KR20160086320A - 나노-갭 전극 및 이를 제조하기 위한 방법들 - Google Patents

나노-갭 전극 및 이를 제조하기 위한 방법들 Download PDF

Info

Publication number
KR20160086320A
KR20160086320A KR1020167008057A KR20167008057A KR20160086320A KR 20160086320 A KR20160086320 A KR 20160086320A KR 1020167008057 A KR1020167008057 A KR 1020167008057A KR 20167008057 A KR20167008057 A KR 20167008057A KR 20160086320 A KR20160086320 A KR 20160086320A
Authority
KR
South Korea
Prior art keywords
electrode
gap
nano
forming
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
KR1020167008057A
Other languages
English (en)
Korean (ko)
Inventor
슈지 이케다
마크 올덤
에릭 노르드만
Original Assignee
퀀텀 바이오시스템즈 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 퀀텀 바이오시스템즈 가부시키가이샤 filed Critical 퀀텀 바이오시스템즈 가부시키가이샤
Publication of KR20160086320A publication Critical patent/KR20160086320A/ko
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/48707Physical analysis of biological material of liquid biological material by electrical means
    • G01N33/48721Investigating individual macromolecules, e.g. by translocation through nanopores
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6869Methods for sequencing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5886Mechanical treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/345Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44704Details; Accessories
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44756Apparatus specially adapted therefor
    • G01N27/44791Microapparatus
    • H01L29/0669
    • H01L29/413
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/10Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
    • H10D62/117Shapes of semiconductor bodies
    • H10D62/118Nanostructure semiconductor bodies
    • H10D62/119Nanowire, nanosheet or nanotube semiconductor bodies
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D64/00Electrodes of devices having potential barriers
    • H10D64/20Electrodes characterised by their shapes, relative sizes or dispositions 
    • H10D64/205Nanosized electrodes, e.g. nanowire electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2565/00Nucleic acid analysis characterised by mode or means of detection
    • C12Q2565/60Detection means characterised by use of a special device
    • C12Q2565/607Detection means characterised by use of a special device being a sensor, e.g. electrode
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3278Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction involving nanosized elements, e.g. nanogaps or nanoparticles

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Biophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Nanotechnology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hematology (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Urology & Nephrology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Cold Cathode And The Manufacture (AREA)
KR1020167008057A 2013-08-27 2014-08-26 나노-갭 전극 및 이를 제조하기 위한 방법들 Withdrawn KR20160086320A (ko)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JPJP-P-2013-176132 2013-08-27
JP2013176132 2013-08-27
JP2013177051 2013-08-28
JPJP-P-2013-177051 2013-08-28
PCT/IB2014/002143 WO2015028886A2 (en) 2013-08-27 2014-08-26 Nano-gap electrode and methods for manufacturing same

Publications (1)

Publication Number Publication Date
KR20160086320A true KR20160086320A (ko) 2016-07-19

Family

ID=52587427

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020167008057A Withdrawn KR20160086320A (ko) 2013-08-27 2014-08-26 나노-갭 전극 및 이를 제조하기 위한 방법들

Country Status (8)

