CN105152183A - 用于生产菱沸石型沸石的方法 - Google Patents

用于生产菱沸石型沸石的方法 Download PDF

Info

Publication number
CN105152183A
CN105152183A CN201510487850.3A CN201510487850A CN105152183A CN 105152183 A CN105152183 A CN 105152183A CN 201510487850 A CN201510487850 A CN 201510487850A CN 105152183 A CN105152183 A CN 105152183A
Authority
CN
China
Prior art keywords
sio
type zeolites
zeolite
chabazite type
chabazite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510487850.3A
Other languages
English (en)
Inventor
有贺耕
青山英和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=42287649&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN105152183(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Tosoh Corp filed Critical Tosoh Corp
Publication of CN105152183A publication Critical patent/CN105152183A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J39/00Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/08Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/14Base exchange silicates, e.g. zeolites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/18Synthetic zeolitic molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/7015CHA-type, e.g. Chabazite, LZ-218
    • B01J32/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/036Precipitation; Co-precipitation to form a gel or a cogel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/04Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof using at least one organic template directing agent, e.g. an ionic quaternary ammonium compound or an aminated compound
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/46Other types characterised by their X-ray diffraction pattern and their defined composition
    • C01B39/48Other types characterised by their X-ray diffraction pattern and their defined composition using at least one organic template directing agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • B01D2253/108Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • B01D2253/108Zeolites
    • B01D2253/1085Zeolites characterized by a silicon-aluminium ratio
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/30Physical properties of adsorbents
    • B01D2253/302Dimensions
    • B01D2253/304Linear dimensions, e.g. particle shape, diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/50Zeolites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Dispersion Chemistry (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及用于生产菱沸石型沸石的方法。提供经济、合理的菱沸石型沸石,期望其发挥用作催化剂用载体或吸附剂用载体的实用性并呈现高耐久性和耐热性。SiO2/Al2O3摩尔比为15-50和平均粒径为1.5μm以上的菱沸石型沸石呈现出高耐久性和耐热性。该菱沸石型沸石在至少一种选自由K、Rb和Cs组成的组的碱金属离子存在下,可通过将其中结构导向剂和水与SiO2的摩尔比分别满足0.05≤结构导向剂/SiO2<0.13和5≤H2O/SiO2<30的原料组合物进行结晶而生产。所述结构导向剂优选为N,N,N-三甲基金刚烷基铵盐。

Description

用于生产菱沸石型沸石的方法
本申请是申请日为2009年12月21日、申请号为200980151287.5、发明名称为“菱沸石型沸石及其生产方法”的申请的分案申请。
技术领域
本发明涉及一种具有高二氧化硅含量(highsilicacontent)和大结晶尺寸的菱沸石(chabazite)型沸石,和用于生产该沸石的方法。
背景技术
作为具有由国际沸石协会(InternationalZeoliteAssociation)完全鉴定的结晶结构的沸石,菱沸石型沸石是具有由的8元氧环构筑的三维孔结构,并且被指定和归类为结构编码CHA的沸石(非专利文献1)。
菱沸石型沸石是已知天然存在的沸石和典型地具有组成Ca6 2+[Si24Al12O72](非专利文献2)。菱沸石型的合成沸石的实例包括专利文献1公开的沸石D和专利文献2公开的沸石R,各沸石的SiO2/Al2O3比为3.45-4.9。
在专利文献3和专利文献4中公开了指定为SSZ-13的、SiO2/Al2O3比为5-50的所谓高二氧化硅菱沸石型沸石,以及合成该沸石的方法。
在专利文献5中公开了指定为SSZ-62的、SiO2/Al2O3比为20-50和晶体直径为0.5μm以下的菱沸石型沸石。此外,专利文献6和非专利文献3公开了通过添加氟可合成SiO2/Al2O3比为100以上的菱沸石型沸石。
合成沸石具有由其结晶结构导致的均一尺寸的规则排列的孔。使用该孔结构,合成沸石工业化用作干燥剂、基于极性和分子直径的差异吸附各种无机或有机分子所用的吸附剂、固体酸催化剂等。例如,菱沸石型沸石还已知用作将含氧有机化合物例如醇化学转化为低级烯烃所用的催化剂(专利文献6和专利文献7)。已公开的它们的其他用途包括纯化1,1,1,2-四氟乙烷(HFA134a)和l-氯-2,2-二氟乙烯(HCFC1122)的混合物中含有的HFA134a所用的吸附分离剂(专利文献8),通过在沸石上从丙烯和丙烷的混合物吸附丙烯将丙烯与丙烷分离所用的吸附分离剂(专利文献9),从氧、二氧化碳或氦与氮的混合物分离氧,二氧化碳或氦所用的吸附分离剂(专利文献10),合成甲胺化合物所用的催化剂(专利文献11),由乙烷的氨氧化反应生产乙腈所用的催化剂(专利文献12),用烃选择性还原机动车尾气中的氮氧化物所用的催化剂(专利文献13),构成卫生用品的纤维材料所用的气味吸收剂(专利文献14)等。
如上所述,期望菱沸石型沸石用于各种用途,特别是作为吸附剂和催化剂载体。然而,对于工业用途,沸石必须具有吸附剂或催化剂载体需要的耐久性。例如,对于在涉及热再生步骤的吸附/脱附方法中使用,需要该沸石即使当重复加热时也不降低吸附性能。同时,用于废气纯化的催化剂需要具有能使催化剂在高温下保持它们的催化性能的热耐久性。因此已存在对具有迄今为止未得到的更好耐久性和耐热性的菱沸石型沸石的要求。
现有技术文献
专利文献
专利文献1:英国专利868,846,说明书
专利文献2:美国专利3,030,181,说明书
专利文献3:美国专利4,544,538,说明书
专利文献4:美国专利4,665,110,说明书
专利文献5:美国专利6,709,644,说明书
专利文献6:JP-T-2007-534582
专利文献7:JP-A-60-92221
专利文献8:JP-A-5-78266
专利文献9:美国专利6,488,741,说明书
专利文献10:JP-T-2005-503260
专利文献11:JP-A-8-59566
专利文献12:JP-A-9-124578
专利文献13:JP-T-2001-525241
专利文献14:JP-T-2002-512083
非专利文献
非专利文献1:ATLASOFZEOLITEFRAMEWORKTYPES,第五次修订版,p.102(2001)
非专利文献2:Nature,Vol.181,p.1794(1957)
非专利文献3:Chem.Commun.,p.1881(1998)
发明内容
发明要解决的问题
本发明的目的是提供一种菱沸石型沸石和用于生产该沸石的方法,所述菱沸石型沸石当用作催化剂载体或吸附剂基材时,具有高耐久性和高耐热性。
用于解决问题的方案
本发明人坚持不懈地进行菱沸石型沸石的耐久性和耐热性改进及其生产方法的研究。结果,本发明人发现SiO2/Al2O3摩尔比为15-50和平均粒径为1.5μm以上的菱沸石型沸石具有高耐久性和耐热性以及该菱沸石型沸石可在不同于常规条件的条件下生产,由此完成了本发明。
本发明的要点在于以下(1)至(3)。
(1)一种菱沸石型沸石,其特征在于,SiO2/Al2O3摩尔比为15-50和平均粒径为1.5μm以上。
(2)一种用于生产根据上述(1)所述的菱沸石型沸石的方法,其特征在于,在至少一种选自由K、Rb和Cs组成的组的碱金属离子存在下,将其中结构导向剂和水与SiO2的摩尔比满足0.05≤(结构导向剂)/SiO2<0.13和5≤H2O/SiO2<30的原料组合物结晶,和
所述结构导向剂包括选自由各自包含N,N,N-三烷基金刚烷铵(N,N,N-trialkyladamantaneammonium)作为阳离子的氢氧化物、卤化物、碳酸盐、甲基碳酸盐和硫酸盐组成的组以及各自包含N,N,N-三甲基苄基铵离子(N,N,N-trimethylbenzylammoniumion)、N-烷基-3-喹核醇离子(N-alkyl-3-quinuclidinolion)或N,N,N-三烷基-外-氨基降冰片烷(N,N,N-trialkyl-exo-aminorbornane)作为阳离子的氢氧化物、卤化物、碳酸盐、甲基碳酸盐和硫酸盐组成的组的至少一种。
(3)根据上述(2)所述的用于生产菱沸石型沸石的方法,其特征在于,所述结构导向剂包括选自由N,N,N-三甲基金刚烷氢氧化铵、N,N,N-三甲基金刚烷卤化铵、N,N,N-三甲基金刚烷碳酸铵、N,N,N-三甲基金刚烷甲基碳酸铵和N,N,N-三甲基金刚烷硫酸铵组成的组的至少一种。
发明的效果
本发明的菱沸石型沸石具有催化剂载体和吸附剂基材需要的高耐久性和高耐热性。此外,可在少量使用昂贵有机结构导向剂的条件下生产具有高耐久性和耐热性的菱沸石型沸石。
附图说明
[图1]图1是用扫描电子显微镜(下文称为"SEM")拍摄的沸石3照片。
[图2]图2是比较沸石1的SEM照片。
具体实施方式
本发明的菱沸石型沸石是SiO2/Al2O3摩尔比为15-50的高二氧化硅菱沸石。在其SiO2/Al2O3摩尔比小于15的情况下,难以获得使沸石可用作吸附剂或催化剂载体的耐久性和耐热性。在其SiO2/Al2O3摩尔比大于50的情况下,使该沸石可用作吸附剂或催化剂载体的沸石固体酸性不充分。
本发明的菱沸石型沸石的平均粒径应该为1.5μm以上。从工业生产合成沸石的技术和将沸石用作吸附剂或催化剂载体的角度,优选其平均粒径应为1.5μm至10μm。已报道小于1.5μm的结晶颗粒特别是小于1.0μm的结晶颗粒当用作吸附剂或催化剂载体时耐久性和耐热性降低。
本发明的平均粒径可通过10%粒径和50%粒径评价,该10%粒径和50%粒径通过借助于激光衍射和散射法的粒径分布分析(体积分布),或通过用SEM观察得到。
在激光衍射和散射法中,沸石分散于水中并且在测量前对该分散液进行处理,在该处理中用超声波均质机使结晶颗粒达到均匀分散的状态。因此,可以良好再现性地测量粒径。
本发明的菱沸石型沸石具有其中可清楚地观察到菱形面的结晶颗粒形态。因此,例如,通过从在5,000倍放大倍率下拍摄的一张或多张SEM照片中任选50个结晶颗粒,测量50个结晶颗粒其直径,和计算其加权平均值能够评价沸石的粒径。本发明的菱沸石型沸石处于被分散为一次颗粒的状态,因此,在平均粒径与通过借助于激光衍射和散射法测量的粒径分布分析得到的10%粒径之间存在良好关联。
接下来说明本发明的用于生产菱沸石型沸石的方法。
本发明的菱沸石型沸石从基本上由二氧化硅源、铝源、碱源(alkalisource)、结构导向剂(下文称为"SDA")和水组成的原料生产。可添加具有加速结晶功能的成分,例如籽晶。
作为二氧化硅源,可使用胶态二氧化硅、无定形二氧化硅、硅酸钠、原硅酸四乙酯或铝硅酸盐凝胶等。作为氧化铝源,可使用硫酸铝、铝酸钠、氢氧化铝、氯化铝、铝硅酸盐凝胶或铝金属等。希望以二氧化硅源和氧化铝源与其他成分能够充分均匀混合的形式使用二氧化硅源和氧化铝源。
作为碱源,可使用氢氧化钠、氢氧化钾、氢氧化铷、氢氧化铯、铝酸盐和硅酸盐的碱性组分或铝硅酸盐凝胶的碱性组分等。
作为SDA,可以使用选自由各自包含N,N,N-三烷基金刚烷铵作为阳离子的氢氧化物、卤化物、碳酸盐、甲基碳酸盐和硫酸盐组成的组以及由各自包含N,N,N-三甲基苄基铵离子、N-烷基-3-喹核醇离子或N,N,N-三烷基-外-氨基降冰片烷作为阳离子的氢氧化物、卤化物、碳酸盐、甲基碳酸盐和硫酸盐组成的组的至少一种。
特别是,作为SDA,可使用选自由N,N,N-三甲基金刚烷氢氧化铵(在下文中简写为"TMADAOH")、N,N,N-三甲基金刚烷卤化铵、N,N,N-三甲基金刚烷碳酸铵、N,N,N-三甲基金刚烷甲基碳酸铵和N,N,N-三甲基金刚烷硫酸铵组成的组的至少一种。
本发明的菱沸石型沸石可生产为使SDA/SiO2比为0.05以上但小于0.13和H2O/SiO2比为5以上但小于30。
在SDA/SiO2比为0.13以上的情况下,将可得到的菱沸石型沸石限定为平均晶体粒径小于常规技术中的1.5μm的沸石。此外,由于SDA昂贵,使用如此较高的SDA/SiO2比是不经济的。另一方面,在SDA/SiO2比小于0.05的情况下,菱沸石型沸石的结晶不充分并产生副产物(杂质)。
在H2O/SiO2比为30以上的情况下,结果是产率降低,因此该方法是不经济的。另一方面,在H2O/SiO2比为小于5的情况下,原料粘度提高,因此导致无流动性,使工业生产困难。在任一种情况下,均容易产生副产物(杂质和未反应物)。
优选本发明中的原料组合物SiO2/Al2O3比应当为16-100。在SiO2/Al2O3比小于16或大于100的情况下,难以合成SiO2/Al2O3比为15-50的菱沸石型沸石。
作为氢氧根离子量的指标的OH/SiO2比优选为0.1以上但小于0.9,更优选0.15-0.5。在OH/SiO2比小于0.1的情况下,难以进行沸石的结晶。在OH/SiO2比为0.9以上的情况下,二氧化硅组分的溶解加速,因此难以得到具有根据本发明的SiO2/Al2O3比和粒径的菱沸石型沸石。
当生产本发明的菱沸石型沸石时,在选自由K、Rb和Cs组成的组的至少一种元素作为具有矿化功能的碱金属离子的存在下,菱沸石型沸石结晶。在不含有该碱金属离子的情况下,当原料组合物的SDA/SiO2比小于0.13时,结晶进行地不充分并且产生副产物(杂质晶体)。此外,难以得到根据本发明的平均粒径为1.5μm以上的菱沸石型沸石。从经济合理性的观点,优选K离子。
由水、二氧化硅源、氧化铝源、碱成分和SDA组成的原料组合物在密闭容器中在100-200℃的任意希望温度下经过充分长的时间而结晶。因此可生产菱沸石型沸石。在结晶期间,可使原料组合物保持静态。然而,优选应该持续搅拌混合原料组合物。在完成结晶后,使所得混合物充分冷却并进行固-液分离。用足量的纯水洗涤固体物质并且在100-150℃的任意希望温度下干燥。因此得到根据本发明的菱沸石型沸石。
如此得到的菱沸石型沸石可用作吸附剂、催化剂载体或离子交换体。得到的菱沸石型沸石在孔内含有SDA和/或碱金属,并且可在根据需要除去这些成分后使用。关于SDA和/或碱金属的除去,可使用具有酸性溶液或具有包含SDA分解成分的化学品的液相处理,用树脂等的交换处理,或热分解。还可使用这些处理的组合。还可以利用沸石的离子交换能力在沸石使用前将沸石转化为H型或NH4型。关于该转化,可使用已知的技术。
实施例
参考以下实施例和比较例将详细说明本发明,但本发明不应当解释为限于这些实施例。
实施例1(沸石1的生产)
向21.3g13%的N,N,N-三甲基金刚烷氢氧化铵水溶液(下文称为"13%TMADAOH水溶液")添加17.4g纯水、3.5g48%氢氧化钾水溶液和7.7g由硅酸钠和硫酸铝制备的无定形铝硅酸盐凝胶,将这些成分一起充分混合。所得原料组合物由SiO2:0.036Al2O3:0.11TMADAOH:0.04Na2O:0.13K2O:18H2O构成。
将原料组合物放入不锈钢高压釜中并在150℃下加热158小时。通过加热获得的产物借助于固液分离而取出,用足量纯水洗涤,并在110℃下干燥。X射线粉末衍射仪和X射线荧光光谱仪显示产物为纯菱沸石型沸石并且SiO2/Al2O3比为18.7。向该菱沸石型沸石添加纯水以制备固成分为1%的浆料。将该浆料进行超声波分散处理2分钟,然后通过激光衍射和散射法进行粒径分布分析(体积平均)。结果是,发现沸石的10%粒径为1.35μm和50%粒径为1.93μm。此外,从在5,000倍放大倍率下拍摄的SEM照片中任选50个结晶颗粒,并且通过将这些颗粒的直径平均化得到粒径(下文称为"SEM直径")。其SEM直径为1.64μm。该菱沸石型沸石称为沸石1。
实施例2(沸石2的生产)
除了将无定形二氧化硅粉末用作二氧化硅源和将氢氧化铝用作氧化铝源外,进行与实施例1相同的步骤。
向22.1g13%的TMADAOH水溶液添加18.4g纯水、0.8g48%氢氧化钠水溶液、3.6g48%氢氧化钠水溶液、0.6g氢氧化铝、和8.1g由TosohSilicaCorp.制备的无定形二氧化硅粉(商品名:NipsilVN-3),将这些成分一起充分混合。
将该原料组合物放入密闭的不锈钢高压釜中并在150℃下加热158小时。通过加热获得的产物借助于固液分离而取出,用足量纯水洗涤,并在110℃下干燥。X射线粉末衍射仪和X射线荧光光谱仪显示产物为纯菱沸石型沸石并且SiO2/Al2O3比为19.5。对该菱沸石型沸石以与实施例1中相同的方式进行粒径分布分析。结果是,发现沸石的10%粒径为1.41μm和50%粒径为1.99μm。其SEM直径为1.65μm。该菱沸石型沸石称为沸石2。
实施例3(沸石3的生产)
向19.0g13%的TMADAOH水溶液添加21.4g纯水、1.7g48%氢氧化钾水溶液和7.9g由硅酸钠和硫酸铝制备的无定形铝硅酸盐凝胶,将这些成分一起充分混合。所得原料组合物由SiO2:0.036Al2O3:0.10TMADAOH:0.04Na2O:0.06K2O:18H2O构成。
将该原料组合物放入密闭的不锈钢高压釜中并在150℃下加热158小时。通过加热获得的产物借助于固液分离而取出,用足量纯水洗涤,并在110℃下干燥。X射线粉末衍射仪和X射线荧光光谱仪显示产物为纯菱沸石型沸石并且SiO2/Al2O3比为23.7。
下表1中示出了菱沸石型沸石的X射线衍射图(美国专利4,544,538,说明书)与实施例3中得到的产物的X射线衍射图之间的比较。
[表1]
对该菱沸石型沸石以与实施例1中相同的方式进行粒径分布分析。结果是,发现沸石的10%粒径为1.83μm和50%粒径为3.09μm。其SEM直径为1.93μm。该菱沸石型沸石称为沸石3。
实施例4(沸石4的生产)
向16.0g13%的TMADAOH水溶液添加24.7g纯水、1.3g48%氢氧化钾水溶液和8.0g由硅酸钠和硫酸铝制备的无定形铝硅酸盐凝胶,将这些成分一起充分混合。所得原料组合物由SiO2:0.036Al2O3:0.08TMADAOH:0.04Na2O:0.04K2O:18H2O构成。
将该原料组合物放入密闭的不锈钢高压釜中并在150℃下加热158小时。通过加热获得的产物借助于固液分离而取出,用足量纯水洗涤,并在110℃下干燥。X射线粉末衍射仪和X射线荧光光谱仪显示产物为纯菱沸石型沸石并且SiO2/Al2O3比为25.2。对该菱沸石型沸石以与实施例1中相同的方式进行粒径分布分析。结果是,发现沸石的10%粒径为2.21μm和50%粒径为4.48μm。其SEM直径为2.08μm。该菱沸石型沸石称为沸石4。
实施例5(沸石5的生产)
向19.0g13%的TMADAOH水溶液添加21.3g纯水、2.0g48%氢氧化钾水溶液和7.7g由硅酸钠和硫酸铝制备的无定形铝硅酸盐凝胶,将这些成分一起充分混合。所得原料组合物由SiO2:0.021Al2O3:0.10TMADAOH:0.04Na2O:0.04K2O:18H2O构成。
将该原料组合物放入密闭的不锈钢高压釜中并在150℃下加热70小时。通过加热获得的产物借助于固液分离而取出,用足量纯水洗涤,并在110℃下干燥。X射线粉末衍射仪和X射线荧光光谱仪显示产物为纯菱沸石型沸石并且SiO2/Al2O3比为38.0。对该菱沸石型沸石以与实施例1中相同的方式进行粒径分布分析。结果是,发现沸石的10%粒径为2.02μm和50%粒径为3.75μm。其SEM直径为2.01μm。该菱沸石型沸石称为沸石5。
实施例6(沸石6的生产)
向18.9g13%的TMADAOH水溶液添加20.7g纯水、2.8g48%氢氧化钾水溶液和7.6g经过除钠处理的无定形铝硅酸盐凝胶,将这些成分一起充分混合。所得原料组合物由SiO2:0.034Al2O3:0.10TMADAOH:0.10K2O:18H2O构成。
将该原料组合物放入密闭的不锈钢高压釜中并在150℃下加热70小时。通过加热获得的产物借助于固液分离而取出,用足量纯水洗涤,并在110℃下干燥。X射线粉末衍射仪和X射线荧光光谱仪显示产物为纯菱沸石型沸石并且SiO2/Al2O3比为25.4。对该菱沸石型沸石以与实施例1中相同的方式进行粒径分布分析。结果是,发现沸石的10%粒径为1.98μm和50%粒径为3.48μm。其SEM直径为1.92μm。该菱沸石型沸石称为沸石6。
实施例7(沸石7的生产)
向18.5g13%的TMADAOH水溶液添加19.6g纯水、4.3g50%氢氧化铯水溶液和7.7g由硅酸钠和硫酸铝制备的无定形铝硅酸盐凝胶,将这些成分一起充分混合。所得原料组合物由SiO2:0.036Al2O3:0.10TMADAOH:0.04Na2O:0.06Cs2O:18H2O构成。
将该原料组合物放入密闭的不锈钢高压釜中并在150℃下加热182小时。通过加热获得的产物借助于固液分离而取出,用足量纯水洗涤,并在110℃下干燥。X射线粉末衍射仪和X射线荧光光谱仪显示产物为纯菱沸石型沸石并且SiO2/Al2O3比为22.9。对该菱沸石型沸石以与实施例1中相同的方式进行粒径分布分析。结果是,发现沸石的10%粒径为2.17μm和50%粒径为4.22μm。其SEM直径为2.03μm。该菱沸石型沸石称为沸石7。
实施例8(沸石8的生产)
向10.6g25%的N,N,N-三甲基金刚烷溴化铵(下文简写为"TMADABr")水溶液添加29.7g纯水、1.7g48%氢氧化钾水溶液、0.1g48%氢氧化钠水溶液和7.9g由硅酸钠和硫酸铝制备的无定形铝硅酸盐凝胶,将这些成分一起充分混合。所得原料组合物由SiO2:0.034Al2O3:0.08TMADABr:0.05Na2O:0.06K2O:18H2O构成。
将该原料组合物放入密闭的不锈钢高压釜中并在150℃下加热70小时。通过加热获得的产物借助于固液分离而取出,用足量纯水洗涤,并在110℃下干燥。X射线粉末衍射仪和X射线荧光光谱仪显示产物为纯菱沸石型沸石并且SiO2/Al2O3比为25.8。对该菱沸石型沸石以与实施例1中相同的方式进行粒径分布分析。结果是,发现沸石的10%粒径为2.29μm和50%粒径为5.78μm。其SEM直径为1.85μm。该菱沸石型沸石称为沸石8。
比较例1(比较沸石1的生产)
参照美国专利4,665,110的说明书中公开的方法合成菱沸石型沸石。
向17.9g13%的TMADAOH水溶液添加27.2g纯水、0.9g48%氢氧化钠水溶液、0.29g氢氧化铝和3.7g由TosohSilicaCorp.制备的无定形二氧化硅粉(商品名:NipsilVN-3),将这些成分一起充分混合。所得原料组合物由SiO2:0.036Al2O3:0.20TMADAOH:0.10Na2O:44H2O构成。
将该原料组合物放入密闭的不锈钢高压釜中并在150℃下加热158小时。通过加热获得的产物借助于固液分离而取出,用足量纯水洗涤,并在110℃下干燥。X射线粉末衍射仪和X射线荧光光谱仪显示产物为纯菱沸石型沸石并且SiO2/Al2O3比为22.3。对该菱沸石型沸石以与实施例1中相同的方式进行粒径分布分析。结果是,发现沸石的10%粒径为0.71μm和50%粒径为1.25μm。其SEM直径为0.48μm。该菱沸石型沸石称为比较沸石1。
比较例2(比较沸石2的生产)
向24.8g13%的TMADAOH水溶液添加18.5g纯水、1.2g48%氢氧化钠水溶液、0.40g氢氧化铝和5.1g由TosohSilicaCorp.制备的无定形二氧化硅粉(商品名:NipsilVN-3),将这些成分一起充分混合。所得原料组合物由SiO2:0.036Al2O3:0.20TMADAOH:0.10Na2O:30H2O构成。
将该原料组合物放入密闭的不锈钢高压釜中并在150℃下加热158小时。通过加热获得的产物借助于固液分离而取出,用足量纯水洗涤,并在110℃下干燥。X射线粉末衍射仪显示该产物仅由无定形产物构成。
比较例3(比较沸石3的生产)
向24.6g13%的TMADAOH水溶液添加14.7g纯水、3.1g48%氢氧化钠水溶液和7.7g由硅酸钠和硫酸铝制备的无定形铝硅酸盐凝胶,将这些成分一起充分混合。所得原料组合物由SiO2:0.035Al2O3:0.13TMADAOH:0.20Na2O:18H2O构成。
将该原料组合物放入密闭的不锈钢高压釜中并在150℃下加热158小时。通过加热获得的产物借助于固液分离而取出,用足量纯水洗涤,并在110℃下干燥。X射线粉末衍射仪和X射线荧光光谱仪显示产物为纯菱沸石型沸石并且SiO2/Al2O3比为18.5。对该菱沸石型沸石以与实施例1中相同的方式进行粒径分布分析。结果是,发现沸石的10%粒径为0.65μm和50%粒径为1.26μm。其SEM直径为0.39μm。该菱沸石型沸石称为比较沸石3。
比较例4(比较沸石4的生产)
向21.5g13%的TMADAOH水溶液添加18.1g纯水、2.6g48%氢氧化钠水溶液和7.8g由硅酸钠和硫酸铝制备的无定形铝硅酸盐凝胶,将这些成分一起充分混合。所得原料组合物由SiO2:0.035Al2O3:0.11TMADAOH:0.17Na2O:18H2O构成。
将该原料组合物放入密闭的不锈钢高压釜中并在150℃下加热158小时。通过加热获得的产物借助于固液分离而取出,用足量纯水洗涤,并在110℃下干燥。X射线粉末衍射仪显示该产物仅由发光沸石型沸石构成。
比较例5(比较沸石5的生产)
向22.0g13%的TMADAOH水溶液添加18.6g纯水、1.6g48%氢氧化钠水溶液和7.8g由硅酸钠和硫酸铝制备的无定形铝硅酸盐凝胶,将这些成分一起充分混合。所得原料组合物由SiO2:0.035Al2O3:0.11TMADAOH:0.12Na2O:18H2O构成。
将该原料组合物放入密闭的不锈钢高压釜中并在150℃下加热158小时。通过加热获得的产物借助于固液分离而取出,用足量纯水洗涤,并在110℃下干燥。X射线粉末衍射仪和X射线荧光光谱仪显示产物为纯菱沸石型沸石并且SiO2/Al2O3比为24.2。对该菱沸石型沸石以与实施例1中相同的方式进行粒径分布分析。结果是,发现沸石的10%粒径为0.23μm和50%粒径为0.38μm。其SEM直径为0.18μm。该菱沸石型沸石称为比较沸石5。
比较例6(比较沸石6的生产)
向19.1g13%的TMADAOH水溶液添加21.8g纯水、1.2g48%氢氧化钠水溶液和8.0g由硅酸钠和硫酸铝制备的无定形铝硅酸盐凝胶,将这些成分一起充分混合。所得原料组合物由SiO2:0.036Al2O3:0.10TMADAOH:0.10Na2O:18H2O构成。
将该原料组合物放入密闭的不锈钢高压釜中并在150℃下加热158小时。通过加热获得的产物借助于固液分离而取出,用足量纯水洗涤,并在110℃下干燥。X射线粉末衍射仪和X射线荧光光谱仪显示产物为纯菱沸石型沸石并且SiO2/Al2O3比为24.4。对该菱沸石型沸石以与实施例1中相同的方式进行粒径分布分析。结果是,发现沸石的10%粒径为0.33μm和50%粒径为1.49μm。其SEM直径为0.32μm。该菱沸石型沸石称为比较沸石6。
下表2中示出了在实施例1-8和比较例1-6中制备的原料组合物及在其中获得的产物。表3中示出了所述产物的SiO2/Al2O3比、通过粒径分布分析测定其粒径和由SEM照片测定其粒径。
[表2]
[表3]
沸石 SiO2/Al2O3 10%粒径(μm) 50%粒径(μm) SEM直径(μm)
沸石1 18.7 1.35 1.93 1.64
沸石2 19.5 1.42 1.99 1.65
沸石3 23.7 1.83 3.09 1.93
沸石4 25.2 2.21 4.48 2.08
沸石5 38.0 2.02 3.75 2.01
沸石6 25.4 1.98 3.48 1.92
沸石7 22.9 2.17 4.22 2.03
沸石8 25.8 2.29 5.78 1.85
比较沸石1 22.3 0.71 1.25 0.48
比较沸石3 18.5 0.65 1.26 0.39
比较沸石5 24.2 0.23 0.38 0.18
比较沸石6 24.4 0.33 1.49 0.32
实施例9(沸石的耐湿热性(hydrothermalresistance)试验)
将沸石3和比较沸石1的干燥粉末在空气流中在600℃下煅烧2小时。其后,将各粉末加压成形,然后粉碎以得到调整为由12-20目颗粒组成的粉末。将3ml具有调整粒度的各沸石填充到常压固定床流通式反应管中。当以300mL/min通过含10体积%水分的空气时,将沸石在900℃下进行两个时间阶段(即,1小时和16小时)的处理。根据水热处理后测定的结晶度评价各沸石的耐热性。通过使沸石进行X射线粉末衍射并计算如表1所示的在d=4.25处出现的衍射峰强度与取作100的未经过水热处理的沸石在d=4.25处的峰强度之比来测定结晶度。表4中示出了经过水热处理的各沸石的结晶度(%)值。该结果显示,本发明的菱沸石型沸石具有比常规菱沸石型沸石更高的结晶度保持率和具有优异的耐热性。
[表4]
虽然参照其具体实施方案详细描述了本发明,但是对本领域技术人员显而易见的是,在不偏离其精神和范围的条件下可以对本发明作出各种改变和修改。
本申请基于2008年12月22日递交的日本专利申请(申请号2008-325404),将其内容引入本文作为参考。
产业上的可利用性
因为本发明的菱沸石型沸石具有高耐久性和耐热性,所以该沸石作为废气纯化催化剂所用的催化剂载体和作为吸附剂的基材期望用于广泛的领域。因此,本发明具有显著的工业价值。

Claims (6)

1.一种用于生产菱沸石型沸石的方法,其特征在于,所述菱沸石型沸石的SiO2/Al2O3摩尔比为15-50和平均粒径为1.5μm以上,在至少一种选自由K、Rb和Cs组成的组的碱金属离子存在下,将原料组合物中的结构导向剂和水与SiO2的摩尔比满足0.05≤结构导向剂/SiO2<0.13和5≤H2O/SiO2<30的原料组合物结晶,和
所述结构导向剂包括选自由各自包含N,N,N-三烷基金刚烷基铵作为阳离子的氢氧化物、卤化物、碳酸盐、甲基碳酸盐和硫酸盐组成的组以及各自包括N,N,N-三甲基苄基铵离子、N-烷基-3-喹核醇离子或N,N,N-三烷基-外-氨基降冰片烷作为阳离子的氢氧化物、卤化物、碳酸盐、甲基碳酸盐和硫酸盐组成的组的至少一种。
2.根据权利要求1所述的用于生产菱沸石型沸石的方法,其特征在于,所述结构导向剂包括选自由N,N,N-三甲基金刚烷基氢氧化铵、N,N,N-三甲基金刚烷基卤化铵、N,N,N-三甲基金刚烷基甲基碳酸铵盐和N,N,N-三甲基金刚烷基硫酸铵盐组成的组的至少一种。
3.根据权利要求1所述的用于生产菱沸石型沸石的方法,其特征在于,所述原料组合物中水与SiO2的摩尔比满足:
5≤H2O/SiO2<18。
4.根据权利要求1所述的用于生产菱沸石型沸石的方法,其特征在于,所述原料组合物的SiO2/Al2O3比是29以下。
5.根据权利要求1所述的用于生产菱沸石型沸石的方法,其特征在于,所述原料组合物的SiO2/Al2O3比是16以上且100以下。
6.根据权利要求1所述的用于生产菱沸石型沸石的方法,其特征在于,所述原料组合物的OH/SiO2比为0.1以上且小于0.9。
CN201510487850.3A 2008-12-22 2009-12-21 用于生产菱沸石型沸石的方法 Pending CN105152183A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008-325404 2008-12-22
JP2008325404 2008-12-22
CN2009801512875A CN102256899A (zh) 2008-12-22 2009-12-21 菱沸石型沸石及其生产方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN2009801512875A Division CN102256899A (zh) 2008-12-22 2009-12-21 菱沸石型沸石及其生产方法

Publications (1)

Publication Number Publication Date
CN105152183A true CN105152183A (zh) 2015-12-16

Family

ID=42287649

Family Applications (3)

Application Number Title Priority Date Filing Date
CN2009801512875A Pending CN102256899A (zh) 2008-12-22 2009-12-21 菱沸石型沸石及其生产方法
CN201610425913.7A Pending CN105905918A (zh) 2008-12-22 2009-12-21 菱沸石型沸石及其生产方法
CN201510487850.3A Pending CN105152183A (zh) 2008-12-22 2009-12-21 用于生产菱沸石型沸石的方法

Family Applications Before (2)

Application Number Title Priority Date Filing Date
CN2009801512875A Pending CN102256899A (zh) 2008-12-22 2009-12-21 菱沸石型沸石及其生产方法
CN201610425913.7A Pending CN105905918A (zh) 2008-12-22 2009-12-21 菱沸石型沸石及其生产方法

Country Status (6)

Country Link
US (1) US10029247B2 (zh)
EP (1) EP2368849B1 (zh)
JP (2) JP5482179B2 (zh)
KR (2) KR101626183B1 (zh)
CN (3) CN102256899A (zh)
WO (1) WO2010074040A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106082256A (zh) * 2016-07-25 2016-11-09 江西科帕克环保化工有限责任公司 乙烯专用分子筛的制备方法
CN106145137A (zh) * 2016-06-27 2016-11-23 杨晓波 一种直接水热合成中硅铝比菱沸石的方法
CN108455628A (zh) * 2017-02-22 2018-08-28 东曹株式会社 菱沸石型沸石和其制造方法

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10384162B2 (en) * 2007-03-26 2019-08-20 Pq Corporation High silica chabazite for selective catalytic reduction, methods of making and using same
JP4577585B2 (ja) * 2008-03-22 2010-11-10 株式会社デンソー 荷重センサの製造方法
GB2464478A (en) * 2008-10-15 2010-04-21 Johnson Matthey Plc Aluminosilicate zeolite catalyst and use thereof in exhaust gas after-treatment
JP5417969B2 (ja) * 2008-12-17 2014-02-19 東ソー株式会社 N,n,n−トリメチル−ベンジルアンモニウムイオンを用いたチャバザイトの製造方法
WO2011024847A1 (ja) 2009-08-27 2011-03-03 東ソー株式会社 高耐熱水性scr触媒及びその製造方法
CN102481546A (zh) 2009-08-28 2012-05-30 东曹株式会社 非水电解液处理用沸石及非水电解液的处理方法
JP5668422B2 (ja) * 2009-11-10 2015-02-12 三菱化学株式会社 アルミノシリケートの製造方法
BR112012012244A2 (pt) * 2009-11-24 2016-04-19 Basf Se processo para a preparação de zeólitos que possuam estrutura de armação cha e uma composição, material zeolítico que possui uma estrutura de armação cha, e, uso de um material zeolítico
JP5957828B2 (ja) * 2010-08-26 2016-07-27 三菱化学株式会社 ガス分離用ゼオライト膜複合体
JP5810852B2 (ja) * 2010-11-09 2015-11-11 東ソー株式会社 チャバザイト型ゼオライト及びこれを含む窒素酸化物還元触媒
CN103298557B (zh) 2010-12-02 2016-10-12 庄信万丰股份有限公司 含有金属的沸石催化剂
JP5895510B2 (ja) * 2010-12-22 2016-03-30 東ソー株式会社 チャバザイト型ゼオライト及びその製造方法、銅が担持されている低シリカゼオライト、及び、そのゼオライトを含む窒素酸化物還元除去触媒、並びに、その触媒を使用する窒素酸化物還元除去方法
KR101841317B1 (ko) 2010-12-28 2018-03-22 토소가부시키가이샤 구리 및 알칼리 토금속을 담지한 제올라이트
US9174849B2 (en) * 2011-08-25 2015-11-03 Basf Corporation Molecular sieve precursors and synthesis of molecular sieves
US20120258032A1 (en) 2011-11-02 2012-10-11 Johnson Matthey Public Limited Company Catalyzed filter for treating exhaust gas
JP5810846B2 (ja) * 2011-11-04 2015-11-11 東ソー株式会社 銅及びアルカリ金属を有するチャバザイト型ゼオライトの製造方法
CN104080532A (zh) 2011-12-01 2014-10-01 庄信万丰股份有限公司 用于处理废气的催化剂
EP2809441A1 (en) 2012-01-31 2014-12-10 Johnson Matthey Public Limited Company Catalyst blends
EP2836301A1 (en) 2012-04-11 2015-02-18 Johnson Matthey Public Limited Company Zeolite catalyst containing metals
EP3031777A4 (en) 2013-08-05 2016-08-03 Mitsubishi Chem Corp ZEOLITE AND PROCESS FOR PRODUCTION AND USE THEREFOR
US9296620B2 (en) * 2013-08-09 2016-03-29 Chevron U.S.A. Inc. Preparation of high-silica cha-type molecular sieves using a mixed template
JP6785483B2 (ja) * 2013-09-30 2020-11-18 国立研究開発法人産業技術総合研究所 ゼオライト薄膜を有する複合膜およびその製造方法
US9216911B2 (en) 2013-10-01 2015-12-22 Chevron U.S.A. Inc. Method for preparing CHA-type molecular sieves using an alkali metal silicate precursor and novel structure directing agents
CN103787369B (zh) * 2013-12-20 2016-05-25 天津众智科技有限公司 一种沸石分子筛及其合成方法
JP5732169B1 (ja) * 2013-12-27 2015-06-10 イビデン株式会社 ゼオライトの製造方法及びハニカム触媒
JP5740040B1 (ja) 2014-07-07 2015-06-24 イビデン株式会社 ゼオライト、ハニカム触媒及び排ガス浄化装置
JP5732170B1 (ja) 2014-07-07 2015-06-10 イビデン株式会社 ゼオライト、ハニカム触媒及び排ガス浄化装置
CN104163434B (zh) * 2014-07-18 2016-06-15 天津众智科技有限公司 晶种法合成高硅铝比菱沸石型分子筛的方法及分子筛的应用
JP6713821B2 (ja) * 2016-05-06 2020-06-24 日本碍子株式会社 Cs含有CHA型ゼオライトの製造方法
CN109195911B (zh) * 2016-05-23 2023-04-07 东曹株式会社 Cha型沸石和其制造方法
JP6792264B2 (ja) * 2016-11-25 2020-11-25 国立大学法人広島大学 ガリウムを含有する結晶性アルミノシリケートおよびその製造方法
MY190284A (en) 2017-10-11 2022-04-12 Tosoh Corp Metal-containing cha-type zeolite and method for producing the same
CN107673369B (zh) * 2017-10-30 2019-05-10 太原理工大学 一种合成具有多级孔道结构的Chabazite沸石分子筛的方法
JP7158141B2 (ja) 2017-11-27 2022-10-21 エヌ・イーケムキャット株式会社 触媒用スラリー組成物及びその製造方法、これを用いた触媒の製造方法、並びに、Cu含有ゼオライトの製造方法
WO2019145869A1 (en) 2018-01-23 2019-08-01 Sud Chemie India Pvt. Ltd. Process for synthesizing zeolite ssz-13
CN112118907B (zh) * 2018-05-17 2023-05-12 东京滤器株式会社 排气净化催化剂
WO2020254051A1 (en) 2019-06-21 2020-12-24 Total Se Chabazite-type zeolite, precursors thereof, methods for making the same and use of the zeolite as sorbent for co2
US20220266228A1 (en) * 2019-08-02 2022-08-25 Basf Corporation Chabazite synthesis method including organic and inorganic structure directing agents and chabazite zeolite with flake-like morphology
CN114423712A (zh) * 2019-09-25 2022-04-29 巴斯夫公司 具有特定晶格应变和畴尺寸特征的Cu-CHASCR催化剂
CN111268691A (zh) * 2020-03-12 2020-06-12 上海索易分子筛有限公司 一种小晶粒菱沸石及其制备方法和应用
JP7444674B2 (ja) 2020-03-27 2024-03-06 日揮触媒化成株式会社 チャバザイト型ゼオライトの製造方法
CN111470517B (zh) * 2020-04-28 2022-08-30 大连理工大学 具有优异扩散性能的大颗粒钛硅分子筛及其制备方法
CN116034090A (zh) 2020-08-07 2023-04-28 东曹株式会社 一种cha型沸石及其制备方法
EP3988506A1 (en) * 2020-10-21 2022-04-27 Basf Se Zeolite synthesis from cyclic precursors
EP4277746A1 (en) * 2021-01-15 2023-11-22 Council of Scientific & Industrial Research A zeolite catalyst, process for preparation and application thereof
WO2023223027A1 (en) 2022-05-17 2023-11-23 Johnson Matthey Public Limited Company A cha type zeolite and the method of synthesising said zeolite

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4544538A (en) * 1982-07-09 1985-10-01 Chevron Research Company Zeolite SSZ-13 and its method of preparation
US4665110A (en) * 1986-01-29 1987-05-12 Chevron Research Company Process for preparing molecular sieves using adamantane template
WO2003020641A1 (en) * 2001-08-30 2003-03-13 Chevron U.S.A. Inc. Small crystallite zeolite cha
WO2003026780A1 (en) * 2001-09-21 2003-04-03 L'air Liquide - Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude Mixed matrix membranes incorporating chabazite type molecular sieves

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB868846A (en) * 1957-08-26 1961-05-25 Union Carbide Corp Improvements in and relating to zeolites
US3030181A (en) * 1957-08-26 1962-04-17 Union Carbide Corp Crystalline zeolite r
US4496786A (en) 1983-09-30 1985-01-29 Chevron Research Company Selective conversion of methanol to low molecular weight olefins over high silica SSZ-13 zeolite
GB9105421D0 (en) * 1991-03-14 1991-05-01 Ici Plc Purification of 1,1,1,2-tetrafluoroethane
JPH0859566A (ja) 1994-08-23 1996-03-05 Mitsui Toatsu Chem Inc メチルアミン類の製造方法
TW325461B (en) 1995-09-11 1998-01-21 Air Prod & Chem Ammoxidation of alkanes and alkenes
US7033969B1 (en) 1997-12-10 2006-04-25 Volvo Car Corporation Porous material, method and arrangement for catalytic conversion of exhaust gases
US6353146B1 (en) 1998-04-20 2002-03-05 Playtex Products, Inc. Fibrous articles having odor adsorbtion ability and method of making same
US6110258A (en) * 1998-10-06 2000-08-29 Matheson Tri-Gas, Inc. Methods for removal of water from gases using superheated zeolites
US6488741B2 (en) * 2001-01-23 2002-12-03 The Trustess Of The University Of Pennsylvania Light hydrocarbon separation using 8-member ring zeolites
US7332640B2 (en) * 2003-10-31 2008-02-19 Exxonmobile Research And Engineering Company Light hydrocarbon separation using 8-member ring zeolites
CA2547895C (en) 2003-12-23 2009-09-15 Exxonmobil Chemical Patents Inc. Chabazite-type molecular sieve, its synthesis and its use in the conversion of oxygenates to olefins
US20060115403A1 (en) * 2004-11-29 2006-06-01 Chevron U.S.A. Inc. Reduction of oxides of nitrogen in a gas stream using high-silics molecular sieve CHA
JP5151041B2 (ja) * 2005-03-03 2013-02-27 三菱化学株式会社 アルミノフォスフェート類の合成方法
JP5051815B2 (ja) * 2006-05-23 2012-10-17 独立行政法人産業技術総合研究所 マーリノアイト型ゼオライト複合膜及びその製造方法
US7959899B2 (en) 2006-07-28 2011-06-14 Exxonmobil Chemical Patents Inc. Molecular sieve composition (EMM-10-P), its method of making, and use for hydrocarbon conversions
JP5635261B2 (ja) * 2006-07-28 2014-12-03 エクソンモービル・ケミカル・パテンツ・インク 新規なモレキュラーシーブ組成物、この製造方法、及びこの使用方法
JP5082361B2 (ja) 2006-09-27 2012-11-28 東ソー株式会社 SCR触媒用β型ゼオライト及びそれを用いた窒素酸化物の浄化方法
US8057782B2 (en) * 2006-12-27 2011-11-15 Chevron U.S.A. Inc. Preparation of small pore molecular sieves
US7998423B2 (en) * 2007-02-27 2011-08-16 Basf Corporation SCR on low thermal mass filter substrates
AR065501A1 (es) * 2007-02-27 2009-06-10 Basf Catalysts Llc Catalizadores de zeolita cha de cobre
MX2009010369A (es) * 2007-03-26 2010-02-17 Pq Corp Material cristalino, microporoso, novedoso, que comprende un tamiz molecular o zeolita que tiene una estructura de abertura de poro de 8 anillos y metodos para hacer y utilizar los mismos.
US10384162B2 (en) * 2007-03-26 2019-08-20 Pq Corporation High silica chabazite for selective catalytic reduction, methods of making and using same
CN102099293B (zh) 2008-05-21 2014-03-26 巴斯夫欧洲公司 直接合成具有CHA结构的含Cu沸石的方法
JP5549839B2 (ja) 2008-08-19 2014-07-16 東ソー株式会社 高耐熱性β型ゼオライト及びそれを用いたSCR触媒
GB2464478A (en) * 2008-10-15 2010-04-21 Johnson Matthey Plc Aluminosilicate zeolite catalyst and use thereof in exhaust gas after-treatment
JP5527107B2 (ja) * 2009-11-11 2014-06-18 三菱化学株式会社 含水有機化合物の分離方法および分離装置
BR112012012244A2 (pt) * 2009-11-24 2016-04-19 Basf Se processo para a preparação de zeólitos que possuam estrutura de armação cha e uma composição, material zeolítico que possui uma estrutura de armação cha, e, uso de um material zeolítico

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4544538A (en) * 1982-07-09 1985-10-01 Chevron Research Company Zeolite SSZ-13 and its method of preparation
US4665110A (en) * 1986-01-29 1987-05-12 Chevron Research Company Process for preparing molecular sieves using adamantane template
WO2003020641A1 (en) * 2001-08-30 2003-03-13 Chevron U.S.A. Inc. Small crystallite zeolite cha
WO2003026780A1 (en) * 2001-09-21 2003-04-03 L'air Liquide - Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude Mixed matrix membranes incorporating chabazite type molecular sieves

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106145137A (zh) * 2016-06-27 2016-11-23 杨晓波 一种直接水热合成中硅铝比菱沸石的方法
CN106145137B (zh) * 2016-06-27 2018-06-05 杨晓波 一种直接水热合成中硅铝比菱沸石的方法
CN106082256A (zh) * 2016-07-25 2016-11-09 江西科帕克环保化工有限责任公司 乙烯专用分子筛的制备方法
CN106082256B (zh) * 2016-07-25 2017-10-24 江西科帕克环保化工有限责任公司 乙烯专用分子筛的制备方法
CN108455628A (zh) * 2017-02-22 2018-08-28 东曹株式会社 菱沸石型沸石和其制造方法
CN108455628B (zh) * 2017-02-22 2023-06-09 东曹株式会社 菱沸石型沸石和其制造方法

Also Published As

Publication number Publication date
US10029247B2 (en) 2018-07-24
EP2368849A4 (en) 2013-10-16
WO2010074040A1 (ja) 2010-07-01
EP2368849B1 (en) 2017-10-18
CN105905918A (zh) 2016-08-31
KR101626183B1 (ko) 2016-05-31
KR20160022395A (ko) 2016-02-29
KR101738318B1 (ko) 2017-05-29
JP5482179B2 (ja) 2014-04-23
EP2368849A1 (en) 2011-09-28
JP2014155921A (ja) 2014-08-28
US20110251048A1 (en) 2011-10-13
JP5861725B2 (ja) 2016-02-16
JP2010168269A (ja) 2010-08-05
CN102256899A (zh) 2011-11-23
KR20110106854A (ko) 2011-09-29

Similar Documents

Publication Publication Date Title
CN105152183A (zh) 用于生产菱沸石型沸石的方法
KR102068817B1 (ko) 분자 체 ssz-98
EP3164361B1 (en) Method for making molecular sieve ssz-98
Jon et al. Hydrothermal conversion of FAU into∗ BEA zeolites
US9662642B2 (en) Synthesis of aluminosilicate zeolite SSZ-98
JP7283046B2 (ja) 金属含有cha型ゼオライト及びその製造方法
JP5422559B2 (ja) Im−16結晶固体およびその調製方法
US20120041210A1 (en) Im-20 crystalline solid and process for its preparation
US20100093518A1 (en) IM-15 Crystallized Solid and its Process for Preparation
JP5555192B2 (ja) 新規ペンタシル型ゼオライトおよびその合成方法
JPH0153206B2 (zh)
Wang et al. A study on acid sites related to activity of nanoscale ZSM-5 in toluene disproportionation
JP6759596B2 (ja) Afx型ゼオライト及びその製造方法
JPS6350286B2 (zh)
US20100324320A1 (en) Im-13 crystallized solid and its process for preparation
CN104370292A (zh) 一种ZSM-22分子筛及Me-ZSM-22的合成方法
JP5820526B2 (ja) ゲルマノケイ酸塩ssz−75
CN109694090B (zh) Scm-13分子筛及其制备方法
JP7113821B2 (ja) Cha型アルミノ珪酸塩の製造方法
JP4470003B2 (ja) 高シリカモルデナイトおよびその合成方法
CN109694081A (zh) Gme与cha共生沸石分子筛的合成方法
CN117677436A (zh) 用于制备具有高kl沸石含量和高机械强度的沸石材料的方法
JPS6058205B2 (ja) 低級オレフィンの製造方法
CN104437418B (zh) 负载聚乙烯亚胺的层状材料及其制备方法
JPH04108607A (ja) レビーン沸石型のゼオライトおよびその製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20151216