KR20160034201A - 구리 피복 적층판 및 회로 기판 - Google Patents

구리 피복 적층판 및 회로 기판 Download PDF

Info

Publication number
KR20160034201A
KR20160034201A KR1020150130328A KR20150130328A KR20160034201A KR 20160034201 A KR20160034201 A KR 20160034201A KR 1020150130328 A KR1020150130328 A KR 1020150130328A KR 20150130328 A KR20150130328 A KR 20150130328A KR 20160034201 A KR20160034201 A KR 20160034201A
Authority
KR
South Korea
Prior art keywords
clad laminate
copper foil
copper
copper clad
layer
Prior art date
Application number
KR1020150130328A
Other languages
English (en)
Inventor
마코토 오노
아야카 다시마
Original Assignee
신닛테츠 수미킨 가가쿠 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 신닛테츠 수미킨 가가쿠 가부시키가이샤 filed Critical 신닛테츠 수미킨 가가쿠 가부시키가이샤
Publication of KR20160034201A publication Critical patent/KR20160034201A/ko

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/036Multilayers with layers of different types
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0335Layered conductors or foils
    • H05K2201/0355Metal foils

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Laminated Bodies (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)

Abstract

(과제) 압연 구리박을 재료로서 사용하고, 치수 안정성이 우수하고, 또한 안정적으로 생산이 가능한 구리 피복 적층판을 제공한다.
(해결 수단) 폴리이미드 절연층과, 폴리이미드 절연층의 편측의 면에 적층하여 형성된 제 1 구리박층을 구비한 구리 피복 적층판으로서, 제 1 구리박층은, 두께가 13 ㎛ 이하이고, 또한 두께 (㎛) 와 인장 탄성률 (㎬) 의 곱이 180 ∼ 250 의 범위 내인 압연 구리박으로 이루어진다. 바람직하게는, 폴리이미드 절연층이, 제 1 구리박층에 폴리이미드의 전구체 용액을 도포하여 건조시킨 후, 이미드화함으로써 형성된 것이다.

Description

구리 피복 적층판 및 회로 기판 {COPPER-CLAD LAMINATE AND CIRCUIT SUBSTRATE}
본 발명은 구리 피복 적층판 (CCL) 및 그것을 사용한 회로 기판에 관한 것이다.
최근 전자 기기의 소형화, 경량화, 스페이스 절약화의 진전에 수반하여, 얇고 경량이며, 가요성을 갖고, 굴곡을 반복해도 우수한 내구성을 갖는 플렉시블 프린트 배선판 (FPC ; Flexible Printed Circuits) 의 수요가 증대하고 있다. FPC 는, 한정된 스페이스에서도 입체적이고 또한 고밀도의 실장이 가능하기 때문에, 예를 들어, HDD, DVD, 휴대 전화 등의 전자 기기의 가동 부분의 배선이나, 케이블, 커넥터 등의 부품에 그 용도가 확대되고 있다.
FPC 는, 구리 피복 적층판 (CCL) 의 구리층을 에칭하여 배선 가공함으로써 제조된다. 휴대 전화나 스마트폰에 있어서, 연속 굴곡이나 180 °절곡되는 FPC 에는, 구리층의 재료로서 압연 구리박이 많이 사용되고 있다. 예를 들어, 특허문헌 1 에서는, 압연 구리박을 사용하여 제조된 구리 피복 적층판의 내굴곡성을 내폴딩 횟수로 규정하는 제안이 이루어져 있다. 또, 특허문헌 2 에서는, 광택도와 절곡 횟수로 규정된 압연 구리박을 사용한 구리 피복 적층판이 제안되어 있다.
구리 피복 적층판에 대한 포토리소그래피 공정이나, FPC 실장의 과정에서는, 구리 피복 적층판에 형성된 얼라이먼트 마크를 기준으로 접합, 절단, 노광, 에칭 등의 다양한 가공이 실시된다. 이들 공정에서의 가공 정밀도는, FPC 를 탑재한 전자 기기의 신뢰성을 유지하는 데에 있어서 중요해진다. 그러나, 구리 피복 적층판은, 열팽창계수가 상이한 구리층과 수지층을 적층한 구조를 갖기 때문에, 구리층과 수지층의 열팽창계수의 차이에 의해 층간에 응력이 발생한다. 이 응력은, 그 일부분 또는 전부가, 구리층을 에칭하여 배선 가공한 경우에 해방됨으로써 신축을 일으키게 하여, 배선 패턴의 치수를 변화시키는 요인이 된다. 그 때문에 최종적으로 FPC 의 단계에서 치수 변화가 일어나고, 배선간 혹은 배선과 단자의 접속 불량을 일으키는 원인이 되어, 회로 기판의 신뢰성이나 수율을 저하시킨다. 따라서, 회로 기판 재료로서의 구리 피복 적층판에 있어서, 치수 안정성은 매우 중요한 특성이다. 그러나, 상기 특허문헌 1, 2 에서는, 구리 피복 적층판의 치수 안정성에 대해서는 전혀 고려되고 있지 않다.
또한, 구리 피복 적층판을 제조할 때, 압연 구리박에 폴리이미드 전구체를 캐스팅하는 방법 (캐스트법) 을 채용함으로써, 라미네이트 제법과 비교하여 구리 피복 적층판의 치수 안정성을 개선시킬 수 있다. 그러나, 캐스트법에 의해 장척의 구리박으로 구리 피복 적층판을 제조할 때에는, 코르게이션이라고 불리는 요철이 발생하기 쉬워, 안정적인 생산이 곤란해진다는 문제가 있었다.
일본 공개특허공보 2014-15674호 (특허청구범위 등) 일본 공표특허공보 2014-11451호 (특허청구범위 등)
본 발명은, 압연 구리박을 재료로서 사용하고, 치수 안정성이 우수하고, 또한 안정적으로 생산이 가능한 구리 피복 적층판을 제공하는 것을 목적으로 한다.
본 발명의 구리 피복 적층판은, 폴리이미드 절연층과, 그 폴리이미드 절연층의 편측의 면에 적층하여 형성된 제 1 구리박층을 구비한 구리 피복 적층판이다. 본 발명의 구리 피복 적층판은, 상기 폴리이미드 절연층의 열팽창계수가 10 ppm/K 이상 30 ppm/K 이하의 범위 내이다. 또, 본 발명의 구리 피복 적층판에 있어서, 상기 제 1 구리박층은, 두께가 13 ㎛ 이하이고, 또한 두께 (㎛) 와 인장 탄성률 (㎬) 의 곱이 180 ∼ 250 의 범위 내인 압연 구리박으로 이루어지는 것을 특징으로 한다.
본 발명의 구리 피복 적층판은, 상기 폴리이미드 절연층이, 상기 제 1 구리박층에 폴리이미드의 전구체 용액을 도포하여 건조시킨 후, 이미드화함으로써 형성된 것이어도 된다.
본 발명의 구리 피복 적층판은, 추가로 상기 폴리이미드 절연층에 있어서의 상기 제 1 구리박층과는 반대측의 면에 적층된 제 2 구리박층을 구비하고 있어도 된다.
본 발명의 구리 피복 적층판은, 하기의 공정 (1) ∼ (7) :
(1) 장척의 상기 구리 피복 적층판을, 소정의 길이로 절단하여 시험편을 준비하는 공정,
(2) 상기 구리 피복 적층판의 길이 방향을 MD 방향, 폭 방향을 TD 방향으로 하였을 때, 상기 시험편에 있어서 상기 MD 방향 및 상기 TD 방향과 평행한 변을 갖는 가상의 정사각형을 상정하고, 상기 가상의 정사각형의 중심을 포함하는 중심 영역과, 상기 가상의 정사각형에 있어서의 상기 TD 방향의 한 변을 공유하는 2 개의 모서리부의 1 개씩을 포함하는 2 개의 코너 영역에, 각각 직선상의 배열을 포함하는 복수의 마크를 형성하는 공정,
(3) 상기 복수의 마크의 위치를 계측하고, 인접하는 마크와 마크 사이의 거리 L0 을 산출하는 제 1 계측 공정,
(4) 상기 시험편의 상기 구리층의 일부분 또는 전부를 에칭하는 공정,
(5) 에칭 후, 상기 복수의 마크의 위치를 계측하고, 인접하는 마크와 마크 사이의 거리 L1 을 산출하는 제 2 계측 공정,
(6) 상기 에칭 전후에 동일한 2 개의 마크에 대해, 상기 제 1 계측 공정에서 얻어진 거리 L0 과, 상기 제 2 계측 공정에서 얻어진 거리 L1 의 차분 L1 - L0 을 산출하는 공정, 및
(7) 상기 차분 L1 - L0 을, 상기 구리 피복 적층판으로 형성하는 회로 기판에 있어서의 배선 패턴의 스케일로 환산하여 누적 환산 치수 변화량을 구하고, 얻어진 누적 환산 치수 변화량을 상기 배선 패턴의 배선 폭과 배선 간격의 합에 대한 비율로 나타내는 공정,
을 포함하는 시험 방법에 의해 얻어지는, 10 ㎜ 의 회로 기판 사이즈에 있어서의 배선 패턴의 배선 폭과 배선 간격의 합에 대한 누적 환산 치수 변화량의 비율의, 상기 시험편에 있어서의 면내의 편차가 ±2 % 이하이다.
본 발명의 회로 기판은, 상기 어느 하나에 기재된 구리 피복 적층판의 구리박을 배선 회로 가공하여 이루어진다.
본 발명의 구리 피복 적층판은, 두께가 13 ㎛ 이하이고, 또한 두께 (㎛) 와 인장 탄성률 (㎬) 의 곱이 180 ∼ 250 의 범위 내인 압연 구리박으로 이루어지는 제 1 구리박층을 가짐으로써, 치수 안정성과 생산 안정성이 우수하다. 따라서, 본 발명의 구리 피복 적층판을 회로 기판 재료로서 이용함으로써, 회로 기판의 신뢰성과 수율의 향상을 도모할 수 있다.
도 1 은, 본 발명의 일 실시형태에 관련된 구리 피복 적층판의 치수 안정성을 평가하는 평가 방법에 사용하는 구리 피복 적층판과 시험편의 개략 구성을 나타내는 사시도이다.
도 2 는, 시험편에 있어서의 마크 위치를 설명하는 도면이다.
도 3 은, 시험편의 중심 영역의 부분 확대도이다.
도 4 는, 시험편의 코너 영역의 부분 확대도이다.
도 5 는, 구멍과 구멍의 간격의 치수 변화량에 대해 설명하는 도면이다.
도 6 은, 실시예, 비교예에 있어서의 평가 샘플의 설명에 제공하는 도면이다.
도 7 은, 실시예, 비교예에 있어서의 평가 샘플의 조제의 설명에 제공하는 도면이다.
도 8 은, 실시예에 있어서의 FPC 사이즈와 배선 위치 편차율을 나타내는 그래프이다
도 9 는, 비교예에 있어서의 FPC 사이즈와 배선 위치 편차율을 나타내는 그래프이다.
다음으로, 적절히 도면을 참조하면서 본 발명의 실시형태에 대해 설명한다.
<구리 피복 적층판>
본 실시형태의 구리 피복 적층판은, 폴리이미드 절연층과 구리박층으로 구성된다. 구리박층은 폴리이미드 절연층의 편면 또는 양면에 형성되어 있다. 요컨대, 본 실시형태의 구리 피복 적층판은, 편면 구리 피복 적층판 (편면 CCL) 이어도 되고, 양면 구리 피복 적층판 (양면 CCL) 이어도 된다. 편면 CCL 인 경우, 폴리이미드 절연층의 편면에 적층된 구리박층을 본 발명에 있어서의「제 1 구리박층」이라고 한다. 양면 CCL 인 경우, 폴리이미드 절연층의 편면에 적층된 구리박층을 본 발명에 있어서의「제 1 구리박층」이라고 하고, 폴리이미드 절연층에 있어서, 제 1 구리박층이 적층된 면과는 반대측의 면에 적층된 구리박층을 본 발명에 있어서의「제 2 구리박층」이라고 한다. 본 실시형태의 구리 피복 적층판은, 구리박을 에칭하거나 하여 배선 회로 가공하여 구리 배선을 형성하고, FPC 로서 사용된다.
<제 1 구리박층>
본 실시형태의 구리 피복 적층판에 있어서, 제 1 구리박층에 사용되는 구리박 (이하,「제 1 구리박」이라고 기재하는 경우가 있다) 은 압연 구리박으로 이루어진다. 제 1 구리박으로서 압연 구리박을 사용함으로써, 후술하는 바와 같이, 두께와 인장 탄성률의 곱을 고려함으로써, 우수한 치수 안정성과 고굴곡성을 양립 가능한 구리 피복 적층판을 안정적으로 제조할 수 있다. 또, 본 실시형태의 구리 피복 적층판에 있어서는, 제 1 구리박으로서 단변 (폭) 에 대한 장변 (길이) 의 비율 (장변/단변) 이 600 이상인 장척의 구리박을 사용한다.
제 1 구리박의 두께는 13 ㎛ 이하이고, 바람직하게는 6 ∼ 12 ㎛ 의 범위 내가 좋다. 제 1 구리박의 두께가 13 ㎛ 를 초과하면, 구리 피복 적층판 (또는 FPC) 을 절곡하였을 때의 구리박 (또는 구리 배선) 에 가해지는 굽힘 응력이 커짐으로써 내절곡성이 저하되게 된다. 또, 생산 안정성 및 핸들링성의 관점에서, 제 1 구리박의 두께의 하한값은 6 ㎛ 로 하는 것이 바람직하다.
또, 제 1 구리박의 인장 탄성률은, 예를 들어, 10 ∼ 35 ㎬ 의 범위 내인 것이 바람직하고, 15 ∼ 25 ㎬ 의 범위 내가 보다 바람직하다. 본 실시형태에서 제 1 구리박으로서 사용하는 압연 구리박은, 열 처리에 의해 어닐되면 유연성이 높아진다. 따라서, 제 1 구리박의 인장 탄성률이 상기 하한값에 미치지 못하면, 장척의 제 1 구리박으로부터 캐스트법에 의해 구리 피복 적층판을 제조할 때, 제 1 구리박 상에 폴리이미드 절연층을 형성하는 공정에 있어서, 가열에 의해 제 1 구리박 자체의 강성이 저하된다. 그 결과, 구리 피복 적층판에 요철 (코르게이션) 이 발생한다는 문제가 일어난다. 또한, 라미네이트법에 의해 구리 피복 적층판을 제조하는 경우, 상기 코르게이션의 문제는 잘 일어나지 않지만, 충분한 치수 안정성이 얻어지지 않는다.
한편, 인장 탄성률이 상기 상한값을 초과하면 FPC 를 절곡하였을 때에 구리 배선에 의해 큰 굽힘 응력이 가해지게 되고, 그 내절곡성이 저하된다. 또한, 압연 구리박은, 전술한 캐스트법에 의해 구리박 상에 폴리이미드 절연층을 형성할 때의 열 처리 조건이나, 폴리이미드 절연층을 형성한 후의 구리박의 어닐 처리 등에 의해 그 인장 탄성률이 변화하는 경향이 있다. 따라서, 본 실시형태에서는, 최종적으로 얻어진 구리 피복 적층판에 있어서, 제 1 구리박의 인장 탄성률이 상기 범위 내에 있으면 된다.
또, 제 1 구리박은, 그 두께 (㎛) 와 인장 탄성률 (㎬) 의 곱이 180 ∼ 250 의 범위 내이고, 210 ∼ 240 의 범위 내인 것이 바람직하다. 제 1 구리박의 두께와 인장 탄성률의 곱이 180 미만에서는, 장척의 제 1 구리박을 사용하여 캐스트법에 의해 구리 피복 적층판을 제조할 때에 코르게이션이 발생하기 쉬워져 생산 안정성이 저하되고, 250 을 초과하면 내절곡성이 저하된다. 본 실시형태에 있어서는, 제 1 구리박의 두께와 인장 탄성률의 곱을 상기 범위 내로 규정함으로써, 제 1 구리박의 핸들링성과 강성의 밸런스를 잡아, 생산 안정성과 내절곡성의 양립을 도모할 수 있다.
제 1 구리박은, 상기 특성을 충족하는 것이면 특별히 한정되는 것은 아니고, 시판되고 있는 압연 구리박을 사용할 수 있다. 제 1 구리박으로서 바람직한 시판품으로서, 예를 들어, JX 닛코 닛세키 금속 주식회사 제조의 HA-V2 박을 들 수 있다.
<제 2 구리박층>
제 2 구리박층은, 폴리이미드 절연층에 있어서의 제 1 구리박층과는 반대측의 면에 적층되어 있다. 제 2 구리박층에 사용되는 구리박 (제 2 구리박) 으로는 특별히 한정되는 것은 아니고, 예를 들어, 압연 구리박이어도 되고 전해 구리박이어도 된다. 또, 제 2 구리박으로서 시판되고 있는 구리박을 사용할 수도 있다. 또한, 제 2 구리박으로서 제 1 구리박과 동일한 것을 사용해도 된다.
<폴리이미드 절연층>
본 실시형태의 구리 피복 적층판에 있어서, 휨의 발생이나 치수 안정성의 저하를 방지하기 위해, 폴리이미드 절연층 전체적으로 열팽창계수 (CTE) 가 10 ppm/K 이상 30 ppm/K 이하의 범위 내인 것이 중요하다. 폴리이미드 절연층의 열팽창계수 (CTE) 는 10 ppm/K 이상 25 ppm/K 이하의 범위 내가 바람직하다. 열팽창계수 (CTE) 가 10 ppm/K 미만이거나, 또는 30 ppm/K 를 초과하면, 구리 피복 적층판에 휨이 발생하거나, 치수 안정성이 저하되거나 한다. 또, 본 실시형태의 구리 피복 적층판에 있어서, 구리의 열팽창계수 (CTE) 에 대해 폴리이미드 절연층의 열팽창계수 (CTE) 가 ±5 ppm/K 이하의 범위 내가 보다 바람직하고, ±2 ppm/K 이하의 범위 내가 가장 바람직하다.
본 실시형태의 구리 피복 적층판에 있어서, 폴리이미드 절연층의 두께는, 구리박층의 두께나 강성 등에 따라 소정의 범위 내의 두께로 설정할 수 있다. 폴리이미드 절연층의 두께는, 예를 들어 8 ∼ 50 ㎛ 의 범위 내에 있는 것이 바람직하고, 11 ∼ 26 ㎛ 의 범위 내에 있는 것이 보다 바람직하다. 폴리이미드 절연층의 두께가 상기 하한값에 미치지 못하면, 전기 절연성을 담보할 수 없는 경우나, 핸들링성의 저하에 의해 제조 공정에서 취급이 곤란해지는 등의 문제가 일어나는 경우가 있다. 한편, 폴리이미드 절연층의 두께가 상기 상한값을 초과하면 FPC 를 절곡하였을 때에 구리 배선에 의해 굽힘 응력이 가해지게 되어, 그 내절곡성을 저하시키는 경우가 있다.
또, 폴리이미드 절연층의 인장 탄성률은 3.0 ∼ 10.0 ㎬ 의 범위 내인 것이 바람직하고, 4.5 ∼ 8.0 ㎬ 의 범위 내인 것이 좋다. 폴리이미드 절연층의 인장 탄성률이 3.0 ㎬ 에 미치지 못하면, 폴리이미드 자체의 강도가 저하됨으로써, 구리 피복 적층판을 회로 기판으로 가공할 때에 필름의 갈라짐 등의 핸들링상의 문제가 일어나는 경우가 있다. 반대로, 폴리이미드 절연층의 인장 탄성률이 10.0 ㎬ 을 초과하면, 구리 피복 적층판의 절곡에 대한 강성이 상승하는 결과, 구리 피복 적층판을 절곡하였을 때에 구리 배선에 가해하는 굽힘 응력이 상승하여, 내절곡성이 저하된다.
폴리이미드 절연층으로는, 시판되는 폴리이미드 필름을 그대로 사용할 수도 있지만, 그 두께나 물성의 컨트롤의 용이함으로부터, 폴리아미드산 용액을 구리박 상에 직접 도포한 후, 열 처리에 의해 건조, 경화시키는 소위 캐스트법에 의해 형성된 것이 바람직하다. 또, 폴리이미드 절연층은 단층만으로 형성되는 것이어도 되지만, 폴리이미드 절연층과 제 1 구리박층의 접착성 등을 고려하면 복수층으로 이루어지는 것이 바람직하다. 폴리이미드 절연층을 복수층으로 하는 경우, 상이한 구성 성분으로 이루어지는 폴리아미드산 용액 상에 다른 폴리아미드산 용액을 순차적으로 도포하여 형성할 수 있다. 폴리이미드 절연층이 복수층으로 이루어지는 경우, 동일한 구성의 폴리이미드 전구체 수지를 2 회 이상 사용해도 된다.
폴리이미드 절연층은 복수층으로 하는 것이 바람직한데, 그 구체예로는, 폴리이미드 절연층을, 저열팽창성 폴리이미드층과, 고열팽창성 폴리이미드층을 포함하는 적층 구조로 하는 것이 바람직하다. 여기서, 저열팽창성 폴리이미드층은, 열팽창계수가 35 × 10-6/K 미만, 바람직하게는 1 × 10-6 ∼ 30 × 10-6/K 의 범위 내, 특히 바람직하게는 3 × 10-6 ∼ 25 × 10-6/K 의 범위 내인 폴리이미드층을 말한다. 또, 고열팽창성 폴리이미드층은, 열팽창계수가 35 × 10-6/K 이상, 바람직하게는 35 × 10-6 ∼ 80 × 1O-6/K 의 범위 내, 특히 바람직하게는 35 × 10-6 ∼ 70 × 10-6/K 의 범위 내인 폴리이미드층을 말한다. 폴리이미드층은, 사용하는 원료의 조합, 두께, 건조·경화 조건을 적절히 변경함으로써 원하는 열팽창계수를 갖는 폴리이미드층으로 할 수 있다.
상기 폴리이미드 절연층을 형성하는 폴리아미드산 용액은, 공지된 디아민과 산 무수물을 용매의 존재하에서 중합하여 제조할 수 있다.
폴리이미드의 원료로서 사용되는 디아민으로는, 예를 들어, 4,6-디메틸-m-페닐렌디아민, 2,5-디메틸-p-페닐렌디아민, 2,4-디아미노메시틸렌, 4,4'-메틸렌디-o-톨루이딘, 4,4'-메틸렌디-2,6-자일리딘, 4,4'-메틸렌-2,6-디에틸아닐린, 2,4-톨루엔디아민, m-페닐렌디아민, p-페닐렌디아민, 4,4'-디아미노디페닐프로판, 3,3'-디아미노디페닐프로판, 4,4'-디아미노디페닐에탄, 3,3'-디아미노디페닐에탄, 4,4'-디아미노디페닐메탄, 3,3'-디아미노디페닐메탄, 2,2-비스[4-(4-아미노페녹시)페닐]프로판, 4,4'-디아미노디페닐술파이드, 3,3'-디아미노디페닐술파이드, 4,4'-디아미노디페닐술폰, 3,3'-디아미노디페닐술폰, 4,4'-디아미노디페닐에테르, 3,3-디아미노디페닐에테르, 1,3-비스(3-아미노페녹시)벤젠, 1,3-비스(4-아미노페녹시)벤젠, 1,4-비스(4-아미노페녹시)벤젠, 벤지딘, 3,3'-디아미노비페닐, 3,3'-디메틸-4,4'-디아미노비페닐, 3,3'-디메톡시벤지딘, 4,4'-디아미노-p-터페닐, 3,3'-디아미노-p-터페닐, 비스(p-아미노시클로헥실)메탄, 비스(p-β-아미노-t-부틸페닐)에테르, 비스(p-β-메틸-δ-아미노펜틸)벤젠, p-비스(2-메틸-4-아미노펜틸)벤젠, p-비스(1,1-디메틸-5-아미노펜틸)벤젠, 1,5-디아미노나프탈렌, 2,6-디아미노나프탈렌, 2,4-비스(β-아미노-t-부틸)톨루엔, 2,4-디아미노톨루엔, m-자일렌-2,5-디아민, p-자일렌-2,5-디아민, m-자일릴렌디아민, p-자일릴렌디아민, 2,6-디아미노피리딘, 2,5-디아미노피리딘, 2,5-디아미노-1,3,4-옥사디아졸, 피페라진, 2,2'-디메틸-4,4'-디아미노비페닐, 3,7-디아미노디벤조푸란, 1,5-디아미노플루오렌, 디벤조-p-디옥신-2,7-디아민, 4,4'-디아미노벤질 등을 들 수 있다.
또, 폴리이미드의 원료로서 사용되는 산 무수물로는, 예를 들어, 피로멜리트산 2무수물, 3,3',4,4'-벤조페논테트라카르복실산 2무수물, 2,2',3,3'-벤조페논테트라카르복실산 2무수물, 2,3,3',4'-벤조페논테트라카르복실산 2무수물, 나프탈렌-1,2,5,6-테트라카르복실산 2무수물, 나프탈렌-1,2,4,5-테트라카르복실산 2무수물, 나프탈렌-1,4,5,8-테트라카르복실산 2무수물, 나프탈렌-1,2,6,7-테트라카르복실산 2무수물, 4,8-디메틸-1,2,3,5,6,7-헥사하이드로나프탈렌-1,2,5,6-테트라카르복실산 2무수물, 4,8-디메틸-1,2,3,5,6,7-헥사하이드로나프탈렌-2,3,6,7-테트라카르복실산 2무수물, 2,6-디클로로나프탈렌-1,4,5,8-테트라카르복실산 2무수물, 2,7-디클로로나프탈렌-1,4,5,8-테트라카르복실산 2무수물, 2,3,6,7-테트라클로로나프탈렌-1,4,5,8-테트라카르복실산 2무수물, 1,4,5,8-테트라클로로나프탈렌-2,3,6,7-테트라카르복실산 2무수물, 3,3',4,4'-비페닐테트라카르복실산 2무수물, 2,2',3,3'-비페닐테트라카르복실산 2무수물, 2,3,3',4'-비페닐테트라카르복실산 2무수물, 3,3",4,4"-p-터페닐테트라카르복실산 2무수물, 2,2",3,3"-p-터페닐테트라카르복실산 2무수물, 2,3,3",4"-p-터페닐테트라카르복실산 2무수물, 2,2-비스(2,3-디카르복시페닐)-프로판 2무수물, 2,2-비스(3,4-디카르복시페닐)-프로판 2무수물, 비스(2,3-디카르복시페닐)에테르 2무수물, 비스(2,3-디카르복시페닐)메탄 2무수물, 비스(3.4-디카르복시페닐)메탄 2무수물, 비스(2,3-디카르복시페닐)술폰 2무수물, 비스(3,4-디카르복시페닐)술폰 2무수물, 1,1-비스(2,3-디카르복시페닐)에탄 2무수물, 1,1-비스(3,4-디카르복시페닐)에탄 2무수물, 페릴렌-2,3,8,9-테트라카르복실산 2무수물, 페릴렌-3,4,9,10-테트라카르복실산 2무수물, 페릴렌-4,5,10,11-테트라카르복실산 2무수물, 페릴렌-5,6,11.12-테트라카르복실산 2무수물, 페난트렌-1,2,7,8-테트라카르복실산 2무수물, 페난트렌-1,2,6,7-테트라카르복실산 2무수물, 페난트렌-1,2,9,10-테트라카르복실산 2무수물, 시클로펜탄-1,2,3,4-테트라카르복실산 2무수물, 피라진-2,3,5,6-테트라카르복실산 2무수물, 피롤리딘-2,3,4,5-테트라카르복실산 2무수물, 티오펜-,3,4,5-테트라카르복실산 2무수물, 4,4'-옥시디프탈산 2무수물, 2,3,6,7-나프탈렌테트라카르복실산 2무수물 등을 들 수 있다.
상기 디아민 및 산 무수물은, 각각 1 종만을 사용해도 되고, 2 종 이상을 병용할 수도 있다. 또, 중합에 사용되는 용매는, 디메틸아세트아미드, N-메틸피롤리디논, 2-부타논, 디글라임, 자일렌 등을 들 수 있고, 1 종 또는 2 종 이상 병용하여 사용할 수도 있다.
열팽창계수 35 × 10-6/K 미만의 저열팽창성 폴리이미드층을 형성하려면, 원료인 산 무수물 성분으로서 피로멜리트산 2무수물, 3,3',4,4'-비페닐테트라카르복실산 2무수물을, 디아민 성분으로는 2,2'-디메틸-4,4'-디아미노비페닐, 2-메톡시-4,4'-디아미노벤즈아닐리드를 사용하는 것이 좋고, 특히 바람직하게는 피로멜리트산 2무수물 및 2,2'-디메틸-4,4'-디아미노비페닐을 원료 각 성분의 주성분으로 하는 것이 좋다.
또, 열팽창계수 35 × 10-6/K 이상의 고열팽창성 폴리이미드층을 형성하려면, 원료인 산 무수물 성분으로서 피로멜리트산 2무수물, 3,3',4,4'-비페닐테트라카르복실산 2무수물, 3,3',4,4'-벤조페논테트라카르복실산 2무수물, 3,3',4,4'-디페닐술폰테트라카르복실산 2무수물을, 디아민 성분으로는 2,2'-비스[4-(4-아미노페녹시)페닐]프로판, 4,4'-디아미노디페닐에테르, 1,3-비스(4-아미노페녹시)벤젠을 사용하는 것이 좋고, 특히 바람직하게는 피로멜리트산 2무수물 및 2,2'-비스[4-(4-아미노페녹시)페닐)프로판을 원료 각 성분의 주성분으로 하는 것이 좋다. 또한, 이와 같이 하여 얻어지는 고열팽창성 폴리이미드층의 바람직한 유리 전이 온도는 300 ∼ 400 ℃ 의 범위 내이다.
또, 폴리이미드 절연층을 저열팽창성 폴리이미드층과 고열팽창성 폴리이미드층의 적층 구조로 한 경우, 바람직하게는 저열팽창성 폴리이미드층과 고열팽창성 폴리이미드층의 두께비 (저열팽창성 폴리이미드층/고열팽창성 폴리이미드층) 가 1.5 ∼ 6.0 의 범위 내인 것이 좋다. 이 비의 값이 1.5 에 미치지 못하면 폴리이미드 절연층 전체에 대한 저열팽창성 폴리이미드층이 얇아지기 때문에, 구리박을 에칭하였을 때의 치수 변화율이 커지기 쉽고, 6.0 을 초과하면 고열팽창성 폴리이미드층이 얇아지기 때문에, 폴리이미드 절연층과 구리박의 접착 신뢰성이 저하되기 쉬워진다.
본 실시형태의 구리 피복 적층판은, 하기의 평가 방법에 의해 얻어지는, 10 ㎜ 의 회로 기판 사이즈 (FPC 사이즈) 에 있어서의 배선 패턴의 배선 폭과 배선 간격의 합에 대한 누적 환산 치수 변화량의 비율의, 시험편에 있어서의 면내의 편차가 ±2 % 이하이다. 이 편차의 값이 ±2 % 를 초과하는 경우에는, 구리 피복 적층판으로 가공된 FPC 에 있어서, 배선간 혹은 배선과 단자의 접속 불량을 일으키는 원인이 되어, 회로 기판의 신뢰성이나 수율을 저하시키는 요인이 된다. 여기서, 도 1 ∼ 도 7 을 참조하면서, 본 실시형태에 있어서 사용되는 구리 피복 적층판의 치수 안정성의 평가 방법에 대해 설명한다. 이 평가 방법은, 이하의 공정 (1) ∼ (7) 을 구비하고 있다.
(1) 시험편을 준비하는 공정 :
본 공정에서는, 도 1 에 예시하는 바와 같이, 장척의 구리 피복 적층판 (100) 을 소정의 길이로 절단함으로써 시험편 (10) 을 준비한다. 또한, 이하의 설명에서는, 장척의 구리 피복 적층판 (100) 의 길이 방향을 MD 방향, 폭 방향을 TD 방향이라고 정의한다 (시험편 (10) 에 대해서도 마찬가지이다). 시험편 (10) 은, 정방형에 가까운 형상이 되도록, 구리 피복 적층판 (100) 의 폭 (TD 방향의 길이) 과 절단 간격 (MD 방향의 길이) 이 거의 동등해지도록 하는 것이 바람직하다. 구리 피복 적층판 (100) 은, 도시는 생략하지만 절연 수지층과, 이 절연 수지층의 편측 또는 양측에 적층된 구리층을 갖는다.
본 평가 방법의 대상이 되는 구리 피복 적층판 (100) 은, 임의의 방법으로 조제한 것을 사용할 수 있다. 예를 들어, 구리 피복 적층판 (100) 은, 수지 필름을 준비하고, 이것에 금속을 스퍼터링하여 시드층을 형성한 후, 도금에 의해 구리층을 형성함으로써 조제한 것이어도 된다. 또, 구리 피복 적층판 (100) 은, 수지 필름과 구리박을 열 압착 등의 방법으로 라미네이트함으로써 조제한 것이어도 된다. 또한, 구리 피복 적층판 (100) 은, 구리박 상에 수지 용액을 도포하여 절연 수지층을 형성함으로써 조제한 것이어도 된다.
(2) 시험편에 복수의 마크를 형성하는 공정 :
본 공정에서는, 도 2 에 나타내는 바와 같이, 먼저 시험편 (10) 에 있어서, MD 방향 및 TD 방향과 평행한 변을 갖는 가상의 정사각형 (20) 을 상정한다. 이 가상의 정사각형 (20) 의 한 변의 길이는, 구리 피복 적층판 (100) 의 폭 (TD 방향의 길이) 에 따른 길이로 할 수 있다. 또, 가상의 정사각형 (20) 의 면적은, 멀티캐비티인 경우에 FPC 로 가공하는 범위의 한계까지 평가 대상에 포함하기 때문에, FPC 로 가공하는 범위를 커버할 수 있는 면적으로 설정하는 것이 바람직하다. 따라서, 정사각형 (20) 의 한 변의 길이는, 시험편 (10) 에 있어서의 TD 방향의 길이 (구리 피복 적층판 (100) 의 폭) 의 60 ∼ 90 % 의 범위 내로 하는 것이 바람직하고, 70 ∼ 80 % 의 범위 내로 하는 것이 보다 바람직하다. 예를 들어, 구리 피복 적층판 (100) 의 폭 (TD 방향의 길이) 이 250 ㎜ 인 경우에는, 가상의 정사각형 (20) 의 한 변의 길이는 150 ∼ 225 ㎜ 의 범위 내로 설정하는 것이 바람직하고, 175 ∼ 200 ㎜ 의 범위 내로 설정하는 것이 보다 바람직하다.
다음으로, 도 2 ∼ 도 4 에 나타내는 바와 같이, 가상의 정사각형 (20) 의 중심 (20a) 을 포함하는 중심 영역 (21) 과, 정사각형 (20) 에 있어서의 TD 방향의 한 변을 공유하는 2 개의 모서리부 (20b) 의 1 개씩을 포함하는 2 개의 코너 영역 (23a, 23b) 에 각각 직선상의 배열을 포함하는 복수의 마크를 형성한다. 마크는, 예를 들어 시험편 (10) 을 관통하는 둥근 구멍 (30) 이다. 복수의 구멍 (30) 은 등간격으로 형성하는 것이 바람직하다. 또한, 마크로서의 구멍 (30) 은, 예를 들어 삼각형, 장방형 등의 다각형상이어도 된다. 또, 마크는, 그 위치를 식별할 수 있으면, 관통공에 한정되지 않고, 예를 들어 시험편 (10) 에 홈, 절입 등을 형성한 것이어도 되고, 잉크 등을 이용하여 인쇄한 모양이어도 된다.
<중심 영역>
가상의 정사각형 (20) 의 중심 (20a) 은, 시험편 (10) 의 신축을 측정하기 위한 좌표의 기준이 되는 점에서, 본 평가 방법에서는, 당해 중심 (20a) 을 포함하는 중심 영역 (21) 을 측정 대상으로 한다. 중심 영역 (21) 에 있어서는, 직선상의 배열을 포함하는 한, 복수의 구멍 (30) 을 형성하는 위치는 임의이며, 예를 들어 T 자형, L 자형 등으로 배열해도 되지만, 가상의 정사각형 (20) 의 중심 (20a) 으로부터, MD 방향 및 TD 방향으로 균등하게 배열할 수 있는 십자형이 바람직하다. 즉, 도 3 에 나타내는 바와 같이, 복수의 구멍 (30) 을, 가상의 정사각형 (20) 의 중심 (20a) 을 통과하는 십자형을 따라 MD 방향 및 TD 방향으로 형성하는 것이 바람직하고, 십자형의 교차 부분이 가상의 정사각형 (20) 의 중심 (20a) 과 겹쳐지도록 배치하는 것이 보다 바람직하다. 이 경우, 중심 (20a) 과 겹쳐지는 구멍 (30) 은, MD 방향 및 TD 방향의 양 방향의 배열을 구성하는 구멍 (30) 으로서 중복되어 카운트된다.
또, 중심 영역 (21) 에서는, 시험편 (10) 의 면내에서의 치수 변화의 편차를 포함한 치수 안정성을 정확하게 평가할 수 있도록 하기 위해, 정사각형 (20) 에 있어서의 중심 (20a) 으로부터 MD 방향 및 TD 방향으로, 각각 정사각형 (20) 의 한 변의 길이에 대해 적어도 12.5 % 이상, 바람직하게는 12.5 ∼ 32.5 % 의 범위 내, 보다 바람직하게는 12.5 ∼ 25 % 의 범위 내에 걸쳐 구멍 (30) 을 형성하는 것이 좋다.
<코너 영역>
정사각형 (20) 에 있어서의 TD 방향의 한 변을 공유하는 2 개의 모서리부 (20b) 의 주위는, 도 1 에 나타내는 바와 같은 장척의 구리 피복 적층판 (100) 에 있어서, 가장 신축되기 쉽고, 치수 변화가 커지기 쉬운 영역이다. 그 때문에, 본 평가 방법에서는, 정사각형 (20) 에 있어서의 TD 방향의 한 변을 공유하는 2 개의 모서리부 (20b) 의 1 개씩을 포함하는 2 개의 코너 영역 (23a, 23b) 의 양방을 측정 대상으로 한다.
코너 영역 (23a, 23b) 에 있어서는, 직선상의 배열을 포함하는 한, 구멍 (30) 을 형성하는 위치는 임의이지만, 예를 들어 도 4 에 나타내는 바와 같이, 복수의 구멍 (30) 을, 가상의 정사각형 (20) 의 모서리부 (20b) 를 사이에 두는 2 개의 변을 따라 MD 방향 및 TD 방향으로 L 자형으로 형성하는 것이 바람직하다. 이 경우, 모서리부 (20b) 와 겹쳐지는 구멍 (30) 은, MD 방향 및 TD 방향의 양 방향의 배열을 구성하는 구멍 (30) 으로서 중복되어 카운트된다. 또한, 도 4 는 편방의 코너 영역 (23b) 만을 나타내고 있지만, 타방의 코너 영역 (23a) 에 대해서도 마찬가지이다.
2 개의 코너 영역 (23a, 23b) 에서는, 시험편 (10) 의 면내에서의 치수 변화의 편차를 포함한 치수 안정성을 정확하게 평가할 수 있도록 하기 위해, 정사각형 (20) 에 있어서의 TD 방향의 한 변의 양단 (요컨대, 정사각형 (20) 의 모서리부 (20b)) 으로부터 MD 방향의 중앙측에, 각각 MD 방향의 한 변의 길이에 대해 적어도 12.5 % 이상, 바람직하게는 12.5 ∼ 32.5 % 의 범위 내, 보다 바람직하게는 12.5 ∼ 25 % 의 범위 내에 걸쳐 구멍 (30) 을 형성하는 것이 좋다.
또, 2 개의 코너 영역 (23a, 23b) 에서는, 시험편 (10) 의 면내에서의 치수 변화의 편차를 포함한 치수 안정성을 정확하게 평가할 수 있도록 하기 위해, 정사각형 (20) 에 있어서의 TD 방향의 한 변의 양단 (요컨대, 정사각형 (20) 의 모서리부 (20b)) 으로부터 TD 방향의 중앙측에, 각각 TD 방향의 한 변의 길이에 대해 적어도 12.5 % 이상, 바람직하게는 12.5 ∼ 32.5 % 의 범위 내, 보다 바람직하게는 I2.5 ∼ 25 % 의 범위 내에 걸쳐 구멍 (30) 을 형성하는 것이 좋다.
또, 시험편 (10) 의 면내를 망라하여, 부위마다의 치수 변화를 정확하게 파악할 수 있도록 하기 위해, 중심 영역 (21) 에 있어서 직선상으로 배열된 양단의 구멍 (30) 사이의 배열 범위와, 코너 영역 (23a, 23b) 에 있어서 동일한 방향으로 직선상으로 배열된 양단의 구멍 (30) 사이의 배열 범위가 겹쳐치도록 해도 된다.
구체적으로는, 적어도 중심 영역 (21) 내에서 MD 방향으로 배열되는 복수의 구멍 (30) 의 양단의 위치와, 2 개의 코너 영역 (23a, 23b) 내에서 각각 MD 방향으로 배열되는 복수의 구멍 (30) 중에서 가장 내측 (모서리부 (20b) 에서 먼 측) 의 구멍 (30) 의 위치가, TD 방향으로 평행 이동시켰을 때에 오버랩되도록 배치해도 된다.
마찬가지로, 적어도 중심 영역 (21) 내에서 TD 방향으로 배열되는 복수의 구멍 (30) 중에서 가장 코너 영역 (23a, 23b) 에 근접한 구멍 (30) 의 위치와, 2 개의 코너 영역 (23a, 23b) 내에서 TD 방향으로 각각 배열되는 복수의 구멍 (30) 중에서 가장 내측 (모서리부 (20b) 에서 먼 측) 의 구멍 (30) 의 위치가, MD 방향으로 평행 이동시켰을 때에 오버랩되도록 배치해도 된다.
이상과 같은 배치를 고려하면, 중심 영역 (21) 에서는, 복수의 구멍 (30) 을 십자형으로 배열하는 것이 가장 합리적이고, 또 2 개의 코너 영역 (23a, 23b) 에서는, 복수의 구멍 (30) 을 L 자형으로 배열하는 것이 가장 합리적이다.
시험편 (10) 의 가상의 정사각형 (20) 에 있어서, 구멍 (30) 을 형성하는 범위는, 구멍 (30) 의 크기, 구멍 (30) 의 수, 구멍 (30) 과 구멍 (30) 의 간격의 길이에 따라 조절할 수 있다.
구멍 (30) 의 크기는, 치수 변화의 검출 정밀도를 높이기 위해, 구멍 (30) 과 구멍 (30) 의 간격의 길이의 20 % 이하의 범위 내로 하는 것이 바람직하다.
상기 중심 영역 (21) 과 2 개의 코너 영역 (23a, 23b) 에 형성하는 복수의 구멍 (30) 은, 시험편 (10) 의 면내에서의 치수 변화의 편차를 포함한 치수 안정성을 정확하게 평가할 수 있도록 하기 위해, MD 방향 및 TD 방향의 각각에 있어서, 적어도 11 개 이상의 직선상의 배열을 포함하는 것이 바람직하고, 20 개 이상의 직선상의 배열을 포함하는 것이 보다 바람직하다. 여기서, 구멍 (30) 의 수를 n 개로 하면, 이후의 공정 (3), 공정 (5) 에서 계측의 대상이 되는 이웃하는 구멍 (30) 과 구멍 (30) 의 간격의 수는 n - 1 개소가 된다. 이웃하는 구멍 (30) 과 구멍 (30) 의 간격은, 예를 들어, 구멍 (30) 의 수가 10 개인 경우에는 9 개소가 되고, 구멍 (30) 의 수가 21 개인 경우에는 20 개소가 된다. 이 경우, MD 방향 및 TD 방향에 있어서, 구멍 (30) 의 수는 동일한 것이 바람직하다.
구멍 (30) 과 구멍 (30) 사이의 거리는, 치수 변화의 검출 정밀도를 높이기 위해, 2 ㎜ 이상의 범위 내로 하는 것이 바람직하다.
(3) 제 1 계측 공정 :
본 공정에서는, 복수의 구멍 (30) 의 위치를 측정한다. 그리고, 각 구멍 (30) 의 위치의 측정 결과로부터, 인접하는 구멍 (30) 과 구멍 (30) 사이의 거리 L0 을 산출한다. 예를 들어 구멍 (30) 의 수가 21 개이면, 인접하는 구멍 (30) 과 구멍 (30) 사이의 20 개소의 간격에 대해 거리 L0 을 구한다. 여기서, 인접하는 구멍 (30) 과 구멍 (30) 사이의 거리 L0 은, 도 5 에 나타내는 바와 같이, 어느 구멍 (30) 의 중심 (30a) 에서 인접하는 구멍 (30) 의 중심 (30a) 까지의 거리를 의미한다.
구멍 (30) 의 위치의 계측은 특별히 한정되는 것은 아니고, 예를 들어, 시험편 (10) 의 화상을 기초로 구멍 (30) 의 위치를 검출하는 방법에 의해 실시할 수 있다.
본 공정의 구멍 (30) 의 위치의 계측은, 상기 공정 (2) 에 이어서 실시해도 되지만, 계측 전에 시험편 (10) 의 컨디션을 조정하는 공정을 마련하는 것이 바람직하다. 시험편 (10) 의 컨디션 조정의 일례로서 조습 처리를 들 수 있다. 조습 처리는, 일정한 환경에 일정 시간 (예를 들어 23 ℃, 50 RH% 의 환경에서 24 시간), 시험편 (10) 을 정치 (靜置) 함으로써 실시할 수 있다.
(4) 에칭 공정 :
본 공정에서는, 시험편 (10) 의 구리층의 일부분 또는 전부를 에칭한다. 현실에 입각한 치수 안정성을 평가하기 위해, 에칭의 내용은, 구리 피복 적층판 (100) 으로 형성하는 FPC 의 배선 패턴에 준하여 실시하는 것이 바람직하다. 시험편 (10) 이 양면 구리 피복 적층판으로 조제한 것인 경우에는, 양측의 구리층을 에칭해도 된다. 또한, 실제 FPC 의 가공에 있어서 열 처리를 수반하는 경우에는, 에칭 후에 시험편 (10) 을 임의의 온도로 가열하는 처리를 실시해도 된다.
(5) 제 2 계측 공정 :
본 공정은, 상기 (4) 의 에칭 후에 재차 복수의 구멍 (30) 의 위치를 측정하는 공정이다. 그리고, 각 구멍 (30) 의 위치의 측정 결과로부터, 인접하는 구멍 (30) 과 구멍 (30) 사이의 거리 L1 을 산출한다. 본 공정에 있어서의 구멍 (30) 의 위치의 계측은, 상기 공정 (3) 과 동일한 방법으로 실시할 수 있다. 인접하는 구멍 (30) 과 구멍 (30) 사이의 거리 L1 은, 도 5 에 나타내는 바와 같이, 어느 구멍 (30) 의 중심 (30a) 에서 인접하는 구멍 (30) 의 중심 (30a) 까지의 거리를 의미한다.
본 공정의 구멍 (30) 의 위치의 계측은, 상기 공정 (4) 에 이어서 실시해도 되지만, 상기 공정 (3) 과 마찬가지로, 시험편 (10) 의 컨디션을 조정하는 공정을 마련하는 것이 바람직하다. 특히, 상기 공정 (3) 에서 컨디션 조정을 실시한 경우에는, 본 공정에서도 계측 전에 동일한 조건으로 컨디션 조정을 실시하는 것이 바람직하다.
(6) 치수 변화량을 산출하는 공정 :
본 공정에서는, 도 5 에 나타내는 바와 같이, 에칭 전후에 동일한 2 개의 구멍 (30) 의 간격에 대해, 제 1 계측 공정에서 얻어진 거리 L0 과, 제 2 계측 공정에서 얻어진 거리 L1 의 차분 L1 - L0 을 산출한다. 그리고, 동일한 직선상으로 배열된 구멍 (30) 과 구멍 (30) 의 간격의 2 개소 이상, 바람직하게는 10 개소 이상, 보다 바람직하게는 전부에 대해 마찬가지로 차분 L1 - L0 을 산출한다. 이 차분 L1 - L0 을「치수 변화량 Δ」라고 한다.
(7) 배선 스케일로 환산하는 공정 :
본 공정에서는, 공정 (6) 에서 얻어진 치수 변화량 Δ 를, 구리 피복 적층판 (100) 으로 형성하는 FPC 에 있어서의 배선 패턴의 스케일로 환산하여, 얻어진 환산값을 배선 패턴의 배선 폭과 배선 간격의 합에 대한 비율로 나타낸다. 본 공정에 의해, 시험에 제공한 구리 피복 적층판 (100) 을 실제로 FPC 로 가공한 경우, FPC 의 배선 패턴에 대해, 구리 피복 적층판 (100) 의 치수 변화가 주는 영향을 알기 쉽게 표현할 수 있다.
본 공정에서는, 먼저, 치수 변화량 Δ 를, 구리 피복 적층판 (100) 으로 형성할 예정인 FPC 에 있어서의 L/S 의 배선 패턴에서의 배선 폭/배선 간격의 스케일로 환산하여, 환산된 치수 변화량을 누적하여 누적 환산 치수 변화량을 구한다. 예를 들어 에칭 전의 2 개의 구멍 (30) 사이의 거리 L0 이 X ㎜ 이고, 형성 예정인 FPC 에 있어서의 배선 패턴에서의 배선 폭과 배선 간격이 각각 거리 L0 의 1/Y 인 경우, 다음 식에 기초하여 치수 변화량 Δ 를 2 × (1/Y) 의 스케일로 다운사이징하였을 때의 값으로 환산하여, 2 × (1/Y) 의 스케일의 누적 환산 치수 변화량을 구한다.
누적 환산 치수 변화량 = [Σi=1 i(2 × Δi/Y)]
다음으로, 누적 환산 치수 변화량으로부터, 다음 식에 기초하여 배선의 위치 편차 비율을 구한다. 이 배선의 위치 편차 비율은, 누적 환산 치수 변화량을 형성 예정인 L/S 의 배선 패턴에 있어서의 배선 폭 (L ㎜) 과 배선 간격 (S ㎜) 의 합에 대한 비율로 나타낸 것이다.
배선의 위치 편차 비율 (%) = {[Σi=1 i(2 × Δi/Y)]/[L + S]} × 100
이상과 같이 하여 산출한 FPC 에 있어서의 MD 방향 및 TD 방향의 배선의 위치 편차 비율을 그래프 상에 플롯함으로써, FPC 사이즈에 따른 근사 직선이 얻어진다. 여기서,「FPC 사이즈」란, FPC 에 있어서 형성된 복수의 배선 중에서 가장 떨어진 양단의 배선 사이의 거리를 의미한다. 그래프의 기울기의 대소는, 배선의 위치 편차의 대소를 의미하고, 그래프의 기울기의 편차의 대소는, 배선의 위치 편차의 면내 편차의 대소를 의미한다.
본 공정에 의해, 시험에 제공한 구리 피복 적층판 (100) 을 실제로 회로로 가공한 경우, FPC 의 배선 패턴에 대해, 구리 피복 적층판 (100) 의 치수 변화가 주는 영향을 알기 쉽게 표현할 수 있다. 또, 근사 직선의 그래프를 작성함으로써, FPC 사이즈에 따라 피시험체인 구리 피복 적층판 (100) 으로 제조되는 배선의 위치 편차의 크기나 면내의 편차를 가시화하여 표현할 수 있다.
또한, 상기 공정 (6) 에 있어서 얻어진 치수 변화량 Δ 를 누적시킨 후, 누적 치수 변화량을 구리 피복 적층판 (1OO) 으로 형성할 예정인 FPC 에 있어서의 L/S 의 배선 패턴에서의 배선 폭/배선 간격의 스케일로 환산하여, 누적 환산 치수 변화량을 구할 수도 있다. 예를 들어, 각각의 간격에 있어서의 치수 변화량 Δ 를 누적시켜, 누적 치수 변화량 Σ 를 얻는다. 이 누적 치수 변화량 Σ 는, 다음 식에 의해 산출할 수 있다.
Σ = Δ1 + Δ2 + Δ3 + … + Δi = Σi=1 iΔi
상기 식에 있어서, 기호 Σi=1 i 는 1 에서 i 까지의 총합을 나타낸다. 또, 치수 변화량 Δ 는, 에칭 후에 있어서의 제 n 번째의 구멍 (30) 과 제 n - 1 번째의 구멍 (30) 의 거리 L1 에서, 에칭 전에 있어서의 제 n 번째의 구멍 (30) 과 제 n - 1 번째의 구멍 (30) 의 거리 L0 을 뺀 값을 나타낸다 (여기서, n 은 2 이상의 정수이다). Δ1 은 제 1 번째의 간격의 길이 (이웃하는 2 개의 구멍 (30) 사이의 거리) 의 치수 변화량이고, Δi 는 제 i 번째 (i 는 양의 정수를 의미한다) 의 간격의 길이의 치수 변화량이다.
누적 치수 변화량 Σ 는, 구리 피복 적층판 (100) 의 MD 방향, TD 방향 중 어느 편방, 바람직하게는 양방에 대해 구할 수 있다. 누적 치수 변화량 Σ 의 대소에 의해, 구리 피복 적층판 (1OO) 의 MD 방향, TD 방향의 치수 안정성을 평가할 수 있다. 또, 누적 치수 변화량 Σ 의 실측값에 기초하여, 스케일 업된 근사 직선이 얻어진다.
이상과 같이, 본 평가 방법에 의하면, 공정 (1) ∼ (7) 에 의해 구리 피복 적층판 (100) 의 치수 변화를 면내에서의 편차를 포함하여 고정밀도로 평가하는 것이 가능해진다. 또, 구리 피복 적층판 (100) 으로부터 멀티캐비티를 실시하는 경우에도, FPC 에 대한 가공 영역마다 개별적으로 치수 안정성을 평가하는 것이 가능해진다.
<구리 피복 적층판의 제조>
본 실시형태의 구리 피복 적층판은, 예를 들어, 제 1 구리박의 표면에 폴리이미드 전구체 수지 용액 (폴리아미드산 용액이라고도 한다) 을 도공하고, 이어서 건조, 경화시키는 열 처리 공정을 거쳐 제조할 수 있다. 열 처리 공정에 있어서의 열 처리는, 도공된 폴리아미드산 용액을 160 ℃ 미만의 온도에서 폴리아미드산 중의 용매를 건조 제거한 후, 다시 150 ℃ 내지 400 ℃ 의 온도 범위에서 단계적으로 승온시키고, 경화시킴으로써 실시된다. 이와 같이 하여 얻어진 편면 구리 피복 적층판을 양면 구리 피복 적층판으로 하려면, 상기 편면 구리 피복 적층판과, 이것과는 별도로 준비한 구리박 (제 2 구리박) 을 300 ∼ 400 ℃ 에서 열 압착하는 방법을 들 수 있다.
<FPC>
본 실시형태의 구리 피복 적층판은 주로 FPC 재료로서 유용하다. 즉, 본 실시형태의 구리 피복 적층판의 구리박을 통상적인 방법에 의해 패턴상으로 가공하여 배선층을 형성함으로써, 본 발명의 일 실시형태인 FPC 를 제조할 수 있다.
실시예
(합성예 1)
열전쌍 및 교반기를 구비함과 함께 질소 도입이 가능한 반응 용기에 N,N-디메틸아세트아미드를 넣고, 이 반응 용기에 2,2-비스[4-(4-아미노페녹시)페닐]프로판 (BAPP) 을 투입하여 용기 중에서 교반하면서 용해시켰다. 다음으로, 피로멜리트산 2무수물 (PMDA) 을 모노머의 투입 총량이 12 wt% 가 되도록 투입하였다. 그 후, 3 시간 교반을 계속하고 중합 반응을 실시하여, 폴리아미드산 a 의 수지 용액을 얻었다. 폴리아미드산 a 로 형성된 두께 25 ㎛ 의 폴리이미드 필름의 열팽창계수 (CTE) 는 55 × 10-6/K 였다.
(합성예 2)
열전쌍 및 교반기를 구비함과 함께 질소 도입이 가능한 반응 용기에 N,N-디메틸아세트아미드를 넣고, 이 반응 용기에 2,2'-디메틸-4,4'-디아미노비페닐 (m-TB) 을 투입하여 용기 중에서 교반하면서 용해시켰다. 다음으로, 3,3',4,4'-비페닐테트라카르복실산 2무수물 (BPDA) 및 피로멜리트산 2무수물 (PMDA) 을 모노머의 투입 총량이 15 wt%, 각 산 무수물의 몰비율 (BPDA : PMDA) 이 20 : 80 이 되도록 투입하였다. 그 후, 3 시간 교반을 계속하고 중합 반응을 실시하여, 폴리아미드산 b 의 수지 용액을 얻었다. 폴리아미드산 b 로 형성된 두께 25 ㎛ 의 폴리이미드 필름의 열팽창계수 (CTE) 는 22 × 10-6/K 였다.
(실시예)
<플렉시블 구리 피복 적층판의 제조>
장척의 구리박 (예를 들어, JX 닛코 닛세키 금속 주식회사 제조의 GHY5-93F-HA-V2 박) 의 표면에, 합성예 1 에서 조제한 폴리이미드 전구체인 폴리아미드산 a 의 수지 용액 (폴리아미드산 용액이라고도 한다) 을 도공·건조시켰다. 이어서, 합성예 2, 합성예 1 에서 각각 조제한 폴리아미드산 b, 폴리아미드산 a 의 수지 용액을 순차적으로 동일하게 도공·건조시킨 후에 경화시키는 열 처리 공정을 거쳐, 두께 25 ㎛ 의 폴리이미드층을 형성시켰다. 열 처리 공정에 있어서의 열 처리는, 도공된 폴리아미드산 용액을 160 ℃ 미만의 온도에서 폴리아미드산 중의 용매를 건조 제거한 후, 다시 150 ℃ 내지 400 ℃ 의 온도 범위에서 단계적으로 승온시키고, 경화시킴으로써 실시하였다. 이 과정에서, 편면 구리 피복 적층판에 코르게이션의 발생은 관찰되지 않았다. 이와 같이 하여 얻어진 편면 구리 피복 적층판과, 이것과는 별도로 준비한 구리박을 300 ∼ 400 ℃ 에서 열 압착함으로써, 양면 구리 피복 적층판을 제조하였다.
얻어진 양면 구리 피복 적층판으로부터, 평가용 샘플의 재료로서 구리 피복 적층판 1 (단폭 ; 250 ㎜) 을 준비하였다.
구리 피복 적층판 1 :
장척상, 실시예 방법으로 제조한 양면 구리 피복 적층판, 절연층의 두께 ; 25 ㎛, 절연층의 CTE ; 17 ppm/K, 제 1 구리박층 ; JX 닛코 닛세키 금속 주식회사 제조의 GHY5-93F-HA-V2 박, 제 1 구리박층의 두께 ; 12 ㎛, 제 1 구리박층의 CTE ; 17 ppm, 제 1 구리박층의 인장 탄성률 18 ㎬, 제 1 구리박층의 두께와 인장 탄성률의 곱 ; 216.
(비교예)
평가용 샘플의 재료로서 구리 피복 적층판 2 (단폭 ; 250 ㎜) 를 준비하였다.
구리 피복 적층판 2 :
장척상, 범용 라미네이트재, 절연층의 두께 ; 25 ㎛, 구리박층 ; JX 닛코 닛세키 금속 주식회사 제조의 BHY-82F-HA 박, 구리박층의 두께 ; 12 ㎛, 라미네이트법에 의해 폴리이미드 필름 (카네카사 제조, 상품명 ; 픽시오) 의 양면에 구리박을 열 압착한 것. 구리박층의 인장 탄성률 14 ㎬, 구리박층의 두께와 인장 탄성률의 곱 ; 168.
<평가용 샘플의 조제>
상기 구리 피복 적층판 1 또는 2 를 MD 방향으로 길이 250 ㎜ 로 절단하여, MD : 250 ㎜ × TD : 250 ㎜ 로 하였다. 도 6 에 나타낸 바와 같이, 절단 후의 구리 피복 적층판에 있어서의 MD : 200 ㎜ × TD : 200 ㎜ 의 범위로 가상의 정사각형을 상정하였다. 이 가상의 정사각형의 TD 방향의 한 변을 공유하는 2 개의 모서리부를 1 개씩 포함하는 좌우 2 개의 코너 영역 (Left 및 Right) 그리고 가상의 정사각형의 중심을 포함하는 중앙 영역 (Center) 의 각각에 있어서, MD 및 TD 방향으로 2.5 ㎜ 간격으로 연속해서 21 개의 펀칭 가공을 실시하여, 평가용 샘플을 조제하였다. 또한, 펀청 가공은 직경 0.105 ㎜ 의 드릴을 사용하였다.
<치수 안정성의 평가>
비접촉 CNC 화상 측정기 (Mitutoyo 사 제조, 상품명 : 퀵 비전 QV-X404PIL-C) 를 사용하여, 평가용 샘플에 있어서의 양면의 구리박층의 전부를 에칭하여 제거한 전후에 있어서의 각 구멍의 위치를 측정하였다. 측정값으로부터 에칭 전후에 있어서의 이웃하는 2 구멍간 거리의 치수 변화량 및 누적 치수 변화량을 산출하였다.
장척상의 구리 피복 적층판 1 및 2 를 준비하고, 도 7 에 나타내는 바와 같이, 평가용 샘플 1, 2 를 조제하였다. 평가용 샘플 1, 2 의 각각에 대해, Center, Left 및 Right 에 있어서의 에칭 전후의 각 구멍의 위치를 측정하였다. 측정값으로부터 에칭 전후에 있어서의 이웃하는 2 구멍간의 거리의 치수 변화량 및 그것들의 합계 (20 개소) 의 누적 치수 변화량을 산출하였다.
구리 피복 적층판 1 에 있어서의 평가 결과를 기초로, MD 방향의 누적 치수 변화량과 편차를 표 1 에 나타내고, 도 8 에는 FPC 사이즈와 배선 위치 편차율의 관계를 나타냈다. 마찬가지로 구리 피복 적층판 2 에 있어서의 평가 결과를 기초로, MD 의 누적 치수 변화량과 그 편차를 표 2 에 나타내고, 도 9 에는 FPC 사이즈와 배선 위치 편차율의 관계를 나타냈다. 또한, 표 1 및 표 2 그리고 도 8 및 도 9 에서는, Left, Center, Right 에 있어서의 누적 치수 변화율과 누적 치수 변화량을 상정 FPC 사이즈 10 ㎜ 로 환산한 누적 환산 치수 변화량으로 나타내고 있고, Left, Center, Right 의 전체 범위에 있어서의 편차도 나타내고 있다. 표 중의「범위」의 수치는 중앙값 ± 상하 범위를 의미한다.
Figure pat00001
Figure pat00002
이들 결과로부터, 구리 피복 적층판 1 및 구리 피복 적층판 2 를 재료로 하여 형성한 회로 배선 기판 (L/S = 0.025 ㎜/0.0025 ㎜) 에 대해, 배선의 위치 편차율 및 시험편의 면내에서의 치수 변화율의 편차를 평가할 수 있는 것을 확인함과 함께, 실시예의 구리 피복 적층판 1 에 있어서의 각 FPC 사이즈에서의 배선 위치 편차율의 편차가, 비교예의 구리 피복 적층판 2 에 있어서의 것과 비교하여 작은 것을 확인할 수 있었다.
이상, 본 발명의 실시형태를 예시의 목적으로 상세하게 설명하였지만, 본 발명은 상기 실시형태에 제약되는 것은 아니며, 여러 가지 변형이 가능하다.
10 : 시험편
20 : 가상의 정사각형
20a : 중심
20b : 모서리부
21 : 중심 영역
23a, 23b : 코너 영역
30 : 구멍
100 : 구리 피복 적층판

Claims (5)

  1. 폴리이미드 절연층과, 상기 폴리이미드 절연층의 편측의 면에 적층하여 형성된 제 1 구리박층을 구비한 구리 피복 적층판으로서,
    상기 폴리이미드 절연층의 열팽창계수가 10 ppm/K 이상 30 ppm/K 이하의 범위 내이고,
    상기 제 1 구리박층은, 두께가 13 ㎛ 이하이고, 또한 두께 (㎛) 와 인장 탄성률 (㎬) 의 곱이 180 ∼ 250 의 범위 내인 압연 구리박으로 이루어지는 것을 특징으로 하는 구리 피복 적층판.
  2. 제 1 항에 있어서,
    상기 폴리이미드 절연층이, 상기 제 1 구리박층에 폴리이미드의 전구체 용액을 도포하여 건조시킨 후, 이미드화함으로써 형성된 것인, 구리 피복 적층판.
  3. 제 1 항 또는 제 2 항에 있어서,
    추가로 상기 폴리이미드 절연층에 있어서의 상기 제 1 구리박층과는 반대측의 면에 적층된 제 2 구리박층을 구비하고 있는, 구리 피복 적층판.
  4. 제 1 항 내지 제 3 항 중 어느 한 항에 있어서,
    하기의 공정 (1) ∼ (7) :
    (1) 장척의 상기 구리 피복 적층판을, 소정의 길이로 절단하여 시험편을 준비하는 공정,
    (2) 상기 구리 피복 적층판의 길이 방향을 MD 방향, 폭 방향을 TD 방향으로 하였을 때, 상기 시험편에 있어서 상기 MD 방향 및 상기 TD 방향과 평행한 변을 갖는 가상의 정사각형을 상정하고, 상기 가상의 정사각형의 중심을 포함하는 중심 영역과, 상기 가상의 정사각형에 있어서의 상기 TD 방향의 한 변을 공유하는 2 개의 모서리부의 1 개씩을 포함하는 2 개의 코너 영역에, 각각 직선상의 배열을 포함하는 복수의 마크를 형성하는 공정,
    (3) 상기 복수의 마크의 위치를 계측하고, 인접하는 마크와 마크 사이의 거리 L0 을 산출하는 제 1 계측 공정,
    (4) 상기 시험편의 상기 구리층의 일부분 또는 전부를 에칭하는 공정,
    (5) 에칭 후, 상기 복수의 마크의 위치를 계측하고, 인접하는 마크와 마크 사이의 거리 L1 을 산출하는 제 2 계측 공정,
    (6) 상기 에칭 전후에 동일한 2 개의 마크에 대해, 상기 제 1 계측 공정에서 얻어진 거리 L0 과, 상기 제 2 계측 공정에서 얻어진 거리 L1 의 차분 Ll - L0 을 산출하는 공정, 및
    (7) 상기 차분 L1 - LO 을, 상기 구리 피복 적층판으로 형성하는 회로 기판에 있어서의 배선 패턴의 스케일로 환산하여 누적 환산 치수 변화량을 구하고, 얻어진 누적 환산 치수 변화량을 상기 배선 패턴의 배선 폭과 배선 간격의 합에 대한 비율로 나타내는 공정,
    을 포함하는 시험 방법에 의해 얻어지는, 10 ㎜ 의 회로 기판 사이즈에 있어서의 배선 패턴의 배선 폭과 배선 간격의 합에 대한 누적 환산 치수 변화량의 비율의, 상기 시험편에 있어서의 면내의 편차가 2 % 이하인, 구리 피복 적층판.
  5. 제 1 항 내지 제 4 항 중 어느 한 항에 기재된 구리 피복 적층판의 구리박을 배선 회로 가공하여 이루어지는, 회로 기판.
KR1020150130328A 2014-09-19 2015-09-15 구리 피복 적층판 및 회로 기판 KR20160034201A (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014190773A JP6360760B2 (ja) 2014-09-19 2014-09-19 銅張積層板及び回路基板
JPJP-P-2014-190773 2014-09-19

Publications (1)

Publication Number Publication Date
KR20160034201A true KR20160034201A (ko) 2016-03-29

Family

ID=55561092

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150130328A KR20160034201A (ko) 2014-09-19 2015-09-15 구리 피복 적층판 및 회로 기판

Country Status (4)

Country Link
JP (1) JP6360760B2 (ko)
KR (1) KR20160034201A (ko)
CN (1) CN105451436B (ko)
TW (1) TWI651988B (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022101499A (ja) 2020-12-24 2022-07-06 日鉄ケミカル&マテリアル株式会社 両面金属張積層板及び回路基板

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070023877A1 (en) * 2003-09-10 2007-02-01 Hideo Yamazaki Chip on flex tape with dimension retention pattern
JP2009528933A (ja) * 2006-03-06 2009-08-13 エルジー・ケム・リミテッド 金属積層板およびその製造方法
KR101502653B1 (ko) * 2008-09-26 2015-03-13 스미토모 베이클라이트 가부시키가이샤 적층판, 회로판 및 반도체 장치
JP5689277B2 (ja) * 2009-10-22 2015-03-25 新日鉄住金化学株式会社 フレキシブル回路基板及び多層回路基板
JP5313191B2 (ja) * 2010-02-26 2013-10-09 新日鉄住金化学株式会社 金属張積層板及びその製造方法
TWI439492B (zh) * 2011-09-14 2014-06-01 Mortech Corp 聚醯亞胺膜
JP2014015674A (ja) * 2012-06-11 2014-01-30 Sh Copper Products Corp 圧延銅箔、および銅張積層板
TWI599277B (zh) * 2012-09-28 2017-09-11 新日鐵住金化學股份有限公司 可撓性覆銅積層板
CN103813616A (zh) * 2012-11-13 2014-05-21 昆山雅森电子材料科技有限公司 复合式叠构覆盖膜及具有该覆盖膜的电路板及其制法
JP6320031B2 (ja) * 2012-12-28 2018-05-09 新日鉄住金化学株式会社 フレキシブル銅張積層板
JP2014011451A (ja) * 2013-03-11 2014-01-20 Jx Nippon Mining & Metals Corp 圧延銅箔及びその製造方法、並びに、積層板
JP2016015359A (ja) * 2014-06-30 2016-01-28 新日鉄住金化学株式会社 金属張積層体の寸法安定性の評価方法及び回路基板の製造方法

Also Published As

Publication number Publication date
CN105451436A (zh) 2016-03-30
JP2016060138A (ja) 2016-04-25
TW201613429A (en) 2016-04-01
TWI651988B (zh) 2019-02-21
CN105451436B (zh) 2019-02-26
JP6360760B2 (ja) 2018-07-18

Similar Documents

Publication Publication Date Title
KR102386047B1 (ko) 폴리이미드 필름 및 동장적층판
TWI665084B (zh) 可撓性覆銅積層板及可撓性線路基板
KR102045089B1 (ko) 플렉시블 동장 적층판
JP6403460B2 (ja) 金属張積層体、回路基板及びポリイミド
KR20140086899A (ko) 플렉시블 동장 적층판
CN109575283B (zh) 聚酰亚胺膜、覆金属层叠板及电路基板
JP2015193117A (ja) 金属張積層体及び回路基板
KR20210084275A (ko) 금속 피복 적층판 및 회로 기판
KR20160038827A (ko) 플렉시블 회로 기판 및 전자 기기
KR20200115243A (ko) 금속 피복 적층판 및 회로 기판
KR20160034201A (ko) 구리 피복 적층판 및 회로 기판
JP6578419B2 (ja) 銅張積層板の製造方法
KR20210001986A (ko) 폴리이미드 필름, 금속 피복 적층판 및 플렉시블 회로 기판
JP7156877B2 (ja) 金属張積層板及びパターン化金属張積層板
JP7247037B2 (ja) 金属張積層板及びパターン化金属張積層板
JP2019119113A (ja) 金属張積層板及び回路基板
JP6624756B2 (ja) フレキシブル回路基板、その使用方法及び電子機器
KR20220092426A (ko) 양면 금속박적층판 및 회로기판
JP2023052291A (ja) 金属張積層板及び回路基板
KR20190038381A (ko) 금속장 적층판 및 회로 기판

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
E601 Decision to refuse application