JPH03207861A - Heater - Google Patents

Heater

Info

Publication number
JPH03207861A
JPH03207861A JP142390A JP142390A JPH03207861A JP H03207861 A JPH03207861 A JP H03207861A JP 142390 A JP142390 A JP 142390A JP 142390 A JP142390 A JP 142390A JP H03207861 A JPH03207861 A JP H03207861A
Authority
JP
Japan
Prior art keywords
substrate
base plate
heat
cooled
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP142390A
Other languages
Japanese (ja)
Inventor
Makoto Koguchi
虎口 信
Yasushi Sakakibara
榊原 康史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP142390A priority Critical patent/JPH03207861A/en
Publication of JPH03207861A publication Critical patent/JPH03207861A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To avoid the impurities from being restuck on a base plate, to shorten a heating time and to facilitate maintenance work by arranging a heater in the atmosphere in a device for heating the base plate to be treated before a film formation stage in the vacuum atmosphere. CONSTITUTION:When a base plate 3 to be treated is carried into a vacuum vessel 1 and placed on a first water-cooled reflector 4 via the heat insulating material 41 in a state of noncontact with a heat reflection face 42, the reflector 4 is raised to the heating position shown in a broken line. Thereby the halogen lamps 61, 62 are lighted which are arranged within one plane parallel opposed to the base plate 3 in the atmosphere side of a transparent window 5 described hereunder. This transparent window 5 is made of a quartz plate airtightly fitted to the aperture 1a of the wall face opposed to the base plate 3 in the vessel 1. The radiation heat thereof is reflected toward the base plate 3 in the heat reflection face 82 and the base plate is heated. Thereafter lights of the lamps 61, 62 are put out and the reflector 4 is lowered to the delivery position of the base plate. The base plate 3 is carried out to a film formation chamber.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、基板面の表面処理を行う表面処理装置のう
ち、特に熱CVD装置あるいはプラズマCVD装置など
、半導体ウエー八等の基板の面にm膜を形成するll膜
形成装Iの一部を構威し、被処理基板に膜形成を行うy
rcl!!工程の前工程として被処理基板を加熱し、基
板表面に付着した水分等の不純物ガスを除去する基板加
熱装置の構威に関する. 〔従来の技術〕 従来、薄膜形戒装置は、良好な膜質を得るために、半導
体ウエー八等の蒲膜形成用蟇板に対し、IIllI形成
の前に、その表面を清浄にするための加熟処理ができる
ように構威されている.第4図および第5図にこの種従
来の基板加熱装置の構或例を示す.第4図は基板を加熱
するためのヒータが鋳込みヒータとして形成されている
場合を示し、例えば線状の電気抵抗体をステンレスパイ
プ内に電気的に絶縁状態に保持した発熱体21aを所定
の発熱量が得られる長さに一平面内で屈曲させ、これを
アル逅で鋳込み、上面に被処理基板が載置される平坦な
面を形成してヒータが形成されている.加熱処理時には
、真空に排気された真空容器1内に咳真空容器1の前段
側に隣接する,図示されない待機室内が真空容器1内と
ほぼ同一圧力に排気され、該待機室内から被処理基板が
仕切り弁11を通って真空容器1内へ搬入され、鋳込み
ヒータ21の上面にlBi置された後、仕切り弁11を
閉して鋳込みヒータ21に加熱電流が供給される.基板
3は所定の時間加熱された後、仕切り弁12を遣り、真
空容器1の後段側に隣接するtcM室内へ搬出される.
第5図はヒータが赤外線ランプで構威された場合を示す
.棒状の赤外線ランプ22を複数本、真空容器1内で碁
板3と平行に対向する一平面内に平行に配列してヒータ
を形成し、上面が熱反射面に形成された基板台7に断熱
材71を介して非接触状態に載置された基板3を輻射熱
により加熱するものである.なお、連中の符号23は、
赤外線ランプ22の背後に配され赤外線ランプから反基
板方向へ向かう輻射熱を基板面へ向けて反射し、赤外線
ランプからの輻射熱を基板の加熱に有効に利用するため
の熱反射板である. 〔発明が解決しようとする課題〕 第4図および第5図のように構威される加熱装置では、
ヒータがいずれも基板と同じ真空容器内に配置されるた
め、ヒータから放出されたガスが基板に再付着する.ま
た、第4図に示す鋳込みヒータでは、発熱体を鋳込んで
いるアルミの融点が低く、第5図に示す赤外線ランブヒ
ー夕ではランプの構底部材が真空中にあるために冷却が
悪く、鋳込みヒータ,赤外線ランブヒータともに発熱体
の単位長当りの発熱量すなわちエネルギー密度が大きく
とれず、加熱処理時間が長くなる。さらにヒー夕のメン
テナンス (特に赤外線ランプの場合は寿命が短いため
、定期的な取替えが必要〉の度に真空容器を大気開放し
なければならない、などの問題があった. この発明の目的は、前記従来の問題点が除去され、被処
理基板への不純物ガス等の再付着がな《、所要加熱時間
が短く、かつメンテナンス作業の容易な加熱1!直の構
威を提供することである.(I’llを解決するための
手段〕 上記litを解決するために、この発明においては、半
導体ウェーハ等、表面処理が行われる基板を真空雰囲気
中で加熱し、基板表面に付着した水分等の不純物ガスを
除去する加熱装lを、基板が置かれる真空雰囲気を形成
し該基板と対向する壁面に石英板からなる透明窓が気密
に取り付けられる開口が形成された真空容器と、前記基
板が間隙を介して非接触状態に載置される熱反射板を備
えるとともに該熱反射板が水冷却される第1の水冷レフ
レクタと、前記石英板からなる透明窓の大気側で基板と
平行に対向する一平面内に同心に配される,互いに径の
興なる複数のリング状ハロゲンランプと、該ハロゲンラ
ンプの反透明窓側に位置し咳ハロゲンランプから真空容
器の外側へ向かう輻射熱を基板方向へ反射する熱反射面
を備えるとともに該熱反射面が水冷却される第2の水冷
レフレクタとを用いて構威するものとする.さらに、こ
の装izi*威において、一平面内に配される複数のリ
ング状ハロゲンランプは個数を2個とし、その小径側の
リングの平均直径を基板の直径よりも小さく、大径側の
リングの平均直径を基板の直径よりも大きくすれば好適
である. らなる赤外線ヒータと、被処理基板との配I空間を分け
、ヒータを大気中に、被処理基板を真空中に配1するこ
とにより、ヒータから放出されるガス等の汚染物質の基
板への再付着が防止されるとともに、基板の加熱処理時
にヒータの背面倒が水冷却された熱反射板に覆われ、ハ
ロゲンランプの構成部材がランプまわりの大気の対流,
該構威部材から熱反射板へ向かう熱放射による放射冷却
により効果的に冷却され、ハロゲンランプの発熱体(フ
ィラメント)の周方向単位長当りの発熱量すなわちエネ
ルギー密度を大きくして基板に到達する輻射熱量を大き
くすることができ、加熱時間を短縮することが可能にな
る.また、真空容器を大気開放することなくヒータのメ
ンテナンスが可能になるからメンテナンス作業が簡易化
されるとともに、真空容器内の大気汚東を避けることが
できる.また、同心に配される複数のハロゲンランプの
個数を2個として、この2個のリング状ハロゲンランプ
のうち、小径便のリングの平均直径を被処理基板の直径
よりも小さく、大径側のリングの平均直径を被処理基板
の直径よりも大きくすることにより、基板に対し、実質
的に基板面をカバーする広さの平面状熱輻射面が形成さ
れ、簡易なヒータ構成で基板面の全域にわたり温度分布
が均一化される.さらに、発熱体のエネルギー密度を制
御することにより、温度分布の均一度をより一層向上さ
せることができる. 〔実施例〕 第IWJに本発明による基板加熱装置構威の一実施例を
示す.真空容器1の両壁には、常時この真空容器1内を
真空に保持するとともに、加熱処理時に、この真空容器
の前段側に隣接する,図示されない待機室から被処理基
板を導入するための仕切り弁11と、加熱処理後に真空
容器1の後段側に隣接する.図示されない戚膜室へ被処
理碁板3を導出するための仕切り弁12とが設けられて
いる.被処理基板3は、真空容器1内で、上面42が熱
反射面に形成されるとともにこの熱反射面が水冷却され
かつ図示されない駆動装置により全体が上下動する第1
の水冷レフレクタ4に断熱材4lを介して熱反射面42
と非接触状態に11!Wされ、この被処理基板3と対向
する真空容器壁面には被処理基板3より大きい開口hが
形成され、この開口1aが石英板からなる透明窓5によ
り気密に閉鎖されている.この透明窓5の背面側には、
碁板3と平行な一平面内に、互いに径の異なる2つのリ
ング状ハロゲンランプ61. 62が同心に配され、赤
外線ヒー夕を構威している.ハロゲンランプは、周知の
ように、石英ガラス容器内に不活性ガスとともに微量の
よう素,臭素などのハロゲン物質を封入したランプであ
り、フィラメントへの通電時にフィラメント材すなわち
タングステンがハロゲン原子または分子と結合して揮発
性の透明なハロゲン化タングステンになり、石英ガラス
容器壁の温度がかなり高いために付着せず、再びフィラ
メントの近傍で解離する循環的作用を呈するため、容器
壁が黒化せず、光束の低下が少ない特長を有する.この
ハロゲンランプ61. 62の背後には、これらのハロ
ゲンランプから真空容器外方へ向かう輻射熱を基板3へ
向けて反射する熱反射面82を備えるとともにこの熱反
射面が水冷却される第2の水冷レフレクタ8が設けられ
ている. 以下、基板を加熱する隙の加熱装置の動作を説明する.
仕切り弁1lは真空容器1の前段側に隣接する,図示さ
れない待機室が真空容器1とほぼ同じ圧力に真空排気さ
れた状態で開放され、待機室内にあった被処理基板3が
真空容器1内へ搬入され、第1の水冷レフレクタ4に断
熱材41を介して熱反射面42と非接触状態にiamさ
れる.被処理基板3が1!置され、仕切り弁1lが閉し
られると、第1の水冷レフレクタ4は破線で示される加
熱位置に上昇する.第1の水冷レフレクタ4が加熱位置
にくると、ハロゲンランプ61. 62が同時に点灯さ
れ、被処理基板が加熱される.所定の加熱が完了すると
、ハロゲンランプ61. 62は消灯され、第1の水冷
レフレクタ4は基板受渡し位置に下降し、仕切り弁12
が開かれ、被処理基板3は真空容器1の後段便に隣接す
る.図示されない戚膜室内へ搬出される.被処理碁板3
の搬送機構部は、ここには特に図示しないが、真空容器
1内、あるいは待機室一真空容器l−威膜室と仕切り弁
11, 12を介して被処理碁板3の搬送が可能なよう
に設けられた別の真空容器内に設置される. 第2図にハロゲンランプ61. 62と被処理基板3と
の寸法関係を示す.内側のハロゲンランブ61の平均直
径Aを基板3の直径Bよりも小さく、外側のハロゲンラ
ンブ62の平均直径Cを基板3の直径Bよりも大きくす
ると、直径8インチの大口径基板を用いた場合でも、第
3図のように、基板面のほぼ全域にわたり温度分布を均
一化することができる.そして、同図の実線で示すよう
に、内側のハロゲンランブ61のエネルギー密度(発熱
体の周方向単位長当りの発熱量)を外側のハロゲンラン
ブ62より小さくすると、さらに均一な温度分布を得る
ことができる.なお、図中のエネルギー密度は相対値を
示す. 〔発明の効果〕 以上に述べたように、本発明においては、半導体ウェー
ハ等、表面処理が行われる基板を真空雰囲気中で加熱し
、基板表面に付着した水分等の不純物ガスを除去する加
熱装lを、基板が宣かれる真空雰囲気を形成し該基板と
対向する壁面に石英板からなる透明窓が気密に取り付け
られる開口が形成された真空容器と、前記基板が間隙を
介して非接触状態にatされる熱反射板を備えるととも
に該熱反射板が水冷却される第1の水冷レフレクタと、
前記石英板からなる透明窓の大気側で基板と平行に対向
する一平面内に同心に配される,互いに径の興なる複数
のリング状ハロゲンランプと、請ハロゲンランプの反透
明窓倒に位置し該ハロゲンランプから真空容器の外側へ
向かう輻射熱を基板方向へ反射する熱反射面を備えると
ともに該熱反射面が水冷却される第2の水冷レフレクタ
とを用いて構威したので、被処理基板と複数のリング状
ハロゲンランプからなる赤外線ヒータとが別空間に配宣
され、ヒータから放出されるガス等によるヒータの再汚
染が完全に除去される,また、複数のリング状ハロゲン
ランプから真空容器の外側へ向かう輻射熱を被処理基板
へ向けて反射する熱反射面の強制冷却が可能となり、ハ
ロゲンランプの構威部材がランプまわりの大気の対流1
該構或部材から強制冷却された熱反射板へ向かう熱放射
による放射冷却により効果的に冷却されるため、ハロゲ
ンランプに供給する加熱電力を大きくして被処理基板の
加熱時間を短縮することができる.また、一平面内に配
される複数のリング状ハロゲンランプは個数を2個とし
、その小径側のリングの平均直径を被威膜蟇板の直径よ
りも小さく、大径側のリングの平均直径を被戚ll!基
板の直径よりも大きくすることにより、基板に対し、実
質的に平面状の熱輻射面が構威され、基板面の全域にわ
たり均一な温度分布を得ることができ、かつ加熱装置も
簡易化される.そして、2つのハロゲンランプのエネル
ギー密度をamすることにより、均一度のより高い温度
分布を得ることができる.さらに、本発明による装置構
戚により、真空容器を大気開放することなくヒータのメ
ンテナンスが可能なことから、メンテナンス作業が箇易
化され作業時間が短縮される.また、真空容器内の大気
汚染が避けられ、加熱装置を構威要素として有する表面
処理装置のスループットが向上する.
[Detailed Description of the Invention] [Industrial Application Field] This invention is particularly applicable to surface treatment apparatuses for surface treatment of substrate surfaces, such as thermal CVD apparatuses or plasma CVD apparatuses, which treat the surface of substrates such as semiconductor wafers, etc. y to form a film on a substrate to be processed using a part of the film forming apparatus I
rcl! ! This article relates to the structure of a substrate heating device that heats a substrate to be processed as a pre-process and removes impurity gases such as moisture adhering to the substrate surface. [Prior Art] Conventionally, in order to obtain good film quality, thin-film control devices have applied processing to clean the surface of a capillary plate such as a semiconductor wafer before forming IIIllI. It is designed to allow for thorough processing. Figures 4 and 5 show an example of the structure of this type of conventional substrate heating device. FIG. 4 shows a case where the heater for heating the substrate is formed as a cast heater. For example, a heating element 21a, which is a linear electric resistor held in an electrically insulated state in a stainless steel pipe, is used to generate a predetermined amount of heat. The heater is formed by bending it in one plane to a length that allows for the desired amount of heat, and casting it with aluminum to form a flat surface on which the substrate to be processed is placed. During the heat treatment, a waiting chamber (not shown) adjacent to the front side of the vacuum chamber 1 in the evacuated vacuum chamber 1 is evacuated to almost the same pressure as the inside of the vacuum chamber 1, and the substrate to be processed is removed from the waiting chamber. After being carried into the vacuum vessel 1 through the gate valve 11 and placed on the upper surface of the casting heater 21, the gate valve 11 is closed and heating current is supplied to the casting heater 21. After the substrate 3 is heated for a predetermined period of time, the gate valve 12 is used to transport the substrate 3 into the tcm chamber adjacent to the downstream side of the vacuum container 1.
Figure 5 shows the case where the heater is configured with an infrared lamp. A heater is formed by arranging a plurality of rod-shaped infrared lamps 22 in parallel in a plane facing the Go board 3 in the vacuum container 1, and heat-insulating the substrate base 7 whose upper surface is formed as a heat-reflecting surface. The substrate 3 placed in a non-contact manner via the material 71 is heated by radiant heat. In addition, the code 23 of these people is
This is a heat reflecting plate placed behind the infrared lamp 22 to reflect the radiant heat directed away from the substrate from the infrared lamp toward the substrate surface, and to effectively use the radiant heat from the infrared lamp to heat the substrate. [Problem to be solved by the invention] In the heating device configured as shown in FIGS. 4 and 5,
Since both heaters are placed in the same vacuum container as the substrate, the gas released from the heaters re-attaches to the substrate. In addition, in the cast-in heater shown in Fig. 4, the melting point of the aluminum in which the heating element is cast is low, and in the infrared lamp heater shown in Fig. 5, cooling is poor because the bottom structure of the lamp is in a vacuum. Both the heater and the infrared lamp heater cannot provide a large amount of heat generated per unit length of the heating element, that is, the energy density, and the heat treatment time becomes long. Furthermore, there were problems such as the vacuum container having to be opened to the atmosphere every time the heater was maintained (particularly in the case of infrared lamps, which had a short lifespan and needed to be replaced regularly). The above-mentioned conventional problems are eliminated, impurity gas etc. do not re-adhere to the substrate to be processed, and the heating time required is short and maintenance work is easy. (Means for Solving I'll) In order to solve the above-mentioned lit, in this invention, a substrate to be surface-treated, such as a semiconductor wafer, is heated in a vacuum atmosphere to remove moisture etc. adhering to the substrate surface. A heating device 1 for removing impurity gases is connected to a vacuum container in which a vacuum atmosphere is formed in which a substrate is placed, and an opening is formed in which a transparent window made of a quartz plate is airtightly attached to the wall facing the substrate, and the substrate is placed in a gap. A first water-cooled reflector is provided with a heat reflecting plate placed in a non-contact state via a first water-cooled reflector, and the heat reflecting plate is water-cooled, and faces parallel to the substrate on the atmospheric side of the transparent window made of the quartz plate. A plurality of ring-shaped halogen lamps arranged concentrically in one plane and having diameters that rise from each other, and a device located on the anti-transparent window side of the halogen lamps reflect radiant heat directed toward the outside of the vacuum container from the halogen lamps toward the substrate. A second water-cooled reflector is provided with a heat-reflecting surface and the heat-reflecting surface is water-cooled.Furthermore, in this system, a plurality of rings arranged in one plane are used. It is preferable that the number of shaped halogen lamps be two, the average diameter of the smaller diameter ring being smaller than the diameter of the substrate, and the average diameter of the larger diameter ring being larger than the diameter of the substrate. By separating the space between the heater and the substrate to be processed, placing the heater in the atmosphere and the substrate in vacuum, it is possible to prevent contaminants such as gas emitted from the heater from re-adhering to the substrate. At the same time, the back surface of the heater is covered with a water-cooled heat reflector during heat processing of the substrate, and the components of the halogen lamp are protected from convection of the atmosphere around the lamp.
The radiant heat is effectively cooled by radiation cooling by heat radiation directed from the structural member toward the heat reflecting plate, increasing the amount of heat generated per unit length in the circumferential direction of the heating element (filament) of the halogen lamp, that is, the energy density, and reaching the substrate. The amount can be increased and the heating time can be shortened. Furthermore, since maintenance of the heater can be performed without exposing the vacuum container to the atmosphere, maintenance work is simplified and atmospheric pollution inside the vacuum container can be avoided. Furthermore, assuming that the number of multiple halogen lamps arranged concentrically is two, the average diameter of the small-diameter ring of these two ring-shaped halogen lamps is smaller than the diameter of the substrate to be processed, and the one on the large-diameter side is By making the average diameter of the ring larger than the diameter of the substrate to be processed, a planar heat radiation surface with a width that substantially covers the substrate surface is formed on the substrate, and a simple heater configuration can spread the entire surface of the substrate. The temperature distribution is made uniform over the entire temperature range. Furthermore, by controlling the energy density of the heating element, the uniformity of temperature distribution can be further improved. [Example] Section IWJ shows an example of the structure of a substrate heating device according to the present invention. On both walls of the vacuum container 1, partitions are provided to maintain the vacuum inside the vacuum container 1 at all times and to introduce a substrate to be processed from a waiting chamber (not shown) adjacent to the front side of the vacuum container during heat treatment. The valve 11 is adjacent to the downstream side of the vacuum vessel 1 after the heat treatment. A gate valve 12 is provided for leading out the Go board 3 to be processed to a membrane chamber (not shown). The substrate 3 to be processed is placed in the vacuum chamber 1 in a first chamber in which the upper surface 42 is formed as a heat-reflecting surface, this heat-reflecting surface is cooled with water, and the whole is moved up and down by a drive device (not shown).
A heat reflecting surface 42 is attached to the water-cooled reflector 4 through a heat insulating material 4l.
And 11 in a non-contact state! An opening h larger than the substrate to be processed 3 is formed in the wall surface of the vacuum chamber facing the substrate to be processed 3, and this opening 1a is hermetically closed by a transparent window 5 made of a quartz plate. On the back side of this transparent window 5,
Two ring-shaped halogen lamps 61 with different diameters are arranged in a plane parallel to the Go board 3. 62 are arranged concentrically and constitute an infrared heater. As is well known, a halogen lamp is a lamp in which a trace amount of halogen substances such as iodine and bromine are sealed together with an inert gas in a quartz glass container.When electricity is applied to the filament, the filament material, that is, tungsten, becomes halogen atoms or molecules. It combines to form volatile transparent tungsten halide, which does not adhere to the quartz glass container wall due to its fairly high temperature, and then dissociates again near the filament, creating a cyclical action that prevents the container wall from turning black. , it has the feature of little decrease in luminous flux. This halogen lamp 61. A second water-cooled reflector 8 is provided behind the halogen lamp 62 and includes a heat reflecting surface 82 that reflects the radiant heat directed toward the outside of the vacuum container from these halogen lamps toward the substrate 3, and this heat reflecting surface is water-cooled. It is being done. The operation of the gap heating device that heats the substrate will be explained below.
The gate valve 1l is opened when a waiting chamber (not shown) adjacent to the front stage side of the vacuum container 1 is evacuated to almost the same pressure as the vacuum container 1, and the substrate 3 to be processed in the waiting chamber is removed from the vacuum container 1. The first water-cooled reflector 4 is placed in a non-contact state with the heat reflecting surface 42 via the heat insulating material 41. The number of substrates to be processed is 1! When the gate valve 1l is closed, the first water-cooled reflector 4 rises to the heating position shown by the broken line. When the first water-cooled reflector 4 reaches the heating position, the halogen lamp 61. 62 are turned on at the same time, and the substrate to be processed is heated. When the prescribed heating is completed, the halogen lamp 61. 62 is turned off, the first water-cooled reflector 4 is lowered to the substrate transfer position, and the gate valve 12 is turned off.
is opened, and the substrate to be processed 3 is adjacent to the rear stage of the vacuum container 1. It is carried out to a membrane chamber (not shown). Processed Go board 3
Although not particularly shown in the drawings, the transport mechanism section is configured so that the Go board 3 to be processed can be transported within the vacuum container 1 or through the waiting chamber, the vacuum container L, the membrane chamber, and the partition valves 11 and 12. It is installed in a separate vacuum container located at the Figure 2 shows a halogen lamp 61. 62 and the substrate to be processed 3 are shown. When the average diameter A of the inner halogen lamp 61 is smaller than the diameter B of the substrate 3, and the average diameter C of the outer halogen lamp 62 is larger than the diameter B of the substrate 3, when a large diameter substrate of 8 inches in diameter is used. However, as shown in Figure 3, the temperature distribution can be made uniform over almost the entire substrate surface. As shown by the solid line in the figure, if the energy density (heat amount per unit circumferential length of the heating element) of the inner halogen lamp 61 is made smaller than that of the outer halogen lamp 62, a more uniform temperature distribution can be obtained. Can be done. Note that the energy density in the figure shows relative values. [Effects of the Invention] As described above, the present invention provides a heating device that heats a substrate to be surface-treated, such as a semiconductor wafer, in a vacuum atmosphere and removes impurity gas such as moisture adhering to the substrate surface. The substrate is placed in a non-contact state through a gap with a vacuum container in which a vacuum atmosphere is formed in which the substrate is exposed, and an opening is formed in which a transparent window made of a quartz plate is airtightly attached to the wall facing the substrate. a first water-cooled reflector including a heat reflecting plate that is cooled by water;
A plurality of ring-shaped halogen lamps with diameters rising from each other are arranged concentrically in a plane facing parallel to the substrate on the atmosphere side of the transparent window made of the quartz plate, and a plurality of ring-shaped halogen lamps are arranged opposite to the transparent window of the quartz plate. However, since the structure includes a heat reflecting surface that reflects radiant heat directed from the halogen lamp toward the outside of the vacuum container toward the substrate, and a second water-cooled reflector in which the heat reflecting surface is water-cooled, the substrate to be processed can be An infrared heater consisting of a plurality of ring-shaped halogen lamps is placed in a separate space, and re-contamination of the heater by gas emitted from the heater is completely removed. Forced cooling of the heat reflecting surface that reflects outward radiant heat toward the substrate to be processed is possible, and the structural members of the halogen lamp can be cooled by convection of the atmosphere around the lamp.
Since it is effectively cooled by radiation cooling by heat radiation directed from the structural member toward the forcibly cooled heat reflection plate, it is possible to increase the heating power supplied to the halogen lamp and shorten the heating time of the substrate to be processed. .. In addition, the number of ring-shaped halogen lamps arranged in one plane is two, and the average diameter of the ring on the small diameter side is smaller than the diameter of the umbilical cord, and the average diameter of the ring on the large diameter side. Relatives! By making the diameter larger than the substrate, a substantially planar heat radiating surface is provided to the substrate, a uniform temperature distribution can be obtained over the entire substrate surface, and the heating device is also simplified. Ru. By adjusting the energy density of the two halogen lamps, a more uniform temperature distribution can be obtained. Furthermore, the device structure according to the present invention makes it possible to maintain the heater without opening the vacuum container to the atmosphere, which simplifies maintenance work and shortens work time. In addition, air pollution inside the vacuum container is avoided, and the throughput of surface treatment equipment that includes a heating device as a component is improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1′@は本発明による基板加熱装置構威の一実施例を
示す縦断面図、第2図は加熱装置のヒータを2個のリン
グ状ハロゲンランプで構戚する際の被処理基板の直径と
それぞれのハロゲンランプの平均+!径との寸法関係を
示す説明図、第3図は第2図に示す構或のヒータにより
加熱処理を行ったときの碁i表面の温度分布を示す繍図
、第4図および第5図はそれぞれ従来の基板加熱装置の
構威例を示す縦断面図である. 1:真空容器、1a:開口、3:碁板、4:第1の水冷
レフレクタ、5:透明窓、8:第2の水冷レフレクタ、
41:断熱材、42:熱反射面、61,62:ハロゲン
ランプ、82:熱反射面.ゝ〜4−一τ′ A<E3 <C 第 2 図 ラ見度(相灯値) 第 4 図
1'@ is a vertical cross-sectional view showing an embodiment of the structure of the substrate heating device according to the present invention, and FIG. 2 is the diameter of the substrate to be processed when the heater of the heating device is composed of two ring-shaped halogen lamps. and the average + of each halogen lamp! Figure 3 is an explanatory diagram showing the dimensional relationship with the diameter, Figure 3 is an embroidery diagram showing the temperature distribution on the surface of Go i when heat treatment is performed with the heater configured as shown in Figure 2, Figures 4 and 5 are Each is a longitudinal cross-sectional view showing an example of the configuration of a conventional substrate heating device. 1: Vacuum container, 1a: Opening, 3: Go board, 4: First water-cooled reflector, 5: Transparent window, 8: Second water-cooled reflector,
41: Heat insulating material, 42: Heat reflecting surface, 61, 62: Halogen lamp, 82: Heat reflecting surface. ~4-1τ'A<E3<C Fig. 2 Visibility (phase light value) Fig. 4

Claims (1)

【特許請求の範囲】 1) 半導体ウェーハ等、表面処理が行われる基板を真
空雰囲気中で加熱し、基板表面に付着した水分等の不純
物ガスを除去する加熱装置であって、基板が置かれる真
空雰囲気を形成し該基板と対向する壁面に石英板からな
る透明窓が気密に取り付けられる開口が形成された真空
容器と、前記基板が間隙を介して非接触状態に載置され
る熱反射板を備えるとともに該熱反射板が水冷却される
第1の水冷レフレクタと、前記石英板からなる透明窓の
大気側で基板と平行に対向する一平面内に同心に配され
る、互いに径の異なる複数のリング状ハロゲンランプと
、該ハロゲンランプの反透明窓側に位置し該ハロゲンラ
ンプから真空容器の外側へ向かう輻射熱を基板方向へ反
射する熱反射面を備えるとともに該熱反射面が水冷却さ
れる第2の水冷レフレクタとを備えてなることを特徴と
する加熱装置。 2) 請求項第1項に記載の加熱装置において、一平面
内に同心に配される複数のハロゲンランプは個数を2個
とし、その小径側のリングの平均直径を被表面処理基板
の直径より小さく、大径側のリングの平均直径を被表面
処理基板の直径より大きくしたことを特徴とする加熱装
置。
[Scope of Claims] 1) A heating device that heats a substrate to be surface-treated, such as a semiconductor wafer, in a vacuum atmosphere and removes impurity gas such as moisture adhering to the substrate surface, the heating device heating the substrate to be subjected to surface treatment, such as a semiconductor wafer, in a vacuum atmosphere to remove impurity gases such as moisture attached to the substrate surface. A vacuum container is provided with an opening in which an atmosphere is formed and a transparent window made of a quartz plate is airtightly attached to the wall facing the substrate, and a heat reflecting plate is placed on which the substrate is placed in a non-contact state through a gap. a first water-cooled reflector in which the heat reflecting plate is water-cooled; and a plurality of water-cooled reflectors having different diameters and arranged concentrically within a plane facing parallel to the substrate on the atmospheric side of the transparent window made of the quartz plate. a ring-shaped halogen lamp; a heat reflecting surface located on the opposite side of the halogen lamp to reflect the radiant heat directed toward the outside of the vacuum container from the halogen lamp toward the substrate; 2. A heating device comprising: 2 water-cooled reflectors. 2) In the heating device according to claim 1, the number of the plurality of halogen lamps arranged concentrically in one plane is two, and the average diameter of the ring on the smaller diameter side is smaller than the diameter of the substrate to be surface treated. A heating device characterized in that the average diameter of the small ring on the large diameter side is larger than the diameter of the substrate to be surface treated.
JP142390A 1990-01-08 1990-01-08 Heater Pending JPH03207861A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP142390A JPH03207861A (en) 1990-01-08 1990-01-08 Heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP142390A JPH03207861A (en) 1990-01-08 1990-01-08 Heater

Publications (1)

Publication Number Publication Date
JPH03207861A true JPH03207861A (en) 1991-09-11

Family

ID=11501052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP142390A Pending JPH03207861A (en) 1990-01-08 1990-01-08 Heater

Country Status (1)

Country Link
JP (1) JPH03207861A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1325898C (en) * 2005-05-25 2007-07-11 哈尔滨工业大学 Photoelectric heating arrangement using quartz lamp array
JP2009200330A (en) * 2008-02-22 2009-09-03 Denso Corp Semiconductor manufacturing device
JP2020204058A (en) * 2019-06-14 2020-12-24 株式会社アルバック Sheet base material transport device, and winding-type film deposition system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1325898C (en) * 2005-05-25 2007-07-11 哈尔滨工业大学 Photoelectric heating arrangement using quartz lamp array
JP2009200330A (en) * 2008-02-22 2009-09-03 Denso Corp Semiconductor manufacturing device
JP2020204058A (en) * 2019-06-14 2020-12-24 株式会社アルバック Sheet base material transport device, and winding-type film deposition system

Similar Documents

Publication Publication Date Title
JP3484651B2 (en) Heating device and heating method
US4101759A (en) Semiconductor body heater
US6198074B1 (en) System and method for rapid thermal processing with transitional heater
US4550245A (en) Light-radiant furnace for heating semiconductor wafers
US5892886A (en) Apparatus for uniform gas and radiant heat dispersion for solid state fabrication processes
US4698486A (en) Method of heating semiconductor wafers in order to achieve annealing, silicide formation, reflow of glass passivation layers, etc.
JPS59928A (en) Photo heating device
JP2002203804A (en) Heating apparatus, heat treatment equipment having the heating apparatus, and method for conrolling heat treatment
JP5338723B2 (en) Heating device
JPH025294B2 (en)
KR100970013B1 (en) Heat treating device
US4543472A (en) Plane light source unit and radiant heating furnace including same
JPH03207861A (en) Heater
JPS5917253A (en) Heat treatment method for semiconductor wafer
JPH1197370A (en) Heat treating device
JPS60189927A (en) Vapor phase reactor
US6513347B1 (en) Heat conditioning process
JP3268446B2 (en) Substrate heating device
JPH0992624A (en) Heat treatment oven
JP2000012549A (en) Plate heating apparatus
JP3609380B2 (en) Heat treatment equipment
JPH06283503A (en) Heat-treating device for semiconductor substrate and method
US4856458A (en) Photo CVD apparatus having no ultraviolet light window
JPS6114724A (en) Irradiation of semiconductor wafer by ultraviolet ray
JPH0634244U (en) Microwave plasma processing equipment