KR20110106854A - 캐버자이트형 제올라이트 및 그 제조 방법 - Google Patents

캐버자이트형 제올라이트 및 그 제조 방법 Download PDF

Info

Publication number
KR20110106854A
KR20110106854A KR1020117014009A KR20117014009A KR20110106854A KR 20110106854 A KR20110106854 A KR 20110106854A KR 1020117014009 A KR1020117014009 A KR 1020117014009A KR 20117014009 A KR20117014009 A KR 20117014009A KR 20110106854 A KR20110106854 A KR 20110106854A
Authority
KR
South Korea
Prior art keywords
zeolite
sio
chabazite
particle diameter
raw material
Prior art date
Application number
KR1020117014009A
Other languages
English (en)
Other versions
KR101626183B1 (ko
Inventor
고 아리가
히데카즈 아오야마
Original Assignee
도소 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=42287649&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=KR20110106854(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 도소 가부시키가이샤 filed Critical 도소 가부시키가이샤
Publication of KR20110106854A publication Critical patent/KR20110106854A/ko
Application granted granted Critical
Publication of KR101626183B1 publication Critical patent/KR101626183B1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J39/00Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/08Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/14Base exchange silicates, e.g. zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/18Synthetic zeolitic molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/7015CHA-type, e.g. Chabazite, LZ-218
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/036Precipitation; Co-precipitation to form a gel or a cogel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/46Other types characterised by their X-ray diffraction pattern and their defined composition
    • C01B39/48Other types characterised by their X-ray diffraction pattern and their defined composition using at least one organic template directing agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • B01D2253/108Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • B01D2253/108Zeolites
    • B01D2253/1085Zeolites characterized by a silicon-aluminium ratio
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/30Physical properties of adsorbents
    • B01D2253/302Dimensions
    • B01D2253/304Linear dimensions, e.g. particle shape, diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/50Zeolites

Abstract

본 발명의 대상은, 촉매 지지체 또는 흡착제 기재에 요구되는 실용적인 특성인, 높은 내구성 및 내열성을 갖는 것으로 기대되는, 수익성을 갖는 캐버자이트형 제올라이트를 제공하는 것이다. SiO2/Al2O3 몰비가 15 내지 50 이고, 평균 입자 직경 크기가 1.5 μm 이상인 캐버자이트형 제올라이트는 높은 내구성 및 높은 내열성을 가진다. 이와 같은 캐버자이트형 제올라이트는, 원료 조성물에 있어서 구조 지향제와 물의 SiO2 에 대한 몰비가 0.05 ≤ (구조 지향제)/SiO2 < 0.13, 5 ≤ H2O/SiO2 < 30 을 만족하는 원료 조성물을, K, Rb 및 Cs 로 이루어진 군에서 선택되는 1 종 이상의 알칼리 금속의 이온의 존재하에서 결정화시킴으로써 제조될 수 있다. 상기 구조 지향제는 N,N,N-트리메틸아다만탄암모늄 염인 것이 바람직하다.

Description

캐버자이트형 제올라이트 및 그 제조 방법 {CHABAZITE-TYPE ZEOLITE AND PROCESS FOR PRODUCTION OF SAME}
본 발명은 고실리카 함량 및 큰 결정 크기를 갖는 캐버자이트 (chabazite) 형 제올라이트, 및 상기 제올라이트의 제조 방법에 관한 것이다.
캐버자이트형 제올라이트는, 3.8×3.8 Å 의 8-원 산소 고리로 구성된 3 차원 세공 구조를 갖는 제올라이트로서, 국제 제올라이트 학회 (International Zeolite Association) 에 의해, 결정 구조가 상세히 확인된 제올라이트로서 구조 코드 CHA 로서 명명 및 분류되어 있다 (비특허문헌 1).
캐버자이트형 제올라이트는 천연에서 유래하는 제올라이트로서 알려져 있으며, 전형적으로는 Ca6 2 +[Si24Al12O72] 의 조성을 갖는다 (비특허문헌 2). 캐버자이트형 합성 제올라이트로서의 예는, 특허문헌 1 에 개시된 제올라이트 D, 및 특허문헌 2 에 개시된 제올라이트 R 을 포함하며, 각 제올라이트는 SiO2/Al2O3 비가 3.45 내지 4.9 이다.
특허문헌 3 및 특허문헌 4 에는 SiO2/Al2O3 비가 5 내지 50 인, 이른바 고실리카 캐버자이트형의 제올라이트로서, SSZ-13 으로서 명명된 것, 및 상기 제올라이트의 합성 방법이 개시되어 있다.
특허문헌 5 에는, SiO2/Al2O3 비가 20 내지 50 이고 결정 직경이 0.5 μm 이하인 캐버자이트형 제올라이트로서, SSZ-62 로서 명명된 것이 개시되어 있다. 또한, 불소를 첨가함으로써 SiO2/Al2O3 비가 100 이상인 캐버자이트형 제올라이트를 합성할 수 있다는 것이 특허문헌 6 및 비특허문헌 3 에 개시되어 있다.
합성 제올라이트는 그 결정 구조에 기인하는, 규칙적으로 배열된 일정한 크기의 세공을 갖는다. 이 세공 구조를 이용해, 건조제, 극성 및 분자 직경의 차이에 기초한 각종 무기 또는 유기 분자를 흡착시키는 흡착제, 고체산 촉매 등으로서 공업적으로 이용되고 있다. 예를 들어, 또한 캐버자이트형 제올라이트는 알코올 등의 함산소 유기 화합물을 저급 올레핀으로 화학적으로 변환시키는 촉매로서 사용될 수 있음이 알려져 있다 (특허문헌 6 및 특허문헌 7). 그 밖에 개시되어 있는 용도로는 1,1,1,2-테트라플루오로에탄 (HFA134a) 과 1-클로로-2,2-디플루오로에틸렌 (HCFC1122) 의 혼합물로부터 HFA134a 를 정제하는 흡착 분리제 (특허문헌 8), 프로필렌과 프로판의 혼합물로부터 프로필렌을 제올라이트 상에 흡착시켜 프로필렌과 프로판을 분리하는 흡착 분리제 (특허문헌 9), 질소와의 혼합물로부터 산소, 이산화탄소 또는 헬륨을 분리하는 흡착 분리제 (특허문헌 10), 메틸아민 화합물을 합성하는 촉매 (특허문헌 11), 에탄의 암모산화에 의해 아세토니트릴을 제조하는 촉매 (특허문헌 12), 자동차 배기가스 중의 질소 산화물의 탄화수소에 의한 선택적 환원용 촉매 (특허문헌 13), 생리용품을 구성하는 섬유 부재에 사용하는 악취 흡수제 (특허문헌 14) 등을 들 수 있다.
상기한 바와 같이, 캐버자이트형 제올라이트는 다양한 용도로, 특히 흡착제 및 촉매 지지체로서의 이용이 기대된다. 그러나, 공업적으로 사용하기 위해서는 제올라이트는 흡착제 또는 촉매 지지체에 요구되는 내구성을 가져야만 한다. 예를 들어, 가열 재생 단계를 포함한 흡착/탈착 프로세스에 사용하는 경우, 제올라이트는 반복 가열되는 경우에도 흡착 성능이 저하하지 않는 것이 요구된다. 한편, 배기가스 정화에 이용되는 촉매는 고온하에서 촉매 성능을 유지할 수 있는 열적 내구성을 갖는 것이 요구된다. 이에, 지금까지는 얻어지지 않았던 훨씬 우수한 내구성 및 내열성을 갖는 캐버자이트형 제올라이트가 요구되고 있었다.
영국 특허 제 868,846 호 명세서 미국 특허 제 3,030,181 호 명세서 미국 특허 제 4,544,538 호 명세서 미국 특허 제 4,665,110 호 명세서 미국 특허 제 6,709,644 호 명세서 JP-T-2007-534582 호 JP-A-60-92221 호 JP-A-5-78266 호 미국 특허 제 6,488,741 호 명세서 JP-T-2005-503260 호 JP-A-8-59566 호 JP-A-9-124578 호 JP-T-2001-525241 호 JP-T-2002-512083 호
ATLAS OF ZEOLITE FRAMEWORK TYPES, fifth revised edition, p.102(2001) Nature, Vol.181, p.1794(1957) Chem.Commun, p.1881(1998)
본 발명의 목적은 촉매 지지체 또는 흡착제 기재로서 사용시 높은 내구성 및 높은 내열성을 갖는 캐버자이트형 제올라이트 및 상기 제올라이트의 제조 방법을 제공하는 것이다.
본 발명자들은, 캐버자이트형 제올라이트의 내구성 및 내열성 향상 및 그 제조 방법에 대해 예의 검토를 거듭하였다. 그 결과, SiO2/Al2O3 몰비가 15 내지 50 이고 평균 입자 직경이 1.5 μm 이상인 캐버자이트형 제올라이트가 내구성 및 내열성이 높고, 이와 같은 캐버자이트형 제올라이트가 종래 조건과는 상이한 조건 하에 제조될 수 있다는 점을 발견하여, 본 발명을 완성하기에 이르렀다.
본 발명의 요지는 하기 (1) 내지 (3) 에 있다.
(1) SiO2/Al2O3 몰비가 15 내지 50 이고 평균 입자 직경이 1.5 μm 이상인 것을 특징으로 하는 캐버자이트형 제올라이트.
(2) 원료 조성물에 있어서의 구조 지향제와 물의 SiO2 에 대한 몰비가
0.05 ≤ (구조 지향제)/SiO2 < 0.13 및
5 ≤ H2O/SiO2 < 30
을 만족시키는 원료 조성물을, K, Rb 및 Cs 로 이루어진 군에서 선택되는 1 종 이상의 알칼리 금속 이온의 존재 하에서 결정화시키는 것, 및
상기 구조 지향제가 각각 N,N,N-트리알킬아다만탄암모늄을 양이온으로서 포함하는, 히드록시드, 할라이드, 카르보네이트, 메틸 카르보네이트, 및 술페이트, 및 각각 N,N,N-트리메틸벤질암모늄 이온, N-알킬-3-퀴누클리디놀 이온, 또는 N,N,N-트리알킬-엑소-아미노노르보르난을 양이온으로서 포함하는, 히드록시드, 할라이드, 카르보네이트, 메틸 카르보네이트, 및 술페이트로 이루어진 군에서 선택되는 하나 이상을 포함하는 것을 특징으로 하는, 상기 (1) 에 따른 캐버자이트형 제올라이트의 제조 방법.
(3) 구조 지향제가 N,N,N-트리메틸아다만탄암모늄 히드록시드, N,N,N-트리메틸아다만탄암모늄 할라이드, N,N,N-트리메틸아다만탄암모늄 카르보네이트, N,N,N-트리메틸아다만탄암모늄 메틸 카르보네이트, 및 N,N,N-트리메틸아다만탄암모늄 술페이트로 이루어진 군에서 선택되는 하나 이상을 포함하는 것을 특징으로 하는, 상기 (2) 에 따른 캐버자이트형 제올라이트의 제조 방법.
본 발명의 캐버자이트형 제올라이트는, 촉매 지지체 및 흡착제 기재로서 요구되는 높은 내구성 및 높은 내열성을 갖는다. 또한, 높은 내구성 및 내열성을 갖는 캐버자이트형 제올라이트를 고가의 유기 구조 지향제를 소량으로 사용하는 조건 하에 제조할 수 있다.
도 1 은 제올라이트 3 의 주사 전자 현미경 (이후, "SEM" 이라 함) 사진이다.
도 2 는 비교 제올라이트 1 의 SEM 사진이다.
본 발명의 캐버자이트형 제올라이트는, SiO2/Al2O3 몰비가 15 내지 50 인 고실리카 캐버자이트이다. SiO2/Al2O3 몰비가 15 미만인 경우, 흡착제 또는 촉매 지지체에 유용한 제올라이트를 수득할 수 있는 내구성 및 내열성을 얻기 어렵다. SiO2/Al2O3 몰비가 50 초과인 경우, 상기 제올라이트는 흡착제 또는 촉매 지지체에 유용한 제올라이트를 수득할 수 있는 고체 산성이 불충분하다.
본 발명의 캐버자이트형 제올라이트는 평균 입자 직경이 1.5 μm 이상이어야만 한다. 합성 제올라이트의 공업적인 제조 기술, 및 제올라이트의 흡착제 또는 촉매 지지체로서의 이용의 관점으로부터, 평균 입자 직경은 1.5 μm 내지 10 μm 이어야만 하는 것이 바람직하다. 종래 보고된 바 있는 1.5 μm 미만의 결정 입자, 특히 1.0 μm 미만의 결정 입자는 흡착제 또는 촉매 지지체로서 사용시 내구성 및 내열성이 저하되었다.
본 발명에서의 평균 입자 직경은, 레이저 회절 산란법에 의한 입자 직경 분포 분석 (체적 분포) 으로 얻어지는 10% 입자 직경 및 50% 입자 직경, 또는 SEM 에 의한 관찰에 의해 평가할 수 있다.
레이저 회절 산란법에서는, 제올라이트를 수중에 분산시켜, 이 분산액을 초음파식 호모게나이저로 결정 입자를 균일한 분산 상태로 하는 처리를 실시한 후에 측정한다. 따라서, 입자 직경이 양호한 재현성으로 측정될 수 있다.
본 발명의 캐버자이트형 제올라이트는 6 면체 면을 분명히 관찰할 수 있는 결정 입자 형태를 가진다. 그 결과, 예를 들어, 5,000 배의 배율로 촬영한 하나 이상의 SEM 사진에서 임의로 50 개의 결정 입자를 선택하고, 그 50 개의 결정 입자 직경을 측정하여 그의 가중 평균을 산출함으로써, 입자 직경을 평가할 수 있다. 본 발명의 캐버자이트형 제올라이트는 1 차 입자로서 분산되어 있는 상태이므로, 평균 입자 직경과, 레이저 회절 산란법에 의한 입자 직경 분포 분석에 의해 얻어진 10% 입자 직경 간의 양호한 상관 관계가 존재한다.
다음으로, 본 발명의 캐버자이트형 제올라이트의 제조 방법에 대해 설명한다.
본 발명의 캐버자이트형 제올라이트는, 실리카원, 알루미늄원, 알칼리원, 구조 지향제 (이후, "SDA" 로 칭함) 및 물로 기본적으로 구성되는 원료로부터 생성된다. 예컨대, 종자 결정 등의 결정화 촉진 작용을 갖는 성분을 첨가할 수 있다.
실리카원으로서, 콜로이달 실리카, 무정형 실리카, 규산나트륨, 테트라에틸 오르토실리케이트, 알루미노실리케이트 겔 등을 사용할 수 있다. 알루미나원으로서, 황산 알루미늄, 나트륨 알루미네이트, 수산화 알루미늄, 염화 알루미늄, 알루미노시리케이트 겔, 알루미늄 금속 등을 사용할 수 있다. 다른 성분과 충분히 균일하게 혼합할 수 있는 형태의 실리카원 및 알루미나원이 바람직하다.
알칼리원으로서, 수산화 나트륨, 수산화 칼륨, 수산화 루비듐, 수산화 세슘, 알루미네이트 및 실리케이트의 알칼리 성분, 알루미노실리케이트 겔의 알칼리 성분 등을 사용할 수 있다.
SDA 로서는, 각각 N,N,N-트리알킬아다만탄암모늄을 양이온으로서 포함하는, 히드록시드, 할라이드, 카르보네이트, 메틸 카르보네이트 및 술페이트, 및 각각 N,N,N-트리메틸벤질암모늄 이온, N-알킬-3-퀴누클리디놀 이온, 또는 N,N,N-트리알킬-엑소-아미노노르보르난을 양이온으로서 포함하는, 히드록시드, 할라이드, 카르보네이트, 메틸 카르보네이트 및 술페이트로 이루어진 군에서 선택되는 하나 이상을 사용할 수 있다.
특히, SDA 로서 N,N,N-트리메틸아다만탄암모늄 히드록시드 (이후, "TMADAOH" 로 약기함), N,N,N-트리메틸아다만탄암모늄 할라이드, N,N,N-트리메틸아다만탄암모늄 카르보네이트, N,N,N-트리메틸아다만탄암모늄 메틸 카르보네이트, 및 N,N,N-트리메틸아다만탄암모늄 술페이트로 이루어진 군에서 선택되는 하나 이상을 사용할 수 있다.
본 발명의 캐버자이트형 제올라이트는, SDA/SiO2 비가 0.05 이상 0.13 미만, H2O/SiO2 비가 5 이상 30 미만이 되도록 제조할 수 있다.
SDA/SiO2 비가 0.13 이상인 경우, 종래 기술에서와 같이, 수득될 수 있는 캐버자이트 제올라이트는 평균 입자 직경이 1.5 μm 미만인 것에 한정된다. 또한, SDA 는 고가이기 때문에, 이와 같이 높은 SDA/SiO2 비의 사용은 비경제적이다. 한편, SDA/SiO2 비가 0.05 미만인 경우, 캐버자이트형 제올라이트의 결정화가 불충분해져, 부산물 (불순물) 이 생성된다.
H2O/SiO2 비가 30 이상인 경우, 수율이 낮아져서 당해 방법은 비경제적이다. 한편, H2O/SiO2 비가 5 미만인 경우, 원료의 점도가 증가하여 유동성이 없어져 공업적인 제조가 곤란해진다. 어느 경우에도, 부산물 (불순물 및 미반응된 반응물) 이 생성되기 쉬울 수 있다.
본 발명에서의 원료는 SiO2/Al2O3 비가 16 내지 100 이어야만 하는 것이 바람직하다. SiO2/Al2O3 비가 16 미만 또는 100 초과인 경우, SiO2/Al2O3 비가 15 내지 50 인 캐버자이트형 제올라이트를 합성하는 것이 곤란하다.
수산화물 이온량의 지표인 OH/SiO2 비는 0.1 이상 0.9 미만이 바람직하고, 0.15 내지 0.5 가 보다 바람직하다. OH/SiO2 비가 0.1 미만인 경우, 제올라이트의 결정화가 진행되기 어렵다. OH/SiO2 비가 0.9 이상인 경우, 실리카 성분의 용해가 촉진되기 때문에, 본 발명에 따른 SiO2/Al2O3 비와 입자 직경을 갖는 캐버자이트형 제올라이트를 얻기 곤란하다.
본 발명의 캐버자이트형 제올라이트의 제조시, 광물화 작용을 갖는 알칼리 금속 이온으로서, K, Rb 및 Cs 로 이루어진 군에서 선택되는 1 종 이상의 존재 하에 캐버자이트형 제올라이트를 결정화시킨다. 이러한 알칼리 금속 이온이 포함되지 않는 경우, 원료 조성물이 SDA/SiO2 비가 0.13 미만을 갖는다면, 결정화가 불충분하게 진행되어 부산물 (불순물 결정) 이 생성된다. 또한, 본 발명에 따른 평균 입자 직경이 1.5 μm 이상인 캐버자이트형 제올라이트를 얻기 곤란하다. 경제적인 합리성의 관점으로부터 K 이온이 바람직하다.
물, 실리카원, 알루미나원, 알칼리 성분, 및 SDA 로 이루어진 원료 조성물을 밀폐식 용기 중에서, 100 내지 200 ℃ 의 임의의 원하는 온도로 충분히 긴 시간에 걸쳐 결정화시킨다. 이렇게, 캐버자이트형 제올라이트를 제조할 수 있다. 결정화 시, 원료 조성물을 정치시켜 둘 수 있다. 그러나, 원료 조성물은 교반 및 혼합된 상태로 해야 하는 것이 바람직하다. 결정화 종료 후, 수득한 혼합물을 충분히 방냉하여 고액 분리를 실시한다. 고체 물질을 충분량의 순수로 세정하여 100 내지 150 ℃ 의 임의의 원하는 온도로 건조한다. 이렇게, 본 발명에 따른 캐버자이트형 제올라이트가 얻어진다.
캐버자이트형 제올라이트는 수득된 채로 흡착제, 촉매 지지체 또는 이온 교환체로서 사용될 수 있다. 얻어진 캐버자이트형 제올라이트는 세공 내에 SDA 및/또는 알칼리 금속을 함유하고, 필요에 따라 이들 성분들을 제거한 후에 사용할 수도 있다. SDA 및/또는 알칼리 금속의 제거의 경우, 산성 용액 또는 SDA-분해 성분을 포함한 화학물질을 사용한 액상 처리, 수지 등을 사용한 교환 처리, 또는 열분해를 이용할 수가 있다. 이들 처리의 조합도 또한 사용할 수 있다. 또한, 제올라이트의 이온 교환 능력을 이용하여 H 형 또는 NH4 형으로 변환한 후에 제올라이트를 사용할 수도 있다. 이 변환에서는 공지 기술이 이용될 수 있다.
실시예
이하의 실시예 및 비교예를 들어 본 발명을 상세히 설명하지만, 본 발명은 이들 실시예에 한정되는 것으로 간주되어서는 안된다.
실시예 1 (제올라이트 1 의 제조)
N,N,N-트리메틸아다만탄암모늄 히드록시드 13% 수용액 (이후, "TMADAOH 13% 수용액" 으로 칭함) 21.3 g 에, 순수 17.4 g, 수산화칼륨 48% 수용액 3.5 g, 및 규산나트륨과 황산알루미늄으로부터 제조된 무정형 알루미노실리케이트 겔 7.7 g 을 첨가하고, 성분들을 서로 충분히 혼합하였다. 수득한 원료 조성물은 SiO2 : 0.036Al2O3 : 0.11TMADAOH : 0.04Na2O : 0.13K2O : 18H2O 로 구성되었다.
원료 조성물을 스테인리스 스틸 오토클레이브에 넣고 150 ℃ 에서 158 시간 가열했다. 가열 후에 수득된 생성물을 고액 분리에 의해 꺼내고, 충분량의 순수로 세정하고, 110 ℃에서 건조했다. X선 분말 회절법 및 형광 X선 분광분석으로부터, 생성물은 순수한 캐버자이트형 제올라이트로, SiO2/Al2O3 비가 18.7 인 것으로 판명되었다. 이 캐버자이트형 제올라이트에 순수를 첨가하고 고형분 1% 인 슬러리를 제조하였다. 이 슬러리에 초음파 분산 처리를 2 분간 실시한 후, 레이저 회절 산란법에 의한 입자 직경 분포 측정 (체적 평균) 을 실시하였다. 그 결과, 상기 제올라이트는 10% 입자 직경이 1.35 μm, 50% 입자 직경이 1.93 μm 인 것으로 밝혀졌다. 또한, 5,000 배의 배율로 촬영한 SEM 사진으로부터 임의로 50 개의 결정 입자를 선택하고, 이들 입자의 직경을 평균화하여 입자 직경 (이후, "SEM 직경" 으로 칭함) 을 수득하였다. 이의 SEM 직경은 1.64 μm 이었다. 이 캐버자이트형 제올라이트를 제올라이트 1 로 칭한다.
실시예 2 (제올라이트 2 의 제조)
실리카원으로서 무정형 실리카 분말을 사용하고, 알루미나원으로서 수산화 알루미늄을 사용한 것 외에는 실시예 1 과 동일한 방법을 실시했다.
TMADAOH 13% 수용액 22.1 g 에, 순수 18.4 g, 수산화나트륨 48% 수용액 0.8 g, 수산화나트륨 48% 수용액 3.6 g, 수산화알루미늄 0.6 g, 및 Tosoh Silica Corp. 제조의 무정형 실리카 분말 (상품명: Nipsil VN-3) 8.1 g 을 첨가하고, 성분들을 서로 충분히 혼합하였다.
이 원료 조성물을 밀폐된 스테인리스 스틸 오토클레이브에 넣고, 150 ℃ 에서 158 시간 가열했다. 가열 후 수득된 생성물을 고액 분리에 의해 꺼내고, 충분량의 순수로 세정하고, 110 ℃ 에서 건조했다. X선 분말 회절법과 형광 X선 분광분석으로부터, 생성물은 순수한 캐버자이트형 제올라이트로, SiO2/Al2O3 비가 19.5 인 것으로 판명되었다. 이 캐버자이트형 제올라이트를 실시예 1 에서와 동일한 방식으로 입자 직경 분포 측정을 실시하였다. 그 결과, 상기 제올라이트는 10% 입자 직경이 1.41 μm, 50% 입자 직경이 1.99 μm 인 것으로 밝혀졌다. 이의 SEM 직경은 1.65 μm 이었다. 이 캐버자이트형 제올라이트를 제올라이트 2 로 칭한다.
실시예 3 (제올라이트 3 의 제조)
TMADAOH 13% 수용액 19.0 g 에, 순수 21.4 g, 수산화칼륨 48% 수용액 1.7 g, 및 규산나트륨과 황산알루미늄으로부터 제조된 무정형 알루미노실리케이트 겔 7.9 g을 첨가하고, 성분들을 서로 충분히 혼합하였다. 수득한 원료 조성물은 SiO2 : 0.036Al2O3 : 0.10TMADAOH : 0.04Na2O : 0.06K2O : 18H2O 로 구성되었다.
이 원료 조성물을 밀폐된 스테인리스 스틸 오토클레이브에 넣고, 150 ℃ 에서 158 시간 가열했다. 가열 후 수득된 생성물을 고액 분리에 의해 꺼내고, 충분량의 순수로 세정하고, 110 ℃ 에서 건조했다. X선 분말 회절과 형광 X선 분광분석으로부터, 생성물은 순수한 캐버자이트형 제올라이트로, SiO2/Al2O3 비가 23.7 인 것으로 판명되었다.
이하의 표 1 에, 캐버자이트형 제올라이트의 X선 회절 패턴 (미국 특허 제4,544,538 호 명세서) 과 실시예 3 에서 얻어진 생성물의 X선 회절 패턴의 비교를 나타낸다.
Figure pct00001
이 캐버자이트형 제올라이트에 대해 실시예 1 에서와 동일한 방식으로 입자 직경 분포 측정을 실시하였다. 그 결과, 상기 제올라이트는 10% 입자 직경이 1.83 μm, 50% 입자 직경이 3.09 μm 인 것으로 밝혀졌다. 이의 SEM 직경은 1.93 μm 이었다. 이 캐버자이트형 제올라이트를 제올라이트 3 으로 칭한다.
실시예 4 (제올라이트 4 의 제조)
TMADAOH 13% 수용액 16.0 g 에, 순수 24.7 g, 수산화칼륨 48% 수용액 1.3 g, 및 규산나트륨과 황산알루미늄으로부터 제조된 무정형 알루미노실리케이트 겔 8.0 g 을 첨가하고, 성분들을 서로 충분히 혼합하였다. 수득한 원료 조성물은 SiO2 : 0.036Al2O3 : 0.08TMADAOH : 0.04Na2O : 0.04K2O : 18H2O 로 구성되었다.
이 원료 조성물을 밀폐된 스테인리스 스틸 오토클레이브에 넣고, 150 ℃ 에서 158 시간 가열했다. 가열 후 수득된 생성물을 고액 분리에 의해 꺼내고, 충분량의 순수로 세정하고, 110 ℃ 에서 건조했다. X선 분말 회절과 형광 X선 분광분석으로부터, 생성물은 순수한 캐버자이트형 제올라이트로, SiO2/Al2O3 비가 25.2 인 것으로 판명되었다. 이 캐버자이트형 제올라이트에 대해 실시예 1 에서와 동일한 방식으로 입자 직경 분포 측정을 실시하였다. 그 결과, 상기 제올라이트는 10% 입자 직경이 2.21 μm, 50% 입자 직경이 4.48 μm 인 것으로 밝혀졌다. 이의 SEM 직경은 2.08 μm 이었다. 이 캐버자이트형 제올라이트를 제올라이트 4 로 칭한다.
실시예 5 (제올라이트 5 의 제조)
TMADAOH 13% 수용액 19.0 g 에, 순수 21.3 g, 수산화칼륨 48% 수용액 2.0 g, 및 규산나트륨과 황산알루미늄으로부터 제조된 무정형 알루미노실리케이트 겔 7.7 g 을 첨가하고, 성분들을 서로 충분히 혼합하였다. 수득한 원료 조성물은 SiO2 : 0.021Al2O3 : 0.10TMADAOH : 0.04Na2O : 0.04K2O : 18H2O 로 구성되었다.
이 원료 조성물을 밀폐된 스테인리스 스틸 오토클레이브에 넣고, 150 ℃ 에서 70 시간 가열했다. 가열 후 수득된 생성물을 고액 분리에 의해 꺼내고, 충분량의 순수로 세정하고, 110 ℃ 에서 건조했다. X선 분말 회절과 형광 X선 분광분석으로부터, 생성물은 순수한 캐버자이트형 제올라이트로, SiO2/Al2O3 비가 38.0 인 것으로 판명되었다. 이 캐버자이트형 제올라이트에 대해 실시예 1 에서와 동일한 방식으로 입자 직경 분포 측정을 실시하였다. 그 결과, 상기 제올라이트는 10% 입자 직경이 2.02 μm, 50% 입자 직경이 3.75 μm 인 것으로 밝혀졌다. 이의 SEM 직경은 2.01 μm 이었다. 이 캐버자이트형 제올라이트를 제올라이트 5 로 칭한다.
실시예 6 (제올라이트 6 의 제조)
TMADAOH 13% 수용액 18.9 g 에, 순수 20.7 g, 수산화칼륨 48% 수용액 2.8 g, 및 나트륨 제거 처리를 행한 무정형 알루미노실리케이트 겔 7.6 g 을 첨가하고, 성분들을 서로 충분히 혼합하였다. 수득한 원료 조성물은 SiO2 : 0.034Al2O3 : 0.10TMADAOH : 0.10K2O : 18H2O 로 구성되었다.
이 원료 조성물을 밀폐된 스테인리스 스틸 오토클레이브에 넣고, 150 ℃ 에서 70 시간 가열했다. 가열 후 수득된 생성물을 고액 분리에 의해 꺼내고, 충분량의 순수로 세정하고, 110 ℃ 에서 건조했다. X선 분말 회절과 형광 X선 분광분석으로부터, 생성물은 순수한 캐버자이트형 제올라이트로, SiO2/Al2O3 비가 25.4 인 것으로 판명되었다. 이 캐버자이트형 제올라이트에 대해 실시예 1 에서와 동일한 방식으로 입자 직경 분포 측정을 실시하였다. 그 결과, 상기 제올라이트는 10% 입자 직경이 1.98 μm, 50% 입자 직경이 3.48 μm 인 것으로 밝혀졌다. 이의 SEM 직경은 1.92 μm 이었다. 이 캐버자이트형 제올라이트를 제올라이트 6 으로 칭한다.
실시예 7 (제올라이트 7 의 제조)
TMADAOH 13% 수용액 18.5 g 에, 순수 19.6 g, 수산화세슘 50% 수용액 4.3 g, 및 규산나트륨과 황산알루미늄으로부터 제조된 무정형 알루미노실리케이트 겔 7.7 g 을 첨가하고, 성분들을 서로 충분히 혼합하였다. 수득한 원료 조성물은 SiO2 : 0.036Al2O3 : 0.10TMADAOH : 0.04Na2O : 0.06Cs2O : 18H2O 로 구성되었다.
이 원료 조성물을 밀폐된 스테인리스 스틸 오토클레이브에 넣고, 150 ℃ 에서 182 시간 가열했다. 가열 후 수득된 생성물을 고액 분리에 의해 꺼내고, 충분량의 순수로 세정하고, 110 ℃ 에서 건조했다. X선 분말 회절과 형광 X선 분광분석으로부터, 생성물은 순수한 캐버자이트형 제올라이트로, SiO2/Al2O3 비가 22.9 인 것으로 판명되었다. 이 캐버자이트형 제올라이트에 대해 실시예 1 에서와 동일한 방식으로 입자 직경 분포 측정을 실시하였다. 그 결과, 상기 제올라이트는 10% 입자 직경이 2.17 μm, 50% 입자 직경이 4.22 μm 인 것으로 밝혀졌다. 이의 SEM 직경은 2.03 μm 이었다. 이 캐버자이트형 제올라이트를 제올라이트 7 로 칭한다.
실시예 8 (제올라이트 8 의 제조)
N,N,N-트리메틸아다만탄암모늄 브롬화물 (이후, "TMADABr" 로 약기함) 25% 수용액 10.6 g 에, 순수 29.7 g, 수산화칼륨 48% 수용액 1.7 g, 수산화나트륨 48%수용액 0.1 g, 및 규산나트륨과 황산알루미늄으로부터 제조된 무정형 알루미노실리케이트 겔 7.9 g 을 첨가하고, 성분들을 서로 충분히 혼합하였다. 수득한 원료 조성물은 SiO2 : 0.034Al2O3 : 0.08TMADABr : 0.05Na2O : 0.06K2O : 18H2O 로 구성되었다.
이 원료 조성물을 밀폐된 스테인리스 스틸 오토클레이브에 넣고, 150 ℃ 에서 70 시간 가열했다. 가열 후 수득된 생성물을 고액 분리에 의해 꺼내고, 충분량의 순수로 세정하고, 110 ℃ 에서 건조했다. X선 분말 회절과 형광 X선 분광분석으로부터, 생성물은 순수한 캐버자이트형 제올라이트로, SiO2/Al2O3 비가 25.8 인 것으로 판명되었다. 이 캐버자이트형 제올라이트에 대해 실시예 1 에서와 동일한 방식으로 입자 직경 분포 측정을 실시하였다. 그 결과, 상기 제올라이트는 10% 입자 직경이 2.29 μm, 50% 입자 직경이 5.78 μm 인 것으로 밝혀졌다. 이의 SEM 직경은 1.85 μm 이었다. 이 캐버자이트형 제올라이트를 제올라이트 8 로 칭한다.
비교예 1 (비교 제올라이트 1 의 제조)
미국 특허 제 4,665,110 호 명세서에 개시된 방법을 참고하여 캐버자이트형 제올라이트를 합성하였다.
TMADAOH 13% 수용액 17.9 g 에, 순수 27.2 g, 수산화나트륨 48% 수용액 0.9 g, 수산화알루미늄 0.29 g, 및 Tosoh Silica Corp. 제조의 무정형 실리카 분말 (상품명: Nipsil VN-3) 3.7 g 을 첨가하고, 성분들을 서로 충분히 혼합하였다. 수득한 원료 조성물은 SiO2 : 0.036Al2O3 : 0.20TMADAOH : 0.10Na2O : 44H2O 로 구성되었다.
이 원료 조성물을 밀폐된 스테인리스 스틸 오토클레이브에 넣고, 150 ℃ 에서 158 시간 가열했다. 가열 후 수득된 생성물을 고액 분리에 의해 꺼내고, 충분량의 순수로 세정하고, 110 ℃ 에서 건조했다. X선 분말 회절과 형광 X선 분광분석으로부터, 생성물은 순수한 캐버자이트형 제올라이트로, SiO2/Al2O3 비가 22.3 인 것으로 판명되었다. 이 캐버자이트형 제올라이트에 대해 실시예 1 에서와 동일한 방식으로 입자 직경 분포 측정을 실시하였다. 그 결과, 상기 제올라이트는 10% 입자 직경이 0.71 μm, 50% 입자 직경이 1.25 μm 인 것으로 밝혀졌다. 이의 SEM 직경은 0.48 μm 이었다. 이 캐버자이트형 제올라이트를 비교 제올라이트 1 로 칭한다.
비교예 2 (비교 제올라이트 2 의 제조)
TMADAOH 13% 수용액 24.8 g 에, 순수 18.5 g, 수산화나트륨 48% 수용액 1.2 g, 수산화알루미늄 0.40 g, 및 Tosoh Silica Corp. 제조의 무정형 실리카 분말 (상품명: Nipsil VN-3) 5.1 g 을 첨가하고, 성분들을 서로 충분히 혼합하였다. 수득한 원료 조성물은 SiO2 : 0.036Al2O3 : 0.20TMADAOH : 0.10Na2O : 30H2O 로 구성되었다.
이 원료 조성물을 밀폐된 스테인리스 스틸 오토클레이브에 넣고, 150 ℃ 에서 158 시간 가열했다. 가열 후 수득된 생성물을 고액 분리에 의해 꺼내고, 충분량의 순수로 세정하고, 110 ℃ 에서 건조했다. X선 분말 회절로부터, 생성물은 무정형 생성물로만 이루어진 것으로 판명되었다.
비교예 3 (비교 제올라이트 3 의 제조)
TMADAOH 13% 수용액 24.6 g 에, 순수 14.7 g, 수산화나트륨 48% 수용액 3.1 g, 및 규산나트륨과 황산알루미늄으로부터 제조된 무정형 알루미노실리케이트 겔 7.7 g 을 첨가하고, 성분들을 서로 충분히 혼합하였다. 수득한 원료 조성물은 SiO2 : 0.035Al2O3 : 0.13TMADAOH : 0.20Na2O : 18H2O 로 구성되었다.
이 원료 조성물을 밀폐된 스테인리스 스틸 오토클레이브에 넣고, 150 ℃ 에서 158 시간 가열했다. 가열 후 수득된 생성물을 고액 분리에 의해 꺼내고, 충분량의 순수로 세정하고, 110 ℃ 에서 건조했다. X선 분말 회절과 형광 X선 분광분석으로부터, 생성물은 순수한 캐버자이트형 제올라이트로, SiO2/Al2O3 비가 18.5 인 것으로 판명되었다. 이 캐버자이트형 제올라이트에 대해 실시예 1 에서와 동일한 방식으로 입자 직경 분포 측정을 실시하였다. 그 결과, 상기 제올라이트는 10% 입자 직경이 0.65 μm, 50% 입자 직경이 1.26 μm 인 것으로 밝혀졌다. 이의 SEM 직경은 0.39 μm 이었다. 이 캐버자이트형 제올라이트를 비교 제올라이트 3 으로 칭한다.
비교예 4 (비교 제올라이트 4 의 제조)
TMADAOH 13% 수용액 21.5 g 에, 순수 18.1 g, 수산화 나트륨 48% 수용액 2.6 g, 및 규산나트륨과 황산알루미늄으로부터 제조된 무정형 알루미노실리케이트 겔 7.8 g 을 첨가하고, 성분들을 서로 충분히 혼합하였다. 수득한 원료 조성물은 SiO2 : 0.035Al2O3 : 0.11TMADAOH : 0.17Na2O : 18H2O 로 구성되었다.
이 원료 조성물을 밀폐된 스테인리스 스틸 오토클레이브에 넣고, 150 ℃ 에서 158 시간 가열했다. 가열 후 수득된 생성물을 고액 분리에 의해 꺼내고, 충분량의 순수로 세정하고, 110 ℃ 에서 건조했다. X선 분말 회절로부터, 생성물은 모데나이트형 제올라이트로만 이루어진 것으로 판명되었다.
비교예 5 (비교 제올라이트 5 의 제조)
TMADAOH 13% 수용액 22.0 g 에, 순수 18.6 g, 수산화 나트륨 48% 수용액 1.6 g, 및 규산나트륨과 황산알루미늄으로부터 제조된 무정형 알루미노실리케이트 겔 7.8 g 을 첨가하고, 성분들을 서로 충분히 혼합하였다. 수득한 원료 조성물은 SiO2 : 0.035Al2O3 : 0.11TMADAOH : 0.12Na2O : 18H2O 로 구성되었다.
이 원료 조성물을 밀폐된 스테인리스 스틸 오토클레이브에 넣고, 150 ℃ 에서 158 시간 가열했다. 가열 후 수득된 생성물을 고액 분리에 의해 꺼내고, 충분량의 순수로 세정하고, 110 ℃ 에서 건조했다. X선 분말 회절과 형광 X선 분광분석으로부터, 생성물은 순수한 캐버자이트형 제올라이트로, SiO2/Al2O3 비가 24.2 인 것으로 판명되었다. 이 캐버자이트형 제올라이트에 대해 실시예 1 에서와 동일한 방식으로 입자 직경 분포 측정을 실시하였다. 그 결과, 상기 제올라이트는 10% 입자 직경이 0.23 μm, 50% 입자 직경이 0.38 μm 인 것으로 밝혀졌다. 이의 SEM 직경은 0.18 μm 이었다. 이 캐버자이트형 제올라이트를 비교 제올라이트 5 로 칭한다.
비교예 6 (비교 제올라이트 6 의 제조)
TMADAOH 13% 수용액 19.1 g 에, 순수 21.8 g, 수산화나트륨 48% 수용액 1.2 g, 및 규산나트륨과 황산알루미늄으로부터 제조된 무정형 알루미노실리케이트 겔 8.0 g 을 첨가하고, 성분들을 서로 충분히 혼합하였다. 수득한 원료 조성물은 SiO2 : 0.036Al2O3 : 0.10TMADAOH : 0.10Na2O : 18H2O 로 구성되었다.
이 원료 조성물을 밀폐된 스테인리스 스틸 오토클레이브에 넣고, 150 ℃ 에서 158 시간 가열했다. 가열 후 수득된 생성물을 고액 분리에 의해 꺼내고, 충분량의 순수로 세정하고, 110 ℃ 에서 건조했다. X선 분말 회절과 형광 X선 분광분석으로부터, 생성물은 순수한 캐버자이트형 제올라이트로, SiO2/Al2O3 비가 24.4 인 것으로 판명되었다. 이 캐버자이트형 제올라이트에 대해 실시예 1 에서와 동일한 방식으로 입자 직경 분포 측정을 실시하였다. 그 결과, 상기 제올라이트는 10% 입자 직경이 0.33 μm, 50% 입자 직경이 1.49 μm 인 것으로 밝혀졌다. 이의 SEM 직경은 0.32 μm 이었다. 이 캐버자이트형 제올라이트를 비교 제올라이트 6 으로 칭한다.
이하의 표 2 에, 실시예 1 내지 8 및 비교예 1 내지 6 의 원료 조성물 및 수득된 생성물을 나타낸다. 표 3 에서, 생성물의 SiO2/Al2O3 비, 입자 직경 분포 측정으로부터 구한 입자 직경, 및 SEM 사진으로부터 구한 입자 직경을 나타낸다.
Figure pct00002
Figure pct00003
실시예 9 (제올라이트의 내열수성 시험)
제올라이트 3 및 비교 제올라이트 1 의 건조 분말을 공기 스트림 중에 600 ℃ 에서 2 시간 소성하였다. 그 후, 각 분말을 가압 성형한 후, 분쇄하여 12 내지 20 메시의 입자로 구성되도록 조절된 분말을 수득하였다. 조절된 입자 크기를 갖는 각 제올라이트 3 ml 를 상압 고정층 유통식 반응관에 충전하였다. 수분을 10 체적% 함유하는 공기를 300 ml/분으로 통과시키면서, 상기 제올라이트를 900 ℃ 에서 2 개의 수준으로, 즉 1 시간 및 16 시간으로 처리하였다. 각 제올라이트의 내열성은, 열수 처리 후에 구한 결정화도로 평가하였다. 결정화도는, 제올라이트에 분말 X선 회절을 실시하여, 표 1 에 나타내는 바와 같은, d = 4.25 에서 나타나는 회절 피크의 강도를, 열수 처리를 거치지 않은 제올라이트의 강도를 100 으로 한 것에 대한 비로서 산출함으로써 구하였다. 표 4 에, 열수 처리를 거친 각 제올라이트의 결정화도 (%) 를 나타낸다. 그 결과는 본 발명의 캐버자이트형 제올라이트는 종래의 캐버자이트형 제올라이트보다 높은 결정화도의 보존율을 갖고, 우수한 내열성을 가졌던 것을 나타낸다.
Figure pct00004
본 발명을 상세하게 또한 그의 특정의 실시형태를 참조하여 설명했지만, 본 발명의 정신과 범위를 벗어나지 않으면서 여러가지 변경 및 수정을 가할 수 있다는 것은 당업자에게 있어 분명할 것이다.
본 출원은, 2008 년 12 월 22 일에 출원된 일본 특허출원 (출원번호 제 2008-325404 호) 에 근거하는 것으로, 그 내용은 여기에 참조로서 도입된다.
산업상 이용 가능성
본 발명의 캐버자이트형 제올라이트는, 높은 내구성 및 내열성을 갖기 때문에, 배기가스 정화 촉매용의 촉매 지지체로서 및 흡착제의 기재로서 광범위한 분야에 이용되는 것이 기대된다. 따라서, 본 발명은 공업적 가치가 현저하다.

Claims (3)

  1. SiO2/Al2O3 몰비가 15 내지 50 이고 평균 입자 직경이 1.5 μm 이상인 것을 특징으로 하는 캐버자이트 (chabazite) 형 제올라이트.
  2. 원료 조성물에 있어서의 구조 지향제와 물의 SiO2 에 대한 몰비가
    0.05 ≤ (구조 지향제)/SiO2 < 0.13 및
    5 ≤ H2O/SiO2 < 30
    을 만족시키는 원료 조성물을, K, Rb 및 Cs 로 이루어진 군에서 선택되는 1 종 이상의 알칼리 금속 이온의 존재 하에서 결정화시키는 것, 및
    상기 구조 지향제가 각각 N,N,N-트리알킬아다만탄암모늄을 양이온으로서 포함하는, 히드록시드, 할라이드, 카르보네이트, 메틸 카르보네이트, 및 술페이트, 및 각각 N,N,N-트리메틸벤질암모늄 이온, N-알킬-3-퀴누클리디놀 이온, 또는 N,N,N-트리알킬-엑소-아미노노르보르난을 양이온으로서 포함하는, 히드록시드, 할라이드, 카르보네이트, 메틸 카르보네이트 염, 및 술페이트로 이루어진 군에서 선택되는 하나 이상을 포함하는 것을 특징으로 하는, 제 1 항에 기재된 캐버자이트형 제올라이트의 제조 방법.
  3. 제 2 항에 있어서, 구조 지향제가 N,N,N-트리메틸아다만탄암모늄 히드록시드, N,N,N-트리메틸아다만탄암모늄 할라이드, N,N,N-트리메틸아다만탄암모늄 카르보네이트, N,N,N-트리메틸아다만탄암모늄 메틸 카르보네이트, 및 N,N,N-트리메틸아다만탄암모늄 술페이트로 이루어진 군에서 선택되는 하나 이상을 포함하는 것을 특징으로 하는 캐버자이트형 제올라이트의 제조 방법.
KR1020117014009A 2008-12-22 2009-12-21 캐버자이트형 제올라이트 및 그 제조 방법 KR101626183B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPJP-P-2008-325404 2008-12-22
JP2008325404 2008-12-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020167003589A Division KR101738318B1 (ko) 2008-12-22 2009-12-21 캐버자이트형 제올라이트 및 그 제조 방법

Publications (2)

Publication Number Publication Date
KR20110106854A true KR20110106854A (ko) 2011-09-29
KR101626183B1 KR101626183B1 (ko) 2016-05-31

Family

ID=42287649

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020167003589A KR101738318B1 (ko) 2008-12-22 2009-12-21 캐버자이트형 제올라이트 및 그 제조 방법
KR1020117014009A KR101626183B1 (ko) 2008-12-22 2009-12-21 캐버자이트형 제올라이트 및 그 제조 방법

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR1020167003589A KR101738318B1 (ko) 2008-12-22 2009-12-21 캐버자이트형 제올라이트 및 그 제조 방법

Country Status (6)

Country Link
US (1) US10029247B2 (ko)
EP (1) EP2368849B1 (ko)
JP (2) JP5482179B2 (ko)
KR (2) KR101738318B1 (ko)
CN (3) CN105905918A (ko)
WO (1) WO2010074040A1 (ko)

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10384162B2 (en) * 2007-03-26 2019-08-20 Pq Corporation High silica chabazite for selective catalytic reduction, methods of making and using same
JP4577585B2 (ja) * 2008-03-22 2010-11-10 株式会社デンソー 荷重センサの製造方法
GB2464478A (en) * 2008-10-15 2010-04-21 Johnson Matthey Plc Aluminosilicate zeolite catalyst and use thereof in exhaust gas after-treatment
JP5417969B2 (ja) * 2008-12-17 2014-02-19 東ソー株式会社 N,n,n−トリメチル−ベンジルアンモニウムイオンを用いたチャバザイトの製造方法
EP2471597B1 (en) 2009-08-27 2020-09-23 Tosoh Corporation Highly heat-resistant scr catalyst and manufacturing method therefor
US9084980B2 (en) 2009-08-28 2015-07-21 Tosoh Corporation Zeolite for treatment of nonaqueous electrolytic solution and treatment method of nonaqueous electrolytic solution
JP5668422B2 (ja) * 2009-11-10 2015-02-12 三菱化学株式会社 アルミノシリケートの製造方法
BR112012012244A2 (pt) * 2009-11-24 2016-04-19 Basf Se processo para a preparação de zeólitos que possuam estrutura de armação cha e uma composição, material zeolítico que possui uma estrutura de armação cha, e, uso de um material zeolítico
JP5957828B2 (ja) * 2010-08-26 2016-07-27 三菱化学株式会社 ガス分離用ゼオライト膜複合体
JP5810852B2 (ja) * 2010-11-09 2015-11-11 東ソー株式会社 チャバザイト型ゼオライト及びこれを含む窒素酸化物還元触媒
RU2614411C2 (ru) 2010-12-02 2017-03-28 Джонсон Мэтти Паблик Лимитед Компани Цеолитный катализатор, содержащий металл
JP5895510B2 (ja) * 2010-12-22 2016-03-30 東ソー株式会社 チャバザイト型ゼオライト及びその製造方法、銅が担持されている低シリカゼオライト、及び、そのゼオライトを含む窒素酸化物還元除去触媒、並びに、その触媒を使用する窒素酸化物還元除去方法
EP2659973B1 (en) 2010-12-28 2018-08-29 Tosoh Corporation Zeolite having copper and alkali earth metal supported thereon
US9174849B2 (en) * 2011-08-25 2015-11-03 Basf Corporation Molecular sieve precursors and synthesis of molecular sieves
US20120258032A1 (en) 2011-11-02 2012-10-11 Johnson Matthey Public Limited Company Catalyzed filter for treating exhaust gas
JP5810846B2 (ja) * 2011-11-04 2015-11-11 東ソー株式会社 銅及びアルカリ金属を有するチャバザイト型ゼオライトの製造方法
BR112014013246A2 (pt) 2011-12-01 2017-06-13 Johnson Matthey Plc composição catalisadora, e, método para tratar nox
US9126180B2 (en) 2012-01-31 2015-09-08 Johnson Matthey Public Limited Company Catalyst blends
JP6441789B2 (ja) 2012-04-11 2018-12-19 ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company 金属含有ゼオライト触媒
WO2015020014A1 (ja) 2013-08-05 2015-02-12 三菱化学株式会社 ゼオライト及びその製造方法と用途
US9296620B2 (en) * 2013-08-09 2016-03-29 Chevron U.S.A. Inc. Preparation of high-silica cha-type molecular sieves using a mixed template
JP6785483B2 (ja) * 2013-09-30 2020-11-18 国立研究開発法人産業技術総合研究所 ゼオライト薄膜を有する複合膜およびその製造方法
US9216911B2 (en) * 2013-10-01 2015-12-22 Chevron U.S.A. Inc. Method for preparing CHA-type molecular sieves using an alkali metal silicate precursor and novel structure directing agents
CN103787369B (zh) * 2013-12-20 2016-05-25 天津众智科技有限公司 一种沸石分子筛及其合成方法
JP5732169B1 (ja) * 2013-12-27 2015-06-10 イビデン株式会社 ゼオライトの製造方法及びハニカム触媒
JP5740040B1 (ja) 2014-07-07 2015-06-24 イビデン株式会社 ゼオライト、ハニカム触媒及び排ガス浄化装置
JP5732170B1 (ja) 2014-07-07 2015-06-10 イビデン株式会社 ゼオライト、ハニカム触媒及び排ガス浄化装置
CN104163434B (zh) * 2014-07-18 2016-06-15 天津众智科技有限公司 晶种法合成高硅铝比菱沸石型分子筛的方法及分子筛的应用
JP6713821B2 (ja) * 2016-05-06 2020-06-24 日本碍子株式会社 Cs含有CHA型ゼオライトの製造方法
US10953390B2 (en) 2016-05-23 2021-03-23 Tosoh Corporation CHA-type zeolite and method for producing the same
CN106145137B (zh) * 2016-06-27 2018-06-05 杨晓波 一种直接水热合成中硅铝比菱沸石的方法
CN106082256B (zh) * 2016-07-25 2017-10-24 江西科帕克环保化工有限责任公司 乙烯专用分子筛的制备方法
JP6792264B2 (ja) * 2016-11-25 2020-11-25 国立大学法人広島大学 ガリウムを含有する結晶性アルミノシリケートおよびその製造方法
JP7069797B2 (ja) * 2017-02-22 2022-05-18 東ソー株式会社 チャバザイト型ゼオライト及びその製造方法
MY190284A (en) 2017-10-11 2022-04-12 Tosoh Corp Metal-containing cha-type zeolite and method for producing the same
CN107673369B (zh) * 2017-10-30 2019-05-10 太原理工大学 一种合成具有多级孔道结构的Chabazite沸石分子筛的方法
JP7158141B2 (ja) 2017-11-27 2022-10-21 エヌ・イーケムキャット株式会社 触媒用スラリー組成物及びその製造方法、これを用いた触媒の製造方法、並びに、Cu含有ゼオライトの製造方法
CN111886202B (zh) 2018-01-23 2023-10-24 萨德化学制品印度私人有限公司 用于合成沸石ssz-13的方法
JP7171714B2 (ja) * 2018-05-17 2022-11-15 東京濾器株式会社 排気ガス浄化触媒
EP3986835A1 (en) 2019-06-21 2022-04-27 Total Se Chabazite-type zeolite, precursors thereof, methods for making the same and use of the zeolite as sorbent for co2
WO2021024142A1 (en) * 2019-08-02 2021-02-11 Basf Corporation Chabazite synthesis method including organic and inorganic structure directing agents and chabazite zeolite with flake-like morphology
EP4034502A4 (en) * 2019-09-25 2023-07-26 BASF Corporation CU-CHA SCR CATALYSTS HAVING SPECIFIC NETWORK CONSTRAINT AND DOMAIN SIZE CHARACTERISTICS
CN111268691A (zh) * 2020-03-12 2020-06-12 上海索易分子筛有限公司 一种小晶粒菱沸石及其制备方法和应用
JP7444674B2 (ja) 2020-03-27 2024-03-06 日揮触媒化成株式会社 チャバザイト型ゼオライトの製造方法
CN111470517B (zh) * 2020-04-28 2022-08-30 大连理工大学 具有优异扩散性能的大颗粒钛硅分子筛及其制备方法
US20230271843A1 (en) 2020-08-07 2023-08-31 Tosoh Corporation Cha-type zeolite and method for producing the same
EP3988506A1 (en) * 2020-10-21 2022-04-27 Basf Se Zeolite synthesis from cyclic precursors
EP4277746A1 (en) * 2021-01-15 2023-11-22 Council of Scientific & Industrial Research A zeolite catalyst, process for preparation and application thereof
WO2023223027A1 (en) 2022-05-17 2023-11-23 Johnson Matthey Public Limited Company A cha type zeolite and the method of synthesising said zeolite

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB868846A (en) * 1957-08-26 1961-05-25 Union Carbide Corp Improvements in and relating to zeolites
US3030181A (en) * 1957-08-26 1962-04-17 Union Carbide Corp Crystalline zeolite r
US4544538A (en) * 1982-07-09 1985-10-01 Chevron Research Company Zeolite SSZ-13 and its method of preparation
US4496786A (en) * 1983-09-30 1985-01-29 Chevron Research Company Selective conversion of methanol to low molecular weight olefins over high silica SSZ-13 zeolite
US4665110A (en) * 1986-01-29 1987-05-12 Chevron Research Company Process for preparing molecular sieves using adamantane template
GB9105421D0 (en) * 1991-03-14 1991-05-01 Ici Plc Purification of 1,1,1,2-tetrafluoroethane
JPH0859566A (ja) 1994-08-23 1996-03-05 Mitsui Toatsu Chem Inc メチルアミン類の製造方法
TW325461B (en) 1995-09-11 1998-01-21 Air Prod & Chem Ammoxidation of alkanes and alkenes
WO1999029400A1 (en) 1997-12-10 1999-06-17 Ab Volvo Porous material, method and arrangement for catalytic conversion of exhaust gases
US6353146B1 (en) 1998-04-20 2002-03-05 Playtex Products, Inc. Fibrous articles having odor adsorbtion ability and method of making same
US6110258A (en) * 1998-10-06 2000-08-29 Matheson Tri-Gas, Inc. Methods for removal of water from gases using superheated zeolites
US6488741B2 (en) * 2001-01-23 2002-12-03 The Trustess Of The University Of Pennsylvania Light hydrocarbon separation using 8-member ring zeolites
US6709644B2 (en) * 2001-08-30 2004-03-23 Chevron U.S.A. Inc. Small crystallite zeolite CHA
US6626980B2 (en) * 2001-09-21 2003-09-30 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Mixed matrix membranes incorporating chabazite type molecular sieves
US7332640B2 (en) * 2003-10-31 2008-02-19 Exxonmobile Research And Engineering Company Light hydrocarbon separation using 8-member ring zeolites
US7067108B2 (en) 2003-12-23 2006-06-27 Exxonmobil Chemical Patents Inc. Chabazite-type molecular sieve, its synthesis and its use in the conversion of oxygenates to olefins
US20060115403A1 (en) * 2004-11-29 2006-06-01 Chevron U.S.A. Inc. Reduction of oxides of nitrogen in a gas stream using high-silics molecular sieve CHA
JP5151041B2 (ja) * 2005-03-03 2013-02-27 三菱化学株式会社 アルミノフォスフェート類の合成方法
JP5051815B2 (ja) * 2006-05-23 2012-10-17 独立行政法人産業技術総合研究所 マーリノアイト型ゼオライト複合膜及びその製造方法
KR101097536B1 (ko) * 2006-07-28 2011-12-22 엑손모빌 케미칼 패턴츠 인코포레이티드 신규 분자체 조성물, 이의 제조 방법 및 이의 사용 방법
US7959899B2 (en) 2006-07-28 2011-06-14 Exxonmobil Chemical Patents Inc. Molecular sieve composition (EMM-10-P), its method of making, and use for hydrocarbon conversions
JP5082361B2 (ja) 2006-09-27 2012-11-28 東ソー株式会社 SCR触媒用β型ゼオライト及びそれを用いた窒素酸化物の浄化方法
US8057782B2 (en) * 2006-12-27 2011-11-15 Chevron U.S.A. Inc. Preparation of small pore molecular sieves
MX2009009095A (es) * 2007-02-27 2009-09-14 Basf Catalysts Llc Catalizadores de zeolita cha de cobre.
US7998423B2 (en) * 2007-02-27 2011-08-16 Basf Corporation SCR on low thermal mass filter substrates
US10384162B2 (en) * 2007-03-26 2019-08-20 Pq Corporation High silica chabazite for selective catalytic reduction, methods of making and using same
US7645718B2 (en) * 2007-03-26 2010-01-12 Pq Corporation Microporous crystalline material comprising a molecular sieve or zeolite having an 8-ring pore opening structure and methods of making and using same
WO2009141324A1 (en) * 2008-05-21 2009-11-26 Basf Se Process for the direct synthesis of cu containing zeolites having cha structure
JP5549839B2 (ja) 2008-08-19 2014-07-16 東ソー株式会社 高耐熱性β型ゼオライト及びそれを用いたSCR触媒
GB2464478A (en) * 2008-10-15 2010-04-21 Johnson Matthey Plc Aluminosilicate zeolite catalyst and use thereof in exhaust gas after-treatment
JP5593964B2 (ja) * 2009-11-11 2014-09-24 三菱化学株式会社 多孔質支持体−ゼオライト膜複合体の製造方法
BR112012012244A2 (pt) * 2009-11-24 2016-04-19 Basf Se processo para a preparação de zeólitos que possuam estrutura de armação cha e uma composição, material zeolítico que possui uma estrutura de armação cha, e, uso de um material zeolítico

Also Published As

Publication number Publication date
US20110251048A1 (en) 2011-10-13
CN105152183A (zh) 2015-12-16
EP2368849B1 (en) 2017-10-18
EP2368849A4 (en) 2013-10-16
JP2010168269A (ja) 2010-08-05
CN102256899A (zh) 2011-11-23
KR101738318B1 (ko) 2017-05-29
WO2010074040A1 (ja) 2010-07-01
KR20160022395A (ko) 2016-02-29
CN105905918A (zh) 2016-08-31
KR101626183B1 (ko) 2016-05-31
JP5861725B2 (ja) 2016-02-16
JP5482179B2 (ja) 2014-04-23
US10029247B2 (en) 2018-07-24
EP2368849A1 (en) 2011-09-28
JP2014155921A (ja) 2014-08-28

Similar Documents

Publication Publication Date Title
KR101626183B1 (ko) 캐버자이트형 제올라이트 및 그 제조 방법
KR101906620B1 (ko) 차바자이트형 제올라이트 및 그 제조 방법, 구리가 담지되어 있는 저실리카 제올라이트, 및 그 제올라이트를 함유하는 질소 산화물 환원 제거 촉매, 그리고, 그 촉매를 사용하는 질소 산화물 환원 제거방법
JP4904417B2 (ja) ベータ型ゼオライト及びその製造方法
JP5576124B2 (ja) 分子篩ssz−13の製造
KR101614544B1 (ko) 나노 크기의 결정성 zsm-5 핵을 사용한 zsm-5의 제조 방법
EP2837596B1 (en) Beta zeolite and method for producing same
JP6089678B2 (ja) ストロンチウム交換クリノプチロライト
JP2023099653A (ja) 金属含有cha型ゼオライト及びその製造方法
KR101598723B1 (ko) 제올라이트 pst-20 및 그 제조방법, 이를 이용한 이산화탄소의 선택적 분리방법
AU2017282418A1 (en) MWF-type zeolite
JP6842544B2 (ja) モレキュラーシーブssz−41の合成
KR20200045111A (ko) 제올라이트 pst-29 및 그 제조방법, 이를 이용한 이산화탄소의 선택적 분리 및 메틸아민의 제조
JP6759596B2 (ja) Afx型ゼオライト及びその製造方法
JP2016508950A (ja) モレキュラーシーブssz−85及びその合成
JP2018062450A (ja) Kfi型ゼオライト及びその製造方法
JP4882202B2 (ja) 高シリカモルデナイトの合成方法
US11472711B2 (en) Process for preparing an IZM-2 zeolite in the presence of a mixture of nitrogenous organic structuring agents in hydroxide form and of bromide and of an alkali metal chloride
US9259720B2 (en) Method for making molecular sieve SSZ-100
JP5820526B2 (ja) ゲルマノケイ酸塩ssz−75
JP4470003B2 (ja) 高シリカモルデナイトおよびその合成方法
JP2019085294A (ja) リンを含有するgme型ゼオライトおよびその製造方法
JPH10101326A (ja) 低摩耗性ゼオライトビーズ成形体及びその製造方法

Legal Events

Date Code Title Description
AMND Amendment
A201 Request for examination
AMND Amendment
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
A107 Divisional application of patent
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20190516

Year of fee payment: 4