Country Link
US (1) US20160245789A1 (enExample)
EP (1) EP3042187A4 (enExample)
JP (1) JP2016536599A (enExample)
KR (1) KR20160086320A (enExample)
CN (1) CN105593673A (enExample)
CA (1) CA2922600A1 (enExample)
TW (2) TW201907454A (enExample)
WO (1) WO2015028886A2 (enExample)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9194838B2 (en) 2010-03-03 2015-11-24 Osaka University Method and device for identifying nucleotide, and method and device for determining nucleotide sequence of polynucleotide
US9535033B2 (en) 2012-08-17 2017-01-03 Quantum Biosystems Inc. Sample analysis method
JP6282036B2 (ja) 2012-12-27 2018-02-21 クオンタムバイオシステムズ株式会社 物質の移動速度の制御方法および制御装置
EP3578987A1 (en) 2013-09-18 2019-12-11 Quantum Biosystems Inc. Biomolecule sequencing devices, systems and methods
JP2015077652A (ja) 2013-10-16 2015-04-23 クオンタムバイオシステムズ株式会社 ナノギャップ電極およびその製造方法
US10438811B1 (en) 2014-04-15 2019-10-08 Quantum Biosystems Inc. Methods for forming nano-gap electrodes for use in nanosensors
WO2015170782A1 (en) 2014-05-08 2015-11-12 Osaka University Devices, systems and methods for linearization of polymers
KR101489154B1 (ko) * 2014-06-26 2015-02-03 국민대학교산학협력단 잔류응력을 이용한 나노갭 센서의 제조방법 및 이에 의해 제조되는 나노갭 센서
US20160177383A1 (en) * 2014-12-16 2016-06-23 Arizona Board Of Regents On Behalf Of Arizona State University Nanochannel with integrated tunnel gap
KR20180072717A (ko) * 2015-10-08 2018-06-29 퀀텀 바이오시스템즈 가부시키가이샤 핵산 시퀀싱을 위한 장치, 시스템 및 방법
ES2877193T3 (es) 2016-04-27 2021-11-16 Quantum Biosystems Inc Sistemas y métodos para la medición y secuenciación de biomoléculas
US10168299B2 (en) * 2016-07-15 2019-01-01 International Business Machines Corporation Reproducible and manufacturable nanogaps for embedded transverse electrode pairs in nanochannels
WO2018025887A1 (en) * 2016-08-02 2018-02-08 Quantum Biosystems Inc. Devices and methods for creation and calibration of a nanoelectrode pair
US10739299B2 (en) * 2017-03-14 2020-08-11 Roche Sequencing Solutions, Inc. Nanopore well structures and methods
US11740226B2 (en) 2017-10-13 2023-08-29 Analog Devices International Unlimited Company Designs and fabrication of nanogap sensors
EP3572104A1 (de) * 2018-05-25 2019-11-27 Berlin Heart GmbH Bauteil zum führen eines fluids mit einem sensor
TWI753317B (zh) * 2019-10-31 2022-01-21 錼創顯示科技股份有限公司 電極結構、微型發光元件以及顯示面板
WO2024181927A1 (en) * 2023-03-02 2024-09-06 Agency For Science, Technology And Research A nanogap electrode device, a method of making a nanogap electrode device, and a sensor for detecting a target analyte
CN120348906A (zh) * 2025-06-24 2025-07-22 中国人民解放军国防科技大学 一种金属纳米缝隙阵列的制备方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62194673A (ja) * 1986-02-20 1987-08-27 Fujitsu Ltd 半導体装置の製造方法
JPH04302151A (ja) * 1991-03-29 1992-10-26 Toshiba Corp 電荷結合装置の製造方法
JP3560990B2 (ja) * 1993-06-30 2004-09-02 株式会社東芝 固体撮像装置
US6905586B2 (en) * 2002-01-28 2005-06-14 Ut-Battelle, Llc DNA and RNA sequencing by nanoscale reading through programmable electrophoresis and nanoelectrode-gated tunneling and dielectric detection
JP2003332555A (ja) * 2002-05-09 2003-11-21 Fuji Film Microdevices Co Ltd 固体撮像素子およびその製造方法
US7410564B2 (en) * 2003-01-27 2008-08-12 Agilent Technologies, Inc. Apparatus and method for biopolymer identification during translocation through a nanopore
JP3787630B2 (ja) * 2003-02-14 2006-06-21 独立行政法人情報通信研究機構 ナノギャップ電極の製造方法
TWI273237B (en) * 2004-12-13 2007-02-11 Nat Applied Res Laboratories Coulomb blockade device operated under room temperature
AU2006336262B2 (en) * 2005-04-06 2011-10-13 President And Fellows Of Harvard College Molecular characterization with carbon nanotube control
TWI287041B (en) * 2005-04-27 2007-09-21 Jung-Tang Huang An ultra-rapid DNA sequencing method with nano-transistors array based devices
JP4869985B2 (ja) * 2006-03-06 2012-02-08 株式会社Jvcケンウッド 液晶表示装置及びその製造方法
JP2010500559A (ja) * 2006-08-11 2010-01-07 エージェンシー フォー サイエンス,テクノロジー アンド リサーチ ナノワイヤセンサ、ナノワイヤセンサアレイ、及び当該センサ及びセンサアレイを形成する方法
GB0625070D0 (en) * 2006-12-15 2007-01-24 Imp Innovations Ltd Characterization of molecules
JP2008186975A (ja) * 2007-01-30 2008-08-14 Renesas Technology Corp 半導体装置の製造方法
TWI383144B (zh) * 2008-09-23 2013-01-21 Univ Nat Chiao Tung 感測元件、製造方法及其生物檢測系統
TWI424160B (zh) * 2009-06-17 2014-01-21 國立交通大學 結合矽奈米線閘極二極體之感測元件、製造方法及其檢測系統
US9194838B2 (en) * 2010-03-03 2015-11-24 Osaka University Method and device for identifying nucleotide, and method and device for determining nucleotide sequence of polynucleotide
EP2573554A1 (en) * 2011-09-21 2013-03-27 Nxp B.V. Apparatus and method for bead detection

