KR20150082484A - 공기입 타이어 - Google Patents

공기입 타이어 Download PDF

Info

Publication number
KR20150082484A
KR20150082484A KR1020157014769A KR20157014769A KR20150082484A KR 20150082484 A KR20150082484 A KR 20150082484A KR 1020157014769 A KR1020157014769 A KR 1020157014769A KR 20157014769 A KR20157014769 A KR 20157014769A KR 20150082484 A KR20150082484 A KR 20150082484A
Authority
KR
South Korea
Prior art keywords
tire
circumferential
belt
reinforcing layer
layer
Prior art date
Application number
KR1020157014769A
Other languages
English (en)
Other versions
KR101711817B1 (ko
Inventor
켄타로 오바나
Original Assignee
요코하마 고무 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=51020213&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=KR20150082484(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 요코하마 고무 가부시키가이샤 filed Critical 요코하마 고무 가부시키가이샤
Publication of KR20150082484A publication Critical patent/KR20150082484A/ko
Application granted granted Critical
Publication of KR101711817B1 publication Critical patent/KR101711817B1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/04Tread patterns in which the raised area of the pattern consists only of continuous circumferential ribs, e.g. zig-zag
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/01Shape of the shoulders between tread and sidewall, e.g. rounded, stepped or cantilevered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/0083Tyre tread bands; Tread patterns; Anti-skid inserts characterised by the curvature of the tyre tread
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C3/00Tyres characterised by the transverse section
    • B60C3/04Tyres characterised by the transverse section characterised by the relative dimensions of the section, e.g. low profile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/1835Rubber strips or cushions at the belt edges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C9/2003Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel characterised by the materials of the belt cords
    • B60C9/2006Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel characterised by the materials of the belt cords consisting of steel cord plies only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/28Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers characterised by the belt or breaker dimensions or curvature relative to carcass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C2009/1828Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers characterised by special physical properties of the belt ply
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C2009/1871Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers with flat cushions or shear layers between belt layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C2009/2061Physical properties or dimensions of the belt coating rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C2009/2061Physical properties or dimensions of the belt coating rubber
    • B60C2009/2064Modulus; Hardness; Loss modulus or "tangens delta"

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Abstract

공기입(空氣入) 타이어(1)는, 타이어 둘레 방향으로 연재(延在)하는 적어도 3개의 둘레 방향 주(主)홈(2)과, 이들의 둘레 방향 주홈(2)으로 구획되어 이루어지는 복수의 육부(陸部, 3)를 구비한다. 또한, 벨트층(14)이, 절댓값으로 10[deg] 이상 45[deg] 이하의 벨트 각도를 가지는 것과 함께 서로 다른 부호의 벨트 각도를 가지는 한 쌍의 교차 벨트(142, 143)와, 타이어 둘레 방향에 대하여 ±5[deg]의 범위 내에 있는 벨트 각도를 가지는 둘레 방향 보강층(145)을 적층하여 이루어진다. 또한, 타이어 자오선 방향의 단면으로부터 볼 때에 있어서, 둘레 방향 주홈(2)의 말단 마모면(WE)을 그을 때에, 타이어 적도면(CL) 상에 있어서의 둘레 방향 보강층(145)으로부터 말단 마모면(WE)까지의 거리 Dcc와 둘레 방향 보강층(145)의 단부(端部)로부터 말단 마모면(WE)까지의 거리 De가, De/Dcc≤0.94의 관계를 가진다. 또한, 카커스(carcass)층(13)의 최대 높이 위치의 직경 Ya와 둘레 방향 보강층(145)의 단부 위치에 있어서의 카커스층(13)의 직경 Yd가, 0.95≤Yd/Ya≤1.02의 관계를 가진다.

Description

공기입 타이어{PNEUMATIC TIRE}
본 발명은, 공기입(空氣入) 타이어에 관한 것이고, 한층 더 상세하게는, 내(耐)벨트 에지 세퍼레이션(belt edge separation) 성능을 향상할 수 있는 공기입 타이어에 관한 것이다.
트럭·버스 등에 장착되는 근년(近年)의 중하중용(重荷重用) 타이어는, 낮은 편평률을 가지는 한편으로, 벨트층에 둘레 방향 보강층을 배치하는 것에 의하여, 트레드(tread)부의 형상을 보지(保持)하고 있다. 이 둘레 방향 보강층은, 타이어 둘레 방향에 대하여 대략 0[deg]가 되는 벨트 각도를 가지는 벨트 플라이(belt ply)이고, 한 쌍의 교차 벨트에 적층되어 배치된다. 이와 같은 구성을 채용하는 종래의 공기입 타이어로서, 특허 문헌 1 ~ 4에 기재되는 기술이 알려져 있다.
특허 문헌 1 : 일본국 특허공보 특허제4642760호 특허 문헌 2 : 일본국 특허공보 특허제4663638호 특허 문헌 3 : 일본국 특허공보 특허제4663639호 특허 문헌 4 : 일본국 공표특허공보 특표2012-522686호
여기에서, 공기입 타이어에서는, 벨트 플라이의 단부(端部)에 있어서의 주변 고무의 세퍼레이션을 억제하여야 할 과제가 있다.
그래서, 본 발명은, 상기에 감안하여 이루어진 것이고, 내벨트 에지 세퍼레이션 성능을 향상할 수 있는 공기입 타이어를 제공하는 것을 목적으로 한다.
상기 목적을 달성하기 위하여, 본 발명에 관련되는 공기입 타이어는, 카커스(carcass)층과, 상기 카커스층의 타이어 직경 방향 외측에 배치되는 벨트층과, 상기 벨트층의 타이어 직경 방향 외측에 배치되는 트레드 고무를 구비하는 것과 함께, 타이어 둘레 방향으로 연재(延在)하는 적어도 3개의 둘레 방향 주(主)홈과, 이들의 둘레 방향 주홈으로 구획되어 이루어지는 복수의 육부(陸部)를 구비하는 공기입 타이어이고, 상기 벨트층이, 절댓값으로 10[deg] 이상 45[deg] 이하의 벨트 각도를 가지는 것과 함께 서로 다른 부호의 벨트 각도를 가지는 한 쌍의 교차 벨트와, 타이어 둘레 방향에 대하여 ±5[deg]의 범위 내에 있는 벨트 각도를 가지는 둘레 방향 보강층을 적층하여 이루어지고, 또한, 타이어 자오선 방향의 단면으로부터 볼 때에 있어서, 상기 둘레 방향 주홈의 말단 마모면(WE)을 그을 때에, 타이어 적도면 상에 있어서의 상기 둘레 방향 보강층으로부터 말단 마모면(WE)까지의 거리 Dcc와 상기 둘레 방향 보강층의 단부로부터 말단 마모면(WE)까지의 거리 De가, De/Dcc≤0.94의 관계를 가지고, 또한, 상기 카커스층의 최대 높이 위치의 직경 Ya와 상기 둘레 방향 보강층의 단부 위치에 있어서의 상기 카커스층의 직경 Yd가, 0.95≤Yd/Ya≤1.02의 관계를 가지는 것을 특징으로 한다.
본 발명에 관련되는 공기입 타이어에서는, 말단 마모면(WE)에 대한 둘레 방향 보강층의 거리 Dcc, De가 적정화되기 때문에, 타이어 접지 시에 있어서의 둘레 방향 보강층의 일그러짐이 저감된다. 나아가, 둘레 방향 보강층의 단부 위치에 있어서의 카커스층의 직경 Yd가 적정화되기 때문에, 타이어 접지 시에 있어서의 둘레 방향 보강층의 배치 영역에서의 카커스층의 변형량이 저감된다. 이것에 의하여, 둘레 방향 보강층의 주변 고무의 세퍼레이션이 억제되는 이점이 있다.
도 1은, 본 발명의 실시 형태에 관련되는 공기입 타이어를 도시하는 타이어 자오선 방향의 단면도이다.
도 2는, 도 1에 기재한 공기입 타이어의 벨트층을 도시하는 설명도이다.
도 3은, 도 1에 기재한 공기입 타이어의 벨트층을 도시하는 설명도이다.
도 4는, 도 1에 기재한 공기입 타이어의 작용을 도시하는 설명도이다.
도 5는, 도 1에 기재한 공기입 타이어의 변형예를 도시하는 설명도이다.
도 6은, 도 1에 기재한 공기입 타이어의 변형예를 도시하는 설명도이다.
도 7은, 도 1에 기재한 공기입 타이어의 변형예를 도시하는 설명도이다.
도 8은, 본 발명의 실시 형태에 관련되는 공기입 타이어의 성능 시험의 결과를 도시하는 도표이다.
도 9는, 본 발명의 실시 형태에 관련되는 공기입 타이어의 성능 시험의 결과를 도시하는 도표이다.
도 10은, 본 발명의 실시 형태에 관련되는 공기입 타이어의 성능 시험의 결과를 도시하는 도표이다.
도 11은, 본 발명의 실시 형태에 관련되는 공기입 타이어의 성능 시험의 결과를 도시하는 도표이다.
이하, 본 발명에 관하여 도면을 참조하면서 상세하게 설명한다. 덧붙여, 이 실시 형태에 의하여 본 발명이 한정되는 것은 아니다. 또한, 이 실시 형태의 구성 요소에는, 발명의 동일성을 유지하면서 치환 가능한 또한 치환 자명한 것이 포함된다. 또한, 이 실시 형태에 기재된 복수의 변형예는, 당업자 자명의 범위 내에서 임의로 조합이 가능하다.
[공기입 타이어]
도 1은, 본 발명의 실시 형태에 관련되는 공기입 타이어를 도시하는 타이어 자오선 방향의 단면도이다. 동(同) 도면은, 공기입 타이어(1)의 일례로서, 장거리 수송용의 트럭, 버스 등에 장착되는 중하중용 레이디얼 타이어(radial tire)를 도시하고 있다. 덧붙여, 부호 CL은, 타이어 적도면이다. 또한, 동 도면에서는, 트레드단(P)과 타이어 접지단(接地端)(T)이, 일치하고 있다. 또한, 동 도면에서는, 둘레 방향 보강층(145)에 해칭(hatching)을 넣고 있다.
이 공기입 타이어(1)는, 한 쌍의 비드 코어(bead core)(11, 11)와, 한 쌍의 비드 필러(bead filler)(12, 12)와, 카커스층(13)과, 벨트층(14)과, 트레드 고무(15)와, 한 쌍의 사이드 월(side wall) 고무(16, 16)를 구비한다(도 1 참조).
한 쌍의 비드 코어(11, 11)는, 환상(環狀) 구조를 가지고, 좌우의 비드부의 코어를 구성한다. 한 쌍의 비드 필러(12, 12)는, 로어(lower) 필러(121) 및 어퍼(upper) 필러(122)로 이루어지고, 한 쌍의 비드 코어(11, 11)의 타이어 직경 방향 외주(外周)에 각각 배치되어 비드부를 보강한다.
카커스층(13)은, 좌우의 비드 코어(11, 11) 사이에 토로이덜(toroidal) 형상으로 걸쳐 놓아져 타이어의 골격을 구성한다. 또한, 카커스층(13)의 양 단부는, 비드 코어(11) 및 비드 필러(12)를 감싸도록 타이어 폭 방향 내측으로부터 타이어 폭 방향 외측으로 되감겨 계지(係止)된다. 또한, 카커스층(13)은, 스틸 혹은 유기 섬유재(예를 들어, 나일론, 폴리에스테르, 레이온 등)로 이루어지는 복수의 카커스 코드를 코트 고무로 피복(被覆)하여 압연(壓延) 가공하여 구성되고, 절댓값으로 85[deg] 이상 95[deg] 이하의 카커스 각도(타이어 둘레 방향에 대한 카커스 코드의 섬유 방향의 경사각)를 가진다.
벨트층(14)은, 복수의 벨트 플라이(141 ~ 145)를 적층하여 이루어지고, 카커스층(13)의 외주에 걸어 돌려져 배치된다. 벨트층(14)의 구체적인 구성에 관하여는, 후술한다.
트레드 고무(15)는, 카커스층(13) 및 벨트층(14)의 타이어 직경 방향 외주에 배치되어 타이어의 트레드부를 구성한다. 한 쌍의 사이드 월 고무(16, 16)는, 카커스층(13)의 타이어 폭 방향 외측에 각각 배치되어 좌우의 사이드 월부를 구성한다.
덧붙여, 도 1의 구성에서는, 공기입 타이어(1)가, 타이어 둘레 방향으로 연재하는 7개의 둘레 방향 주홈(2)과, 이러한 둘레 방향 주홈(2)으로 구획되어 이루어지는 8개의 육부(3)를 구비하고 있다. 또한, 각 육부(3)가, 타이어 둘레 방향으로 연속하는 리브(rib), 혹은, 러그(lug) 홈(도시 생략)에 의하여 타이어 둘레 방향으로 분단된 블록으로 되어 있다.
여기에서, 둘레 방향 주홈이란, 5.0[mm] 이상의 홈 폭을 가지는 둘레 방향 홈을 말한다. 둘레 방향 주홈의 홈 폭은, 홈 개구부에 형성된 노치(notch)부나 모따기부를 제외하여 측정된다.
또한, 이 공기입 타이어(1)에서는, 타이어 폭 방향의 가장 외측에 있는 좌우의 둘레 방향 주홈(2, 2)을 최외주(最外周) 방향 주홈이라고 부른다. 또한, 좌우의 최외주 방향 주홈(2, 2)으로 구획된 타이어 폭 방향 외측에 있는 좌우의 육부(3, 3)를 숄더 육부라고 부른다.
[벨트층]
도 2 및 도 3은, 도 1에 기재한 공기입 타이어의 벨트층을 도시하는 설명도이다. 이러한 도면에 있어서, 도 2는, 타이어 적도면(CL)을 경계로 한 트레드부의 편측 영역을 도시하고, 도 3은, 벨트층(14)의 적층 구조를 도시하고 있다. 덧붙여, 도 3에서는, 각 벨트 플라이(141 ~ 145) 중의 가는 선이 각 벨트 플라이(141 ~ 145)의 벨트 코드를 모식적으로 도시하고 있다.
벨트층(14)은, 고각도(高角度) 벨트(141)와, 한 쌍의 교차 벨트(142, 143)와, 벨트 커버(144)와, 둘레 방향 보강층(145)을 적층하여 이루어지고, 카커스층(13)의 외주에 걸어 돌려져 배치된다(도 2 참조).
고각도 벨트(141)는, 스틸 혹은 유기 섬유재로 이루어지는 복수의 벨트 코드를 코트 고무로 피복하여 압연 가공하여 구성되고, 절댓값으로 45[deg] 이상 70[deg] 이하의 벨트 각도(타이어 둘레 방향에 대한 벨트 코드의 섬유 방향의 경사각)를 가진다. 또한, 고각도 벨트(141)는, 카커스층(13)의 타이어 직경 방향 외측에 적층되어 배치된다.
한 쌍의 교차 벨트(142, 143)는, 코트 고무로 피복된 스틸 혹은 유기 섬유재로 이루어지는 복수의 벨트 코드를 압연 가공하여 구성되고, 절댓값으로 10[deg] 이상 45[deg] 이하의 벨트 각도를 가진다. 또한, 한 쌍의 교차 벨트(142, 143)는, 서로 다른 부호의 벨트 각도를 가지고, 벨트 코드의 섬유 방향을 서로 교차시켜 적층된다(크로스 플라이(cross ply) 구조). 여기에서는, 타이어 직경 방향 내측에 위치하는 교차 벨트(142)를 내경(內徑) 측 교차 벨트라고 부르고, 타이어 직경 방향 외측에 위치하는 교차 벨트(143)를 외경(外徑) 측 교차 벨트라고 부른다. 덧붙여, 3매 이상의 교차 벨트가 적층되어 배치되어도 무방하다(도시 생략). 또한, 한 쌍의 교차 벨트(142, 143)는, 이 실시 형태에서는, 고각도 벨트(141)의 타이어 직경 방향 외측에 적층되어 배치되어 있다.
또한, 벨트 커버(144)는, 스틸 혹은 유기 섬유재로 이루어지는 복수의 벨트 코드를 코트 고무로 피복하여 압연 가공하여 구성되고, 절댓값으로 10[deg] 이상 45[deg] 이하의 벨트 각도를 가진다. 또한, 벨트 커버(144)는, 한 쌍의 교차 벨트(142, 143)의 타이어 직경 방향 외측에 적층되어 배치되어 있다. 덧붙여, 이 실시 형태에서는, 벨트 커버(144)가, 외경 측 교차 벨트(143)와 동일한 벨트 각도를 가지고, 또한, 벨트층(14)의 최외층(最外層)에 배치되어 있다.
둘레 방향 보강층(145)은, 코트 고무로 피복된 스틸제의 벨트 코드를 타이어 둘레 방향에 대하여 ±5[deg]의 범위 내에서 경사시키면서 나선상(螺旋狀)으로 감아 돌려 구성된다. 또한, 둘레 방향 보강층(145)은, 이 실시 형태에서는, 한 쌍의 교차 벨트(142, 143)의 사이에 끼워 넣어져 배치되어 있다. 또한, 둘레 방향 보강층(145)은, 한 쌍의 교차 벨트(142, 143)의 좌우의 에지부보다도 타이어 폭 방향 내측에 배치된다. 구체적으로는, 1개 혹은 복수 개의 와이어가 내경 측 교차 벨트(142)의 외주에 나선상으로 감아 돌려져, 둘레 방향 보강층(145)이 형성된다. 이 둘레 방향 보강층(145)이 타이어 둘레 방향의 강성을 보강하는 것에 의하여, 타이어의 내구(耐久) 성능이 향상한다.
덧붙여, 이 공기입 타이어(1)에서는, 벨트층(14)이, 에지 커버를 가져도 무방하다(도시 생략). 일반적으로, 에지 커버는, 스틸 혹은 유기 섬유재로 이루어지는 복수의 벨트 코드를 코트 고무로 피복하여 압연 가공하여 구성되고, 절댓값으로 0[deg] 이상 5[deg] 이하의 벨트 각도를 가진다. 또한, 에지 커버는, 외경 측 교차 벨트(143)(혹은 내경 측 교차 벨트(142))의 좌우의 에지부의 타이어 직경 방향 외측에 각각 배치된다. 이러한 에지 커버가 테 효과를 발휘하는 것에 의하여, 트레드부 센터 영역과 숄더 영역과의 직경 성장차가 완화되어, 타이어의 내편마모(耐偏摩耗) 성능이 향상한다.
또한, 도 2의 구성에서는, 둘레 방향 보강층(145)이, 한 쌍의 교차 벨트(142, 143)의 사이에 끼워 넣어져 배치되어 있다(도 2 참조). 그러나, 이것에 한하지 않고, 둘레 방향 보강층(145)이, 한 쌍의 교차 벨트(142, 143)의 타이어 직경 방향 외측에 배치되어도 무방하다(도시 생략). 또한, 둘레 방향 보강층(145)이, 한 쌍의 교차 벨트(142, 143)의 내측에 배치되어도 무방하다. 예를 들어, 둘레 방향 보강층(145)이, (1) 고각도 벨트(141)와 내경 측 교차 벨트(142)와의 사이에 배치되어도 무방하고, (2) 카커스층(13)과 고각도 벨트(141)와의 사이에 배치되어도 무방하다(도시 생략).
[내벨트 에지 세퍼레이션 성능의 향상]
트럭·버스 등에 장착되는 근년의 중하중용 타이어는, 낮은 편평률을 가지는 한편으로, 벨트층에 둘레 방향 보강층을 배치하는 것에 의하여, 트레드부의 형상을 보지하고 있다. 구체적으로는, 둘레 방향 보강층이, 트레드부 센터 영역에 배치되어 테 효과를 발휘하는 것에 의하여, 트레드부의 직경 성장을 억제하여 트레드부의 형상을 보지하고 있다.
이와 같은 구성에서는, 벨트층의 타이어 둘레 방향의 강성이 둘레 방향 보강층에 의하여 증가하기 때문에, 벨트 플라이의 에지부의 주변 고무의 세퍼레이션이 발생하기 쉽다고 하는 과제가 있다. 이와 같은 과제는, 특히, 고내압 또한 고부하 하중에서의 장기 사용 조건 하에서, 현저하게 나타난다.
그래서, 이 공기입 타이어(1)는, 상기의 세퍼레이션의 발생을 억제하여 타이어의 내구 성능을 향상하기 위하여, 이하의 구성을 채용하고 있다(도 1 ~ 도 3 참조).
우선, 도 2에 도시하는 바와 같이, 타이어 자오선 방향의 단면으로부터 볼 때에 있어서, 둘레 방향 주홈(2)의 말단 마모면(WE)을 긋는다. 말단 마모면(WE)이란, 타이어에 존재하는 마모 지표로부터 추정되는 표면을 말한다. 또한, 말단 마모면(WE)은, 타이어를 비(非) 인플레이트(inflate) 상태로 한 타이어 단체(單體)의 상태로 측정된다. 일반적인 공기입 타이어에서는, 말단 마모면(WE)이, 트레드 프로파일에 대략 평행한 곡선 상에 있다.
이 때, 타이어 적도면(CL) 상에 있어서의 둘레 방향 보강층(145)으로부터 말단 마모면(WE)까지의 거리 Dcc와 둘레 방향 보강층(145)의 단부로부터 말단 마모면(WE)까지의 거리 De가, De/Dcc≤0.94의 관계를 가지는 것이 바람직하고, De/Dcc≤0.92의 관계를 가지는 것이 보다 바람직하다. 비 De/Dcc의 하한은, 특별히 한정이 없지만, 최외층 벨트층과 말단 마모면(WE) 사이의 거리의 관계로 제약을 받는다. 예를 들어, 비 De/Dcc의 하한이, 0.65≤De/Dcc의 범위에 있는 것이 바람직하다.
거리 Dcc 및 거리 De는, 타이어를 비 인플레이트 상태로 한 타이어 단체의 상태로 측정된다. 또한, 둘레 방향 보강층(145) 측의 측정점은, 타이어 자오선 방향의 단면으로부터 볼 때에 있어서, 둘레 방향 보강층(145)을 구성하는 벨트 코드의 중심점을 잇는 곡선에 의하여 규정된다. 또한, 둘레 방향 보강층(145)의 단부는, 둘레 방향 보강층(145)을 구성하는 벨트 코드 중 타이어 폭 방향의 가장 외측에 있는 벨트 코드를 기준으로 하여 규정된다.
여기에서, 규정 림이란, JATMA에 규정되는 「적용 림」, TRA에 규정되는 「Design Rim」, 혹은 ETRTO에 규정되는 「Measuring Rim」을 말한다. 또한, 규정 내압이란, JATMA에 규정되는 「최고 공기압」, TRA에 규정되는 「TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES」의 최댓값, 혹은 ETRTO에 규정되는 「INFLATION PRESSURES」를 말한다. 또한, 규정 하중이란, JATMA에 규정되는 「최대 부하 능력」, TRA에 규정되는 「TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES」의 최댓값, 혹은 ETRTO에 규정되는 「LOAD CAPACITY」를 말한다. 다만, JATMA에 있어서, 승용차용 타이어의 경우에는, 규정 내압이 공기압 180[kPa]이고, 규정 하중이 최대 부하 능력의 88[%]이다.
또한, 타이어 적도면(CL)에 있어서의 트레드 프로파일로부터 타이어 내주면(內周面)까지의 거리 Gcc와 트레드단(P)으로부터 타이어 내주면까지의 거리 Gsh가, 1.10≤Gsh/Gcc의 관계를 가지는 것이 바람직하고, 1.20≤Gsh/Gcc의 관계를 가지는 것이 보다 바람직하다.
비 Gsh/Gcc의 상한은, 특별히 한정이 없다. 다만, 타이어가 규정 림에 장착되고 규정 내압이 부여되어 무부하 상태로 되었을 때에, 트레드 프로파일의 트레드단(P)에 있어서의 라디어스(radius)가 타이어 적도면(CL)에 있어서의 라디어스에 대하여 동등 이하로 되도록, 비 Gsh/Gcc의 상한이 규정되는 것이 바람직하다. 즉, 트레드 프로파일이 타이어 직경 방향 내측에 중심을 가지는 원호(圓弧) 형상 내지는 직선 형상을 가지고, 역 R 형상(타이어 직경 방향 외측에 중심을 가지는 원호 형상)으로 되지 않도록, 비 Gsh/Gcc의 상한이 규정되는 것이 바람직하다. 예를 들어, 도 2와 같은 스퀘어 형상의 숄더부를 가지는 구성에서는, 비 Gsh/Gcc의 상한이 1.4 ~ 1.5 정도로 된다. 한편으로, 후술하는 도 5와 같은 라운드 형상의 숄더부를 가지는 구성에서는, 비 Gsh/Gcc의 상한이 1.3 ~ 1.4 정도로 된다.
거리 Gcc는, 타이어 자오선 방향의 단면으로부터 볼 때에 있어서, 타이어 적도면(CL)과 트레드 프로파일과의 교점으로부터 타이어 적도면(CL)과 타이어 내주면과의 교점까지의 거리로서 측정된다. 따라서, 도 1 및 도 2의 구성과 같이, 타이어 적도면(CL)에 둘레 방향 주홈(2)이 있는 구성에서는, 이 둘레 방향 주홈(2)을 제외하고, 거리 Gcc가 측정된다. 거리 Gsh는, 타이어 자오선 방향의 단면으로부터 볼 때에 있어서, 트레드단(P)으로부터 타이어 내주면에 내린 수선(垂線)의 길이로서 측정된다.
덧붙여, 도 2의 구성에서는, 공기입 타이어(1)가, 카커스층(13)의 내주면에 이너 라이너(inner liner)(18)를 구비하고, 이 이너 라이너(18)가, 타이어 내주면의 전역(全域)에 걸쳐 배치되어 있다. 이와 같은 구성에서는, 거리 Gcc 및 거리 Gsh가, 이 이너 라이너(18)의 표면을 기준(타이어 내주면)으로 하여 측정된다.
트레드단(P)이란, (1) 스퀘어 형상의 숄더부를 가지는 구성에서는, 그 에지부의 점을 말한다. 예를 들어, 도 2의 구성에서는, 숄더부가 스퀘어 형상을 가지는 것에 의하여, 트레드단(P)과 타이어 접지단(T)이 일치하고 있다. 한편, (2) 후술하는 도 5의 변형예에 도시하는 바와 같은, 라운드 형상의 숄더부를 가지는 구성에서는, 타이어 자오선 방향의 단면으로부터 볼 때에 있어서, 트레드부의 프로파일과 사이드 월부의 프로파일과의 교점(P’)을 취하고, 이 교점(P’)으로부터 숄더부에 그은 수선의 발을 트레드단(P)으로 한다.
덧붙여, 타이어 접지단(T)이란, 타이어가 규정 림에 장착되어 규정 내압이 부여되는 것과 함께 정지 상태에서 평판에 대하여 수직으로 놓여져 규정 하중에 대응하는 부하를 가하였을 때의 타이어와 평판과의 접촉면에 있어서의 타이어 축 방향의 최대 폭 위치를 말한다.
또한, 도 1에 있어서, 카커스층(13)의 최대 높이 위치의 직경 Ya와, 카커스층(13)의 최대 폭 위치의 직경 Yc와, 둘레 방향 보강층(145)의 단부 위치에 있어서의 카커스층(13)의 직경 Yd가, 0.80≤Yc/Ya≤0.90 및 0.95≤Yd/Ya≤1.02의 관계를 가진다. 이것에 의하여, 카커스층(13)의 형상이 적정화된다.
카커스층(13)의 최대 높이 위치의 직경 Ya는, 타이어를 규정 림에 장착하여 규정 내압을 부여하는 것과 함께 무부하 상태로 하였을 때의, 타이어 회전축으로부터 타이어 적도면(CL)과 카커스층(13)과의 교점까지의 거리로서 측정된다.
카커스층(13)의 최대 폭 위치의 직경 Yc는, 타이어를 규정 림에 장착하여 규정 내압을 부여하는 것과 함께 무부하 상태로 하였을 때의, 타이어 회전축으로부터 카커스층(13)의 최대 폭 위치까지의 거리로서 측정된다.
둘레 방향 보강층(145)의 단부 위치에 있어서의 카커스층(13)의 직경 Yd는, 타이어를 규정 림에 장착하여 규정 내압을 부여하는 것과 함께 무부하 상태로 하였을 때의, 둘레 방향 보강층(145)의 단부로부터 타이어 직경 방향으로 그은 직선과 카커스층(13)과의 교점과, 타이어 회전축과의 거리로서 측정된다.
또한, 도 1에 있어서, 타이어의 실 접지 폭 Wg(도시 생략)와 카커스층(13)의 단면 폭 Wca가, 0.64≤Wg/Wca≤0.84의 관계를 가지는 것이 바람직하다.
타이어의 실 접지 폭 Wg는, 타이어 전체의 접지 폭과, 모든 둘레 방향 주홈(2)의 홈 폭의 총화(總和)와의 차로서 산출된다.
또한, 도 2에 있어서, 둘레 방향 보강층(145)의 타이어 적도면(CL)에 있어서의 직경 R1과 타이어 폭 방향 외측의 단부에 있어서의 직경 R2와의 차(差) Dr(=R1-R2)과 둘레 방향 보강층(145)의 폭 Ws가, -0.010≤Dr/Ws≤0.010의 관계를 가지는 것이 바람직하다. 차 Dr의 부호가 정(正)일 때는, 둘레 방향 보강층(145)의 타이어 적도면(CL)의 직경 R1이 단부의 직경 R2보다도 크고, 도 2의 상태에서, 둘레 방향 보강층(145)이 오른쪽이 내려가게 된다. 반대로, 차 Dr의 부호가 부(負)일 때는, 도 2의 상태에서, 둘레 방향 보강층(145)이 오른쪽이 올라가게 된다.
둘레 방향 보강층(145)의 직경 R1, R2는, 타이어를 규정 림에 장착하여 규정 내압을 부여하는 것과 함께 무부하 상태로 하였을 때의 타이어 자오선 방향의 단면으로부터 볼 때에 있어서, 타이어 회전축으로부터 둘레 방향 보강층(145)의 중심선까지의 거리로서 측정된다.
도 4는, 도 1에 기재한 공기입 타이어의 작용을 도시하는 설명도이다. 동 도면은, 서로 다른 비 De/Dcc 및 비 Gsh/Gcc를 가지는 타이어의 접지 상태를 각각 도시하고 있다.
도 4(a)의 비교예의 타이어에서는, 도 1 ~ 도 3의 구성에 있어서, 비 De/Dcc가 동일하게 설정되고(De/Dcc=1.00), 또한, 비 Gsh/Gcc가 작게 설정되어 있다(Gsh/Gcc=1.06). 이와 같은 구성에서는, 타이어 비접지 상태에서, 트레드 프로파일이, 타이어 적도면(CL)으로부터 트레드단(P)을 향하여 외경을 축소하는 편마모 형상을 가진다(도시 생략). 이 때문에, 타이어 접지 시에는, 도 4(a)에 도시하는 바와 같이, 트레드부 숄더 영역이 노면 측(타이어 직경 방향 외측)으로 크게 변형한다. 이 때, 둘레 방향 보강층(145)으로부터 말단 마모면(WE)까지의 거리 Dcc, De가 일양(一樣)(De/Dcc=1.00)이기 때문에, 둘레 방향 보강층(145)의 단부가, 트레드부 숄더 영역의 변형에 추종하여 노면 측(타이어 직경 방향 외측)으로 크게 휜다. 이 때문에, 타이어 접지 시에 있어서의 둘레 방향 보강층(145)의 일그러짐이 크다.
이것에 대하여, 도 4(b)의 실시예의 타이어에서는, 도 1 ~ 도 3의 구성에 있어서, 비 De/Dcc가 작게 설정되고(De/Dcc=0.92), 또한, 비 Gsh/Gcc가 크게 설정된다(Gsh/Gcc=1.20). 이와 같은 구성에서는, 타이어 비접지 상태에서, 트레드 프로파일의 타이어 적도면(CL)에 있어서의 외경과 트레드단(P)에 있어서의 외경과의 직경차가 작고, 트레드 프로파일이 전체적으로 플랫(타이어 회전축에 대략 평행)인 형상을 가진다(도 1 및 도 2 참조). 이 때문에, 도 4(b)에 도시하는 바와 같이, 타이어 접지 시에 있어서의 트레드부 숄더 영역의 변형량이 작다. 나아가, 둘레 방향 보강층(145)으로부터 말단 마모면(WE)까지의 거리 Dcc, De가 De<Dcc의 관계를 가지기 때문에, 타이어 접지 시에서, 둘레 방향 보강층(145)의 단부가 트레드부 숄더 영역의 변형에 추종하여 휘었을 때에, 둘레 방향 보강층(145)이 전체적으로 플랫한 형상으로 된다. 이것에 의하여, 타이어 접지 시에 있어서의 둘레 방향 보강층(145)의 일그러짐이 저감된다.
상기와 같이, 도 4(b)의 구성에서는, 도 4(a)의 구성과 비교하여, 타이어 접지 시에서, 트레드부 숄더 영역의 변형량이 작고, 또한, 둘레 방향 보강층(145)의 일그러짐이 작다. 이것에 의하여, 트레드부 숄더 영역의 강성이 확보되고, 또한, 둘레 방향 보강층(145)의 주변 고무의 세퍼레이션이 억제된다.
나아가, 도 4(b)의 구성에서는, 카커스층(13)의 최대 높이 위치의 직경 Ya와, 카커스층(13)의 최대 폭 위치의 직경 Yc와, 둘레 방향 보강층(145)의 단부 위치에 있어서의 카커스층(13)의 직경 Yd와의 관계(Yc/Ya 및 Yd/Ya)가 적정화되는 것에 의하여, 카커스층(13)의 형상이 적정화된다. 이것에 의하여, 타이어 접지 시에 있어서의 둘레 방향 보강층(145)의 배치 영역에서의 카커스층(13)의 변형량이 저감되어, 둘레 방향 보강층(145)의 주변 고무의 세퍼레이션이 보다 효과적으로 억제된다.
[라운드 형상의 숄더부]
도 5는, 도 1에 기재한 공기입 타이어의 변형예를 도시하는 설명도이다. 동 도면은, 라운드 형상의 숄더부를 가지는 구성을 도시하고 있다.
도 1의 구성에서는, 도 2에 도시하는 바와 같이, 숄더부가 스퀘어 형상을 가지고, 타이어 접지단(T)과 트레드단(P)이 일치하고 있다.
그러나, 이것에 한하지 않고, 도 5에 도시하는 바와 같이, 숄더부가 라운드 형상을 가져도 무방하다. 이와 같은 경우에는, 상기와 같이, 타이어 자오선 방향의 단면으로부터 볼 때에 있어서, 트레드부의 프로파일과 사이드 월부의 프로파일과의 교점(P’)을 취하고, 이 교점(P’)으로부터 숄더부로 그은 수선의 발을 트레드단(P)으로 한다. 이 때문에, 통상은, 타이어 접지단(T)과 트레드단(P)이 서로 다른 위치에 있다.
[숄더 육부의 역 R 형상]
도 6은, 도 1에 기재한 공기입 타이어의 변형예를 도시하는 설명도이다. 동 도면은, 센터 영역에 있는 육부(3)의 제1 프로파일(PL1)과, 숄더 육부(3)의 제2 프로파일(PL2)과의 관계를 도시하고 있다.
도 1의 구성에서는, 인플레이트 상태에서의 타이어 자오선 방향의 단면으로부터 볼 때에 있어서, 타이어 적도면(CL)으로부터 타이어 접지단(T)까지의 트레드 프로파일이, 대략 직선이고, 플랫한 접지면 형상을 가지고 있다.
이것에 대하여, 도 6의 구성에서는, 인플레이트 상태에서의 타이어 자오선 방향의 단면으로부터 볼 때에 있어서, 좌우의 최외주 방향 주홈(2, 2)보다도 타이어 폭 방향 내측에 있는 센터 육부(3) 및 세컨드 육부(3)가, 타이어 직경 방향 외측으로 볼록으로 되는 제1 프로파일(PL1)을 가진다. 또한, 좌우의 최외주 방향 주홈보다도 타이어 폭 방향 외측에 있는 숄더 육부(3)가, 접지면 내에서 타이어 직경 방향 내측으로 볼록으로 되는 제2 프로파일(PL2)을 가진다. 또한, 숄더 육부(3)의 접지면 내에 있어서의 제1 프로파일(PL1)의 연장선과 제2 프로파일(PL2)과의 타이어 직경 방향의 거리 d가, 타이어 폭 방향 외측을 향하는 것에 따라 증가한다.
또한, 상기의 구성에서는, 제1 프로파일(PL1) 및 제2 프로파일(PL2)은, 단일의 원호 혹은 복수의 원호의 조합으로 이루어지는 매끄러운 곡선인 것이 바람직하다. 그러나, 이것에 한하지 않고, 제1 프로파일(PL1) 및 제2 프로파일(PL2)이, 일부에 직선을 포함하여 구성되어도 무방하다.
또한, 타이어 접지단(T)에 있어서의 제2 프로파일(PL2)의 직경이, 숄더 육부(3)의 타이어 폭 방향 내측의 에지부에 있어서의 제2 프로파일(PL2)의 직경보다도 큰 것이 바람직하다. 따라서, 도 6과 같이, 숄더 육부(3)가, 타이어 폭 방향 외측을 향하는 것에 따라 타이어 직경 방향 외측으로 올라오는 접지면 형상을 가지는 것이 바람직하다.
그러나, 이것에 한하지 않고, 타이어 접지단(T)에 있어서의 제2 프로파일(PL2)의 직경이, 숄더 육부(3)의 타이어 폭 방향 내측의 에지부에 있어서의 제2 프로파일(PL2)의 직경 이하여도 무방하다. 따라서, 숄더 육부(3)가, 플랫한 접지면 형상 내지는 타이어 폭 방향 외측을 향하는 것에 따라 편마모하는 접지면 형상을 가져도 무방하다.
덧붙여, 프로파일 형상 및 프로파일의 직경은, 타이어를 규정 림에 장착하여 규정 내압을 부여하는 것과 함께 무부하 상태로서 측정된다. 또한, 프로파일의 직경은, 타이어 회전축을 중심으로 하는 프로파일의 직경으로 하여 측정된다.
[트레드 프로파일의 직경]
또한, 이 공기입 타이어(1)에서는, 도 1에 있어서, 타이어 적도면(CL)에 있어서의 트레드 프로파일의 직경 D1과, 숄더 육부(3)의 타이어 폭 방향 내측의 에지부에 있어서의 트레드 프로파일의 직경 D2와, 둘레 방향 보강층(145)의 단부에 있어서의 트레드 프로파일의 직경 D3가, D1>D2, D1>D3 및 -0.65≤(D2-D3)/(D1-D3)≤0.85의 관계를 가진다. 즉, 타이어 적도면(CL)으로부터 둘레 방향 보강층(145)의 단부까지의 영역에 있어서의 트레드 프로파일의 편마모량(D1-D3)과, 숄더 육부(3)에 있어서의 트레드 프로파일의 편마모량(D2-D3)과의 비 (D2-D3)/(D1-D3)가, 소정의 범위 내로 적정화된다. 이것에 의하여, 타이어 접지 시에 있어서의 숄더부의 변형이 효과적으로 억제되어, 숄더부의 강성이 적정하게 확보된다.
트레드 프로파일의 직경 D1 ~ D3는, 트레드 프로파일의 각 위치에 있어서의 반경(半徑)이고, 타이어를 규정 림에 장착하여 규정 내압을 부여하는 것과 함께 무부하 상태로서 측정된다.
또한, 도 1의 구성에서는, 트레드 프로파일의 각 위치에 있어서의 외경 D1 ~ D3가, 7[mm]≤D1-D3≤14[mm] 및 -4[mm]≤D2-D3≤5[mm]의 관계를 가지는 것이 바람직하다. 이것에 의하여, 숄더부에 있어서의 트레드 프로파일의 형상이 보다 적정화된다.
또한, 도 1의 구성에서는, 도 3에 도시하는 바와 같이, 고각도 벨트(141)와, 한 쌍의 교차 벨트(142, 143) 중 타이어 직경 방향 내측에 있는 교차 벨트(142)가 인접하여 배치되어 있다. 이 때, 고각도 벨트(141)의 벨트 코드와 타이어 직경 방향 내측의 교차 벨트(142)의 벨트 코드와의 코드 사이 거리 Dc(도시 생략)가, 0.50[mm]≤Dc≤1.50[mm]의 범위 내에 있는 것이 바람직하다. 이것에 의하여, 고각도 벨트(141)와 교차 벨트(142)와의 코드 사이 거리 Dc가 적정화된다.
벨트 플라이의 코드 사이 거리는, 서로 이웃하는 벨트 플라이에 관하여, 각각 정의할 수 있다. 또한, 코드 사이 거리는, 벨트 코드 사이의 고무 재료의 두께로 된다.
또한, 코드 사이 거리는, 예를 들어, 다음의 조건으로 측정된다. 타이어를 규정 림에 장착하여 규정 내압을 충전한 무부하 상태에서, 예를 들어, 레이저 프로파일러(Laser profiler)에 의하여 계측된 타이어 프로파일의 가상선에 타이어 단체를 들이맞추어 테이프 등으로 고정한다. 다음으로, 측정 대상인 벨트층 사이에 관하여, 타이어 직경 방향 외측에 있는 와이어의 하단 위치와 타이어 직경 방향 내측에 있는 와이어의 상단 위치의 간격을 노기스(Nonius) 등으로 측정하고, 그 수치를 코드 사이 거리로 한다. 덧붙여, 여기에서 사용한 레이저 프로파일러란, 타이어 프로파일 측정 장치(가부시키가이샤 마츠오(MATSUO Corporation)제)이다.
[부가적 사항]
또한, 이 공기입 타이어(1)에서는, 도 1에 있어서, 트레드 폭 TW와 둘레 방향 보강층(145)의 폭 Ws가, 0.70≤Ws/TW≤0.90의 관계를 가지는 것이 바람직하다.
트레드 폭 TW란, 좌우의 트레드단(P, P)의 타이어 회전축 방향의 거리이고, 타이어를 규정 림에 장착하여 규정 내압을 부여하는 것과 함께 무부하 상태로서 측정된다.
둘레 방향 보강층(145)의 폭 Ws는, 둘레 방향 보강층(145)의 좌우의 단부의 타이어 회전축 방향의 거리이고, 타이어를 규정 림에 장착하여 규정 내압을 부여하는 것과 함께 무부하 상태로서 측정된다. 또한, 둘레 방향 보강층(145)이 타이어 폭 방향으로 분할된 구조를 가지는 경우(도시 생략)에는, 둘레 방향 보강층(145)의 폭 Ws가, 각 분할부의 최외단부 사이의 거리로 된다.
덧붙여, 일반적인 공기입 타이어는, 도 1에 도시하는 바와 같이, 타이어 적도면(CL)을 중심으로 하는 좌우 대칭인 구조를 가진다. 이 때문에, 타이어 적도면(CL)으로부터 트레드단(P)까지의 거리가 TW/2이고, 타이어 적도면(CL)으로부터 둘레 방향 보강층(145)까지의 거리가 Ws/2로 된다.
이것에 대하여, 좌우 비대칭인 구조를 가지는 공기입 타이어(도시 생략)에서는, 상기한 트레드 폭 TW와 둘레 방향 보강층의 폭 Ws와의 비 Ws/TW의 범위가, 타이어 적도면(CL)을 기준으로 하는 반폭으로 환산되어 규정된다. 구체적으로는, 타이어 적도면(CL)으로부터 트레드단(P)까지의 거리 TW’(도시 생략)와 타이어 적도면(CL)으로부터 둘레 방향 보강층(145)의 단부까지의 거리 Ws’(도시 생략)가, 0.70≤Ws’/TW’≤0.90의 관계로 설정된다.
또한, 도 1에 도시하는 바와 같이, 트레드 폭 TW와 타이어 총 폭 SW가, 0.79≤TW/SW≤0.89의 관계를 가지는 것이 바람직하다.
타이어 총 폭 SW란, 타이어를 규정 림에 장착하여 규정 내압을 부여하는 것과 함께 무부하 상태로 하였을 때의 사이드 월 사이의(타이어 측면의 모양, 문자 등의 모든 부분을 포함한다) 직선 거리를 말한다.
또한, 도 2에 있어서, 타이어 적도면(CL) 상에 있어서의 둘레 방향 보강층(145)으로부터 트레드 프로파일까지의 거리 Hcc와 둘레 방향 보강층(145)의 단부로부터 트레드 프로파일까지의 거리 He가, He/Hcc≤0.97의 관계를 가지는 것이 바람직하다. 비 He/Hcc의 하한은, 특별히 한정이 없지만, 타이어 홈 깊이와의 관계로 제약을 받는다. 예를 들어, 비 He/Hcc의 하한이, 0.80≤He/Hcc의 범위에 있는 것이 바람직하다.
거리 Hcc 및 거리 He는, 타이어를 규정 림에 장착하여 규정 내압을 부여하는 것과 함께 무부하 상태로서 측정된다. 또한, 둘레 방향 보강층(145) 측의 측정점은, 타이어 자오선 방향의 단면으로부터 볼 때에 있어서, 둘레 방향 보강층(145)을 구성하는 벨트 코드의 중심점을 잇는 곡선에 의하여 규정된다. 또한, 둘레 방향 보강층(145)의 단부는, 둘레 방향 보강층(145)을 구성하는 벨트 코드 중 타이어 폭 방향의 가장 외측에 있는 벨트 코드를 기준으로 하여 규정된다.
또한, 도 1에 있어서, 폭이 넓은 교차 벨트(142)의 폭 Wb2와 카커스층(13)의 단면 폭 Wca가, 0.74≤Wb2/Wca≤0.89의 관계를 가지는 것이 바람직하고, 0.78≤Wb2/Wca≤0.83의 범위 내에 있는 것이 보다 바람직하다.
둘레 방향 보강층(145)의 폭 Ws와 카커스층(13)의 단면 폭 Wca가, 0.60≤Ws/Wca≤0.70의 관계를 가지는 것이 바람직하다.
또한, 트레드 폭 TW와 카커스층(13)의 단면 폭 Wca가, 0.82≤TW/Wca≤0.92의 관계를 가지는 것이 바람직하다.
카커스층(13)의 단면 폭 Wca는, 타이어를 규정 림에 장착하여 규정 내압을 부여하는 것과 함께 무부하 상태로 하였을 때의 카커스층(13)의 좌우의 최대 폭 위치의 직선 거리를 말한다.
또한, 도 3에 있어서, 폭이 좁은 교차 벨트(143)의 폭 Wb3와 둘레 방향 보강층(145)의 폭 Ws가, 0.75≤Ws/Wb3≤0.90의 관계를 가지는 것이 바람직하다. 이것에 의하여, 둘레 방향 보강층(145)의 폭 Ws가 적정하게 확보된다.
또한, 도 3에 도시하는 바와 같이, 둘레 방향 보강층(145)이, 한 쌍의 교차 벨트(142, 143) 중 폭이 좁은 교차 벨트(143)의 좌우의 에지부보다도 타이어 폭 방향 내측에 배치되는 것이 바람직하다. 또한, 폭이 좁은 교차 벨트(143)의 폭 Wb3와 둘레 방향 보강층(145)의 에지부로부터 폭이 좁은 교차 벨트(143)의 에지부까지의 거리 S가, 0.03≤S/Wb3≤0.12의 범위에 있는 것이 바람직하다. 이것에 의하여, 교차 벨트(143)의 폭 Wb3의 단부와 둘레 방향 보강층(145)의 단부와의 거리가 적정하게 확보된다. 덧붙여, 이 점은, 둘레 방향 보강층(145)이 분할 구조를 가지는 구성(도시 생략)에 있어서도, 마찬가지이다.
둘레 방향 보강층(145)의 거리 S는, 타이어를 규정 림에 장착하여 규정 내압을 부여하는 것과 함께 무부하 상태로 하였을 때의 타이어 폭 방향의 거리로서 측정된다.
덧붙여, 도 1의 구성에서는, 도 3에 도시하는 바와 같이, 둘레 방향 보강층(145)이, 1개의 스틸 와이어를 나선상으로 감아 돌려 구성되어 있다. 그러나, 이것에 한하지 않고, 둘레 방향 보강층(145)이, 복수 개의 와이어를 서로 병주(倂走)시키면서 나선상으로 감아 돌려 구성되어도 무방하다(다중 감기 구조). 이 때, 와이어의 개수가, 5개 이하인 것이 바람직하다. 또한, 5개의 와이어를 다중 감기 하였을 때의 단위당의 감기 폭이, 12[mm] 이하인 것이 바람직하다. 이것에 의하여, 복수 개(2개 이상 5개 이하)의 와이어를 타이어 둘레 방향에 대하여 ±5[deg]의 범위 내에서 경사시키면서 적정하게 감을 수 있다.
또한, 이 공기입 타이어(1)에서는, 고각도 벨트(141)의 폭 Wb1과 한 쌍의 교차 벨트(142, 143) 중 폭이 좁은 교차 벨트(143)의 폭 Wb3가, 0.85≤Wb1/Wb3≤1.05의 관계를 가지는 것이 바람직하다(도 3 참조). 이것에 의하여, 비 Wb1/Wb3가 적정화된다.
고각도 벨트(141)의 폭 Wb1 및 교차 벨트(143)의 폭 Wb3는, 타이어를 규정 림에 장착하여 규정 내압을 부여하는 것과 함께 무부하 상태로 하였을 때의 타이어 폭 방향의 거리로서 측정된다.
덧붙여, 도 1의 구성에서는, 도 3에 도시하는 바와 같이, 벨트층(14)이 타이어 적도면(CL)을 중심으로 하는 좌우 대칭인 구조를 가지고, 또한, 고각도 벨트(141)의 폭 Wb1과 폭이 좁은 교차 벨트(143)의 폭 Wb3가, Wb1<Wb3의 관계를 가지고 있다. 이 때문에, 타이어 적도면(CL)의 편측 영역에서, 고각도 벨트(141)의 에지부가 폭이 좁은 교차 벨트(143)의 에지부보다도 타이어 폭 방향 내측에 배치되어 있다. 그러나, 이것에 한하지 않고, 고각도 벨트(141)의 폭 Wb1과 폭이 좁은 교차 벨트(143)의 폭 Wb3가, Wb1≥Wb3의 관계를 가져도 무방하다(도시 생략).
또한, 고각도 벨트(141)의 벨트 코드가 스틸 와이어이고, 고각도 벨트가 15[개/50mm] 이상 25[개/50mm] 이하의 엔드수를 가지는 것이 바람직하다. 또한, 한 쌍의 교차 벨트(142, 143)의 벨트 코드가 스틸 와이어이고, 한 쌍의 교차 벨트(142, 143)가 18[개/50mm] 이상 28[개/50mm] 이하의 엔드수를 가지는 것이 바람직하고, 20[개/50mm] 이상 25[개/50mm] 이하의 엔드수를 가지는 것이 보다 바람직하다. 또한, 둘레 방향 보강층(145)의 벨트 코드가, 스틸 와이어이고, 또한, 17[개/50mm] 이상 30[개/50mm] 이하의 엔드수를 가지는 것이 바람직하다. 이것에 의하여, 각 벨트 플라이(141, 142, 143, 145)의 강도가 적정하게 확보된다.
또한, 고각도 벨트(141)의 코트 고무의 100% 신장 시 모듈러스 E1과 둘레 방향 보강층(145)의 코트 고무의 100% 신장 시 모듈러스 Es가, 0.90≤Es/E1≤1.10의 관계를 가지는 것이 바람직하다. 또한, 한 쌍의 교차 벨트(142, 143)의 코트 고무의 100% 신장 시 모듈러스 E2, E3와 둘레 방향 보강층(145)의 코트 고무의 100% 신장 시 모듈러스 Es가, 0.90≤Es/E2≤1.10 또한 0.90≤Es/E3≤1.10의 관계를 가지는 것이 바람직하다. 또한, 둘레 방향 보강층(145)의 코트 고무의 100% 신장 시 모듈러스 Es가, 4.5[MPa]≤Es≤7.5[MPa]의 범위 내에 있는 것이 바람직하다. 이것에 의하여, 각 벨트 플라이(141, 142, 143, 145)의 모듈러스가 적정화된다.
100% 신장 시 모듈러스는, JIS-K6251(3호 덤벨 사용)에 따른 실온에서의 인장(引張) 시험에 의하여 측정된다.
또한, 고각도 벨트(141)의 코트 고무의 파단(破斷) 신장 λ1이, λ1≥200[%]의 범위에 있는 것이 바람직하다. 또한, 한 쌍의 교차 벨트(142, 143)의 코트 고무의 파단 신장 λ2, λ3가, λ2≥200[%] 또한 λ3≥200[%]의 범위에 있는 것이 바람직하다. 또한, 둘레 방향 보강층(145)의 코트 고무의 파단 신장 λs가, λs≥200[%]의 범위에 있는 것이 바람직하다. 이것에 의하여, 각 벨트 플라이(141, 142, 143, 145)의 내구성이 적정하게 확보된다.
파단 신장은, JIS-K7162 규정의 1B형(두께 3mm의 덤벨형)의 시험편(試驗片)에 관하여, JIS-K7161에 준거하여 인장 시험기(INSTRON5585H, 인스트론사(INSTRON Company Limited)제)를 이용한 인장 속도 2[mm/분]에서의 인장 시험에 의하여 측정된다.
또한, 둘레 방향 보강층(145)을 구성하는 벨트 코드의 부재(部材)일 때에 있어서 인장 하중 100[N]으로부터 300[N]일 때의 신장이 1.0[%] 이상 2.5[%] 이하, 타이어일 때(타이어로부터 꺼낸 것)에 있어서 인장 하중 500[N]으로부터 1000[N]일 때의 신장이 0.5[%] 이상 2.0[%] 이하인 것이 바람직하다. 이와 같은 벨트 코드(하이엘롱게이션(high elongation) 스틸 와이어)는, 통상의 스틸 와이어보다도 저하중 부하 시의 신장률이 좋고, 제조 시부터 타이어 사용 시에 걸쳐 둘레 방향 보강층(145)에 걸리는 부하에 견딜 수 있기 때문에, 둘레 방향 보강층(145)의 손상을 억제할 수 있는 점에서 바람직하다.
벨트 코드의 신장은, JIS-G3510에 준거하여 측정된다.
또한, 이 공기입 타이어(1)에서는, 트레드 고무(15)의 파단 신장이, 350[%] 이상의 범위에 있는 것이 바람직하다. 이것에 의하여, 트레드 고무(15)의 강도가 확보되어, 최외주 방향 주홈(2)에 있어서의 티어(tear)의 발생이 억제된다. 덧붙여, 트레드 고무(15)의 파단 신장의 상한은, 특별히 한정이 없지만, 트레드 고무(15)의 고무 콤파운드(compound)의 종류에 따라 제약을 받는다.
또한, 이 공기입 타이어(1)에서는, 트레드 고무(15)의 경도가, 60 이상의 범위에 있는 것이 바람직하다. 이것에 의하여, 트레드 고무(15)의 강도가 적정하게 확보된다. 덧붙여, 트레드 고무(15)의 경도의 상한은, 특별히 한정이 없지만, 트레드 고무(15)의 고무 콤파운드의 종류에 따라 제약을 받는다.
고무 경도란, JIS-K6263에 준거한 JIS-A 경도를 말한다.
또한, 이 공기입 타이어(1)에서는, 트레드 고무(15)의 손실 정접(正接) tanδ가, 0.10≤tanδ의 범위에 있는 것이 바람직하다.
손실 정접 tanδ는, 점탄성 스펙트로미터를 이용하여, 온도 20[℃], 전단(剪斷) 일그러짐 10[%], 주파수 20[Hz]의 조건에서 측정된다.
[벨트 쿠션]
도 2에 도시하는 바와 같이, 이 공기입 타이어(1)는, 벨트 쿠션(20)을 구비한다. 이 벨트 쿠션(20)은, 한 쌍의 교차 벨트(142, 143) 중 타이어 직경 방향 내측에 있는 교차 벨트(142)의 단부와, 카커스층(13)과의 사이에 끼워 넣어져 배치된다. 예를 들어, 도 2의 구성에서는, 벨트 쿠션(20)이, 타이어 직경 방향 외측의 단부를 교차 벨트(142)의 단부와 카커스층(13)과의 사이에 삽입하여, 고각도 벨트(141)의 에지부에 당접(當接)하고 있다. 또한, 벨트 쿠션(20)이, 카커스층(13)을 따라서 타이어 직경 방향 내측으로 연재하여, 카커스층(13)과 사이드 월 고무(16)와의 사이에 끼워 넣어져 배치되어 있다. 또한, 좌우 한 쌍의 벨트 쿠션(20)이, 타이어 좌우의 사이드 월부에 각각 배치되어 있다.
또한, 벨트 쿠션(20)의 100% 신장 시 모듈러스 Ebc가, 1.5[MPa]≤Ebc≤3.0[MPa]의 범위 내에 있다. 벨트 쿠션(20)의 모듈러스 Ebc가 이와 같은 범위 내에 있는 것에 의하여, 벨트 쿠션(20)이 응력(應力) 완화 작용을 발휘하여, 교차 벨트(142)의 단부에 있어서의 주변 고무의 세퍼레이션이 억제된다.
또한, 벨트 쿠션(20)의 파단 신장 λbc가, λbc≥400[%]의 범위에 있다. 이것에 의하여, 벨트 쿠션(20)의 내구성이 적정하게 확보된다.
[벨트 에지 쿠션의 이색(二色) 구조]
도 7은, 도 1에 기재한 공기입 타이어의 변형예를 도시하는 설명도이다. 동 도면은, 벨트층(14)의 타이어 폭 방향 외측의 단부의 확대도를 도시하고 있다. 또한, 동 도면에서는, 둘레 방향 보강층(145), 벨트 에지 쿠션(19)에 해칭을 넣고 있다.
도 1의 구성에서는, 둘레 방향 보강층(145)이, 한 쌍의 교차 벨트(142, 143) 중 폭이 좁은 교차 벨트(143)의 좌우의 에지부보다도 타이어 폭 방향 내측에 배치되어 있다. 또한, 한 쌍의 교차 벨트(142, 143)의 사이이고 한 쌍의 교차 벨트(142, 143)의 에지부에 대응하는 위치에, 벨트 에지 쿠션(19)이 끼워 넣어져 배치되어 있다. 구체적으로는, 벨트 에지 쿠션(19)이, 둘레 방향 보강층(145)의 타이어 폭 방향 외측에 배치되어 둘레 방향 보강층(145)에 인접하고, 둘레 방향 보강층(145)의 타이어 폭 방향 외측의 단부로부터 한 쌍의 교차 벨트(142, 143)의 타이어 폭 방향 외측의 단부까지 연재하여 배치되어 있다.
또한, 도 1의 구성에서는, 벨트 에지 쿠션(19)이, 타이어 폭 방향 외측을 향하는 것에 따라 두께를 증가시키는 것에 의하여, 전체적으로, 둘레 방향 보강층(145)보다도 두께가 두꺼운 구조를 가지고 있다. 또한, 벨트 에지 쿠션(19)이, 각 교차 벨트(142, 143)의 코트 고무보다도 낮은 100% 신장 시 모듈러스 E를 가지고 있다. 구체적으로는, 벨트 에지 쿠션(19)의 100% 신장 시 모듈러스 E와 코트 고무의 모듈러스 Eco가, 0.60≤E/Eco≤0.95의 관계를 가지고 있다. 이것에 의하여, 한 쌍의 교차 벨트(142, 143) 간 또한 둘레 방향 보강층(145)의 타이어 폭 방향 외측의 영역에 있어서의 고무 재료의 세퍼레이션의 발생이 억제되고 있다.
이것에 대하여, 도 7의 구성에서는, 도 1의 구성에 있어서, 벨트 에지 쿠션(19)이, 응력 완화 고무(191)와 단부 완화 고무(192)로 이루어지는 이색 구조를 가진다. 응력 완화 고무(191)는, 한 쌍의 교차 벨트(142, 143)의 사이이고 둘레 방향 보강층(145)의 타이어 폭 방향 외측에 배치되어 둘레 방향 보강층(145)에 인접한다. 단부 완화 고무(192)는, 한 쌍의 교차 벨트(142, 143)의 사이이고, 응력 완화 고무(191)의 타이어 폭 방향 외측 또한 한 쌍의 교차 벨트(142, 143)의 에지부에 대응하는 위치에 배치되어 응력 완화 고무(191)에 인접한다. 따라서, 벨트 에지 쿠션(19)이, 타이어 자오선 방향의 단면으로부터 볼 때에 있어서, 응력 완화 고무(191)와 단부 완화 고무(192)를 타이어 폭 방향으로 연설(連設)하여 이루어지는 구조를 가지고, 둘레 방향 보강층(145)의 타이어 폭 방향 외측의 단부로부터 한 쌍의 교차 벨트(142, 143)의 에지부까지의 영역을 채워 배치된다.
또한, 도 7의 구성에서는, 응력 완화 고무(191)의 100% 신장 시 모듈러스 Ein과 둘레 방향 보강층(145)의 코트 고무의 100% 신장 시 모듈러스 Es가, Ein<Es의 관계를 가진다. 구체적으로는, 응력 완화 고무(191)의 모듈러스 Ein과 둘레 방향 보강층(145)의 모듈러스 Es가, 0.6≤Ein/Es≤0.9의 관계를 가지는 것이 바람직하다.
또한, 도 7의 구성에서는, 응력 완화 고무(191)의 100% 신장 시 모듈러스 Ein과 각 교차 벨트(142, 143)의 코트 고무의 100% 신장 시 모듈러스 Eco가, Ein<Eco의 관계를 가진다. 구체적으로는, 응력 완화 고무(191)의 모듈러스 Ein과 코트 고무의 모듈러스 Eco가, 0.6≤Ein/Eco≤0.9의 관계를 가지는 것이 바람직하다.
또한, 도 7의 구성에서는, 단부 완화 고무(192)의 100% 신장 시 모듈러스 Eout과 응력 완화 고무(191)의 100% 신장 시 모듈러스 Ein이, Eout<Ein의 관계를 가지는 것이 바람직하다. 또한, 응력 완화 고무(191)의 100% 신장 시 모듈러스 Ein이, 4.0[MPa]≤Ein≤5.5[MPa]의 범위 내에 있는 것이 바람직하다.
도 7의 구성에서는, 둘레 방향 보강층(145)의 타이어 폭 방향 외측에 응력 완화 고무(191)가 배치되기 때문에, 둘레 방향 보강층(145)의 에지부 또한 교차 벨트(142, 143) 사이에 있어서의 주변 고무의 전단 일그러짐이 완화된다. 또한, 교차 벨트(142, 143)의 에지부에 대응하는 위치에 단부 완화 고무(192)가 배치되기 때문에, 교차 벨트(142, 143)의 에지부에 있어서의 주변 고무의 전단 일그러짐이 완화된다. 이것들에 의하여, 둘레 방향 보강층(145)의 주변 고무의 세퍼레이션이 억제된다.
[효과]
이상 설명한 바와 같이, 이 공기입 타이어(1)는, 카커스층(13)과, 카커스층(13)의 타이어 직경 방향 외측에 배치되는 벨트층(14)과, 벨트층(14)의 타이어 직경 방향 외측에 배치되는 트레드 고무(15)를 구비한다(도 1 참조). 또한, 공기입 타이어(1)는, 타이어 둘레 방향으로 연재하는 적어도 3개의 둘레 방향 주홈(2)과, 이러한 둘레 방향 주홈(2)으로 구획되어 이루어지는 복수의 육부(3)를 구비한다. 또한, 벨트층(14)이, 절댓값으로 10[deg] 이상 45[deg] 이하의 벨트 각도를 가지는 것과 함께 서로 다른 부호의 벨트 각도를 가지는 한 쌍의 교차 벨트(142, 143)와, 타이어 둘레 방향에 대하여 ±5[deg]의 범위 내에 있는 벨트 각도를 가지는 둘레 방향 보강층(145)을 적층하여 이루어진다(도 2 참조). 또한, 타이어 자오선 방향의 단면으로부터 볼 때에 있어서, 둘레 방향 주홈(2)의 말단 마모면(WE)을 그을 때에, 타이어 적도면(CL) 상에 있어서의 둘레 방향 보강층(145)으로부터 말단 마모면(WE)까지의 거리 Dcc와 둘레 방향 보강층(145)의 단부로부터 말단 마모면(WE)까지의 거리 De가, De/Dcc≤0.94의 관계를 가진다. 또한, 카커스층(13)의 최대 높이 위치의 직경 Ya와 둘레 방향 보강층(145)의 단부 위치에 있어서의 카커스층(13)의 직경 Yd가, 0.95≤Yd/Ya≤1.02의 관계를 가진다(도 1 참조).
이와 같은 구성에서는, 말단 마모면(WE)에 대한 둘레 방향 보강층(145)의 거리 Dcc, De가 적정화되기 때문에, 타이어 접지 시에 있어서의 둘레 방향 보강층(145)의 일그러짐이 저감된다(도 4(a), (b)를 비교 참조). 나아가, 둘레 방향 보강층(145)의 단부 위치에 있어서의 카커스층(13)의 직경 Yd가 적정화되기 때문에, 타이어 접지 시에 있어서의 둘레 방향 보강층(145)의 배치 영역에서의 카커스층(13)의 변형량이 저감된다. 즉, 0.95≤Yd/Ya인 것에 의하여, 타이어 접지 시에 있어서의 둘레 방향 보강층(145)의 배치 영역에서의 카커스층(13)의 변형량이 저감된다. 또한, Yd/Ya≤1.02인 것에 의하여, 타이어 형상이 적정하게 확보된다. 이것에 의하여, 둘레 방향 보강층(145)의 주변 고무의 세퍼레이션이 억제되는 이점이 있다.
또한, 이 공기입 타이어(1)에서는, 카커스층(13)의 최대 높이 위치의 직경 Ya와 카커스층(13)의 최대 폭 위치의 직경 Yc가, 0.80≤Yc/Ya≤0.90의 관계를 가진다(도 1 참조). 이것에 의하여, 카커스층(13)의 형상이 보다 적정화되어, 타이어 접지 시에 있어서의 둘레 방향 보강층(145)의 배치 영역에서의 카커스층(13)의 변형량이 효과적으로 저감되는 이점이 있다.
또한, 이 공기입 타이어(1)에서는, 타이어 적도면(CL)에 있어서의 트레드 프로파일로부터 타이어 내주면까지의 거리 Gcc와 트레드단(P)으로부터 타이어 내주면까지의 거리 Gsh가, 1.10≤Gsh/Gcc의 관계를 가진다(도 2 참조). 이와 같은 구성에서는, 타이어 비접지 상태에 있어서의 트레드 프로파일이 전체적으로 플랫한 형상을 가지기(도 1 및 도 2 참조) 때문에, 타이어 접지 시에 있어서의 트레드부 숄더 영역의 변형량이 저감된다(도 4(a), (b)를 비교 참조). 이것에 의하여, 둘레 방향 보강층(145)의 주변 고무의 세퍼레이션이 보다 효과적으로 억제되는 이점이 있다. 또한, 타이어 전동(轉動) 시에 있어서의 둘레 방향 보강층(145)의 단부의 반복 일그러짐이 저감되어, 둘레 방향 보강층(145)의 벨트 코드의 파단이 억제되는 이점이 있다.
또한, 이 공기입 타이어(1)는, 타이어 적도면(CL)에 있어서의 트레드 프로파일의 직경 D1과, 숄더 육부(3)의 타이어 폭 방향 내측의 에지부에 있어서의 트레드 프로파일의 직경 D2와, 둘레 방향 보강층(145)의 단부에 있어서의 트레드 프로파일의 직경 D3가, D1>D2, D1>D3 및 -0.65≤(D2-D3)/(D1-D3)≤0.85의 관계를 가진다(도 1 참조). 이와 같은 구성에서는, 트레드 프로파일의 각 위치에 있어서의 외경 D1 ~ D3의 관계가 적정화되기 때문에, 타이어 접지 시에 있어서의 숄더부의 변형량이 한층 더 작아진다. 이들에 의하여, 숄더 육부(3)에 있어서의 티어의 발생이 효과적으로 억제되는 이점이 있다.
또한, 이 공기입 타이어(1)에서는, 둘레 방향 보강층(145)의 폭 Ws와 카커스층(13)의 폭 Wca가, 0.60≤Ws/Wca≤0.70의 관계를 가진다(도 1 참조). 이것에 의하여, 둘레 방향 보강층(145)의 폭 Ws와 카커스층(13)의 폭 Wca와의 비 Ws/Wca가 적정화되는 이점이 있다. 즉, 0.60≤Ws/Wca인 것에 의하여, 둘레 방향 보강층(145)의 기능이 적정하게 확보된다. 또한, Ws/Wca≤0.70인 것에 의하여, 둘레 방향 보강층(145)의 에지부에 있어서의 벨트 코드의 피로 파단이 억제된다.
또한, 이 공기입 타이어(1)에서는, 트레드 폭 TW와 카커스층(13)의 단면 폭 Wca가, 0.82≤TW/Wca≤0.92의 관계를 가진다(도 1 참조). 트레드 폭 TW와 카커스층(13)의 단면 폭 Wca와의 비 TW/Wca가 적정화되는 이점이 있다. 즉, 0.82≤TW/Wca인 것에 의하여, 센터 영역과 숄더 영역과의 직경 성장차가 완화되어, 타이어 폭 방향으로 걸리는 접지압(接地壓) 분포가 균일화된다. 이것에 의하여, 벨트층(14)으로의 부하가 분산되어, 타이어의 내구성이 향상한다. 또한, TW/Wca≤0.92인 것에 의하여, 숄더부의 올라감이 억제되고, 접지 시의 휨이 억제되어, 벨트층(14)으로의 부하가 효과적으로 분산된다.
또한, 이 공기입 타이어(1)에서는, 트레드 폭 TW와 타이어 총 폭 SW가, 0.79≤TW/SW≤0.89의 관계를 가진다(도 1 참조). 이와 같은 구성에서는, 벨트층(14)이 둘레 방향 보강층(145)을 가지는 것에 의하여, 센터 영역의 직경 성장이 억제된다. 나아가, 비 TW/SW가 상기의 범위 내에 있는 것에 의하여, 센터 영역과 숄더 영역과의 직경 성장차가 완화된다. 이것에 의하여, 타이어의 접지압 분포가 균일화되는 이점이 있다. 즉, 0.79≤TW/SW인 것에 의하여, 타이어 내 에어 볼륨이 확보되고, 휨이 억제된다. 또한, TW/SW≤0.89인 것에 의하여, 숄더부의 올라감이 억제되어, 접지 시의 휨이 억제된다.
또한, 이 공기입 타이어(1)에서는, 타이어 적도면(CL) 상에 있어서의 둘레 방향 보강층(145)으로부터 트레드 프로파일까지의 거리 Hcc와 둘레 방향 보강층(145)의 단부로부터 트레드 프로파일까지의 거리 He가, He/Hcc≤0.97의 관계를 가진다(도 2 참조). 이와 같은 구성에서는, 둘레 방향 보강층(145)과 트레드 프로파일과의 위치 관계(비 He/Hcc)가 적정화되기 때문에, 타이어 접지 시에 있어서의 둘레 방향 보강층(145)의 일그러짐이 저감된다. 이것에 의하여, 둘레 방향 보강층(145)의 주변 고무의 세퍼레이션이 억제되는 이점이 있다.
또한, 이 공기입 타이어(1)에서는, 둘레 방향 보강층(145)의 타이어 적도면(CL)에 있어서의 직경 R1과 타이어 폭 방향 외측의 단부에 있어서의 직경 R2와의 차 Dr(=R1-R2)과 둘레 방향 보강층(145)의 폭 Ws가,-0.010≤Dr/Ws≤0.010의 관계를 가진다(도 1 및 도 2 참조). 이와 같은 구성에서는, 둘레 방향 보강층(145)의 편마모량(차 Dr)과 폭 Ws와의 비 Dr/Ws가 적정화된다. 즉, 비 Dr/Ws가 상기의 범위 내로 설정되는 것에 의하여, 둘레 방향 보강층(145)이 만곡하는 일 없이 타이어 폭 방향으로 플랫하게 배치된다. 이것에 의하여, 타이어 접지 시에 있어서의 둘레 방향 보강층(145)의 단부에 있어서의 일그러짐이 저감된다. 이것에 의하여, 타이어의 내벨트 에지 세퍼레이션 성능이 향상하는 이점이 있다.
또한, 이 공기입 타이어(1)에서는, 벨트층(14)이, 절댓값으로 45[deg] 이상 70[deg] 이하의 벨트 각도를 가지는 고각도 벨트(141)를 가진다(도 1 및 도 3 참조). 이것에 의하여, 벨트층(14)이 보강되어, 타이어 접지 시에 있어서의 벨트층(14)의 단부의 일그러짐이 억제되는 이점이 있다.
또한, 이 공기입 타이어(1)에서는, 고각도 벨트(141)의 벨트 코드가 스틸 와이어이고, 고각도 벨트(141)가 15[개/50mm] 이상 25[개/50mm] 이하의 엔드수를 가진다(도 1 및 도 3 참조). 이것에 의하여, 고각도 벨트(141)의 벨트 코드의 엔드수가 적정화되는 이점이 있다. 즉, 엔드수가 15[개/50mm] 이상인 것에 의하여, 고각도 벨트(141)의 강도가 적정하게 확보된다. 또한, 엔드수가 25[개/50mm] 이하인 것에 의하여, 고각도 벨트(141)의 코트 고무의 고무량이 적정하게 확보되어, 인접하는 벨트 플라이 사이(도 3에서는, 카커스층(13) 및 타이어 직경 방향 내측의 교차 벨트(142)와 고각도 벨트(141)와의 사이)에 있어서의 고무 재료의 세퍼레이션이 억제된다.
또한, 이 공기입 타이어(1)에서는, 고각도 벨트(141)의 폭 Wb1과, 한 쌍의 교차 벨트(142, 143) 중 폭이 좁은 교차 벨트(143)의 폭 Wb3가, 0.85≤Wb1/Wb3≤1.05의 관계를 가진다(도 3 참조). 이와 같은 구성에서는, 고각도 벨트(141)의 폭 Wb1과 폭이 좁은 교차 벨트(143)의 폭 Wb3와의 비 Wb1/Wb3가 적정화된다. 이것에 의하여, 타이어 접지 시에 있어서의 벨트층(14)의 단부의 일그러짐이 억제되는 이점이 있다.
또한, 이 공기입 타이어(1)에서는, 둘레 방향 보강층(145)의 코트 고무의 100% 신장 시 모듈러스 Es가, 4.5[MPa]≤Es≤7.5[MPa]의 범위 내에 있다. 이것에 의하여, 둘레 방향 보강층(145)의 코트 고무의 모듈러스가 적정화되는 이점이 있다.
또한, 이 공기입 타이어(1)에서는, 둘레 방향 보강층(145)의 코트 고무의 파단 신장 λs가, λs≥200[%]의 범위에 있다. 이것에 의하여, 둘레 방향 보강층(145)의 내구성이 확보되는 이점이 있다.
또한, 이 공기입 타이어(1)에서는, 고각도 벨트(141)의 코트 고무의 파단 신장 λ1≥200[%]의 범위에 있다. 이것에 의하여, 고각도 벨트(141)의 내구성이 확보되는 이점이 있다.
또한, 이 공기입 타이어(1)는, 한 쌍의 교차 벨트(142, 143) 중 타이어 직경 방향 내측에 있는 교차 벨트(142)의 단부와, 카커스층(13)과의 사이에 끼워 넣어져 배치되는 벨트 쿠션(20)을 구비한다(도 1 및 도 2 참조). 또한, 벨트 쿠션(20)의 100% 신장 시 모듈러스 Ebc가, 1.5[MPa]≤Ebc≤3.0[MPa]의 범위 내에 있다. 이와 같은 구성에서는, 벨트 쿠션(20)이 타이어 직경 방향 내측에 있는 교차 벨트(142)와 카커스층(13)과의 사이에 배치되고, 이 벨트 쿠션(20)의 모듈러스 Ebc가 적정화된다. 이것에 의하여, 벨트 쿠션(20)이 응력 완화 작용을 발휘하여, 교차 벨트(142)의 단부에 있어서의 주변 고무의 세퍼레이션이 억제되는 이점이 있다. 구체적으로는, 1.5[MPa]≤Ebc인 것에 의하여, 벨트 쿠션(20)의 내구성이 적정하게 확보되고, 또한, Ebc≤3.0[MPa]인 것에 의하여, 벨트 쿠션(20)의 응력 완화 작용이 적정하게 확보된다.
또한, 이 공기입 타이어(1)에서는, 벨트 쿠션(20)의 파단 신장 λbc가, λbc≥400[%]의 범위에 있다. 이것에 의하여, 벨트 쿠션(20)의 내구성이 적정하게 확보되는 이점이 있다.
또한, 이 공기입 타이어(1)에서는, 고각도 벨트(141)와, 한 쌍의 교차 벨트(142, 143) 중 타이어 직경 방향 내측에 있는 교차 벨트(142)가 인접하여 배치된다(도 3 참조). 또한, 고각도 벨트(141)의 벨트 코드와 교차 벨트(142)의 벨트 코드와의 코드 사이 거리 Dc가, 0.50[mm]≤Dc≤1.50[mm]의 범위 내에 있다. 이것에 의하여, 고각도 벨트(141)와 교차 벨트(142)와의 코드 사이 거리 Dc가 적정화되는 이점이 있다. 즉, 0.50[mm]≤Dc인 것에 의하여, 서로 이웃하는 벨트 코드 사이의 고무 재료의 두께가 확보되어, 고각도 벨트(141)와 교차 벨트(142)와의 사이의 응력 완화 작용이 적정하게 확보된다. 또한, Dc≤1.50[mm]인 것에 의하여, 고각도 벨트와 교차 벨트 사이에 있어서의 테 효과를 확보를 할 수 있다.
또한, 타이어 자오선 방향의 단면으로부터 볼 때에 있어서, 좌우의 최외주 방향 주홈(2, 2)보다도 타이어 폭 방향 내측에 있는 육부(3)가, 타이어 직경 방향 외측으로 볼록으로 되는 제1 프로파일(PL1)을 가진다(도 6 참조). 또한, 좌우의 최외주 방향 주홈보다도 타이어 폭 방향 외측에 있는 숄더 육부(3)가, 접지면 내에서 타이어 직경 방향 내측으로 볼록으로 되는 제2 프로파일(PL2)을 가진다. 또한, 숄더 육부(3)의 접지면 내에 있어서의 제1 프로파일(PL1)의 연장선과 제2 프로파일(PL2)과의 타이어 직경 방향의 거리 d가, 타이어 폭 방향 외측을 향하는 것에 따라 증가한다. 이와 같은 구성에서는, 타이어 접지 시에 있어서의 숄더 육부(3)의 접지단(T) 측의 접지압이 높아지기 때문에, 타이어 접지 시에 있어서의 센터 영역의 육부(3)의 미끄러짐량과 숄더 육부(3)의 미끄러짐량이 균일화된다. 이것에 의하여, 숄더 육부(3)의 편마모가 억제되어, 타이어의 내편마모 성능이 향상하는 이점이 있다.
또한, 이 공기입 타이어(1)에서는, 둘레 방향 보강층(145)의 벨트 코드가, 스틸 와이어이고, 17[개/50mm] 이상 30[개/50mm] 이하의 엔드수를 가진다. 이것에 의하여, 둘레 방향 보강층(145)의 벨트 코드의 엔드수가 적정화되는 이점이 있다. 즉, 엔드수가 17[개/50mm] 이상인 것에 의하여, 둘레 방향 보강층(145)의 강도가 적정하게 확보된다. 또한, 엔드수가 30[개/50mm] 이하인 것에 의하여, 둘레 방향 보강층(145)의 코트 고무의 고무량이 적정하게 확보되어, 인접하는 벨트 플라이 간(도 3에서는, 한 쌍의 교차 벨트(142, 143)와 둘레 방향 보강층(145)과의 사이)에 있어서의 고무 재료의 세퍼레이션이 억제된다.
또한, 이 공기입 타이어(1)에서는, 둘레 방향 보강층(145)을 구성하는 벨트 코드의 부재일 때에 있어서의 인장 하중 100[N]으로부터 300[N]일 때의 신장이 1.0[%] 이상 2.5[%] 이하이다. 이것에 의하여, 둘레 방향 보강층(145)에 의한 센터 영역의 직경 성장의 억제 작용이 적정하게 확보되는 이점이 있다.
또한, 이 공기입 타이어(1)에서는, 둘레 방향 보강층(145)을 구성하는 벨트 코드의 타이어일 때에 있어서의 인장 하중 500[N]으로부터 1000[N]일 때의 신장이 0.5[%] 이상 2.0[%] 이하이다. 이것에 의하여, 둘레 방향 보강층(145)에 의한 센터 영역의 직경 성장의 억제 작용이 적정하게 확보되는 이점이 있다.
또한, 이 공기입 타이어(1)에서는, 둘레 방향 보강층(145)이, 한 쌍의 교차 벨트(142, 143) 중 폭이 좁은 교차 벨트(143)의 좌우의 에지부보다도 타이어 폭 방향 내측에 배치된다(도 3 참조). 또한, 공기입 타이어(1)는, 한 쌍의 교차 벨트(142, 143)의 사이이고 둘레 방향 보강층(145)의 타이어 폭 방향 외측에 배치되어 둘레 방향 보강층(145)에 인접하는 응력 완화 고무(191)와, 한 쌍의 교차 벨트(142, 143)의 사이이고 응력 완화 고무(191)의 타이어 폭 방향 외측 또한 한 쌍의 교차 벨트(142, 143)의 에지부에 대응하는 위치에 배치되어 응력 완화 고무(191)에 인접하는 단부 완화 고무(192)를 구비한다(도 7 참조). 이와 같은 구성에서는, 둘레 방향 보강층(145)이 한 쌍의 교차 벨트(142, 143) 중 폭이 좁은 교차 벨트(143)의 좌우의 에지부보다도 타이어 폭 방향 내측에 배치되는 것에 의하여, 둘레 방향 보강층(145)의 에지부에 있어서의 주변 고무의 피로(疲勞) 파단이 억제되는 이점이 있다. 또한, 둘레 방향 보강층(145)의 타이어 폭 방향 외측에 응력 완화 고무(191)가 배치되기 때문에, 둘레 방향 보강층(145)의 에지부 또한 교차 벨트(142, 143) 사이에 있어서의 주변 고무의 전단 일그러짐이 완화된다. 또한, 교차 벨트(142, 143)의 에지부에 대응하는 위치에 단부 완화 고무(192)가 배치되기 때문에, 교차 벨트(142, 143)의 에지부에 있어서의 주변 고무의 전단 일그러짐이 완화된다. 이것들에 의하여, 둘레 방향 보강층(145)의 주변 고무의 세퍼레이션이 억제되는 이점이 있다.
또한, 이 공기입 타이어(1)에서는, 응력 완화 고무(191)의 100% 신장 시 모듈러스 Ein과 한 쌍의 교차 벨트(142, 143)의 코트 고무의 100% 신장 시 모듈러스 Eco가, Ein<Eco의 관계를 가진다. 이것에 의하여, 응력 완화 고무(191)의 모듈러스 Ein이 적정화되어, 둘레 방향 보강층(145)의 에지부 또한 교차 벨트(142, 143) 사이에 있어서의 주변 고무의 전단 일그러짐이 완화되는 이점이 있다.
또한, 이 공기입 타이어(1)에서는, 응력 완화 고무(191)의 100% 신장 시 모듈러스 Ein과 한 쌍의 교차 벨트(142, 143)의 코트 고무의 100% 신장 시 모듈러스 Eco가, 0.6≤Ein/Eco≤0.9의 관계를 가진다. 이것에 의하여, 비 Ein/Eco가 적정화되어, 둘레 방향 보강층(145)의 에지부 또한 교차 벨트(142, 143) 사이에 있어서의 주변 고무의 전단 일그러짐이 완화되는 이점이 있다.
또한, 이 공기입 타이어(1)에서는, 응력 완화 고무(191)의 100% 신장 시 모듈러스 Ein이, 4.0[MPa]≤Ein≤5.5[MPa]의 범위 내에 있다(도 7 참조). 이것에 의하여, 응력 완화 고무(191)의 모듈러스 Ein이 적정화되어, 둘레 방향 보강층(145)의 에지부 또한 교차 벨트(142, 143) 사이에 있어서의 주변 고무의 전단 일그러짐이 완화되는 이점이 있다.
또한, 이 공기입 타이어(1)에서는, 둘레 방향 보강층(145)이, 한 쌍의 교차 벨트(142, 143) 중 폭이 좁은 교차 벨트(143)의 좌우의 에지부보다도 타이어 폭 방향 내측에 배치된다(도 3 참조). 또한, 폭이 좁은 교차 벨트(143)의 폭 Wb3와 둘레 방향 보강층(145)의 에지부로부터 폭이 좁은 교차 벨트(143)의 에지부까지의 거리 S가, 0.03≤S/Wb3≤0.12의 범위에 있다. 이것에 의하여, 교차 벨트(142, 143)의 에지부와 둘레 방향 보강층(145)의 에지부와의 위치 관계 S/Wb3가 적정화되는 이점이 있다. 즉, 0.03≤S/Wb3인 것에 의하여, 둘레 방향 보강층(145)의 단부와 교차 벨트(143)의 단부와의 거리가 적정하게 확보되어, 이러한 벨트 플라이(145, 143)의 단부에 있어서의 주변 고무의 세퍼레이션이 억제된다. 또한, S/Wb3≤0.12인 것에 의하여, 교차 벨트(143)의 폭 Wb3에 대한 둘레 방향 보강층(145)의 폭 Ws가 확보되어, 둘레 방향 보강층(145)에 의한 테 효과가 적정하게 확보된다.
[적용 대상]
또한, 이 공기입 타이어(1)는, 타이어가 정규 림에 림 조립되는 것과 함께 타이어에 정규 내압 및 정규 하중이 부여된 상태에서, 편평률이 40[%] 이상 70[%] 이하인 중하중용 타이어에 적용되는 것이 바람직하다. 중하중용 타이어에서는, 승용차용 타이어와 비교하여, 타이어 사용 시의 부하가 크다. 이 때문에, 트레드면에 있어서의 둘레 방향 보강층(145)의 배치 영역과, 둘레 방향 보강층(145)보다도 타이어 폭 방향 외측의 영역과의 직경차가 커지기 쉽다. 또한, 상기와 같은 낮은 편평률을 가지는 타이어에서는, 접지 형상이 북 형상으로 되기 쉽다. 그래서, 이와 같은 중하중용 타이어를 적용 대상으로 하는 것에 의하여, 상기한 타이어의 내벨트 에지 세퍼레이션 성능 향상 효과를 현저하게 얻을 수 있다.
실시예
도 8 ~ 도 11은, 본 발명의 실시 형태에 관련되는 공기입 타이어의 성능 시험의 결과를 도시하는 도표이다.
이 성능 시험에서는, 서로 다른 복수의 공기입 타이어에 관하여, 내(耐)벨트 에지 세퍼레이션 성능에 관한 평가가 행하여졌다(도 8 ~ 도 11 참조). 이 평가에서는, 타이어 사이즈 315/60R22.5인 공기입 타이어가 림 사이즈 22.5×9.00인 림에 조립되고, 이 공기입 타이어에 공기압 900[kPa]이 부여된다. 또한, 실내 드럼 시험기를 이용한 저압 내구 시험이 행하여진다. 그리고, 주행 속도를 45[km/h]로 설정하고, 하중 34.81[kN]으로부터 12시간마다 하중을 5[%](1.74[kN])씩 증가시켜, 타이어가 파괴하였을 때의 주행거리가 측정된다. 그리고, 이 측정 결과에 기초하여 종래예를 기준(100)으로 한 지수 평가가 행하여진다. 이 평가는, 수치가 클수록 바람직하다. 특히, 평가가 110 이상(기준값 100에 대하여 +10 포인트 이상)이면, 종래예에 대하여 충분한 우위성이 있고, 평가가 115 이상이면, 종래예에 대하여 비약적인 우위성이 있다고 말할 수 있다.
실시예 1의 공기입 타이어(1)는, 도 1 ~ 도 3에 기재한 구성을 가진다. 또한, 교차 벨트(142, 143)의 벨트 각도가 ±19[deg]이고, 둘레 방향 보강층(145)의 벨트 각도가 실질 0[deg]이다. 또한, 주요 치수가, TW=275[mm], Gcc=32.8[mm], Dcc=11.2[mm], Hcc=21.3[mm], Wca=320[mm], D1=950[mm], D1>D2, D1>D3로 설정되어 있다. 실시예 2 ~ 60의 공기입 타이어(1)는, 실시예 1의 공기입 타이어의 변형예이다.
종래예의 공기입 타이어는, 도 1 ~ 도 3의 구성에 있어서, 둘레 방향 보강층(145)을 구비하고 있지 않다.
시험 결과가 나타내는 바와 같이, 실시예 1 ~ 60의 공기입 타이어(1)에서는, 타이어의 내벨트 에지 세퍼레이션 성능이 향상하는 것을 알 수 있다. 또한, 특히, 실시예 1 ~ 14를 비교하면, 1.20≤Gsh/Gcc, De/Dcc≤0.92, 0.80≤Yc/Ya≤0.90 또한 0.95≤Yd/Ya≤1.02로 하는 것에 의하여, 내벨트 에지 세퍼레이션 성능에 관하여 우위성 있는 효과(평가 110 이상)가 얻어지는 것을 알 수 있다.
1: 공기입 타이어, 2: 둘레 방향 주홈, 3: 육부, 11: 비드 코어, 12: 비드 필러, 121: 로어 필러, 122: 어퍼 필러, 13: 카커스층, 14: 벨트층, 141: 고각도 벨트, 142, 143: 교차 벨트, 144: 벨트 커버, 145: 둘레 방향 보강층, 15: 트레드 고무, 16: 사이드 월 고무, 18: 이너 라이너, 19: 벨트 에지 쿠션, 191: 응력 완화 고무, 192: 단부 완화 고무, 20: 벨트 쿠션

Claims (29)

  1. 카커스(carcass)층과, 상기 카커스층의 타이어 직경 방향 외측에 배치되는 벨트층과, 상기 벨트층의 타이어 직경 방향 외측에 배치되는 트레드(tread) 고무를 구비하는 것과 함께, 타이어 둘레 방향으로 연재(延在)하는 적어도 3개의 둘레 방향 주(主)홈과, 이들의 둘레 방향 주홈으로 구획되어 이루어지는 복수의 육부(陸部)를 구비하는 공기입(空氣入) 타이어이고,
    상기 벨트층이, 절댓값으로 10[deg] 이상 45[deg] 이하의 벨트 각도를 가지는 것과 함께 서로 다른 부호의 벨트 각도를 가지는 한 쌍의 교차 벨트와, 타이어 둘레 방향에 대하여 ±5[deg]의 범위 내에 있는 벨트 각도를 가지는 둘레 방향 보강층을 적층하여 이루어지고, 또한,
    타이어 자오선 방향의 단면으로부터 볼 때에 있어서, 상기 둘레 방향 주홈의 말단 마모면(WE)을 그을 때에,
    타이어 적도면 상에 있어서의 상기 둘레 방향 보강층으로부터 말단 마모면(WE)까지의 거리 Dcc와 상기 둘레 방향 보강층의 단부(端部)로부터 말단 마모면(WE)까지의 거리 De가, De/Dcc≤0.94의 관계를 가지고, 또한,
    상기 카커스층의 최대 높이 위치의 직경 Ya와 상기 둘레 방향 보강층의 단부 위치에 있어서의 상기 카커스층의 직경 Yd가, 0.95≤Yd/Ya≤1.02의 관계를 가지는 것을 특징으로 하는 공기입 타이어.
  2. 제1항에 있어서,
    상기 카커스층의 최대 높이 위치의 직경 Ya와 상기 카커스층의 최대 폭 위치의 직경 Yc가, 0.80≤Yc/Ya≤0.90의 관계를 가지는 공기입 타이어.
  3. 제1항 또는 제2항에 있어서,
    타이어 적도면에 있어서의 트레드 프로파일로부터 타이어 내주면(內周面)까지의 거리 Gcc와 트레드단으로부터 타이어 내주면까지의 거리 Gsh가, 1.10≤Gsh/Gcc의 관계를 가지는 공기입 타이어.
  4. 제1항 내지 제3항 중 어느 한 항에 있어서,
    타이어 폭 방향의 가장 외측에 있는 상기 육부를 숄더 육부라고 부를 때에,
    타이어 적도면에 있어서의 트레드 프로파일의 직경 D1과, 상기 숄더 육부의 타이어 폭 방향 내측의 에지부에 있어서의 트레드 프로파일의 직경 D2와, 상기 둘레 방향 보강층의 단부에 있어서의 트레드 프로파일의 직경 D3가, D1>D2, D1>D3 및 -0.65≤(D2-D3)/(D1-D3)≤0.85의 관계를 가지는 공기입 타이어.
  5. 제1항 내지 제4항 중 어느 한 항에 있어서,
    상기 둘레 방향 보강층의 폭 Ws와 상기 카커스층의 폭 Wca가, 0.60≤Ws/Wca≤0.70의 관계를 가지는 공기입 타이어.
  6. 제1항 내지 제5항 중 어느 한 항에 있어서,
    트레드 폭 TW와 상기 카커스층의 단면 폭 Wca가, 0.82≤TW/Wca≤0.92의 관계를 가지는 공기입 타이어.
  7. 제1항 내지 제6항 중 어느 한 항에 있어서,
    트레드 폭 TW와 타이어 총 폭 SW가, 0.79≤TW/SW≤0.89의 관계를 가지는 공기입 타이어.
  8. 제1항 내지 제7항 중 어느 한 항에 있어서,
    타이어 적도면 상에 있어서의 상기 둘레 방향 보강층으로부터 트레드 프로파일까지의 거리 Hcc와 상기 둘레 방향 보강층의 단부로부터 트레드 프로파일까지의 거리 He가, He/Hcc≤0.97의 관계를 가지는 공기입 타이어.
  9. 제1항 내지 제8항 중 어느 한 항에 있어서,
    상기 둘레 방향 보강층의 타이어 적도면에 있어서의 직경과 타이어 폭 방향 외측의 단부에 있어서의 직경과의 차 Dr과 상기 둘레 방향 보강층의 폭 Ws가, -0.010≤Dr/Ws≤0.010의 관계를 가지는 공기입 타이어.
  10. 제1항 내지 제9항 중 어느 한 항에 있어서,
    상기 벨트층이, 절댓값으로 45[deg] 이상 70[deg] 이하의 벨트 각도를 가지는 고각도(高角度) 벨트를 가지는 공기입 타이어.
  11. 제10항에 있어서,
    상기 고각도 벨트의 벨트 코드가 스틸 와이어이고, 상기 고각도 벨트가 15[개/50mm] 이상 25[개/50mm] 이하의 엔드수를 가지는 공기입 타이어.
  12. 제10항 또는 제11항에 있어서,
    상기 고각도 벨트의 폭 Wb1과 상기 한 쌍의 교차 벨트 중 폭이 좁은 교차 벨트의 폭 Wb3가, 0.85≤Wb1/Wb3≤1.05의 관계를 가지는 공기입 타이어.
  13. 제1항 내지 제12항 중 어느 한 항에 있어서,
    상기 둘레 방향 보강층의 코트 고무의 100% 신장 시 모듈러스 Es가, 4.5[MPa]≤Es≤7.5[MPa]의 범위 내에 있는 공기입 타이어.
  14. 제1항 내지 제13항 중 어느 한 항에 있어서,
    상기 한 쌍의 교차 벨트의 코트 고무의 100% 신장 시 모듈러스 E2, E3와 상기 둘레 방향 보강층의 코트 고무의 100% 신장 시 모듈러스 Es가, 0.90≤Es/E2≤1.10 또한 0.90≤Es/E3≤1.10의 관계를 가지는 공기입 타이어.
  15. 제1항 내지 제14항 중 어느 한 항에 있어서,
    상기 둘레 방향 보강층의 코트 고무의 파단(破斷) 신장 λs가, λs≥200[%]의 범위에 있는 공기입 타이어.
  16. 제1항 내지 제15항 중 어느 한 항에 있어서,
    상기 고각도 벨트의 코트 고무의 파단 신장 λ1이, λ1≥200[%]의 범위에 있는 공기입 타이어.
  17. 제1항 내지 제16항 중 어느 한 항에 있어서,
    상기 한 쌍의 교차 벨트 중 타이어 직경 방향 내측에 있는 교차 벨트의 단부와, 상기 카커스층과의 사이에 끼워 넣어져 배치되는 벨트 쿠션을 구비하고, 또한,
    상기 벨트 쿠션의 100% 신장 시 모듈러스 Ebc가, 1.5[MPa]≤Ebc≤3.0[MPa]의 범위 내에 있는 공기입 타이어.
  18. 제17항에 있어서,
    상기 벨트 쿠션의 파단 신장 λbc가, λbc≥400[%]의 범위에 있는 공기입 타이어.
  19. 제1항 내지 제18항 중 어느 한 항에 있어서,
    상기 고각도 벨트와, 상기 한 쌍의 교차 벨트 중 타이어 직경 방향 내측에 있는 상기 교차 벨트가 인접하여 배치되고, 또한,
    상기 고각도 벨트의 벨트 코드와 상기 교차 벨트의 벨트 코드와의 코드 사이 거리 Dc가, 0.50[mm]≤Dc≤1.50[mm]의 범위 내에 있는 공기입 타이어.
  20. 제1항 내지 제19항 중 어느 한 항에 있어서,
    상기 둘레 방향 주홈 중 타이어 폭 방향의 가장 외측에 있는 좌우의 상기 둘레 방향 주홈을 최외주(最外周) 방향 주홈이라고 부를 때에,
    타이어 자오선 방향의 단면으로부터 볼 때에 있어서, 상기 좌우의 최외주 방향 주홈보다도 타이어 폭 방향 내측에 있는 상기 육부가, 타이어 직경 방향 외측으로 볼록으로 되는 제1 프로파일을 가지는 것과 함께, 상기 좌우의 최외주 방향 주홈보다도 타이어 폭 방향 외측에 있는 상기 육부(이하, 「숄더 육부」라고 한다.)가, 접지면 내에서 타이어 직경 방향 내측으로 볼록으로 되는 제2 프로파일을 가지고, 또한,
    상기 숄더 육부의 접지면 내에 있어서의 상기 제1 프로파일의 연장선과 상기 제2 프로파일과의 타이어 직경 방향의 거리 d가, 타이어 폭 방향 외측을 향하는 것에 따라 증가하는 공기입 타이어.
  21. 제1항 내지 제20항 중 어느 한 항에 있어서,
    상기 둘레 방향 보강층의 벨트 코드가, 스틸 와이어이고, 17[개/50mm] 이상 30[개/50mm] 이하의 엔드수를 가지는 공기입 타이어.
  22. 제1항 내지 제21항 중 어느 한 항에 있어서,
    상기 둘레 방향 보강층을 구성하는 벨트 코드의 부재(部材)일 때에 있어서의 인장(引張) 하중 100[N]으로부터 300[N]일 때의 신장이 1.0[%] 이상 2.5[%] 이하인 공기입 타이어.
  23. 제1항 내지 제22항 중 어느 한 항에 있어서,
    상기 둘레 방향 보강층을 구성하는 벨트 코드의 타이어일 때에 있어서의 인장 하중 500[N]으로부터 1000[N]일 때의 신장이 0.5[%] 이상 2.0[%] 이하인 공기입 타이어.
  24. 제1항 내지 제23항 중 어느 한 항에 있어서,
    상기 둘레 방향 보강층이, 상기 한 쌍의 교차 벨트 중 폭이 좁은 교차 벨트의 좌우의 에지부보다도 타이어 폭 방향 내측에 배치되고, 또한,
    상기 한 쌍의 교차 벨트의 사이이고 상기 둘레 방향 보강층의 타이어 폭 방향 외측에 배치되어 상기 둘레 방향 보강층에 인접하는 응력 완화 고무와,
    상기 한 쌍의 교차 벨트의 사이이고 상기 응력 완화 고무의 타이어 폭 방향 외측 또한 상기 한 쌍의 교차 벨트의 에지부에 대응하는 위치에 배치되어 상기 응력 완화 고무에 인접하는 단부 완화 고무를 구비하는 공기입 타이어.
  25. 제24항에 있어서,
    상기 응력 완화 고무의 100% 신장 시 모듈러스 Ein과 상기 한 쌍의 교차 벨트의 코트 고무의 100% 신장 시 모듈러스 Eco가, Ein<Eco의 관계를 가지는 공기입 타이어.
  26. 제24항 또는 제25항에 있어서,
    상기 응력 완화 고무의 100% 신장 시 모듈러스 Ein과 상기 한 쌍의 교차 벨트의 코트 고무의 100% 신장 시 모듈러스 Eco가, 0.6≤Ein/Eco≤0.9의 관계를 가지는 공기입 타이어.
  27. 제24항 내지 제26항 중 어느 한 항에 있어서,
    상기 응력 완화 고무의 100% 신장 시 모듈러스 Ein이, 4.0[MPa]≤Ein≤5.5[MPa]의 범위 내에 있는 공기입 타이어.
  28. 제1항 내지 제27항 중 어느 한 항에 있어서,
    상기 둘레 방향 보강층이, 상기 한 쌍의 교차 벨트 중 폭이 좁은 교차 벨트의 좌우의 에지부보다도 타이어 폭 방향 내측에 배치되고, 또한,
    상기 폭이 좁은 교차 벨트의 폭 Wb3와 상기 둘레 방향 보강층의 에지부로부터 상기 폭이 좁은 교차 벨트의 에지부까지의 거리 S가, 0.03≤S/Wb3의 범위에 있는 공기입 타이어.
  29. 제1항 내지 제28항 중 어느 한 항에 있어서,
    편평률 70[%] 이하의 중하중용(重荷重用) 타이어에 적용되는 공기입 타이어.
KR1020157014769A 2012-12-28 2012-12-28 공기입 타이어 KR101711817B1 (ko)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/084219 WO2014103068A1 (ja) 2012-12-28 2012-12-28 空気入りタイヤ

Publications (2)

Publication Number Publication Date
KR20150082484A true KR20150082484A (ko) 2015-07-15
KR101711817B1 KR101711817B1 (ko) 2017-03-13

Family

ID=51020213

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020157014769A KR101711817B1 (ko) 2012-12-28 2012-12-28 공기입 타이어

Country Status (6)

Country Link
US (1) US10166819B2 (ko)
JP (1) JP6079623B2 (ko)
KR (1) KR101711817B1 (ko)
CN (1) CN104884273B (ko)
DE (1) DE112012007267B9 (ko)
WO (1) WO2014103068A1 (ko)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3040656A1 (fr) * 2015-09-04 2017-03-10 Michelin & Cie Pneumatique comportant des cables d’armatures de carcasse presentant un bas taux de carbone et des epaisseurs de melanges caoutchouteux reduites
EP3463932B1 (en) * 2016-06-03 2020-08-05 Pirelli Tyre S.p.A. Tyre for heavy load vehicle wheels
FR3067287B1 (fr) * 2017-06-08 2020-09-18 Michelin & Cie Pneumatique comprenant une architecture et une sculpture optimisees
KR102391569B1 (ko) * 2017-12-30 2022-04-29 꽁빠니 제네날 드 에따블리세망 미쉘린 핸들링 성능 및 속도 내구성이 개선된 타이어
US11623478B2 (en) 2017-12-30 2023-04-11 Compagnie Generale Des Etablissments Michelin Tire with improved snow performance without sacrificing dry braking or wear
JP2019209713A (ja) * 2018-05-31 2019-12-12 株式会社ブリヂストン 空気入りタイヤ
JP2022094628A (ja) * 2020-12-15 2022-06-27 横浜ゴム株式会社 タイヤ
JP7477771B2 (ja) * 2020-12-15 2024-05-02 横浜ゴム株式会社 タイヤ
JP7107457B1 (ja) 2021-08-24 2022-07-27 住友ゴム工業株式会社 重荷重用空気入りタイヤ
JP7107456B1 (ja) 2021-08-24 2022-07-27 住友ゴム工業株式会社 重荷重用空気入りタイヤ
JP7151918B1 (ja) 2021-11-10 2022-10-12 住友ゴム工業株式会社 重荷重用空気入りタイヤ
JP7151917B1 (ja) 2022-02-09 2022-10-12 住友ゴム工業株式会社 重荷重用空気入りタイヤ

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11512050A (ja) * 1995-08-28 1999-10-19 ザ グッドイヤー タイヤ アンド ラバー カンパニー 低アスペクト比トラックタイヤ
JP2008001264A (ja) * 2006-06-23 2008-01-10 Yokohama Rubber Co Ltd:The 空気入りタイヤ
JP4642760B2 (ja) 2003-07-18 2011-03-02 ソシエテ ド テクノロジー ミシュラン 重車両用のタイヤ
JP4663638B2 (ja) 2003-07-18 2011-04-06 ソシエテ ド テクノロジー ミシュラン 重車両用のタイヤ
JP4663639B2 (ja) 2003-07-18 2011-04-06 ソシエテ ド テクノロジー ミシュラン 重車両用のタイヤ
JP4918948B1 (ja) * 2011-09-22 2012-04-18 横浜ゴム株式会社 空気入りタイヤ
JP4984013B1 (ja) * 2011-09-22 2012-07-25 横浜ゴム株式会社 空気入りタイヤ
JP2012522686A (ja) 2009-04-07 2012-09-27 ソシエテ ド テクノロジー ミシュラン 周方向補強要素の層を有する大型車両用タイヤ

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS582758B2 (ja) 1972-06-13 1983-01-18 アイダエンジニアリング カブシキガイシヤ フンマツセイケイプレス ニオケル ダイフドウボウシソウチ
JPS5237844B2 (ko) * 1974-04-23 1977-09-26
JPS62152902A (ja) * 1985-12-26 1987-07-07 Yokohama Rubber Co Ltd:The 空気入りラジアルタイヤ
US4836262A (en) * 1986-08-08 1989-06-06 Bridgestone Corporation Metal cords and pneumatic tires using the same
JPH0399903A (ja) * 1989-09-14 1991-04-25 Sumitomo Rubber Ind Ltd 重荷重用ラジアルタイヤ
JPH0466304A (ja) * 1990-07-04 1992-03-02 Sumitomo Rubber Ind Ltd ラジアルタイヤ
JPH04163208A (ja) * 1990-10-24 1992-06-08 Sumitomo Rubber Ind Ltd 重荷重用ラジアルタイヤ
JP3679213B2 (ja) * 1996-01-22 2005-08-03 株式会社ブリヂストン 重荷重用空気入りラジアルタイヤ
US6401780B1 (en) * 1997-10-30 2002-06-11 The Goodyear Tire & Rubber Company Tires having improved high speed properties
FR2770458B1 (fr) 1997-11-05 1999-12-03 Michelin & Cie Armature de sommet pour pneumatique "poids-lours"
JP2002103916A (ja) * 2000-09-27 2002-04-09 Bridgestone Corp 空気入りタイヤ
JP4133338B2 (ja) * 2001-03-16 2008-08-13 株式会社ブリヂストン 空気入りタイヤ
JP4710556B2 (ja) 2005-11-11 2011-06-29 横浜ゴム株式会社 空気入りタイヤ
JP4939854B2 (ja) * 2006-06-28 2012-05-30 住友ゴム工業株式会社 重荷重用空気入りタイヤ
US8146633B2 (en) * 2007-01-30 2012-04-03 The Yokohama Rubber Co., Ltd. Pneumatic tire
JP4479772B2 (ja) * 2007-09-20 2010-06-09 横浜ゴム株式会社 空気入りタイヤ
JP4670880B2 (ja) * 2008-03-11 2011-04-13 横浜ゴム株式会社 重荷重用空気入りタイヤ
JP5239566B2 (ja) * 2008-07-07 2013-07-17 横浜ゴム株式会社 空気入りタイヤ
JP4553064B2 (ja) * 2008-11-21 2010-09-29 横浜ゴム株式会社 空気入りタイヤ
FR2943950B1 (fr) * 2009-04-07 2011-04-15 Michelin Soc Tech Pneumatique pour vehicules lourds comportant une couche d'element circonferentiels.
CN103842190B (zh) * 2011-09-22 2015-06-24 横滨橡胶株式会社 充气轮胎

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11512050A (ja) * 1995-08-28 1999-10-19 ザ グッドイヤー タイヤ アンド ラバー カンパニー 低アスペクト比トラックタイヤ
JP4642760B2 (ja) 2003-07-18 2011-03-02 ソシエテ ド テクノロジー ミシュラン 重車両用のタイヤ
JP4663638B2 (ja) 2003-07-18 2011-04-06 ソシエテ ド テクノロジー ミシュラン 重車両用のタイヤ
JP4663639B2 (ja) 2003-07-18 2011-04-06 ソシエテ ド テクノロジー ミシュラン 重車両用のタイヤ
JP2008001264A (ja) * 2006-06-23 2008-01-10 Yokohama Rubber Co Ltd:The 空気入りタイヤ
JP2012522686A (ja) 2009-04-07 2012-09-27 ソシエテ ド テクノロジー ミシュラン 周方向補強要素の層を有する大型車両用タイヤ
JP4918948B1 (ja) * 2011-09-22 2012-04-18 横浜ゴム株式会社 空気入りタイヤ
JP4984013B1 (ja) * 2011-09-22 2012-07-25 横浜ゴム株式会社 空気入りタイヤ

Also Published As

Publication number Publication date
CN104884273A (zh) 2015-09-02
DE112012007267B4 (de) 2022-06-15
JPWO2014103068A1 (ja) 2017-01-12
KR101711817B1 (ko) 2017-03-13
US20150321519A1 (en) 2015-11-12
US10166819B2 (en) 2019-01-01
DE112012007267T5 (de) 2015-09-24
JP6079623B2 (ja) 2017-02-15
CN104884273B (zh) 2018-09-11
WO2014103068A1 (ja) 2014-07-03
DE112012007267B9 (de) 2022-09-22

Similar Documents

Publication Publication Date Title
KR101711817B1 (ko) 공기입 타이어
KR101741061B1 (ko) 공기입 타이어
KR101741054B1 (ko) 공기입 타이어
KR101730942B1 (ko) 공기입 타이어
KR101741788B1 (ko) 공기입 타이어
KR101741051B1 (ko) 공기입 타이어
KR101711818B1 (ko) 공기입 타이어
KR101710068B1 (ko) 공기입 타이어
KR101711816B1 (ko) 공기입 타이어
KR101730941B1 (ko) 공기입 타이어
KR101711815B1 (ko) 공기입 타이어
KR101729144B1 (ko) 공기입 타이어
KR101730944B1 (ko) 공기입 타이어

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20200219

Year of fee payment: 4