KR20130116828A - 리튬 이차전지용 전극의 제조 방법 및 이를 사용하여 제조되는 전극 - Google Patents

리튬 이차전지용 전극의 제조 방법 및 이를 사용하여 제조되는 전극 Download PDF

Info

Publication number
KR20130116828A
KR20130116828A KR1020130041427A KR20130041427A KR20130116828A KR 20130116828 A KR20130116828 A KR 20130116828A KR 1020130041427 A KR1020130041427 A KR 1020130041427A KR 20130041427 A KR20130041427 A KR 20130041427A KR 20130116828 A KR20130116828 A KR 20130116828A
Authority
KR
South Korea
Prior art keywords
electrode
secondary battery
current collector
active material
manufacturing
Prior art date
Application number
KR1020130041427A
Other languages
English (en)
Other versions
KR101542055B1 (ko
Inventor
김대홍
이재헌
김지현
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Publication of KR20130116828A publication Critical patent/KR20130116828A/ko
Application granted granted Critical
Publication of KR101542055B1 publication Critical patent/KR101542055B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명은 이차전지용 전극의 제조방법으로서, 표면 전반에 걸쳐 0.001 ~ 10 ㎛ 크기의 표면 거칠기(Ra)를 형성하는 몰포로지를 가지도록 집전체를 표면처리하는 과정을 포함하여, 전극 활물질과 집전체의 접착력을 개선시키는 것을 특징으로 하는 이차전지용 전극의 제조 방법 및 상기 제조방법으로 제조된 이차전지용 전극을 제공한다.

Description

리튬 이차전지용 전극의 제조 방법 및 이를 사용하여 제조되는 전극 {The Method of Preparing Electrodes for Lithium Secondary Battery and the Electrodes Prepared by Using the Same }
본 발명은 전극 활물질이 집전체에 도포되어 있는 이차전지용 전극의 제조방법 및 이를 사용하여 제조되는 전극에 관한 것으로서, 상세하게는 표면 전반에 걸쳐 0.001 ~ 10 ㎛ 크기의 표면 거칠기(Ra)를 형성하는 몰포로지를 가지도록 집전체를 표면처리하는 과정을 포함하여, 전극 활물질과 집전체의 접착력을 개선시키는 것을 특징으로 하는 이차전지용 전극의 제조 방법 및 이를 사용하여 제조되는 전극에 관한 것이다.
모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서의 이차전지에 대해 수요가 급격히 증가하고 있고, 그러한 이차전지 중에서도 높은 에너지 밀도와 작동 전위를 나타내고, 사이클 수명이 길며, 자기방전율이 낮은 리튬 이차전지가 상용화되어 널리 사용되고 있다.
또한, 최근에는 환경문제에 대한 관심이 커짐에 따라 대기오염의 주요 원인의 하나인 가솔린 차량, 디젤 차량 등 화석연료를 사용하는 차량을 대체할 수 있는 전기자동차(EV), 하이브리드 전기자동차(HEV) 등에 대한 연구가 많이 진행되고 있다. 이러한 전기자동차(EV), 하이브리드 전기자동차(HEV) 등의 동력원으로는 주로 니켈 수소금속(Ni-MH) 이차전지가 사용되고 있지만, 높은 에너지 밀도, 높은 방전 전압 및 출력 안정성의 리튬 이차전지를 사용하는 연구가 활발히 진행되고 있으며, 일부 상용화 되어 있다.
리튬 이차전지는 전극 집전체 상에 각각 활물질이 도포되어 있는 양극과 음극 사이에 다공성의 분리막이 개재된 전극조립체에 리튬염을 포함하는 비수계 전해질이 함침되어 있는 구조로 이루어져 있다.
이러한 리튬 이차전지는 양극의 리튬 이온이 음극으로 삽입되고 탈리되는 과정을 반복하면서 충전과 방전이 진행된다. 전극 활물질의 종류에 따라 전지의 이론 용량은 차이가 있으나, 대체로 사이클이 진행됨에 따라 충전 및 방전 용량이 저하되는 문제점이 발생하게 된다.
이러한 현상은 전지의 충전 및 방전이 진행됨에 따라 발생하는 전극의 부피 변화에 의해 전극 활물질간 또는 전극 활물질과 집전체 사이가 분리되어 상기 활물질이 그 기능을 다하지 못하게 되는 것에 가장 큰 원인이 있다. 또한, 삽입 및 탈리되는 과정에서 음극에 삽입된 리튬 이온이 제대로 빠져 나오지 못하여 음극의 활성점이 감소하게 되고, 이로 인해 사이클이 진행됨에 따라 전지의 충방전 용량 및 수명 특성이 감소하기도 한다.
이와 관련하여 바인더는 전극 활물질들 상호간 및 전극 활물질과 전류 집전체 간에 접착력을 제공하며, 전지의 충방전에 따른 부피 팽창을 억제하여 전지 특성에 중요한 영향을 끼친다.
그러나, 접착력을 증가시키기 위하여 이차전지의 제조 공정에서 바인더를 다량 사용할 경우, 상대적으로 도전재 또는 전극 활물질의 양이 감소하므로 전극의 전도성이 떨어지거나, 전지 용량이 저하되며, 또한, 전극 슬러리가 너무 묽어질 수 있어 전극을 도포하는 과정이 용이하지 않은 문제점이 있다.
따라서, 적정량의 바인더를 사용하면서도 전극 활물질과 집전체 사이에 우수한 접착력을 제공하여 이차전지의 성능을 개선할 수 있는 기술에 대한 필요성이 매우 높은 실정이다.
본 발명은 상기와 같은 종래기술의 문제점과 과거로부터 요청되어온 기술적 과제를 해결하는 것을 목적으로 한다.
본 출원의 발명자들은 심도 있는 연구와 다양한 실험을 거듭한 끝에, 이후 설명하는 바와 같이, 표면 전반에 걸쳐 특정 몰포로지를 가지도록 집전체를 표면처리를 한 후, 전극 활물질을 도포하는 경우, 소망하는 효과를 달성할 수 있는 것을 확인하고, 본 발명을 완성하기에 이르렀다.
따라서 본 발명은 전극 활물질이 집전체에 도포되어 있는 이차전지용 전극의 제조방법으로서, 표면 전반에 걸쳐 0.001 ~ 10 ㎛ 크기의 표면 거칠기(Ra)를 형성하는 몰포로지를 가지도록 집전체를 표면처리하는 과정을 포함하여, 전극 활물질과 집전체의 접착력을 개선시키는 것을 특징으로 하는 이차전지용 전극의 제조 방법을 제공한다.
일반적으로 전극 합제는 전극 활물질, 도전재, 바인더 등을 유기용매에 혼합하여 슬러리로 만든다. 이 경우, 앞서 설명한 바와 같이, 충방전 과정에서 발생하는 전극의 부피 변화에 따른 전극 활물질과 집전체 사이가 분리되는 것을 방지하기 위하여, 바인더 양을 증가시키는 경우, 상대적으로 전극 활물질, 도전재의 양이 감소하므로, 전극의 전도성이 떨어지거나, 전지 용량이 저하되는 등의 문제점이 있다.
이에, 본 발명의 제조 방법에 따른 소정의 몰포로지를 가지도록 표면처리된 집전체는 표면에 형성된 미세요철로 인하여, 표면적이 증가하므로, 전극 활물질과 집전체의 접착력이 현저히 증가하여, 충방전 사이클 특성 향상 등 이차전지의 제반 성능을 향상시킬 수 있다.
상기 집전체는 상세하게는, 표면 전반에 걸쳐 0.1 ~ 1 ㎛ 크기의 표면 거칠기(Ra)를 형성하는 몰포로지를 가질 수 있다.
상기 표면 거칠기가 너무 작으면, 미세 요철의 형성이 어려워 전극 활물질의 부피 팽창시 응력의 분산이 어려워질 수 있고, 반대로, 표면 거칠기가 너무 크면, 커다랗게 형성된 요철 내에서의 전극 활물질의 응력 분산 및 완화 효과가 저하되는 문제점이 발생할 수 있으므로, 바람직하지 않다.
구체적으로, 집전체 표면에 형성되어 있는 요철들 간의 간격은 0.001 ~ 10 ㎛일 수 있고, 요철들 간의 골의 깊이는 0.001 ~ 10 ㎛일 수 있다.
집전체에 표면을 처리하여 미세한 요철을 형성하는 방법은 당업계에 알려진 것이라면 제한이 없으나, 본 발명에서와 같은 특정 표면 몰포로지를 형성하기 위해서는 표면에 패턴이 형성되어 있는 롤러를 집전체에 압연하여 이루어질 수 있다.
상기 롤러에 형성되어 있는 패턴은 양각 또는 음각으로 형성될 수 있으나, 상세하게는 양각으로 형성될 수 있다. 이러한 패턴은 집전체의 표면에 스크래치를 낼 수 있는 형상이라면 제한이 없으나, 패턴의 수직 단면은, 상세하게는, 다각형, 원형, 타원형 또는 슬릿 형상일 수 있다.
구체적으로, 하기 도 1 내지 도 3에서 각각 볼 수 있듯이, 선 형상이 양각으로 형성된 롤러(100), 사각형이 양각으로 형성된 롤러(101), 삼각형이 양각으로 형성된 롤러(102)가 사용될 수 있으며, 이들은 각각 대응하는 패턴을 집전체(200, 201, 202)에 형성할 수 있다.
이러한 패턴의 형상에 따라 형성되는 집전체의 몰포로지의 표면적은 달라질 수 있으므로, 접착력을 최대로 하는 특정 패턴이 형성된 집전체가 바람직하게 사용될 수 있다.
롤러에 형성되는 패턴의 간격, 깊이 등은 본 발명에 따른 특정 몰포로지를 가지는 집전체가 형성될 수 있는 조건에서 결정할 수 있다.
본 발명은 상기 제조 방법에 의하여 제조된 이차전지용 전극을 제공한다. 이러한 전극은 양극 또는 음극, 또는 양극 및 음극일 수 있다.
상기 양극은 양극 활물질로 하기 화학식 1로 표시되는 스피넬 구조의 리튬 금속 산화물을 포함할 수 있다.
LixMyMn2-yO4-zAz (1)
상기 식에서, 0.9≤x≤1.2, 0<y<2, 0≤z<0.2이고, M은 Al, Mg, Ni, Co, Fe, Cr, V, Ti, Cu, B, Ca, Zn, Zr, Nb, Mo, Sr, Sb, W, Ti 및 Bi로 이루어진 군에서 선택되는 하나 이상의 원소이며; A는 -1 또는 -2가의 하나 이상의 음이온이다.
상기 리튬 금속 산화물은 더욱 상세하게는, 하기 화학식 2으로 표시될 수 있다.
LixNiyMn2-yO4 (2)
상기 식에서, 0.9≤x≤1.2, 0.4≤y≤0.5이고; 상기 리튬 금속 산화물은 좀 더 상세하게는 LiNi0.5Mn1.5O4 또는 LiNi0.4Mn1.6O4일 수 있다.
상기 음극은 음극 로 하기 화학식 3으로 표시되는 리튬 금속 산화물을 포함할 수 있다.
LiaM’bO4-cAc (3)
상기 식에서, M’은 Ti, Sn, Cu, Pb, Sb, Zn, Fe, In, Al 및 Zr로 이루어진 군에서 선택되는 하나 이상의 원소이고; a 및 b는 0.1≤a≤4; 0.2≤b≤4의 범위에서 M’의 산화수(oxidation number)에 따라 결정되며; c는 0≤c<0.2의 범위에서 산화수에 따라 결정되고; A는 -1 또는 -2가의 하나 이상의 음이온이다.
상기 리튬 금속 산화물은 하기 화학식 4로 표시될 수 있다.
LiaTibO4 (4)
더욱 상세하게는 상기 리튬 금속 산화물은 Li1.33Ti1.67O4 또는 LiTi2O4일 수 있다.
양극은 양극 집전체 상에 양극 활물질을 도포, 건조 및 프레싱하여 제조되며, 필요에 따라 상기에서와 같은 도전재, 바인더, 충진제 등이 선택적으로 더 포함될 수 있다.
상기 양극 집전체는 일반적으로 3 ~ 500 ㎛의 두께로 만든다. 이러한 양극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테리인레스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면처리한 것 등이 사용될 수 있다. 집전체는 그것의 표면에 미세한 요철을 형성하여 양극 활물질의 접착력을 높일 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태가 가능하다.
상기 양극 활물질은 앞서 정의한 물질을 사용할 수 있으나, 예를 들어, 추가로 리튬 코발트 산화물(LiCoO2), 리튬 니켈 산화물(LiNiO2) 등의 층상 화합물이나 1 또는 그 이상의 전이금속으로 치환된 화합물; 화학식 Li1+xMn2-xO4 (여기서, x 는 0 ~ 0.33 임), LiMnO3, LiMn2O3, LiMnO2 등의 리튬 망간 산화물; 리튬 동 산화물(Li2CuO2); LiV3O8, LiFe3O4, V2O5, Cu2V2O7 등의 바나듐 산화물; 화학식 LiNi1-xMxO2 (여기서, M = Co, Mn, Al, Cu, Fe, Mg, B 또는 Ga 이고, x = 0.01 ~ 0.3 임)으로 표현되는 Ni 사이트형 리튬 니켈 산화물; 화학식 LiMn2-xMxO2 (여기서, M = Co, Ni, Fe, Cr, Zn 또는 Ta 이고, x = 0.01 ~ 0.1 임) 또는 Li2Mn3MO8 (여기서, M = Fe, Co, Ni, Cu 또는 Zn 임)으로 표현되는 리튬 망간 복합 산화물; LiNixMn2-xO4로 표현되는 스피넬 구조의 리튬 망간 복합 산화물(x = 0.01 ~ 0.6 임); 화학식의 Li 일부가 알칼리토금속 이온으로 치환된 LiMn2O4; 디설파이드 화합물; Fe2(MoO4)3 등을 사용할 수 있다.
상기 도전재는 통상적으로 양극 활물질을 포함한 혼합물 전체 중량을 기준으로 1 내지 50 중량%로 첨가된다. 이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.
상기 바인더는 활물질과 도전재 등의 결합과 집전체에 대한 결합에 조력하는 성분으로서, 통상적으로 양극 활물질을 포함하는 혼합물 전체 중량을 기준으로 1 내지 50 중량%로 첨가된다. 이러한 바인더의 예로는, 폴리불화비닐리덴, 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 테르 폴리머(EPDM), 술폰화 EPDM, 스티렌 브티렌 고무, 불소 고무, 다양한 공중합체 등을 들 수 있다.
상기 충진제는 양극의 팽창을 억제하는 성분으로서 선택적으로 사용되며, 당해 전지에 화학적 변화를 유발하지 않으면서 섬유상 재료라면 특별히 제한되는 것은 아니며, 예를 들어, 폴리에틸렌, 폴리프로필렌 등의 올리핀계 중합체; 유리섬유, 탄소섬유 등의 섬유상 물질이 사용된다.
반면에, 음극은 음극 집전체 상에 음극 활물질을 도포, 건조 및 프레싱하여 제조되며, 필요에 따라 상기에서와 같은 도전재, 바인더, 충진제 등이 선택적으로 더 포함될 수 있다.
상기 음극 집전체는 일반적으로 3 ~ 500 ㎛의 두께로 만들어진다. 이러한 음극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인레스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또한, 양극 집전체와 마찬가지로, 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 음극 활물질은, 예를 들어, 난흑연화 탄소, 흑연계 탄소 등의 탄소; LixFe2O3(0≤x≤1), LixWO2(0≤x≤1), SnxMe1-xMe’yOz (Me: Mn, Fe, Pb, Ge; Me’: Al, B, P, Si, 주기율표의 1족, 2족, 3족 원소, 할로겐; 0<x≤1; 1≤y≤3; 1≤z≤8) 등의 금속 복합 산화물; 리튬 금속; 리튬 합금; 규소계 합금; 주석계 합금; SnO, SnO2, PbO, PbO2, Pb2O3, Pb3O4, Sb2O3, Sb2O4, Sb2O5, GeO, GeO2, Bi2O3, Bi2O4, and Bi2O5 등의 금속 산화물; 폴리아세틸렌 등의 도전성 고분자; Li-Co-Ni 계 재료; 티타늄 산화물; 리튬 티타늄 산화물 등을 사용할 수 있다.
하나의 예에서, 상기 음극 활물질로 리튬 티타늄 산화물(LTO)를 사용하는 경우, LTO 자체의 전자 전도도가 낮으므로 상기와 같은 전극 구조일 수 있다. 또한, 이 경우, LTO의 높은 전위로 인하여 상대적으로 고전위를 가지는 LiNixMn2-xO4(x = 0.01 ~ 0.6 임)의 스피넬 리튬 망간 복합 산화물을 양극 활물질로 사용할 수 있다.
또한, 본 발명은 상기 양극과 음극 사이에 분리막이 개재된 구조의 전극조립체에 리튬염 함유 전해액이 함침되어 있는 구조로 이루어진 이차전지를 제공한다.
상기 분리막은 양극과 음극 사이에 개재되며, 높은 이온 투과도와 기계적 강도를 가지는 절연성의 얇은 박막이 사용된다. 분리막의 기공 직경은 일반적으로 0.01 ~ 10 ㎛이고, 두께는 일반적으로 5 ~ 300 ㎛이다. 이러한 분리막으로는, 예를 들어, 내화학성 및 소수성의 폴리프로필렌 등의 올레핀계 폴리머; 유리섬유 또는 폴리에틸렌 등으로 만들어진 시트나 부직포 등이 사용된다. 전해질로서 폴리머 등의 고체 전해질이 사용되는 경우에는 고체 전해질이 분리막을 겸할 수도 있다.
상기 리튬염 함유 전해액은 전해액과 리튬염으로 이루어져 있으며, 상기 전해액으로는 비수계 유기용매, 유기 고체 전해질, 무기 고체 전해질 등이 사용되지만 이들만으로 한정되는 것은 아니다.
상기 비수계 유기용매로는, 예를 들어, N-메틸-2-피롤리디논, 프로필렌 카르보네이트, 에틸렌 카르보네이트, 부틸렌 카르보네이트, 디메틸 카르보네이트, 디에틸 카르보네이트, 감마-부틸로 락톤, 1,2-디메톡시 에탄, 테트라히드록시 프랑(franc), 2-메틸 테트라하이드로푸란, 디메틸술폭시드, 1,3-디옥소런, 포름아미드, 디메틸포름아미드, 디옥소런, 아세토니트릴, 니트로메탄, 포름산 메틸, 초산메틸, 인산 트리에스테르, 트리메톡시 메탄, 디옥소런 유도체, 설포란, 메틸 설포란, 1,3-디메틸-2-이미다졸리디논, 프로필렌 카르보네이트 유도체, 테트라하이드로푸란 유도체, 에테르, 피로피온산 메틸, 프로피온산 에틸 등의 비양자성 유기용매가 사용될 수 있다.
상기 유기 고체 전해질로는, 예를 들어, 폴리에틸렌 유도체, 폴리에틸렌 옥사이드 유도체, 폴리프로필렌 옥사이드 유도체, 인산 에스테르 폴리머, 폴리 에지테이션 리신(agitation lysine), 폴리에스테르 술파이드, 폴리비닐 알코올, 폴리 불화 비닐리덴, 이온성 해리기를 포함하는 중합제 등이 사용될 수 있다.
상기 무기 고체 전해질로는, 예를 들어, Li3N, LiI, Li5NI2, Li3N-LiI-LiOH, LiSiO4, LiSiO4-LiI-LiOH, Li2SiS3, Li4SiO4, Li4SiO4-LiI-LiOH, Li3PO4-Li2S-SiS2 등의 Li의 질화물, 할로겐화물, 황산염 등이 사용될 수 있다.
상기 리튬염은 상기 비수계 전해질에 용해되기 좋은 물질로서, 예를 들어, LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, (CF3SO2)2NLi, 클로로 보란 리튬, 저급 지방족 카르본산 리튬, 4 페닐 붕산 리튬, 이미드 등이 사용될 수 있다.
또한, 전해액에는 충방전 특성, 난연성 등의 개선을 목적으로, 예를 들어, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사 인산 트리 아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올, 삼염화 알루미늄 등이 첨가될 수도 있다. 경우에 따라서는, 불연성을 부여하기 위하여, 사염화탄소, 삼불화에틸렌 등의 할로겐 함유 용매를 더 포함시킬 수도 있고, 고온 보존 특성을 향상시키기 위하여 이산화탄산 가스를 더 포함시킬 수도 있으며, FEC(Fluoro-Ethylene Carbonate), PRS(Propene sultone) 등을 더 포함시킬 수 있다.
하나의 예에서, LiPF6, LiClO4, LiBF4, LiN(SO2CF3)2 등의 리튬염을, 고유전성 용매인 EC 또는 PC의 환형 카보네이트와 저점도 용매인 DEC, DMC 또는 EMC의 선형 카보네이트의 혼합 용매에 첨가하여 리튬염 함유 비수계 전해질을 제조할 수 있다.
본 발명은 또한, 상기 이차전지를 단위전지로 포함하는 전지모듈을 제공하고, 상기 전지모듈을 포함하는 전지팩을 제공한다.
상기 전지팩은 고온 안정성 및 긴 사이클 특성과 높은 레이트 특성 등이 요구되는 중대형 디바이스의 전원으로 사용될 수 있다.
상기 중대형 디바이스의 예로는 전지적 모터에 의해 동력을 받아 움직이는 파워 툴(power tool); 전기자동차(Electric Vehicle, EV), 하이브리드 전기자동차(Hybrid Electric Vehicle, HEV), 플러그-인 하이브리드 전기자동차(Plug-in Hybrid Electric Vehicle, PHEV) 등을 포함하는 전기차; 전기 자전거(E-bike), 전기 스쿠터(E-scooter)를 포함하는 전기 이륜차; 전기 골프 카트(electric golf cart); 전력저장용 시스템 등을 들 수 있으나, 이에 한정되는 것은 아니다.
상기에서 설명한 바와 같이, 본 발명에 따른 이차전지용 전극의 제조방법은 표면 전반에 걸쳐 특정 몰포로지를 가지도록 집전체를 표면처리를 하는 과정을 포함하여 집전체의 표면적을 증가시킬 수 있어 이에 따라 제조된 전극의 집전체와 전극 활물질 사이의 접착력을 향상시켜, 충방전 사이클 특성 향상 등 이차전지의 제반 성능을 향상시킬 수 있다.
도 1 내지 도 3는 본 발명에 따른 소정의 몰포로지를 가지는 집전체 및 이러한 집전체의 몰포로지를 형성하기 위한 롤러의 일면을 나타내는 모식도이다.
<실시예 1>
알루미늄 집전체 상의 표면이 0.5 ㎛ 크기의 표면 거칠기(Ra)를 형성하도록, 표면에 다각형으로 양각 패턴이 형성된 롤러를 이용하여 알루미늄 집전체를 압연하였다. 그 후 Li1.33Ti1.67O4 (음극 활물질) 95 중량%, Super-P(도전재) 2.5 중량% 및 PVdF(결합제) 2.5 중량%를 NMP에 첨가하여 음극 합제를 제조하여 상기에서 제조된 알루미늄 집전체에 도포하여 이차전지용 음극을 제조하였다.
<비교예 1>
롤러를 이용하여 알루미늄 집전체의 표면을 처리하지 않은 것을 제외하고는 실시예 1과 동일한 방법을 사용하여 이차전지용 음극을 제조하였다.
<실험예 1>
상기 실시예 1 및 비교예 1에서 제조된 음극의 접착력을 측정하여 하기 표 1에 나타내었다.
접착력(gf/cm)
실시예 1 52
비교예 1 36
상기 표 1에 따르면 양각 패턴이 형성된 롤러로 표면처리된 집전체를 사용하여 제조된 실시예 1의 음극의 경우 비교예 1의 음극과 비교하여 접착력이 향상되어, 결과적으로 이차전지의 제반 성능이 향상된 것을 확인 할 수 있다.
본 발명이 속한 분야에서 통상의 지식을 가진 자라면, 상기 내용을 바탕으로 본 발명의 범주내에서 다양한 응용 및 변형을 행하는 것이 가능할 것이다.

Claims (18)

  1. 전극 활물질이 집전체에 도포되어 있는 이차전지용 전극의 제조방법으로서, 표면 전반에 걸쳐 0.001 ~ 10 ㎛ 크기의 표면 거칠기(Ra)를 형성하는 몰포로지를 가지도록 집전체를 표면처리하는 과정을 포함하여, 전극 활물질과 집전체의 접착력을 개선시키는 것을 특징으로 하는 이차전지용 전극의 제조 방법.
  2. 제 1 항에 있어서, 상기 집전체는, 표면 전반에 걸쳐 0.1 ~ 1 ㎛ 크기의 표면 거칠기(Ra)를 형성하는 몰포로지를 가지는 것을 특징으로 하는 이차전지용 전극의 제조 방법.
  3. 제 1 항에 있어서, 상기 표면처리는 표면에 양각으로 패턴이 형성되어 있는 롤러를 집전체에 압연하여 행하는 것을 특징으로 하는 이차전지용 전극의 제조 방법.
  4. 제 3 항에 있어서, 상기 패턴의 수직 단면은 다각형, 원형, 타원형, 또는 슬릿 형상인 것을 특징으로 하는 이차전지용 전극의 제조 방법.
  5. 제 1 항에 따른 제조방법으로 제조되는 것을 특징으로 하는 이차전지용 전극.
  6. 제 5 항에 있어서, 상기 전극은 양극 또는 음극, 또는 양극 및 음극인 것을 특징으로 하는 이차전지용 전극.
  7. 제 6 항에 있어서, 상기 양극은 양극 활물질로 하기 화학식 1로 표시되는 리튬 금속 산화물을 포함하는 이차전지용 전극:
    LixMyMn2-yO4-zAz (1)
    상기 식에서, 0.9≤x≤1.2, 0<y<2, 0≤z<0.2이고,
    M은 Al, Mg, Ni, Co, Fe, Cr, V, Ti, Cu, B, Ca, Zn, Zr, Nb, Mo, Sr, Sb, W, Ti 및 Bi로 이루어진 군에서 선택되는 하나 이상의 원소이며;
    A는 -1 또는 -2가의 하나 이상의 음이온이다.
  8. 제 7 항에 있어서, 상기 화학식 1의 산화물은 하기 화학식 2으로 표시되는 것을 특징으로 하는 이차전지용 전극:
    LixNiyMn2-yO4 (2)
    상기 식에서, 0.9≤x≤1.2, 0.4≤y≤0.5이다.
  9. 제 8 항에 있어서, 상기 산화물은 LiNi0.5Mn1.5O4 또는 LiNi0.4Mn1.6O4 인 것을 특징으로 하는 이차전지용 전극.
  10. 제 6 항에서 있어서, 상기 음극은 음극 활물질로 하기 화학식 3으로 표시되는 리튬 금속 산화물을 포함하는 이차전지용 전극:
    LiaM’bO4-cAc (3)
    상기 식에서, M’은 Ti, Sn, Cu, Pb, Sb, Zn, Fe, In, Al 및 Zr로 이루어진 군에서 선택되는 하나 이상의 원소이고; a 및 b는 0.1≤a≤4; 0.2≤b≤4의 범위에서 M’의 산화수(oxidation number)에 따라 결정되며; c는 0≤c<0.2의 범위에서 산화수에 따라 결정되고; A는 -1 또는 -2가의 하나 이상의 음이온이다.
  11. 제 10 항에 있어서, 상기 리튬 금속 산화물은 하기 화학식 4로 표시되는 것을 특징으로 하는 이차전지용 전극:
    LiaTibO4 (4)
    상기 식에서, 0.5≤a≤3, 1≤b≤2.5 이다.
  12. 제 11 항에 있어서, 상기 리튬 금속 산화물은 Li1.33Ti1.67O4 또는 LiTi2O4인 것을 특징으로 하는 이차전지용 전극.
  13. 제 5 항 내지 제 12 항 중 어느 하나에 따른 이차전지용 전극을 포함하는 것을 특징으로 하는 이차전지.
  14. 제 13 항에 있어서, 상기 이차전지는 리튬 이차전지인 것을 특징으로 하는 이차전지.
  15. 제 14 항에 따른 이차전지를 단위전지로 포함하는 것을 특징으로 하는 전지모듈.
  16. 제 15 항에 따른 전지모듈을 포함하는 것을 특징으로 하는 전지팩.
  17. 제 16 항에 따른 전지팩을 포함하는 것을 특징으로 하는 디바이스.
  18. 제 17 항에 있어서, 상기 디바이스는 전기자동차, 하이브리드 전기자동차, 플러그-인 하이브리드 전기자동차, 또는 전력저장용 시스템인 것을 특징으로 하는 디바이스.
KR1020130041427A 2012-04-16 2013-04-16 리튬 이차전지용 전극의 제조 방법 및 이를 사용하여 제조되는 전극 KR101542055B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20120039086 2012-04-16
KR1020120039086 2012-04-16

Publications (2)

Publication Number Publication Date
KR20130116828A true KR20130116828A (ko) 2013-10-24
KR101542055B1 KR101542055B1 (ko) 2015-08-05

Family

ID=49383698

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130041427A KR101542055B1 (ko) 2012-04-16 2013-04-16 리튬 이차전지용 전극의 제조 방법 및 이를 사용하여 제조되는 전극

Country Status (6)

Country Link
US (1) US9780359B2 (ko)
EP (1) EP2800178B1 (ko)
JP (1) JP2015513182A (ko)
KR (1) KR101542055B1 (ko)
CN (2) CN107425178B (ko)
WO (1) WO2013157806A1 (ko)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018048143A1 (ko) * 2016-09-09 2018-03-15 주식회사 엘지화학 고용량의 전극을 포함하는 이차전지의 제조 방법
KR20180081889A (ko) 2017-01-09 2018-07-18 주식회사 엘지화학 리튬 메탈 패터닝 및 이를 이용한 전기화학 소자
KR20180100997A (ko) 2017-03-03 2018-09-12 주식회사 엘지화학 건조전극의 표면에 패턴을 형성하는 방법
WO2019088795A3 (ko) * 2017-11-06 2019-06-20 주식회사 엘지화학 안전성이 향상된 이차전지용 전극과 이의 제조방법, 및 이 전극을 포함하는 이차전지
WO2019132460A1 (ko) * 2017-12-27 2019-07-04 주식회사 엘지화학 리튬 메탈 이차전지 및 그 제조 방법
KR20190079523A (ko) * 2017-12-27 2019-07-05 주식회사 엘지화학 리튬 메탈 이차전지 및 그 제조 방법
US10622680B2 (en) 2017-04-06 2020-04-14 International Business Machines Corporation High charge rate, large capacity, solid-state battery
US10818907B2 (en) 2016-09-09 2020-10-27 Lg Chem, Ltd. Method of preparing secondary battery including high capacity electrode
WO2022154399A1 (ko) * 2021-01-12 2022-07-21 주식회사 엘지에너지솔루션 프리스탠딩 필름, 이차 전지용 전극, 이를 포함하는 이차 전지 및 전극 제조 방법
US12119499B2 (en) 2019-07-09 2024-10-15 Jfe Steel Corporation Chromium-containing steel sheet for current collector of nonaqueous electrolyte secondary battery and method for manufacturing the same

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015201335A (ja) * 2014-04-08 2015-11-12 日立化成株式会社 リチウムイオン電池
CN107346831A (zh) * 2016-05-04 2017-11-14 上海奇谋能源技术开发有限公司 一种提高锂离子电池使用寿命的方法
WO2018083917A1 (ja) * 2016-11-04 2018-05-11 日産自動車株式会社 電池用電極及び電池
WO2018220670A1 (ja) * 2017-05-29 2018-12-06 オリンパス株式会社 観察装置
KR102261800B1 (ko) 2017-11-20 2021-06-04 주식회사 엘지화학 비정형 전극의 제조 방법
JP7057766B2 (ja) * 2019-07-09 2022-04-20 Jfeスチール株式会社 硫化物系固体電池の集電体用のフェライト系ステンレス鋼板およびその製造方法
CN216597640U (zh) * 2021-07-05 2022-05-24 托马斯·吉哈德·维尔海姆·达米兹 锂离子电池

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3182786B2 (ja) * 1990-11-27 2001-07-03 ソニー株式会社 電 池
JPH0574479A (ja) * 1991-09-09 1993-03-26 Asahi Chem Ind Co Ltd 渦巻き型非水電池
JPH06260168A (ja) * 1993-03-05 1994-09-16 Japan Storage Battery Co Ltd リチウム二次電池
JPH11135130A (ja) * 1997-10-30 1999-05-21 Mitsubishi Alum Co Ltd 二次電池集電体用金属箔、その製造方法、及び二次電池
WO2001031723A1 (fr) * 1999-10-22 2001-05-03 Sanyo Electric Co., Ltd. Electrode pour accumulateur au lithium et accumulateur au lithium
JP4644895B2 (ja) * 2000-01-24 2011-03-09 株式会社豊田中央研究所 リチウム二次電池
CA2420104C (en) * 2000-09-01 2012-10-30 Sanyo Electric Co., Ltd. Negative electrode for lithium secondary cell and method for producing the same
JP2004335344A (ja) * 2003-05-09 2004-11-25 Sanyo Electric Co Ltd リチウム二次電池用正極及びリチウム二次電池
JP4941632B2 (ja) * 2005-11-30 2012-05-30 ソニー株式会社 負極および電池
JP4642835B2 (ja) * 2006-12-27 2011-03-02 パナソニック株式会社 電極用集電体
JP2008204637A (ja) * 2007-02-16 2008-09-04 Matsushita Electric Ind Co Ltd リチウムイオン二次電池用電極の製造方法
JP4435194B2 (ja) 2007-03-27 2010-03-17 株式会社東芝 非水電解質電池、電池パック及び自動車
WO2009002053A2 (en) * 2007-06-22 2008-12-31 Lg Chem, Ltd. Anode material of excellent conductivity and high power secondary battery employed with the same
US7595926B2 (en) 2007-07-05 2009-09-29 Qualcomm Mems Technologies, Inc. Integrated IMODS and solar cells on a substrate
KR20090038309A (ko) * 2007-10-15 2009-04-20 삼성전자주식회사 이차전지용 전극, 그 제조방법 및 이를 채용한 이차전지
JP5479775B2 (ja) * 2009-05-08 2014-04-23 古河電気工業株式会社 リチウムイオン二次電池用の負極およびその製造方法
JP2011157241A (ja) 2010-02-03 2011-08-18 Central Glass Co Ltd 自動車用合わせガラス
JP2012033279A (ja) 2010-07-28 2012-02-16 Nec Energy Devices Ltd リチウムイオン二次電池
KR101754800B1 (ko) * 2010-08-19 2017-07-06 삼성전자주식회사 양극, 그 제조방법 및 이를 채용한 리튬전지
JP5825894B2 (ja) 2011-07-15 2015-12-02 三星エスディアイ株式会社Samsung SDI Co.,Ltd. 二次電池用電極、二次電池用電極の製造方法並びに二次電池

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10818907B2 (en) 2016-09-09 2020-10-27 Lg Chem, Ltd. Method of preparing secondary battery including high capacity electrode
WO2018048143A1 (ko) * 2016-09-09 2018-03-15 주식회사 엘지화학 고용량의 전극을 포함하는 이차전지의 제조 방법
KR20180081889A (ko) 2017-01-09 2018-07-18 주식회사 엘지화학 리튬 메탈 패터닝 및 이를 이용한 전기화학 소자
US11990602B2 (en) 2017-01-09 2024-05-21 Lg Energy Solution, Ltd. Lithium metal patterning and electrochemical device using the same
KR20180100997A (ko) 2017-03-03 2018-09-12 주식회사 엘지화학 건조전극의 표면에 패턴을 형성하는 방법
US10622680B2 (en) 2017-04-06 2020-04-14 International Business Machines Corporation High charge rate, large capacity, solid-state battery
US10629957B2 (en) 2017-04-06 2020-04-21 International Business Machines Corporation High charge rate, large capacity, solid-state battery
US10644355B2 (en) 2017-04-06 2020-05-05 International Business Machines Corporation High charge rate, large capacity, solid-state battery
US10644356B2 (en) 2017-04-06 2020-05-05 International Business Machines Corporation High charge rate, large capacity, solid-state battery
US10673097B2 (en) 2017-04-06 2020-06-02 International Business Machines Corporation High charge rate, large capacity, solid-state battery
WO2019088795A3 (ko) * 2017-11-06 2019-06-20 주식회사 엘지화학 안전성이 향상된 이차전지용 전극과 이의 제조방법, 및 이 전극을 포함하는 이차전지
WO2019132460A1 (ko) * 2017-12-27 2019-07-04 주식회사 엘지화학 리튬 메탈 이차전지 및 그 제조 방법
EP3624248A4 (en) * 2017-12-27 2020-12-02 Lg Chem, Ltd. LITHIUM METAL SECONDARY BATTERY AND THE MANUFACTURING METHOD FOR IT
US11367894B2 (en) 2017-12-27 2022-06-21 Lg Energy Solution, Ltd. Lithium metal secondary battery including lithium metal foil negative electrode with nano imprint pattern structure adhered to separator, and method of manufacturing the same
KR20190079523A (ko) * 2017-12-27 2019-07-05 주식회사 엘지화학 리튬 메탈 이차전지 및 그 제조 방법
US12119499B2 (en) 2019-07-09 2024-10-15 Jfe Steel Corporation Chromium-containing steel sheet for current collector of nonaqueous electrolyte secondary battery and method for manufacturing the same
WO2022154399A1 (ko) * 2021-01-12 2022-07-21 주식회사 엘지에너지솔루션 프리스탠딩 필름, 이차 전지용 전극, 이를 포함하는 이차 전지 및 전극 제조 방법

Also Published As

Publication number Publication date
US20140349170A1 (en) 2014-11-27
CN107425178B (zh) 2020-12-01
EP2800178A4 (en) 2015-09-16
JP2015513182A (ja) 2015-04-30
EP2800178B1 (en) 2017-11-01
US9780359B2 (en) 2017-10-03
CN104137313A (zh) 2014-11-05
KR101542055B1 (ko) 2015-08-05
EP2800178A1 (en) 2014-11-05
CN107425178A (zh) 2017-12-01
WO2013157806A1 (ko) 2013-10-24

Similar Documents

Publication Publication Date Title
KR101542055B1 (ko) 리튬 이차전지용 전극의 제조 방법 및 이를 사용하여 제조되는 전극
KR101542052B1 (ko) 리튬 이차전지용 전극의 제조 방법 및 이를 사용하여 제조되는 전극
KR101527748B1 (ko) 전극의 제조방법 및 이를 사용하여 제조되는 전극
KR20130117718A (ko) 다층구조 전극 및 그 제조방법
KR101603082B1 (ko) 리튬 이차전지용 전극의 제조 방법 및 이를 사용하여 제조되는 전극
KR20130117721A (ko) 전극 및 이를 포함하는 이차전지
KR20130117711A (ko) 성능이 우수한 리튬 이차전지
KR101495302B1 (ko) 다층구조 전극 및 그 제조방법
KR101623719B1 (ko) 리튬 이차전지용 양극 활물질의 제조방법
KR101792750B1 (ko) 이중의 양극 활물질층을 포함하는 양극 및 이를 포함하는 리튬 이차전지
KR101506451B1 (ko) 이차전지용 음극
KR101514303B1 (ko) 전극의 제조방법 및 이를 사용하여 제조되는 전극
KR101506452B1 (ko) 이차전지용 양극
KR101490842B1 (ko) 이종 전극 활물질층이 코팅된 복합 전극 및 이를 포함하는 리튬 이차전지
KR101608635B1 (ko) 고용량의 이차전지용 음극
KR101617418B1 (ko) 망간 용출을 방지하기 위한 크라운 에테르 화합물을 포함하는 이차전지
KR101493255B1 (ko) 전극의 제조방법 및 이를 사용하여 제조되는 전극
KR101514297B1 (ko) 전극의 제조방법 및 이를 사용하여 제조되는 전극
KR20150040448A (ko) 이차전지용 전극의 제조 방법 및 이를 사용하여 제조되는 전극
KR101822991B1 (ko) 리튬 이차전지의 제조방법 및 이를 사용하여 제조되는 리튬 이차전지
KR20130118243A (ko) 이차전지용 전극
KR20130117930A (ko) 음극 및 이를 포함하는 이차전지
KR20140120668A (ko) 이차전지용 음극 및 이를 포함하는 리튬 이차전지
KR20140008956A (ko) 리튬 이차전지용 음극의 제조 방법 및 이러한 방법에 의해 제조된 음극을 포함하는 리튬 이차전지
KR20130117607A (ko) 전극 및 이를 포함하는 이차전지

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
FPAY Annual fee payment

Payment date: 20180619

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20190625

Year of fee payment: 5