KR20150115942A - 기판 상에 원자 층을 증착시키는 장치 및 방법 - Google Patents

기판 상에 원자 층을 증착시키는 장치 및 방법 Download PDF

Info

Publication number
KR20150115942A
KR20150115942A KR1020157024424A KR20157024424A KR20150115942A KR 20150115942 A KR20150115942 A KR 20150115942A KR 1020157024424 A KR1020157024424 A KR 1020157024424A KR 20157024424 A KR20157024424 A KR 20157024424A KR 20150115942 A KR20150115942 A KR 20150115942A
Authority
KR
South Korea
Prior art keywords
substrate
gas
gas supply
drum
precursor
Prior art date
Application number
KR1020157024424A
Other languages
English (en)
Other versions
KR102267234B1 (ko
Inventor
레이몬드 야코부스 빌헬무스 크나펜
루드 올리슬라헤르스
데니스 반 덴 베르그
마티스 씨. 반 덴 보어
프레디 로제봄
Original Assignee
네덜란제 오르가니자티에 포오르 토에게파스트-나투우르베텐샤펠리즈크 온데르조에크 테엔오
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 네덜란제 오르가니자티에 포오르 토에게파스트-나투우르베텐샤펠리즈크 온데르조에크 테엔오 filed Critical 네덜란제 오르가니자티에 포오르 토에게파스트-나투우르베텐샤펠리즈크 온데르조에크 테엔오
Publication of KR20150115942A publication Critical patent/KR20150115942A/ko
Application granted granted Critical
Publication of KR102267234B1 publication Critical patent/KR102267234B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45544Atomic layer deposition [ALD] characterized by the apparatus
    • C23C16/45548Atomic layer deposition [ALD] characterized by the apparatus having arrangements for gas injection at different locations of the reactor for each ALD half-reaction
    • C23C16/45551Atomic layer deposition [ALD] characterized by the apparatus having arrangements for gas injection at different locations of the reactor for each ALD half-reaction for relative movement of the substrate and the gas injectors or half-reaction reactor compartments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4409Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber characterised by sealing means
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45544Atomic layer deposition [ALD] characterized by the apparatus
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • C23C16/481Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation by radiant heating of the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/54Apparatus specially adapted for continuous coating
    • C23C16/545Apparatus specially adapted for continuous coating for coating elongated substrates

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

기판 상에 원자 층을 증착시키는 방법에 있어서,
증착 헤드(deposition head)를 이용하여 기판(substrate)을 향하여 프리커서 기체(precursor gas)를 공급하는 단계; 원자 층을 형성하기 위하여 상기 기판의 근처에 예컨대 표면에 상기 프리커서 기체를 제공하는 단계; 상기 프리커서 기체를 공급하는 동안 상기 증착 헤드를 회전시킴으로써 상기 기판을 따라서 그리고 상기 기판에 대해 상기 프리커서 기체 공급부를 이동시키는 단계; 상기 프리커서 기체 공급부를 한 방향으로 연속적으로 이동시키는 동안 원자 층들의 스택을 증착시키는 단계; 기판 표면을 갖는 기판을 외부 밴드 면(outer bend side) 상에 밴딩시키기 위해, 가이딩 유닛(guiding unit)을 이용하여 이동 경로 방향 및 반대 방향 중 적어도 하나의 방향으로 상기 기판을 가이딩하는 단계; 및 상기 출력 면에 대향하는 상기 가이딩 유닛에 인접하는 풀링 유닛(pulling unit)에 기초한 압력을 이용하여 상기 가이딩동안 상기 기판을 상기 출력 면으로부터 풀링하는 단계를 포함하는 것을 특징으로 한다.

Description

기판 상에 원자 층을 증착시키는 장치 및 방법 {Method and apparatus for depositing atomic layers on a substrate}
본 발명은 기판 상에 원자 층을 증착시키는 방법과 관련되며, 상기 방법은, 증착 헤드(deposition head)를 이용하여 기판(substrate)을 향하여 프리커서 기체(precursor gas)를 공급하는 단계; -상기 증착 헤드는 프리커서 기체를 공급하는 프리커서 기체 공급부를 포함하여 하나 이상의 기체 공급부를 포함함- 및 원자 층을 형성하기 위하여 상기 기판의 근처에 예컨대 표면에 상기 프리커서 기체를 제공하는 단계; -상기 증착 헤드는 상기 원자 층을 증착시키는 동안 상기 기판 표면을 적어도 부분적으로 향하는 출력 면(output face)을 가지며, 상기 출력 면은 하나 이상의 기체 공급부를 구비하고 상기 기판의 이동 경로를 정의하는 실질적으로 둥근 형상을 가짐- 를 포함하고, 상기 방법은 상기 프리커서 기체를 공급하는 동안 상기 증착 헤드를 회전시킴으로써 상기 기판을 따라서 그리고 상기 기판에 대해 상기 프리커서 기체 공급부를 이동시키는 단계; 상기 프리커서 기체 공급부를 한 방향으로 연속적으로 이동시키는 동안 원자 층들의 스택을 증착시키는 단계; -상기 방법은 하나 이상의 기체 공급부를 이용하여 제공되는 기체 베어링에 의해 상기 출력 면과 기판 표면이 접촉하지 않고 유지되는 동안 수행됨- 를 포함한다. 본 발명은 또한 상기 방법을 수행하는 장치와 관련된다.
원자 층 증착(ALD; Atomic Layer Deposition)은 목적 물질(target material)의 단일층(monolayer)을 증착시키는 방법으로 알려져 있다. 원자 층 증착은, 적어도 2번의 연속적인 프로세스 단계들(즉, 적어도 2번의 연속적인 하프-사이클(half-cycles))에서 수행된다는 점에서, 예컨대 화학적 기상 증착(Chemical Vapour Deposition)과는 다르다. 이러한 자기 제어(self-limiting) 프로세스 단계들 중 제1 단계는 기판 표면에 프리커서 기체(precursor gas)를 적용하는 것을 포함한다. 이러한 자기 제어 프로세스 단계들 중 제2 단계는 목적 물질의 단일층을 형성하기 위하여 프리커서 물질을 반응시키는 것을 포함한다. 원자 층 증착은, 비록 이상적인 층 두께 제어는 아니더라도, 훌륭한 층 두께 제어를 가능하게 하는 장점이 있다.
그러나, 원자 층 증착은 층-대-층(layer-by-layer) 증착 프로세스이고, 연속적인 프로세싱 단계들은 각 단일층을 증착시키기 위해 수행된다. 사이에, 퍼징 단계는 일반적으로 프리커서 기체와 반응 기체들이 (예컨대 아웃렛 근처의 프로세싱 장치에서) 의도되지 않은 위치에서 반응하는 것을 방지한다. 그러므로, 각각의 단일층의 증착은 비교적 느리다. 그 결과, 약 10nm 이상의 두께의 층들을 증착시키기 위한 원자 층 증착 장비는, 그러한 층 두께를 얻기 위해 많은 원자 층들이 증착되어야 하기 때문에, 시간 소모적이다.
최근, ALD 프로세스에서 소모되는 시간을 감소시키는 방법이 발견된 후, 고도화된 원자 층 증착 프로세스(industrializing atomic layer deposition processes)에 대한 관심이 증가하고 있다. 예를 들어, (종래의 일시적인 분리 대신) 연속적인 프로세스 단계들을 공간적으로 분리하는 것은 프로세싱 시간을 상당히 감소시킨다. 공간적 분리는 하나의 공정 챔버에서 (기체 커튼에 의해 분리되는) 다른 챔버로 기판을 이동시킴으로써 얻어질 수 있다. 추가적인 퍼징 단계(purging step)가 더 이상 필요하지 않으며, ALD 프로세스는 더 빠르게 수행될 수 있다.
그러나, 비록 공간적 ALD는 중요한 개선사항이지만, 고도화를 향해 넘어야 할 산들이 여전히 남아 있다. 종래의 공간적 ALD 프로세스를 포함하여, 종래의 ALD 프로세스는 제한된 크기의 기판으로 한정된다. 이해되는 바와 같이, 고도화의 목적은 어떠한 크기의 표면에도 적용될 수 있는 ALD 프로세스를 제공하는 것이다. 이러한 목적을 위한 하나의 가능한 해법은 롤-투-롤 원자 층 증착 프로세스(roll-to-roll (R2R) atomic layer deposition process)를 발전시키는 것이다.
WO 2007/106076은 원자 층 증착 방법을 개시하고 있는데, 여기서 기판은 드럼(drum) 상에 마운팅(mounting)된다. 상기 드럼은 프리커서 기체를 공급하는 노즐(nozzle)을 따라서 회전된다. 이러한 방식으로, 복수개의 원자 층들이 비교적 짧은 시간에 증착될 수 있다. 그러나, WO 2007/106076의 방법은 드럼의 원주보다 작거나 동일한 길이(length)를 갖는 기판에만 적용될 수 있다. 또한, 기판을 드럼에 마운팅하는데 필요한 시간은 노즐을 따라서 기판을 신속하게 회전시킴으로써 얻어지는 시간을 적어도 부분적으로 또는 심지어 완전히 상쇄(undo)시킨다.
또 다른 R2R ALD 프로세스가 본 발명자에 의해 발명된 WO 2011/099858에 개시되어 있다. 상기 문서는 기판 상에 원자 층 증착 방법을 개시한다. 상기 방법은 회전 드럼의 일부가 될 수 있는 증착 헤드의 프리커서 기체 공급부로부터 프리커서 기체를 공급하는 과정을 포함한다. 프리커서 기체는 기판을 향하는 프리커서 기체 공급부로부터 제공된다. 상기 방법은 기판(기판의 회전은 회전하는 드럼을 따라서 이동한다)을 따라서 증착 헤드를 회전시킴으로써 프리커서 기체 공급부를 이동시키는 과정을 포함한다.
WO 2007/106076의 경우와 같이, 기판은 그 길이가 한정되지 않고, 기판 표면의 프로세싱을 위해 증착 헤드의 원주를 따르는 이동 경로로 이동한다. 비록, 이는 중요한 장점을 제공하지만, 추가적인 처리 단계들이 또한 기판을 손상 위험에 노출시킨다. 더구나, 예컨대 프로세스 시간 및 에너지 소비의 관점에서 프로세스의 효율과 제어가능성을 증가시키려는 목적과 프로세스 크기의 관점에서 프로세스를 줄이려는 목적이 여전히 존재한다.
본 발명의 목적은, 전술한 공지된 방법들에 있어 하나 이상의 문제점들을 적어도 부분적으로 해결할 수 있는, 원자 층 증착 방법을 제공하는 것이다.
이를 위해, 본 발명은 기판 상에 원자 층을 증착시키는 방법을 제공하고, 상기 방법은, 증착 헤드(deposition head)를 이용하여 기판(substrate)을 향하여 프리커서 기체(precursor gas)를 공급하는 단계; -상기 증착 헤드는 프리커서 기체를 공급하는 프리커서 기체 공급부를 포함하여 하나 이상의 기체 공급부를 포함함-, 원자 층을 형성하기 위하여 상기 기판의 근처에 예컨대 표면에 상기 프리커서 기체를 제공하는 단계; -상기 증착 헤드는 상기 원자 층을 증착시키는 동안 상기 기판 표면을 적어도 부분적으로 향하는 출력 면(output face)을 가지며, 상기 출력 면은 하나 이상의 기체 공급부를 구비하고 상기 기판의 이동 경로를 정의하는 실질적으로 둥근 형상을 가짐-, 상기 프리커서 기체를 공급하는 동안 상기 증착 헤드를 회전시킴으로써 상기 기판을 따라서 그리고 상기 기판에 대해 상기 프리커서 기체 공급부를 이동시키는 단계; 상기 프리커서 기체 공급부를 한 방향으로 연속적으로 이동시키는 동안 원자 층들의 스택을 증착시키는 단계; -상기 방법은 하나 이상의 기체 공급부를 이용하여 제공되는 기체 베어링에 의해 상기 출력 면과 기판 표면이 접촉하지 않고 유지되는 동안 수행됨-, 및 기판 표면을 갖는 기판을 외부 밴드 면(outer bend side) 상에 밴딩시키기 위해, 가이딩 유닛(guiding unit)을 이용하여 이동 경로 방향 및 반대 방향 중 적어도 하나의 방향으로 상기 기판을 가이딩하는 단계; 및 상기 가이딩 유닛 근처에 상기 출력 면과 상기 기판 표면 사이의 접촉을 방지하기 위해, 상기 출력 면에 대향하는 상기 가이딩 유닛에 인접하는 풀링 유닛(pulling unit)에 기초한 압력을 이용하여 상기 가이딩동안 상기 기판을 상기 출력 면으로부터 풀링하는 단계를 포함한다.
프로세스에 대한 개선으로서, 상기 목적을 위하여 본 발명은 증착 헤드의 원주를 보다 효율적으로 사용할 수 있다. 원주의 큰 영역을 사용하기 위하여, 이동 경로로 가까워지고 멀어지는 기판의 입구 및 출구 위치는 각각 가까이에 위치한다. 기판은 입구에서 이동 경로로 굽어져 향하고 출구에서 이동 경로로부터 나오기 때문에, 이는 기판의 표면과 증착 헤드 사이의 접촉 기회를 증가시킨다. 그러나, 기판과 증착 헤드의 상대적 속도의 관점에서, 기판과 증착 헤드 사이의 접촉은 방지되어 기판 표면의 손상을 방지한다.
비록, 캡스턴과 보조 롤러를 포함하는 가이딩 유닛이 출력 면을 통과하는 이동 경로로 기판을 가이드하는데 사용될 수 있다. 본 발명에 따른 추가적인 압력 기반 풀링 유닛은 입구에서 기판을 이동 경로로 정렬시킨다. 이에 의해, 기판과 증착 헤드 사이의 접촉 위험이 감소되며, 이는 이동 경로 방향으로 그리고 반대방향으로 기판의 입구 및 출구가 서로 근접할 수 있도록 한다. 그러므로, 개선점은 출력 면을 통과하는 이동 경로의 길이를 증가시키고 이는 전술한 프로세스에 유리하다.
이동 경로의 길이의 증가는 설계에 있어 파라미터 수에 더 유연성을 준다. 예를 들어, 이동 경로의 길이를 증가시키는 것은 다른 파라미터를 변하지 않도록 유지시키고 기판의 속도 및 증착 헤드의 회전속도가 변하지 않아 프로세싱 사이클의 지속을 증가시킨다. 다른 한편으로, 만약 프로세스 사이클의 지속이 일정하게 유지되면, 기판의 속도는 증가되어 프로세스를 더 빠르게 한다. 따라서, 프로세스는 더 효과적이다. 대안적으로 또는 추가적으로, 증착 헤드의 반경은 감소될 수 있으며, 이에 의해 장치의 크기 및 무게를 줄여 보다 컴팩트하게 프로세스를 수행할 수 있다. 추가적인 유연성은 설계 파라미터의 수에 유리하게 적용될 수 있다.
프로세스에 사용되는 기판은 유연성이다. 유연성 기판을 사용함으로써 회전하는 증착 헤드에 잘 결합될 수 있다. 이러한 유연성 기판은 기판의 밴딩될 수 있도록 하며, 이는 회전하는 증착 헤드 주위로 기판을 가이딩하는데 유리하다. 유연성 기판은 안내되어 캡스턴, 롤러, 그리고 가이딩 유닛을 형성하는 다른 수단으로 이끌리고 이는 서로 가까이 위치할 수 있도록 하여 이동 경로를 정의하는 증착 헤드 주위를 보다 효과적으로 사용할 수 있도록 한다. 기판이 입구에서, 가이딩 유닛은 기판을 밴딩시켜 이동 방향이 이동 경로와 일치하도록 한다. 출구에서, 본 발명에 따른 가이딩 유닛은 기판을 가능한 정렬시켜, 출력 면으로부터 떨어져 기판을 밴딩된 후 그 출구에서 전송 방향을 향하도록 한다. 기판의 표면은, 이동 경로에서 증착 헤드의 출력 면을 향하기 위하여, 외부로 향하는 외부 밴드 면(outer bend side) 상에 위치한다.
가이딩 유닛(예컨대, 캡스턴)은 기판에 텐션이 인가되도록 하여 기판을 가능한 단단히(tightly) 입구 및 출구 지점으로, 이동 경로 방향으로 역방향으로, 공급하고 제거한다. 텐션의 크기는 제한되어 프로세스 동안 기판 또는 기판에 증착된 원자 층에 손상을 주는 것을 방지한다. 추가적인 압력 기반 풀링 유닛은, 예컨대 인가된 텐션이 불충분하여, 기판이 증착 헤드를 향하는 기판이 가이딩 유닛 근처에서 부족하게 밴딩되는 것을 방지한다. 이해되는 바와 같이, 기판과 증착 헤드 사이의 어떠한 접촉은 기판의 표면을 손상시킬 수 있기 때문에 방지되어야 한다. 압력 기반 풀링 유닛은, (프로세싱된 또는 프로세싱될) 기판 표면의 핸들링 없이, 증착 헤드의 출력 면으로부터 기판을 당기고, 또는 심지어 압력을 가한다. 따라서, 손상이 효과적으로 방지될 수 있다.
본 발명의 바람직한 실시예에 따르면, 풀링하는 단계는 기판의 비접촉 풀링을 위해 베르누이 그리퍼(Bernoulli gripper)를 사용하여 수행된다. 베르누이 그리퍼는, 베르누이 원리에 따라, 기체 흐름을 이용하여 물리적 접촉 없이 목적물을 부착되게 한다. 공기 흐름의 정적 압력은 속도가 높을 때 낮다. 베르누이 그리퍼는 기판의 배면과 평행한 고속의 공기 흐름을 생성하여, 낮은 압력 영역을 생성한다. 이는 기판 상에 힘을 일으키고, 그리퍼를 향해 기판을 끌어당긴다. 동시에, 베르누이 그리퍼에 의해 생성된 기체 흐름은 기판 및 그리퍼 사이의 접촉을 방지한다.
압력 기반 풀링 유닛에 부가하여, 프로세스는 외부 밴드 면 근처에 공기 흐름을 생성하기 위하여 가압 흐름 기체 인렛을 사용하며, 증착 헤드의 출력 면으로부터 기판의 표면이 떨어지도록 압력을 가한다.
전술한 바와 같이, 프로세스는 프로세스 동안, 즉 증착 헤드의 원주 주위의 이동 경로에서, 기판 표면의 비접촉을 유지하기 위하여 기체 베어링을 사용한다. 기체 베어링은 기판과 증착 헤드를 분리시키는 기체 베어링 층을 형성한다. 이러한 방식으로, 회전하는 증착 헤드와 기판 사이에 보다 좁은 이격 거리가 유지될 수 있다. 이격 거리는 적어도 200um, 적어도 100um, 적어도 15um, 또는 적어도 10um,또는 약 5um가 될 수 있다. 동시에, 이격 거리는 적어도 3um, 적어도 5um, 또는 적어도 10um가 될 수 있다. 작은 이격 거리는 기판으로 향하여 제공되는 잉여 프리커서 기체의 양을 감소시킨다. 프리커서 기체의 용량은 통상적으로 생산 비용을 추가시키기 때문에 이는 가치있다.
본 발명의 추가적인 실시예에 따르면, 프리커서 기체를 사용하여 기체 베어링은 형성된다. 프리커서 기체는 활성 프리커서 기체 성분의 일부를 포함하는 베어링 기체의 주요부분을 구성한다. 프리커서 기체는, 기판과 출력 면 사이의 거리를 부분적으로 감소시킬 수 있는 낮은 압력 영역을 방지하는, 베어링 기체로 완벽하게 사용될 수 있다. 이는 프로세싱 동안 기판과 증착 헤드의 출력 면 사이의 추가적인 접촉을 방지한다.
프로세스를 추가적으로 제어하기 위하여, 상기 증착 헤드, 하나 이상의 기체 공급부, 가이딩 유닛 중 적어도 하나에 구비되는 히터를 이용하여 상기 기체 및 기판 중 적어도 하나를 미리 가열(pre-heating)하는 단계를 더 포함한다.
본 발명의 일 실시예에 따르면, 상기 방법은 증착 헤드를 포함하는 회전가능한 드럼의 적어도 부분적으로 둥근 원주을 따라서 기판을 이동시키는 단계를 포함한다. 드럼은 하나 이상의 기체 공급부를 실링 피스와 연결하는 적어도 하나의 기체 흐름 채널을 포함한다. 실링 피스는 드럼 표면의 적어도 일부분을 실링한다. 하나 이상의 기체 공급부는 실링 피스를 경유하여 적어도 하나의 기체 흐름 채널을 통해 기체를 공급한다. 드럼 및/또는 실링 피스는 하나 이상의 아웃렛/인렛을 포함하고, 여기서 드럼 및/또는 실링 피스는 드럼에 의해 실링된 표면 내에 하나 이상의 원주형 그루브를 포함한다. 드럼의 회전 동안, 기판을 향해 기체를 공급하기 위하여, 기체 아웃렛/인렛은 실링된 그루브에 대향하여 위치하며, 기체 흐름 경로의 일부는 실링된 그루브에 의해 형성된다.
본 발명의 일 실시예에 따르면, 사전 가열 단계는 적외선 타입 히팅 시스템에 의해 수행될 수 있으며, 드럼은 에노다이즈(anodized), 바람직하게는 오팔-에노다이즈(opal-anodized) 알루미늄을 포함한다. 효과적인 적외선 히팅 디바이스의 예로는 텅스텐 할로겐 램프, SiC 기반 히터를 들 수 있으며, 여기에 한정되는 것은 아니다. 상기 적외선 히팅 디바이스의 방사 파장 스펙트럼은 주로 전자기 스펙트럼의 적외선 영역이다. 알루미늄 및 그 합금의 방사율(이에 따른 흡수율)은 산소에 의해 상당히 증가될 수 있다. 따라서, (0.9 이상의 흡수 계수를 갖는) 에노다이즈(anodized) 또는 오팔-에노다이즈(opal-anodized) 알루미늄과 결합된 적외선 히터는 효과적인 내부 드럼 히팅 시스템을 형성한다.
원자 층을 증착시키는 동안, 프리커서 기체 공급부의 병진 속도는 기판의 병진 속도보다 더 크거나 및/또는 반대 방향일 수 있다. 이는 원자 층들의 증착율을 더욱 향상시킨다. 예를 들어, 프리커서 기체 공급부의 병진 속도의 절대값(absolute value)은 기판의 병진 속도의 절대값보다 예컨대 적어도 5배, 적어도 10배, 적어도 20배, 적어도 50배, 적어도 100배, 적어도 500배, 적어도 1000배, 적어도 5000배, 및/또는 적어도 10000배 더 클 수 있다. 이 경우, 프리커서 기체 공급부의 병진 속도의 방향은 기판의 병진 속도의 방향과 동일하도록 선택될 수 있다.
출력 면은 기판의 이동 경로를 정의하는 실질적으로 둥근, 통상적으로는 실질적으로 원통(cylindrical) 또는 원뿔(conical)(예컨대, 원뿔대(frustoconical)) 형상 및/또는 각뿔대(frustum) 형상을 가진다. 이에 따라, 출력 면은 실질적으로 원통, 원뿔, 또는 각뿔대 형상을 가질 수 있다. 이는 프리커서 헤드와 기판 사이에 일정한 이격 거리를 유지할 수 있도록 하기 때문에, 이러한 출력 면은 회전하는 프리커서 헤드와 잘 결합될 수 있다.
US 2007/0281089 A1은, 원자 층을 증착시키는 동안 적어도 부분적으로 기판을 향하며 프리커서 기체 공급부를 구비하고 기판의 이동 경로를 정의하는 실질적으로 둥근 형상의, 출력 면을 갖는 증착 헤드를 개시하지 않는다. US 2007/0281089 A1은 또한 증착 헤드의 축 방향을 따라서 또는 경사져서 긴 형상을 갖는 프리커서 기체 공급부를 개시하지 않으며, 증착 헤드의 회전 축을 따르는 또는 경사진 방향으로 굴곡된 출력 면을 따라서 확장되는 프리커서 기체 공급부를 개시하지 않는다. 그 대신, US 2007/0281089 A1은 축 방향 및 회전 축에 수직인 방향으로 확장되는 출력 면 및 프리커서 기체 공급부를 구비하는 장치를 개시한다. 이는 기판 상에 균일한 증착을 방해한다. 예를 들어, 회전 축과 가까운 위치에서의 증착은 회전 축과 멀리 떨어진 위치에서의 증착과 다르다. 더 나아가, 회전 축 위치에서는 증착이 불가능하다. 그 결과, US 2007/0281089 A1에서, 기판은 단지 출력 면 영역(area)의 반 이하로 이동한다.
상기 방법은 커버에 의해 프리커서 기체를 한정하는 단계를 포함할 수 있으며, 여기서 커버는 기판이 증착 헤드를 향하는 위치 외에서 증착 헤드를 향한다. 커버에 의해, 장치의 외부 환경으로 프리커서 기체가 흘러 나가는 것을 실질적으로 방지할 수 있다. 커버는 기판의 제1 및 제2 부분 사이의 갭 내에서 및/또는 따라서 연장될 수 있다.
본 발명자는 상기 실시예의 특징이 여기에 설명된 특징들 및/또는 하나 이상의 다른 실시예들과의 선택적인 조합으로 보다 넓게 적용될 수 있음을 한다. 본 발명의 추가적인 측면에 따르면, 기판 상에 원자 층을 증착시키는 장치를 제공하고, 상기 장치는, 하나 이상의 기체 공급부를 포함하는 증착 헤드(deposition head); -상기 하나 이상의 기체 공급부는 상기 기판을 향하여 프리커서 기체를 공급하기 위한 프리커서 기체 공그부를 포함하고, 상기 하나 이상의 기체 공급부는 상기 증착 헤드의 출력 면(output face) 상에 구비되고, 상기 출력 면은 상기 출력 면의 적어도 일부 상에서 상기 기판을 위한 이동 경로를 정의하는 실질적으로 둥근 형상을 가지며, 사용 시 공급된 프리커서 기체는 상기 출력 면을 향하는 상기 기판의 표면 근처에 예컨대 표면 상에서 반응하여 상기 기판 표면 상에 원자 층을 생성함-, 상기 증착 헤드를 회전가능하게 마운팅하기 위한 마운트(mount); 상기 프리커서 기체를 공급하는 동안, 상기 기판을 따라서 상기 프리커서 기체 공급부를 이동시키기 위하여, 상기 증착 헤드를 회전시키도록 배치된 구동부(driver); -이에 의해 상기 프리커서 기체 공급부를 한 방향으로 연속적으로 이동시키는 동안 원자 층들의 스택이 증착됨-, 및 상기 기판의 표면이 상기 출력 면과 비접촉 상태를 유지하도록, 상기 하나 이상의 기체 공급부로부터 제공되는 기체 베어링(gas bearing)을 포함하고, 상기 장치는 기판 표면을 갖는 기판을 외부 밴드 면(outer bend side) 상에 밴딩시킴으로써, 이동 경로 방향 및 반대 방향 중 적어도 하나의 방향으로 상기 기판을 가이딩하는 가이딩 유닛(guiding unit); 및 상기 가이딩 유닛 근처에 상기 출력 면과 상기 기판 표면 사이의 접촉을 방지하기 위해, 상기 가이딩동안 상기 기판을 상기 출력 면으로부터 풀링하기 위해, 상기 출력 면에 대향하는 상기 가이딩 유닛에 인접하는 압력 기반 풀링 유닛(pressure based pulling unit)을 더 포함한다.
일 실시예서, 상기 압력 기반 풀링 유닛은 상기 기판의 비접촉 풀링을 위해 베르누이 그리퍼(Bernoulli gripper)를 포함한다.
다른 실시예에서, 상기 장치는 상기 출력 면으로부터 상기 기판이 떨어지도록 힘을 가하기 위한 기체 흐름을 생성하도록, 상기 기판의 표면을 향하는 상기 외부 밴드 면 근처에 구비되는 가압 흐름 기체 인렛(forced-flow gas inlet)을 더 포함한다.
또 다른 실시예에서, 상기 장치는 상기 증착 헤드를 포함하는 회전가능한 드럼을 포함하고, 상기 드럼은, 기체 공급부에 기체를 제공하기 위하여, 상기 드럼의 표면의 적어도 일부를 실링하는 실링 피스(sealing piece)를 구비하여, 상기 하나 이상의 기체 공급부를 연결하기 위한 적어도 하나의 기체 흐름 채널을 포함하고, 상기 실링 피스는 적어도 하나의 기체 소스에 연결가능하며, 상기 드럼 및 실링 피스 중 하나는 하나 이상의 기체 아웃렛/인렛을 포함하고, 상기 드럼 및 실링 피스 중 나머지 하나는 드럼에 의해 실링된 그 표면에 하나 이상의 원주형 그루브(circumferential grooves)를 포함하고, 상기 하나 이상의 기체 아웃렛/인렛과 하나 이상의 원주형 그루브는, 상기 드럼의 회전 동안, 상기 기체 소스와 하나 이상의 기체 공급부 사이에 기체 흐름 경로의 일부를 형성하기 위하여, 회전 드럼의 적어도 일부 상에서 상기 기체 아웃렛/인렛이 상기 실링된 그루브에 대향하여 위치한다.
일 실시예에서, 상기 장치는 히터를 포함하며, 상기 히터는 상기 마운트, 증착 헤드, 하나 이상의 기체 공급부, 가이딩 유닛 중 적어도 하나에 구비되며, 일 실시예에서, 상기 히터는 드럼, 적어도 하나의 기체 흐름 채널, 적어도 하나의 기체 아웃렛/인렛, 적어도 하나의 원주형 그루브 중 적어도 하나에 구비된다.
일 실시예에서, 상기 장치는 상기 증착 헤드를 포함하는 회전가능한 드럼을 포함하고, 상기 드럼은 에노다이즈(anodized), 바람직하게는 오팔-에노다이즈(opal-anodized) 알루미늄을 포함하는 금속으로 구성되며, 상기 장치는 적외선 타입 히팅 시스템을 더 포함한다.
상기 장치 및 방법의 다른 유리한 실시예들은 종속항들에 나타나 있다.
본 발명에 따르면, 전술한 공지된 방법들에 있어 하나 이상의 문제점들을 적어도 부분적으로 해결할 수 있다.
이하에서는 다음 도면들을 참조하여 본 발명을 상세히 설명한다. 참고로, 본 발명이 여기에 제한되는 것은 아니다.
도 1은 본 발명의 제1 실시예에 따른, 기판 상에 원자 층을 증착시키는 장치를 도시한 것이다.
도 1a는 오프셋을 갖는 층들의 스택의 일 예를 도시한 것이다.
도 1b는 고립된 층들의 스택의 일 예를 도시한 것이다.
도 1c는 개략적인 단면도를 도시한 것인데, 여기서 증착 헤드, 프리커서 기체(precusor-gas), 및 선택적으로 드럼은 축에 대하여 이동가능하다.
도 1d는 기체 전이 구조체를 포함하는 일 실시예의 개략적인 단면도이다.
도 1e(a)는 기체 전이 구조체를 포함하는 다른 실시예의 개략적인 단면도이다.
도 1e(b)는 도 1e(a)의 측면도이다.
도 1e(c)는 도 1e(b)의 확대도이다.
도 1f는 기체 전이 구조체를 포함하는 또 다른 실시예의 개략적인 단면도이다.
도 2a는 본 발명의 제1 실시예에 따른 장치(2)에서 증착 헤드의 기본 기능부 및 기판을 개략적으로 도시한 것이다.
도 2b는 도 2a에 도시된 증착 헤드의 일부의 가능한 구조를 부분적으로 나타낸 것이다.
도 3a 및 도 3b는 전송부를 도시한 것이다.
도 4는 본 발명의 제2 실시예에 따른, 기판(4) 상에 원자 층을 증착시키는 장치(2)를 도시한 것이다.
도 4a는 긴 형상의 공급부들을 구비하는 출력 면의 예를 도시한 것이다.
도 5 및 도 6은 본 발명의 제2 실시예에 따른 장치(2)의 변형예를 도시한 것으로, 여기서 증착 헤드는 실제 사용에 있어 기판을 향하는 공동을 구비한다.
도 6a는 본 발명의 제2 실시예에 따른 장치에서 증착 헤드의 변형예를 도시한 것이다.
도 7은 본 발명의 제3 실시예에 다른 장치를 기판과 함께 도시한 것이다.
도 8은 본 발명의 제4 실시예에 따른 장치를 기판과 함께 도시한 것이다.
도 9는 기판의 이동 방향과 증착 헤드의 이동 방향을 개략적으로 도시한 것이다.
도 9a는 본 발명에 따른 장치에서 증착 헤드의 일 실시예를 도시한 것으로, 여기서 프리커서 기체 공급부는 나선형 경로를 따라서 확장된다.
도 9b는 도 9a의 A-A' 단면의 일부를 도시한 것이다.
도 10은 층들의 스택과 후속적인 전환(back-turning) 위치들을 도시한 것이다.
도 11a는 증착 헤드의 회전 축이 기판의 이동 방향과 정렬되는 일 실시예를 도시한 것이다.
도 11b는 증착 헤드의 회전 축을 따르는 방향에서 바라 본 증착 헤드를 도시한 것이다.
도 12는 기체 스위칭 구조체를 포함하는 일 실시예의 개략적인 단면도이다.
도 13은 기체 스위칭 구조체를 포함하는 다른 실시예의 개략적인 단면도이다.
도 14는 또 다른 기체 스위칭 구조체를 도시한다.
도 15는 또 다른 기체 스위칭 구조체를 구비하는 일 실시예를 도시한 것이다.
도 16은 도 15의 기체 스위칭 구조체의 상세도이다.
도 17은 도 15의 기체 스위칭 구조체의 일 실시예를 도시한 것이다.
도 18은 도 15의 기체 스위칭 구조체의 다른 실시예를 도시한 것이다.
도 19는, 본 발명의 장치 및 방법에서, 증착 헤드의 원주를 따르는 이동 경로 쪽으로 또는 이동 경로로부터 기판을 가이딩하는 가이딩 구조체를 개략적으로 도시한 것이다.
도 20은 베르누이 그리퍼(bernoulli gripper)의 원리를 개략적으로 도시한 것이다.
도 21은 본 발명의 장치 및 방법에서 히팅 장치를 개략적으로 도시한 것이다.
만약 달리 설명되지 않는다면, 도면 상에서 유사한 도면부호는 유사한 구성요소를 지칭한다.
원자 층 증착(Atomic Layer Deposition; ALD)은 적어도 2개의 프로세스 단계에서, 즉 적어도 2개의 하프-사이클(half-cycles)에서 목적 물질(target material)의 단일층(monolayer)을 증착시키는 방법으로 알려져 있다. 이러한 자기 제어(self-limiting) 프로세스 단계들 중 제1 단계는 기판 표면에 프리커서 기체(precursor gas)를 적용하는 것을 포함한다. 이러한 자기 제어 프로세스 단계들 중 제2 단계는 기판 상에 목적 물질의 단일층을 형성하기 위하여 프리커서 물질이 반응하는 것을 포함한다. 프리커서 기체로는 예컨대 하프늄 테트라 클로라이드(hafnium tetra chloride; HfCl4) 등과 같은 메탈 할라이드 증기들(metal halide vapours)이 사용될 수 있으며, 또한 대안적으로 예컨대 테트라키스-(에틸-메틸-아미노) 하프늄(tetrakis-(ethyl-methyl-amino) hafnium) 또는 트리메틸알루미늄(trimethylaluminium; Al(CH3)3) 등과 같은 메탈오가닉 증기들(metalorganic vapours)처럼 다른 형태의 프리커서 물질이 사용될 수도 있다. 프리커서 기체는 예컨대 질소 기체(nitrogen gas), 아르곤 기체(argon gas), 수소 기체(hydrogen gas), 또는 이들의 혼합물 등과 같은 캐리어 기체(carrier gas)와 함께 주입될 수 있다. 캐리어 기체에서의 프리커서 기체의 농도는 통상 0.01 내지 1 부피%(volume %)의 범위가 될 수 있지만, 이 범위를 넘을 수도 있다.
프리커서 기체의 반응은 다양한 방식으로 수행될 수 있다. 우선, 증착된 프리커서 물질의 단일층이 플라즈마에 노출될 수 있다. 이러한 플라즈마 성장(plasma-enhanced) 원자 층 증착은, 예컨대 칩이나 솔라셀 등과 같은 반도체 제품을 제조하기 위한, 고품질의 미디엄-k 알루미늄 옥사이드(medium-k aluminum oxide; Al2O3) 층들의 증착에 특히 적합하다. 따라서, 본 발명은 예컨대 솔라셀의 제조에 사용될 수 있으며, 특히 하나 이상의 솔라셀 층들을 증착시킴으로써 플렉서블(flexible)한 솔라셀의 제조에 사용될 수 있다. 둘째, 반응 기체(reactant gas)는 증착된 프리커서 물질의 증착된 단일층을 향해서 공급될 수 있다. 반응 기체로는 예컨대 산소(O2), 오존(O3), 및/또는 물(H2O) 등과 같은 산화물(oxidizing agent)이 사용될 수 있다. 질소(N2), 암모니아(NH3) 등과 같은 질화물(nitriding agent)도 실리콘 니트라이드(silicon nitride; Si3N4)와 같은 질소화물(nitrides)를 생성하기 위하여 대안적으로 사용될 수 있다. 반응 기체는 또한 (제2의) 프리커서 기체로 여겨질 있으며, 예컨대 2 이상의 프리커서 기체들이 서로 반응하여 반응 생성물로서 원자 층을 생성할 수 있다.
원자 층 증착 프로세스의 실시예에서, 다양한 스테이지(stages)가 확인될 수 있다. 제1 스테이지에서, 기판 표면은 프리커서 기체(예, 하프늄 테트라 클로라이드)에 노출된다. 프리커서 기체들의 증착은 화학 흡착된 프리커서 기체 분자들(chemisorbed precursor gas molecules)의 단일층으로 기판의 표면이 포화되면 자동적으로 중단된다. 이러한 자기 제어(self-limitation)는 원자 층 증착 방법의 화학적 특징이다. 제2 스테이지에서, 초과된 프리커서 기체는 퍼지 기체(purge gas) 및/또는 진공(vacuum)을 이용하여 정화된다. 이러한 방식으로, 초과된 프리커서 분자들은 제거될 수 있다. 퍼지 기체는 프리커서 기체에 대하여 비활성인 것이 바람직하다. 제3 스테이지에서, 프리커서 분자들은 플라즈마 또는 반응 기체(예, 수증기(H2O)와 같은 산화제(oxidant))에 노출된다. 화학 흡착된 프리커서 분자의 기능성 리간드(functional ligands)와 반응 기체의 기능성 리간드가 반응함으로써, 원자 층 예컨대 하프늄 옥사이드(HfO2)가 생성될 수 있다. 제4 스테이지에서, 초과된 반응물질 분자들은 정화되어 제거된다. 또한, 예컨대 열적(thermal), 광적(photonic) 또는 플라즈마(plasma) 여기(excitation) 등과 같은 추가적인 반응 시뮬레이션 시스템이 사용될 수 있다.
도 1은 본 발명의 제1 실시예에 따른, 예컨대 플렉서블한, 기판(substrate; 4) 상에 원자 층(atomic layer)을 증착시키는 장치(apparatus; 2)를 도시한 것이다. 장치(2)는 프리커서 기체 공급부(precursor-gas supply; 8)가 구비된 증착 헤드(deposition head ; 6)를 포함한다. 증착 헤드(6)는 회전가능한 드럼(drum; 5)에 포함될 수 있다. 드럼(5)은 증착 헤드(6)가 부착된 회전가능한 휠(wheel; 5')을 포함할 수 있다. 프리커서 기체 공급부에 의해서, 프리커서 기체는 기판(4) 방향으로 공급될 수 있다. 장치(2)는 기판(4)을 따라서 프리커서 기체 공급부를 회전시키기 위해 배치된 마운트(mount)를 더 포함할 수 있다. 마운트는 차축(axle; 10)을 수용하기 위하여 배치된 베어링(bearing; 12)을 포함할 수 있다. 차축은 프리커서 기체 공급부와 견고하게 연결될 수 있다. 베어링(12)을 통해서, 차축(10)과 증착 헤드(6)는 마운트에 대해 회전될 수 있다. 증착 헤드(6)가 그 주위로 회전되는 회전 축은 차축(10)의 중심(예, 차축(10)의 길이 축)과 일치될 수 있다. 따라서, 마운트는 기판을 따르는 프리커서 기체 공급부의 병진 속도(translational velocity)를 구현하기 위해 적용될 수 있다.
대안적으로, 차축(10)이나 베어링(12)을 포함하지 않는 다른 형태의 마운팅(mounting) 구현체가 적용될 수도 있다. 특히, 드럼은 출력 면(output face; 26)을 통해서 마운팅될 수 있다. 이에 따라, 증착 헤드의 회전 축은 드럼의 회전 축과 일치될 수 있음이, 보다 일반화되어, 명백해 진다.
장치(2)는 차축(10)과 증착 헤드를 구동시키기 위하여 차축(10)에 연결되는 구동부(driver)를 더 포함할 수 있다. 구동부는 구동 컨트롤러(driving controller; 9A)를 구비할 수 있다. 구동 컨틀로러에 의해서, 구동부는 기판을 따르는 프리커서 기체 공급부의 병진 속도를 실현시키고 제어하도록 적용될 수 있다. 이러한 구동부 및 구동 컨트롤러는 공지되어 있으므로 추가적인 설명은 생략한다.
차축(10)은 그 축을 따라서 정렬된 긴 공동(elongated cavity)을 포함할 수 있다. 실제 사용에 있어, 프리커서 기체는 차축의 공동(11A)(도 1c 참조)을 통해서 전송될 수 있다. 게다가, 기체 공급 구조체(gas supply structure)는 차축의 공동으로 연장될 수 있다. 차축(10)의 공동(11A)에서부터, 프리커서 기체는 프리커서 기체 공급부로 전송될 수 있다.
기체 공급 구조체와 차축 사이에 기체 밀폐형 연결(gas-tight connection)(이는 차축과 기체 공급 구조체 사이의 회전 동작을 허용함)을 얻는 방식은 하기에서 예컨대 도 1c ~ 1f 및 도 15 ~ 18을 참조하여 상세하게 설명될 것이다.
회전하는 공간 릴-투-릴(reel-to-reel; R2R) 원자 층 증착(ALD; Atomic Layer Deposition) 시스템 상의 기체 공급 시스템을 위한 몇몇 일반적인 요구사항은, 만약 움직이는(즉, 회전하는) 공간 ALD 시스템을 위해 기체 공급부가 스테이셔너리 피드 어셈블리(stationary feed assembly)로부터 유래된다면, 스테이셔너리 피드 어셈블리로부터 회전하는 ALD 시스템으로 기체를 공급하기 위해 기체 피드-스루 설계가 요구된다는 것이다. 이러한 피드-스루는 ALD 프로세스를 불가피하게 오염시켜 예컨대 증착된 배리어 층들에 핀홀(pinholes)을 생성하는 입자들을 발생시켜서는 안 된다. 따라서, 바람직하게는, 2개의 증기 공급부(예컨대, 프리커서 기체 TMA 및 반응 기체 H2O)는 R2R 장비의 전체 기체 순환 시스템을 통해 완전히 분리된다.
하기에서, 2 이상의 독립적인, 분리된 기체 공급 구성에 대해 3개의 주요 설계를 설명한다.
첫번째 설계에서, 누설 실(leaky seals)을 구비하는 내부 기체 베어링/동심 튜브들(concentric tubes)을 구비하는 동축 드럼 세트(coaxial drum set) 및 스위칭가능한 유체 차단 밸브(switchable flow interruption valves)를 구비한다. 하나는 기체 공급 설계이다. 여기서, 하나의 프리커서 기체의 공급 라인은 그것의 기체 인렛 개구부(gas inlet opening)가 드럼이 호일에 의해 커버되지 않은 부분(segment)으로 이동할 때 닫힌다. 이는 밸브 시스템을 삽입함으로써 이루어질 수 있으며, 상기 밸브 시스템은 예컨대 자기적으로, 정전기적으로, 중력으로 또는 이들의 조합에 의해 작동될 수 있다. 이에 대해서는 도 14를 참조하여 하기에서 상세 설명될 것이다. 일부 프리커서 및 프로세스 기체는 (동심) 튜브 어셈블리의 서로 다른 내부 튜브들을 통해 이동될 있다. 프리커서 및 다른 프로세스 기체들의 분리는 압력 차에 의해 이루어질 수 있다. 예를 들어, (배기를 위해 사용된) 불활성 기체는 프리커서 튜브 내로 흘러갈 수 있지만, 주위의 다른 경로는 안된다. 누설 실(leaky seals)을 갖는 (동심) 튜브는 드럼의 일측 또는 양측으로부터 기체 및 프리커서가 공급되도록 한다. 예컨대, 도 1e는 이러한 개념을 나타낸 것이다.
두번째 설계에서, 소위 형상-제어된 차축(shape-controlled axis)으로부터 기체 베어링 및 기체 피드-스루를 갖는 동축 드럼 세트가 내장된 집적된 다중 흐름 선택/제한 시스템(integrated multiple flow selector/restrictor system)을 구비한다. 여기서, 기체 피드-스루는 기체 베어링을 구비할 수 있다. (불활성) 기체 베어링은 회전하는 튜브와 정지된 튜브를 분리한다. 기체 베어링은 누설될 수 있다. 누설 실을 갖는 동심 튜브들의 개념은 누설을 감소시키기 위해 기체 베어링에 의해 증가될 수 있다. 예컨대, 도 1f는 이러한 개념을 나타낸 것이다. 공급 설계는 집적된 유체 제한 공급 라인 순환부, 각각의 반응을 위한 하나의 순환부 및 플렉서블한 기판의 기체 베어링에 기초될 수 있다. 기체들의 온(on)/오프(off) 스위칭은 회전 드럼의 원주에 새겨진 그루브(grooves) 및 회전 드럼 주위의 인서트(inserts)로 구성되는 공급 라인들(supply lines)에 기초한다. 인서트는, 면대면(face-to-face) 마운트될 때, 구동 챔버를 구성하기 위해, 드럼 상에 2개의 반의 오목한 단면을 형성한다.
세번째 설계에서, 드럼의 차축 측면(axial side)에 인접하여 밀폐되도록 형성된 1개 또는 2개의 디스크로부터의 기체 피드-스루를 갖는 드럼이 내장된 집적된 다중 흐름 선택/제한 시스템(integrated multiple flow selector/restrictor system)을 구비한다. 이러한 공급 설계는 집적된 유체 제한 공급 라인 순환부, 각각의 반응을 위한 하나의 순환부 및/또는 반응 기체 및 플렉서블한 기판의 기체 베어링을 위한 반응기체에 기초될 수 있다. 기체들의 온(on)/오프(off) 스위칭은 내부 드럼과 관련하여 외부 드럼의 회전과 연동(communicate)하는 공급 라인들(supply lines)에 기초한다. 회전하는 ALD 드럼은 기체 베어링을 가질 수 있다. 기체는 기체 베어링의 정지된 부분(stationary part)에 공급된다. 기체는 정지된 부분 및 회전하는 부분의 내부 채널을 통해서 정지된 부분에서 회전하는 부분으로 전송된다. 서로 다른 기체들/프리커서를 갖는 다중 채널이 기체 분리부를 이용하여 병렬로 사용될 수 있다. 도 17 또는 도 18은 그 예를 도시한다.
도 1c는 일 실시예를 도시한 것으로, 여기서 증착 헤드, 프리커서 기체 공급부, 및 선택적으로 드럼(5)은 차축(10)에 대하여 이동가능(moveable)하다. 장치의 마운트는 차축(10)을 포함할 수 있다. 도 1c는 차축을 통해 프리커서 기체 공급부 방향으로 프리커서 기체를 공급하기 위하여, 예컨대 가늘고 긴, 제1 차축 공동(axle cavity; 11A)을 구비하는 차축(10)의 단면도를 개략적으로 도시한 것이다.
도 1c의 단면도에서, 증착 헤드(6) 및 기판(4)은 단면의 일 측면만 보인다. 그러나, 일 실시예에서, 다른 단면들도 가능하며, 이 경우 증착 헤드(6) 및/또는 기판(4)은 단면의 2개 측면이 보일 수 있다. 차축(10)은 차축을 통해 증착 헤드 방향으로 추가적인 기체를 공급하기 위하여, 예컨대 가늘고 긴, 제2 차축 공동(11B)을 구비할 수 있다. 예를 들면, 제2 차축 공동(11B)은 차축을 통해 반응 기체 공급부(42) 방향으로 반응 기체를 공급하기 위하여 배치될 수 있다. 대안적으로, 제2 차축 공동(11B)은 차축을 통해 퍼지 기체 공급부(38) 방향으로 퍼지 기체를 공급하기 위하여 배치될 수도 있다(도 1e 참조).
차축 공동(11A, 11B)은 차축을 통해 프리커서 공급부 방향으로 적어도 프리커서 기체를 공급하기 위하여 차축 피드-스루(axle feed-through; 111)에 의해 포함될 수 있다. 바람직하게는, 차축 기체 베어링(axle gas bearing; 19)이 한편으로는 차축 그리고 다른 한편으로는 드럼 및/또는 증착 헤드 사이에 구비될 수 있다. 차축 기체 베어링의 베어링 압력은 차축 공동(11A, 11B)으로부터의 누출을 실질적으로 방지하기 위하여 제어될 수 있다. 이러한 차축 기체 베어링은, 차축과 드럼 사이의 또는 기체 공급 구조체와 차축 사이의 예컨대 슬라이딩 기계적 접촉(sliding mechanical contact)과 비교하여, 회전하는 동안 발생되는 입자들의 양을 감소시킬 수 있다. 차축 기체 베어링(19)은 한편으로는 차축 그리고 다른 한편으로는 회전 드럼 및/또는 증착 헤드 사이의 기체 연결부(gas connection)를 제공하여, 차축 기체 베어링을 통해서 프리커서 기체가 누출되는 것을 실질적으로 방지할 수 있다.
따라서, 마운트는 한편으로는 기체 공급부 및/또는 배출부 구조체(도시되지는 않았지만 종래기술에 해당함) 그리고 다른 한편으로는 증착 헤드 사이의 기체 연결부의 엔클로저(enclosure)의 일부를 형성하는 마운트 기체 베어링(mount gas bearing)(예, 차축 기체 베어링)을 구비할 수 있다. 마운트 기체 베어링의 압력은 기체 연결부로부터 마운트 기체 베어링을 통해서 프리커서 기체가 누출되는 것을 방지할 수 있도록 설정될 수 있다. 동시에, 마운트 기체 베어링은 증착 헤드가 기체 공급부 및/또는 배출부에 대해 회전가능하도록 배치될 수 있다. 증착 헤드(6)와 프리커서 기체 공급부(8), 및 선택적으로 드럼(5)의 회전은 화살표(21)로 표시되어 있다. 상기 실시예에서, 차축은 정지될 수 있다. 그리고, 차축은 기체 공급 구조체와 견고하게 연결될 수 있다.
추가적으로 또는 대안적으로, 일 실시예에서, 상기 장치는 프리커서 기체를 포함하고 있는 카트리지(cartridge)를 구비할 수 있다. 그리고, 기체 밀폐형 연결부는 생략될 수 있다. 다른 기체들의 전송은 전술한 바와 같은 프리커서 기체 공급부를 향하는 프리커서 기체의 전송과 유사하게 구현될 수 있다.
그러므로, 보다 일반적으로는, 마운트는 증착 헤드 및/또는 드럼을, 선택적으로는 회전가능하게 또는 견고하게, 마운팅하기 위한 차축을 포함할 수 있다. 차축은 프리커서 기체 공급부 방향으로 차축을 통해서 적어도 프리커서 기체를 공급하기 위하여 차축 피드-스루(예, 차축 공동)를 구비할 수 있다. 본 발명에 따른 방법은, 차축에 마운팅된 드럼 및/또는 증착 헤드를 제공하는 단계; 및 프리커서 기체 공급부 방향으로 차축을 통해서 적어도 프리커서 기체를 제공하는 단계를 포함한다. 마운트는 한편으로는 기체 공급부 및/또는 배출부 구조체 그리고 다른 한편으로는 증착 헤드 사이에 기체 연결부의 엔클로저의 일부를 형성하는 마운트 기체 베어링을 구비할 수 있다. 상기 마운트 기체 베어링의 압력은 기체 연결부로부터 마운트 기체 베어링을 통해서 기체가 누출되는 것을 방지하도록 설정될 수 있다. 마운트 기체 베어링은 기체 공급부 및/또는 배출부에 대해서 증착 헤드가 회전가능하도록 배치될 수 있다. 장치(2)는 프리커서 기체 공급부를 따라서 기판을 전송하는 전송부(transporter) 시스템을 포함할 수 있다. 전송부는, 도 3a 및 도 3b에 도시된 바와 같이, 프리커서 기체 공급부(8) 및 증착 헤드(6)를 따라서 기판(4)을 전송하기 위한 클로우저 엘리먼트(closure element) 또는 가이드(guide)(15)를 포함할 수 있다. 또한, 전송부(예컨대, 가이드)은 캡스턴(capstan; 14)을 포함할 수 있다. 캡스턴은 고정될 수 있다. 그러나, 캡스턴은 롤링 캡스턴(rolling capstan), 즉 캡스턴(14)의 길이 축 또는 대칭 축에 대해 회전가능한 캡스턴이 바람직하다. 전송부는 기판(4)이 롤링 캡스턴(14)을 통과하는 속도를 제어하기 위한 전송 컨트롤러(transportation controller; 9B)를 더 포함할 수 있다. 전송 컨트롤러(9B)는 공지되어 있으므로 추가적인 설명은 생략한다. 전송 컨트롤러는 예컨대 1개 또는 2개의 롤링 캡스턴(14)의 회전 속도를 제어할 수 있다. 게다가, 전송 컨트롤러(9B)는 롤링 캡스턴(14)에 연결(결합)될 수 있다.
그러므로, 전송 컨트롤러(9B) 및 구동 컨트롤러(9A)에 의해서, 기판의 병진 속도 및 프리커서 기체 공급부의 병진 속도가 각각 제어될 수 있다. 바람직하게는, 프리커서 기체 공급부의 병진 속도가 기판의 병진 속도보다 더 크다. 이러한 방식으로, 상대적으로 높은 속도를 갖도록, 프리커서 기체 공급부 및 기판 사이에 상대적 이동이 얻어질 수 있다.
기판의 병진 속도는 예컨대 약 0.01 ~ 0.2 m/s가 될 수 있다. 본 발명에서 예시된 모든 실시예에서, 프리커서 헤드는 적어도 0.1 또는 1 rps(revolution per second)의 주파수로 회전될 수 있다. 프리커서 헤드는 예컨대 약 50 rps의 주파수로 회전될 수 있다. 프리커서 기체 공급부의 병진 속도는 예컨대 약 1m/s가 될 수 있다. 이해하는 바와 같이, 이는 셋업(set-up)의 기하학적 구조에 의존한다. 더 나아가, 실제에 있어 프리커서 기체 공급부가 회전함에 따라, 프리커서 기체 공급부는 기판의 동일한 부분을 따라서 연속적인 방식으로 여러 차례 이동될 수 있다. 이러한 방식으로, 복수개의 원자 층이 기판 상에 증착될 수 있다. 이러한 방식으로, 상호 중첩된 복수개의 원자 층들을 포함하는 하나의 비교적 두꺼운 복합 층(composite layer)이 얻어질 수 있다. 그러므로, 보다 일반적으로는, 프리커서 기체 공급부는 상호 중첩된 복수개의 원자 층들을 포함하는 복합 층을 얻기 위하여, 기판의 동일한 부분을 따라서 여러 차례, 동일한 방향으로 연속적으로 회전할 수 있다. 그러므로, 여기에서 사용된 '회전하다(rotate)' 및 '회전하는(rotating)' 등과 같은 용어는 '돌다(revolve)' 및 '도는(revolving)', '빙빙 돌다(gyrate)' 및 '빙빙 도는(gyrating)', 또는 '선회하다(spin)' 및 '선회하는(spinning)' 등을 의미할 수 있다. 그러므로, 본 발명에 따른 장치는 상호 중첩된 복수개의 원자 층들을 포함하는 복합 층을 얻기 위하여, 기판의 동일한 부분을 따라서 여러 차례, 동일한 방향으로 연속적으로 회전하도록 구현될 수 있다.
만약 프리커서 기체 공급부의 병진 속도가 기판의 병진 속도와 반대 방향이 되면, 상대적 이동 속도는 더 증가될 수 있다.
변형예에서, 전송 컨트롤러 및 구동 컨트롤러는 기판을 향하여 프리커서 기체를 공급하면서 동시에 기판을 이동시키도록 구현된다. 이러한 방식으로, 후속적으로 증착되는 원자 층들 사이에는 오프셋(offset)이 형성될 수 있다. 이러한 방식으로, 기판에 대해 수직으로 확장되는 원자 층들의 에지들(edges) 사이의 이음매(seam)가 실질적으로 방지될 수 있다. 도 1a는 이와 같은 방식으로 증착되는 오프셋(93)을 갖는 원자 층들(92.i(i= n, n+1,...))의 스택(stack)을 예시한 것이다.
오프셋(93)은, 보다 일반적으로는, 프리커서 기체 공급부 및 기판의 병진 속도에 의존한다. 예컨대, 프리커서 기체 공급부(8) 및 기판(4)이 동일한 방향으로 이동하고 프리커서 기체 공급부(8)의 병진 속도가 기판(4)의 병진 속도보다 더 클 경우, 만약 프리커서 기체 공급부(8)의 병진 속도가 증가하게 되면 오프셋(93)은 감소하게 된다.
다른 변형예에서, 전송 컨트롤러 및 구동 컨트롤러는 기판을 향하여 프리커서 기체를 공급한 후에 기판을 이동시키도록 구현된다. 이 경우, 기판을 향하여 프리커서 기체를 공급하는 동안에는 기판은 이동되지 않는다. 이러한 방식으로 층들의 스택이 증착되면, 기판을 이동시키는 동안에는 기판을 향하여 프리커서 기체를 공급하는 것이 중단된다. 이러한 방식으로, 기판(4) 상에 층들의 고립된(isolated) 스텍이 증착된다. 도 1b는 이와 같은 방식으로 증착되는 층들(92.i(i= n, n+1,...))의 고립된 스택(92)을 예시한 것이다. 도 1b에서는 3개의 층을 도시하였지만, 스택(92)은 통상적으로 약 수백에서 수천개의 원자 층들을 포함할 수 있다.
장치(2)는 커버(cover; 16)를 더 포함할 수 있다. 커버에 의해서, 프리커서 기체는 실질적으로 밀봉되거나 가두어지게 된다. 커버(16)는 증착 헤드 및/또는 회전가능한 드럼(5)의 일부를 향하고, 기판(4)의 일부들(본 실시예에서 기판들의 일부들은 캡스턴(14)들과 기계적으로 접촉하고 있다) 사이로 확장된다. 커버(16)를 삽입함으로써, 프리커서 기체는 증착 헤드, 기판(4), 및 커버(16)에 의해 경계지워지는 공간(space; 18)에 실질적으로 밀봉되거나 가두어지게 된다. 공간(18)에서, 기체 베어링은 프리커서 헤드로부터 주입되는 기체에 의해 생성될 수 있으며, 이에 대하여는 도 4 내지 도 6을 참조하여 후술하기로 한다. 커버(16)가 없다면, 프리커서 기체는 장치(2)의 외부 환경(20)으로 누출될 것이다. 이는 기판 상에 원하지 않는 오염 및 입자들이 형성되는 것을 초래할 수 있다.
도 1d는 기체 베어링(19)을 갖는 차축(10) 주위를 회전가능한 드럼(50)을 포함하는 장치(2)의 일 실시예의 개략적인 단면도이다. 사용 시, 프리커서 기체는 차축(10)의 공동(11A)을 통해서 전송되어 기판(4)에 대한 프리커서 기체 공급부(8)를 제공한다. 드럼(5)은 회전 궤도(62)로 차축(10) 주위를 회전할 수 있으며, 프리커서 기체 공급부(8)로부터의 프리커서 기체가 드럼(5)에 구성된 증착 헤드(6)에 의해 기판(4) 상에 증착된다. 증착 헤드(6)는 프리커서 기체 공급부(8), 및 예컨대 차축 방향으로 드럼(50)의 표면을 따라서 연장되며 프리커서 기체 공급부(8)와 기체 접촉하는 예컨대 좁은 슬릿(narrow slit)을 포함할 수 있다.
정지된 축(10)으로부터 회전하는 드럼(5)으로 프리커서 기체를 제공하기 위하여, 기체 전송 구조체(gas transition structure; 510)가 구비된다. 상기 기체 전송 구조체(510)는 예컨대 차축 피드-스루(111)와 연결된 차축(10)의 하나 이상의 기체 아웃렛 및 회전가능한 드럼(5)의 하나 이상의 상응하는 원주형 그루브(circumferential grooves; 57)의 조합을 포함한다. 그루브(57)가 예컨대 드럼의 회전 궤도를 따라서 기체 아웃렛에 대향해 있는 드럼의 회전 궤도(26)를 따르는 위치에서, 기체는 정지된 차축(62)과 회전하는 드럼(5) 사이에서 흐른다. 그루브가 없거나 기체 아웃렛에 대향해 있지 않은 드럼의 회전 궤도(62)를 따르는 위치에서, 기체 아웃렛을 밀폐시키는 드럼의 표면에 의해 기체의 흐름은 차단되거나 또는 실질적으로 감소된다.
여기서 사용된 "원주형 그루브(circumferential grooves)"라는 용어는 그루브가, 드럼의 기체 인렛 또는 아웃렛의 회전을 적어도 부분적으로 따르는 예컨대 고정된 반경을 갖는, 원형 경로를 따른다는 것을 의미한다. 그루브는, 예컨대 원주 궤도를 따라서 차단되는, 반-원주형(semi-circumferential)일 수 있다. 현재의 도면에서 원주형 그루브는 드럼의 내부 표면 상에 있지만, 그루브는 또한 드럼의 외부 표면 또는 차축에 있을 수 있으며, 또는 대안적으로 그루브는 드럼의 차축 측면, 예컨대 드럼의 측면에 밀폐되게 고정되는 실 플레이트(seal plate)의 표면에 있을 수 있다(도 15 ~ 18 참조).
대안적으로, 그루브 및 차축(10) 기체 아웃렛을 포함하는 드럼(5) 대신에, 드럼(5)은 기체 인렛을 포함하고 차축(10)은 차축 피드-스루(111)에 연결된 그루브들을 포함할 수 있다. 대안적으로, 차축(10) 및 드럼(5)은 원주형 그루브들을 포함하거나 또는 회전 궤도(62)의 부분들 동안 서로 대향하는 하나 이상의 기체 인렛/아웃렛을 포함할 수 있다. 또한 그루브와 아웃렛의 다른 조합도 가능하다. 예컨대, 드럼(5)은 차축(10)의 기체 아웃렛에 대향하여 위치하는 그루브를 가질 수 있으며, 마찬가지로 드럼(5)은 차축(10)의 그루브에 대향하여 위치하는 기체 인렛을 가질 수 있다. 드럼(5) 또는 차축(10)의 그루브는 대향하는 구조체, 즉 차축(10) 또는 드럼(5)의 표면에 의해 부분적으로 실링될 수 있다. 이러한 실링된 그루브는 차축 공동(11A)에 연결된 기체 소스와 증착 헤드(6) 내에서 연장되는 기체 공급부(8) 사이에 기체 흐름 경로의 일부로서 채널을 형성한다. 따라서, 차축(10)은 실링 피스(sealing piece)로서 역할하며, 실링 피스 (차축(10)) 및 드럼(5) 사이의 그루부를 통과하는 기체 흐름 경로를 실링한다.
차축(10)에 의해 형성된 실링 피스와 드럼(5) 사이의 실링을 더욱 향상시키기 위하여, 기체 베어링(19)은 퍼지 또는 베어링 기체(예, 질소 기체, N2)를 제공하는 퍼지 기체 공급부를 포함할 수 있으며, 이는 전이(510)와 외부 주위 사이에 스무드한 베어링 기능 및 기체 커튼(gas curtain)을 제공한다. 기체 커튼은 드럼(50)의 상대적인 회전 부의 개구부와 차축(10) 사이에 프리커서 기체가 빠져나가는 것을 방지한다. 기체 베어링(19)은 또한 퍼지 기체 및 프리커서 기체를 배출시키는 기체 배출부를 구비할 수 있다. 바람직하게는, 기체 베어링(19)은 프리커서 기체가 장치(20)로부터 빠져나가는 것을 방지하기 위해 드럼(5)의 전체 내부 원주를 따라서 연장되는 그루브들을 포함할 수 있다. 퍼지 기체의 압력은 바람직하게는 프리커서 기체의 압력보다 높다. 이러한 방식으로, 퍼지 기체는 기체 베어링(19)으로부터 프리커서 기체 공급부(8)를 향해서 흐르게 되고, 주위의 다른 경로로는 안 흐른다.
추가적인 기체 베어링 또는 퍼지 기체 아웃렛/인렛(미도시)이 기판(4)과 드럼(5) 사이에 구비되어, 드럼(5)과 기판(4)의 스무드한 상대적 움직임을 제공하고 프리커서 기체가 기판(4)과 드럼(5) 사이에서 빠져나가는 것을 방지한다. 이러한 추가적인 기체 베어링 또는 기체 커튼은 바람직하게는 증착 헤드(6) 또는 기판(4)의 에지에 구비된다. 바람직하게는, 프리커서 기체 공급부 및 배출부는 증착 헤드 내 리세스 또는 공동에 구성된다. 기판 상에 증착되는 공동 내 프리커서 기체의 집중은 프리커서 기체 공급부의 압력 및 프리커서 기체 배출부의 (흡입) 압력을 제어함으로써 제어될 수 있다.
따라서, 유리한 방법은, 기체 베어링 층을 제공하기 위하여 증착 헤드의 베어링 기체 공급부로부터의 베어링 기체를 기판을 향하여 공급하는 단계, 기판을 향하고 증착 헤드에 의해 정의되는 공동 내 프리커서 기체 공급부에 의해서 프리커서 기체를 공급하는 단계, 및 공동으로부터 프리커서 기체가 빠져나가는 것을 실질적으로 방지하기 위하여 증착 헤드의 프리커서 기체 배출부에 의해 공동으로부터 프리커서 기체를 배출시키는 단계를 포함하고, 상기 방법은 공동으로부터 떨어져 위치하는 베어링 기체 공급부에 의해 베어링 기체를 공급하는 단계를 더 포함한다.
도 1e(a) 내지 도 1e(c)는 동심 튜브(10a, 10b)를 포함하는 차축을 갖는 회전가능한 드럼(5)에 대한 3개의 측면을 도시한 것이다.
도 1e(a)에서, 장치(2)의 정면 단면도가 도시되어 있으며, 여기에는, 드럼(5)의 회전 축을 따라서, 퍼지 기체(138)를 갖는 외부 동심 튜브(10b)에 의해 둘러싸인 프리커서 기체(108)를 갖는 내부 튜브(10a)가 구비된다. 내부 튜브(10a)는 방사적으로 연장되는 차축 피드-스루(111a)를 통해 프리커서 기체(108)를 프리커서 기체 공급부(8)로 공급한다. 외부 튜브(10b)는 방사적으로 연장되는 차축 피드-스루(111b)를 통해 퍼지 기체(138)를 퍼지 기체 공급부(38)로 공급한다. 기체 공급부들(8, 38)은 회전하는 드럼(5) 내에 구비된다. 공급부들은 드럼을 부분적으로 커버하고 있는 기판(4) 상에 기체를 증착시킨다. 기판이 드럼(5)을 커버하지 않는 위치에, 프리커서 기체가 장치로부터 빠져나가는 것을 방지하기 위하여 외부 커버(16)가 구비될 수 있다. 기판(4)이 드럼의 원주를 따르는 위치에, 드럼 주위의 기판 경로를 정의하기 위하여 가이딩 구조체(15)가 구비될 수 있다.
도 1e(b)는 궤도(62)를 따라서 회전하는 동심 튜브들(10a, 10b)이 정지된(회전하지 않는) 기체 소스들(108', 138')로부터 각각 프리커서 기체(108) 및 퍼지 기체(138)를 갖는 방식을 나타낸다. 특히, 기체 전송 구조체(510)가 구비되고, 여기서 회전하는 내부 튜브(10a)가 프리커서 기체 소스(108')에 연결된 정지 튜브(10a')로부터 프리커서 기체(108)를 수용한다. 유사하게, 회전하는 외부 튜브(10b)는 정지된 퍼지 기체 공급부(138)에 연결된 정지 튜브(10b')로 돌출되고, 이로부터 퍼지 기체를 수용한다. 도시된 실시예의 대안으로서, 퍼지 기체 공급부는 또한 정지 튜브에 의해 실링되는 회전 튜브의 조합을 통해 구비될 수도 있다.
도 1e(c)은 도 1e(b)의 기체 전송 구조체(510)를 확대한 것이다. 기체 전송 구조체는 서로에 대해 회전하는 내부 튜브들(10a, 10a')의 연결을 포함한다. 예컨대, 회전하는 드럼에 연결된 튜브(10a)는 기체 소스(108')에 연결된 튜브(10a')가 정지하는 동안 회전할 수 있다. 바람직하게는, 퍼지 기체(138)는 프리커서 기체(108)보다 더 높은 압력을 가지며, 그 결과 프리커서 기체(108)는 회전하는 부분들(10a, 10b) 사이의 누설 실 또는 개구부(115a)에서 빠져나가지 않는다.
따라서, 유리한 실시예에서, 기체 공급부(8 또는 38)가 드럼(5)에 구비되어 상대적으로 회전하는 부분들(10a, 10a')을 포함하는 기체 흐름 경로를 통해 정지된 기체 소스(108' 또는 138')로부터 기체(108 또는 138)를 수용하고, 여기서 상대적으로 움직이는 부분들(10a, 10a') 사이의 개구부(115)를 통과하는 프리커서 기체의 누출은 프리커서 기체(108)보다 높은 압력을 갖는 개구부 주위의 퍼지 기체(138)에 의해 방지된다. 더 유리한 실시예에서, 상대적으로 회전하는 부분들은 2 이상의 동심 튜브(10a, 10b)를 포함하고, 여기서 프리커서 기체(108)는 내부 튜브(10a)를 통해 공급되고 퍼지 기체(138)는 외부 튜브(10b)를 통해 공급된다. 대안적으로, 동심 튜브들에 대해, 예컨대 도 1d의 기체 베어링은 프리커서 기체가 누설되는 것을 방지하기 위하여 프리커서 기체보다 압력이 높은 퍼지 기체를 갖는다.
현재의 도면은 프리커서 기체 및 퍼지 기체를 공급하기 위해 2개의 동심 튜브(10a, 10b)를 도시하고 있지만, 기체들을 배출시키기 위해 추가적인 동심 튜브들이 구비될 수도 있다. 예컨대, 배출부는 현재 도시된 내부 튜브 내에서 튜브 내에 있는 프리커서 기체 및 퍼지 기체보다 더 낮은 압력을 가질 수 있다. 대안적으로, 튜브는, 예컨대 대기압보다 낮은 압력으로, 외부 튜브 주위에 동심으로 구비될 수 있으며, 이에 따라 배출부의 누설 실은 외부의 주위로 기체를 누설하지 않고 대신 대기의 기체가 배출부 튜브로 흡입될 것이다. 추가적으로 또는 대안적으로, 임의의 개수의 동심 튜브가 예컨대 교차 압력 배치(alternating pressure arrangement)에 구비될 수 있으며, 여기서 퍼지 가스 튜브는 2 이상의 프리커서 기체들 사이에서 높은 압력을 갖는다. 현재 실시예에서, 서로에 대해 회전하는 부분들, 즉 기체 전송 구조체(510)의 위치에서 튜브들은 단지 동심이면 된다. 예컨대, 차축 부분 상에서, 동심 튜브들은 병렬 튜브들의 배치와 연결될 수 있다.
외부 튜브들(10b, 10b')은 서로에 대해 회전한다. 퍼지 기체 공급부에 연결된 정지 튜브(10b')에 대한 회전하는 튜브(10b) 사이의 개구부(115b)를 통해 (불활성) 퍼지 기체(138)가 외부 환경으로 누출될 수도 있다.
도 1f는 프리커서 기체(108)를 전송하기 위해 2개의 연결된 동심 기체 튜브들의 개략적인 단면도를 도시한다. 내부 튜브는 예컨대 회전하는 드럼의 차축(10)을 형성할 수 있으며, 차축(10)을 홀딩(holding)하기 위한 베어링(12)을 형성할 수도 있는 외부 튜브에 대해 회전가능하다. 따라서, 기체 전송 구조체(510)는 차축(10) 및 베어링(12)의 상대적으로 회전하는 부분들 사이에 형성될 수 있다. 상대적으로 움직이는 부분들(10, 12) 사이의 개구부(115)를 통한 프리커서 기체(108)의 누출은 기체 베어링(19)에 의해 상기 개구부를 둘러싸는 퍼지 기체에 의해 방지될 수 있다. 바람직하게는, 퍼지 기체는 프리커서 기체(108)보다 더 높은 압력을 가진다. 이러한 방식으로, 기체 베어링 또는 퍼지 기체는, 프리커서 기체가 예컨대 방향(112)으로 외부 환경으로 흐르는 것을 방지하면서, 방향(113)으로 튜브 또는 베어링(12)쪽으로 흐르게 된다.
도 2a는 본 발명의 제1 실시예에 따른 장치(2)에서 증착 헤드(6)의 기본 기능부(basic functional part)와 기판(4)을 도시한 것이다. 도 2a는, 프리커서 헤드(6)의 출력 면(26)을 따라서, 기체들이 어떻게 공급되고 배출될 수 있는지를 보여준다. 도 2a에서, 화살표(28.1)는 프리커서 기체가 공급되는 것을 나타낸다. 화살표(28.2)는 프리커서 기체 및 화살표(30.1)에 의해 공급된 퍼지 기체가 배출되는 것을 나타낸다. 화살표(30.1)는 퍼지 기체가 공급되는 것을 나타낸다. 화살표(30.2)는 퍼지 기체 및 화살표(32.1)에 의해 공급된 프리커서/반응 기체가 배출되는 것을 나타낸다. 화살표(32.1)는 반응 기체가 공급되는 것을 나타낸다. 화살표(32.2)는 반응 기체 및 화살표(30.1)에 의해 공급된 퍼지 기체가 배출되는 것을 나타낸다. 활성 기체들(예, 반응 기체 및 프리커서 기체)을 공급하는 위치 사이에 퍼지 기체를 공급함으로써 활성 기체들을 공간적으로 분리시킬 수 있다. 도 2a에 도시된 기본 기능부는 회전가능한 드럼(5)의 원주를 따라서 반복될 수 있다. 그러므로, 보다 일반적으로는, 프리커서 기체 공급부는 회전가능한 드럼의 원주를 따라서 및/또는 출력 면의 원주를 따라서 위치하며, 바람직하게는 반복된다.
도 2b는 도 2a에 도시된 증착 헤드의 일부의 가능한 구조를 부분적으로 도시한 것이다. 도 2b는 프리커서 기체 공급부(8)를 도시한 것이며, 이는 제1 반응 하프-사이클을 위해 사용될 수 있다. 도 2b는 증착 헤드가 프리커서 기체를 배출하기 위한 프리커서 기체 배출부(36)를 구비할 수 있는 것을 추가적으로 보여준다. 증착 헤드(6)는 기판을 향해서 퍼지 기체를 공급하는 퍼지 기체 공급부(38) 및 기판으로부터 퍼지 기체를 배출시키는 퍼지 기체 배출부(40)를 더 포함할 수 있다. 증착 헤드(6)는 기판을 향해서 반응 기체를 공급하는 반응 기체 공급부(42)를 더 포함할 수 있으며, 이는 제2 반응 하프-사이클을 위해 사용될 수 있다. 반응 기체 공급부는, 원자 층을 형성하기 위하여, 기판의 근처에서(예컨대, 기판 상에서) 프리커서 기체를 반응시키는 수단으로서 기능한다. 이러한 방식에서, 퍼지 기체는 반응 기체의 영역과 프리커서 기체의 영역을 공간적으로 분리시키기 위하여 반응 기체와 프리커서 기체 사이에 공급된다. 이는 기판(4) 표면 이외의 위치에서 퍼지 기체와 반응 기체가 반응하는 것을 방지한다. 더 나아가, 또는 대안적으로, 열적, 광적, 또는 플라즈마 여기 등과 같은 다른 형태의 반응 시스템이 사용될 수도 있다.
보다 일반적으로, 기체 공급부들(예, 프리커서 기체 공급부, 반응 기체 공급부, 퍼지 기체 공급부)은 분리부(separation length; 43)에 의해서 서로 이격되어 위치하며, 또한 기체 배출부들(예, 프리커서 기체 배출부, 반응 기체 배출부, 퍼지 기체 배출부)과도 서로 이격되어 위치한다.
도 3a 및 도 3b는 전송부(17)의 일부를 도시한 것이다. 도 3a 및 도 3b는 전송부에 포함되어 있는 가이드(15)를 보여준다. 실제 사용에 있어, 프리커서 기체 공급부는 가이드(15)에 의해 둘러싸여 있는 중앙 공간(49) 내에서 회전될 수 있다. 가이드(15)는 가이드 또는 클로우저 엘리먼트(15)의 내부 라이닝(inner lining)에 부착되는 메쉬(mesh; 48)를 구비할 수 있다. 전송부는 압력에 의해 기판(4)을 부착시키기 위한 캐리어(carrier; 50)를 더 포함할 수 있다. 캐리어(5)는 메쉬를 포함할 수 있다. 게다가, 전송부는 기판(4)과 캐리어(50) 사이에 진공을 형성하기 위하여 진공 포트(vacuum port; 52)를 포함할 수 있다. 화살표(54)는, 기판(4)을 캐리어(50)에 부착시키기 위하여, 진공 포트(52)를 통해 기체가 흡입되는 것을 나타낸다. 실제 사용에 있어, 캐리어는 가이드(15)의 전송 면(transportation face; 56)(이는 출력 면(26)에 상응(conformal)한다)을 따라서 가이드(15) 주위로 이동될 수 있다. 물론, 기판을 캐리어(50)에 부착시키기 위하여 다른 형태의 방법들이 사용될 수도 있다.
도 4는 본 발명의 제2 실시예에 따른 기판 상에 원자 층을 증착시키는 장치(2)를 도시한 것이다. 도 4는 장치(2)의 증착 헤드(2)와 커버(16)를 보여준다. 기판의 이동 방향은 화살표(60)로 나타나 있다. 증착 헤드의 회전 방향 및 기판을 따르는 프리커서 기체 공급부의 이동 방향은 화살표(62)로 나타나 있다. 그러므로, 본 실시예에서 프리커서 기체 공급부의 병진 속도의 진행방향은 기판의 병진 속도의 진행방향과 같다는 것을 알 수 있다. 예컨대, 만약 기판이 화살표(64) 방향으로 이동하면, 기판을 따르는 프리커서 기체 공급부의 병진 속도의 진행방향은 기판의 병진 속도의 진행방향과 반대가 된다.
본 발명의 제2 실시예에 따른 장치(2)는 증착 헤드(6)의 출력 면(26)을 또한 보여준다. 도 4에서, 실제 사용에 있어 출력 면은 기판(4)의 일부를 향한다. 도 4에서, 출력 면은 실질적으로 기판(4) 또는 실링 엘리먼트(16)를 향한다. 출력 면(26)은 실질적으로 원통 형상을 갖는다. 본 실시예에서, 출력 면(26)은 기판의 이동 경로를 정의하는 것을 알 수 있으며, 실제 사용에 있어서 출력 면은 이격 거리(D)(또한 도 2a 참조)에 의해 기판과는 분리된다. 또한, 본 실시예에서, 출력 면(26)은 증착 헤드의 회전 축을 둘러싸는 출력 면(26)의 전체 원주를 따라서 실질적으로 둥글다는 것을 알 수 있다. 그러나, 다른 실시예에서는, 출력 면(26)은 예컨대 증착 헤드의 회전 축을 둘러싸는 출력 면(26)의 원주의 일부에서 평평할 수 있다. 그러므로, 보다 일반적으로는, 출력 면은 증착 헤드의 회전 축 및/또는 드럼의 회전 축을 둘러싸는 출력 면의 원주의 적어도 일부를 따라서 실질적으로 둥글게 형성될 수 있다.
출력 면(26)은 프리커서 기체 공급부(8)를 구비할 수 있으며, 본 실시예에서는 복수개의 프리커서 기체 공급부(8)를 구비한다. 출력 면(26)은 프리커서 기체 배출부(36)를 더 구비할 수 있으며, 본 실시예에서는 복수개의 프리커서 기체 배출부(36)를 구비한다. 출력 면(26)은 퍼지 기체 공급부(38)를 더 구비할 수 있으며, 본 실시예에서는 복수개의 퍼지 기체 공급부(38)를 구비한다. 출력 면(26)은 퍼지 기체 배출부(40)를 더 구비할 수 있으며, 본 실시예에서는 복수개의 퍼지 기체 배출부(40)를 구비한다. 출력 면(26)은 반응 기체 공급부(42)를 더 구비할 수 있으며, 본 실시예에서는 복수개의 반응 기체 공급부(42)를 구비한다. 출력 면(26)은 반응 기체 배출부(68)를 더 구비할 수 있으며, 본 실시예에서는 복수개의 반응 기체 배출부(68)를 구비한다.
상기 실시예에서, 3개 그룹의 기체 공급부와 2개 그룹의 배출부가 있다. 각각의 프리커서 기체 공급부 그룹은 상응하는 배출부 그룹을 가지며, 이는 주위의 퍼지 기체를 배출시킨다. 퍼지 기체는 프리커서 기체와 반응하지 않기 때문에, 퍼지 기체를 위한 분리된 배출부를 반드시 구비할 필요는 없다. 선택적으로, 2개 이상의 프리커서 기체 공급부 그룹이 구비될 수 있으며, 이 경우 서로 개별적으로 반응할 수도 있는 이러한 프리커서 기체들(의 일부)를 유지시키기 위하여 상응하는 충분한 배출부 그룹이 바람직하다. (배출부 그룹의) 수는 프리커서 그룹의 수와 적어도 동일한 것이 바람직하다. 일반적으로, 각 프리커서를 위한 배출부 그룹은 장치에서 화학적 증기 증착(CVD; Chemical Vapor Deposition) 반응(이는 입자를 생성하거나 심지어 기체 채널을 막을 수 있다)의 을 방지하기 위하여 모든 다른 그룹들과 분리된다.
기체 공급부(8, 38, 42) 및/또는 기체 배출부(36, 40, 68)는 증착 헤드(6) 및/또는 드럼(5)의 축 방향으로 긴 형상을 가질 수 있다. 기체 공급부들(예; 프리커서 기체 공급부들)의 어레이(array)는 긴 형상을 가진 하나의 기체 공급부(예, 프리커서 기체 공급부)로 여겨질 수 있다. 일반적으로, 축 방향은 증착 헤드의 회전 축과 일치 또는 정렬될 수 있다. 그러므로, 보다 일반적으로는, 증착 헤드의 회전 축은 드럼의 회전 축과 일치될 수 있음을 알 수 있다.
도 4a는 긴 형상의 공급부들을 갖는 출력 면의 예를 보여준다. 축 방향(65)은 기판(4)을 따르는 방향으로 향하고, 공급부들의 이동 방향(66) 및/또는 기판(4)의 이동 방향에 대해서는 가로지르는 방향이다. 이동 방향은 기판에 인접한 것으로 평가될 수 있다.
실제 사용에 있어, 프리커서 기체, 반응 기체, 및 퍼지 기체는 기판(4)과 출력 면(26) 사이에 기체 베어링을 형성할 수 있다. 장치(2)는 프리커서 기체, 반응 기체, 및/또는 퍼지 기체의 공급부 및 배출부를 제어하기 위한 기체 컨트롤러를 포함할 수 있으며, 이에 따라 기판(4)과 출력 면(26) 사이의 기체 베어링의 기체 베어링 층(69)를 형성하기 위한 기체들을 공급할 수 있다. 상기 기체 베어링 층에 의해서, 기판은 증착 헤드와 분리될 수 있다. 이러한 방식으로, 출력 면(26)과 기판(4) 사이의 기계적 접촉이 실질적으로 방지될 수 있다. 이는 프리커서 기체 공급부의 병진 속도와 기판의 병진 속도가 서로 다른 크기 및/또는 방향을 가질 수 있게 한다. 본 실시예에서, 퍼지 기체 공급부는, 기판과 증착 헤드를 분리시키는 기체 베어링 층(69)을 형성하기 위하여, 기판과 증착 헤드 사이에 베어링 기체(예, 퍼지 기체)를 공급하는 베어링 기체 공급부(70)로서 기능한다. 본 실시예에서, 퍼지 기체 배출부(40)는 베어링 기체 배출부(72) 및 프리커서 기체 배출부로서 기능한다. 이격 거리(D)는 기판(4)과 출력 면(26) 표면 사이의 기체 베어링 층의 두께를 나타낸다.
보다 일반적으로는, 실제 사용에 있어 기체 베어링 층은 기판(4)에 출력 면(26)을 향하여 근접하게 되면 기체 베어링 층의 압력이 크게 증가한다. 예컨대, 실제 사용에 있어, 기판이 출력 면에 2배 가까워지면, 다른 사정이 변함이 없다면, 기체 베어링 층의 압력은 적어도 2배 통상적으로는 예컨대 8배 증가한다. 바람직하게는, 실제 사용에 있어 기체 베어링 층의 강성도(stiffness)는 104 내지 109 N/mm이지만, 물론 이 범위를 벗어날 수도 있다. 실제 사용에 있어, 기판(4)은 기체 베어링 층에 대해 부유(float)될 수 있다.
보다 일반적으로, 장치는 증착 헤드를 향하는 기판에 프리스트레스 힘(pre-stressing force)을 인가하도록 구현될 수 있다. 실제 사용에 있어, 프리스트레스 힘은 기체 베어링 층의 강성도를 증가시킨다. 이와 같이 증가된 강성도는 기판 표면의 평면으로부터 벗어나는 원하지 않는 움직임을 감소시킬 수 있다. 그 결과, 기판 표면을 터치(touch)하지 않고, 기판은 표면이 보다 가깝게 배치될 수 있다. 프리스트레스 힘은 예컨대 프리텐션(pre-tension)된 스프링 가이드(예, 캡스턴)에 의해 예컨대 기판(4)에 (프리)텐션을 가함으로써 인가될 수 있다. 스프링 가이드는 캡스턴(14)으로부터 다소 떨어져 위치할 수 있다. 물론 프리스트레스 힘을 인가하는 다른 형태의 방법들도 가능하다.
본 발명의 제2 실시예에 따른 장치(2)의 변형예에서, 예컨대 도 5 및 도 6에 도시된 바와 같이, 증착 헤드는 기판(4)을 향하는 공동(74)을 구비할 수 있다. 제2 실시예의 회전가능한 증착 헤드에 추가하여, 상기 변형예는 또한, 기판(4)을 따라서 선형적으로 이동하거나 또는 기판(4)이 이동하는 동안 고정적으로 위치하는, 평평한 또는 굴곡된 출력 면(26)을 구비하는 증착 헤드와 관련될 수 있다. 공동(74)의 깊이는 출력 면(26)과 기판(4) 사이의 거리에 있어 국부적인 증가분(local increase)으로 정의될 수 있다. 도 5에서, 거리에 있어 상기 증가분은 'D2 - D1'과 동일하며, 여기서 D1 은 베어링 기체 공급부(70) 부근에서 기판(4)과 출력 면(26) 사이의 거리이고, D2 는 프리커서 기체 공급부(8) 부근에서 기판(4)과 출력 면(26) 사이의 거리이다. 보다 일반적으로, 'D2 - D1'은 10 ~ 500㎛, 보다 바람직하게는 10 ~ 100㎛ 범위가 될 수 있다.
도 5 및 도 6의 실시예에서, 프리커서 기체 공급부(8)는 공동(74)에서 기판(4)을 향해 프리커서 기체를 공급하기 위하여 공동(74)에 위치할 수 있다. 증착 헤드(6)는 프리커서 기체를 공동(74)으로부터 배출시키기 위하여 공동(74)에 위치하는 프리커서 기체 배출부(36)를 더 구비할 수 있다. 증착 헤드(6)는, 공동으로부터 떨어져서 베어링 기체를 공급하기 위하여, 공동으로부터 이격되어 위치하는 베어링 기체 공급부(70)를 더 구비할 수 있다.
도 5 및 도 6에서, 원통 형상의 출력 면(26)과 기판의 굴곡(curvature)은 명료함을 위해 나타내지 않았다. 더 나아가, 본 실시예에서, 프리커서 기체 배출부(36)는 또한 베어링 기체 배출부(72)를 형성한다. 그러나, 보다 일반적으로, 베어링 기체 배출부(72)는 프리커서 기체 배출부와 별개로 형성될 수 있다. 베어링 기체 배출부는 공동(74)과 이격되어 위치할 수 있다. 즉, 베어링 기체 배출부(36)는 공동(74) 외부에 위치할 수 있다. 그러므로, 도 6에서, 출력 면(26)은 복수개의 프리커서 기체 배출부(36), 복수개의 공동(74), 및 복수개의 베어링 기체 공급부(70)를 구비할 수 있다. 공동(74)의 깊이는 0이 될 수 있으며, 이는 공동이 없다는 것을 의미한다. 프리커서 기체 영역(77A)은 기체 베어링 기능부(즉, 프리커서 공급부와 기판 사이의 단단한 부분)을 가질 수 있다.
도 5 및 도 6은 또한 기체 베어링 층(69)을 보여 주는데, 이는 공동(74) 외부에 실질적으로 위치할 수 있다. 기체 베어링 층에서 베어링 기체의 흐름은 화살표(75)로 나타나 있다. 도 5 및 도 6은 또한 기판(4)을 향해서 공동으로부터 확장되는 증착 공간(deposition space; 77A)을 보여 준다. 프리커서 기체 공급부(8) 및 프리커서 기체 배출부(36)가 공동에 위치하기 때문에, 실제 사용에 있어 프리커서 기체는 증착 공간(77A)에 실질적으로 한정될 수 있다. 증착 공간에서 프리커서 기체의 흐름은 화살표(78)로 나타나 있다. 도 6은 또한 반응 공간(reactant space; 77B)을 보여 준다.
도 6a는 본 발명의 제2 실시예에 따른 증착 헤드(6)의 또 다른 변형예를 도시한 것이다. 상기 변형예에서, 장치는 기판(4) 상에 프리커서 기체를 반응시키기 위하여 선택적으로 제어가능한 레이저(79)를 포함하고, 선택적으로 제어가능한 레이저(79)에 의해 원자 층을 형성(form) 또는 재형성(re-form)한다. 장치는 레이저 컨트롤러를 포함할 수 있다. 레이저 컨트롤러는 전송 컨트롤러, 구동 컨트롤러, 및/또는 압력 컨트롤러와 함께 협력할 수 있다. 이러한 방식으로, 원자 층 또는 원자 층들의 스택의 의도된(예, 사전 결정된) 패턴이 증착될 수 있다. 레이저의 제어는 기판의 병진 속도 및 프리커서 기체 공급부의 병진 속도에 의존한다. 예컨대, 레이저를 온(on) 및/또는 오프(off)하는 순간은 기판의 병진 속도 및 프리커서 기체 공급부의 병진 속도에 의존한다. 레이저의 사용은 회전되는 증착 헤드와 결합될 때 특히 유용하다. 레이저는 상대적으로 높은 주파수(이는 회전하는 증착 헤드에 의해 가능해지는 상대적으로 빠른 증착 프로세스에 적합함)로 선택적으로 제어될 수 있다.
도 6a는 또한 프리커서 기체 배출부(36)를 보여 준다. 비록 도 6a에 도시하지 않았지만, 증착 헤드는 또한 퍼지 기체 공급부(38) 및 퍼지 기체 배출부(40)를 구비할 수 있다. 보다 일반적으로, 증착 헤드는 복수개의 레이저(79) 또는 특정 파장의 반응(wavelength-specific reaction)을 유도하기 위한 가변 파장 레이저(tunable wavelength lasers)를 구비할 수 있다. 도 6a의 변형예에 따르면, 도 4에 도시된 바와 같이 복수개의 반응 기체 공급부(42)는 예컨대 복수개의 레이저(79)로 대체될 수 있다.
도 7은 본 발명의 제3 실시예에 따른 장치(2)를 기판(4)과 함께 도시한 것이다. 본 발명의 제3 실시예에 따른 장치(2)는 장축(10)과 베어링(12)을 구비하며, 또한 출력 면(26)을 구비할 수 있다. 도 7에서, 기판(4)의 이동 방향(60)은 프리커서 기체 공급부의 이동 방향(62)과 반대인데, 이는 드럼(5)의 회전가능한 휠(참고로, 휠은 도 7에서는 도시되지 않았지만, 도 1에서 참조번호 5'로 도시되어 있다)을 따라서 회전할 수 있다. 도 7에서, 기판(4)은 증착 헤드(6)의 출력 면(26) 주위의 나선형 경로(helical path; 76)를 따라서 위치한다. 도 7에서, 기판(4)은 증착 헤드(6) 주위를, 즉 증착 헤드의 출력 면(26) 주위를 한 바퀴 못미치게 위치한다. 보다 일반적으로, 증착 헤드의 회전 축 및/또는 기판(2)의 장축(10)의 길이방향 축은 하나 또는 두개의 캡스턴(14)의 길이 축에 대해 경사질 수 있다. 이러한 방식으로, 기판(4)은 나선형 경로(76)를 따라서 위치될 수 있다.
도 8은 본 발명의 제4 실시예에 따른 장치를 기판(4)과 함께 도시한 것이다. 본 실시예에서, 기판(4)은 나선형 경로(76)를 따라서 증착 헤드(6)의 출력 면(26) 주위를 적어도 한 바퀴, 예컨대 두 바퀴와 세 바퀴 사이로 회전하여 위치한다(도 7 참조). 또는, 다른 말로, 기판은 출력 면(26)을 따라서 증착 헤드(6) 주위를 적어도 1회전, 예컨대 2회전과 3회전 사이로 회전하여 배치되게 된다. 그 결과, 소정 순간에는, 회전하는 증착 헤드 주위를 기껏해야 1회전 이동하게 되는 기판(4)의 제1 부분(80A)은 상기 기판(4)의 제1 부분(80A)보다 1회전 이상 상기 회전하는 증착 헤드 주위를 이동한 기판(4)의 제2 부분(80B)과 나란히 위치하게 된다. 여기서, '나란히(besides)'라는 용어는 기판(4)의 제1 부분(80A) 및 제2 부분(80B)이 상기 기판(4)의 제1 부분(80A) 및 제2 부분(80B)을 따르면서 상기 기판(4)의 이동 방향(6)을 가로지르는 동일 가상선(imaginary line; 82)을 따라서 확장(extend)되는 것으로 해석될 수 있다. 실링 엘리먼트(미도시)는, 상기 기판의 나선형 경로 형태를 따르면서 상기 기판의 서로 반대되는 측면들 사이에 형성된 슬릿(slit) 또는 갭(gap; 84)을 커버(cover)하는 나선형으로 형성된 실드 구조체(shield structure)가 될 수 있다. 실드 구조체는 클리너블 라이너 구조체(cleanable liner structure) 또는 새크러피셜 구조체(sacrificial structure)로 형성될 수 있다. 또한, 새어 나오는 프로세스 기체들을 제거하기 위하여 실드 구조체에 흡입부(suction)가 구비될 수 있다.
본 발명에 따른 제4 실시예에서, 장치(2)는 각각 서로 반대되는 측면들(80A, 80B)을 형성하는 상기 기판(4)의 제1 부분(80A) 및 제2 부분(80B) 사이의 갭(84)을 통해 누출되는 프리커서 기체를 배출하기 위한 누출 기체 배출부(leaked-gas drain)을 구비할 수 있다.
도 8에서, 출력 면(26)의 원주를 따라서 지시된 위치들(88)에는 프리커서 기체 공급부(8)가 위치할 수 있다. 본 실시예에서, 증착 헤드(6)는 4개의 프리커서 공급부(8)를 구비한다. 본 실시예에서와 같이, 기판(4)은 전체 프리커서 공급부(8)와 대면한다. 참고로, 본 실시예에서 프리커서 공급부(8)는 보이지 않는다. 그러므로, 보다 일반적으로, 적어도 하나의 프리커서 기체 공급부가 출력 면의 원주를 따라서 위치될 수 있다.
도 8에서 알 수 있는 바와 같이, 기판(4)의 폭(W1)은 증착 헤드(6)의 폭(W2)보다 실질적으로 더 작을 수 있으며, 예컨대 2배 이상 더 작을 수 있다. 그러나, 대안적으로, 기판(4)의 폭(W1)은 증착 헤드(6)의 폭(W2)과 대략적으로 동일할 수 있다. 이는 도 7 및 도 9에 나타나 있다. 또 다른 실시예에서, 기판(4)의 폭(W1)은 증착 헤드(6)의 폭(W2)보다 실질적으로 더 클 수 있으며, 예컨대 2배 이상 더 클 수 있다. 실제에 있어서, 이러한 대안적 방식들은 하나 이상의 원자 층들을 증착하기 위한 중요한 옵션들(options)을 형성할 수 있다.
본 발명에 따른 제1 실시예, 제2 실시예, 제3 실시예, 제4 실시예, 또는 또 다른 실시예, 또는 이들 실시예들 중 하나의 변형예에 따른 장치(2)는 본 발명에 따른 방법에 따라서 사용될 수 있다.
본 발명의 제1 실시예에 따른 기판 상에 원자 층을 증착시키는 방법(제1 방법)은 증착 헤드(6)의 프리커서 기체 공급부(8)로부터의 프리커서 기체를 기판(4)을 향해서 공급하는 단계를 포함한다. 제1 방법은 증착 헤드(6)를 회전시킴으로써 기판을 따라서 프리커서 기체 공급부(8)를 이동시키는 단계를 더 포함한다. 제1 방법은 기판(4)을 향해서 프리커서 기체들을 공급함과 동시에 및/또는 그 이후에 프리커서 기체 공급부(8)를 따라서 기판(4)을 이동시키는 단계를 더 포함할 수도 있다.
제1 방법에서, 프리커서 기체 공급부의 병진 속도는 기판의 병진 속도보다 더 크거나 및/또는 반대로 향한다. 프리커서 기체 공급부의 병진 속도의 절대값(absolute value)은 기판의 병진 속도보다 예컨대 적어도 5배, 적어도 10배, 적어도 20배, 적어도 50배, 적어도 100배, 적어도 500배, 적어도 1000배, 적어도 5000배, 및/또는 적어도 10000배 더 클 수 있다. 보다 일반적으로, 만약 프리커서 기체 공급부의 병진 속도가 기판의 병진 속도보다 적어도 N배 크다면, N-1개의 원자 층들을 포함하는 스택 층(stacked layer)이 증착될 수 있다.
제1 방법은 커버(16)에 의해 프리커서 기체를 한정(confining)하는 단계를 더 포함할 수 있다. 커버(16)는, 기판이 증착 헤드를 향하지 않는 위치들에서, 증착 헤드의 출력 면(26)을 향할 수 있다.
본 발명에 따른 제1 방법 또는 다른 방법에서, 기판 및 회전하는 증착 헤드 사이에 이격 거리(D)(도 2a 참조)가 유지될 수 있다. 이러한 방식으로, 기판 및 회전하는 증착 헤드 사이에 기계적 접촉이 방지될 수 있다. 이격 거리(D)는 증착 헤드의 원주의 적어도 일부분, 바람직하게는 모든 부분에 대해서 실질적으로 일정하다. 이격 거리(D)는 다양한 방식으로 얻어질 수 있다.
본 발명의 제2 실시예에 따른 방법(제2 방법)은 기판을 캐리어(50)에 부착시키는 단계를 포함할 수 있다. 제2 방법은 프리커서 기체 공급부(8)를 따라서 캐리어(50)를 이동시키는 단계를 포함할 수 있다(도 3a, 3b 참조). 이러한 방식으로, 기판은 증착 헤드(6)의 출력 면(26)과 떨어져서 유지될 수 있다. 제2 방법은 가이드(15)의 전송 면(56)을 따라서 가이드(15) 주위로 캐리어를 이동시키는 단계를 포함할 수 있다. 전송 면(56)은 출력 면(26)을 향하면서 출력 면(26)에 상응(conformal)하도록 형성되어, 출력 면(26)의 적어도 일부에서 이격 거리(D)는 일정하게 유지될 수 있다.
본 발명의 제3 실시예에 따른 방법(제3 방법)은, 기판 및 증착 헤드를 분리시키는 기체 베어링 층(69)을 형성하기 위하여, 기판 및 증착 헤드 사이에 베어링 기체를 공급하는 단계를 포함할 수 있다. 이러한 방식으로, 기판은 증착 헤드(6)의 출력 면(26)으로부터 일정 거리 떨어져 유지될 수 있다. 제3 방법은, 기체 베어링 층을 제공하기 위하여, 증착 헤드(6)의 복수개의 베어링 기체 공급부(70)로부터 공급되는 베어링 기체를 기판(4)을 향해서 제공하는 단계를 포함할 수 있다.
제3 방법은, 증착 헤드에 정의(define)되어 있으며 실제 사용 시 기판(4)을 향하는, 공동(74)에서 프리커서 기체 공급부(8)에 의해 프리커서 기체를 공급하는 단계를 더 포함할 수 있다. 제3 방법은 증착 헤드(6)의 프리커서 기체 배출부(72)에 의해서 공동(74)으로부터 프리커서 기체를 배출시키는 단계를 포함할 수 있다. 이러한 방식으로, 공동으로부터 프리커서 기체의 누출, 즉 프리커서 배출부를 통하는 외에 공동으로부터 프리커서 기체가 흘러 나오는 것이 실질적으로 방지될 수 있다. 제3 방법에서, 바람직하게는, 공동으로부터 떨어진 위치에 베어링 기체 공급부(70)에 의해 베어링 기체가 공급될 수 있다. 베어링 기체 공급부(70)는 출력 면(26)을 따르는 공동(74)으로부터 이격되어 위치될 수 있다.
본 발명의 제4 실시예에 따른 방법(제4 방법)은, 증착 헤드(6) 주위의 나선형 경로(76)를 따라서 기판을 이동시키는 단계를 포함할 수 있다. 도 9는 기판(4)의 이동 방향(60)과 증착 헤드(6)의 이동 방향(62)을 대략적으로 보여 준다. 기판(4)을 따르는 프리커서 기체 공급부(8)의 중심(8')의 트랙들(tracks)(90.i(i=...,n-1,n,n+1,...))이 도시되어 있다. 더 높은 색인번호(i)는 시간적으로 나중에 발생된 트랙을 따르는 이동(movement)을 나타낸다. 트랙(90.i)은 기판 상에 실질적으로 직선(straight lines)을 형성하는 것이 예측될 수 있다. 인접하는 트랙들, 예컨대 트랙(90.n) 및 트랙(90.n+1)은 인접하는 프리커서 기체 공급부들(8)에 대응될 수 있다.
도 9는 프리커서 기체 공급부(8)(이는 긴 형상으로 구현될 수 있다)의 길이 방향(89)을 따르는 프리커서 기체 공급부의 길이(L)를 추가적으로 보여 준다. 본 실시예에서, 길이 방향(89)은, 비록 반드시 필요한 것은 아니지만, 증착 헤드의 회전 축(91)에 대하여 정렬된다. 예컨대, 대안적으로, 길이 방향(89)은 캡스턴들(14) 중 적어도 하나의 길이 축(length axis; 87)과 일치될 수도 있다.
캡스턴들(14) 중 적어도 하나의 길이 축(87) 및/또는 길이 방향(89)은 기판의 이동 방향(60)에 대해 가로지를 수 있다(예컨대, 수직일 수 있다). 경사각(α)은 캡스턴들(41) 중 적어도 하나의 길이 축(87)과 증착 헤드(6)의 회전 축(91) 사이의 각으로 정의될 수 있다.
분리 거리(separation; S)는 인접하는 프리커서 기체 공급부들(8)의 중심들(8') 사이의 거리로 정의될 수 있다. 본 실시예에서, 프리커서 기체 공급부(8)의 길이(L) 및 기판과 프리커서 기체 공급부의 병진 속도들은, 인접하는 트랙들(90.i)에 의해 증착되는 원차 층들이 서로 중첩(overlap)하거나 또는 접경(abut)할 수 있도록 선택될 수 있다. 이러한 방식으로, 이들 원자 층들 사이의 갭(gap)이 실질적으로 방지될 수 있다.
반응 기체 공급부(42)는 프리커서 기체 공급부(8)와 유사한 형태로 구현될 수 있다. 반응 기체 공급부(42)는 프리커서 기체 공급부(8)에 대해 회전 축(91)을 따르는 거리(R)만큼 오프셋(offset)되어 위치될 수 있다. 거리(R)는, 반응 기체 공급부(42)의 중심(42')이 상기 반응 기체 공급부(42)에 인접하는 프리커서 기체 공급부(8)에 의해서 추종되는 기판을 따라서 유사한 트랙(90.i)을 추종하도록, 적절하게 구현될 수 있다. 층들의 스택이 인접하는 프리커서 기체 공급부들로부터 증착될 수 있도록, 유사한 오프셋이 인접하는 프리커서 기체 공급부들을 위해 구현될 수 있다. 도 9는, 나선형 배치로 인하여, 원자 층을 구비하는 기판의 커버리지(coverage)를 위해 여러가지 가능성들이 제공될 수 있다는 것을 보여 준다. 특히, 원자 층 스택의 기하학적 구조는 이들의 (에지(edge)) 기하학적 구조로 인하여 이들이 서로 구별될 수 있도록 증착될 수 있다. 특히, 기판의 에지(edge) 부근의 기판의 커버리지는 공지된 방법을 사용하여 얻어진 커버리지와 상이할 수 있다.
그러므로, 프리커서 기체 공급부 또는 프리커서 기체 공급부들의 어레이는 출력 면의 나선형 경로를 따라서 확장될 수 있다. 도 9a는 본 발명에 따른 장치에 있어서 증착 헤드의 실시예를 도시한 것인데, 여기서 프리커서 기체 공급부는 나선형 경로(76A)를 따라서 확장되어 있다. 도 9a는 또한 회전 축(91)을 보여 준다. 도 9b는 도 9a의 A-A' 단면의 일부를 도시한 것이다. 프리커서 기체 배출부(36) 또는 프리커서 기체 배출부들(36)의 어레이는 나선형 경로(76A)를 따라서, 예컨대 프리커서 기체 공급부(8) 또는 프리커서 기체 공급부들(8)의 어레이와 평행하게, 확장될 수 있다. 프리커서 기체 공급부 및/또는 프리커서 기체 배출부는 긴 형상으로 구현될 수 있다(프리커서 기체 공급부들의 어레이는 긴 형상으로 된 하나의 프리커서 기체 공급부로 여겨질 수 있다). 상기 긴 형상의 길이 방향은 출력 면의 나선형 경로(76A)를 따라서, 본 실시예에서는 회전 축 주위를 1회전 이상, 확장될 수 있다. 그러므로, 프리커서 기체 공급부는 증착 헤드의 축 방향에 대해 경사진 긴 형상으로 구현될 수 있다. 따라서, 보다 일반적으로, 프리커서 기체 공급부 또는 프리커서 기체 공급부들의 어레이, 및 프리커서 기체 배출부 또는 프리커서 기체 배출부들의 어레이는 나선형 경로를 따라서 확장될 수 있다. 증착 헤드는 나선형 공동(helical cavity; 74')을 구비할 수 있다. 실제 사용에 있어, 나선형 공동(74')은 기판을 향한다. 프리커서 기체 공급부(8) 또는 프리커서 기체 공급부들(8)의 어레이는, 기판을 향하여 나선형 공동(74')에서 프리커서 기체를 공급하기 위하여, 바람직하게는 나선형 공동(74')에 위치될 수 있다. 프리커서 기체 배출부(36) 또는 프리커서 기체 배출부들(36)의 어레이는, 공동(74')으로부터 프리커서 기체를 배출하기 위하여, 바람직하게는 나선형 공동(74')에 위치될 수 있다.
일 실시예에서, 프리커서 배출부(36)에 의한 프리커서 기체의 배출은 생략될 수 있다. 프리커서 배출부(36)는 나선형 경로(76A)를 따르는 나선형 공동(74')에 존재하지 않거나 또는 사용되지 않을 수 있다. 배출부(36)를 통한 프리커서 기체의 배출을 생략하는 것은 나선형 경로(76A)를 따라서 확장되는 프리커서 기체 공급부에 의해 가능하다. 나선형 공동을 통한 프리커서 기체의 배출이 증착 헤드(6)의 회전 결과 발생될 수 있다. 이는 나선형 경로(76A)를 따르는 나선형 공동(74')에서의 프리커서 기체 공급부의 배치로 인한 것이다. 공동(74')의 일단부(74")에, 배출된 프리커서 기체를 수집하기 위한 설비가 구비될 수 있다.
제4 방법의 변형예는, 프리커서 기체 공급부(8)를 따라서 기판(4)을 이동시킬 때, 증착 헤드(6) 주위를 적어도 1회전 이상 기판(4)을 이동시키는 단계를 포함할 수 있다. 그 결과, 소정 순간에는, 회전하는 증착 헤드 주위를 기껏해야 1회전 이동하게 되는 기판(4)의 제1 부분(80A)은 상기 기판(4)의 제1 부분(80A)보다 1회전 이상 상기 회전하는 증착 헤드 주위를 이동한 기판(4)의 제2 부분(80B)과 나란히 위치하게 되고, 이에 따라 상기 기판(4)의 제1 부분 및 제2 부분은 상기 기판의 제1 부분 및 제2 부분을 따르면서 상기 기판의 이동 방향을 가로지르는 동일 선을 따라서 확장된다. 제4 방법은 상기 기판(4)의 제1 부분(80A) 및 제2 부분(80B) 사이의 갭(84)을 통해서 누출되는 프리커서 기체를 배출시키는 단계를 더 포함할 수 있다.
제1, 제2, 제3, 제4 방법은, 옆으로 인접하는 2개의 원자 층들의 에지들 사이에 이음매(seam)가 방지되는, 원자 층들의 연속적인 스택(즉, 원자 층들의 스택)의 증착을 가능하게 한다. 그러나, 본 발명에 따른 방법을 수행할 때, 원자 층들의 연속적인 스택이 반드시 얻어져야 하는 것은 아니다. 예컨대, 본 발명의 제5 실시예에 따른 방법(제5 방법)은 기판 상에 원자 층들의 스택(92)을 증착시키는 단계를 포함하고, 프리커서 기체 공급부와 기판 사이에 상대적 왕복 동작(relative reciprocating motion)을 구현하는 단계를 포함할 수 있다. 여기서, 상대적 왕복 동작은 2개의 후속하는 전환 위치들(back-turning positions)에서 프리커서 기체 공급부 및 기판 사이에 동작 방향을 전환하거나 반대로 하는 것을 포함한다. 도 10은 제5 방법을 도시한 것이다.
도 10은 층들의 스택(92)을 보여 주고, 또한 후속하는 전환 위치들(94.i(i=...,n-1,n,n+1,...))을 보여 준다. 여기서, 더 높은 색인번호(i)는 시간적으로 더 늦은 순간에 대응한다. 도 10에서, 층들은, 이들이 증착되는 시간적 순간(시간축(96)에 의해 표시됨)을 나타내기 위하여, 기판(4)으로부터 떨어져 도시되어 있다. 그러나, 실제 구현에서는, (화살표(97)로 표시된 바와 같이) 기판(4) 상에 다양한 층들(92)이 존재하게 되고, 층들의 스택은 실질적으로 일정한 층 두께(98)를 가지며 얻어질 수 있다.
제5 방법에서, 예를 들면, 증착 동안 증착 헤드(6)는 정회전 및 역회전될 수 있다. 선택적으로, 기판(4)은 또한 서로 반대 방향(60, 64)으로 전진 또는 후진될 수 있다. 이러한 방식으로, 제5 방법은 프리커서 기체 공급부(8) 및 기판(4) 사이에 상대적인 왕복 동작을 구현하는 단계를 포함할 수 있다. 상기 왕복 동작은 2개의 후속하는 전환 위치(back-turning positions)에서 프리커서 기체 공급부 및 기판 사이에 동작 방향을 전환하는 것을 포함한다. 2개의 전환 위치들(94.n-1 및 94.n)은, 2개의 전환 위치들(94.n 및 94.n+1)과 마찬가지로, 후속하는 전환 위치들로 여겨질 수 있다.
원자 층(92A)은 전환 위치들(94.n-1 및 94.n) 사이에 증착될 수 있다. 상기 원자 층(92A)은 이전에 증착된 원자 층(92B)에 대해 오프셋될 수 있다. 이는 전환 위치들(94.n-1 및 94.n) 사이에 증착된 원자 층(92A)의 에지(100A)가 이전에 증착된 원자 층(92B)의 에지(100B)에 대해 옆으로(즉, 기판(4)이 확장되는 방향으로) 위치한다는 것을 의미한다.
오프셋으로 인하여, 전환 위치들 사이에 증착된 원자 층(92A)의 에지(100A)는 전환 위치들 사이에 증착된 원자 층(98A)의 주요 부분(main part; 102A)보다 기판으로부터 떨어져 위치한다.
그러나, 오프셋에도 불구하고, 후속하는 전환 위치들(94.n-1 및 94.n) 사이에 증착된 원자 층의 에지(100A)는 후속하는 전환 위치들(94.n 및 94.n+1) 사이에 증착된 원자 층의 에지에 인접할 수 있다. 이러한 층들의 주요 부분들은 기판으로부터 유사하게 위치한다.
제5 방법은 증착 헤드(6)를 회전시키는 대신에 증착 헤드를 선형적으로 이동시킴으로써 또한 수행될 수 있다.
전술한 내용 및 도 1 내지 도 11b로부터 알 수 있는 바와 같이, 보다 일반적으로, 본 발명에 따른 방법은 바람직하게는 회전가능한 드럼(특히, 회전하는 드럼)의 원주(바람직하게는, 적어도 부분적으로 둥근 원주)를 따라서 기판을 이동시키는 단계를 포함한다. 바람직하게는, 본 발명에 따른 장치는 회전가능한 드럼의 원주(바람직하게는, 적어도 부분적으로 둥근 원주)를 따라서 기판을 이동시킬 수 있도록 구현된다.
일반적으로 적용가능하지만 선택적으로 적용될 수 있는 일 실시예에서, 출력 면 및/또는 드럼은, 출력 면 및/또는 드럼의 적어도 일부에 대해 또는 출력 면 및/또는 드럼의 전체에 대해, 실질적으로 원통(cylindrical), 원뿔(conical), 또는 각뿔대(frustum) 형상을 가질 수 있으며, 또는 실질적으로 적어로 부분적으로 원통, 원뿔, 또는 각뿔대 형상을 가질 수 있다.
본 발명은 예컨대 패키지(package) 제조 분야에 사용될 수 있다. 패키지는 예컨대 음식을 위한 패키지, 특히 음료를 위한 패키지가 될 수 있다. 대안적으로, 패키지는 디스플레이의 패키지, 특히 OLED(Organic Light Emitting Diode) 디스플레이의 패키지가 될 수도 있다. 본 발명에 따른 방법은, 선택적으로, 패키지 시트(package sheet) 상에 원자 층(바람직하게는, 원자 층들의 스택)을 증착시키는 단계를 포함할 수 있다. 본 발명에 따른 장치는, 선택적으로, 패키지 시트 상에 원자 층(바람직하게는, 원자 층들의 스택)을 증착시킬 수 있도록 구현될 수 있다. 그러므로, 기판은 선택적으로는 패키지 시트가 될 수도 있다. 이러한 패키지 시트는 패키지의 일부이거나 또는 그 위에 패키지를 형성하도록 구현될 수 있다. 원자 층들에 의해서, 기체(예, 산소 또는 수증기) 및/또는 유체를 위한 배리어(barrier)가 패키지 상에 형성될 수 있다. 원자 층들을 포함하는 배리어는 상대적으로 안정한 실링(sealing)을 제공한다. 원자 층들을 포함하는 배리어를 통한 누출은 상대적으로 낮다.
전술한 내용 및 도 1 내지 도 11b로부터 알 수 있는 바와 같이, 보다 일반적으로, 증착 헤드 및/또는 드럼의 회전 축은 원자 층이 증착되는 기판 표면의 평면 및/또는 출력 면을 따르는 방향이거나 또는 경사진 방향이 될 수 있다.
전술한 내용 및 도 1 내지 도 11b로부터 알 수 있는 바와 같이, 프리커서 기체 공급부는, 굴곡된 출력 면을 따라서, 증착 헤드의 회전 축을 따르는 방향 또는 경사진 방향으로 확장될 수 있다. 이는 기판 상에 원자 층의 균일한(homogeneous) 증착을 가능하게 한다.
전술한 내용 및 도 1 내지 도 11b로부터 또한 알 수 있는 바와 같이, 본 발명에 따른 장치는 다음의 구성요소를 포함하고, 및/또는 본 발명에 따른 방법은 다음의 구성요소들을 사용하여 수행될 수 있다: 드럼의 (적어도 부분적으로 둥근) 원주를 따라서 및/또는 위로 확장되는 출력 면, 드럼의 (적어도 부분적으로 둥근) 원주 상에 위치하는 프리커서 기체 공급부, 출력 면의 (적어도 부분적으로 둥근) 원주 상에 위치하는 프리커서 기체 공급부, 증착 헤드의 회전 축 및/또는 드럼의 회전 축 주위로 (적어도 부분적으로) 실질적으로 둥근 출력 면, 증착 헤드를 포함하는 드럼을 회전가능하게 마운팅하는 마운트, 회전가능한 드럼의 일부로 형성된 증착 헤드, 굴곡된 출력 면 위로 확장되는 프리커서 기체 공급부, 및/또는 기판을 따르는 방향 및/또는 경사진 방향을 갖는 회전 축 및/또는 축 방향을 갖는 증착 헤드(여기서, 기판 및 회전 축 상의 경사각은 30°이하가 바람직하다). 부가적으로 또는 대안적으로, 본 발명에 따른 방법은 차축(axle)에 마운팅된 드럼 및/또는 증착 헤드를 제공하는 단계, 및 프리커서 기체 공급부를 향하여 상기 차축을 통해 적어도 프리커서 기체를 제공하는 단계를 포함한다.
그러므로, 본 발명은 기판 상에 원자 층을 증착시키는 방법을 제공하고, 상기 방법은 증착 헤드에 포함된 프리커서 기체 공급부에서 제공되는 프리커서 기체를 기판을 향하여 공급하는 단계; 및 원자 층을 형성하기 위하여 기판 근처에서(예컨대, 기판 표면에서) 프리커서 기체를 반응시키는 단계를 포함하고, 상기 방법은 프리커서 기체를 공급하는 동안 증착 헤드를 회전시킴으로써 기판을 따라서 프리커서 기체 공급부를 이동시키는 단계를 더 포함하고, 여기서 프리커서 기체를 따라서 기판을 이동시키는 것은 증착 헤드 주위의 나선형 경로를 따라서 기판을 이동시키는 것을 포함한다. 본 발명은 기판 상에 원자 층을 증착시키는 장치를 또한 제공하며, 상기 장치는 기판을 향하여 프리커서 기체를 공급하는 프리커서 기체 공급부를 구비하는 증착 헤드를 포함하고, 상기 장치는 상기 증착 헤드를 회전가능하게 마운팅하는 마운트 및 기판을 따라서 프리커서 기체 공급부를 이동시키기 위해 상기 증착 헤드를 회전시키는 구동부를 더 포함하고, 상기 증착 헤드는 원자 층을 형성하기 위해 기판의 근처에서(예컨대, 기판의 표면에서) 프리커서 기체를 반응시키도록 구현되며, 상기 장치는 증착 헤드의 회전 축에 대해 경사진 길이 축을 갖는 가이드를 더 포함하고, 이러한 방식으로 증착 헤드 주위의 나선형 경로를 따라서 기판을 가이드한다.
본 발명은 여기에 설명된 어떠한 실시예에 한정되지 않으며, 통상의 기술자의 관점에서, 후술하는 특허청구의 범위 내에서 다양한 변형 또는 수정이 가능하다. 예를 들면, 여기에 사용된 '기판(substrate)'이라는 용어는 실제 사용에 있어 때때로 '기판'이라고 지칭되는 플레이트(plate) 또는 롤(roll)의 일부가 될 수도 있다. 예를 들면, 여기에 사용된 '프리커서 기체 공급부를 따라서 기판을 이동시킨다'는 표현은 프리커서 기체 공급부를 따라서 전체 플레이트 또는 롤을 이동시키는 것을 요구하는 것은 아니다. 예를 들어, '증착 헤드 주위로 적어도 1회 기판을 제공한다'는 표현은 증착 헤드 주위로 전체 플레이트 또는 롤을 이동시키는 것을 요구하는 것은 아니다.
다른 예로서, 프리커서 기체 공급부가 기판에 인접하여 위치할 때, 프리커서 기체 공급부의 병진 속도(도 11a 및 11b에서 화살표(62)로 표시됨)는 기판의 병진 속도(도 11a에서 화살표(60)로 표시됨)에 대해 가로지르는 방향으로 될 수 있다. 이에 따라, 증착 헤드의 회전 축(91)은, 도 11a에 도시된 바와 같이, 기판의 이동 방향(60)과 정렬될 수 있다. 기판의 이동 방향(60) 및 증착 헤드(6)의 회전 축(91) 사이의 각(angle)은 0°내지 90° 범위가 될 수 있다.
도 11a의 실시예의 변형예는 도 11b에 도시되어 있는데, 이는 증착 헤드(6)의 회전 축(91)을 따르는 방향에서 바라 본 증착 헤드를 나타낸 것이다. 도 11b의 변형예는 기판(4)이 증착 헤드(6) 주위를 감싸고(wrap) 있는 점에서 도 11a의 실시예와 다르다.
도 4를 참조하면, 호일(foil)(4)은 드럼(5) 원주의 일부분을 가로지른다. 롤러들(14) 사이의 가로지르지 않는 바닥 부분(bottom part)에서, 2개의 기체 반응(예, Al 프리커서 트리-메틸 알루미늄(Al-precursor tri-methyl aluminum)과 수증기)은 더이상 분리되지 않고 상호 노출되어, 에어로졸(aerosol)("분말")을 형성한다. 이러한 입자 생성은 생산물 품질, 프로세스, 및 R2R 장비를 방해한다. 이는 드럼 상의 나선형 스캔 호일 이동(helical scan foil motion)(도 8 참조)을 갖는 일 실시예에서 부분적으로 극복되지만, 호일의 롤-온(roll-on) 영역과 롤-오프(roll-off) 영역 사이의 드럼의 스크리닝(screening)이 100% 완벽하지 않은 경우 개선될 수도 있다.
어떠한 입자(먼지)의 생성을 방지하기 위한 커버(16)는 기체 흐름에 있어 불연속성을 형성할 수 있어 한계(limitations)을 가질 수 있으며, 여기서 2개의 프리커서는 Al2O3 입자를 생성할 수 있다. 또한, 상기 인클로저는 Al2O3의 ALD 및 CVD를 위해 부분적으로 기판으로서 역할할 수 있으며, 이는 커버와 드럼 사이에 좁은 갭(gap)이 형성될 수 있도록 한다. 이는 드럼 회전의 제어 및 이에 따른 기계 동작을 방해할 수 있다.
원하지 않는 입자의 생성을 방지하기 위하여, 스위칭가능한 흐름 차단 밸브 시스템(switchable flow interruption valve system)을 구비할 수 있다. 이러한 시스템의 예는 하기의 도 12 내지 18을 참조할 수 있다.
도 12는 기판(4) 상에 원자 층을 증착시키는 장치(2)의 개략적인 단면도이다. 증착 프로세스는 증착 헤드에 구비되는 프리커서 기체 공급부(8)로부터의 프리커서 기체를 기판을 향해서 공급하는 단계, 및 원자 층을 생성하기 위하여 기판 가까이에 예컨대 기판 상에 프리커서 기체를 반응시키는 단계를 포함한다. 증착 헤드는 회전가능한 드럼(5)에 구성될 수 있으며, 기판(4)은 드럼의 적어도 부분적으로 둥근 원주를 따라서 이동된다.
드럼(5)에 구비된 증착 헤드는 원자 층 증착 동안 기판(4)을 적어도 부분적으로 향하는 출력 면을 갖는다. 출력 면은 프리커서 기체 공급부(8)를 구비하고, 기판(4)의 이동 경로를 정의하는 실질적으로 둥근 형상을 갖는다. 특히, 프리커서 기체 공급부(8)는, 프리커서 기체를 공급하는 동안, 회전가능한 드럼(5)에 구비된 증착 헤드를 회전시킴으써 기판(4)을 따라 이동한다. 따라서, 회전 궤도(62)를 따르는 일 방향으로 프리커서 기체 공급부를 연속적으로 이동키는 동안, 원자 층의 스택이 증착된다.
장치(2)는 회전 궤도의 제1 부분(T1) 상에서 프리커서 기체 공급부(8)로부터의 프리커서 기체를 기판을 향해서 공급하는 과정과 회전 궤도의 제2 부분(T2) 상에서 상기 프리커서 기체 공급부(8)로부터의 프리커서 기체의 공급을 차단하는 과정 사이를 스위칭한다.
기판(4)이 드럼(5)의 전체 표면을 커버하는 것은 아니다. 회전 궤도의 제1 부분(T1) 상에서 기판(4)은 원자 층 증착을 위해 드럼(5)의 출력 면에 근접하게 되고, 회전 궤도의 제2 부분(T2) 상에서 기판은 출력 면으로부터 떨어지게 된다. 따라서, 상기 스위칭은 회전 궤도의 제2 부분(T2) 상에서 프리커서 기체의 누설을 방지한다. 그렇지 않으면, 이러한 누설은 기판의 설계된 영역 외부에서 프리커서의 원하는 않는 반응을 초래할 수 있다.
상기 차단은 프리커서 기체 공급부를 통과하는 프리커서 기체의 흐름을 리디렉팅(redirecting) 또는 스위칭 오프(switching off)함으로써 수행될 수 있다. 이는 회전 궤도(62)의 제2 부분(T2) 상에서 프리커서 기체가 누설되는 것을 방지한다. 기체 공급부(8)는 예컨대 기체 소스(미도시)로부터 기체를 수용할 수 있으며, 프리커서 기체 공급부의 공급 및 차단 사이의 스위칭은, 프리커서 기체 공급부(8)가 회전 궤도의 제1 부분에서 제2 부분으로 회전할 때(T1 과 T2 사이), 기체 소스와 기체 공급부(8) 사이의 기체 흐름 경로에 배치된 하나 이상의 밸브를 제어함으로써 수행될 수 있다.
현재 도시된 실시예에서, 기체 스위칭 구조체(103)는 밸브 제어 수단(예, 컨트롤러(101))에 의해 열림(open) 또는 닫힘(close)될 수 있는 전자기적으로 제어가능한 밸브에 의해 형성될 수 있다. 밸브들은 프리커서 기체 공급부(8) 및 반응 기체 공급부(42)의 기체 흐름 경로 상에 배치된다. 밸브 제어 수단은, 이 경우 컨트롤러(101)는, 적어도 기판(4)이 기체 공급부들(8 및/또는 42)를 커버하지 않는 위치에서, 회전 궤도의 제2 부분(T2) 동안 밸브를 닫도록 배치된다. 유사하게, 컨트롤러(101)는 기판(4)이 다시 회전 궤도(62)의 제1 부분(T1) 상에서 드럼(5)의 출력 면을 커버할 때, 즉 기판(4)이 프리커서 기체 공급부(8)를 커버함으로써 누설이 방지될 때 밸브를 연다. 기체의 방출을 차단하는 밸브 외에도, 기체 흐름 경로를 통한 기체 흐름에 영향을 미치기 위하여 다른 형태의 기체 스위칭 구조체도 가능하다. 예를 들어, 기체 흐름은 또한 기체 흐름 경로와 연결된 배기 채널(exhaust channel)을 열리게 함으로써 리디렉팅될 수 있다. 또한, 예컨대, 도 15 내지 18을 참조하여 하기에서 설명될 밸브 시스템으로 역할하는 그루브 구조체에 의해, 기체 흐름을 제어하기 위한 다른 수단도 가능하다.
도 12에 도시된 실시예에서, 반응 기체 공급부(42)를 추가로 구비한다. 반응 기체 공급부(42)에 의해 공급되는 반응 기체는, 예컨대 원자 층을 형성하기 위하여 프리커서 기체 공급부(8)에 의해 기판(4) 상에 증착된 프리커서 기체와 반응할 수 있다. 예컨대, 프리커서 기체는 TMA(tri-methyl aluminum)를 포함할 수 있으며, 반응 기체는 기판 상에 산화 알루미늄(aluminum oxide ) 원자 층을 형성하기 위하여 수증기를 포함할 수 있다. 프리커서 기체 공급부(8)와 유사하게, 반응 기체 공급부(42)는, 예컨대 회전 궤도(62)의 제2 부분(T2)(여기서 기판(4)은 드럼(5)의 출력 면을 커버하지 않음)에서 장치(2)로부터 반응 기체가 누설되는 것을 방지하기 위하여, 밸브 컨트롤러의 제어하에 닫을 수 있는 밸브를 구비할 수 있다. 대안적으로, 만약 예컨대 수증기의 경우처럼 반응 기체의 배출이 문제되지 않는다면, 밸브는 단지 프리커서 기체에 대해서만 구비될 수 있다.
도 12에 도시된 실시예에서, 드럼(5)은, 프리커서 기체 공급부(8)와 반응 기체 공급부(42)를 분리시키는, 퍼지 기체 공급부(38)와 퍼지 기체 배출부(40a, 40b)의 배치를 더 포함한다. 퍼지 기체 배출부(40a, 40b)는 또한 별개의 채널에서 프리커서 기체 및 반응 기체를 배출시키기 위해 사용될 수 있다. 퍼지 기체는 프리커서 기체 및 반응 기체 사이에 기체 커튼을 형성하여, 기판(4) 상의 설계된 영역 외부에서 두 기체 사이에 원하는 않는 반응을 방지할 수 있다.
바람직하게는, 밸브는 프리커서 기체 공급부의 출력 면에 근접하여 닫힘 상태가 된다. 이러한 방식으로, 프리커서 기체가 남아 있을 수 있는 불필요한 공간(dead space)은 제한된다. 대안적으로, 만약 배기 포인트(exhaust point)가 예컨대 좁은 개구부에 의해 기체 흐름에 충분한 저항을 제공하면, 밸브는 프리커서 기체 압력을 완화시키기 위하여 보다 상류(upstream)에 위치될 수 있으며, 프리커서 기체 공급부로부터의 기체 흐름은 효과적으로 중단될 수 있다. 대안적으로 또는 프리커서 기체 공급을 차단하기 위해 밸브를 닫는 것에 추가하여, 배기 밸브(exhaust valve)는 닫혀진 밸브와 프리커서 기체 공급부의 출력 면 사이의 불필요한 공간에서 어떤 남아있는 프리커서 기체를 제거할 때까지 열림 상태일 수 있다.
프리커서 기체들의 원하지 않는 누설 문제는, 도 8에 도시된 바와 같이, 나선형 방식으로 드럼 주위에 기판을 감쌈으로써 부분적으로 해결될 수 있다. 바람직하게는, 프리커서 기체 공급부는 열림 상태와 닫힘 상태 사이에 스위칭가능하며, 기판이 드럼을 떠나는 위치에서 프리커서 기체 공급부는 닫혀 이 위치에서 프리커서 기체가 누출되는 것을 방지한다.
도 13은 고정된 중앙 차축(10) 주위를 회전하는 드럼(5)의 개략적인 단면도이다. 드럼의 출력 면에 구비되는 프리커서 기체 공급부(8)는 기체 흐름 경로(155)를 통해 프리커서 기체를 수용하며, 기체 흐름 경로는 차축(10) 내 원주형 그루브(57a)를 통해 이동되며, 기체 인렛(8i)은 회전 경로(62)의 제1 부분(T1)에서 그루브(57a)에 대향한다. 회전 경로(62)의 제2 부분(T2) 동안, 기체 인렛(8i)은 차축(10)의 그루브에서 단부(end)를 형성하는 차단부(obstruction)(103')를 지나간다. 차단부(103')는 회전 궤도의 제2 부분(T2) 동안 기체 흐름 경로(155)를 차단하는 기체 스위칭 구조체로서 역할한다. 이러한 방식으로, 기판(4)에 의해 커버되지 않은드럼(5)의 적어도 일부분에 상응하는, 회전 경로(62)의 제2 부분(T2)동안 기체는 기체 공급부(8)로부터 배출되는 것이 방지된다.
도시된 바와 같이, 기판(4)은 롤러들(14a, 14b) 사이의 드럼(5)의 바닥 부분에서 기체 공급부(8)의 배기 포인트를 커버하지 않는다. 바람직하게는, 기체 공급부(8)는 기판(4)이 상기 기체 공급부(8)의 상응하는 배기 포인트를 떠나기 전에 기체 공급부(8)가 잘 차단되고 기판이 상기 배기 포인트를 다시 만난 후에 잘 되돌아 오도록 되어, 예컨대 프리커서 기체 공급부의 불필요한 공간으로부터 기체의 원하지 않는 누출이 방지되도록, 제2 부분(T2)을 한정하는 차단부(103')가 구비된다. 추가적으로 또는 대안적으로, 제2 그루브(57b)가 기체 배출부(미도시)와 연결된 차축(10)에 구비될 수 있다. 이러한 방식으로, 기체 공급부(8)의 불필요한 공간에 남아 있는 잉여 기체가 배출되거나 또는 기체 공급부(8)가 회전 궤도(62)의 제2 부분(T2)을 따라서 회전할 때 누설되는 것을 방지할 수 있다. 이에 따라, 프리커서 기체의 원하지 않는 누설을 방지할 수 있다.
도 14는 장치(2)의 또 다른 실시예를 도시하며, 여기서는 또 다른 기체 스위칭 구조체(103)가 구비된다. 기체 스위칭 구조체(103)는, 제어 자석(101a)에 의해 형성된 밸브 스위칭 수단의 제어 하에, 상응하는 개구부 또는 밸브 시트(valve seat)(101c)의 내부 또는 외부로 슬라이딩 되도록 구비된 자기 밸브(magnetic valve)(101b)에 의해 형성된다. 제어 자석(101a)은 자기 밸브(101b)에 의해 가로질러지는 회전 경로를 따라서 배치된다. 기체 스위칭 구조체(103)는, 회전 궤도의 제1 부분(T1) 상에서 프리커서 기체 공급부로부터의 프리커서 기체를 기판을 향해서 공급하는 과정과 회전 궤도의 제2 부분(T2) 상에서 프리커서 기체 공급부로부터 프리커서 기체의 공급을 차단하는 과정 사이의 스위칭을 위해, 기체 흐름 경로(155) 내에 배치된다. 도 14의 (a), (b), (c)는 각각 자기 밸브 시스템의 확대도, 제어 자석 배치의 측면도, 자기장 라인의 방향을 각각 나타낸다.
따라서, 일 실시예에서, 기체 스위칭 구조체(103)는 밸브(101b) 및 밸브 제어 수단(101a)을 포함하고, 밸브(101b)는 기체 흐름 경로(155)를 통한 기체 흐름에 영향을 미치며, 밸브 제어 수단(101a)은 회전 궤도(62)의 제2 부분(T2) 상에 기체 공급부로의 기체 흐름을 차단하도록 밸브(101b)를 제어한다. 본 실시예에서, 밸브(101b)는 밸브 자석을 포함하고, 밸브(101b)는 밸브 자석에 인가되는 외부 자기장의 극성에 의존하여 열림 및 닫힘 상태를 스위칭한다. 밸브 제어 수단(101a)은, 도 14의 (b)에 도시된 바와 같이, 회전 궤도의 제1 및 제2 부분 사이에 반대의 자기 극성을 가지며 회전 궤도의 고정 경로를 따라서 구비된다.
이러한 반대 극성은 도 14의 (c)에 도시된 자기장(101f)을 나타내게 하고, 이는 회전 궤도(62)의 제1 및 제2 부분에서 서로 반대 방향을 향한다. 예컨대, 제1 부분(T1)에서, 회전 궤도를 따르는 제어 자석은 제1 극성이 자기 밸브를 향하여 자석을 끌어당기도록 배향되고, 자석은 제어 자석으로 향하게 된다. 이 경우, 인력에 의해 밸브는 열림 상태가 되고, 기체 흐름 경로가 열리게 된다. 유사하게, 회전 궤도(62)의 제2 부분(T2)에서 제어 자석은 제1 극성의 반대 극성이 밸브 자석을 향하여, 척력이 작용하여 밸브를 닫힘 상태가 되게 한다. 이러한 방식으로, 밸브는 프리커서 기체 공급부(미도시)가 회전 궤도(62)의 제1 및 제2 부분 사이의 전환부을 통과할 때 열림 및 닫힘 상태 사이를 스위칭하게 된다. 여기서는 방사형 자기장을 도시하였지만, 대안적으로, 자기장은 접선 방향 또는 극성들 사이에서 스위칭되는 또 다른 방향을 가질 수 있다.
도시된 실시예에 추가적으로 또는 대안적으로, 밸브(103)는 중력의 영향 하에 열리거나 닫힐 수 있다. 예컨대, 밸브가 드럼의 바닥 부분에 있을 때, 밸브는 아래로 떨어지게 되어 기체 흐름 경로는 닫히게 되고, 드럼이 다시 회전하여 밸브가 위로 향하게 되면 기체 흐름 경로는 열리게 된다. 중력 밸브(gravitational valve)는 또한 회전 궤도의 원하는 부분에서 밸브를 열고 닫을 수 있도록 조정하는 스프링 및 웨이트(springs and weights)의 시스템을 사용할 수 있다.
일 실시예에서, 자기/중력 액추에이션 밸브가 사용되어, 영구 자석은 (궤도의 제1 부분(T1)에서) 수평 위치에서 밸브를 열고, (궤도의 제2 부분(T2)에서) 중요 부분(critical part)에서 중력이 작용하여 밸브를 닫도록 구현될 수 있다. 상기 실시예에서, 자석은 회전 궤도의 제1 부분(T1)에만 구비된다. 일반적으로, 닫힘 밸브 위치는 바람직하게는 반응 챔버를 닫아 프리커서 기체를 갖는 불필요한 부피가 최소화시킨다. 이러한 불필요한 부피는 여분의 스위칭가능한 배기 라인에 의해 비워질 수 있다.
일 실시예에서, 볼 형상의 또는 다른 형상의 금속 밀폐 엘리먼트(바람직하게는 영구 자석 물질 등)가 개별 방사형 공급 라인에 삽입될 수 있다. 이는 일단 그것이 중요 롤-오프 영역(critical roll-off zone)(T2) 가까이에 있으면 기체 흐름을 차단할 수 있다. 단순한 형태로, 지구 중력을 이용함으로써 온-오프 액추에이션(on-off actuation)이 사용될 수 있다. 회전 드럼의 방사형 기체 공급 라인이 회전하여 중요 롤-오프 영역(T2)으로 들어가면 중력이 임의의 임계치 이상으로 볼을 끌어 당겨 중요 롤-오프 영역을 떠날 때까지 닫힘 위치가 된다.
다른 실시예에서, 국부의 외부 자력을 갖는 밀폐 엘리먼트는 유도성 코일에 의해 작동되어, 호일을 따르는 궤도에서 공급 라인을 열림 상태로 유지하고 코일을 흐르는 전류를 반대로 함으로써 닫힘 위치로 스위칭한다.
또 다른 옵션은 호일의 롤-오프 영역에서 열림될 수 있는 추가의 배기 라인(션트(shunt) 또는 바이패스(bypass))을 삽입하는 것이다. 이 경우는 (압력 저하 없이) 연속적인 프리커서 기체 흐름의 장점이 있다.
도 15는 기체 공급부(8, 38, 42)가 드럼(5)에 구성된 장치(2)의 분해조립도이다. 이는 드럼의 표면을 적어도 부분적으로 실링하는 실링 피스(sealing piece)(55)를 통해 기체 소스(미도시)로부터 기체를 수용한다. 현재 도면에서, 정면에서 내부 드럼(51) 내 기체 인렛(58a)을 보여주기 위해 단지 하나의 실링 피스(55)를 도시하였다.
사용 시, 실링 피스(55)는 드럼(5)에 밀폐가능하도록 압력이 유지되어 실링 피스와 드럼 표면 사이의 그루브(57)를 밀폐하여 기체 흐름 채널을 형성한다. 따라서, 실링 피스(55) 및 드럼(5)은 기체 흐름 채널을 포함하는 실링 구조체를 형성한다. 드럼(5)은 실링 피스(55)에 대해 회전가능하며, 하나 이상의 기체 인렛(58)을 포함한다. 실링된 그루브(57)는 회전 궤도의 제1 부분 상에서 그루브(57)가 기체 인렛(58)에 대향하여 위치하도록 배치되고, 이에 따라 기체 흐름 경로를 형성한다. 특히, 그루브는 기체 소스로부터 실링된 그루브에 의해 형성된 채널을 통해 기체 흐름을 제공하는 기체 아웃렛(미도시)에 연결된다. 그루브(57)가 기체 인렛(58)에 대향하여 놓이는 위치에서, 기체는 실링 피스의 기체 아웃렛에서 실링된 그루브를 통해 드럼의 기체 인렛으로 흐를 수 있다.
도 15에 의해 도시된 또 다른 측면은 드럼(5) 내 기체 공급부(8, 38, 42)의 바람직한 레이아웃(layout)이다. 특히, 프리커서 기체 공급부들(8)은 퍼지 기체 공급부들(38)에 의해 반응 기체 공급부들(42)과 분리되어 교차적으로 배치된다. 각각의 기체 공급부(8, 38, 42)의 증착 헤드는 예컨대 0.1mm의 폭을 갖는 슬릿(slit) 형상이다. 기체 공급부(8, 38, 42)의 슬릿 형상의 증착 헤드를 통해, 기체들은 제어된 방식으로 드럼의 표면을 일부를 커버하는 기판(미도시)으로 흐를 수 있다(도 13 참조). 상기 좁은 슬릿은, 우묵 들어간 연결 피스(recessed connection pieces)(63)를 갖는 드럼과 연결된, 교환가능한 삽입 이분편들(exchangeable insert halves)(61) 사이에 형성될 수 있다. 삽입 이분편들(61)은 기체 공급부의 증착 헤드를 포함하는 드럼의 외부(outer part)(53)를 형성한다.
삽입 이분편들(61)에 의해 형성되는 통상의 아웃렛 갭은 0.1mm 폭을 가진다. 통상의 삽입 길이는 프리커서 아웃렛의 경우 250mm이고, N2 삽입의 경우 280mm이다. 삽입 스트립(insert strips)의 외부 표면은 바람직하게는 스무드(smooth)하게 되어 삽입 길이(insert length) 상에서 균등한 기체 분포가 이루어지도록 한다. 아웃렛 갭의 공기 제한(pneumatic restriction)은 바람직하게는 디바이더 챔버(divider chamber)의 저항보다 상당히 커서, 반응/베어링 영역을 향해 균일한 유속(flow rate)을 얻는다. 균일한 유속은 웹(web)의 균일한 베어링/프리커서 기체의 균일한 증착을 얻는다.
각각의 기체 공급부는, 예컨대 다월핀(dowel pins)으로 서로에 대해 대응하여 위치하고 예컨대 M3 헥사곤 스크류(M3 hexagon screws)에 의해 연결된, 2개의 삽입 이분편들(61)에 의해 형성된다. 각각의 삽입 이분편에 U 형상의 또는 오목한 프로파일(concave profile)을 제공함으로써, 디바이더 챔버(61a)가 기체 아웃렛 아래에 형성된다. 전체 호일 크기보다 큰 연속적인 아웃렛 폭은 균일한 집중 및 정확한 기체 분리를 얻는데 바람직하다. 또한, 폭에 대해 동일한 분포를 위해 스무드한 외부 표면이 바람직하다.
연결 피스(connection pieces)(63)는 스크류 홀(screw holes)(63a)을 통해 내부 드럼(51)으로 스크류(screw)되거나 볼트(bolt)된다. 따라서, 연결 피스(63)는 드럼 내에 리세스된 트로프(recessed troughs)를 형성할 수 있으며 기체 배출 채널(67)을 포함할 수 있다. 기체 배출 채널을 통해 잉여의 퍼지 기체와 프리커서 또는 반응 기체들이 기판과 드럼 사이에 형성된 트로프를 경유하여 제거될 수 있다.
기판 상에 원자 층을 증착하는 동안, 연결 피스(63)에 의해 형성된 리세스된 채널 내 배출부(67)의 흡입력과 퍼지 또는 다른 기체 공급부에서 제공되는 압력의 조합은 기판(미도시)이 드럼으로부터 원하는 거리만큼 이격되어 균형있게 유지시킬 수 있다. 따라서, 퍼지 기체 공급부는 프리커서 기체 및 반응 기체 사이의 기체 커튼으로 기능하고 또한 기판을 위한 기체 베어링으로 기능할 수 있다. 프리커서 및/또는 반응 기체는 또한 베어링 기능을 가질 수 있다. 바람직하게는, 프리커서 및/또는 반응 기체의 원하지 않는 누설을 방지하기 위하여, 원주형 퍼지 기체 공급부(38')는 퍼지 기체를 갖는다. 또한, 도 16에 상세히 도시되어 있지만, 그루브(57)는, 드럼의 표면이 기판에 의해 커버되지 않는 회전 궤도의 일 부분을 상기 기체 공급부가 가로지를 때, 드럼으로의 기체 공급부가 차단되거나 또는 리디렉팅되도록 배치될 수 있다.
도 16은 정지된 실링 피스(55)에 의해 형성된 실링 구조체(95)의 분해조립도이다. 실링 피스는 드럼(5)의 회전가능한 피드 스루 플레이트(rotatable feed through plate)(59)에 연결된다. 실링 구조체는 정지된 소스(108', 138', 142')로부터 회전하는 드럼(5)으로 기체를 공급하는 기체 전송 구조체 및 기체 흐름을 차단하고 재개하는 기체 스위칭 구조체로서 역할한다. 실링 피스(55)는 피드-스루 플레이트(59) 내 상응하는 기체 인렛/아웃렛에 대향하여 위치하는 원주형 그루브(57)를 포함한다. 그루브(57)는 기체 인렛/아웃렛(58)과 결합되어 밸브(103)를 형성하고, 이는 실링 피스(55)에 대하여 드럼(5)의 상대적 회전에 의해 열린다. 드럼은 차축(10) 주위를 회전하며, 차축(10)은 예컨대 실링 피스(55)의 내부 공동에 의해 또는 외부적으로 형성될 수 있는 베어링 구조체 상에 안착될 수 있다. 차축(10)은 예컨대 모터(미도시)에 의해, 바람직하게는 열 저항 모터(예, 브러시리스 DC 모터)에 의해 구동될 수 있다. 모터는 드럼 차축(10)에 직접 연결되거나 또는 모터의 토크를 증가시키기 위하여 예컨대 기어 박스를 통해 연결될 수 있다.
사용 시, 그루브(57)는 실링 피스(55)의 표면과 드럼(5)에 구비된 회전하는 피드-스루 플레이트(59) 사이에서 움직이게 된다. 드럼의 회전 궤도(62)의 제1 부분(T1)에 상응하는 그루브(57)는 각각의 기체 소스들(108', 138', 142')로부터 프리커서 기체(108), 퍼지 기체(138), 반응 기체(142)를 제공받는다. 또한, 드럼의 회전 궤도(62)의 제2 부분(T2)에 상응하는 그루브는 기체 배출부(미도시)와 연결될 수 있다. 이러한 배치에서, 기체 인렛/아웃렛(58)이 기체 소스들(108', 138', 142')과 연결된 그루브들에 대향할 때, 드럼의 출력 면이 기판에 인접할 때 회전 궤도의 제1 부분(T1)동안 드럼의 기체 공급부들은 각각 기판(미도시)의 표면으로 기체들을 공급한다. 또한, 기판이 드럼의 표면으로부터 떨어질 때, 드럼(5)의 표면의 일부에 있는 기체 공급부들은 차단될 수 있으며, 외부 환경으로 프리커서 및/또는 반응 기체들의 원하지 않는 누설을 방지하기 위하여 기체들은 배출될 수 있다.
따라서, 도시된 실시예에서, 원주형 실링 그루브(57)는 회전 궤도(62)의 제1 부분(T1)을 따라서 연장되고, 회전 궤도의 제1 및 제2 부분(T1, T2) 사이에서 끝나며(ending), 이러한 방식으로 회전 궤도의 제2 부분(T2) 상에서 상기 프리커서 기체 공급부로부터 프리커서 기체의 공급을 차단하는 동안, 그루브(57)를 통해 이동하는 기체 흐름 경로는 드럼의 표면, 특히 이 경우 피드-스루 플레이트(59)에 의해 차단된다.
도시된 실시예의 대안으로서, 그루브는 드럼(5)에 구비되고, 기체 인렛/아웃렛은 실링 피스(55)에 구비된다. 또한, 현재 도시된 실링 피스(55)는 드럼의 측면을 실링하는 플레이트를 포함하지만, 실링 피스는 드럼의 원주를 실링할 수 있으며, 이 경우 그루브는 드럼의 원주 또는 실링 피스의 표면을 따라서 구비된다. 이러한 측면 실링 및 원주 실링 피스의 조합도 또한 가능하다. 더 나아가, 드럼(5)과 실링 피스(55)는 모두 그루브를 포함하거나 또는 그루브와 배기 채널의 결합을 포함할 수 있다. 또한, 현재의 실시예에서는 그루브가 소정의 깊이를 갖는 것으로 도시되었지만, 상기 깊이는 또한 그루브의 길이를 따라서 변화될 수 있다.
현재 실시예에서는 단지 3개의 그루브가 도시되었지만, 그루브의 수는 증착 프로세스의 구체적 필요에 상응하여 확장되거나 감소될 수 있다. 바람직한 실시예에서, 프리커서 기체들을 수송하는 그루브들은 프리커서 기체들보다 높은 압력으로 퍼지 기체를 수송하는 그루브들에 의해 둘려싸여 있다. 이러한 방식으로, 예컨대 도 12의 동심 튜브들과 관련하여 설명한 바와 같이, 퍼지 기체는 프리커서 기체와 외부 환경 사이에 기체 커튼을 형성할 수 있다. 대안적으로 또는 추가적으로, 그루브는, 퍼지 기체(138) 공급부들 및 기체 배출부들을 갖는 그루브에 의해 분리되는, 교차적인 프리커서 기체(108) 및 반응 기체(142) 공급부들을 구비할 수 있다. 예컨대, 중심으로부터 외부를 향하여 프리커서 기체 공급부, 기체 배출부, 퍼지 기체 공급부, 기체 배출부, 반응 기체 공급부, 기체 배출부, 퍼지 기체 공급부의 순으로 구비할 수 있다. 이러한 방식으로, 퍼지 기체와 함께 프리커서 기체는 퍼지 기체와 함께하는 반응 기체와 분리된 배출 채널에서 배출된다.
대안적으로 또는 추가적으로, 프리커서 기체는 드럼의 일 측면 상의 실링 피스를 통해 공급될 수 있으며, 반응 기체는 드럼의 다른 측면 상에서 공급될 수 있다. 일 측면 또는 양 측면에 퍼지 기체 커튼이 구비되어, 프리커서 및/또는 반응 기체가 외부 환경으로 원하지 않게 방출되는 것을 방지할 수 있다. 실링 피스(55)는 또한 (장축) 드럼 측면에 기체 베어링을 가질 수 있다.
도 17은 실링 피스(55)와 드럼(5) 사이의 기체 연결부들의 개략적인 단면도를 도시한 것이다. 드럼(5)은, 예컨대 베어링(12) 내에서 회전되는 차축(10)을 통해 모터(M)에 의해 구동되어, 회전 궤도(62)로 실링 피스(55)에 대해 회전가능하다.
드럼(5)은 드럼(5)의 출력 면 상에 프리커서 기체(예, TMA) 공급부(8), 퍼지 기체(예, N2) 공급부(38), 반응 기체(예, 수증기) 공급부(42) 및 기체 배출부(40a, 40b)를 포함한다. 기체 공급부들(8, 38, 42)은 드럼의 표면의 적어도 일부분을 실링하는 실링 피스(55)를 통해 각각의 기체 소스들(108', 138', 142')로부터 기체(108, 138, 142)를 제공받는다. 드럼(5)은 기체 아웃렛/인렛(58)을 포함하고, 실링 피스(55)는 그 표면에 원주형 그루브(57)를 포함한다. 다시 말해, 그루브(57)는 (중심에 대해) 인렛/아웃렛(58)의 반경에 상응하는 반경을 갖는 접선 경로(tangential path)를 따른다. 일 실시예에서, 퍼지 기체 라인은 기체 베어링 및 반응 기체의 분리를 위해 축 방향으로 설계될 수 있으며, 드럼 극단(drum extremes)에 대한 베어링을 위해 방사상 방향으로 설계될 수 있다.
그루브(57)는 드럼(5)에 의해 실링되고, 회전 궤도(62)의 적어도 일부분 상에서 기체 아웃렛/인렛(58)에 대향하도록 배치된다. 사용 시, 실링된 그루브(57)의 일부는 기체 소스들(108', 138', 142')와 기체 공급부들(8, 38, 42) 사이의 기체 흐름 경로의 일부를 형성할 수 있다. 더 나아가, 다른 실링된 그루브(57) 또는 또 다른 실링된 그루브(57)는 기체 배출부(40a, 40b)와 각각의 기체 흡수부(gas sinks; 140a', 140b') 사이의 다른 기체 흐름 경로의 일부를 형성하여, 잉여의 프리커서 기체(8) 및 반응 기체(42)를 각각 배출시킨다. 바람직하게는, 프리커서 기체(8) 및 반응 기체(142)를 위한 배출 채널은 분리되어, 설계되지 않은 영역(즉, 기판 상이 아닌 영역)에서 프리커서 기체와 반응 기체 사이에 원하지 않는 반응이 일어나지 않도록 한다. 앞서 논의한 바와 같이, 도시된 실시예에 대안적으로, 그루브(57)와 기체 인렛/아웃렛(58)은 실링 피스(55) 및 드럼(5) 사이에 바뀔 수 있으며 어떤 조합으로 혼합될 수도 있다.
일 실시예에서, 원주형 실링 그루브는 회전 궤도(62)의 제1 부분(T1)을 따라서 연장되고, 회전 궤도(62)의 제1 및 제2 부분 사이에서 끝나며(ending), 이러한 방식으로 회전 궤도(62)의 제2 부분 상에서 프리커서 기체 공급부로부터 프리커서 기체의 공급을 차단하는 동안, 기체 흐름 경로는 드럼(5)의 표면에 의해 차단된다. 이러한 방식으로, 실링 피스에 대한 드럼의 상대적 회전은 기체 소스/흡수부와 각각의 기체 공급부/배출부 사이의 기체 흐름 경로를 열고 닫는다. 즉, 결합된 구조체는 밸브 시스템으로 역할한다. 따라서, 그루브는 밸브로서 역할할 수 있으며, 드럼의 회전은 밸브를 제어하는 수단으로 역할할 수 있다.
기체 피드-스루 플레이트 또는 실링 피스(55)는 다음과 같은 몇몇 기능을 포함한다.
- 질소 삽입부를 연결하고 원주 방향으로 질소 슬릿을 생성한다.
- 종래의 또는 에어 베어링에서 드럼을 지탱하기 위한 축으로서 역할한다.
- 예컨대 통상의 220mm 직경을 갖는 피드-스루 플레이트에 맞도록 외부 에지에서 더 큰 직경을 제공한다.
- 기체 스루를 공급하기 위한 홀을 제공한다.
- 드럼을 위한 차축(기체) 베어링으로서 역할한다.
각각의 챔버/삽입부는 바람직하게는 하나의 방사형 구멍(single radial bore)과 연결된다. 아웃렛 챔버들은 서로 2개의 구멍을 가질 수 있다. 차축 구멍들(axial bores)은 피드-스루 플레이트에 연결하는 역할을 한다. 구멍들은 예컨대 통상적인 6mm 직경을 가질 수 있다. 방사형 구멍은 소정 거리로 예컨대 드럼의 극단 측면(extreme sides) 가까이에 위치되어 채널 부피와 데드 스페이스(dead space)를 최소화할 수 있다.
일 실시예에서, 드럼(5)은 다공질 탄소(porous carbon)의 표준 에어 부싱(standard air bushings)에 의해 수행될 수 있으며, 평탄한 둥근 에어 베어링(flat round air bearing)에 의해 축 방향에서 고정될 수 있다. 드럼은 열 저항 모터(예, 브러쉬리스 DC 모터)에 의해 구동될 수 있다. 모터는 드럼 차축(10)에 직접 연결되거나 또는 모터의 토크를 증가시키기 위하여 예컨대 기어 박스를 통해 연결될 수 있다.
도 18은 장치(2)의 또 다른 실시예를 도시한다. 본 실시예에 따른 장치(2)는 드럼의 양 측면 상에 2개의 실링 피스(55a, 55b)를 포함한다. 드럼은 회전 경로(62) 상에서 실링 피스(55a, 55b)에 대해 회전가능하다. 예컨대, 베어링(12) 내에서 움직이는 차축(10) 주위를 회전한다. 제1 실링 피스(55a)는 드럼(5)으로 프리커서 기체(108) 및 퍼지 기체(138)를 공급하고, 드럼(5)으로부터 잉여의 퍼지 및/또는 프리커서 기체(140b)를 배출한다. 제2 실링 피스(55b)는 드럼(5)으로 반응 기체(142)를 공급하고, 드럼(5)으로부터 잉여의 반응 기체(140b)를 배출한다. 2개의 분리된 실링 피스(55a, 55b)를 통해 프리커서 기체(108)와 반응 기체(142)를 각각 공급 및/또는 배출하는 장점은 2개의 기체들(108, 142)이 예컨대 실링 피스의 누설 개구부를 통해 서로 만나서 설계된 영역 외부에서 반응하는 것을 방지할 수 있다. 다른 장점은 드럼 설계에 있어 더 작은 공간이 가능하다.
일 실시예에서, 롤-투-롤 ALD 시스템에 사용되기 위해 동축 듀얼 드럼 세트에 전체적으로 집적된 흐름 차단부 또는 저항부를 갖는 스위칭 기체 공급 라인이 제공된다. 여기서 차단은, 힘-제어 또는 형상-제어 구성에서 전체적으로 집적된, 밸브 및/또는 기체 피드-스루 및 기체 베어링/분리 시스템에 의해 수행된다.
도 19는 드럼 상에 마운트되는 증착 헤드(6)를 도시한다. 증착 헤드(6)는 회전가능한 방식으로 마운트되어 예컨대 화살표(129) 방향으로 회전될 수 있다. 기판(4)은 증착 헤드(6)의 원주를 따르는 이동 경로 상에 화살표(122)에 의해 지시되는 입구 지점(entrance point)를 통해 가이딩될 수 있다. 가이딩 유닛은 입구 지점(122)과 출구 지점(123) 가까이에 캡스턴(capstans)(14)을 포함한다. 캡스턴(14)은 기판을 바이어싱(biasing)하기 위해 기판에 텐션(tension)을 가하고, 증착 헤드(6)의 표면 가까이의 이동 경로를 향해서 기판을 밴딩(bending)한다. 기판(4)과 증착 헤드(6) 사이의 기체 베어링은 기판과 증착 헤드 사이의 접촉을 방지한다.
기체 베어링은 프리커서 기체, 퍼지 기체, 반응 기체를 제공하는 임의의 기체 아웃렛(도 19에서는 아웃렛이 도시되지 않음)을 사용하여 제공될 수 있다. 이해하는 바와 같이, 캡스턴(14)을 이용해서 제공되는 텐션의 크기는 기체 베어링이 부절적하게 기능하는 것을 방지하기 위하여 제한된다. 만약 캡스턴으로 인가되는 텐션이 너무 크면, 기판은 증착 헤드의 원주를 따르는 몇몇 지점에서 접촉될 수 있으며, 이는 기판에 손상을 일으킬 수 있기 때문에 바람직하지 않다.
실선(4)은 본 발명에 따른 기판의 경로를 나타내고, 풀링 유닛(pulling unit)(120a, 120b)에 기초한 압력은 기판(4)을 헤드(6)로부터 입구 및 출구 지점(122, 123) 가까이로 끌어당긴다. 만약 풀링 유닛(120a, 120b) 없이 단지 캡스턴(14)과 기체 베어링이 증착 헤드(6)의 원주를 가로지르는 기판(4)의 무접촉 이동을 유지한다면, 기판은 도 19의 점선(4')에 의해 지시되는 경로를 따를 것이다. 이해하는 바와 같이, 기체 베어링의 적절한 동작의 관점에서 텐션의 양은 제한되기 때문에, 추가적인 가이딩 없이 입구 지점(122)에서 이동 경로 방향에 있어 기판의 밴딩은, 예컨대 기판 물질이 비교적 단단할 때, 기판이 증착 헤드(6)의 표면에 너무 가까이 가게 된다. 이는 기판(4)의 출구 지점(123) 근처에서 동일하게 발생될 수 있다. 이를 방지하기 위하여, 대안적으로, 기판은 보다 부드러운 밴딩을 제공하는 캡스턴(14)에 의해 밴딩될 수 있다. 그러나, 이는 입구 지점(122)과 출구 지점(123)이 서로에 대해 더 떨어질 필요가 있다. 그 결과, 증착 헤드의 표면은 본 발명에서 최적으로 사용되지 않는다.
본 발명에 따르면, 입구 및 출구 지점(122, 123)에서, 베르누이 그리퍼(Bernoulli grippers)(120a, 120b)가 각각 가이딩 유닛(14) 가까이에 위치하여, 그리퍼(120a, 120b)를 향해서 기판 표면을 당긴다. 베르누이 그리퍼는 고속의 공기 흐름을 이용하여 기판의 뒷면에 낮은 압력 영역을 생성함으로써, 기판을 베르누이 그리퍼를 향해서 당긴다. 베르누이 그리퍼가 기판 표면에 평행한 고속의 공기 흐름을 이용하기 때문에, 기판 표면과 베르누이 그리퍼 사이의 접촉은 효과적으로 방지된다. 베르누이 그리퍼의 원리는 도 20에 도시되어 있다. 도 20에서, 베르누이 그리퍼(120)는 가압 기체 인렛(pressurized gas inlet)(124)을 포함한다. 아웃렛 개구부(125)는 기판 표면(4)에 평행한 고속의 공기 흐름(127a, 127b)를 생성하기 위해 가압 기체(126)를 방출한다. 베르누이 원리에 따르면, (베르누이 그리퍼로부터 이탈되는 방향의) 고속의 기체 흐름(127a, 127b)은 기판(4) 상에 인력을 가하는 저압 영역을 생성한다.
도 19를 참조하면, 베르누이 그리퍼(120a, 120b)는 증착 헤드(6)의 표면으로부터 기판(4) 표면을 효과적으로 당긴다. 또한, 가이딩 유닛(14)에 대항하며, 입력 지점(122)과 출구 지점(123) 가까이에 각각 위치하는 2개의 가압 기체 공급부(forced gas supplies)(121a, 121b)는 기판 표면으로 추가적인 힘을 인가하여, 기판이 증착 헤드의 표면과 떨어지도록 유지하며 증착 헤드(6)의 원주를 따르는 이동 경로에 정렬시킨다.
도 19 및 20에 도시된 개시 내용, 구성요소, 개선점은 임의의 롤-투-롤 원자 층 증착 방법 및 장치에 적용될 수 있다. 특히, 이러한 개시 내용들은, 비록 도면상에 나타내지는 않았지만, 도 1, 1e(a), 4, 7, 8, 11b, 12, 13, 15에 도시된 실시예에 적용될 수 있다. 도 19에 나타난 바와 같이, 풀링 유닛(120a, 120b)에 기초한 압력 및/또는 가압 기체 공급부(121a, 121b)와 같은 개선점은 입구 및/또는 출구 지점 근처에 적용될 수 있다. 더 나아가, 실시예들의 정확한 세부사항에 따라서, 이러한 수단은 손상을 방지하기 위해 경로를 따르는 다른 것들에 대해서도 추가적으로 적용될 수 있다.
도 21은 본 발명의 일 실시예에 따른 장치의 추가적인 단면도를 나타낸 것이다. 도 21은 본 발명에 따른 롤-투-롤 원자 층 증착 장치를 가열하기 위한 유리한 히팅 시스템을 도시한다. 도 21에서, 증착 헤드(6)를 이동시키는 드럼(5)은
에노다이즈 알루미늄 물질(anodized aluminum material)(바람직하게는 오팔-에노다이즈 알루미늄(opal-anodized aluminum)) 또는 에노다이즈 또는 오팔-에노다이즈 알루미늄 합금으로 제조될 수 있으며, 적외선 방사(infrared radiation)를 위한 충분히 높은 흡수 계수(absorption coefficient)(예컨대, 0.3 이상 바람직하게는 0.8 이상)를 갖는 드럼을 제공할 수 있다. 드럼의 중앙에, 구멍(bore hole; 134)이 형성되며, 예컨대 텅스텐-할로겐 램프(tungsten-halogen lamp) 또는 실리콘 카브(silicon carb; SiC)에 기초한 히터 등의 적외선 형태의 히팅 디바이스(131)를 포함한다. 또한 에노다이즈 또는 오팔-에노다이즈 알루미늄 또는 알루미늄 합금으로부터 기체 제한부(gas restriction)(16)가 생성될 수 있다. 히터(131)에 추가하여, 하나 이상의 열전쌍(thermocouples)(132)이 구멍(134)에 형성되어 본 발명에 따른 장치의 온도를 제어할 수 있다.
도 21의 히팅 시스템은 본 발명에 따른 롤-투-롤 원자 층 증착 방법 및 장치의 추가적인 개선을 위해 적용될 수 있다. 또한, 이러한 히팅 시스템은 원자 층 증착 장치에 독립적으로 적용될 수 있으며, 방사선 형태의 히팅 디바이스와 (오팔-)에노다이즈 알루미늄 소자들 사이에 시너지를 얻을 수 있다. 그러므로, 이러한 히팅 디바이스는 기판 상에 원자 층을 증착시키는 장치와 일반적으로 관련되며, 상기 장치는 회전가능하게 마운팅되는 드럼을 포함하고, 상기 드럼은 출력 면(output face)을 갖는 증착 헤드를 포함하고, 상기 출력 면은 사용 시 기판을 적어도 부분적으로 대향하고 상기 기판을 향하여 프리커서 기체를 공급하는 프리커서 기체 공급부를 포함하는 하나 이상의 기체 공급부를 구비하며, 상기 출력 면은 기판을 위한 이동 경로를 정의하는 실질적으로 둥근 형상을 가지며, 상기 장치는 증착 헤드를 포함하는 드럼을 회전가능하게 마운팅하기 위한 마운트, 및 상기 기판을 따라서 상기 프리커서 기체 공급부를 이동시키기 위하여 상기 증착 헤드를 회전시키도록 배치된 구동부(driver)를 더 포함하고, 상기 증착 헤드는 원자 층을 형성하기 위해 기판 가까이에 예컨대 기판 상에 공급된 프리커서 기체를 반응시키도록 구비되며, 이에 따라 상기 장치는 프리커서 기체 공급부가 일 방향으로 연속적으로 이동하는동안 원자 층들의 스택을 증착시키며, 상기 장치는 회전가능한 드럼의 적어도 부분적으로 둥근 원주를 따라서 기판을 이동시키며, 상기 드럼은 에노다이즈(anodized), 바람직하게는 오팔-에노다이즈(opal-anodized) 알루미늄을 포함하는 금속으로 구성되며, 상기 장치는 적외선 타입 히팅 시스템을 더 포함한다.
본 발명의 기술분야는 ALD에 제한되지 않으며, 유기 광 전지, 유연성 유기 전자소자(예, 트랜지스터), 패시베이션 및 버퍼 층 박막 솔라셀, OLED를 위한 배리어 층, (음식) 패키징에 있어 습기 및 산소 확산 배리어 층 등을 위한 대 영역 제조를 위한 릴-투-릴 증착 장비에 적용될 수 있다. 그리고, 단지 Al2O3 의 생산에 한정되지 않으며, 다른 물질(예, ZnO)의 증착에도 적용될 수 있다.
마찬가지로, 모든 운동학적 변환(kinematic inversions)이 고려될 수 있으며, 본 발명의 범위에 포함된다. '바람직하게는', '특히', '특별히', '통상적으로' 등과 같은 표현은 본 발명을 한정하는 것은 아니다. 단수 형태로 사용된 용어(예, 부정관사 'a' 또는 'an'을 사용한 경우)가 복수개를 배제하는 것은 아니다. 구체적으로 또는 명시적으로 설명되지 않았거나 또는 청구되지 않은 특징들은 그 범위를 벗어나지 않고 본 발명에 따른 구조체에 추가적으로 포함될 수 있다. 예를 들어, 기판의 일부에 원자 층을 증착시키는 동안 기판의 일부의 온도를 (예컨대, 220℃ 근처로) 상승시키기 위하여, 증착 헤드는 히터(heater)를 구비할 수 있다. 다른 예로서, 상기 장치는 공동에서, 프리커서 기체 공급부에서, 프리커서 기체 배출부에서, 반응 기체 공급부에서, 반응 기체 배출부에서, 베어링 기체 공급부에서, 및/또는 베어링 기체 배출부에서 기체 압력을 제어하기 위하여 압력 컨트롤러(pressure controller)를 구비할 수도 있다. 압력 컨트롤러는 기체 컨트롤러(gas controller)를 포함할 수 있다. 더 나아가, 상기 장치는 또한, 기판 상에 증착시키는 동안 또는 기판 상에 증착시킨 후 증착-후 처리(post-deposition treatment) 동안 프리커서 기체 물질의 반응을 촉진시키기에 적합한, 마이크로-플라즈마 소스(micro-plasma source) 또는 다른 형태의 소스를 포함할 수 있다. 증착 헤드를 회전시키는 것에 부가적으로 또는 대안적으로, 증착 헤드를 왕복 운동시키는 것은 가치있는 증착 옵션들(options)을 제공할 수 있다.

Claims (15)

  1. 기판 상에 원자 층을 증착시키는 방법에 있어서,
    증착 헤드(deposition head)를 이용하여 기판(substrate)을 향하여 프리커서 기체(precursor gas)를 공급하는 단계; -상기 증착 헤드는 프리커서 기체를 공급하는 프리커서 기체 공급부를 포함하여 하나 이상의 기체 공급부를 포함함- 및
    원자 층을 형성하기 위하여 상기 기판의 근처에 예컨대 표면에 상기 프리커서 기체를 제공하는 단계; -상기 증착 헤드는 상기 원자 층을 증착시키는 동안 상기 기판 표면을 적어도 부분적으로 향하는 출력 면(output face)을 가지며, 상기 출력 면은 하나 이상의 기체 공급부를 구비하고 상기 기판의 이동 경로를 정의하는 실질적으로 둥근 형상을 가짐- 를 포함하고,
    상기 방법은
    상기 프리커서 기체를 공급하는 동안 상기 증착 헤드를 회전시킴으로써 상기 기판을 따라서 그리고 상기 기판에 대해 상기 프리커서 기체 공급부를 이동시키는 단계;
    상기 프리커서 기체 공급부를 한 방향으로 연속적으로 이동시키는 동안 원자 층들의 스택을 증착시키는 단계; -상기 방법은 하나 이상의 기체 공급부를 이용하여 제공되는 기체 베어링에 의해 상기 출력 면과 기판 표면이 접촉하지 않고 유지되는 동안 수행됨- 및
    기판 표면을 갖는 기판을 외부 밴드 면(outer bend side) 상에 밴딩시키기 위해, 가이딩 유닛(guiding unit)을 이용하여 이동 경로 방향 및 반대 방향 중 적어도 하나의 방향으로 상기 기판을 가이딩하는 단계; 및
    상기 가이딩 유닛 근처에 상기 출력 면과 상기 기판 표면 사이의 접촉을 방지하기 위해, 상기 출력 면에 대향하는 상기 가이딩 유닛에 인접하는 풀링 유닛(pulling unit)에 기초한 압력을 이용하여 상기 가이딩동안 상기 기판을 상기 출력 면으로부터 풀링하는 단계를 더 포함하는 것을 특징으로 하는 방법.
  2. 제1항에 있어서,
    상기 풀링하는 단계는 기판의 비접촉 풀링을 위해 베르누이 그리퍼(Bernoulli gripper)를 사용하여 수행되는 것을 특징으로 하는 방법.
  3. 제1항 또는 제2항에 있어서,
    상기 출력 면으로부터 상기 기판이 떨어지도록 힘을 가하기 위해, 가압 흐름 기체 인렛(forced-flow gas inlet)을 사용하여 상기 기판의 표면을 향하는 상기 외부 밴드 면 근처에 기체 흐름을 생성하는 단계를 더 포함하는 것을 특징으로 하는 방법.
  4. 제1항 내지 제3항 중 어느 한 항에 있어서,
    상기 기체 베어링은 프리커서 기체 공급부를 이용하여 제공되는 것을 특징으로 하는 방법.
  5. 제1항 내지 제4항 중 어느 한 항에 있어서,
    상기 하나 이상의 기체 공급부는 퍼지 기체 공급부 및 반응 기체 공급부 중 적어도 하나를 포함하고, 상기 퍼지 기체 공급부는 불활성 퍼지 기체를 공급하고, 상기 반응 기체 공급부는 상기 프리커서 기체와 반응하기 위한 반응 기체를 공급하며, 상기 기체 베어링은 프리커서 기체 공급부, 퍼지 기체 공급부, 반응 기체 공급부 중 적어도 하나를 이용하여 제공되는 것을 특징으로 하는 방법.
  6. 제1항 내지 제5항 중 어느 한 항에 있어서,
    상기 증착 헤드를 포함하는 회전가능한 드럼의 적어도 부분적으로 둥근 원주를 따라서 상기 기판을 이동시키는 단계를 포함하는 것을 특징으로 하는 방법.
  7. 제6항에 있어서,
    상기 드럼은, 상기 드럼의 표면의 적어도 일부를 실링하는 실링 피스(sealing piece)를 구비하여, 상기 하나 이상의 기체 공급부를 연결하기 위한 적어도 하나의 기체 흐름 채널을 포함하고,
    상기 프리커서 기체 공급부를 이동시키는 단계를 제공하기 위하여, 상기 실링 피스에 대해 상기 드럼을 회전시키는 동안, 상기 하나 이상의 기체 공급부는 실링 피스를 통해 상기 적어도 하나의 기체 흐름 채널을 통과하는 기체를 제공하고,
    상기 드럼 및 실링 피스 중 하나는 하나 이상의 기체 아웃렛/인렛을 포함하고, 상기 드럼 및 실링 피스 중 나머지 하나는 드럼에 의해 실링된 그 표면에 하나 이상의 원주형 그루브(circumferential grooves)를 포함하고,
    상기 회전 동안, 상기 기판을 향하여 기체를 공급하기 위하여, 상기 기체 아웃렛/인렛은 상기 실링된 그루브에 대향하여 위치하며, 상기 기체 흐름 경로의 일부는 상기 실링된 그루브에 의해 형성되는 것을 특징으로 하는 방법.
  8. 제1항 내지 제7항 중 어느 한 항에 있어서,
    상기 증착 헤드, 하나 이상의 기체 공급부, 가이딩 유닛 중 적어도 하나에 구비되는 히터를 이용하여 상기 기체 및 기판 중 적어도 하나를 미리 가열(pre-heating)하는 단계를 더 포함하는 것을 특징으로 하는 방법.
  9. 제6항 및 제8항에 있어서,
    상기 가열하는 단계는 적외선 타입 히팅 시스템을 이용하여 수행되며, 상기 드럼은 에노다이즈(anodized), 바람직하게는 오팔-에노다이즈(opal-anodized) 알루미늄을 포함하는 금속으로 구성되는 것을 특징으로 하는 방법.
  10. 기판 상에 원자 층을 증착시키는 장치에 있어서,
    하나 이상의 기체 공급부를 포함하는 증착 헤드(deposition head); -상기 하나 이상의 기체 공급부는 상기 기판을 향하여 프리커서 기체를 공급하기 위한 프리커서 기체 공그부를 포함하고, 상기 하나 이상의 기체 공급부는 상기 증착 헤드의 출력 면(output face) 상에 구비되고, 상기 출력 면은 상기 출력 면의 적어도 일부 상에서 상기 기판을 위한 이동 경로를 정의하는 실질적으로 둥근 형상을 가지며, 사용 시 공급된 프리커서 기체는 상기 출력 면을 향하는 상기 기판의 표면 근처에 예컨대 표면 상에서 반응하여 상기 기판 표면 상에 원자 층을 생성함-
    상기 증착 헤드를 회전가능하게 마운팅하기 위한 마운트(mount);
    상기 프리커서 기체를 공급하는 동안, 상기 기판을 따라서 상기 프리커서 기체 공급부를 이동시키기 위하여, 상기 증착 헤드를 회전시키도록 배치된 구동부(driver); -이에 의해 상기 프리커서 기체 공급부를 한 방향으로 연속적으로 이동시키는 동안 원자 층들의 스택이 증착됨- 및
    상기 기판의 표면이 상기 출력 면과 비접촉 상태를 유지하도록, 상기 하나 이상의 기체 공급부로부터 제공되는 기체 베어링(gas bearing)을 포함하고,
    상기 장치는
    기판 표면을 갖는 기판을 외부 밴드 면(outer bend side) 상에 밴딩시킴으로써, 이동 경로 방향 및 반대 방향 중 적어도 하나의 방향으로 상기 기판을 가이딩하는 가이딩 유닛(guiding unit); 및
    상기 가이딩 유닛 근처에 상기 출력 면과 상기 기판 표면 사이의 접촉을 방지하기 위해, 상기 가이딩동안 상기 기판을 상기 출력 면으로부터 풀링하기 위해, 상기 출력 면에 대향하는 상기 가이딩 유닛에 인접하는 압력 기반 풀링 유닛(pressure based pulling unit)을 더 포함하는 것을 특징으로 하는 장치.
  11. 제10항에 있어서,
    상기 압력 기반 풀링 유닛은 상기 기판의 비접촉 풀링을 위해 베르누이 그리퍼(Bernoulli gripper)를 포함하는 것을 특징으로 하는 장치.
  12. 제10항 또는 제11항에 있어서,
    상기 출력 면으로부터 상기 기판이 떨어지도록 힘을 가하기 위한 기체 흐름을 생성하도록, 상기 기판의 표면을 향하는 상기 외부 밴드 면 근처에 구비되는 가압 흐름 기체 인렛(forced-flow gas inlet)을 더 포함하는 것을 특징으로 하는 장치.
  13. 제10항 내지 제12항 중 어느 한 항에 있어서,
    상기 증착 헤드를 포함하는 회전가능한 드럼을 포함하고,
    상기 드럼은, 기체 공급부에 기체를 제공하기 위하여, 상기 드럼의 표면의 적어도 일부를 실링하는 실링 피스(sealing piece)를 구비하여, 상기 하나 이상의 기체 공급부를 연결하기 위한 적어도 하나의 기체 흐름 채널을 포함하고,
    상기 실링 피스는 적어도 하나의 기체 소스에 연결가능하며,
    상기 드럼 및 실링 피스 중 하나는 하나 이상의 기체 아웃렛/인렛을 포함하고, 상기 드럼 및 실링 피스 중 나머지 하나는 드럼에 의해 실링된 그 표면에 하나 이상의 원주형 그루브(circumferential grooves)를 포함하고,
    상기 하나 이상의 기체 아웃렛/인렛과 하나 이상의 원주형 그루브는, 상기 드럼의 회전 동안, 상기 기체 소스와 하나 이상의 기체 공급부 사이에 기체 흐름 경로의 일부를 형성하기 위하여, 회전 드럼의 적어도 일부 상에서 상기 기체 아웃렛/인렛이 상기 실링된 그루브에 대향하여 위치하는 것을 특징으로 하는 장치.
  14. 제10항 내지 제13항 중 어느 한 항에 있어서,
    히터가 상기 마운트, 증착 헤드, 하나 이상의 기체 공급부, 가이딩 유닛 중 적어도 하나에 구비되며,
    제13항의 경우, 상기 히터는 드럼, 적어도 하나의 기체 흐름 채널, 적어도 하나의 기체 아웃렛/인렛, 적어도 하나의 원주형 그루브 중 적어도 하나에 구비되는 것을 특징으로 하는 장치.
  15. 제10항 내지 제14항 중 어느 한 항에 있어서,
    상기 증착 헤드를 포함하는 회전가능한 드럼을 포함하고,
    상기 드럼은 에노다이즈(anodized), 바람직하게는 오팔-에노다이즈(opal-anodized) 알루미늄을 포함하는 금속으로 구성되며,
    상기 장치는 적외선 타입 히팅 시스템을 더 포함하는 것을 특징으로 하는 장치.
KR1020157024424A 2013-02-07 2014-02-06 기판 상에 원자 층을 증착시키는 장치 및 방법 KR102267234B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP13154339.9A EP2765218A1 (en) 2013-02-07 2013-02-07 Method and apparatus for depositing atomic layers on a substrate
EP13154339.9 2013-02-07
PCT/NL2014/050071 WO2014123415A1 (en) 2013-02-07 2014-02-06 Method and apparatus for depositing atomic layers on a substrate