Also Published As

Publication number Publication date
TW201523710A (zh) 2015-06-16
WO2015028886A3 (en) 2015-05-14
CA2922600A1 (en) 2015-03-05
EP3042187A4 (en) 2017-09-13
JP2016536599A (ja) 2016-11-24
WO2015028886A2 (en) 2015-03-05
US20160245789A1 (en) 2016-08-25
EP3042187A2 (en) 2016-07-13
CN105593673A (zh) 2016-05-18
TWI632599B (zh) 2018-08-11
TW201907454A (zh) 2019-02-16

Similar Documents

Publication Publication Date Title
KR20160086320A (ko) 나노-갭 전극 및 이를 제조하기 위한 방법들
JP2016536599A5 (enExample)
EP2142666B1 (en) Apparatus for molecule detection using nanopores
EP3540436B1 (en) High-resolution molecular sensor
US8927988B2 (en) Self-sealed fluidic channels for a nanopore array
US7964143B2 (en) Nanotube device and method of fabrication
JP2019164142A (ja) ナノギャップ電極およびその製造方法
US8558326B2 (en) Semiconductor devices having nanochannels confined by nanometer-spaced electrodes
US20090152598A1 (en) Biosensor using silicon nanowire and method of manufacturing the same
US10464061B2 (en) Nanochannel device with three dimensional gradient by single step etching for molecular detection
CN112816679A (zh) 包括流体通道的纳米孔感测器
CN111094174B (zh) 在衬底中的孔形成
CN111133561A (zh) 使用原子层沉积和蚀刻减小孔隙直径的方法
JP6054604B2 (ja) マイクロ・ナノ流体解析デバイスおよびその製造方法
CN111108591B (zh) 形成用于生物应用的自支撑膜的方法
WO2020055501A1 (en) Method of forming a nanopore and resulting structure
Choi et al. Sub-lithographic patterning technology for nanowire model catalysts and DNA label-free hybridization detection
Dhahi Nanogaps formation and characterization via chemical and oxidation methods
Yau IC Compatible Wafer Level Fabrication of Silicon Nanowire Field Effect Transistors for Biosensing Applications
Nazwa et al. Polysilicon Nanogap Formation Using Size Expansion Technique for Biosensor Application

Legal Events

Date Code Title Description
PA0105 International application

Patent event date: 20160325

Patent event code: PA01051R01D

Comment text: International Patent Application

PG1501 Laying open of application
PC1203 Withdrawal of no request for examination
WITN Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid