A (en) | Photo-excited processing apparatus for manufacturing a semiconductor device that uses a cylindrical reflecting surface | |
JPH07283091A (en) | Method and system for processing semiconductor substrate | |
JP4666427B2 (en) | Quartz window and heat treatment equipment | |
JP2006269451A (en) | Film deposition equipment by laser | |
JPH09275077A (en) | Method of processing, processing device, method of cvd film forming and device for it | |
JP2023530558A (en) | Full wafer laser heating EPI chamber | |
JP2002198319A (en) | Heat treatment apparatus | |
JPH03207861A (en) | Heater | |
KR20070066181A (en) | Semiconductor manufacturing apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): CN KR US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
122 | Ep: pct application non-entry in european phase |