Publications (2)

Publication Number Publication Date
KR20150115942A true KR20150115942A (ko) 2015-10-14
KR102267234B1 KR102267234B1 (ko) 2021-06-21

Family

ID=47739070

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020157024424A KR102267234B1 (ko) 2013-02-07 2014-02-06 기판 상에 원자 층을 증착시키는 장치 및 방법

Country Status (6)

Country Link
US (1) US11149352B2 (ko)
EP (2) EP2765218A1 (ko)
KR (1) KR102267234B1 (ko)
CN (1) CN105102676B (ko)
TW (1) TWI619834B (ko)
WO (1) WO2014123415A1 (ko)

Families Citing this family (316)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10378106B2 (en) 2008-11-14 2019-08-13 Asm Ip Holding B.V. Method of forming insulation film by modified PEALD
US9394608B2 (en) 2009-04-06 2016-07-19 Asm America, Inc. Semiconductor processing reactor and components thereof
US8802201B2 (en) 2009-08-14 2014-08-12 Asm America, Inc. Systems and methods for thin-film deposition of metal oxides using excited nitrogen-oxygen species
FI124414B (fi) * 2010-04-30 2014-08-29 Beneq Oy Lähde ja järjestely substraatin käsittelemiseksi
US9312155B2 (en) 2011-06-06 2016-04-12 Asm Japan K.K. High-throughput semiconductor-processing apparatus equipped with multiple dual-chamber modules
US10364496B2 (en) 2011-06-27 2019-07-30 Asm Ip Holding B.V. Dual section module having shared and unshared mass flow controllers
US10854498B2 (en) 2011-07-15 2020-12-01 Asm Ip Holding B.V. Wafer-supporting device and method for producing same
US20130023129A1 (en) 2011-07-20 2013-01-24 Asm America, Inc. Pressure transmitter for a semiconductor processing environment
US9017481B1 (en) 2011-10-28 2015-04-28 Asm America, Inc. Process feed management for semiconductor substrate processing
US20130143415A1 (en) * 2011-12-01 2013-06-06 Applied Materials, Inc. Multi-Component Film Deposition
US9659799B2 (en) 2012-08-28 2017-05-23 Asm Ip Holding B.V. Systems and methods for dynamic semiconductor process scheduling
US9021985B2 (en) 2012-09-12 2015-05-05 Asm Ip Holdings B.V. Process gas management for an inductively-coupled plasma deposition reactor
US10714315B2 (en) 2012-10-12 2020-07-14 Asm Ip Holdings B.V. Semiconductor reaction chamber showerhead
US20160376700A1 (en) 2013-02-01 2016-12-29 Asm Ip Holding B.V. System for treatment of deposition reactor
US9589770B2 (en) 2013-03-08 2017-03-07 Asm Ip Holding B.V. Method and systems for in-situ formation of intermediate reactive species
US9484191B2 (en) 2013-03-08 2016-11-01 Asm Ip Holding B.V. Pulsed remote plasma method and system
US9240412B2 (en) 2013-09-27 2016-01-19 Asm Ip Holding B.V. Semiconductor structure and device and methods of forming same using selective epitaxial process
US10683571B2 (en) 2014-02-25 2020-06-16 Asm Ip Holding B.V. Gas supply manifold and method of supplying gases to chamber using same
EP2918701A1 (en) * 2014-03-14 2015-09-16 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO Method of manufacturing a stacked organic light emitting diode, stacked OLED device, and apparatus for manufacturing thereof
US10167557B2 (en) 2014-03-18 2019-01-01 Asm Ip Holding B.V. Gas distribution system, reactor including the system, and methods of using the same
US11015245B2 (en) 2014-03-19 2021-05-25 Asm Ip Holding B.V. Gas-phase reactor and system having exhaust plenum and components thereof
US10858737B2 (en) 2014-07-28 2020-12-08 Asm Ip Holding B.V. Showerhead assembly and components thereof
US9890456B2 (en) 2014-08-21 2018-02-13 Asm Ip Holding B.V. Method and system for in situ formation of gas-phase compounds
US10941490B2 (en) 2014-10-07 2021-03-09 Asm Ip Holding B.V. Multiple temperature range susceptor, assembly, reactor and system including the susceptor, and methods of using the same
US9657845B2 (en) 2014-10-07 2017-05-23 Asm Ip Holding B.V. Variable conductance gas distribution apparatus and method
KR102263121B1 (ko) 2014-12-22 2021-06-09 에이에스엠 아이피 홀딩 비.브이. 반도체 소자 및 그 제조 방법
US9490116B2 (en) * 2015-01-09 2016-11-08 Applied Materials, Inc. Gate stack materials for semiconductor applications for lithographic overlay improvement
CH710826A1 (de) * 2015-03-06 2016-09-15 Fofitec Ag Vorrichtungen und Verfahren zur Abscheidung dünner Schichten auf einer laufenden Folienbahn sowie Folienbahn oder Zuschnitte daraus.
US10529542B2 (en) 2015-03-11 2020-01-07 Asm Ip Holdings B.V. Cross-flow reactor and method
US10276355B2 (en) 2015-03-12 2019-04-30 Asm Ip Holding B.V. Multi-zone reactor, system including the reactor, and method of using the same
US10458018B2 (en) 2015-06-26 2019-10-29 Asm Ip Holding B.V. Structures including metal carbide material, devices including the structures, and methods of forming same
US10600673B2 (en) * 2015-07-07 2020-03-24 Asm Ip Holding B.V. Magnetic susceptor to baseplate seal
US10083836B2 (en) 2015-07-24 2018-09-25 Asm Ip Holding B.V. Formation of boron-doped titanium metal films with high work function
EP3274701A1 (en) * 2015-09-21 2018-01-31 Applied Materials, Inc. Measurement assembly for measuring a deposition rate and method therefore
US9960072B2 (en) 2015-09-29 2018-05-01 Asm Ip Holding B.V. Variable adjustment for precise matching of multiple chamber cavity housings
US10211308B2 (en) 2015-10-21 2019-02-19 Asm Ip Holding B.V. NbMC layers
US10322384B2 (en) 2015-11-09 2019-06-18 Asm Ip Holding B.V. Counter flow mixer for process chamber
US11139308B2 (en) 2015-12-29 2021-10-05 Asm Ip Holding B.V. Atomic layer deposition of III-V compounds to form V-NAND devices
US10529554B2 (en) 2016-02-19 2020-01-07 Asm Ip Holding B.V. Method for forming silicon nitride film selectively on sidewalls or flat surfaces of trenches
US10468251B2 (en) 2016-02-19 2019-11-05 Asm Ip Holding B.V. Method for forming spacers using silicon nitride film for spacer-defined multiple patterning
DE102017103337A1 (de) 2016-03-02 2017-09-07 Fhr Anlagenbau Gmbh Prozessmodul zum Behandeln von bandförmigen Substraten
CH712199A1 (de) 2016-03-07 2017-09-15 Fofitec Ag Vorrichtung zur Abscheidung dünner Schichten auf einem Substrat und Rollenmaterial mit einem Substrat mit solchen Schichten.
US10501866B2 (en) 2016-03-09 2019-12-10 Asm Ip Holding B.V. Gas distribution apparatus for improved film uniformity in an epitaxial system
KR102632725B1 (ko) * 2016-03-17 2024-02-05 에이에스엠 아이피 홀딩 비.브이. 기판 지지 플레이트 및 이를 포함하는 박막 증착 장치 및 박막 증착 방법
US10343920B2 (en) 2016-03-18 2019-07-09 Asm Ip Holding B.V. Aligned carbon nanotubes
US9892913B2 (en) 2016-03-24 2018-02-13 Asm Ip Holding B.V. Radial and thickness control via biased multi-port injection settings
US10865475B2 (en) 2016-04-21 2020-12-15 Asm Ip Holding B.V. Deposition of metal borides and silicides
US10190213B2 (en) 2016-04-21 2019-01-29 Asm Ip Holding B.V. Deposition of metal borides
US10032628B2 (en) 2016-05-02 2018-07-24 Asm Ip Holding B.V. Source/drain performance through conformal solid state doping
US10367080B2 (en) 2016-05-02 2019-07-30 Asm Ip Holding B.V. Method of forming a germanium oxynitride film
KR102592471B1 (ko) 2016-05-17 2023-10-20 에이에스엠 아이피 홀딩 비.브이. 금속 배선 형성 방법 및 이를 이용한 반도체 장치의 제조 방법
US11453943B2 (en) 2016-05-25 2022-09-27 Asm Ip Holding B.V. Method for forming carbon-containing silicon/metal oxide or nitride film by ALD using silicon precursor and hydrocarbon precursor
US10388509B2 (en) 2016-06-28 2019-08-20 Asm Ip Holding B.V. Formation of epitaxial layers via dislocation filtering
US10612137B2 (en) 2016-07-08 2020-04-07 Asm Ip Holdings B.V. Organic reactants for atomic layer deposition
US9859151B1 (en) 2016-07-08 2018-01-02 Asm Ip Holding B.V. Selective film deposition method to form air gaps
US10714385B2 (en) 2016-07-19 2020-07-14 Asm Ip Holding B.V. Selective deposition of tungsten
KR102354490B1 (ko) 2016-07-27 2022-01-21 에이에스엠 아이피 홀딩 비.브이. 기판 처리 방법
US9887082B1 (en) 2016-07-28 2018-02-06 Asm Ip Holding B.V. Method and apparatus for filling a gap
KR102532607B1 (ko) 2016-07-28 2023-05-15 에이에스엠 아이피 홀딩 비.브이. 기판 가공 장치 및 그 동작 방법
US10395919B2 (en) 2016-07-28 2019-08-27 Asm Ip Holding B.V. Method and apparatus for filling a gap
US9812320B1 (en) 2016-07-28 2017-11-07 Asm Ip Holding B.V. Method and apparatus for filling a gap
US10410943B2 (en) 2016-10-13 2019-09-10 Asm Ip Holding B.V. Method for passivating a surface of a semiconductor and related systems
US10643826B2 (en) 2016-10-26 2020-05-05 Asm Ip Holdings B.V. Methods for thermally calibrating reaction chambers
US11532757B2 (en) 2016-10-27 2022-12-20 Asm Ip Holding B.V. Deposition of charge trapping layers
US10643904B2 (en) 2016-11-01 2020-05-05 Asm Ip Holdings B.V. Methods for forming a semiconductor device and related semiconductor device structures
US10229833B2 (en) 2016-11-01 2019-03-12 Asm Ip Holding B.V. Methods for forming a transition metal nitride film on a substrate by atomic layer deposition and related semiconductor device structures
US10714350B2 (en) 2016-11-01 2020-07-14 ASM IP Holdings, B.V. Methods for forming a transition metal niobium nitride film on a substrate by atomic layer deposition and related semiconductor device structures
US10435790B2 (en) 2016-11-01 2019-10-08 Asm Ip Holding B.V. Method of subatmospheric plasma-enhanced ALD using capacitively coupled electrodes with narrow gap
US10134757B2 (en) 2016-11-07 2018-11-20 Asm Ip Holding B.V. Method of processing a substrate and a device manufactured by using the method
KR102546317B1 (ko) 2016-11-15 2023-06-21 에이에스엠 아이피 홀딩 비.브이. 기체 공급 유닛 및 이를 포함하는 기판 처리 장치
US10340135B2 (en) 2016-11-28 2019-07-02 Asm Ip Holding B.V. Method of topologically restricted plasma-enhanced cyclic deposition of silicon or metal nitride
KR20180068582A (ko) 2016-12-14 2018-06-22 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치
US11447861B2 (en) 2016-12-15 2022-09-20 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus and a method of forming a patterned structure
US11581186B2 (en) 2016-12-15 2023-02-14 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus
KR20180070971A (ko) 2016-12-19 2018-06-27 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치
US10269558B2 (en) 2016-12-22 2019-04-23 Asm Ip Holding B.V. Method of forming a structure on a substrate
US10867788B2 (en) 2016-12-28 2020-12-15 Asm Ip Holding B.V. Method of forming a structure on a substrate
US10655221B2 (en) 2017-02-09 2020-05-19 Asm Ip Holding B.V. Method for depositing oxide film by thermal ALD and PEALD
US10468261B2 (en) 2017-02-15 2019-11-05 Asm Ip Holding B.V. Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures
US10895011B2 (en) * 2017-03-14 2021-01-19 Eastman Kodak Company Modular thin film deposition system
US9972501B1 (en) 2017-03-14 2018-05-15 Nano-Master, Inc. Techniques and systems for continuous-flow plasma enhanced atomic layer deposition (PEALD)
US10422038B2 (en) * 2017-03-14 2019-09-24 Eastman Kodak Company Dual gas bearing substrate positioning system
US10400332B2 (en) * 2017-03-14 2019-09-03 Eastman Kodak Company Deposition system with interlocking deposition heads
US10529563B2 (en) 2017-03-29 2020-01-07 Asm Ip Holdings B.V. Method for forming doped metal oxide films on a substrate by cyclical deposition and related semiconductor device structures
US10283353B2 (en) 2017-03-29 2019-05-07 Asm Ip Holding B.V. Method of reforming insulating film deposited on substrate with recess pattern
KR102457289B1 (ko) 2017-04-25 2022-10-21 에이에스엠 아이피 홀딩 비.브이. 박막 증착 방법 및 반도체 장치의 제조 방법
US10770286B2 (en) 2017-05-08 2020-09-08 Asm Ip Holdings B.V. Methods for selectively forming a silicon nitride film on a substrate and related semiconductor device structures
US10892156B2 (en) 2017-05-08 2021-01-12 Asm Ip Holding B.V. Methods for forming a silicon nitride film on a substrate and related semiconductor device structures
US10446393B2 (en) 2017-05-08 2019-10-15 Asm Ip Holding B.V. Methods for forming silicon-containing epitaxial layers and related semiconductor device structures
US10504742B2 (en) 2017-05-31 2019-12-10 Asm Ip Holding B.V. Method of atomic layer etching using hydrogen plasma
US10886123B2 (en) 2017-06-02 2021-01-05 Asm Ip Holding B.V. Methods for forming low temperature semiconductor layers and related semiconductor device structures
CN107265152B (zh) * 2017-06-09 2019-08-16 浙江汇锋薄膜科技有限公司 一种导电薄膜的制备设备上的放料张紧装置
CN107215702A (zh) * 2017-06-09 2017-09-29 浙江汇锋薄膜科技有限公司 一种导电薄膜的制备设备上的气浮式导膜装置
CN107275004B (zh) * 2017-06-09 2019-01-01 浙江汇锋薄膜科技有限公司 一种导电薄膜的制备设备
CN107248432B (zh) * 2017-06-09 2019-06-04 浙江汇锋薄膜科技有限公司 导电薄膜的制备设备
US11306395B2 (en) 2017-06-28 2022-04-19 Asm Ip Holding B.V. Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus
US10685834B2 (en) 2017-07-05 2020-06-16 Asm Ip Holdings B.V. Methods for forming a silicon germanium tin layer and related semiconductor device structures
KR20190009245A (ko) 2017-07-18 2019-01-28 에이에스엠 아이피 홀딩 비.브이. 반도체 소자 구조물 형성 방법 및 관련된 반도체 소자 구조물
US11374112B2 (en) 2017-07-19 2022-06-28 Asm Ip Holding B.V. Method for depositing a group IV semiconductor and related semiconductor device structures
US10541333B2 (en) 2017-07-19 2020-01-21 Asm Ip Holding B.V. Method for depositing a group IV semiconductor and related semiconductor device structures
US11018002B2 (en) 2017-07-19 2021-05-25 Asm Ip Holding B.V. Method for selectively depositing a Group IV semiconductor and related semiconductor device structures
US10590535B2 (en) 2017-07-26 2020-03-17 Asm Ip Holdings B.V. Chemical treatment, deposition and/or infiltration apparatus and method for using the same
US10312055B2 (en) 2017-07-26 2019-06-04 Asm Ip Holding B.V. Method of depositing film by PEALD using negative bias
US10605530B2 (en) 2017-07-26 2020-03-31 Asm Ip Holding B.V. Assembly of a liner and a flange for a vertical furnace as well as the liner and the vertical furnace
US10692741B2 (en) 2017-08-08 2020-06-23 Asm Ip Holdings B.V. Radiation shield
US10770336B2 (en) 2017-08-08 2020-09-08 Asm Ip Holding B.V. Substrate lift mechanism and reactor including same
US10249524B2 (en) 2017-08-09 2019-04-02 Asm Ip Holding B.V. Cassette holder assembly for a substrate cassette and holding member for use in such assembly
US11139191B2 (en) 2017-08-09 2021-10-05 Asm Ip Holding B.V. Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
US11769682B2 (en) 2017-08-09 2023-09-26 Asm Ip Holding B.V. Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
US10236177B1 (en) 2017-08-22 2019-03-19 ASM IP Holding B.V.. Methods for depositing a doped germanium tin semiconductor and related semiconductor device structures
USD900036S1 (en) 2017-08-24 2020-10-27 Asm Ip Holding B.V. Heater electrical connector and adapter
US11830730B2 (en) 2017-08-29 2023-11-28 Asm Ip Holding B.V. Layer forming method and apparatus
US11295980B2 (en) 2017-08-30 2022-04-05 Asm Ip Holding B.V. Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures
KR102491945B1 (ko) 2017-08-30 2023-01-26 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치
US11056344B2 (en) 2017-08-30 2021-07-06 Asm Ip Holding B.V. Layer forming method
US10607895B2 (en) 2017-09-18 2020-03-31 Asm Ip Holdings B.V. Method for forming a semiconductor device structure comprising a gate fill metal
KR102630301B1 (ko) 2017-09-21 2024-01-29 에이에스엠 아이피 홀딩 비.브이. 침투성 재료의 순차 침투 합성 방법 처리 및 이를 이용하여 형성된 구조물 및 장치
US10844484B2 (en) 2017-09-22 2020-11-24 Asm Ip Holding B.V. Apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods
US10658205B2 (en) 2017-09-28 2020-05-19 Asm Ip Holdings B.V. Chemical dispensing apparatus and methods for dispensing a chemical to a reaction chamber
US10403504B2 (en) 2017-10-05 2019-09-03 Asm Ip Holding B.V. Method for selectively depositing a metallic film on a substrate
US10319588B2 (en) 2017-10-10 2019-06-11 Asm Ip Holding B.V. Method for depositing a metal chalcogenide on a substrate by cyclical deposition
US10923344B2 (en) 2017-10-30 2021-02-16 Asm Ip Holding B.V. Methods for forming a semiconductor structure and related semiconductor structures
KR102443047B1 (ko) 2017-11-16 2022-09-14 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치 방법 및 그에 의해 제조된 장치
US10910262B2 (en) 2017-11-16 2021-02-02 Asm Ip Holding B.V. Method of selectively depositing a capping layer structure on a semiconductor device structure
US11022879B2 (en) 2017-11-24 2021-06-01 Asm Ip Holding B.V. Method of forming an enhanced unexposed photoresist layer
KR102597978B1 (ko) 2017-11-27 2023-11-06 에이에스엠 아이피 홀딩 비.브이. 배치 퍼니스와 함께 사용하기 위한 웨이퍼 카세트를 보관하기 위한 보관 장치
US11639811B2 (en) 2017-11-27 2023-05-02 Asm Ip Holding B.V. Apparatus including a clean mini environment
US10290508B1 (en) 2017-12-05 2019-05-14 Asm Ip Holding B.V. Method for forming vertical spacers for spacer-defined patterning
US11370669B2 (en) * 2018-01-14 2022-06-28 Applied Materials, Inc. Amorphous silicon doped yttrium oxide films and methods of formation
US10872771B2 (en) 2018-01-16 2020-12-22 Asm Ip Holding B. V. Method for depositing a material film on a substrate within a reaction chamber by a cyclical deposition process and related device structures
US10781517B1 (en) * 2018-01-19 2020-09-22 United States Of America As Represented By The Administrator Of Nasa Modification of radiator pigments using atomic layer deposition (ALD) of thermal protective film material
TW202325889A (zh) 2018-01-19 2023-07-01 荷蘭商Asm 智慧財產控股公司 沈積方法
US11482412B2 (en) 2018-01-19 2022-10-25 Asm Ip Holding B.V. Method for depositing a gap-fill layer by plasma-assisted deposition
USD903477S1 (en) 2018-01-24 2020-12-01 Asm Ip Holdings B.V. Metal clamp
US11018047B2 (en) 2018-01-25 2021-05-25 Asm Ip Holding B.V. Hybrid lift pin
USD880437S1 (en) 2018-02-01 2020-04-07 Asm Ip Holding B.V. Gas supply plate for semiconductor manufacturing apparatus
US10535516B2 (en) 2018-02-01 2020-01-14 Asm Ip Holdings B.V. Method for depositing a semiconductor structure on a surface of a substrate and related semiconductor structures
US11081345B2 (en) 2018-02-06 2021-08-03 Asm Ip Holding B.V. Method of post-deposition treatment for silicon oxide film
WO2019158960A1 (en) 2018-02-14 2019-08-22 Asm Ip Holding B.V. A method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
US10896820B2 (en) 2018-02-14 2021-01-19 Asm Ip Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
US10731249B2 (en) 2018-02-15 2020-08-04 Asm Ip Holding B.V. Method of forming a transition metal containing film on a substrate by a cyclical deposition process, a method for supplying a transition metal halide compound to a reaction chamber, and related vapor deposition apparatus
KR102636427B1 (ko) 2018-02-20 2024-02-13 에이에스엠 아이피 홀딩 비.브이. 기판 처리 방법 및 장치
US10658181B2 (en) 2018-02-20 2020-05-19 Asm Ip Holding B.V. Method of spacer-defined direct patterning in semiconductor fabrication
US10975470B2 (en) 2018-02-23 2021-04-13 Asm Ip Holding B.V. Apparatus for detecting or monitoring for a chemical precursor in a high temperature environment
US11473195B2 (en) 2018-03-01 2022-10-18 Asm Ip Holding B.V. Semiconductor processing apparatus and a method for processing a substrate
US11629406B2 (en) 2018-03-09 2023-04-18 Asm Ip Holding B.V. Semiconductor processing apparatus comprising one or more pyrometers for measuring a temperature of a substrate during transfer of the substrate
US11114283B2 (en) 2018-03-16 2021-09-07 Asm Ip Holding B.V. Reactor, system including the reactor, and methods of manufacturing and using same
KR102646467B1 (ko) 2018-03-27 2024-03-11 에이에스엠 아이피 홀딩 비.브이. 기판 상에 전극을 형성하는 방법 및 전극을 포함하는 반도체 소자 구조
US11230766B2 (en) 2018-03-29 2022-01-25 Asm Ip Holding B.V. Substrate processing apparatus and method
US10510536B2 (en) 2018-03-29 2019-12-17 Asm Ip Holding B.V. Method of depositing a co-doped polysilicon film on a surface of a substrate within a reaction chamber
US11088002B2 (en) 2018-03-29 2021-08-10 Asm Ip Holding B.V. Substrate rack and a substrate processing system and method
KR102501472B1 (ko) 2018-03-30 2023-02-20 에이에스엠 아이피 홀딩 비.브이. 기판 처리 방법
TWI811348B (zh) 2018-05-08 2023-08-11 荷蘭商Asm 智慧財產控股公司 藉由循環沉積製程於基板上沉積氧化物膜之方法及相關裝置結構
TWI816783B (zh) 2018-05-11 2023-10-01 荷蘭商Asm 智慧財產控股公司 用於基板上形成摻雜金屬碳化物薄膜之方法及相關半導體元件結構
KR102596988B1 (ko) 2018-05-28 2023-10-31 에이에스엠 아이피 홀딩 비.브이. 기판 처리 방법 및 그에 의해 제조된 장치
US11270899B2 (en) 2018-06-04 2022-03-08 Asm Ip Holding B.V. Wafer handling chamber with moisture reduction
US11718913B2 (en) 2018-06-04 2023-08-08 Asm Ip Holding B.V. Gas distribution system and reactor system including same
US11286562B2 (en) 2018-06-08 2022-03-29 Asm Ip Holding B.V. Gas-phase chemical reactor and method of using same
KR102568797B1 (ko) 2018-06-21 2023-08-21 에이에스엠 아이피 홀딩 비.브이. 기판 처리 시스템
US10797133B2 (en) 2018-06-21 2020-10-06 Asm Ip Holding B.V. Method for depositing a phosphorus doped silicon arsenide film and related semiconductor device structures
JP2021529254A (ja) 2018-06-27 2021-10-28 エーエスエム・アイピー・ホールディング・ベー・フェー 金属含有材料ならびに金属含有材料を含む膜および構造体を形成するための周期的堆積方法
CN112292477A (zh) 2018-06-27 2021-01-29 Asm Ip私人控股有限公司 用于形成含金属的材料的循环沉积方法及包含含金属的材料的膜和结构
US10612136B2 (en) 2018-06-29 2020-04-07 ASM IP Holding, B.V. Temperature-controlled flange and reactor system including same
KR20200002519A (ko) 2018-06-29 2020-01-08 에이에스엠 아이피 홀딩 비.브이. 박막 증착 방법 및 반도체 장치의 제조 방법
US10755922B2 (en) 2018-07-03 2020-08-25 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US10388513B1 (en) 2018-07-03 2019-08-20 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US10767789B2 (en) 2018-07-16 2020-09-08 Asm Ip Holding B.V. Diaphragm valves, valve components, and methods for forming valve components
US10483099B1 (en) 2018-07-26 2019-11-19 Asm Ip Holding B.V. Method for forming thermally stable organosilicon polymer film
US11053591B2 (en) 2018-08-06 2021-07-06 Asm Ip Holding B.V. Multi-port gas injection system and reactor system including same
US10883175B2 (en) 2018-08-09 2021-01-05 Asm Ip Holding B.V. Vertical furnace for processing substrates and a liner for use therein
US10829852B2 (en) 2018-08-16 2020-11-10 Asm Ip Holding B.V. Gas distribution device for a wafer processing apparatus
US11430674B2 (en) 2018-08-22 2022-08-30 Asm Ip Holding B.V. Sensor array, apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods
KR20200030162A (ko) 2018-09-11 2020-03-20 에이에스엠 아이피 홀딩 비.브이. 박막 증착 방법
US11024523B2 (en) 2018-09-11 2021-06-01 Asm Ip Holding B.V. Substrate processing apparatus and method
US11049751B2 (en) 2018-09-14 2021-06-29 Asm Ip Holding B.V. Cassette supply system to store and handle cassettes and processing apparatus equipped therewith
CN110970344A (zh) 2018-10-01 2020-04-07 Asm Ip控股有限公司 衬底保持设备、包含所述设备的系统及其使用方法
US11232963B2 (en) 2018-10-03 2022-01-25 Asm Ip Holding B.V. Substrate processing apparatus and method
KR102592699B1 (ko) 2018-10-08 2023-10-23 에이에스엠 아이피 홀딩 비.브이. 기판 지지 유닛 및 이를 포함하는 박막 증착 장치와 기판 처리 장치
US10847365B2 (en) 2018-10-11 2020-11-24 Asm Ip Holding B.V. Method of forming conformal silicon carbide film by cyclic CVD
US10811256B2 (en) 2018-10-16 2020-10-20 Asm Ip Holding B.V. Method for etching a carbon-containing feature
KR102546322B1 (ko) 2018-10-19 2023-06-21 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치 및 기판 처리 방법
KR102605121B1 (ko) 2018-10-19 2023-11-23 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치 및 기판 처리 방법
USD948463S1 (en) 2018-10-24 2022-04-12 Asm Ip Holding B.V. Susceptor for semiconductor substrate supporting apparatus
US10381219B1 (en) 2018-10-25 2019-08-13 Asm Ip Holding B.V. Methods for forming a silicon nitride film
US11087997B2 (en) 2018-10-31 2021-08-10 Asm Ip Holding B.V. Substrate processing apparatus for processing substrates
KR20200051105A (ko) 2018-11-02 2020-05-13 에이에스엠 아이피 홀딩 비.브이. 기판 지지 유닛 및 이를 포함하는 기판 처리 장치
US11572620B2 (en) 2018-11-06 2023-02-07 Asm Ip Holding B.V. Methods for selectively depositing an amorphous silicon film on a substrate
US11031242B2 (en) 2018-11-07 2021-06-08 Asm Ip Holding B.V. Methods for depositing a boron doped silicon germanium film
US10847366B2 (en) 2018-11-16 2020-11-24 Asm Ip Holding B.V. Methods for depositing a transition metal chalcogenide film on a substrate by a cyclical deposition process
US10818758B2 (en) 2018-11-16 2020-10-27 Asm Ip Holding B.V. Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures
US10559458B1 (en) 2018-11-26 2020-02-11 Asm Ip Holding B.V. Method of forming oxynitride film
US11217444B2 (en) 2018-11-30 2022-01-04 Asm Ip Holding B.V. Method for forming an ultraviolet radiation responsive metal oxide-containing film
KR102636428B1 (ko) 2018-12-04 2024-02-13 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치를 세정하는 방법
US11158513B2 (en) 2018-12-13 2021-10-26 Asm Ip Holding B.V. Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures
JP2020096183A (ja) 2018-12-14 2020-06-18 エーエスエム・アイピー・ホールディング・ベー・フェー 窒化ガリウムの選択的堆積を用いてデバイス構造体を形成する方法及びそのためのシステム
TWI819180B (zh) 2019-01-17 2023-10-21 荷蘭商Asm 智慧財產控股公司 藉由循環沈積製程於基板上形成含過渡金屬膜之方法
KR20200091543A (ko) 2019-01-22 2020-07-31 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치
CN111524788B (zh) 2019-02-01 2023-11-24 Asm Ip私人控股有限公司 氧化硅的拓扑选择性膜形成的方法
KR102638425B1 (ko) 2019-02-20 2024-02-21 에이에스엠 아이피 홀딩 비.브이. 기판 표면 내에 형성된 오목부를 충진하기 위한 방법 및 장치
US11482533B2 (en) 2019-02-20 2022-10-25 Asm Ip Holding B.V. Apparatus and methods for plug fill deposition in 3-D NAND applications
JP2020136677A (ja) 2019-02-20 2020-08-31 エーエスエム・アイピー・ホールディング・ベー・フェー 基材表面内に形成された凹部を充填するための周期的堆積方法および装置
KR102626263B1 (ko) 2019-02-20 2024-01-16 에이에스엠 아이피 홀딩 비.브이. 처리 단계를 포함하는 주기적 증착 방법 및 이를 위한 장치
JP2020133004A (ja) 2019-02-22 2020-08-31 エーエスエム・アイピー・ホールディング・ベー・フェー 基材を処理するための基材処理装置および方法
US11742198B2 (en) 2019-03-08 2023-08-29 Asm Ip Holding B.V. Structure including SiOCN layer and method of forming same
KR20200108243A (ko) 2019-03-08 2020-09-17 에이에스엠 아이피 홀딩 비.브이. SiOC 층을 포함한 구조체 및 이의 형성 방법
KR20200108242A (ko) 2019-03-08 2020-09-17 에이에스엠 아이피 홀딩 비.브이. 실리콘 질화물 층을 선택적으로 증착하는 방법, 및 선택적으로 증착된 실리콘 질화물 층을 포함하는 구조체
JP2020167398A (ja) 2019-03-28 2020-10-08 エーエスエム・アイピー・ホールディング・ベー・フェー ドアオープナーおよびドアオープナーが提供される基材処理装置
KR20200116855A (ko) 2019-04-01 2020-10-13 에이에스엠 아이피 홀딩 비.브이. 반도체 소자를 제조하는 방법
US11447864B2 (en) 2019-04-19 2022-09-20 Asm Ip Holding B.V. Layer forming method and apparatus
KR20200125453A (ko) 2019-04-24 2020-11-04 에이에스엠 아이피 홀딩 비.브이. 기상 반응기 시스템 및 이를 사용하는 방법
KR20200130118A (ko) 2019-05-07 2020-11-18 에이에스엠 아이피 홀딩 비.브이. 비정질 탄소 중합체 막을 개질하는 방법
KR20200130121A (ko) 2019-05-07 2020-11-18 에이에스엠 아이피 홀딩 비.브이. 딥 튜브가 있는 화학물질 공급원 용기
KR20200130652A (ko) 2019-05-10 2020-11-19 에이에스엠 아이피 홀딩 비.브이. 표면 상에 재료를 증착하는 방법 및 본 방법에 따라 형성된 구조
JP2020188255A (ja) 2019-05-16 2020-11-19 エーエスエム アイピー ホールディング ビー.ブイ. ウェハボートハンドリング装置、縦型バッチ炉および方法
USD947913S1 (en) 2019-05-17 2022-04-05 Asm Ip Holding B.V. Susceptor shaft
USD975665S1 (en) 2019-05-17 2023-01-17 Asm Ip Holding B.V. Susceptor shaft
USD935572S1 (en) 2019-05-24 2021-11-09 Asm Ip Holding B.V. Gas channel plate
USD922229S1 (en) 2019-06-05 2021-06-15 Asm Ip Holding B.V. Device for controlling a temperature of a gas supply unit
KR20200141002A (ko) 2019-06-06 2020-12-17 에이에스엠 아이피 홀딩 비.브이. 배기 가스 분석을 포함한 기상 반응기 시스템을 사용하는 방법
KR20200143254A (ko) 2019-06-11 2020-12-23 에이에스엠 아이피 홀딩 비.브이. 개질 가스를 사용하여 전자 구조를 형성하는 방법, 상기 방법을 수행하기 위한 시스템, 및 상기 방법을 사용하여 형성되는 구조
USD944946S1 (en) 2019-06-14 2022-03-01 Asm Ip Holding B.V. Shower plate
USD931978S1 (en) 2019-06-27 2021-09-28 Asm Ip Holding B.V. Showerhead vacuum transport
FI129627B (en) * 2019-06-28 2022-05-31 Beneq Oy Nuclear layer cultivation equipment
KR20210005515A (ko) 2019-07-03 2021-01-14 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치용 온도 제어 조립체 및 이를 사용하는 방법
JP2021015791A (ja) 2019-07-09 2021-02-12 エーエスエム アイピー ホールディング ビー.ブイ. 同軸導波管を用いたプラズマ装置、基板処理方法
CN112216646A (zh) 2019-07-10 2021-01-12 Asm Ip私人控股有限公司 基板支撑组件及包括其的基板处理装置
KR20210010307A (ko) 2019-07-16 2021-01-27 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치
KR20210010816A (ko) 2019-07-17 2021-01-28 에이에스엠 아이피 홀딩 비.브이. 라디칼 보조 점화 플라즈마 시스템 및 방법
KR20210010820A (ko) 2019-07-17 2021-01-28 에이에스엠 아이피 홀딩 비.브이. 실리콘 게르마늄 구조를 형성하는 방법
US11643724B2 (en) 2019-07-18 2023-05-09 Asm Ip Holding B.V. Method of forming structures using a neutral beam
CN112242296A (zh) 2019-07-19 2021-01-19 Asm Ip私人控股有限公司 形成拓扑受控的无定形碳聚合物膜的方法
TW202113936A (zh) 2019-07-29 2021-04-01 荷蘭商Asm Ip私人控股有限公司 用於利用n型摻雜物及/或替代摻雜物選擇性沉積以達成高摻雜物併入之方法
CN112309899A (zh) 2019-07-30 2021-02-02 Asm Ip私人控股有限公司 基板处理设备
CN112309900A (zh) 2019-07-30 2021-02-02 Asm Ip私人控股有限公司 基板处理设备
US11587815B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
US11587814B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
US11227782B2 (en) 2019-07-31 2022-01-18 Asm Ip Holding B.V. Vertical batch furnace assembly
CN112323048B (zh) 2019-08-05 2024-02-09 Asm Ip私人控股有限公司 用于化学源容器的液位传感器
EP4013905B1 (en) 2019-08-12 2023-02-22 Kurt J. Lesker Company Ultra high purity conditions for atomic scale processing
USD965044S1 (en) 2019-08-19 2022-09-27 Asm Ip Holding B.V. Susceptor shaft
USD965524S1 (en) 2019-08-19 2022-10-04 Asm Ip Holding B.V. Susceptor support
JP2021031769A (ja) 2019-08-21 2021-03-01 エーエスエム アイピー ホールディング ビー.ブイ. 成膜原料混合ガス生成装置及び成膜装置
USD930782S1 (en) 2019-08-22 2021-09-14 Asm Ip Holding B.V. Gas distributor
USD949319S1 (en) 2019-08-22 2022-04-19 Asm Ip Holding B.V. Exhaust duct
USD979506S1 (en) 2019-08-22 2023-02-28 Asm Ip Holding B.V. Insulator
USD940837S1 (en) 2019-08-22 2022-01-11 Asm Ip Holding B.V. Electrode
KR20210024423A (ko) 2019-08-22 2021-03-05 에이에스엠 아이피 홀딩 비.브이. 홀을 구비한 구조체를 형성하기 위한 방법
KR20210024420A (ko) 2019-08-23 2021-03-05 에이에스엠 아이피 홀딩 비.브이. 비스(디에틸아미노)실란을 사용하여 peald에 의해 개선된 품질을 갖는 실리콘 산화물 막을 증착하기 위한 방법
US11286558B2 (en) 2019-08-23 2022-03-29 Asm Ip Holding B.V. Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film
KR20210029090A (ko) 2019-09-04 2021-03-15 에이에스엠 아이피 홀딩 비.브이. 희생 캡핑 층을 이용한 선택적 증착 방법
KR20210029663A (ko) 2019-09-05 2021-03-16 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치
US11562901B2 (en) 2019-09-25 2023-01-24 Asm Ip Holding B.V. Substrate processing method
CN112593212B (zh) 2019-10-02 2023-12-22 Asm Ip私人控股有限公司 通过循环等离子体增强沉积工艺形成拓扑选择性氧化硅膜的方法
TW202129060A (zh) 2019-10-08 2021-08-01 荷蘭商Asm Ip控股公司 基板處理裝置、及基板處理方法
TW202115273A (zh) 2019-10-10 2021-04-16 荷蘭商Asm Ip私人控股有限公司 形成光阻底層之方法及包括光阻底層之結構
KR20210045930A (ko) 2019-10-16 2021-04-27 에이에스엠 아이피 홀딩 비.브이. 실리콘 산화물의 토폴로지-선택적 막의 형성 방법
US11637014B2 (en) 2019-10-17 2023-04-25 Asm Ip Holding B.V. Methods for selective deposition of doped semiconductor material
KR20210047808A (ko) 2019-10-21 2021-04-30 에이에스엠 아이피 홀딩 비.브이. 막을 선택적으로 에칭하기 위한 장치 및 방법
US11646205B2 (en) 2019-10-29 2023-05-09 Asm Ip Holding B.V. Methods of selectively forming n-type doped material on a surface, systems for selectively forming n-type doped material, and structures formed using same
KR20210054983A (ko) 2019-11-05 2021-05-14 에이에스엠 아이피 홀딩 비.브이. 도핑된 반도체 층을 갖는 구조체 및 이를 형성하기 위한 방법 및 시스템
US11501968B2 (en) 2019-11-15 2022-11-15 Asm Ip Holding B.V. Method for providing a semiconductor device with silicon filled gaps
KR20210062561A (ko) 2019-11-20 2021-05-31 에이에스엠 아이피 홀딩 비.브이. 기판의 표면 상에 탄소 함유 물질을 증착하는 방법, 상기 방법을 사용하여 형성된 구조물, 및 상기 구조물을 형성하기 위한 시스템
US11450529B2 (en) 2019-11-26 2022-09-20 Asm Ip Holding B.V. Methods for selectively forming a target film on a substrate comprising a first dielectric surface and a second metallic surface
CN112951697A (zh) 2019-11-26 2021-06-11 Asm Ip私人控股有限公司 基板处理设备
CN112885693A (zh) 2019-11-29 2021-06-01 Asm Ip私人控股有限公司 基板处理设备
CN112885692A (zh) 2019-11-29 2021-06-01 Asm Ip私人控股有限公司 基板处理设备
JP2021090042A (ja) 2019-12-02 2021-06-10 エーエスエム アイピー ホールディング ビー.ブイ. 基板処理装置、基板処理方法
KR20210070898A (ko) 2019-12-04 2021-06-15 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치
JP2021097227A (ja) 2019-12-17 2021-06-24 エーエスエム・アイピー・ホールディング・ベー・フェー 窒化バナジウム層および窒化バナジウム層を含む構造体を形成する方法
US11527403B2 (en) 2019-12-19 2022-12-13 Asm Ip Holding B.V. Methods for filling a gap feature on a substrate surface and related semiconductor structures
JP2021109175A (ja) 2020-01-06 2021-08-02 エーエスエム・アイピー・ホールディング・ベー・フェー ガス供給アセンブリ、その構成要素、およびこれを含む反応器システム
US11087959B2 (en) 2020-01-09 2021-08-10 Nano-Master, Inc. Techniques for a hybrid design for efficient and economical plasma enhanced atomic layer deposition (PEALD) and plasma enhanced chemical vapor deposition (PECVD)
KR20210095050A (ko) 2020-01-20 2021-07-30 에이에스엠 아이피 홀딩 비.브이. 박막 형성 방법 및 박막 표면 개질 방법
TW202130846A (zh) 2020-02-03 2021-08-16 荷蘭商Asm Ip私人控股有限公司 形成包括釩或銦層的結構之方法
TW202146882A (zh) 2020-02-04 2021-12-16 荷蘭商Asm Ip私人控股有限公司 驗證一物品之方法、用於驗證一物品之設備、及用於驗證一反應室之系統
US11776846B2 (en) 2020-02-07 2023-10-03 Asm Ip Holding B.V. Methods for depositing gap filling fluids and related systems and devices
US11640900B2 (en) 2020-02-12 2023-05-02 Nano-Master, Inc. Electron cyclotron rotation (ECR)-enhanced hollow cathode plasma source (HCPS)
US11781243B2 (en) 2020-02-17 2023-10-10 Asm Ip Holding B.V. Method for depositing low temperature phosphorous-doped silicon
TW202203344A (zh) 2020-02-28 2022-01-16 荷蘭商Asm Ip控股公司 專用於零件清潔的系統
KR20210116240A (ko) 2020-03-11 2021-09-27 에이에스엠 아이피 홀딩 비.브이. 조절성 접합부를 갖는 기판 핸들링 장치
US11876356B2 (en) 2020-03-11 2024-01-16 Asm Ip Holding B.V. Lockout tagout assembly and system and method of using same
CN113394086A (zh) 2020-03-12 2021-09-14 Asm Ip私人控股有限公司 用于制造具有目标拓扑轮廓的层结构的方法
JP7098677B2 (ja) * 2020-03-25 2022-07-11 株式会社Kokusai Electric 基板処理装置、半導体装置の製造方法及びプログラム
KR20210124042A (ko) 2020-04-02 2021-10-14 에이에스엠 아이피 홀딩 비.브이. 박막 형성 방법
TW202146689A (zh) 2020-04-03 2021-12-16 荷蘭商Asm Ip控股公司 阻障層形成方法及半導體裝置的製造方法
TW202145344A (zh) 2020-04-08 2021-12-01 荷蘭商Asm Ip私人控股有限公司 用於選擇性蝕刻氧化矽膜之設備及方法
US11821078B2 (en) 2020-04-15 2023-11-21 Asm Ip Holding B.V. Method for forming precoat film and method for forming silicon-containing film
KR20210132600A (ko) 2020-04-24 2021-11-04 에이에스엠 아이피 홀딩 비.브이. 바나듐, 질소 및 추가 원소를 포함한 층을 증착하기 위한 방법 및 시스템
TW202146831A (zh) 2020-04-24 2021-12-16 荷蘭商Asm Ip私人控股有限公司 垂直批式熔爐總成、及用於冷卻垂直批式熔爐之方法
CN113555279A (zh) 2020-04-24 2021-10-26 Asm Ip私人控股有限公司 形成含氮化钒的层的方法及包含其的结构
KR20210134226A (ko) 2020-04-29 2021-11-09 에이에스엠 아이피 홀딩 비.브이. 고체 소스 전구체 용기
KR20210134869A (ko) 2020-05-01 2021-11-11 에이에스엠 아이피 홀딩 비.브이. Foup 핸들러를 이용한 foup의 빠른 교환
KR20210141379A (ko) 2020-05-13 2021-11-23 에이에스엠 아이피 홀딩 비.브이. 반응기 시스템용 레이저 정렬 고정구
TW202147383A (zh) 2020-05-19 2021-12-16 荷蘭商Asm Ip私人控股有限公司 基材處理設備
KR20210145078A (ko) 2020-05-21 2021-12-01 에이에스엠 아이피 홀딩 비.브이. 다수의 탄소 층을 포함한 구조체 및 이를 형성하고 사용하는 방법
KR20210145080A (ko) 2020-05-22 2021-12-01 에이에스엠 아이피 홀딩 비.브이. 과산화수소를 사용하여 박막을 증착하기 위한 장치
TW202201602A (zh) 2020-05-29 2022-01-01 荷蘭商Asm Ip私人控股有限公司 基板處理方法
TW202218133A (zh) 2020-06-24 2022-05-01 荷蘭商Asm Ip私人控股有限公司 形成含矽層之方法
TW202217953A (zh) 2020-06-30 2022-05-01 荷蘭商Asm Ip私人控股有限公司 基板處理方法
KR20220010438A (ko) 2020-07-17 2022-01-25 에이에스엠 아이피 홀딩 비.브이. 포토리소그래피에 사용하기 위한 구조체 및 방법
TW202204662A (zh) 2020-07-20 2022-02-01 荷蘭商Asm Ip私人控股有限公司 用於沉積鉬層之方法及系統
TW202212623A (zh) 2020-08-26 2022-04-01 荷蘭商Asm Ip私人控股有限公司 形成金屬氧化矽層及金屬氮氧化矽層的方法、半導體結構、及系統
USD990534S1 (en) 2020-09-11 2023-06-27 Asm Ip Holding B.V. Weighted lift pin
USD1012873S1 (en) 2020-09-24 2024-01-30 Asm Ip Holding B.V. Electrode for semiconductor processing apparatus
TW202229613A (zh) 2020-10-14 2022-08-01 荷蘭商Asm Ip私人控股有限公司 於階梯式結構上沉積材料的方法
TW202217037A (zh) 2020-10-22 2022-05-01 荷蘭商Asm Ip私人控股有限公司 沉積釩金屬的方法、結構、裝置及沉積總成
TW202223136A (zh) 2020-10-28 2022-06-16 荷蘭商Asm Ip私人控股有限公司 用於在基板上形成層之方法、及半導體處理系統
KR20220076343A (ko) 2020-11-30 2022-06-08 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치의 반응 챔버 내에 배열되도록 구성된 인젝터
NL2027074B1 (en) * 2020-12-08 2022-07-07 Kalpana Tech B V Roll-to-roll processing
US11946137B2 (en) 2020-12-16 2024-04-02 Asm Ip Holding B.V. Runout and wobble measurement fixtures
TW202231903A (zh) 2020-12-22 2022-08-16 荷蘭商Asm Ip私人控股有限公司 過渡金屬沉積方法、過渡金屬層、用於沉積過渡金屬於基板上的沉積總成
USD1023959S1 (en) 2021-05-11 2024-04-23 Asm Ip Holding B.V. Electrode for substrate processing apparatus
USD980813S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas flow control plate for substrate processing apparatus
USD980814S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas distributor for substrate processing apparatus
USD981973S1 (en) 2021-05-11 2023-03-28 Asm Ip Holding B.V. Reactor wall for substrate processing apparatus
USD990441S1 (en) 2021-09-07 2023-06-27 Asm Ip Holding B.V. Gas flow control plate

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120120399A (ko) * 2010-02-11 2012-11-01 네덜란제 오르가니자티에 포오르 토에게파스트-나투우르베텐샤펠리즈크 온데르조에크 테엔오 기판 상에 원자 층을 증착시키는 장치 및 방법
KR20120138247A (ko) * 2010-04-12 2012-12-24 에이에스엠엘 네델란즈 비.브이. 기판 핸들링 장치 및 리소그래피 장치

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3763571A (en) * 1970-04-27 1973-10-09 Vits Maschinenbau Gmbh Apparatus for contactless guiding of webs
DE2160008B2 (de) * 1971-12-03 1973-11-15 Robert Bosch Gmbh, 7000 Stuttgart Verfahren und Vorrichtung zur Herstellung eines Musters in einer auf einem Träger aufgedampften Metallschicht und dessen Verwendung
US4013539A (en) * 1973-01-12 1977-03-22 Coulter Information Systems, Inc. Thin film deposition apparatus
US3866565A (en) * 1973-12-21 1975-02-18 David E U Ridout Vapor deposition apparatus with rotating drum mask
TWI222423B (en) * 2001-12-27 2004-10-21 Orbotech Ltd System and methods for conveying and transporting levitated articles
US7025833B2 (en) * 2002-02-27 2006-04-11 Applied Process Technologies, Inc. Apparatus and method for web cooling in a vacuum coating chamber
SG115602A1 (en) * 2003-01-09 2005-10-28 Disco Corp Conveying device for a plate-like workpiece
WO2007016688A1 (en) * 2005-08-02 2007-02-08 New Way Machine Components, Inc. A method and a device for depositing a film of material or otherwise processing or inspecting, a substrate as it passes through a vacuum environment guided by a plurality of opposing and balanced air bearing lands and sealed by differentially pumped groves and sealing lands in a non-contact manner
US7763114B2 (en) * 2005-12-28 2010-07-27 3M Innovative Properties Company Rotatable aperture mask assembly and deposition system
US20090304924A1 (en) 2006-03-03 2009-12-10 Prasad Gadgil Apparatus and method for large area multi-layer atomic layer chemical vapor processing of thin films
US20070281089A1 (en) 2006-06-05 2007-12-06 General Electric Company Systems and methods for roll-to-roll atomic layer deposition on continuously fed objects
US20080011225A1 (en) * 2006-07-11 2008-01-17 Mcclure Donald J Apparatus and methods for continuously depositing a pattern of material onto a substrate
KR20100022491A (ko) * 2007-05-25 2010-03-02 코닝 인코포레이티드 유리 시트를 취급하기 위한 장치
EP2053663A1 (en) * 2007-10-25 2009-04-29 Applied Materials, Inc. Hover cushion transport for webs in a web coating process
JP4467632B2 (ja) * 2008-03-24 2010-05-26 丸文株式会社 ビーム加工装置、ビーム加工方法およびビーム加工基板
KR100859835B1 (ko) * 2008-05-13 2008-09-23 한국뉴매틱(주) 비접촉식 진공패드
US20100266766A1 (en) * 2009-04-21 2010-10-21 Stefan Hein Guiding devices and methods for contactless guiding of a web in a web coating process
US20110076421A1 (en) * 2009-09-30 2011-03-31 Synos Technology, Inc. Vapor deposition reactor for forming thin film on curved surface
CN102639749B (zh) * 2009-10-14 2015-06-17 莲花应用技术有限责任公司 在原子层沉积系统中抑制过量前体在单独前体区之间运送
US20110097494A1 (en) * 2009-10-27 2011-04-28 Kerr Roger S Fluid conveyance system including flexible retaining mechanism

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120120399A (ko) * 2010-02-11 2012-11-01 네덜란제 오르가니자티에 포오르 토에게파스트-나투우르베텐샤펠리즈크 온데르조에크 테엔오 기판 상에 원자 층을 증착시키는 장치 및 방법
KR20120138247A (ko) * 2010-04-12 2012-12-24 에이에스엠엘 네델란즈 비.브이. 기판 핸들링 장치 및 리소그래피 장치

Also Published As

Publication number Publication date
EP2954094A1 (en) 2015-12-16
CN105102676A (zh) 2015-11-25
TWI619834B (zh) 2018-04-01
TW201437420A (zh) 2014-10-01
EP2954094B1 (en) 2019-04-24
EP2765218A1 (en) 2014-08-13
CN105102676B (zh) 2021-06-08
WO2014123415A1 (en) 2014-08-14
US20150376785A1 (en) 2015-12-31
US11149352B2 (en) 2021-10-19
KR102267234B1 (ko) 2021-06-21

Similar Documents

Publication Publication Date Title
KR102267234B1 (ko) 기판 상에 원자 층을 증착시키는 장치 및 방법
EP2742167B1 (en) Method and apparatus for depositing atomic layers on a substrate
US10676822B2 (en) Method and apparatus for depositing atomic layers on a substrate
EP3093368B1 (en) Chemical vapor deposition device, and chemical vapor deposition method
US9683291B2 (en) Apparatus for processing surface of substrate and nozzle head
US10428423B2 (en) Method and apparatus for depositing atomic layers on a substrate
JP2023553201A (ja) ロール・ツー・ロール処理

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant