KR20110099687A - 항-암과 항-증식성 활성을 나타내는 시클로프로판 아미드와 유사체 - Google Patents

항-암과 항-증식성 활성을 나타내는 시클로프로판 아미드와 유사체 Download PDF

Info

Publication number
KR20110099687A
KR20110099687A KR1020117012338A KR20117012338A KR20110099687A KR 20110099687 A KR20110099687 A KR 20110099687A KR 1020117012338 A KR1020117012338 A KR 1020117012338A KR 20117012338 A KR20117012338 A KR 20117012338A KR 20110099687 A KR20110099687 A KR 20110099687A
Authority
KR
South Korea
Prior art keywords
compound
alkyl
mmol
formula
yloxy
Prior art date
Application number
KR1020117012338A
Other languages
English (en)
Inventor
대니얼 엘 플린
피터 에이 페틸로
마이클 디 코프먼
Original Assignee
데시페라 파마슈티칼스, 엘엘씨.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 데시페라 파마슈티칼스, 엘엘씨. filed Critical 데시페라 파마슈티칼스, 엘엘씨.
Publication of KR20110099687A publication Critical patent/KR20110099687A/ko

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/555Heterocyclic compounds containing heavy metals, e.g. hemin, hematin, melarsoprol
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/04Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/06Antiasthmatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/08Antiallergic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pulmonology (AREA)
  • Neurology (AREA)
  • Biomedical Technology (AREA)
  • Neurosurgery (AREA)
  • Hematology (AREA)
  • Epidemiology (AREA)
  • Diabetes (AREA)
  • Hospice & Palliative Care (AREA)
  • Psychiatry (AREA)
  • Oncology (AREA)
  • Obesity (AREA)
  • Pain & Pain Management (AREA)
  • Rheumatology (AREA)
  • Ophthalmology & Optometry (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Immunology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

본 발명의 화합물은 포유동물 암, 특히 악성 흑색종, 고형 종양, 아교모세포종, 난소암, 췌장암, 전립선암, 폐암, 유방암, 신장암, 간암, 자궁경부 암종, 원발성 종양 부위의 전이, 골수증식성 질환, 만성 골수성 백혈병, 백혈병, 갑상샘 유두 암종, 비-소세포 폐암, 중피종, 과호산구 증후군, 위장관 간질 종양, 대장 암, 다양한 망막증을 비롯한 시각상실을 유발하는 과증식으로 특징되는 안과 질환, 당뇨성 망막증, 류머티스성 관절염, 천식, 만성 폐쇄성 폐 질환, 비만세포증, 비만 세포 백혈병, 그리고 PDGFR-α 키나아제, PDGFR-β 키나아제, c-KIT 키나아제, cFMS 키나아제, c-MET 키나아제, 그리고 전술한 키나아제 중에서 한 가지의 발암성 형태, 비정상적 융합 단백질과 다형체에 의해 유발되는 질환이 포함되지만 이들에 국한되지 않는 인간 암의 치료에 유용성을 갖는다.

Description

항-암과 항-증식성 활성을 나타내는 시클로프로판 아미드와 유사체{Cyclopropane Amides and Analogs Exhibiting Anti-Cancer and Anti-Proliferative Activities}
본 출원은 2008년 10월 29일 제출된 U.S. 가출원 No. 61/109,309에 우선권을 주장한다. 상기 가출원은 본 발명에 참조로서 편입된다.
본 발명은 다양한 질환의 치료에 유용한 신규한 키나아제 저해물질 및 조절자 화합물에 관계한다. 더욱 구체적으로, 본 발명은 이런 화합물, 질환을 치료하는 방법, 그리고 이들 화합물의 합성 방법에 관계한다. 바람직하게는, 이들 화합물은 VEGFR-2 (KDR), c-MET, FLT-3c-KIT, PDGFRα, PDGFRβ, c-FMS 키나아제, 그리고 이들의 질환 유발 다형체와 융합 단백질의 키나아제 활성의 조절에 유용하다.
단백질 키나아제 집단의 여러 구성원은 다양한 증식성과 골수증식성 질환의 발병에 명백하게 관련되고, 따라서 이들 질환의 치료를 위한 중요한 표적을 대표한다. 본 발명에 관련된 일부 증식성 질환에는 암, 류머티스성 관절염, 동맥경화증, 그리고 망막증이 포함된다. 이들 질환을 유발하거나, 또는 이들 질환의 발병의 원인이 되는 것으로 밝혀진 키나아제의 중요한 실례에는 c-ABL 키나아제 및 발암성 융합 단백질 BCR-ABL 키나아제, c-KIT 키나아제, c-MET, FGFR 키나아제 집단, PDGF 수용체 키나아제, VEGF 수용체 키나아제, FLT 키나아제 집단, HER 집단, 그리고 cFMS 키나아제 집단이 포함된다. 이런 키나아제가 인간 질환에 관련될 때, 키나아제는 증폭된 키나아제 (즉, HER1 또는 HER2의 과다발현), 돌연변이된 키나아제 (즉, c-KIT D816V) 또는 비정상적 융합 단백질 (즉, BCR-ABL)로서 존재할 수 있다.
c-KIT (KIT, CD117, 줄기 세포 인자 수용체)는 III-형 수용체로서 기능하는 145 kDa 막통과 티로신 키나아제 단백질이다 (Pereira et al . J Carcin. (2005), 4: 19). 염색체 4q11-21 상에 위치하는 c-KIT 원종양유전자는 c-KIT 수용체를 인코딩하는데, 이의 리간드는 줄기 세포 인자이다 (SCF, steel 인자, 키트 리간드, 비만 세포 성장 인자, Morstyn G, et al . Oncology (1994) 51(2):205; Yarden Y, et al . Embo J (1987) 6(11):3341). 상기 수용체는 티로신-단백질 키나아제 활성을 갖고, 그리고 이들 리간드의 결합은 KIT의 자기인산화 및 포스파티딜이노시톨 3-키나아제 (PI3K)와 같은 기질과 이의 결합을 유발한다. 단백질 티로신 키나아제에 의한 티로신 인산화는 세포 신호전달에서 특히 중요하고 주요 세포 과정, 예를 들면, 증식, 생존, 분화, 아폽토시스, 부착, 침입과 이동에 대한 신호를 매개할 수 있다. KIT에서 결함은 멜라닌세포가 결핍된 하얀 피부와 모발의 선천성 패치 (congenital patch)로 특징되는 색소형성의 상염색체 우성 유전적 발달 비정상 (autosomal dominant genetic developmental abnormality)인 부분적 백피증 (piebaldism)의 원인이 된다. c-KIT 유전자의 기능 획득 돌연변이 및 인산화된 KIT의 발현은 대부분의 위장관 간질 종양 및 비만세포증에서 관찰된다. 더 나아가, 거의 모든 생식선 고환종/난소정상피종은 KIT 막 염색을 나타내고, 그리고 여러 보고서에서 일부 (10-25%)가 c-KIT 유전자 돌연변이를 갖는 것으로 밝혀졌다 (Sakuma, Y. et al . Cancer Sci (2004) 95(9): 716). KIT 결함은 또한, 생식세포성 종양 (GCT) 및 고환 생식세포성 종양 (TGCT)을 비롯한 고환 종양과도 연관되었다.
c-KIT 발현의 역할은 혈액 종양과 고형 종양, 예를 들면, 급성 백혈병 (Cortes J. et al . Cancer (2003) 97(11): 2760) 및 위장관 간질 종양 (GIST, Fletcher J. et al . Hum Pathol (2002) 33(5): 459)에서 조사되었다. 악성 종양에서 c-KIT 발현의 임상적 중요성은 티로신 키나아제 수용체를 특이적으로 저해하는 Gleevec® (이마티닙 메실레이트, STI571, Novartis Pharma AG Basel, Switzerland)을 이용한 연구에 의존한다 (Lefevre G. et al . J Biol Chem (2004) 279(30): 31769). 게다가, 임상적으로 적절한 돌파구는 전통적인 화학요법에 전반적으로 내성인 것으로 간주되는 일군의 종양인 GIST에서 상기 화합물의 항-종양 효과의 발견이었다 (de Silva CM, Reid R Pathol Oncol Res (2003) 9(1): 13-19). GIST는 매우 빈번하게, 글리벡(Gleevec) 내성이 발생하고, 그리고 c-KIT 이차성 돌연변이를 표적으로 하는 분자 표적화된 소규모 치료는 여전히 달성하기 어렵다.
c-MET는 염색체 7p 상에 위치하고 자연 리간드 간세포 성장 인자를 통해 활성화되는 독특한 수용체 티로신 키나아제 (RTK)이다. c-MET는 다양한 고형 종양에서 돌연변이되는 것으로 밝혀졌다 (Ma P.C. et al . Cancer Metastasis (2003) 22: 309). 티로신 키나아제 도메인 내에서 돌연변이는 유전성 유두상 신세포 암종 (Schmidt L et al . Nat . Genet . (1997)16: 68; Schmidt L, et al . Oncogene (1999) 18: 2343)과 연관되는 반면, 세마 (sema)와 막근접 도메인 (juxtamembrane domain) 내에서 돌연변이는 소세포 폐암 (Ma P.C. et al . Cancer Res (2003) 63: 6272)에서 종종 관찰된다. 많은 활성화 돌연변이는 또한, 유방암에서 관찰된다 (Nakopoulou et al . Histopath (2000) 36(4): 313). c-MET 매개된 성장이 관련되는 종양 유형의 갑주(panoply)는 이것이 특정한 c-MET 소형 분자 저해물질에 의한 조절에 이상적으로 적합한 표적임을 암시한다.
TPR - MET 종양유전자는 c-MET RTK의 형질전환 변이체이고, 그리고 화학적 발암인자 N-메틸-N'-니트로-N-니트로소구아니딘으로 형질전환된 인간 골원성 육종 세포주의 치료 이후에 최초로 확인되었다 (Park M. et al . Cell (1986) 45: 895). TPR-MET 융합 종양단백질은 c- MET 유전자의 일부분의 상류에서 염색체 1 상에 TPR3 좌위를 세포질 영역만을 인코딩하는 염색체 7 상에 위치시키는 염색체 전좌의 결과이다. 연구는 TPR-MET가 실험적 암에서 검출가능하다는 것을 암시한다 (가령, Yu J. et al . Cancer (2000) 88: 1801). TPR에 의해 인코딩된 류신 지퍼 모티프 (leucine zipper motif)를 통한 M r 65,000 TPR-MET 종양단백질의 이합체화는 c-MET 키나아제의 구조성 활성화를 유발한다 (Zhen Z. et al. Oncogene (1994) 9: 1691). TPR-MET는 야생형 c-MET RTK를 활성화시키고 Ras 경로 (Aklilu F. et al. Am J Physiol (1996) 271: E277) 및 포스파티딜이노시톨 3-키나아제 (PI3K)/AKT 경로 (Ponzetto C. et al . Mol Cell Biol (1993) 13: 4600)를 비롯한 중요한 세포 성장 경로를 활성화시킬 수 있다. 대조적으로, c-MET RTK와 달리, TPR-MET는 리간드 독립성이고, c-MET 내에 막근접 영역에서 CBL-유사 SH2 도메인 결합 부위가 없고, 그리고 주로 세포질에 존재한다. c-MET 면역조직화학적 발현은 상피세포 중간엽 이행 (EMT)의 증명 특징인 비정상적 β-카테닌 발현과 연관되는 것으로 보이고 유방암 환자에서 우수한 예후와 예측 인자를 제공한다.
보고된 대부분의 소형 분자 키나아제 저해물질은 3가지 방법 중에서 한 가지로 결합하는 것으로 밝혀졌다. 보고된 저해물질 중에서 대부분은 활성 부위의 ATP 결합 도메인과 상호작용하고 점유에 대하여 ATP와 경쟁함으로써 그들의 효과를 발휘한다. 다른 저해물질은 “DFG-인-형상” 포켓으로 알려져 있는 단백질의 독립된 소수성 영역에 결합하는 것으로 밝혀졌고, 여기서 저해물질에 의한 이런 결합 양식은 키나아제가 “DFG-아웃” 형상을 채택하도록 유도하고, 그리고 또 다른 것들은 ATP 도메인 및 “DFG-인-형상” 포켓 둘 모두에 결합하여 키나아제가 “DGF-아웃” 형상을 채택하도록 유도하는 것으로 밝혀졌다. 키나아제가 “DGF-아웃” 형상을 채택하도록 유도하는 실례는 Lowinger et al, Current Pharmaceutical Design (2002) 8: 2269; Dumas, J. et al ., Current Opinion in Drug Discovery & Development (2004) 7: 600; Dumas, J. et al, WO 2003068223 A1 (2003); Dumas, J., et al, WO 9932455 A1 (1999), 그리고 Wan, P.T.C., et al, Cell (2004) 116: 855에서 확인될 수 있다.
생리학적으로, 키나아제는 공통의 활성화/불활성화 기전에 의해 조절되고, 여기서 키나아제 단백질의 특정한 활성화 루프 서열은 스위치 제어 포켓 (switch control pocket)으로 지칭되는, 동일한 단백질 상에서 특정 포켓 내로 결합된다. 이런 결합은 활성화 루프의 특정 아미노산 잔기가 예로써, 인산화, 산화, 또는 니트로실화에 의해 변형될 때 발생한다. 스위치 포켓 내로 활성화 루프의 결합은 상기 단백질의 활성 형태로의 형상 변화를 유발한다 (Huse, M. and Kuriyan, J. Cell (2002) 109: 275).
본 발명의 화합물은 포유동물 암, 특히 고형 종양, 흑색종, 아교모세포종, 난소암, 췌장암, 전립선암, 폐암, 유방암, 신장암, 자궁경부 암종, 원발성 종양 부위의 전이, 골수증식성 질환, 백혈병, 갑상샘 유두 암종, 비-소세포 폐암, 중피종, 과호산구 증후군, 위장관 간질 종양, 대장암, 다양한 망막증을 비롯한 시각상실을 유발하는 과증식으로 특징되는 안과 질환, 류머티스성 관절염, 천식, 만성 폐쇄성 폐 질환, 비만세포증, 비만 세포 백혈병, 그리고 PDGFR-α 키나아제, PDGFR-β 키나아제, c-KIT 키나아제, cFMS 키나아제, c-MET 키나아제, 그리고 전술한 키나아제 중에서 한 가지의 발암성 형태, 비정상적 융합 단백질과 다형체에 의해 유발되는 질환이 포함되지만 이들에 국한되지 않는 인간 암의 치료에 유용성을 갖는다.
첫 번째 측면에서, 화학식 Ia 화합물, 이런 화합물의 입체이성질체, 위치이성질체와 호변체, 그리고 이들의 제약학적으로 허용되는 염, 수화물, 용매화합물, 프로드러그와 호변체가 본 명세서에서 기술된다:
[화학식 Ia]
Figure pct00001
Q1, Q2, 그리고 Q3은 각각 개별적으로 및 독립적으로 N과 CH로 구성된 군에서 선택되고, 그리고 여기서 Q1과 Q2 중에서 적어도 하나는 N이고;
그리고 여기서 Q1과 Q2를 보유하는 고리는 (R20)x 모이어티로 선택적으로 치환될 수 있고;
각각의 D는 개별적으로 C, CH, C-R20, N-Z3, N, 그리고 O로 구성된 군에서 선택되고, 따라서 생성된 고리는 피라졸릴, 이속사졸릴, 트리아졸릴과 이미다졸릴로 구성된 군에서 선택되고;
그리고 여기서 Q3을 보유하는 고리는 1개 내지 3개의 R16 모이어티로 선택적으로 치환될 수 있고;
V는 NR4, 또는
Figure pct00002
이고;
각각의 Q5는 C(Z2B)2이고;
W는 직접 결합, -[C(R13)R14]m-, -[C(R13)R14]mNR4-, 또는 NR4이고;
A는 인다닐, 테트라히드로나프틸, 티에닐, 페닐, 나프틸, 피라지닐, 피리다지닐, 트리아지닐, 피리디닐, 그리고 피리미디닐로 구성된 군에서 선택되고;
X2는 -O-이고;
A가 하나 이상의 치환가능 sp2-혼성 탄소 원자를 보유할 때, 각 개별 sp2 혼성 탄소 원자는 Z1B 치환기로 선택적으로 치환될 수 있고;
A가 하나 이상의 치환가능 sp3-혼성 탄소 원자를 보유할 때, 각 개별 sp3 혼성 탄소 원자는 Z2B 치환기로 선택적으로 치환될 수 있고;
각각의 Z1B는 독립적으로 및 개별적으로 수소, C1-6알킬, 가지형 C3-C7알킬, 할로겐, 플루오르C1-C6알킬 (이때, 알킬 모이어티는 부분적으로 또는 완전히 불화될 수 있다), C1-C6알콕시, 플루오르C1-C6알콕시 (이때, 알킬 모이어티는 부분적으로 또는 완전히 불화될 수 있다), 그리고 -(CH2)nCN으로 구성된 군에서 선택되고;
각각의 Z2B는 독립적으로 및 개별적으로 수소, C1-C6알킬, 그리고 가지형 C3-C7알킬로 구성된 군에서 선택되고;
각각의 Z3은 독립적으로 및 개별적으로 수소, C1-C6알킬, 가지형 C3-C7알킬, C3-C8시클로알킬, 플루오르C1-C6알킬 (이때, 알킬 모이어티는 부분적으로 또는 완전히 불화될 수 있다), 히드록시C2-C6알킬-, R5C(O)(CH2)n-, (R4)2NC(O)C1-C6알킬-, R8C(O)N(R4)(CH2)q-, -(CH2)qCN, -(CH2)qR5, 그리고 -(CH2)qN(R4)2로 구성된 군에서 선택되고;
각각의 R2는 수소, R17-치환된 아릴-, C1-C6알킬, 가지형 C3-C8알킬, R19 치환된 C3-C8시클로알킬-, 그리고 플루오르C1-C6알킬- (이때, 알킬은 완전히 또는 부분적으로 불화된다)로 구성된 군에서 선택되고;
각각의 R3은 독립적으로 및 개별적으로 수소, C1-C6알킬, 가지형 C3-C7알킬, 그리고 C3-C8시클로알킬로 구성된 군에서 선택되고;
각각의 R4는 독립적으로 및 개별적으로 수소, C1-C6알킬, 히드록시C1-C6알킬-, 디히드록시C1-C6알킬-, C1-C6알콕시C1-C6알킬-, 가지형 C3-C7알킬, 히드록실 치환된 가지형 C3-C6알킬-, C1-C6알콕시 가지형 C3-C6알킬-, 디히드록시 치환된 가지형 C3-C6알킬-, -(CH2)pN(R7)2, -(CH2)pR5, -(CH2)pC(O)N(R7)2, -(CH2)nC(O)R5, -(CH2)nC(O)OR3, 그리고 R19 치환된 C3-C8시클로알킬-로 구성된 군에서 선택되고;
각각의 R5는 독립적으로 및 개별적으로
Figure pct00003
로 구성된 군에서 선택되고;
그리고 여기서 기호 (##)는 R5 모이어티를 보유하는 개별 R4, R7, R8, R20 또는 Z3 모이어티에 대한 부착점이고;
각각의 R7은 독립적으로 및 개별적으로 수소, C1-C6알킬, 히드록시C2-C6알킬-, 디히드록시C2-C6알킬-, C1-C6알콕시C2-C6알킬-, 가지형 C3-C7알킬, 히드록시 치환된 가지형 C3-C6알킬-, C1-C6알콕시 가지형 C3-C6알킬-, 디히드록시 치환된 가지형 C3-C6알킬-, -(CH2)qR5, -(CH2)nC(O)R5, -(CH2)nC(O)OR3, R19 치환된 C3-C8시클로알킬-, 그리고 -(CH2)nR17로 구성된 군에서 선택되고;
각각의 R8은 독립적으로 및 개별적으로 C1-C6알킬, 가지형 C3-C7알킬, 플루오르C1-C6알킬- (이때, 알킬 모이어티는 부분적으로 또는 완전히 불화된다), R19 치환된 C3-C8시클로알킬-, 페닐, 페닐C1-C6알킬-, OH, C1-C6알콕시, -N(R3)2, -N(R4)2, 그리고 R5로 구성된 군에서 선택되고;
각각의 R10은 독립적으로 및 개별적으로 -CO2H, -CO2C1-C6알킬, -C(O)N(R4)2, OH, C1-C6알콕시, 그리고 -N(R4)2로 구성된 군에서 선택되고;
R13과 R14는 각각 개별적으로 및 독립적으로 수소, C1-C6알킬, 가지형 C3-C8알킬, 플루오르C1-C6알킬- (이때, 알킬은 완전히 또는 부분적으로 불화된다), 히드록실 치환된 C1-C6알킬-, C1-C6알콕시 치환된 C1-C6알킬-, 히드록실 치환된 가지형 C3-C8알킬-, 그리고 알콕시 치환된 가지형 C3-C8알킬로 구성된 군에서 선택되고;
각각의 R16은 독립적으로 및 개별적으로 수소, C1-C6알킬, 가지형 C3-C7알킬, R19 치환된 C3-C8시클로알킬-, 할로겐, 플루오르C1-C6알킬- (이때, 알킬 모이어티는 부분적으로 또는 완전히 불화될 수 있다), 시아노, 히드록실, C1-C6알콕시, 플루오르C1-C6알콕시- (이때, 알킬 모이어티는 부분적으로 또는 완전히 불화될 수 있다), -N(R3)2, -N(R4)2, R3 치환된 C2-C3알키닐-, 그리고 니트로로 구성된 군에서 선택되고;
각각의 R17은 독립적으로 및 개별적으로 수소, C1-C6알킬, 가지형 C3-C7알킬, 히드록시C2-C6알킬-, R19 치환된 C3-C8시클로알킬-, 할로겐, 플루오르C1-C6알킬- (이때, 알킬 모이어티는 부분적으로 또는 완전히 불화될 수 있다), 시아노, 히드록실, C1-C6알콕시, 플루오르C1-C6알콕시- (이때, 알킬 모이어티는 부분적으로 또는 완전히 불화될 수 있다), -N(R3)2, -N(R4)2, 그리고 니트로로 구성된 군에서 선택되고;
각각의 R19는 독립적으로 및 개별적으로 수소, OH, 그리고 C1-C6알킬로 구성된 군에서 선택되고;
각각의 R20은 독립적으로 및 개별적으로 수소, C1-C6알킬, 가지형 C3-C7알킬, R19 치환된 C3-C8시클로알킬-, 할로겐, 플루오르C1-C6알킬- (이때, 알킬 모이어티는 부분적으로 또는 완전히 불화될 수 있다), 시아노, 히드록실, 히드록시C1-C6알킬-, C1-C6알콕시C1-C6알킬-, C1-C6알콕시, 플루오르C1-C6알콕시- (이때, 알킬 모이어티는 부분적으로 또는 완전히 불화될 수 있다), -N(R3)2, -N(R4)2, -(CH2)nR5, -(CH2)nN(R3)C(O)R3, -(CH2)nC(O)N(R3)2, 그리고 니트로로 구성된 군에서 선택되고;
각각의 m은 독립적으로 및 개별적으로 1-3이고, 각각의 n은 독립적으로 및 개별적으로 0-6이고; 각각의 p는 독립적으로 및 개별적으로 1-4이고; 각각의 q는 독립적으로 및 개별적으로 2-6이고; 각각의 v는 독립적으로 및 개별적으로 1 또는 2이고; 각각의 x는 독립적으로 및 개별적으로 0-2이다.
일부 구체예에서,
Figure pct00004
Figure pct00005
로 구성된 군에서 선택되고, 여기서 기호 (**)는 헤테로아릴 Q1, Q2 보유 고리에 대한 부착점을 지시한다.
다른 구체예에서, 화합물은 화학식 Ib를 갖는다:
Figure pct00006
.
다른 구체예에서, 화합물은 화학식 Ic를 갖는다:
Figure pct00007
.
다른 구체예에서, 화합물은 화학식 Id를 갖는다:
Figure pct00008
.
다른 구체예에서, 화합물은 화학식 Ie를 갖는다:
Figure pct00009
.
다른 구체예에서, 화합물은 화학식 If를 갖는다:
Figure pct00010
다른 구체예에서, 화합물은 화학식 Ig를 갖는다:
Figure pct00011
.
다른 구체예에서, 화합물은 화학식 Ih를 갖는다:
Figure pct00012
.
다른 구체예에서, 화합물은 화학식 Ii를 갖는다:
Figure pct00013
.
다른 구체예에서, 화합물은 화학식 Ij를 갖는다:
Figure pct00014
다른 구체예에서, 화합물은 화학식 Ik를 갖는다:
Figure pct00015
.
다른 구체예에서, 화합물은 화학식 Il을 갖는다:
Figure pct00016
.
다른 구체예에서, 화합물은 화학식 Im을 갖는다:
Figure pct00017
.
다른 구체예에서, 화합물은 화학식 In을 갖는다:
Figure pct00018
다른 구체예에서, 화합물은 화학식 Io를 갖는다:
Figure pct00019
.
다른 구체예에서, 화합물은 화학식 Ip를 갖는다:
Figure pct00020
.
다른 구체예에서, 화합물은 화학식 Iq를 갖는다:
Figure pct00021
.
다른 구체예에서, 화합물은 화학식 Ir을 갖는다:
Figure pct00022
.
다른 구체예에서, 화합물은 화학식 Is를 갖는다:
Figure pct00023
.
다른 구체예에서, 화합물은 화학식 It를 갖는다:
Figure pct00024
.
다른 구체예에서, 화합물은 화학식 Iu를 갖는다:
Figure pct00025
.
다른 구체예에서, 화합물은 화학식 Iv를 갖는다:
Figure pct00026
.
다른 구체예에서, 화합물은 화학식 Iw를 갖는다:
Figure pct00027
.
다른 구체예에서, 화합물은 화학식 Ix를 갖는다:
Figure pct00028
.
다른 구체예에서, 화합물은 화학식 Iy를 갖는다:
Figure pct00029
.
다른 구체예에서, 화합물은 화학식 Iz를 갖는다:
Figure pct00030
다른 구체예에서, 화합물은 화학식 Iaa를 갖는다:
Figure pct00031
.
다른 구체예에서, 화합물은 화학식 Ibb를 갖는다:
Figure pct00032
.
다른 구체예에서, 화합물은 화학식 Icc를 갖는다:
Figure pct00033
.
다른 구체예에서, 화합물은 화학식 Idd를 갖는다:
Figure pct00034
.
다른 구체예에서, 화합물은 화학식 Iee를 갖는다:
Figure pct00035
.
다른 구체예에서, 화합물은 화학식 Iff를 갖는다:
Figure pct00036
.
다른 구체예에서, 화합물은 화학식 Igg를 갖는다:
Figure pct00037
.
다른 구체예에서, 화합물은 화학식 Ihh를 갖는다:
Figure pct00038
다른 구체예에서, 화합물은 화학식 Iii를 갖는다:
Figure pct00039
.
다른 구체예에서, 화합물은 화학식 Ijj를 갖는다:
Figure pct00040
.
다른 구체예에서, 화합물은 화학식 Ikk를 갖는다:
Figure pct00041
.
다른 측면에서, 제약학적으로 허용되는 담체와 함께, 어쥬번트, 부형제, 희석제, 그리고 안정화제로 구성된 군에서 선택되는 첨가제를 선택적으로 포함하는 본 발명의 화합물을 포함하는 제약학적 조성물이 기술된다.
본 발명의 화합물은 포유동물 암, 과증식성 질환, 물질대사 질환, 신경변성 질환, 또는 고형 종양, 흑색종, 아교모세포종, 난소암, 췌장암, 전립선암, 폐암, 유방암, 신장암, 간암, 자궁경부 암종, 원발성 종양 부위의 전이, 골수증식성 질환, 만성 골수성 백혈병, 백혈병, 갑상샘 유두 암종, 비-소세포 폐암, 중피종, 과호산구 증후군, 위장관 간질 종양, 대장암, 망막증, 당뇨성 망막증, 연령-관련된 황반 변성과 과호산구 증후군을 비롯한 시각상실을 유발하는 과증식으로 특징되는 안과 질환, 류머티스성 관절염, 천식, 만성 폐쇄성 폐 질환, 비만세포증, 비만 세포 백혈병, 그리고 PDGFR-α 키나아제, PDGFR-β 키나아제, c-KIT 키나아제, cFMS 키나아제, c-MET 키나아제, 그리고 전술한 키나아제 중에서 한 가지의 발암성 형태, 비정상적 융합 단백질과 다형체에 의해 유발되는 질환이 포함되지만 이들에 국한되지 않는 혈관신생으로 특징되는 질환의 치료에서 유용성을 갖는다.
일부 구체예에서, 키나아제는 c-MET 단백질 키나아제, 그리고 이의 융합 단백질, 돌연변이와 다형체이다.
일부 구체예에서, 화합물은 경구, 비경구, 흡입, 그리고 피하로 구성된 군에서 선택되는 방법에 의해 투여된다.
섹션 1 - 본 발명의 상세한 설명
본 명세서 전반에서, 다양한 특허, 특허 출원 및 간행물이 인용된다. 이들 특허, 특허 출원 및 간행물의 내용은 본 발명의 개시 시점에서 기술적 수준을 당업자에게 더욱 완전하게 설명하기 위하여, 본 발명에 순전히 참조로서 편입된다.
이들 특허, 특허 출원 및 간행물, 그리고 본 발명 사이에 불일치가 존재하는 경우에, 본 발명이 우선할 것이다.
편의를 위하여, 명세서, 실시예 및 특허청구범위에서 이용되는 용어가 하기에 정리된다. 달리 정의되지 않으면, 본 발명에서 이용된 모든 기술 용어와 과학 용어는 본 발명이 속하는 분야의 당업자에 의해 통상적으로 이해되는 바와 동일한 의미를 갖는다. 본 발명에서 제공된 기 또는 용어에 대하여 제시된 최초 정의는 달리 지시되지 않으면, 개별적으로 또는 다른 기의 일부로서, 본 명세서 전반에서 상기 기 또는 용어에 적용된다.
본 발명의 화합물은 이들의 모든 가능한 이성질체, 입체이성질체, 거울상이성질체, 부분입체이성질체, 호변체, 제약학적으로 허용되는 염, 그리고 용매화합물을 포함한다. 따라서 본 명세서에서 용어 “화합물”과 “화합물들”은 본 발명의 화합물, 그리고 이들의 모든 가능한 이성질체, 입체이성질체, 거울상이성질체, 부분입체이성질체, 호변체, 제약학적으로 허용되는 염, 그리고 용매화합물을 지칭한다.
아래의 설명은 다양한 화합물과 이들의 모이어티를 지칭한다.
용어 “시클로알킬”은 시클로프로필, 시클로부틸, 시클로펜틸, 시클로헥실, 시클로헵타닐과 시클로옥타닐에서 선택되는 단일환상 포화된 탄소 고리를 지칭한다.
용어 “알킬”은 직쇄 또는 분지쇄 C1-C6알킬을 지칭한다.
용어 “할로겐”은 불소, 염소, 브롬, 그리고 요오드를 지칭한다.
용어 “알콕시”는 -O-(알킬)을 지칭하고, 여기서 알킬은 앞서 정의된 바와 같다.
용어 “알콕실알킬”은 -(알킬)-O-(알킬)을 지칭하고, 여기서 알킬은 앞서 정의된 바와 같다.
용어 “알콕실카르보닐”은 -C(O)O-(알킬)을 지칭하고, 여기서 알킬은 앞서 정의된 바와 같다.
용어 “카르복실C1-C6알킬”은 -(C1-C6알킬)CO2H를 지칭하고, 여기서 알킬은 앞서 정의된 바와 같다.
모이어티와 관련하여, 용어 “치환된”은 모이어티 상에서 임의의 허용되는 위치에 추가의 치환기가 상기 모이어티에 부착될 수 있다는 사실을 지칭한다.
용어 “염”은 유리 산의 알칼리 금속 염을 형성하기 위하여, 그리고 유리 염기의 부가 염을 형성하기 위하여, 통상적으로 이용되는 제약학적으로 허용되는 염을 포함한다. 염의 성질은 제약학적으로-허용가능하면, 중요하지 않다. 적절한 제약학적으로 허용되는 산 부가 염은 무기 산 또는 유기 산으로부터 제조될 수 있다. 이런 무기 산의 실례는 염화수소산, 브롬화수소산, 요오드화수소산, 질산, 탄산, 황산과 인산이다. 적절한 유기 산은 지방족 산, 시클로지방족 산, 방향족, 아릴지방족 산, 그리고 헤테로시클릴 포함 카르복실산과 설폰산에서 선택될 수 있고, 이들의 실례는 포름산, 아세트산, 프로피온산, 숙신산, 글리콜산, 글루콘산, 락트산, 말산, 타르타르산, 구연산, 아스코르빈산, 글루쿠론산, 말레산, 푸마르산, 피루브산, 아스파르트산, 글루탐산, 벤조산, 안트라닐산, 메실산, 스테아르산, 살리실산, p-히드록시벤조산, 페닐아세트산, 만델산, 엠본 (pamoic)산, 메탄설폰산, 에탄설폰산, 벤젠설폰산, 판토텐산, 톨루엔설폰산, 2-히드록시에탄설폰산, 설파닐산, 시클로헥실아미노설폰산, 알긴산, 3-히드록시부티르산, 갈락타르산과 갈락투론산이다. 화학식 I의 유리 산-포함 화합물의 적절한 제약학적으로 허용되는 염에는 금속 염 및 유기 염이 포함된다. 더욱 바람직한 금속 염에는 적절한 알칼리 금속 (Ia 족) 염, 알칼리 토류 금속 (IIa 족) 염 및 기타 생리학적으로 허용되는 금속이 포함되지만 이들에 국한되지 않는다. 이런 염은 알루미늄, 칼슘, 리튬, 마그네슘, 칼륨, 나트륨과 아연으로부터 만들어질 수 있다. 바람직한 유기 염은 부분적으로, 트로메타민, 디에틸아민, tetra-N-메틸암모늄, N,N'-디벤질에틸렌디아민, 클로로프로카인, 콜린, 디에탄올아민, 에틸렌디아민, 메글루민 (N-메틸글루카민)과 프로카인을 비롯한, 일차 아민, 이차 아민, 삼차 아민 및 사차 암모늄 염으로부터 만들어질 수 있다.
본 명세서에서, 용어 “투여한다”, “투여하는”, 또는 “투여”는 화합물, 또는 상기 화합물의 제약학적으로 허용되는 염, 또는 조성물을 개체에 직접적으로 투여하거나, 또는 개체의 체내에서 동등량의 활성 화합물을 형성할 수 있는, 화합물, 또는 상기 화합물의 제약학적으로 허용되는 염, 또는 조성물의 프로드러그 유도체 또는 유사체를 개체에 투여하는 것을 지칭한다.
본 명세서에서, 용어 “담체”는 담체, 부형제, 그리고 희석제를 포함하고, 그리고 신체의 장기 또는 일부분으로부터 신체의 다른 장기 또는 일부분으로 제약학적 작용제를 운반하거나 수송하는데 관련되는 물질, 조성물 또는 운반제, 예를 들면, 액상 또는 고형 충전제, 희석제, 부형제, 용매 또는 캡슐화 물질을 의미한다.
본 명세서에서, 용어 “질환”은 달리 지시되지 않으면, 용어 질병, 이상, 또는 병을 의미하는데 이용되고, 그리고 이들 용어와 동의어로서 이용된다.
용어 “효과량” 및 “치료 효과량”은 본 명세서에서 동의어로서 이용되고, 그리고 개체에 투여될 때, 개체 내에서 질환의 증상을 감소시킬 수 있는 화합물의 양을 지칭한다. “효과량” 또는 “치료 효과량”을 포함하는 실제 양은 치료되는 특정 질환, 질환의 심각도, 환자의 크기와 건강, 그리고 투여 경로가 포함되지만 이들에 국한되지 않는 다수의 조건에 따라 달라질 것이다. 숙련된 의사는 의학 분야에 공지된 방법을 이용하여 적절한 양을 용이하게 결정할 수 있다.
본 명세서에서, 용어 “분리된” 및 “정제된”은 반응 혼합물 또는 자연 공급원으로부터 다른 성분으로부터 분리된 성분을 지칭한다. 일정한 구체예에서, 분리물은 분리물 중량으로 적어도 대략 50%, 적어도 대략 55%, 적어도 대략 60%, 적어도 대략 65%, 적어도 대략 70%, 적어도 대략 75%, 적어도 대략 80%, 적어도 대략 85%, 적어도 대략 90%, 적어도 대략 95%, 또는 적어도 대략 98%의 화합물 또는 상기 화합물의 제약학적으로 허용되는 염을 포함한다.
구(句) “제약학적으로 허용되는”은 본 명세서에서, 건전한 의학적 판단의 범위 내에서, 과도한 독성, 자극, 알레르기 반응, 또는 다른 문제점 또는 합병증 없이 인간과 동물의 조직과 접촉하여 이용하는데 적합하고, 합리적인 위험/이익 비율에 부합하는 화합물, 물질, 조성물, 및/또는 제형을 지칭하는데 이용된다.
용어 “프로드러그”는 생체내에서 활성 형태로 복귀되는 활성 화합물의 유도체를 지칭한다. 가령, 활성 약물의 카르복실산 형태는 프로드러그를 산출하기 위하여 에스테르화되고, 그리고 상기 에스테르는 차후에, 생체내에서 전환되어 카르복실산 형태로 복귀된다. 검토를 위하여, Ettmayer et. al, J. Med . Chem (2004) 47: 2393 및 Lorenzi et. al, J. Pharm . Exp . Therpeutics (2005) 883을 참조한다.
본 명세서에서, 용어 “개체”에는 제한 없이, 인간 또는 동물이 포함된다. 예시적인 동물에는 포유동물, 예를 들면, 생쥐, 쥐, 기니 피그, 개, 고양이, 말, 소, 돼지, 원숭이, 침팬지, 비비, 또는 붉은털원숭이가 포함되지만 이들에 국한되지 않는다.
개체와 관련하여, 용어 “치료하는”은 상기 개체의 질환의 적어도 한 가지 증상을 향상시키는 것을 지칭한다. 치료는 질환을 치유하거나, 향상시키거나, 또는 적어도 부분적으로 개선할 수 있다.
용어 “수화물”은 분자 형태에서, 다시 말하면, H―OH 결합이 쪼개지지 않는 형태에서 물과 결합되고, 그리고 예로써, 화학식 RㆍH2O로 대표될 수 있으며, 여기서 R이 본 명세서에서 기술된 바와 같은 화합물인, 본 명세서에서 기술된 바와 같은 화합물을 지칭한다. 소정의 화합물은 예로써, 일수화물 (RㆍH2O), 이수화물 (Rㆍ2H2O), 삼수화물 (Rㆍ3H2O) 등을 비롯한 한 가지 이상의 수화물을 형성할 수 있다.
용어 “용매화합물”은 분자 형태에서 용매와 결합되고, 다시 말하면, 용매와 배위적으로 결합되고, 그리고 예로써, 화학식 Rㆍ(용매)로 대표될 수 있으며, 여기서 R이 본 발명의 화합물인, 본 발명의 화합물을 지칭한다. 소정의 화합물은 일용매화합물 (Rㆍ(용매)), 또는 n이 정수>1인 다중용매화합물 (Rㆍn(용매)), 예를 들면, 이용매화합물 (Rㆍ2(용매)), 삼용매화합물 (Rㆍ3(용매)) 등, 또는 n이 정수인 반용매화합물, 예를 들면, Rㆍn/2(용매), Rㆍn/3(용매), Rㆍn/4(용매) 등을 비롯한 한 가지 이상의 용매화합물을 형성할 수 있다. 본 명세서에서 용매는 혼성 용매, 예를 들면, 메탄올/물을 포함하고, 따라서 이들 용매화합물은 용매화합물 내에 하나 이상의 용매를 통합할 수 있다.
용어 “산성 수화물”은 하나 이상의 염기 모이어티를 보유하는 화합물과 하나 이상의 산성 모이어티를 보유하는 적어도 하나의 화합물의 결합, 또는 하나 이상의 산성 모이어티를 보유하는 화합물과 하나 이상의 염기 모이어티를 보유하는 적어도 하나의 화합물의 결합을 통하여 형성될 수 있는 복합체를 지칭하고, 상기 복합체는 수화물을 형성하기 위하여 물 분자와 더욱 결합되고, 여기서 상기 수화물은 앞서 정의된 바와 동일하고 R은 본 명세서에서 앞서 기술된 복합체를 나타낸다.
구조적, 화학적, 그리고 입체화학적 정의는 IUPAC 권고, 그리고 더욱 구체적으로, P. M, Pure Appl. Chem., (1994) 66: 1077-1184에서 요약된 바와 같은 Glossary of Terms used in Physical Organic Chemistry (IUPAC Recommendations 1994) 및 G.P. Moss Pure and Applied Chemistry, (1996) 68: 2193-2222)에서 요약된 바와 같은 Basic Terminology of Stereochemistry (IUPAC Recommendations 1996)로부터 폭넓게 채택된다. 구체적인 정의는 아래와 같다:
회전장애이성질체는 별개의 화학 종으로 분리될 수 있고 단일 결합의 주위에서 제한된 회전에 기인하는 이형태체 (conformer)의 하위분류로서 정의된다.
위치이성질체 또는 구조 이성질체는 상이한 배치에서 동일한 원자를 수반하는 이성질체로서 정의된다.
거울상이성질체는 서로 거울상이고 완전히 포개질 수 없는 분자 존재의 한 쌍 중에서 한쪽으로서 정의된다.
부분입체이성질체는 거울상이성질체 이외의 입체이성질체로서 정의된다. 부분입체이성질체는 거울상으로서 관련되지 않는 입체이성질체이다. 부분입체이성질체는 물리적 특성에서 차이, 그리고 비키랄 (achiral)과 키랄 (chiral) 반응물에 대한 화학적 행태에서 다소간 차이로 특징된다.
본 명세서에서, 용어 “호변체”는 분자의 한쪽 원자의 양성자가 다른 원자로 이전하는 현상에 의해 생산된 화합물을 지칭한다. (March, Advanced Organic Chemistry : Reactions , Mechanisms and Structures, 4th Ed., John Wiley & Sons, pp. 69-74 (1992)).
호변이성은 일반적 형태: G-X-Y=Z
Figure pct00042
X=Y-Z-G의 이성질성으로서 정의되고, 여기서 이들 이성질체 (호변체)는 용이하게 상호전환가능하다; 기 X,Y,Z를 연결하는 원자는 전형적으로, C, H, O, 또는 S 중에서 한 가지이고, 그리고 G는 이성질화 동안 전자제거체 (electrofuge) 또는 핵제거체 (nucleofuge)가 되는 기이다. 가장 일반적인 경우는 전자제거체가 H+일 때, "양성자이전 (prototropy)"으로 알려져 있다.
호변체는 이들 이성질체가 분리될 수 있는 지에 상관없이, 호변이성에 기인하는 이성질체로서 정의된다.
화학구조를 명명하는데 ChemDraw 버전 8.0 또는 10. (CambridgeSoft Corporation, Cambridge, MA)이 이용되었다.
1.1 본 발명의 첫 번째 측면 - 화합물, 방법, 그리고 제조물
화학식 Ia 화합물, 이런 화합물의 입체이성질체, 위치이성질체와 호변체, 그리고 이들의 제약학적으로 허용되는 염, 수화물, 용매화합물, 프로드러그와 호변체:
[화학식 Ia]
Figure pct00043
Q1, Q2, 그리고 Q3은 각각 개별적으로 및 독립적으로 N과 CH로 구성된 군에서 선택되고, 그리고 여기서 Q1과 Q2 중에서 적어도 하나는 N이고;
그리고 여기서 Q1과 Q2를 보유하는 고리는 (R20)x 모이어티로 선택적으로 치환될 수 있고;
각각의 D는 개별적으로 C, CH, C-R20, N-Z3, N, 그리고 O로 구성된 군에서 선택되고, 따라서 생성된 고리는 피라졸릴, 이속사졸릴, 트리아졸릴과 이미다졸릴로 구성된 군에서 선택되고;
그리고 여기서 Q3을 보유하는 고리는 1개 내지 3개의 R16 모이어티로 선택적으로 치환될 수 있고;
V는 NR4, 또는
Figure pct00044
이고;
각각의 Q5는 C(Z2B)2이고;
W는 직접 결합, -[C(R13)R14]m-, -[C(R13)R14]mNR4-, 또는 NR4이고;
A는 인다닐, 테트라히드로나프틸, 티에닐, 페닐, 나프틸, 피라지닐, 피리다지닐, 트리아지닐, 피리디닐, 그리고 피리미디닐로 구성된 군에서 선택되고;
X2는 -O-이고;
A가 하나 이상의 치환가능 sp2-혼성 탄소 원자를 보유할 때, 각 개별 sp2 혼성 탄소 원자는 Z1B 치환기로 선택적으로 치환될 수 있고;
A가 하나 이상의 치환가능 sp3-혼성 탄소 원자를 보유할 때, 각 개별 sp3 혼성 탄소 원자는 Z2B 치환기로 선택적으로 치환될 수 있고;
각각의 Z1B는 독립적으로 및 개별적으로 수소, C1-6알킬, 가지형 C3-C7알킬, 할로겐, 플루오르C1-C6알킬 (이때, 알킬 모이어티는 부분적으로 또는 완전히 불화될 수 있다), C1-C6알콕시, 플루오르C1-C6알콕시 (이때, 알킬 모이어티는 부분적으로 또는 완전히 불화될 수 있다), 그리고 -(CH2)nCN으로 구성된 군에서 선택되고;
각각의 Z2B는 독립적으로 및 개별적으로 수소, C1-C6알킬, 그리고 가지형 C3-C7알킬로 구성된 군에서 선택되고;
각각의 Z3은 독립적으로 및 개별적으로 수소, C1-C6알킬, 가지형 C3-C7알킬, C3-C8시클로알킬, 플루오르C1-C6알킬 (이때, 알킬 모이어티는 부분적으로 또는 완전히 불화될 수 있다), 히드록시C2-C6알킬-, R5C(O)(CH2)n-, (R4)2NC(O)C1-C6알킬-, R8C(O)N(R4)(CH2)q-, -(CH2)qCN, -(CH2)qR5, 그리고 -(CH2)qN(R4)2로 구성된 군에서 선택되고;
각각의 R2는 수소, R17-치환된 아릴-, C1-C6알킬, 가지형 C3-C8알킬, R19 치환된 C3-C8시클로알킬-, 그리고 플루오르C1-C6알킬- (이때, 알킬은 완전히 또는 부분적으로 불화된다)로 구성된 군에서 선택되고;
각각의 R3은 독립적으로 및 개별적으로 수소, C1-C6알킬, 가지형 C3-C7알킬, 그리고 C3-C8시클로알킬로 구성된 군에서 선택되고;
각각의 R4는 독립적으로 및 개별적으로 수소, C1-C6알킬, 히드록시C1-C6알킬-, 디히드록시C1-C6알킬-, C1-C6알콕시C1-C6알킬-, 가지형 C3-C7알킬, 히드록실 치환된 가지형 C3-C6알킬-, C1-C6알콕시 가지형 C3-C6알킬-, 디히드록시 치환된 가지형 C3-C6알킬-, -(CH2)pN(R7)2, -(CH2)pR5, -(CH2)pC(O)N(R7)2, -(CH2)nC(O)R5, -(CH2)nC(O)OR3, 그리고 R19 치환된 C3-C8시클로알킬-로 구성된 군에서 선택되고;
각각의 R5는 독립적으로 및 개별적으로
Figure pct00045
로 구성된 군에서 선택되고;
그리고 여기서 기호 (##)는 R5 모이어티를 보유하는 개별 R4, R7, R8, R20 또는 Z3 모이어티에 대한 부착점이고;
각각의 R7은 독립적으로 및 개별적으로 수소, C1-C6알킬, 히드록시C2-C6알킬-, 디히드록시C2-C6알킬-, C1-C6알콕시C2-C6알킬-, 가지형 C3-C7알킬, 히드록시 치환된 가지형 C3-C6알킬-, C1-C6알콕시 가지형 C3-C6알킬-, 디히드록시 치환된 가지형 C3-C6알킬-, -(CH2)qR5, -(CH2)nC(O)R5, -(CH2)nC(O)OR3, R19 치환된 C3-C8시클로알킬-, 그리고 -(CH2)nR17로 구성된 군에서 선택되고;
각각의 R8은 독립적으로 및 개별적으로 C1-C6알킬, 가지형 C3-C7알킬, 플루오르C1-C6알킬- (이때, 알킬 모이어티는 부분적으로 또는 완전히 불화된다), R19 치환된 C3-C8시클로알킬-, 페닐, 페닐C1-C6알킬-, OH, C1-C6알콕시, -N(R3)2, -N(R4)2, 그리고 R5로 구성된 군에서 선택되고;
각각의 R10은 독립적으로 및 개별적으로 -CO2H, -CO2C1-C6알킬, -C(O)N(R4)2, OH, C1-C6알콕시, 그리고 -N(R4)2로 구성된 군에서 선택되고;
R13과 R14는 각각 개별적으로 및 독립적으로 수소, C1-C6알킬, 가지형 C3-C8알킬, 플루오르C1-C6알킬- (이때, 알킬은 완전히 또는 부분적으로 불화된다), 히드록실 치환된 C1-C6알킬-, C1-C6알콕시 치환된 C1-C6알킬-, 히드록실 치환된 가지형 C3-C8알킬-, 그리고 알콕시 치환된 가지형 C3-C8알킬로 구성된 군에서 선택되고;
각각의 R16은 독립적으로 및 개별적으로 수소, C1-C6알킬, 가지형 C3-C7알킬, R19 치환된 C3-C8시클로알킬-, 할로겐, 플루오르C1-C6알킬- (이때, 알킬 모이어티는 부분적으로 또는 완전히 불화될 수 있다), 시아노, 히드록실, C1-C6알콕시, 플루오르C1-C6알콕시- (이때, 알킬 모이어티는 부분적으로 또는 완전히 불화될 수 있다), -N(R3)2, -N(R4)2, R3 치환된 C2-C3알키닐-, 그리고 니트로로 구성된 군에서 선택되고;
각각의 R17은 독립적으로 및 개별적으로 수소, C1-C6알킬, 가지형 C3-C7알킬, 히드록시C2-C6알킬-, R19 치환된 C3-C8시클로알킬-, 할로겐, 플루오르C1-C6알킬- (이때, 알킬 모이어티는 부분적으로 또는 완전히 불화될 수 있다), 시아노, 히드록실, C1-C6알콕시, 플루오르C1-C6알콕시- (이때, 알킬 모이어티는 부분적으로 또는 완전히 불화될 수 있다), -N(R3)2, -N(R4)2, 그리고 니트로로 구성된 군에서 선택되고;
각각의 R19는 독립적으로 및 개별적으로 수소, OH, 그리고 C1-C6알킬로 구성된 군에서 선택되고;
각각의 R20은 독립적으로 및 개별적으로 수소, C1-C6알킬, 가지형 C3-C7알킬, R19 치환된 C3-C8시클로알킬-, 할로겐, 플루오르C1-C6알킬- (이때, 알킬 모이어티는 부분적으로 또는 완전히 불화될 수 있다), 시아노, 히드록실, 히드록시C1-C6알킬-, C1-C6알콕시C1-C6알킬-, C1-C6알콕시, 플루오르C1-C6알콕시- (이때, 알킬 모이어티는 부분적으로 또는 완전히 불화될 수 있다), -N(R3)2, -N(R4)2, -(CH2)nR5, -(CH2)nN(R3)C(O)R3, -(CH2)nC(O)N(R3)2, 그리고 니트로로 구성된 군에서 선택되고;
각각의 m은 독립적으로 및 개별적으로 1-3이고, 각각의 n은 독립적으로 및 개별적으로 0-6이고; 각각의 p는 독립적으로 및 개별적으로 1-4이고; 각각의 q는 독립적으로 및 개별적으로 2-6이고; 각각의 v는 독립적으로 및 개별적으로 1 또는 2이고; 각각의 x는 독립적으로 및 개별적으로 0-2이다.
화학식 Ia의 전술한 화합물에서, 첨자 문자는 빈번하게, 모이어티와 치환기 구조에서 변이를 정의하는데 이용된다. 가령, 아미드 질소 상에서 R4가 -(CH2)nC(O)R5이고, 그리고 Q1/Q2 고리 상에서 R20이 -(CH2)nR5인 경우에, 각각의 “n” 첨자는 개별적으로 및 독립적으로 0에서 6까지 변할 수 있다. 가령, R4 “n” 첨자가 2이고 R20 “n” 첨자가 6인 상황은 -CH2CH2C(O)R5의 R4 치환기 및 -CH2CH2CH2CH2CH2CH2R5의 R20 치환기 (하기 분자 3 참조)를 발생시킨다. 확장에 의해, 첨자 정의는 화학식 Ia의 동일한 화합물 내에 존재하는 상이한 모이어티를 정의하기 위하여 가변적으로 이용될 수 있다.
Figure pct00046
특정 모이어티 (가령, R4)가 분자 내에서 하나 이상의 장소에서 이용되는 경우에, 각 경우의 R4는 개별적으로 및 독립적으로, R4의 정의에 따라 변한다. 하기에 도시된 바와 같이, 포괄적인 분자 Ia는 2가지 경우의 R4를 보유하고, 이들 각각은 “분자 5”에 도시된 바와 같이 서로 상이 (R4 = H & R4 = CH3)할 수 있는 “분자 “4”로 상술될 수 있다.
Figure pct00047
1.1.1
Figure pct00048
모이어티를 예시하는 화학식 Ia 의 화합물
Figure pct00049
여기서 기호 (**)는 헤테로아릴 Q1, Q2 보유 고리에 대한 부착점을 지시한다.
1.1.2 Q1 - Q3 모이어티를 예시하는 1.1.1의 화합물
Figure pct00050
.
1.1.3 화학식 Ic 를 갖는 1.1.2의 화합물
Figure pct00051
.
1.1.4 화학식 Id 를 갖는 1.1.2의 화합물
Figure pct00052
.
1.1.5 화학식 Ie 를 갖는 1.1.2의 화합물
Figure pct00053
.
1.2 Q1 - Q3 모이어티를 예시하는 1.1.1의 화합물
Figure pct00054
.
1.2.1 화학식 Ig 를 갖는 1.2의 화합물
Figure pct00055
.
1.2.2 화학식 Ih 를 갖는 1.2의 화합물
Figure pct00056
.
1.2.3 화학식 Ii 를 갖는 1.2의 화합물
Figure pct00057
.
1.3 Q1 - Q3 모이어티를 예시하는 1.1.1의 화합물
Figure pct00058
.
1.3.1 화학식 Ik 를 갖는 1.3의 화합물
Figure pct00059
.
1.3.2 화학식 Il 를 갖는 1.3의 화합물
Figure pct00060
.
1.3.3 화학식 Im 을 갖는 1.3의 화합물
Figure pct00061
.
1.4 Q1 - Q3 모이어티를 예시하는 1.1.1의 화합물
Figure pct00062
.
1.4.1 화학식 Io 를 갖는 1.4의 화합물
Figure pct00063
.
1.4.2 화학식 Ip 를 갖는 1.4의 화합물
Figure pct00064
.
1.4.3 화학식 Iq 를 갖는 1.4의 화합물
Figure pct00065
.
1.5 Q1 - Q3 모이어티를 예시하는 1.1.1의 화합물
Figure pct00066
.
1.5.1 화학식 Is 를 갖는 1.5의 화합물
Figure pct00067
.
1.5.2 화학식 It 를 갖는 1.5의 화합물
Figure pct00068
.
1.5.3 화학식 Iu 를 갖는 1.5의 화합물
Figure pct00069
.
1.6 Q1 - Q3 모이어티를 예시하는 1.1.1의 화합물
Figure pct00070
.
1.6.1 화학식 Iw 를 갖는 1.6의 화합물
Figure pct00071
.
1.6.2 화학식 Ix 를 갖는 1.6의 화합물
Figure pct00072
.
1.6.3 화학식 Iy 를 갖는 1.6의 화합물
Figure pct00073
.
1.7 Q1 - Q3 모이어티를 예시하는 1.1.1의 화합물
Figure pct00074
.
1.7.1 화학식 Iaa 를 갖는 1.7의 화합물
Figure pct00075
.
1.7.2 화학식 Ibb 를 갖는 1.7의 화합물
Figure pct00076
.
1.7.3 화학식 Icc 를 갖는 1.7의 화합물
Figure pct00077
.
1.8 Q1 - Q3 모이어티를 예시하는 1.1.1의 화합물
Figure pct00078
.
1.8.1 화학식 Iee 를 갖는 1.8의 화합물
Figure pct00079
.
1.8.2 화학식 Iff 를 갖는 1.8의 화합물
Figure pct00080
.
1.8.3 화학식 Igg 를 갖는 1.8의 화합물
Figure pct00081
.
1.9 Q1 - Q3 모이어티를 예시하는 1.1.1의 화합물
Figure pct00082
.
1.9.1 화학식 Iii 를 갖는 1.9의 화합물
Figure pct00083
.
1.9.2 화학식 Ijj 를 갖는 1.9의 화합물
Figure pct00084
.
1.9.3 화학식 Ikk 를 갖는 1.9의 화합물
Figure pct00085
.
1.10 화학식 Ia 의 예시적인 화합물
화학식 Ia의 예시적인 화합물에는 N-(2,3-디플루오르-4-(2-(1-메틸-1H-피라졸-4-일)피리딘-4-일옥시)페닐)-N'-(4-플루오르페닐)시클로프로판-1,1-디카르복사미드, N-(3-플루오르-4-(2-(1-메틸-1H-피라졸-4-일)피리딘-4-일옥시)페닐)-N'-(4-플루오르페닐)시클로프로판-1,1-디카르복사미드, N-벤질-N'-(2,3-디플루오르-4-(2-(1-메틸-1H-피라졸-4-일)피리딘-4-일옥시)페닐)시클로프로판-1,1-디카르복사미드, N-벤질-N'-(3-플루오르-4-(2-(1-메틸-1H-피라졸-4-일)피리딘-4-일옥시)페닐)시클로프로판-1,1-디카르복사미드, N-(3-플루오르-4-(2-(1-메틸-1H-피라졸-4-일)피리딘-4-일옥시)페닐)-N'-페닐시클로프로판-1,1-디카르복사미드, N-(3-플루오르-4-(2-(1-메틸-1H-피라졸-4-일)피리딘-4-일옥시)페닐)-N'-(3-(트리플루오르메틸)페닐)시클로프로판-1,1-디카르복사미드, N-(2-플루오르-4-(2-(1-메틸-1H-피라졸-4-일)피리딘-4-일옥시)페닐)-N'-(4-플루오르페닐)시클로프로판-1,1-디카르복사미드, N-(3-플루오르-4-(2-(1-메틸-1H-피라졸-4-일)피리딘-4-일옥시)페닐)-N'-(4-메톡시페닐)시클로프로판-1,1-디카르복사미드, N-(3-플루오르-4-(2-(1-메틸-1H-피라졸-4-일)피리딘-4-일옥시)페닐)-N'-(3-메톡시페닐)시클로프로판-1,1-디카르복사미드, N-(3-플루오르-4-(2-(1-메틸-1H-피라졸-4-일)피리딘-4-일옥시)페닐)-N'-(3-플루오르페닐)시클로프로판-1,1-디카르복사미드, N-(4-플루오르페닐)-N'-(3-메틸-4-(2-(1-메틸-1H-피라졸-4-일)피리딘-4-일옥시)페닐)시클로프로판-1,1-디카르복사미드, 1-(3-플루오르-4-(2-(1-메틸-1H-피라졸-4-일)피리딘-4-일옥시)페닐)-3-(2-(4-플루오르페닐)아세틸)우레아, N-(3-플루오르-4-(2-(1-메틸-1H-피라졸-4-일)피리딘-4-일옥시)페닐)-N'-(피리딘-4-일)시클로프로판-1,1-디카르복사미드, N-(3-플루오르-4-(2-(1-메틸-1H-피라졸-4-일)피리딘-4-일옥시)페닐)-N'-(피리딘-3-일)시클로프로판-1,1-디카르복사미드, N-(3-클로로벤질)-N'-(3-플루오르-4-(2-(1-메틸-1H-피라졸-4-일)피리딘-4-일옥시)페닐)시클로프로판-1,1-디카르복사미드, N-(3-플루오르-4-(2-(1-메틸-1H-피라졸-4-일)피리딘-4-일옥시)페닐)-N'-((S)-1-페닐에틸)시클로프로판-1,1-디카르복사미드, N-(3-플루오르-4-(2-(1-메틸-1H-피라졸-4-일)피리딘-4-일옥시)페닐)-N'-((R)-1-페닐에틸)시클로프로판-1,1-디카르복사미드, N-(4-플루오르벤질)-N'-(3-플루오르-4-(2-(1-메틸-1H-피라졸-4-일)피리딘-4-일옥시)페닐)시클로프로판-1,1-디카르복사미드, N-(4-(2-(1-에틸-1H-피라졸-4-일)피리딘-4-일옥시)-3-플루오르페닐)-N'-(4-플루오르페닐)시클로프로판-1,1-디카르복사미드, N-(3-플루오르-4-(2-(1-프로필-1H-피라졸-4-일)피리딘-4-일옥시)페닐)-N'-(4-플루오르페닐)시클로프로판-1,1-디카르복사미드, N-(3-플루오르-4-(2-(1-(2-히드록시에틸)-1H-피라졸-4-일)피리딘-4-일옥시)페닐)-N'-(4-플루오르페닐)시클로프로판-1,1-디카르복사미드, N-(4-클로로페닐)-N'-(2-플루오르-4-(2-(1-메틸-1H-피라졸-4-일)피리딘-4-일옥시)페닐)시클로프로판-1,1-디카르복사미드, N-(2-플루오르-4-(2-(1-메틸-1H-피라졸-4-일)피리딘-4-일옥시)페닐)-N'-p-톨릴시클로프로판-1,1-디카르복사미드, N-(3,4-디플루오르페닐)-N'-(2-플루오르-4-(2-(1-메틸-1H-피라졸-4-일)피리딘-4-일옥시)페닐)시클로프로판-1,1-디카르복사미드, N-(2-플루오르-4-(2-(1-메틸-1H-피라졸-4-일)피리딘-4-일옥시)페닐)-N'-(4-(트리플루오르메틸)페닐)시클로프로판-1,1-디카르복사미드, N-(3-시아노-4-플루오르페닐)-N'-(2-플루오르-4-(2-(1-메틸-1H-피라졸-4-일)피리딘-4-일옥시)페닐)시클로프로판-1,1-디카르복사미드, N-(2,4-디플루오르페닐)-N'-(2-플루오르-4-(2-(1-메틸-1H-피라졸-4-일)피리딘-4-일옥시)페닐)시클로프로판-1,1-디카르복사미드, N-(4-시아노페닐)-N'-(2-플루오르-4-(2-(1-메틸-1H-피라졸-4-일)피리딘-4-일옥시)페닐)시클로프로판-1,1-디카르복사미드, N-(2-클로로-4-플루오르페닐)-N'-(2-플루오르-4-(2-(1-메틸-1H-피라졸-4-일)피리딘-4-일옥시)페닐)시클로프로판-1,1-디카르복사미드, N-(3-클로로-4-(2-(1-메틸-1H-피라졸-4-일)피리딘-4-일옥시)페닐)-N'-(4-플루오르페닐)시클로프로판-1,1-디카르복사미드, N-(4-(2-(1H-피라졸-4-일)피리딘-4-일옥시)-3-플루오르페닐)-N'-(4-플루오르페닐)시클로프로판-1,1-디카르복사미드, N-(2-플루오르-3-메틸-4-(2-(1-메틸-1H-피라졸-4-일)피리딘-4-일옥시)페닐)-N'-(4-플루오르페닐)시클로프로판-1,1-디카르복사미드, N-(3-플루오르-4-(2-(1-메틸-1H-피라졸-4-일)피리딘-4-일옥시)페닐)-N'-((S)-1-(4-플루오르페닐)에틸)시클로프로판-1,1-디카르복사미드 염산염, N-(3-플루오르-4-(2-(1-메틸-1H-피라졸-4-일)피리딘-4-일옥시)페닐)-N'-((S)-1-(4-플루오르페닐)프로필)시클로프로판-1,1-디카르복사미드 염산염, N-(2-플루오르-4-(2-(1-메틸-1H-피라졸-4-일)피리딘-4-일옥시)페닐)-N'-(티오펜-2-일)시클로프로판-1,1-디카르복사미드, N-(3-플루오르-4-(2-(1-메틸-1H-피라졸-4-일)피리딘-4-일옥시)페닐)-N'-((R)-1-(4-플루오르페닐)-2-메톡시에틸)시클로프로판-1,1-디카르복사미드, N-(4-플루오르페닐)-N-(4-(2-(4-(트리플루오르메틸)-1H-이미다졸-2-일)피리딘-4-일옥시)페닐)시클로프로판-1,1-디카르복사미드, N-(4-플루오르페닐)-N'-(6-(2-(1-메틸-1H-피라졸-4-일)피리딘-4-일옥시)피리딘-3-일)시클로프로판-1,1-디카르복사미드, 2-(4-플루오르페닐)-N-(4-(2-(4-(트리플루오르메틸)-1H-이미다졸-2-일)피리딘-4-일옥시)페닐카르바모일)아세트아미드, N-(2,5-디플루오르-4-(2-(1-메틸-1H-피라졸-4-일)피리딘-4-일옥시)페닐)-N'-(4-플루오르페닐)시클로프로판-1,1-디카르복사미드, N-(4-플루오르페닐)-N'-(5-(2-(1-메틸-1H-피라졸-4-일)피리딘-4-일옥시)피리딘-2-일)시클로프로판-1,1-디카르복사미드, N-(2,5-디플루오르-4-(2-(1-메틸-1H-피라졸-4-일)피리딘-4-일옥시)페닐카르바모일)-2-(4-플루오르페닐)아세트아미드, N-(2,3-디플루오르-4-(2-(1-메틸-1H-피라졸-4-일)피리딘-4-일옥시)페닐카르바모일)-2-(4-플루오르페닐)아세트아미드, 2-(4-플루오르페닐)-N-(5-(2-(1-메틸-1H-피라졸-4-일)피리딘-4-일옥시)피리딘-2-일카르바모일)아세트아미드, N-(2,5-디플루오르-4-(2-(1-메틸-1H-피라졸-4-일)피리딘-4-일옥시)페닐)-N-페닐시클로프로판-1,1-디카르복사미드, N-(5-클로로-2-플루오르-4-(2-(1-메틸-1H-피라졸-4-일)피리딘-4-일옥시)페닐카르바모일)-2-(4-플루오르페닐)아세트아미드, N-(5-클로로-2-플루오르-4-(2-(1-메틸-1H-피라졸-4-일)피리딘-4-일옥시)페닐)-N-(4-플루오르페닐)시클로프로판-1,1-디카르복사미드, N-(3,5-디플루오르-4-(2-(1-메틸-1H-피라졸-4-일)피리딘-4-일옥시)페닐카르바모일)-2-(4-플루오르페닐)아세트아미드, N-(4-(2-(1,3-디메틸-1H-피라졸-4-일)피리딘-4-일옥시)-2,5-디플루오르페닐)-N-(4-플루오르페닐)시클로프로판-1,1-디카르복사미드, N-(4-플루오르페닐)-N-(4-(2-(4-(트리플루오르메틸)-1H-이미다졸-2-일)피리딘-4-일옥시)페닐)시클로프로판-1,1-디카르복사미드, N-(2-플루오르-5-메틸-4-(2-(1-메틸-1H-피라졸-4-일)피리딘-4-일옥시)페닐)-N’-(4-플루오르페닐)시클로프로판-1,1-디카르복사미드, N-(2-플루오르-4-메틸-5-(4-(1-메틸-1H-피라졸-4-일)피리미딘-2-일옥시)페닐)-N'-(4-플루오르페닐)시클로프로판-1,1-디카르복사미드, N-(2-플루오르-5-(4-(1-메틸-1H-피라졸-4-일)피리미딘-2-일옥시)페닐)-N'-(4-플루오르페닐)시클로프로판-1,1-디카르복사미드, N-(5-(4-(1H-피라졸-4-일)피리미딘-2-일옥시)-2-플루오르-4-메틸페닐)-N-(4-플루오르페닐)시클로프로판-1,1-디카르복사미드, N-(5-(4-(1H-피라졸-4-일)피리미딘-2-일옥시)-2-플루오르페닐)-N-(4-플루오르페닐)시클로프로판-1,1-디카르복사미드, 2-(4-플루오르페닐)-N-(4-메틸-5-(2-(1-메틸-1H-피라졸-4-일)피리딘-4-일옥시)피리딘-2-일카르바모일)아세트아미드, N-(2,5-디플루오르-4-(3-(1-메틸-1H-피라졸-4-일)피리딘-4-일옥시)페닐)-N'-(4-플루오르페닐)시클로프로판-1,1-디카르복사미드, N-(3-플루오르-4-(2-(1-메틸-1H-피라졸-4-일)피리딘-4-일옥시)페닐)-N-(4-플루오르페닐)-N-메틸시클로프로판-1,1-디카르복사미드, N-(2-플루오르-4-(2-(3-메틸이속사졸-5-일)피리딘-4-일옥시)페닐)-N'-(4-플루오르페닐)시클로프로판-1,1-디카르복사미드, 그리고 N-(4-(2-(1H-1,2,3-트리아졸-4-일)피리딘-4-일옥시)-2-플루오르페닐)-N'-(4-플루오르페닐)시클로프로판-1,1-디카르복사미드가 포함되지만 이들에 국한되지 않는다.
1.11 방법
1.11a 단백질 조절 방법
본 발명은 다양한 키나아제, 예를 들면, VEGFR-2 (KDR) 키나아제, c-MET 키나아제, FLT-3 키나아제, c-KIT 키나아제, PDGFR-α 키나아제, PDGFR-β 키나아제, 그리고 c-FMS 키나아제의 키나아제 활성을 조절하는 방법을 포함한다. 이들 키나아제는 야생형 키나아제, 이들의 발암성 형태, 이들의 비정상적 융합 단백질, 또는 이들 중에서 한 가지의 다형체일 수 있다. 상기 방법은 키나아제 화학종을 본 발명의 화합물, 구체적으로 섹션 1에 열거된 것들과 접촉시키는 단계를 포함한다. 키나아제 화학종은 활성화되거나 불활성화될 수 있고, 그리고 이들 화학종은 인산화 (phosphorylation), 황산화 (sulfation), 지방산 아실화, 당화 (glycosylation), 니트로실화 (nitrosylation), 시스티닐화 (cystinylation) (즉, 키나아제 내에서 근위 시스테인 잔기가 서로 반응하여 이황화 결합을 형성한다) 또는 산화 (oxidation)에 의해 조절될 수 있다. 키나아제 활성은 포스포 이동 반응 (phospho transfer reaction)의 촉매 작용, 인산화의 저해, 다른 효소에 의한 키나아제의 산화 또는 니트로실화, 탈인산화의 강화, 다른 효소에 의한 키나아제의 환원 또는 탈니트로실화, 키나아제 세포성 국지화, 그리고 키나아제 형상의 조절을 통한 다른 단백질의 신호전달 복합체 내로의 동원으로 구성된 군에서 선택될 수 있다.
1.11b 치료 방법
본 발명의 방법은 또한, 암, 과증식성 질환, 물질대사 질환, 신경변성 질환, 또는 혈관신생으로 특징되는 질환으로 구성된 군에서 선택되는 장애로 고통받는 개체를 치료하는 것을 포함한다. 이들 방법은 본 발명의 화합물, 특히 섹션 1의 화합물을 이런 개체에 투여하는 단계를 포함하고, 상기 질환에는 고형 종양, 악성 흑색종, 아교모세포종, 난소암, 췌장암, 전립선암, 폐암, 유방암, 신장암, 간암, 자궁경부 암종, 원발성 종양 부위의 전이, 골수증식성 질환, 만성 골수성 백혈병, 백혈병, 갑상샘 유두 암종, 비-소세포 폐암, 중피종, 과호산구 증후군, 위장관 간질 종양, 대장암, 다양한 망막증, 당뇨성 망막증과 연령-관련된 황반 변성과 과호산구 증후군을 비롯한 시각상실을 유발하는 과증식으로 특징되는 안과 질환, 류머티스성 관절염, 천식, 만성 폐쇄성 폐 질환, 비만세포증, 비만 세포 백혈병, PDGFR-α 키나아제에 의해 유발되는 질환, PDGFR-β 키나아제에 의해 유발되는 질환, c-KIT 키나아제에 의해 유발되는 질환, cFMS 키나아제에 의해 유발되는 질환, c-MET 키나아제 및 이의 발암성 형태, 비정상적 융합 단백질과 다형체에 의해 유발되는 질환이 포함되지만 이들에 국한되지 않는다. 투여 방법은 중요하지 않고, 그리고 경구, 비경구, 흡입, 그리고 피하로 구성된 군에서 선택될 수 있다.
1.12 제약학적 제조물
본 발명의 화합물, 특히 섹션 1의 화합물은 하나 이상의 이런 화합물을 제약학적으로 허용되는 담체와 결합시킴으로써 제약학적 조성물의 일부를 형성할 수 있다. 부가적으로, 이들 조성물은 어쥬번트, 부형제, 희석제, 그리고 안정화제로 구성된 군에서 선택되는 첨가제를 포함할 수 있다.
섹션 2. 본 발명의 화합물의 합성
본 발명의 화합물은 하기 반응식 및 실시예에 예시된 일반적인 합성 방법에 의해 가용하다.
본 발명의 한 측면에서, 화학식 Ia의 화합물은 아민성 “W” 기 및 시클로프로필 “V” 기를 포함하고, 그리고 화학식 1로 표시된다. 화학식 1의 화합물은 화학식 3의 아민, 화학식 4 (t = 0-3)의 아민, 그리고 화학식 2의 시클로프로판 디카르복실산의 결합에 의해 용이하게 제조될 수 있다.
하기 반응식 1에서 지시된 바와 같이, 화학식 1의 화합물은 251 순서로 또는 대안으로, 261 순서로 발생될 수 있다. 당업자가 인지하는 바와 같이, 반응식 1에서 반응 화살표는 단일 반응 또는 복수-단계 반응 순서를 나타낸다. 비스-산 2는 당업자에게 공지된 표준 펩티드 결합제 (peptide coupling agent)의 이용을 통해 아민 34와 단계별 방식으로 결합될 수 있다. 대안으로, 반응식 1에서, 산 2는 활성화된 산성 할로겐화합물, 무수물, 혼합된 무수물 또는 활성화된 에스테르 (가령, 펜타플루오르페닐 에스테르 또는 p-니트로페닐 에스테르)로서 한쪽 또는 양쪽 카르복실산 모이어티의 전-활성화에 의해 아민 3 또는 4와 결합될 수 있는 것으로 이해될 것이다. 이런 활성화된 중간물질 (도시되지 않음)은 아민 3 또는 4와의 반응에 앞서, 분리되거나 분리되지 않을 수 있다. 당업자는 2의 카르복실산 모이어티가 상기 반응에 들어갈 수 있음을 더욱 인지할 것이다. 에스테르로서 숨겨진 반응식 1 및 반응식 1에서 반응 순서는 필요한 경우에, 두 번째 아미드 결합의 형성을 조장하기 위하여 5, 또는 6의 에스테르 유도체를 산 5 또는 6으로 전환시키는 추가의 탈보호 단계를 가능하게 한다.
[반응식 1]
Figure pct00086

반응식 1의 무제한적 실례는 반응식 2-4에 도시된다. 반응식 2에서는 251 (반응식 1)의 일반적인 순서에 의해 화학식 1 (여기서 A는 4-플루오르페닐이고, t는 0이고, Z2B는 H이고, Q3은 CH이고, Q3 고리는 플루오르로 치환되고, 그리고 D-보유 고리는 피라졸이다)의 실례인 화합물 11의 제조를 예시한다. 따라서 하기에 지시된 바와 같이, 1,1-시클로프로판 비스-카르복실산 (7, 일반적인 중간물질 2의 실례, vide supra)과 아민 8 (일반적인 아민 3의 실례)의 결합은 일반적인 중간물질 5의 실례인 아미드/산 9를 제공한다. 변환을 위한 조건은 삼차 염기, 예를 들면, 트리에틸아민의 존재에서 염화티오닐로 처리에 의한 비스-산 7in situ 활성화, 그 이후에 아민 8과의 반응을 포함한다. 펩티드 결합제의 존재에서 9와 아민 10 (일반적인 중간물질 4의 실례)의 후속 반응은 비스-아미드 11을 제공한다. 후자 변환을 위한 결합제에는 TBTU (O-(벤조트리아졸-1-일)-N,N,N',N'-테트라메틸우로늄 테트라플루오르붕산염), PyBOP (벤조트리아졸-1-일옥시)트리피롤리디노포스포늄 헥사플루오르인산염), EDC (1-에틸-3-(3-디메틸아미노프로필) 카르보디이미드 염산염)와 BOP-Cl (비스(2-옥소-3-옥사졸리디닐)포스포르 염화물)이 포함된다.
[반응식 2]
Figure pct00087

유사하게, 반응식 3은 모노-에스테르 12로 시작되는 251 (반응식 1)의 일반적인 순서의 추가적인 실례를 예시한다. 따라서 산/에스테르 12는 아민 13과 결합되고 에스테르/아미드 14가 제공된다. 수산화리튬으로 14의 에스테르의 비누화는 리튬 카르복실산염 15를 제공한다. 10 및 펩티드 결합 시약, 예를 들면, TBTU로 15의 처리는 화학식 1의 추가 실례인 비스-아미드 16을 제공한다.
[반응식 3]
Figure pct00088

반응식 4에서는 반응식 1의 일반적인 순서 261의 무제한적 실례로서 19의 제조를 예시한다. 따라서 비스-산 7은 먼저, 아민 10과 결합되어 아미드/산 17이 제공되고, 이는 차례로, 아민 18과 결합되어 19가 제공된다.
[반응식 4]
Figure pct00089

본 발명의 다른 측면에서, 화학식 Ia의 “V” 모이어티는 NR4이다. 이들 경우에서, 화학식 20의 화합물은 일반적인 아민 3과 일반적인 중간물질 21의 반응에 의해 반응식 5에서 지시된 바와 같이, 또는 R4가 H인 경우에, 이소시안산염 22로 제조될 수 있다.
[반응식 5]
Figure pct00090

일반적인 중간물질 21은 반응식 6에서 지시된 바와 같이, 포스겐 또는 포스겐 대용물, 예를 들면, 디포스겐 또는 트리포스겐과의 반응에 의해 23으로부터 가용하다. 비-상업적으로 가용한 이소시안산염 22는 은 이소시안산염으로 일반적인 산성 염화물 24의 처리에 의해 제조될 수 있다. 산성 염화물 24는 차례로, 당업자에게 익숙한 조건에 의해 상응하는 산으로부터 제조된다. 대안으로, 22는 선택적 가열과 함께, 옥살릴 염화물 또는 포스겐으로 처리에 의해 아미드 25로부터 제조될 수 있다.
[반응식 6]
Figure pct00091

반응식 5와 6의 무제한적 실례는 반응식 7에서 29의 제조에 의해 예시된다. 따라서 산 26 (참조: Jiang, Y., et al ., J. Med . Chem . (2007) 50(16): 3870)은 촉매량의 디메틸포름아미드를 포함하는 톨루엔에서 옥살릴 염화물로 처리 시에 산성 염화물 27로 전환된다. 은 이소시안산염으로 27의 추가 처리는 일반적인 중간물질 22 (반응식 6)의 실례인 이소시안산염 28을 제공한다. 최종적으로, 28과 아민 18의 반응은 화학식 20 (여기서 A는 4-플루오르페닐이고, W는 -CH(CH3)-이고, R4는 H이고, Q3은 CH이고, Q3 고리는 플루오르로 치환되고, Q2는 CH이고, Q1은 N이고, 그리고 D-보유 고리는 피라졸이다)의 실례인 N-아실 우레아 29를 제공한다.
[반응식 7]
Figure pct00092

반응식 5와 6의 일반적인 방법을 예시하는 추가의 실례는 반응식 8에서 도시된 33의 합성이다. 따라서 4-플루오르페닐아세트산과 암모니아로부터 용이하게 제조되는 4-플루오르페닐아세트아미드 30은 먼저, 가열과 함께 옥살릴 염화물로 처리되어 2-(4-플루오르페닐)아세틸 이소시안산염 31이 제공된다. 아민 32로 이소시안산염 31의 추가 처리는 일반적인 중간물질 20 (여기서 A는 4-플루오르페닐이고, W는 -CH2-이고, R4는 H이고, Q3은 N이고, Q2는 CH이고, Q1은 N이고, 그리고 D-보유 고리는 피라졸이다)의 실례인 N-아실 우레아 33을 제공한다.
[반응식 8]
Figure pct00093
본 발명에 유용한 아민 3은 당업자에게 널리 공지된 방법에 따라 합성될 수 있다. 화학식 3의 아민의 한 가지 일반적인 제조법은 Q1/Q2 고리 및 Q3 고리 사이에 C-O 결합의 형성에 의해 3개의 모노환상 아단위 단계별 결합, 그리고 Q1/Q2 고리 및 5-원 D-고리 사이에 결합의 형성을 수반한다. 이러한 방법의 변형이 아래의 반응식에서 도시된다.
반응식 9에서는 3의 에테르 산소 원자가 Q3-보유 아단위 34 상에서 히드록실 모이어티로부터 유래되는 3의 조립의 한 가지 일반적인 양식을 예시한다. 일부 34와 Q1/Q2-보유 고리 35의 결합은 선택적 가열과 함께, 염기, 예를 들면, 칼륨 tert-부톡시드, 그리고 일부 3534의 처리에 의해 달성되고 에테르 36이 형성된다. 반응식 9에서, 단일환 35의 “LG”는 친핵성 치환 반응 (추가의 활성화와 함께 또는 이러한 활성화 없이)에서 직접적으로 치환될 수 있는 모이어티, 예를 들면, 할로겐화합물, 설포네이트, 설폰 또는 설폭시드를 표시한다. 단일환 35 또는 이중환 36의 “X” 기는 5-원 헤테로환상 모이어티의 부착을 가능하게 하는 모이어티를 표시한다. 한 측면에서, “X” 기는 아민 3을 발생시키는 미리-형성된 헤테로환상 (D-고리) 시약 (가령, 보론 산 또는 에스테르, 또는 헤테로아릴 스탄난)과의 전이-금속-매개된 결합에 참여하는 할로겐 원자를 표시한다. 다른 측면에서, “X”기는 D-고리를 설치하기 위하여 피라졸, 이미다졸 또는 트리아졸의 질소 원자에 의해 치환되는 이탈 기를 표시한다. 다른 측면에서, X 기는 5-원 D-고리 (피라졸, 이속사졸, 트리아졸, 이미다졸)를 구성하기 위하여 통과되는 모이어티, 예를 들면, 카르복실산 또는 에스테르, 알킨, 또는 알데히드를 표시하고, 이는 5-원 고리로 변환될 수 있다.
[반응식 9]
Figure pct00094

일반적인 반응식 9의 일부 무제한적 실례는 하기 반응식에서 예시된다. 반응식 10에서는 일반적인 아민 3 (여기서 R4는 H이고, Q3은 CH이고, Q3 고리는 플루오르로 치환되고, Q2는 CH이고, Q1은 N이고, 그리고 D-보유 고리는 피라졸이다)의 실례인 피라졸 8의 제조를 예시한다. 반응식 10에서, 상업적으로 가용한 3-플루오르-4-아미노페놀 (37)은 칼륨 tert-부톡시드 및 2,4-디클로로피리딘 38 (LG와 X가 둘 모두 클로로인 35의 실례)과 반응되어 일반적인 중간물질 36의 실례인 클로로피리딘 39가 제공된다. 이러한 변환을 위한 가능한 조건은 80 내지 100℃의 온도에서 디메틸아세트아미드이다. 팔라듐 촉매, 예를 들면, 테트라키스(트리페닐포스핀) 팔라듐(0)의 존재에서, 상업적으로 가용한 피라졸-4-보론 산 피나콜 에스테르 40으로 클로로피리딘 39의 후속 반응은 피라졸 아민 8을 제공한다.
[반응식 10]
Figure pct00095

반응식 11에서는 반응식 9와 반응식 10의 일반적인 방법을 이용한, 아민 3의 추가적인 무제한적 실례의 제조를 예시한다. 따라서 일반적인 중간물질 36 (X = 할로겐)은 각각, 시약 41 (Milestone PharmTech), 42 (Alfa), 43 (참조: Nicolaou, et. al., ChemMedChem , (2006), 1(1): 41), 44 (Frontier Scientific), 45 (참조: Sakamoto, et al. Tetrahedron, (1991), 47(28): 5111)로 팔라듐-촉매된 교차 결합 (cross coupling)을 이용하여 화합물 46-50으로 전환될 수 있다. 반응식 11의 반응에 적합한 팔라듐 촉매에는 디클로로비스(트리페닐포스핀)팔라듐, 디클로로[11’-비스(디페닐포스피노) 페로센]팔라듐과 테트라키스(트리페닐포스핀) 팔라듐이 포함된다.
[반응식 11]
Figure pct00096
본 발명에 유용한 추가의 헤테로아릴 보로네이트와 스탄난은 상응하는 헤테로아릴 할로겐화합물로부터 제조될 수 있다. 가령, 반응식 12에서 공지된 트리아졸 브롬화물 51-53 (참조: Pedersen, C. Acta Chem. Scand . (1959) 5: 888-892)은 상응하는 트리부틸스탄난 54-56으로 전환될 수 있다. 이러한 변환에 적합한 조건에는 상승된 온도, 예를 들면, 60 내지 180℃에서 헥사부틸디스탄난과 팔라듐테트라키스(트리페닐포스핀)로 반응이 포함된다. 이러한 변환을 위한 대안적 조건에는 낮은 온도에서 n-부틸리튬으로 브롬화물 51-53의 처리, 그리고 트리부틸틴 염화물로 결과의 유기리튬 중간물질의 후속 처리가 포함된다. 스탄난 54-56은 차례로, 팔라듐 촉매의 존재에서 일반적인 할로겐화합물 36과의 반응이 진행되어 일반적인 아민 3의 실례인 트리아졸-보유 아민 57-59가 형성될 수 있다.
[반응식 12]
Figure pct00097

반응식 13-16에서는 일반적인 아민 3 (여기서 D-고리는 질소 원자를 통해 Q1/Q2 고리에 연결된 피라졸, 이미다졸 또는 트리아졸 고리이다)의 무제한적 실례의 제조를 예시한다. 반응식 13-16은 일반적인 반응식 9 (여기서 36의 “X” 기는 친핵성 방향족 치환을 위한 이탈 기이다)의 실례이다. 반응식 13-16에 적합한 X 기에는 클로르를 비롯한 할로겐이 포함된다. 반응식 13-16에 적합한 조건에는 비-친핵성 염기, 예를 들면, 탄산칼륨, 수소화나트륨, 1,8-디아자-비시클로[5.4.0]운덱-7-엔 (DBU) 등의 존재에서 극성 비양자성 용매, 예를 들면, 1-메틸-2-피롤리디논, 디메틸아세트아미드, 또는 디메틸설폭시드의 이용이 포함된다. 가능한 온도는 실온 내지 대략 250℃이고, 그리고 마이크로파 조사 또는 초음파처리의 이용을 선택적으로 포함할 수 있다.
반응식 13에서는 일반적인 아민 3 (여기서 D-고리는 피라졸이다)의 무제한적 실례인 피라졸 62, 63 또는 64를 제공하기 위한, 일반적인 중간물질 36과 피라졸 60 (상업적으로 가용한 피라졸의 실례에는 R20 = H, CH3, CN, 그리고 CF3인 것들이 포함된다), 또는 피라졸 61 (상업적으로 가용한 피라졸의 실례에는 R20 = CH3, 그리고 CF3인 것들이 포함된다)의 반응을 예시한다.
[반응식 13]
Figure pct00098

유사하게, 반응식 14에서는 일반적인 아민 3 (여기서 D-고리는 이미다졸이다)의 무제한적 실례인 6667을 제공하기 위한, 일반적인 중간물질 36과 이미다졸 65 (상업적으로 가용한 이미다졸의 실례에는 R20 = H, CH3, CN, CF3, 그리고 2-히드록시에틸인 것들이 포함된다)의 반응을 예시한다.
[반응식 14]
Figure pct00099

반응식 15에서는 일반적인 아민 3 (여기서 D-고리는 1,2,4-트리아졸이다)의 무제한적 실례인 69, 70, 그리고 71을 제공하기 위한, 일반적인 중간물질 36과 트리아졸 68 (상업적으로 가용한 트리아졸의 실례에는 R20 = H, CH3, 그리고 CN인 것들이 포함된다)의 반응을 예시한다.
[반응식 15]
Figure pct00100

반응식 16에서는 일반적인 아민 3 (여기서 D-고리는 1,2,3-트리아졸이다)의 무제한적 실례인 73, 74, 그리고 75를 제공하기 위한, 일반적인 중간물질 36과 트리아졸 72 (상업적으로 가용한 트리아졸의 실례에는 R20 = H, 히드록시메틸인 것들이 포함된다)의 반응을 예시한다.
[반응식 16]
Figure pct00101

반응식 17에서는 반응식 9 (여기서 고리 형성 순서가 트리아졸 고리 (D-고리)를 구성하는데 이용된다)의 실례로서 일반적인 아민 3의 무제한적 실례인 아민 7879의 제조를 예시한다. 따라서 클로로피리딘 39의 알킨 76으로의 전환은 트리메틸실릴아세틸렌과의 Sonogashira 교차-결합, 그 이후에 당업자에게 익숙한 조건, 예를 들면, 메탄올에서 K2CO3에 의한 트리메틸실릴 기의 제거에 의해 달성된다. 황산구리와 아스코르빈산나트륨의 존재에서 알킨 76과 아지도메틸 피발레이트 (77)의 후속 반응은 N-피발로일리메틸 트리아졸 아민 78을 제공한다 (참조: Loren, et. al. Synlett, (2005), 18: 2847). 피발레이트 78은 NH-트리아졸 79의 숨겨진 등가물이다. NaOH로 피발레이트 모이어티의 제거는 79를 제공한다. 대안으로, 78은 화학식 1 또는 20 (여기서 D-고리 트리아졸은 피발로일리메틸 기로 숨겨진다)의 화합물을 제공하기 위하여 일반적인 반응식 1 또는 5에 직접적으로 이용될 수 있다. NaOH로 이런 산물의 후속 처리는 화학식 1 또는 20의 NH-트리아졸을 제공한다.
[반응식 17]
Figure pct00102

반응식 17의 확장으로서, 화학식 81의 Z3-치환된 트리아졸 및 화학식 83의 R20-치환된 이속사졸 역시 반응식 18에서 도시된 바와 같이, 유사한 1,3-쌍극성 고리화부가에 의해 제조될 수 있다. 따라서 상업적 알킬 할로겐화합물과 나트륨 아지드로부터 용이하게 제조되는 Z3-치환된 아지드 80의 알킨 76, 아스코르빈산나트륨, 그리고 Cu(SO4) 오수화물 (참조: Rostotsev, et . al. Angew . Chem . Int . Ed , (2002) 41 (14): 2596-2599)과의 조합은 Z3-치환된 트리아졸 81을 발생시킨다. 유사한 순서에서, 가열, 또는 선택적 마이크로파 조사와 함께 알킨 76의 존재에서, 알데히드와 히드록실아민으로부터 용이하게 제조되는 R20-치환된 옥심 82의 N-클로로숙신이미드와의 조합은 일반적인 아민 3의 추가적인 실례인 화학식 83의 이속사졸을 제공한다.
[반응식 18]
Figure pct00103

반응식 9 (여기서 고리 형성 순서가 이미다졸 D-고리를 구성하기 위하여 이용된다)의 추가 실례는 일반적인 아민 3 (여기서 R4는 H이고, Q3은 CH이고, Q2는 CH이고, Q1은 N이고, 그리고 D-보유 고리는 치환된 이미다졸 (R20 = CF3)이다)의 실례인 이미다졸 93의 합성을 위한 반응식 19에서 도시된다. 피리딘-2-카르복실산 (84)의 클로로-피리딘 85로의 전환은 가열과 함께, 염화티오닐과 나트륨 브롬화물로 처리에 의해 달성된다. 85와 tert-부탄올의 반응은 일반적인 중간물질 35 (반응식 9, 여기서 LG는 클로로이고 X는 tert-부톡시카르보닐이다)의 실례인 클로로-에스테르 86을 제공한다. 수소화나트륨으로 87로부터 제조된 4-아미노페놀 87의 나트륨 염으로 86의 처리, 그리고 생성된 혼합물의 80℃ 가열은 일반적인 중간물질 36 (반응식 9, 여기서 X는 tert-부톡시카르보닐이다)의 실례인 에테르-에스테르 88을 제공한다. 8893으로의 후속 전환은 일반적인 반응식 9의 이차 반응 화살표의 잠재적인 다단계 성격을 예증한다. 따라서 디-tert-부틸 중탄산염으로 88의 처리는 Boc-보호된 중간물질 89를 제공한다. LiAlH489의 에스테르 모이어티의 환원은 알코올 90을 제공하고, 이는 차례로, 일반적인 중간물질 36 (여기서 X는 포르밀이다)의 다른 실례인 알데히드 91을 제공하기 위하여 MnO2로 산화된다. 91의 3,3-디브로모-1,1,1-트리플루오르-프로판-2-온, 아세트산나트륨, 그리고 수산화암모늄과의 후속 반응은 이미다졸 92를 제공한다. 수성 HCl을 이용하여 92의 Boc 기의 제거는 일반적인 아민 3의 실례인 93을 제공한다.
[반응식 19]
Figure pct00104

반응식 20에서는 고리 형성 순서에 의한 추가의 피라졸과 이속사졸 이성질체의 일반적인 제조를 예시한다. 따라서 일반적인 중간물질 36 (여기서 R4는 Boc 보호기이고, Q3은 H이고, Q2는 H이고, Q1은 N이고, X는 포르밀이다)의 대표적인 실례인 알데히드 91은 메틸 마그네슘 브롬화물로 순차적인 처리, 그 이후에 당업자에게 익숙한 표준 조건을 이용한 산화에 의해 케톤 94로 전환된다. 디메틸포름아미드의 디메틸아세탈로 94의 후속 처리는 95를 제공한다. Z3-치환된 히드라진 96으로 95의 후속 처리는 N-Boc 보호기를 보유하는 9799의 혼합물을 제공한다. 표준 산성 조건 하에 Boc 보호기의 제거는 일반적인 아민 3 (여기서 D-고리는 Z3-치환된 피라졸이다)의 실례인 98100을 제공한다. 유사한 방식에서, 히드록실아민으로 중간물질 95의 처리는 N-Boc 보호기를 보유하는 이속사졸 101103을 제공한다. 표준 산성 조건 하에 Boc 보호기의 제거는 일반적인 아민 3 (여기서 D-고리는 이속사졸이다)의 실례인 102와 104를 제공한다.
[반응식 20]
Figure pct00105

유사한 방식으로, 반응식 21에서는 R20-치환된 피라졸과 이속사졸 고리의 제조를 예시한다. 따라서 일반적인 중간물질 36 (여기서 R4는 Boc 보호기이고, Q3는 H이고, Q2는 H이고, Q1은 N이고, X는 아세틸이다)의 대표적인 실례인 케톤 94는 강한 염기 및 R20-치환된 아실화 시약, 예를 들면, 산성 할로겐화합물 또는 에스테르로 순차적인 처리에 의해 디-케톤 105로 전환된다. Z3-치환된 히드라진 96으로 105의 후속 처리는 N-Boc 보호기를 보유하는 106107의 혼합물을 제공한다. 표준 산성 조건 하에 Boc 보호기의 제거는 일반적인 아민 3 (여기서 D-고리는 R20-과 Z3-치환된 피라졸이다)의 실례인 108109를 제공한다. 유사한 방식으로, 히드록실아민으로 중간물질 105의 처리는 N-Boc 보호기를 보유하는 이속사졸 110111을 제공한다. 표준 산성 조건 하에 Boc 보호기의 제거는 일반적인 아민 3 (여기서 D-고리는 R20-치환된 이속사졸이다)의 실례인 112와 113을 제공한다.
[반응식 21]
Figure pct00106

반응식 22에서는 3의 조립의 다른 일반적인 양식을 예시하는데, 여기서 3의 에테르 산소 원자는 Q1/Q2-보유 아단위 115 상에서 히드록실 모이어티로부터 유래된다. 중간물질 114와 Q1/Q2-보유 고리 115의 결합은 선택적 가열과 함께, 염기, 예를 들면, 칼륨 tert-부톡시드, 그리고 일부 114115의 처리에 의해 달성되고 에테르 116이 형성된다. 반응식 22에서, 단일환 114의 “LG”는 친핵성 치환 반응 (추가 활성화와 함께, 또는 이러한 활성화 없이)에서 직접적으로 치환될 수 있는 모이어티, 예를 들면, 할로겐화합물, 설포네이트, 설폰, 설폭시드 또는 니트로를 표시한다. 단일환 115 또는 이중환 116의 “X” 기는 5-원 헤테로환상 모이어티의 부착을 가능하게 하는 모이어티를 표시한다. 한 측면에서, “X” 기는 아민 118을 발생시키는 미리-형성된 헤테로환상 (D-고리) 시약 (가령, 보론 산 또는 에스테르, 또는 헤테로아릴 스탄난)과의 전이-금속-매개된 결합에 참여하는 할로겐 원자를 표시한다. 다른 측면에서, “X” 기는 D-고리를 설치하기 위하여 피라졸, 이미다졸 또는 트리아졸의 질소 원자에 의해 치환될 수 있는 이탈 기를 표시한다. 다른 측면에서, X 기는 5-원 D-고리 (피라졸, 이속사졸, 트리아졸, 이미다졸)를 구성하기 위하여 통과되는 모이어티, 예를 들면, 카르복실산 또는 에스테르, 알킨, 또는 알데히드를 표시하고, 이는 5-원 고리-보유 중간물질 118로 변환될 수 있다. 니트로 에테르 116의 형성에 뒤이어, 니트로 모이어티는 아민 117을 제공하는 금속 촉매, 예를 들면, 니켈 또는 팔라듐 촉매의 존재에서 116을 당업자에게 공지된 환원 조건, 예를 들면, 철 분말, 아연 분말, 인듐 분말, 주석 염화물, 또는 수소화 반응에 종속시킴으로써 아미노 모이어티로 전환된다. 따라서 “X” 기-보유 중간물질 117의 5-원 D-고리-보유 중간물질 118로의 전환은 상기 반응식에서 기술된 방법에 의해 달성되고 일반적인 아민 3 (여기서 R4는 H이다)의 실례인 118이 제공된다. 원하는 경우에, 아민 118은 표준 조건에 의해 R4 모이어티로 알킬화되어 일반적인 아민 3이 제공될 수 있다.
[반응식 22]
Figure pct00107
반응식 22의 무제한적 실례는 일반적인 아민 118 (여기서 Q3은 N이고, Q2는 CH이고, Q1은 N이고, 그리고 D-보유 고리는 피라졸이다)의 실례인 32 (반응식 23)의 제조를 위하여 하기에 도시된다. 반응식 23에서, 상업적으로 가용한 5-브로모-2-니트로피리딘 (119)은 상승된 온도, 예를 들면, 80℃에서 2-클로로-4-히드록시피리딘 (120)과 염기, 예를 들면, 탄산세슘과 반응되어, 일반적인 중간물질 116의 실례인 니트로피리딘 121이 제공된다. 이러한 변환을 위한 가능한 조건은 80 내지 100℃의 온도에서 디메틸포름아미드이다. 염화암모늄의 존재에서 아연 분진으로 니트로피리딘 121의 후속 반응은 아미노피리딘 122를 제공한다. 앞서 기술된 조건에 의한 피라졸-4-보론 산 피나콜 에스테르 40으로 122의 후속 반응은 일반적인 아민 118의 실례인 피라졸 아민 32를 제공한다.
[반응식 23]
Figure pct00108
반응식 24에서는 먼저, 5-원 헤테로환을 Q1/Q2 고리 (35)에 부착함으로써 아민 3을 제조하는 다른 일반적인 방법을 예시한다. 반응식 9에서 기술된 바와 같이, 단일환 35의 “LG”는 친핵성 치환 반응 (추가의 활성화와 함께 또는 이러한 활성화 없이)에서 직접적으로 치환될 수 있는 모이어티를 표시한다. 단일환 35의 “X” 기는 5-원 헤테로환의 부착을 가능하게 하는 모이어티를 표시한다. 한 측면에서, “X” 기는 아민 3을 발생시키는 미리-형성된 헤테로환상 시약 (가령, 보론 산 또는 에스테르, 또는 헤테로아릴 스탄난)과의 전이-금속-매개된 결합에 참여하는 할로겐 원자를 표시한다. 다른 측면에서, 35의 “X” 기는 고리 형성 반응에 의해 5-원 헤테로환으로 전환될 수 있는 기능 기를 표시한다. 부가적으로, 35의 “X” 기는 피라졸, 트리아졸 또는 이미다졸 고리의 친핵성 질소 원자에 의해 치환될 수 있는 이탈 기 (할로겐, 설폭시드, 설폰, 설포네이트)를 표시한다. 35의 123으로의 전환후, “LG” 모이어티는 Q3-보유 고리 상에서 히드록실 기에 의해 치환되고 삼환상 에테르-아민 3이 제공될 수 있다. 당업자가 인지하는 바와 같이, 반응식 24에서 각 반응 화살표는 단일 변환 또는 일련의 변환을 나타낼 수 있다.
[반응식 24]
Figure pct00109

반응식 24의 특정한 무제한적 실례는 일반적인 아민 3 (여기서 Q3은 CH이고, Q3 고리는 플루오르로 치환되고, Q2는 N이고, Q1은 N이고, 그리고 D-보유 고리는 피라졸이다)의 실례인 아민 128의 제조에 의해 반응식 25에서 예시된다. 따라서 일반적인 중간물질 35의 실례인 상업적으로 가용한 피리미딘 124는 상업적으로 가용한 피라졸 보로네이트 40과의 팔라듐-촉매된 결합이 진행되고 일반적인 중간물질 123 (반응식 24)의 실례인 이중환 125가 제공된다. m-클로로과벤조산으로 125의 황산염 모이어티 (일반적인 중간물질 123의 “LG” 기)의 산화는 이러한 모이어티를 친핵성 치환 방향으로 더욱 활성화시키고 중간물질 126을 발생시킨다. 염기의 존재에서 페놀 127로 설폰 126의 처리는 일반적인 아민 3의 실례인 삼환상 아민 128을 제공한다. 후자 변환을 위한 가능한 염기에는 극성 비양자성 용매, 예를 들면, 디메틸포름아미드 또는 디메틸아세트아미드에서 탄산칼륨과 칼륨 tert-부톡시드가 포함된다.
[반응식 25]
Figure pct00110

일반적인 반응식 24의 추가적인 무제한적 실례는 일반적인 아민 3 (여기서 Q3은 CH이고, Q3 고리는 플루오르로 치환되고, Q2는 N이고, Q1은 N이고, 그리고 D-보유 고리는 피라졸이다)의 추가적인 실례인 131의 제조에 의해 반응식 26에서 예시된다. 따라서 일반적인 중간물질 35 (여기서 “LG”와 “X” 둘 모두 클로로이다)의 실례인 상업적으로 가용한 디클로로피리미딘 129는 상업적으로 가용한 피라졸 보로네이트 40과의 팔라듐-촉매된 결합이 진행되고 일반적인 중간물질 123 (반응식 24)의 실례인 이중환 130이 제공된다. 이후, 상승된 온도에서 염기의 존재에서 페놀 37의 첨가는 아민 131을 제공한다.
[반응식 26]
Figure pct00111

반응식 27에서는 일반적인 반응식 9의 추가적인 무제한적 실례로서 아민 134의 제조를 예시한다. 따라서 반응식 10에 직접적으로 유사하게, 2,4-디클로로피리미딘 (132)은 염기의 존재에서 페놀 37과 반응되어 일반적인 중간물질 36 (반응식 9)의 실례인 133이 제공된다. 팔라듐 촉매의 존재에서 피라졸 보로네이트 40으로 클로로피리미딘 133의 후속 반응은 일반적인 아민 3의 실례인 아민 134를 제공한다.
[반응식 27]
Figure pct00112

화학식 1의 화합물의 제조를 위한 추가의 바람직한 합성 방법은 아래의 실시예에서 확인된다.
섹션 3. 실시예
본 발명은 아래의 실시예에 의해 더욱 예시되고, 이들 실시예는 본 발명을 범위 또는 기술적 사상에서, 본 명세서에 기술된 특정한 절차에 한정하는 것으로 간주되지 않는다. 이들 실시예는 일정한 구체예를 예시하기 위하여 제공되고 이들에 의해 본 발명의 범위에 어떠한 한정도 의도되지 않는 것으로 이해될 것이다. 게다가, 본 발명의 기술적 사상 및/또는 첨부된 특허청구범위의 범위를 벗어나지 않는, 다양한 다른 구체예, 변형, 그리고 이들의 등가물은 당업자에게 명백한 것으로 이해될 것이다.
실시예 A1:
디메틸아세트아미드 (80 ㎖)에서 3-플루오르-4-아미노페놀 (8.0 g, 63.0 mmol)의 현탁액은 진공에서 탈기되고 칼륨 tert-부톡시드 (7.3 g, 65 mmol)로 처리되었다. 생성된 혼합물은 RT에서 30분 동안 교반되었다. 2,4-디클로로피리딘 (8 g, 54 mmol)이 첨가되고, 그리고 생성된 혼합물은 12시간 동안 80℃로 가열되었다. 상기 용매는 감압 하에 제거되어 잔류물이 제공되고, 이는 물과 EtOAc (3 x 100 ㎖) 간에 분할되었다. 유기층은 포화된 염수로 세척되고, 건조되고 (MgSO4), 진공에서 농축되고, 그리고 실리카 겔 칼럼 색층분석으로 정제되어 4-(2-클로로피리딘-4-일옥시)-2-플루오르벤젠아민 (11 g, 86% 수율)이 제공되었다. 1H NMR (300 MHz, DMSO-d6): δ 8.24 (d, J = 5.7 Hz, 1 H), 7.00 (dd, J = 9.0, 2.7 Hz, 1 H), 6.89-6.73 (m, 4 H), 5.21 (br s, 2 H); MS (ESI) m/z: 239.2 (M+H+).
DME (18 ㎖)/물 (6 ㎖)에서 4-(2-클로로피리딘-4-일옥시)-2-플루오르벤젠아민 (3 g, 12.6 mmol), 1-메틸-3-(4,4,5,5-테트라메틸-[1,3,2]디옥사보롤란-2-일)-1H-피라졸 (5.2 g, 25.2 mmol), 그리고 Na2CO3 (2.7 g, 25.2 mmol)의 용액은 20분 동안 질소가 살포되었다. Pd(PPh3)4 (729 mg, 0.63 mmol)가 첨가되고, 그리고 생성된 혼합물은 16시간 동안 100℃로 가열되었다. 상기 용매는 감압 하에 제거되고, 그리고 가공되지 않은 산물은 물에서 현탁되고 EtOAc로 추출되었다. 유기층은 염수로 세척되고, 건조되고 (Na2SO4), 진공에서 농축되고, 그리고 실리카 겔 색층분석을 통해 정제되어 2-플루오르-4-(2-(1-메틸-1H-피라졸-4-일)피리딘-4-일옥시)벤젠아민 (2 g, 56% 수율)이 제공되었다. 1H NMR (300 MHz, DMSO-d 6): δ 8.31 (d ,J = 5.7 Hz, 1 H), 8.21 (s, 1 H), 7.92 (s, 1 H), 7.12 (d, J = 2.4 Hz, 1 H), 6.96 (m, 1 H), 6.85-6.72 (m, 2 H), 6.56 (m, 1 H), 5.15 (s, 2 H), 3.84 (s, 3H); MS (ESI) m/z: 285.0 (M+H+).
실시예 A2:
실시예 A1에 유사한 절차를 이용하여, 2-플루오르-4-아미노페놀 (2.6 g, 24 mmol)과 2,4-디클로로피리딘 (2.88 g, 20 mol)은 결합되어 4-(2-클로로피리딘-4-일옥시)-3-플루오르아닐린 (3.2 g, 67% 수율)이 제공되었다. 1H NMR (400 MHz, DMSO-d 6): δ 8.25 (d, J = 5.6Hz, 1 H), 6.99 (m, 1 H), 6.90 (m, 2 H), 6.50 (d, J = 1.6 Hz, 1 H), 6.41 (d, J = 10.4Hz, 1 H), 5.51 (s, 2 H); MS (ESI) m/z: 239.1 (M+H+).
실시예 A1에 유사한 절차를 이용하여, 4-(2-클로로피리딘-4-일옥시)-3-플루오르아닐린 (3 g, 11.6 mmol), 1-메틸-4-(4,4,5,5-테트라메틸-1,3,2-디옥사보롤란-2-일)-1H-피라졸 (3.4 g, 16.4 mmol), Na2CO3 (2.7 g, 25.2 mmol)과 Pd(Ph3)4 (1.5 g, 0.1 eq)는 결합되어 3-플루오르-4-(2-(1-메틸-1H-피라졸-4-일)피리딘-4-일옥시)아닐린 (1.1 g, 34% 수율)이 제공되었다. 1H NMR (400 MHz, DMSO-d 6 ): δ (8.31 (d, J = 5.6 Hz, 1 H), 8.22 (s, 1 H), 7.93 (s, 1 H), 7.14 (s, 1 H), 6.98 (m, 1 H), 6.55-6.49 (m, 2 H), 6.42 (d, J = 7.2 Hz, 1 H), 5.44 (s, 2 H), 3.86 (s, 3 H); MS (ESI) m/z: (M + H +): 285.2.
실시예 A3:
1,2,3-트리플루오르-4-니트로벤젠 (30 g, 0.17 mol), 벤질 알코올 (18.4 g, 0.17 mol)과 K2CO3 (35 g, 0.25 mol)은 DMF (300 ㎖)에서 결합되고 RT에서 8시간 동안 교반되었다. 물 (300 ㎖)이 첨가되고, 그리고 생성된 혼합물은 EtOAc (3x500 ㎖)로 추출되었다. 합쳐진 유기층은 염수로 세척되고, 건조되고 (MgSO4), 진공에서 농축되고, 그리고 실리카 겔 상에서 칼럼 색층분석에 의해 정제되어 1-벤질옥시-2,3-디플루오르-4-니트로벤젠 (16 g, 36% 수율)이 제공되었다. 1H NMR (400 MHz, DMSO-d 6): δ 8.06 (m, 1 H), 7.49-7.30 (m, 6 H), 5.37 (s, 2 H).
MeOH (200 ㎖)에서 1-벤질옥시-2,3-디플루오르-4-니트로벤젠 (14 g, 52.8 mmol)의 용액은 수소 공기 (30 psi) 하에 2시간 동안 Pd/C (10%, 1.4 g, 1.3 mmol)과 함께 교반되었다. 상기 촉매는 여과에 의해 제거되고, 그리고 여과액은 진공에서 농축되어 4-아미노-2,3-디플루오르페놀 (7 g, 92% 수율)이 수득되었다. 1H NMR (400 MHz, DMSO-d 6): δ 9.05 (s, 1 H), 6.45 (t, J = 8.8 Hz, 1 H), 6.34 (t, J = 9.2 Hz, 1 H), 4.67 (s, 2 H); MS (ESI) m/z: 146.1[M+H]+.
4-아미노-2,3-디플루오르페놀 (6 g, 41.4 mmol)과 칼륨 tert-부톡시드 (4.9 g, 43.5 mmol)는 DMAc (200 ㎖)에서 현탁되고 Ar 공기 하에 RT에서 30분 동안 교반되었다. 2,4-디클로로피리딘 (6.1 g, 41.4 mmol)이 첨가되고, 그리고 생성된 혼합물은 8시간 동안 70℃로 가열되었다. 반응 혼합물은 여과되고, 진공에서 농축되고, 그리고 실리카 겔 색층분석으로 정제되어 4-(2-클로로-피리딘-4-일옥시)-2,3-디플루오르-페닐아민 (7 g, 66% 수율)을 수득하였다. 1H NMR (400 MHz, DMSO-d 6): δ 8.27 (d, J = 6.0 Hz, 1 H), 7.05 (s, 1 H), 6.95 (m, 1 H), 6.92 (m, 1 H), 6.62 (m, 1 H), 5.60 (s, 2 H); MS (ESI) m/z: 257.1[M+H]+.
DME (12 ㎖)/H2O (4 ㎖)에서 4-(2-클로로-피리딘-4-일옥시)-2,3-디플루오르-페닐아민 (2 g, 7.8 mmol), 1-메틸-4-(4,4,5,5-테트라메틸-[1,3,2]디옥사보롤란-2-일)-1H-피라졸 (1.6 g, 7.8 mmol)과 Na2CO3 (1.65 g, 15.6 mmol)의 용액은 20분 동안 질소로 발포되었다. Pd(PPh3)4 (450 mg, 0.4 mmol)가 첨가되고, 이후 생성된 혼합물은 진공에서 탈기되고, 질소로 덮어지고, 16시간 동안 70℃로 가열되었다. 반응물은 감압 하에 농축 건조되었다. 가공되지 않은 산물은 물에서 현탁되고 EtOAc (3 x 10 ㎖)로 추출되었다. 유기층은 염수로 세척되고, 건조되고 (Na2SO4), 진공에서 농축되고, 그리고 실리카 겔 색층분석으로 정제되어 2,3-디플루오르-4-[2-(1-메틸-1H-피라졸-4-일)-피리딘-4-일옥시]-페닐아민 (1.3 g, 55% 수율)이 제공되었다. 1H NMR (400 MHz, DMSO-d 6): δ 8.40 (d, J = 6.0 Hz, 1 H), 8.32 (s, 1 H), 8.02 (s, 1 H), 7.26 (s, 1 H), 6.96 (t, J = 8.8 Hz, 1 H), 6.71-6.68 (m, 2 H), 5.62 (s, 2 H), 3.92 (s, 3 H); MS (ESI) m/z: 303.2[M+H]+.
실시예 A4:
디메틸아세트아미드 (50 ㎖)에서 4-아미노-2-메틸-페놀 (4.25 g, 34.5 mmol)의 용액은 진공에서 탈기되고 아르곤으로 덮어졌다. 칼륨 tert-부톡시드 (5.0 g, 44.6 mmol)가 첨가되고, 그리고 반응 혼합물은 두 번째로 탈기되고 아르곤 하에 RT에서 30분 동안 교반되었다. 2,4-디클로로-피리딘 (4.6 g, 31.3 mmol)이 첨가되고, 그리고 생성된 혼합물은 하룻밤동안 100℃로 가열되었다. 상기 용매는 감압 하에 제거되고, 그리고 잔류물은 실리카 겔 색층분석으로 정제되어 4-(2-클로로피리딘-4-일옥시)-3-메틸벤젠아민 (4.5 g, 56% 수율)이 제공되었다. 1H NMR (400 MHz, DMSO-d 6 ): δ 8.21 (d, J = 5.2 Hz, 1 H), 6.75-6.80 (m, 3 H), 6.45-6.50 (m, 2 H), 5.15 (s, 2 H), 1.92 (s, 3 H); MS (ESI) m/z: 235.1 (M+H+).
10 ㎖의 DMF (10 ㎖)/물 (3 ㎖)에서 4-(2-클로로피리딘-4-일옥시)-3-메틸벤젠아민 (595 mg, 2.54 mmol), 1-메틸-4-(4,4,5,5-테트라메틸)-[1,3,2] 디옥사보롤란-2-일)-4H-피라졸 (790 mg, 3.80 mmol)과 Cs2CO3 (2.53 g, 7.77 mmol)의 용액은 진공 하에 탈기되고 질소로 덮어졌다. Pd(PPh3)4 (295 mg, 0.26 mmol)가 첨가되고, 그리고 반응 혼합물은 하룻밤동안 90℃로 가열되었다. 반응 혼합물은 EtOAc (30 ㎖)로 희석되고 물 (2 x 10 ㎖)과 염수 (2 x 10 ㎖)로 세척되었다. 수성 부분은 EtOAc (2 x 15 ㎖)로 추출되고, 그리고 합쳐진 유기물은 염수 (10 ㎖)로 세척되고, 진공에서 농축되고, 그리고 실리카 겔에서 정제되어 3-메틸-4-(2-(1-메틸-1H-피라졸-4-일)피리딘-4-일옥시)벤젠아민이 연한 황색 거품 (627 mg, 88% 수율)으로서 제공되었다. 1H NMR (400 MHz, DMSO-d 6 ): δ 8.27 (d, J = 6.0 Hz, 1 H), 8.18 (s, 1 H), 7.90 (d, J = 0.7 Hz, 1 H), 7.07 (d, J = 2.2 Hz, 1 H), 6.74 (d, J = 8.6 Hz, 1 H), 6.49 (d, J = 2.5 Hz, 1 H), 6.46-6.40 (m, 2 H), 5.02 (s, 2 H), 3.84 (s, 3 H), 1.94 (s, 3 H); MS (ESI) m/z: 281.2 (M+H+).
실시예 A5:
KOtBu (1.016 g, 9.05 mmol)가 RT에서, DMF (35 ㎖)에서 4-아미노-2-클로로페놀 (1.00 g, 6.97 mmol)의 용액에 첨가되고, 그리고 생성된 혼합물은 45분 동안 교반되었다. 이후, 2,4-디클로로피리딘 (1.340 g, 9.05 mmol)이 첨가되고, 그리고 반응물은 90℃에서 가열과 함께, 하룻밤동안 교반되었다. 반응물은 RT로 냉각되고 H2O와 EtOAc로 온화하게 희석되었다. 층은 분리되었다. 수성 층은 EtOAc (3x)로 추출되었다. 합쳐진 유기물은 H2O (1x)와 염수 (2x)로 세척되고, 건조되고 (MgSO4), 진공에서 농축되고, 그리고 실리카 겔 색층분석 (EtOAc/헥산)으로 정제되어 3-클로로-4-(2-클로로피리딘-4-일옥시)벤젠아민 (0.89 g, 50% 수율)이 납빛 황색 고체로서 수득되었다. 1H NMR (400 MHz, DMSO-d 6 ): δ 8.24 (d, J = 5.7 Hz, 1 H), 7.02 (d, J = 8.7 Hz, 1 H), 6.87-6.82 (m, 2 H), 6.73-6.72 (m, 1 H), 6.58-6.56 (m, 1 H), 5.50 (br s, 2 H); MS (ESI) m/z: 254.9 (M+H+); 256.9 (M+2+H+).
3-클로로-4-(2-클로로피리딘-4-일옥시)벤젠아민 (0.89 g, 3.49 mmol), 1-메틸-4-(4,4,5,5-테트라메틸-1,3,2-디옥사보롤란-2-일)-피라졸 (0.871 g, 4.19 mmol)과 K2CO3 (1.302 g, 9.42 mmol)은 DME (6 ㎖)/H2O (7.5 ㎖)에서 결합되고, 그리고 헤드스페이스는 10분 동안 Ar로 씻어 내려졌다. 이후, Pd(Ph3P)4 (0.202 g, 0.174 mmol)가 첨가되고, 그리고 이중상 반응물은 90℃에서 가열과 함께 하룻밤동안 교반되었다. 반응물은 RT로 냉각되고 불용성 물질을 제거하기 위하여 여과되었다. 여과액은 THF로 희석되고 염수 (3x)로 세척되었다. 합쳐진 수성 상은 THF (2x)로 추출되었다. 합쳐진 유기물은 염수 (1x)로 세척되고, 건조되고 (MgSO4), 진공에서 농축되고, 그리고 실리카 겔 색층분석 (MeOH/CHCl3)으로 정제되어 3-클로로-4-(2-(1-메틸-1H-피라졸-4-일)피리딘-4-일옥시)벤젠아민 (1.10 g, 83% 수율)이 수득되었다. 1H NMR (400 MHz, DMSO-d 6 ): δ 8.30-8.29 (m, 1 H), 8.22 (s, 1 H), 7.92 (s, 1 H), 7.12 (m, 1 H), 7.00-6.98 (m, 1 H), 6.72 (br s, 1 H), 6.58-6.54 (m, 1 H), 6.47-6.44 (m, 1 H), 5.44 (s, 2 H), 3.84 (s, 3 H); MS (ESI) m/z: 301.1 (M+H+): 303.0 (M+2+H+).
실시예 A6:
톨루엔/에탄올/물 (4:4:1, 50 ㎖)로 구성되는 용매에서 4-(2-클로로피리딘-4-일옥시)-3-플루오르아닐린 (3.0 g, 12.6 mmol, 실시예 A2로부터)의 용액에 4-(4,4,5,5-테트라메틸-[1,3,2]디옥사보롤란-2-일)-1H-피라졸 (3.17 g, 16.4 mmol), 탄산나트륨 (4.01 g, 37.8 mmol)과 테트라키스(트리페닐포스핀)팔라듐 (0.73 g, 0.63 mmol)이 첨가되었다. 헤드스페이스는 배출되고 질소 (3x)로 역-여과되고, 이후 반응 혼합물은 하룻밤동안 100℃로 가열되었다. 반응물은 감압 하에 농축되고, 그리고 잔류물은 실리카 겔 칼럼 색층분석 (에틸 아세테이트/석유 에테르)으로 정제되어 4-(2-(1H-피라졸-4-일)피리딘-4-일옥시)-3-플루오르아닐린 (2.66 g, 78% 수율)이 제공되었다. 1H NMR (400 MHz, DMSO-d 6): δ 13.03 (brs, 1 H), 8.28-8.31 (m, 2 H), 7.99 (s, 1 H), 7.24 (s, 1 H), 6.95-7.00 (m, 1 H), 6.39-6.50 (m, 3 H), 5.43 (brs, 2 H); MS (ESI): m/z 271.1 [M+H]+.
실시예 A7:
H2SO4 (100 ㎖)에서 1,3-디플루오르-2-메틸-벤젠 (15 g, 0.12 mol)의 용액은 -10℃에서 65% HNO3 (11.4 g, 0.12 mol)으로 방울방울 처리되고, 그리고 생성된 혼합물은 대략 30분 동안 교반되었다. 상기 혼합물은 얼음-물에 부어지고 에틸 아세테이트 (3 x 200 ㎖)로 추출되었다. 합쳐진 유기층은 염수로 세척되고, 건조되고 (Na2SO4), 그리고 진공에서 농축되어 1,3-디플루오르-2-메틸-4-니트로-벤젠 (16 g, 78% 수율)이 제공되었다. 1H NMR (400MHz, CDCl3): δ 7.80 (m, 1 H), 6.95 (m, 1 H), 2.30 (s, 3 H).
1,3-디플루오르-2-메틸-4-니트로-벤젠 (16 g, 0.092 mol), 벤질 알코올 (10 g, 0.092 mol)과 K2CO3 (25.3 g, 0.18 mol)은 DMF (300 ㎖)에서 결합되고 하룻밤동안 100℃로 가열되었다. 생성된 혼합물은 물에 부어지고 에틸 아세테이트 (3 x 200 ㎖)로 추출되었다. 합쳐진 유기층은 염수로 세척되고, 건조되고 (Na2SO4), 진공에서 농축되고, 그리고 실리카 겔 색층분석으로 정제되어 1-벤질옥시-3-플루오르-2-메틸-4-니트로-벤젠 (8 g, 33% 수율)이 제공되었다. 1H NMR (400MHz, DMSO-d 6 ): δ 8.04 (t, J = 8.8 Hz, 1 H), 7.30-7.46 (m, 5 H), 7.08 (d, J = 9.2 Hz, 1 H), 5.28 (s, 2 H), 2.13 (s, 3 H).
실시예 A3에 유사한 절차를 이용하여, 1-벤질옥시-3-플루오르-2-메틸-4-니트로-벤젠 (8 g, 0.031 mol)은 수소화되어 4-아미노-3-플루오르-2-메틸-페놀 (4.2 g, 96% 수율)이 제공되었다. 1H NMR (300MHz, DMSO-d 6 ): δ 8.61 (s, 1 H), 6.36 (m, 2 H), 4.28 (s, 2 H), 1.96 (s, 3 H); MS (ESI) m/z: 142.1 [M+H]+.
칼륨 tert-부톡시드 (3.5 g, 31 mmol)가 디메틸아세트아미드에서 4-아미노-3-플루오르-2-메틸-페놀 (4.2 g, 30 mmol)의 용액에 첨가되었다. 생성된 혼합물은 RT에서 30분 동안 교반되었다. 디메틸아세트아미드에서 2,4-디클로로피리딘 (4.38 g, 30 mmol)의 용액이 첨가되고, 그리고 생성된 혼합물은 100℃에서 하룻밤동안 가열되었다. 반응 혼합물은 진공에서 농축되고, 그리고 잔류물은 에틸 아세테이트 (200 ㎖)에 용해되고 실리카 겔을 통해 여과되었다. 필터 덩어리는 에틸 아세테이트로 세척되고, 그리고 합쳐진 여과액은 진공에서 농축되고 실리카 겔 색층분석으로 정제되어 4-(2-클로로-피리딘-4-일옥시)-2-플루오르-3-메틸-페닐아민 (3.2 g, 42% 수율)이 제공되었다. 1H NMR (400MHz, DMSO-d 6 ): δ 8.21 (d, J = 6.4 Hz, 1 H), 6.84 (d, J = 2.0 Hz, 1 H), 6.81 (dd, J = 5.6, 2.4 Hz, 1 H), 6.67-6.65 (m, 2 H), 5.13 (s, 2 H), 1.91 (s, 3 H); MS (ESI): m/z 253.2 [M+H]+.
실시예 A1에 유사한 절차를 이용하여, 4-(2-클로로-피리딘-4-일옥시)-2-플루오르-3-메틸-페닐아민 (1.0 g, 3.3 mmol), 1-메틸-4-(4,4,5,5-테트라메틸-[1,3,2]디옥사보롤란-2-일)-1H-피라졸 (1 g, 4.8 mmol), Na2CO3 (0.84 g, 6.6 mmol)과 Pd(PPh3)4 (0.25 g, 0.2 mmol)는 결합되어 2-플루오르-3-메틸-4-[2-(1-메틸-1H-피라졸-4-일)-피리딘-4-일옥시]-페닐아민 (0.74 g, 75% 수율)이 제공되었다. 1H NMR (400 MHz, DMSO-d 6 ): δ 8.27 (d, J = 6.4 Hz, 1 H), 8.18 (s, 1 H), 7.90 (s, 1 H), 7.07 (s, 1 H), 6.68-6.61 (m, 2 H), 6.45 (dd, J = 5.6, 2.4 Hz, 1 H), 5.06 (s, 2 H), 3.82 (s, 3 H), 1.95 (s, 3H); MS (ESI) m/z: 299.2 [M+H]+.
실시예 A8:
SOCl2 (300 ㎖, 4.0 mol)에서 NaBr (4.2 g, 0.04 mol)의 교반된 용액에 피리딘-2-카르복실산 (101 g, 0.81 mol)이 분할량으로 첨가되고, 그리고 생성된 혼합물은 하룻밤동안 환류로 가열되었다. 반응 혼합물은 상기 용매를 제거하기 위하여 농축되어 가공되지 않은 4-클로로-피리딘-2-카르보닐 염화물 (101 g)이 제공되고, 이는 추후 정제 없이 다음 단계 반응에 이용되었다.
DCM (750 ㎖)에서 4-클로로-피리딘-2-카르보닐 염화물 (150 g, 0.857 mol)의 용액은 DCM (750 ㎖)과 피리딘 (750 ㎖)에서 2-메틸-프로판-2-올 (158.8 g, 2.14 mol)과 DMAP (21 g, 0.171 mol)의 용액에 천천히 첨가되었다. 생성된 혼합물은 30℃에서 하룻밤동안 교반되었다. 반응 혼합물은 진공에서 농축되고, 그리고 잔류물은 색층분석으로 정제되어 4-클로로-피리딘-2-카르복실산 t-부틸 에스테르 (90 g, 49% 수율)가 황색 고체로서 수득되었다. 1H NMR (CDCl3): δ 8.63 (d, J = 8.0 Hz, 1 H), 8.03 (s, 1 H), 7.44 (d, J = 8.0 Hz 1 H), 1.63 (s, 9 H); MS (ESI) m/z: 214 (M+H+).
건성 DMF (50 ㎖)에서 4-아미노페놀 (2.6 g, 24 mmol)과 NaH (1.1 g, 28 mmol)의 혼합물은 RT에서 30분 동안 교반되었다. 4-클로로-피리딘-2-카르복실산 t-부틸 에스테르 (5.0 g, 24 mmol)가 첨가되고, 그리고 생성된 혼합물은 밀봉된 튜브 내에서 80℃에서 12시간 동안 교반되었다. 반응 혼합물은 진공에서 농축되고 실리카 겔에서 정제되어 5-(4-아미노-페녹시)-피리딘-2-카르복실산 t-부틸 에스테르가 황색 고체 (2.4 g, 35% 수율)로서 제공되었다. 1H NMR (300 MHz, DMSO-d6): δ 8.48 (d, J = 5.7 Hz, 1 H), 7.33 (d, J = 1.8 Hz, 1 H), 7.03 (m, 1 H), 6.84 (d, J = 8.4 Hz, 1 H), 6.62 (d, J = 8.4 Hz, 1 H), 5.18 (s, 2 H), 1.50 (s, 9 H); MS (ESI) m/z: 287.2 (M+H+).
THF (10 ㎖)에서 5-(4-아미노-페녹시)-피리딘-2-카르복실산 t-부틸 에스테르 (1.0 g, 3.5 mmol)의 용액에 수성 NaOH (1 M, 7 ㎖, 7 mol), 그 이후에 (Boc)2O (0.76 g, 3.5 mmol)가 첨가되었다. 생성된 혼합물은 2시간 동안 환류로 가열되었다. 반응 혼합물은 농축되고, 잔류물은 물 (20 ㎖)로 희석되고 디클로로메탄 (3 x 100 ㎖)으로 추출되었다. 합쳐진 유기층은 염수로 세척되고, 건조되고 (Na2SO4), 농축되고, 그리고 색층분석을 통해 정제되어 5-(4-t-부톡시카르보닐아미노-페녹시)-피리딘-2-카르복실산 t-부틸 에스테르 (1.2 g, 89% 수율)가 제공되었다. MS (ESI) m/z: (M+H+) 387.3.
THF (2.0 ㎖)에서 5-(4-t-부톡시카르보닐아미노-페녹시)-피리딘-2-카르복실산 t-부틸 에스테르 (0.5 g, 1.3 mmol)의 용액은 건성 THF (5.0 ㎖)에서 LiAlH4 (0.1 g, 2.6 mmol)의 0℃ 현탁액에 방울방울 첨가되었다. 반응물은 0℃에서 2시간 동안 교반되고 10% 수성 NaOH (1.0 ㎖)로 진정되었다. 생성된 혼합물은 여과되고, 그리고 여과액은 진공에서 농축되어 [4-(6-히드록시메틸-피리딘-3-일옥시)-페닐]-카르밤산 t-부틸 에스테르 (0.38 g, 92% 수율)가 제공되었다. MS (ESI) m/z: (M+H+) 317.2.
DCM (3.0 ㎖)에서 [4-(6-히드록시메틸-피리딘-3-일옥시)-페닐]-카르밤산 t-부틸 에스테르 (0.25 g, 0.8 mmol)의 용액은 활성화된 MnO2 (0.42 g, 4.8 mmol)로 처리되고, 그리고 현탁액은 RT에서 2시간 동안 교반되었다. 반응 현탁액은 여과되고, 그리고 여과액은 진공에서 농축되어 [4-(6-포르밀-피리딘-3-일옥시)-페닐]-카르밤산 t-부틸 에스테르 (0.24 g, 95% 수율)가 제공되었다. MS (ESI) m/z: 315.0 (M+H+).
물 (1.5 ㎖)에서 NaOAc (0.6 g, 7.4 mmol)의 용액은 3,3-디브로모-1,1,1-트리플루오르-프로판-2-온 (2.2 g, 8.3 mmol)으로 처리되고, 그리고 생성된 혼합물은 30분 동안 환류로 가열되었다. 냉각후, 생성된 용액은 수산화암모늄 (30%, 23 ㎖)에서 [4-(6-포르밀-피리딘-3-일옥시)-페닐]-카르밤산 t-부틸 에스테르 (2.3 g, 7.4 mmol)에 첨가되었다. 반응 혼합물은 RT에서 5시간 동안 교반되고, 진공에서 농축되고, 그리고 색층분석을 통해 정제되어 {4-[3-(4-트리플루오르메틸-1H-이미다졸-2-일)-페녹시]-페닐}-카르밤산 t-부틸 에스테르 (2.1 g, 67% 수율)가 제공되었다. MS (ESI) m/z: (M+H+) 421.1.
이소프로판올 (20 ㎖)에서 {4-[3-(4-트리플루오르메틸-1H-이미다졸-2-일)-페녹시]-페닐}-카르밤산 t-부틸 에스테르 (2.1 g, 2.2 mmol)와 수성 HCl (1M, 30 ㎖)의 혼합물은 90℃에서 2시간 동안 교반되었다. RT로 냉각후, 반응 혼합물은 농축되고, 그리고 잔류물은 물과 디클로로메탄으로 분할되었다. 유기층은 염수로 세척되고, 건조되고 (Na2SO4), 그리고 농축되어 HCl 염이 산출되고, 이는 더욱 중화되어 4-(2-(4-(트리플루오르메틸)-1H-이미다졸-2-일)피리딘-4-일옥시)벤젠아민 (600 mg, 85% 수율)이 제공되었다. 1H NMR (400 MHz, CDCl3): δ 13.48 (br s, 1 H), 8.46 (d, J = 5.6 Hz, 1 H), 7.81 (s, 1 H), 7.34 (m, 1 H), 6.97 (m, 1 H), 6.86 (d, J = 8.8 Hz, 2 H), 6.66 (d, J = 8.8 Hz, 2 H), 5.15 (s, 2 H); MS (ESI) m/z: 320 (M+H+). MS (ESI) m/z: (M+H+) 321.2.
실시예 A9:
무기 오일에서 60% NaH (0.119 g, 2.97 mmol)에, 아르곤의 공기 하에 무수성 DMF (3 ㎖)가 첨가되고, 그리고 슬러리는 얼음 중탕에서 냉각되었다. 생성된 현탁액에 DMF (2 ㎖)에서 2-클로로피리딘-4-올 (0.35 g, 2.70 mmol)의 용액이 분할량으로 첨가되었다. 반응 혼합물은 5분 동안 차갑게 교반되고, 이후 RT로 가온되고 20분 동안 교반되었다. 1,5-디플루오르-2-메틸-4-니트로벤젠 (0.514 g, 2.97 mmol)이 첨가되고, 그리고 반응 혼합물은 90℃에서 3시간 동안 가열되고, RT로 냉각되고, 물로 진정되고, 그리고 생성된 혼합물은 EtOAc (3x)로 추출되었다. 합쳐진 유기 상은 염수로 세척되고, 건조되고 (Na2SO4), 진공에서 농축되고, 그리고 실리카 겔 칼럼 색층분석 (EtOAc/헥산)으로 정제되어 2-클로로-4-(5-플루오르-2-메틸-4-니트로페녹시)피리딘 (0.48g, 63% 수율)이 수득되었다. MS (ESI) m/z: 283.0 (M+H+).
에탄올 (20 ㎖)에서 2-클로로-4-(5-플루오르-2-메틸-4-니트로페녹시)피리딘 (0.48 g, 1.698 mmol)의 용액에 Raney Ni (0.4 g)가 첨가되었다. 생성된 혼합물은 수소 공기 (1 atm) 하에 RT에서 하룻밤동안 교반되었다. 반응 혼합물은 Celite® 패드를 통해 여과되고, 그리고 여과액은 농축되어 가공되지 않은 4-(2-클로로피리딘-4-일옥시)-2-플루오르-5-메틸벤젠아민 (100% 수율 추정)이 수득되었다.
DMF (20 ㎖)에서 4-(2-클로로피리딘-4-일옥시)-2-플루오르-5-메틸벤젠아민 (0.43 g, 1.702 mmol)과 1-메틸-4-(4,4,5,5-테트라메틸-1,3,2-디옥사보롤란-2-일)-1H-피라졸 (0.389 g, 1.872 mmol)의 용액에 테트라키스(트리페닐포스핀)팔라듐 (0.197 g, 0.170 mmol) 및 인산칼륨 (1.084 g, 5.11 mmol)의 수성 용액이 첨가되었다. 반응 혼합물은 N2로 씻어 내려지고, 이후 90℃에서 하룻밤동안 가열되었다. 물이 첨가되고, 그리고 생성된 용액은 EtOAc (3x)로 추출되었다. 합쳐진 유기 상은 염수로 세척되고, 건조되고 (Na2SO4), 진공에서 농축되고, 그리고 실리카 겔 칼럼 색층분석 (EtOAc/헥산)으로 정제되어 5-플루오르-2-메틸-4-(2-(1-메틸-1H-피라졸-4-일)피리딘-4-일옥시)벤젠아민 (0.13g, 25.6% 수율)이 수득되었다. 1H NMR (400 MHz, DMSO-d 6): δ 8.29 (m, 1H), 8.21 (s, 1H), 7.92 (s, 2H), 7.09 (m, 1H), 6.87 (m, 1H), 6.69 (m, 1H), 6.46 (m, 1H), 5.10 (s, 2H), 3.84 (s, 3H), 1.93 (s, 3H); MS (ESI) m/z: 299.1 (M+H+).
실시예 A10:
탄산칼륨 (7.8 g, 56.4 mmol)이 N,N-디메틸포름아미드 (70 ㎖)에서 1,2,3-트리플루오르-5-니트로벤젠 (5 g, 28.2 mmol)과 벤질 알코올 (3.2 g, 29.6 mmol)의 용액에 첨가되었다. 생성된 혼합물은 RT에서 하룻밤동안 교반되었다. 반응 혼합물은 감압 하에 농축되고, 그리고 잔류물은 에틸 아세테이트와 물 간에 분할되었다. 유기층은 분리되고, 염수로 세척되고, 건조되고 (Na2SO4), 감압 하에 농축되고, 그리고 칼럼 색층분석으로 정제되어 2-(벤질옥시)-1,3-디플루오르-5-니트로벤젠 (5.3 g, 71% 수율)이 제공되었다. 1H NMR (400MHz, DMSO-d 6 ): δ 8.15 (d, J = 8.4 Hz, 2 H), 7.46-7.37 (m, 5 H), 5.39 (s, 2 H).
에탄올 (100 ㎖)에서 2-(벤질옥시)-1,3-디플루오르-5-니트로벤젠 (5.3 g, 20 mol)의 용액에 활성화 탄소 상에서 10% 팔라듐 (1.5 g)이 첨가되었다. 생성된 혼합물은 RT에서 하룻밤동안 수소화되었다 (1 atm). 반응 혼합물은 여과되고, 그리고 여과액은 감압 하에 농축되어 4-아미노-2,6-디플루오르페놀 (2.9 g, 95% 수율)이 제공되었다. 1H NMR (400MHz, DMSO-d 6 ): δ 8.68 (brs, 1 H), 6.19 (d, J = 10.8 Hz, 2 H), 5.01 (s, 2 H).
칼륨 tert-부톡시드 (2.4 g, 22 mmol)가 N,N-디메틸-아세트아미드 (50 ㎖)에서 4-아미노-2,6-디플루오르페놀 (2.9 g, 20 mmol)의 용액에 첨가되고, 그리고 생성된 혼합물은 질소 하에 0.5시간 동안 RT에서 교반되었다. N,N-디메틸-아세트아미드에서 2,4-디클로로-피리딘 (2.9 g, 20 mmol)의 용액이 첨가되고, 그리고 반응물은 질소 하에 10시간 동안 100℃로 가열되었다. RT로 냉각후, 반응물은 물 (100 ㎖)에 부어지고, 그리고 수성 용액은 에틸 아세테이트 (3 x 70 ㎖)로 추출되었다. 합쳐진 유기물은 염수로 세척되고, 건조되고 (Na2SO4), 진공에서 농축되고, 그리고 실리카 겔 색층분석으로 정제되어 4-(2-클로로피리딘-4-일옥시)-3,5-디플루오르아닐린 (3.0 g, 59% 수율)이 제공되었다. 1H NMR (300 MHz, DMSO-d 6 ): δ 8.31 (d, J = 5.7 Hz, 1 H), 7.10 (d, J = 2.1 Hz, 1 H), 7.01 (dd, J = 5.7 Hz, 2.1 Hz, 1 H), 6.38 (d, J = 10.8 Hz, 2 H), 5.86 (s, 2 H).
N,N-디메틸-포름아미드와 물 (v/v=3:1, 80 ㎖)의 혼합물에서 4-(2-클로로피리딘-4-일옥시)-3,5-디플루오르아닐린 (3.0 g, 11.7 mmol)의 용액에 1-메틸-4-(4,4,5,5-테트라메틸-[1,3,2]디옥사보롤란-2-일)-1H-피라졸 (3.6 g, 17.5 mmol), 인산칼륨 (4.9 g, 23.4 mmol)과 테트라키스(트리페닐포스핀) 팔라듐 (0.7 g, 0.6 mmol)이 첨가되었다. 생성된 혼합물은 충분하게 탈기되고, 100℃로 가열되고, 그리고 질소 하에 하룻밤동안 교반되었다. 상기 용매는 감압 하에 제거되고, 그리고 잔류물은 실리카 겔 색층분석으로 정제되어 3,5-디플루오르-4-(2-(1-메틸-1H-피라졸-4-일)피리딘-4-일옥시)아닐린 (2.6 g, 74% 수율)이 제공되었다. 1H NMR (400 MHz, DMSO-d 6 ): δ 8.36 (d, J = 5.6 Hz, 1 H), 8.28 (s, 1 H), 7.98 (s, 1 H), 7.24 (d, J = 2.4 Hz, 1 H), 6.64 (dd, J = 5.6 Hz, J = 2.4 Hz, 1 H), 6.37 (d, J = 10.8 Hz, 2 H), 5.81 (s, 2 H), 3.87 (s, 3 H); MS (ESI): m/z 303.1 [M+H]+.
실시예 A11:
4-플루오르-2-메틸-페놀 (25 g, 0.2 mol)이 물 (160 ㎖)에서 수산화나트륨 (9.7 g, 0.24 mol)의 용액에 첨가되고, 그리고 생성된 용액은 0℃로 냉각되었다. 메틸 클로로포름산염 (24.2 g, 0.26 mol)이 0℃에서 방울방울 첨가되었다. 반응의 완결에서, pH가 포화된 수성 Na2CO3으로 pH 8로 조정되고, 이후 생성된 혼합물은 에틸 아세테이트 (3 x 300 ㎖)로 추출되었다. 합쳐진 유기 추출물은 물과 염수로 세척되고, 건조되고 (MgSO4), 그리고 감압 하에 농축되어 탄산 4-플루오르-2-메틸-페닐 에스테르 메틸 에스테르 (30 g, 82% 수율)가 제공되었다. 1H NMR (300 MHz, DMSO-d 6 ): δ 7.22-7.13 (m, 2 H), 7.05 (m, 1 H), 3.81 (s, 3 H), 2.12 (s, 3 H).
conc. 황산 (100 ㎖)에서 탄산 4-플루오르-2-메틸-페닐 에스테르 메틸 에스테르 (15 g, 81.5 mmol)의 용액에 0℃에서, 여러 분할량으로 분말 KNO3 (8.3 g, 82.2 mmol)이 첨가되었다. 반응 혼합물은 0℃에서 1시간 동안 교반되고, 이후 얼음 물에 부어지고 에틸 아세테이트 (3 x 100 ㎖)로 추출되었다. 추출물은 물과 염수로 세척되고, 건조되고 (MgSO4), 진공에서 농축되고, 그리고 실리카 겔 색층분석으로 정제되어 탄산 4-플루오르-2-메틸-5-니트로-페닐 에스테르 메틸 에스테르 (2.0 g, 11% 수율)가 제공되었다. 1H NMR (300 MHz, DMSO-d 6 ): δ 8.14 (d, J = 6.9, 1 H), 7.60 (d, J = 12.0 Hz, 1 H), 3.86 (s, 3 H), 2.25 (s, 3 H).
수성 수산화나트륨 (1.2 N, 20 ㎖, 24 mmol)의 용액에 4-플루오르-2-메틸-5-니트로-페닐 에스테르 메틸 에스테르 (2.0 g, 8.7 mmol)가 첨가되고, 그리고 생성된 혼합물은 2시간 동안 환류되었다. 반응물은 RT로 냉각되고 EtOAc와 물 간에 분할되었다. 유기층은 물과 염수로 세척되고, 건조되고 (MgSO4), 그리고 진공에서 농축되어 4-플루오르-2-메틸-5-니트로-페놀 (1.4 g, 93% 수율)이 제공되었다. 1H NMR (300 MHz, DMSO-d 6 ) δ10.33 (s, 1 H), 7.45 (d, J = 6.6, 1 H), 7.32 (d, J = 12.3 Hz, 1 H), 2.19 (s, 3 H).
MeOH (80 ㎖)에서 4-플루오르-2-메틸-5-니트로-페놀 (1.4 g, 8.2 mmol)과 10% Pd/C (0.3 g, 20%/w)의 혼합물은 H2 (30 psi) 하에 2시간 동안 교반되었다. Pd/C는 여과에 의해 제거되고, 그리고 여과액은 농축되어 5-아미노-4-플루오르-2-메틸-페놀 (0.68 g, 62% 수율)이 제공되었다. 1H NMR (300 MHz, DMSO-d 6 ) δ 8.75 (s, 1 H), 6.62 (d, J = 12.0 Hz, 1 H), 6.21 (d, J = 8.1 Hz, 1 H), 4.69 (s, 2 H), 1.93 (s, 3 H).
실시예 A16 (1 g, 4.2 mmol)으로부터 2-메탄설포닐-4-(1-메틸-1H-피라졸-4-일)-피리미딘과 2-메탄설피닐-4-(1-메틸-1H-피라졸-4-일)-피리미딘의 혼합물, 5-아미노-4-플루오르-2-메틸페놀 (1.2 g, 8.5 mmol)과 K2CO3 (1.2 g, 8.6 mmol)은 실시예 A10에 유사한 절차를 이용하여, DMF (10 ㎖)에서 결합되어 2-플루오르-4-메틸-5-(4-(1-메틸-1H-피라졸-4-일)피리미딘-2-일옥시)벤젠아민 (420 mg)이 제공된다. 1H NMR (400 MHz, DMSO-d 6 ): δ 8.42 (d, J = 5.2 Hz, 1 H), 8.39 (s, 1 H), 8.07 (s, 1 H), 7.40 (d, J = 5.2 Hz, 1 H), 6.90 (d, J = 9.6 Hz, 1 H), 6.47 (d, J = 8.4 Hz, 1 H), 5.02 (br s, 2 H), 3.88 (s, 3 H), 1.88 (s, 3 H); MS (ESI) m/z: 300.2 (M+H+).
실시예 A12:
무수성 N,N-디메틸포름아미드 (150 ㎖)가 아르곤의 공기 하에 무기 오일에서 60% NaH (2.72 g, 67.9 mmol)에 첨가되었다. 생성된 혼합물은 얼음 중탕에서 냉각되고 교반되었다. 생성된 현탁액에 DMF (30.0 ㎖)에서 2-클로로피리딘-4-올 (8 g, 61.8 mmol)의 용액이 분할량으로 첨가되었다. 반응 혼합물은 5분 동안 차갑게 교반되고, 그리고 냉각 중탕은 제거되었다. 반응 혼합물은 RT로 가온되고 20분 동안 교반되었다. 1,2,4-트리플루오르-5-니트로벤젠 (13.12 g, 74.1 mmol)이 첨가되고, 그리고 반응 혼합물은 90℃에서 3시간 동안 가열되었다. 반응 혼합물은 RT로 냉각되었다. 상기 혼합물은 농축 건조되었다. EtOH (50 ㎖)와 MeOH (20 ㎖)가 첨가되고, 그리고 생성된 시료는 온화한 가온과 함께 교반되고, 이후 RT로 냉각되었다. 황색 고체는 여과로 회수되고, 그리고 EtOH (50 ㎖)와 헥산 (20 ㎖)으로 헹굼되었다. 생성된 고체는 진공 하에 하룻밤동안 건조되어 2-클로로-4-(2,5-디플루오르-4-니트로페녹시)피리딘이 황색 고체 (11.68 g, 63% 수율)로서 제공되었다. 1H NMR (400 MHz, DMSO-d 6 ): δ 8.48 (dd, J = 10.2, 7.0 Hz, 1 H), 8.41 (d, J = 5.6 Hz, 1 H), 7.90 (dd, J = 11.6, 6.7 Hz, 1 H), 7.41 (d, J = 2.1 Hz, 1 H), 7.26 (dd, J = 5.6, 2.4 Hz, 1 H); MS (ESI): m/z 287.0 [M+H]+
Parr 교반기 플라스크에서 아르곤 하에, 2-클로로-4-(2,5-디플루오르-4-니트로페녹시)피리딘 (11.68 g, 40.8 mmol)과 MeOH (200 ㎖)가 결합되었다. Raney Ni (50% 습성, 0.955 g, 8.15 mmol)가 첨가되었다. 아르곤 공기는 제거되고 수소 (10-20 psi)로 대체되고, 그리고 반응 혼합물은 수소 하에 4시간 동안 교반되었다. 완결된 반응 혼합물은 Celite® 패드를 통해 여과되고, 그리고 여과액은 농축 건조되어 4-(2-클로로피리딘-4-일옥시)-2,5-디플루오르아닐린 (8.2 g, 72% 수율)이 제공되었다. 1H NMR (400 MHz, DMSO-d 6 ): δ 8.28 (d, J = 5.9 Hz, 1 H), 7.25 (dd, J = 11.2, 7.5 Hz, 1 H), 7.02 (dd, J = 2.2 Hz, 1 H), 6.95 (dd, J = 5.8, 2.0 Hz, 1 H), 6.74 (dd, J = 12.3, 8.3 Hz, 1 H), 5.57 (s, 2 H); MS (ESI): m/z 257.0 [M+H]+
N,N-디메틸포름아미드 (30 ㎖)에서 4-(2-클로로피리딘-4-일옥시)-2,5-디플루오르아닐린 (450 mg, 1.76 mmol)과 1-메틸-4-(4,4,5,5-테트라메틸-1,3,2-디옥사보롤란-2-일)-1H-피라졸 (400 mg, 1.9 mmol)의 용액에 테트라키스(트리페닐포스핀)팔라듐 (105 mg, 0.09 mmol)과 인산칼륨 (2 M, 1.8 ㎖)의 수성 용액이 첨가되었다. 생성된 혼합물은 10분 동안 질소로 씻어 내려지고, 이후 90℃에서 가열과 함께 질소 하에 하룻밤동안 교반되었다. RT로 냉각후, 반응 혼합물은 물과 에틸 아세테이트 간에 분할되었다. 수성 층은 에틸 아세테이트 (50 ㎖ x 3)로 추출되었다. 합쳐진 유기층은 염수로 세척되고, 건조되고 (Na2SO4), 감압 하에 농축되고, 그리고 실리카 겔 상에서 칼럼 색층분석에 의해 정제되어 2,5-디플루오르-4-(2-(1-메틸-1H-피라졸-4-일)피리딘-4-일옥시)아닐린 (335 mg, 63% 수율)이 제공되었다. 1H NMR (300 MHz, DMSO-d 6 ): δ 8.35 (d, J = 5.7 Hz, 1 H), 8.27 (s, 1 H), 7.98 (s, 1 H), 7.24-7.18 (m, 2 H), 6.75 (dd, J = 1 2.3, 8.1 Hz, 1 H), 6.62 (dd, J = 5.4, 2.1 Hz, 1 H), 5.53 (br s, 2 H), 3.87 (s, 3 H); MS (ESI): m/z 303.1 [M+1]+.
실시예 A13:
5-브로모-2-니트로피리딘 (1 g, 4.93 mmol)이 DMF (32 ㎖)에 용해되고 0℃로 냉각되었다. 탄산세슘 (2.408 g, 7.39 mmol), 그 이후에 2-클로로-4-히드록시피리딘 (0.702 g, 5.42 mmol)이 첨가되었다. 생성된 혼합물은 80℃ 오일 중탕에서 24시간 동안 교반되었다. 반응 혼합물은 RT로 냉각되고, 에틸 아세테이트 (150 ㎖)로 희석되고, 물 (2x100 ㎖)과 염수 (50 ㎖)로 세척되고, 건조되고 (MgSO4), 감압 하에 증발되고, 그리고 실리카 겔 색층분석 (에틸 아세테이트-헥산)을 통해 정제되어 2-클로로-4-(6-니트로피리딘-3-일옥시)피리딘이 투명 오일 (0.540g, 44% 수율)로서 산출되었다. 1H NMR (400MHz, DMSO-d 6 ): δ 8.62 (d, 1H), 8.41 (m, 2H), 8.06 (d, 1H), 7.37 (d, 1H), 7.23 (dd, 1H); MS (ESI) m/z: 252.0 (M+H+).
2-클로로-4-(6-니트로피리딘-3-일옥시)피리딘 (.540 g, 2.146 mmol)이 THF (54 ㎖)와 MeOH (54 ㎖)에 용해되었다. 이후, 염화암모늄 (1.148 g, 21.46 mmol), 그 이후에 아연 분진 (1.403 g, 21.46 mmol)이 첨가되었다. 반응물은 RT에서 45분 동안 교반되고, Celite®에서 여과되고, 그리고 감압 하에 농축되어 5-(2-클로로피리딘-4-일옥시)피리딘-2-아민이 갈색 고체 (0.49g, 99%)로서 산출되었다. 이는 다음 반응에 본래대로 이용되었다. 1H NMR (400MHz, DMSO-d 6 ): δ 8.46 (d, 1H), 7.81 (d, 1H), 7.30 (dd, 1H), 6.90 (m, 2H), 6.50 (d, 1H), 6.08 (s, 2H); MS (ESI) m/z: 222.0 (M+H+).
5-(2-클로로피리딘-4-일옥시)피리딘-2-아민 (0.47 g, 2.121 mmol)이 DMF (11 ㎖)에 용해되었다. 물 (3.67 ㎖)이 상기 혼합물에 첨가되고, 그 이후에 1-메틸-4(4,4,5,5-테트라메틸-1,3,2-디옥사보롤란-2-일)1H-피라졸 (0.662 g, 3.18 mmol), 그리고 탄산세슘 (2.63 g, 8.06 mmol)이 첨가되었다. 아르곤이 수분 동안 상기 혼합물에 발포되고, 이후 팔라듐 테트라키스트리페닐포스핀 (0.245 g, 0.212 mmol)이 첨가되었다. 플라스크는 응축기가 구비되고, 그리고 아르곤이 상기 시스템을 통해 씻어 내려졌다. 반응 혼합물은 아르곤 풍선 하에 90℃ 오일 중탕에 배치되고 23시간 동안 가열되었다. 생성된 용액은 RT로 냉각되고, THF (75 ㎖)로 희석되고, 그리고 염수 (2x50 ㎖)로 세척되었다. 합쳐진 수성 층은 THF (40 ㎖)로 역추출되었다. 합쳐진 유기층은 건조되고 (MgSO4), 감압 하에 농축되고, 그리고 실리카 겔 색층분석 (THF-에틸 아세테이트)을 통해 정제되어 5-(2-(1-메틸-1H-피라졸-4-일)피리딘-4-일옥시)피리딘-2-아민이 회백색 (0.357g, 63% 수율)로서 산출되었다. 1H NMR (400MHz, DMSO-d 6 ): δ 8.31 (d, 1H), 8.22 (s, 1H), 7.92 (s, 1H), 7.80 (d, 1H), 7.27 (dd, 1H), 7.14 (d, 1H), 6.85 (s, 1H), 6.57 (dd, 1H), 6.01 (s, 2H), 3.84 (s, 3H); MS (ESI) m/z: 268.1 (M+H+).
실시예 A14:
수소화나트륨 (무기 오일에서 60%) (0.620 g, 15.5 mmol)이 아르곤 하에 100 ㎖ 둥근 바닥 플라스크 내에 배치되었다. 건성 DMF (30 ㎖)가 첨가되고, 그 이후에 0℃에서 2-클로로-4-히드록시피리딘 (1.339 g, 10.33 mmol)이 분할량으로 첨가되었다. 생성된 혼합물은 0℃에서 30분 동안 교반되고, 이후 RT로 천천히 가온되었다. DMF (4.4 ㎖)에서 5-클로로-2,4-디플루오르니트로벤젠 (2 g, 10.33 mmol)의 용액이 상기 현탁액에 첨가되고, 그리고 생성된 혼합물은 아르곤 하에 15시간 동안 가열하기 위하여 90℃ 오일 중탕 내에 배치되었다. 반응 혼합물은 RT로 냉각되고, 에틸 아세테이트 (100 ㎖)로 희석되고, 10% 수성 LiCl (3x100 ㎖)과 염수 (2x 100 ㎖)로 세척되고, 건조되고 (MgSO4), 그리고 실리카 겔 색층분석 (에틸 아세테이트/헥산)을 통해 정제되어 2-클로로-4-(2-클로로-5-플루오르-4-니트로페녹시)피리딘이 밝은 황색 오일 (1.415g, 45% 수율)로서 산출되었다. 1H NMR (400MHz, DMSO-d 6 ): δ 8.56 (dd, 1H), 8.35 (dd, 1H), 7.88 (dd, 1H), 7.32 (dd, 1H), 7.18 (m, 1H); MS (ESI) m/z: 303.0 (M+H+).
2-클로로-4-(2-클로로-5-플루오르-4-니트로페녹시)피리딘 (1.306 g, 4.31 mmol)이 THF (108 ㎖)와 MeOH (108 ㎖)에 용해되었다. 이후, 염화암모늄 (2.305 g, 43.1 mmol), 그 이후에 아연 분진 (2.82 g, 43.1 mmol)이 첨가되었다. 반응 혼합물은 RT에서 1시간 동안 교반되었다. 생성된 고체는 Celite®에서 여과되고, 그리고 생성된 용액은 감압 하에 농축되어 5-클로로-4-(2-클로로피리딘-4-일옥시)-2-플루오르벤젠아민이 갈색 고체로서 산출되고, 이는 100% 수율을 추정하고 정제 없이 이용되었다. MS (ESI) m/z: 273.0 (M+H+).
5-클로로-4-(2-클로로피리딘-4-일옥시)-2-플루오르벤젠아민 (1.177 g, 4.31 mmol)과 1-메틸(4,4,5,5-테트라메틸-1,3,2-디옥사보롤란-2-일)-1H-피라졸 (1.166 g, 5.60 mmol)은 DMF (16.16 ㎖)에 용해되고, 탄산세슘 (4.21 g, 12.93 mmol)이 첨가되고, 그 이후에 물 (5.39 ㎖)이 첨가되었다. 아르곤이 5분 동안 상기 혼합물에 발포되고, 이후 팔라듐 테트라키스트리페닐포스핀 (0.249 g, 0.215 mmol)이 첨가되었다. 플라스크는 환류 응축기로 구비되고, 아르곤으로 씻어 내려지고, 그리고 아르곤 풍선 하에 90℃ 오일 중탕에서 4시간 동안 가열되었다. 반응 혼합물은 RT로 냉각되고 에틸 아세테이트와 THF의 4:1 혼합물로 희석되었다. 생성된 용액은 10% 수성 LiCl (2x150 ㎖)과 염수 (100 ㎖)로 추출되고, 건조되고 (MgSO4), 감압 하에 증발되고, 그리고 실리카 겔 색층분석 (에틸 아세테이트/헥산)을 통해 정제되어 5-클로로-2-플루오르-4-(2-(1-메틸-1H-피라졸-4-일)피리딘-4-일옥시)벤젠아민이 황갈색 고체 (1.062g, 77% 수율)로서 수득되었다. 1H NMR (400MHz, DMSO-d 6 ): δ 8.31 (d, 1H), 8.24 (s, 1H), 7.95 (s, 1H), 7.20 (d, 1H), 7.13 (d, 1H), 6.92 (d, 1H), 6.52 (dd, 1H), 5.49 (s, 2H), 3.84 (s, 3H); MS (ESI) m/z: 319.1 (M+H+).
실시예 A15:
수소화나트륨 (136 mg, 3.4 mmol, 무기 오일에서 60%)이 Ar 하에 DMF (38 ㎖)에서 2-클로로피리딘-4-올 (2 g, 15.4 mmol)의 0℃ 용액에 첨가되었다. 생성된 혼합물은 0℃에서 1시간 동안 교반되었다. DMF (7.6 ㎖)에서 1,2,4-트리플루오르-5-니트로벤젠 (626 mg, 3.1 mmol)의 용액이 첨가되고, 그리고 반응물은 Ar 하에 90℃에서 3시간 동안 교반되었다. 생성된 혼합물은 RT로 냉각되고 하룻밤동안 교반되었다. 상기 용매는 감압 하에 제거되고, 그리고 가공되지 않은 산물은 물 (50 ㎖)과 EtOAc (50 ㎖) 간에 분할되었다. 생성된 혼합물은 EtOAc (3 x 50 ㎖)로 추출되었다. 합쳐진 유기 추출물은 염수로 세척되고, 건조되고 (Na2SO4), 감압 하에 농축되고, 그리고 실리카 겔 칼럼 색층분석 (헥산/EtOAc)으로 정제되어 2-클로로-4-(2,5-디플루오르-4-니트로페녹시)피리딘 (3.57 g, 81% 수율)이 산출되었다. 1H NMR (400 MHz, DMSO-d 6 ): δ 8.43-8.33 (m, 2H), 7.85-7.79 (m, 1 H), 7.33 (d, 1H), 7.20-7.18 (m, 1H); MS (ESI) m/z: 287.0 (M+H+).
THF (160 ㎖)와 MeOH (160 ㎖)에서 2-클로로-4-(2,5-디플루오르-4-니트로페녹시)피리딘 (3.57 g, 2.1 mmol), 아연 분진 (8.14 g, 125 mmol)과 염화암모늄 (6.66 g, 125 mmol)의 혼합물은 RT에서 2시간 동안 교반되었다. 반응 혼합물은 여과되고, 그리고 여과액은 감압 하에 농축되었다. 가공되지 않은 산물은 EtOAc (50 ㎖) 및 물과 포화된 NaHCO3 (aq) (1:1; 50 ㎖)의 혼합물 간에 분할되었다. 생성된 혼합물은 EtOAc (2 x 50 ㎖)로 추출되었다. 합쳐진 유기 추출물은 건조되고 (Na2SO4) 증발되어 4-(2-클로로피리딘-4-일옥시)-2,5-디플루오르아닐린 (3.18 g, 100% 수율)이 산출되었다. 1H NMR (400 MHz, DMSO-d 6 ): δ 8.26 (d, 1H), 7.24-7.19 (m, 1 H), 7.00 (s, 1H), 6.94-6.92 (m, 1H), 6.74-6.69 (m, 1H), 5.54 (brs, 2H); MS (ESI) m/z: 257.0 (M+H+).
3-메틸-4-(4,4,5,5-테트라메틸-[1,3,2]디옥사보롤란-2-일)-1H-피라졸 (0.3 g, 1.442 mmol)과 탄산칼륨 (0.996 g, 7.21 mmol)은 아세토니트릴 (10 ㎖)에서 현탁되고 RT에서 하룻밤동안 교반되었다. 추가의 요오드메탄 (0.5 ㎖)이 첨가되고, 그리고 생성된 혼합물은 RT에서 하룻밤동안 교반되었다. 상기 혼합물은 EtOAc로 희석되고, 그리고 무기 염은 여과에 의해 제거되었다. 여과액은 증발되어 1,3-디메틸-4-(4,4,5,5-테트라메틸-1,3,2-디옥사보롤란-2-일)-1H-피라졸과 1,5-디메틸-4-(4,4,5,5-테트라메틸-1,3,2-디옥사보롤란-2-일)-1H-피라졸의 분리불가능 혼합물 (2:1) (0.267 g, 83% 수율)이 산출되었다. MS (ESI) m/z: 223.1 (M+H+).
밀봉된 튜브 내에서, 4-(2-클로로피리딘-4-일옥시)-2,5-디플루오르아닐린 (0.257 g, 1.00 mmol), 1,3-디메틸-4-(4,4,5,5-테트라메틸-1,3,2-디옥사보롤란-2-일)-1H-피라졸과 1,5-디메틸-4-(4,4,5,5-테트라메틸-1,3,2-디옥사보롤란-2-일)-1H-피라졸의 (2:1) 혼합물 (0.267 g, 1.20 mmol), 탄산칼륨 (0.415 g, 3.01 mmol)과 테트라키스트리페닐포스핀 팔라듐(0) (0.058 g, 0.050 mmol)은 디옥산 (10 ㎖)과 물 (1.667 ㎖)의 혼합물에서 현탁되었다. 생성된 혼합물은 Ar로 탈기되고 90℃에서 하룻밤동안 가열되었다. 반응물은 포화된 aq. NaHCO3 (25 ㎖)으로 희석되고 EtOAc (3 x 25 ㎖)로 추출되었다. 합쳐진 유기 추출물은 진공에서 농축되고, 그리고 실리카 겔 색층분석 (헥산/EtOAc)으로 정제되어 4-(2-(1,3-디메틸-1H-피라졸-4-일)피리딘-4-일옥시)-2,5-디플루오르벤젠아민과 4-(2-(1,5-디메틸-1H-피라졸-4-일)피리딘-4-일옥시)-2,5-디플루오르벤젠아민의 분리불가능 (2:1) 혼합물 (0.31 g, 98% 수율)이 용리되었다. MS (ESI) m/z: 317.1 (M+H+).
실시예 A16:
메틸 클로로포름산염 (77.3 g, 0.82 mol)이 물 (550 ㎖)에서 2-클로로-4-플루오르페놀 (100g, 0.68 mol)과 수산화나트륨 (32.8 g, 0.82 mol)의 -10℃ 용액에 방울방울 첨가되었다. 첨가의 완결후, 침전된 고체는 여과에 의해 회수되고 물로 세척되어 2-클로로-4-플루오르페닐 메틸 탄산염 (110 g, 79% 수율)이 제공되었다. 1H NMR (300 MHz, DMSO-d 6): δ 7.62 (dd, J = 8.1, 2.7 Hz, 1 H), 7.50 (dd, J = 9.0, 5.4 Hz, 1 H), 7.30 (td, J = 8.1, 3.0 Hz, 1 H), 3.86 (s, 3 H); MS (ESI) m/z: 205.2 (M+H+).
conc. H2SO4 (50 ㎖)에서 2-클로로-4-플루오르페닐 메틸 탄산염 (110 g, 0.54 mol)의 현탁액에 conc. H2SO4 (40 ㎖)와 증기성 HNO3 (40.8 ㎖, 0.89 mol)로 구성되는 혼합물이 천천히 첨가되었다. 생성된 혼합물은 0℃에서 30분 동안 교반되었다. 반응 혼합물은 얼음 물에 부어지고, 그리고 침전된 고체는 여과에 의해 회수되고 물로 세척되어 2-클로로-4-플루오르-5-니트로페닐 메틸 탄산염 (120 g, 90% 수율)이 제공되었다. 1H NMR (400 MHz, DMSO-d 6): δ 8.45 (d, J = 7.2 Hz, 1 H), 8.12 (d, J = 10.8 Hz, 1 H), 3.89 (s, 3 H); MS (ESI) m/z: 250.1 (M+H+).
2-클로로-4-플루오르-5-니트로페닐 메틸 탄산염 (120g, 0.48mol)은 물 (300 ㎖)에서 수산화나트륨 (22.7 g, 0.57 mol)의 용액과 결합되고, 그리고 생성된 혼합물은 4시간 동안 환류되었다. 불용성 고체는 여과에 의해 제거되고, 그리고 여과액은 희석된 HCl로 산성화되었다. 침전된 고체는 여과로 회수되고 물로 세척되어 2-클로로-4-플루오르-5-니트로페놀 (90 g, 98% 수율)이 제공되었다. 1H NMR (400 MHz, DMSO-d 6): δ 11.18 (s ,1 H), 8.10 (d, J = 10.4 Hz, 1 H), 7.62 (d, J =7.2 Hz, 1 H); MS (ESI) m/z: 192.1 (M+H+).
2-클로로-4-플루오르-5-니트로페놀 (85 g, 0.45 mol)과 10% Pd/C (25g, 0.023 mol)은 EtOH에서 결합되고 12시간 동안 수소화되었다 (50 psi). 반응 혼합물은 여과되었다. 여과액은 진공에서 농축되고, 그리고 실리카 겔 색층분석으로 정제되어 3-아미노-4-플루오르페놀 (40 g 70% 수율)이 제공되었다. 1H NMR (400 MHz, DMSO-d 6): δ 8.87 (s, 1 H), 6.70 (dd, J = 11.2, 8.8 Hz, 1 H), 6.14 (dd, J = 7.8, 2.4 Hz, 1 H), 5.84 (m, 1 H), 4.92 (s, 2 H); MS (ESI) m/z: 128.2 (M+H+).
4-클로로-2-메틸설파닐-피리미딘 (1.4 g, 8.8 mmol), 1-메틸-4-(4,4,5,5-테트라메틸-[1,3,2]디옥사보롤란-2-일)-1H-피라졸 (2.0 g, 1.1 eq), Na2CO3 (2.8 g, 3 eq)과 Pd(PPh3)4 (500 mg, 0.43 mmol)는 톨루엔/EtOH/H2O (4/4/1, 20 ㎖)로 구성되는 용매에서 결합되었다. 반응 혼합물은 아르곤으로 정화되고 하룻밤동안 100℃로 가열되었다. 반응물은 불용성 물질을 제거하기 위하여 여과되고, 그리고 여과액은 진공에서 농축되었다. 잔류물은 실리카 겔 색층분석으로 정제되어 트리페닐포스핀 산화물로 오염된 4-(1-메틸-1H-피라졸-4-일)-2-(메틸티오)피리미딘 (2.0 g, >100% 수율)이 제공되었다. 1H NMR (300 MHz, DMSO-d 6 ): δ 8.49 (d, J = 5.1 Hz, 1 H), 8.46 (s, 1 H), 8.12 (s, 1 H), 7.38 (d, J = 5.1 Hz, 1 H), 3.89 (s, 3 H), 2.52 (s, 3 H).
디클로로메탄 (20 ㎖)에서 4-(1-메틸-1H-피라졸-4-일)-2-메틸설파닐-피리미딘 (2.0 g 가공되지 않음, 8.8 mmol)의 용액은 RT에서 m-CPBA (3.0 g, 17.4 mmol)가 분할량으로 처리되었다. 반응물은 2시간 동안 교반되고 포화된 수성 NaS2SO3 (3 ㎖)으로 진정되었다. 생성된 혼합물은 포화된 aq Na2CO3으로 분할되고, 그리고 유기물은 염수로 세척되고, 건조되고 (Na2SO4), 농축되어 1:0.3의 몰 비율 (molar ratio)을 갖는 2-메탄설포닐-4-(1-메틸-1H-피라졸-4-일)-피리미딘과 2-메탄설피닐-4-(1-메틸-1H-피라졸-4-일)-피리미딘의 혼합물 (2.0 g)이 제공되었다. 1H NMR (400 MHz, DMSO-d 6 ): δ 8.83 (d, J = 5.2 Hz, 1 H), 8.82 (d, J = 5.2 Hz, 0.24 H), 8.57 (s, 1 H), 8.57 (s, 0.24 H), 8.21 (s, 1 H), 8.21 (s, 0.23 H), 7.80 (d, J = 5.6 Hz, 1 H), 7.80 (d, J = 5.6 Hz, 0.25 H), 3.48 (s, 3 H), 2.88 (s, 0.7 H).
DMF (10 ㎖)에서 2-메탄설포닐-4-(1-메틸-1H-피라졸-4-일)-피리미딘과 2-메탄설피닐-4-(1-메틸-1H-피라졸-4-일)-피리미딘 (1 g, 4.2 mmol)의 혼합물, 4-아미노-3-플루오르-페놀 (1.1 g, 8.6 mmol)과 K2CO3 (1.2 g, 8.6 mmol)은 100℃에서 12시간 동안 가열되었다. 반응물은 H2O와 EtOAc (3 x 50 ㎖) 간에 분할되었다. 합쳐진 유기물은 건조되고 (Na2SO4), 진공에서 농축되고, 그리고 색층분석되어 2-플루오르-5-(4-(1-메틸-1H-피라졸-4-일)피리미딘-2-일옥시)벤젠아민 (402 mg)이 제공되었다. 1H NMR (400 MHz, DMSO-d 6 ): δ 8.44 (d, J = 5.2 Hz, 1 H), 8.39 (s, 1 H), 8.07 (s, 1 H), 7.41 (d, J = 5.2 Hz, 1 H), 6.98 (t, J = 9.6 Hz, 1 H), 6.53 (dd, J = 5.6, 2.0 Hz, 1 H), 6.28 (d, J = 8.4 Hz, 1 H), 5.25 (br s, 2 H), 3.88 (s, 3 H). MS (ESI) m/z: 286.2 (M+H+).
실시예 A17:
황산 (10 ㎖)이 0℃로 냉각되고, 그리고 내부 온도를 20℃보다 낮게 유지하면서 과산화수소 (4.92 ㎖, 48.1 mmol)가 천천히 첨가되었다. 이후, 10 ㎖의 황산에서 2-아미노-5-브로모-4-메틸피리딘 (1.5 g, 8.02 mmol)의 용액이 첨가되었다. 생성된 혼합물은 얼음 중탕에서 45분 동안 교반되고, 이후 RT로 가온되었다. 1시간 후, RT에서 반응 혼합물의 색깔이 연두색에서 밝은 황색으로 점진적으로 변하였다. 반응 혼합물은 얼음 (100 ㎖) 위에 부어지고, 그리고 형성된 고체는 흡입 여과를 통해 수집되고 물로 세척되었다. 밝은 오렌지색 고체는 하룻밤동안 건조되어 5-브로모-4-메틸-2-니트로피리딘 (1.08g, 62% 수율)이 산출되고, 이는 추후 정제 없이 이용되었다. 1H NMR (400MHz, DMSO-d 6 ): δ 8.77 (s, 1H), 8.38 (s, 1H), 2.51 (s, 3H).
2-클로로-4-히드록시피리딘 (0.239 g, 1.843 mmol)이 DMF (18.43 ㎖)에 용해되고 칼륨 t-부톡시드 (0.290 g, 2.58 mmol)가 첨가되었다. 생성된 용액은 수분 동안 탈기되고, 이후 5-브로모-4-메틸-2-니트로피리딘 (0.4 g, 1.843 mmol)이 첨가되었다. 생성된 혼합물은 아르곤 하에 65℃에서 70시간 동안, 이후 80℃에서 24시간 동안 가열되었다. 반응 혼합물은 RT로 냉각되고, 에틸 아세테이트 (150 ㎖)로 희석되고, 물 (75 ㎖), 10% 수성 LiCl (2x75 ㎖), 포화된 수성 중탄산염 (75 ㎖)과 염수 (75 ㎖)로 세척되고, 건조되고 (MgSO4), 증발되고, 그리고 실리카 겔 색층분석 (에틸 아세테이트/헥산)을 통해 정제되어 2-클로로-4-(4-메틸-6-니트로피리딘-3-일옥시)피리딘이 황색 고체 (0.087g, 18% 수율)로서 산출되었다. 1H NMR (400MHz, DMSO-d 6 ): δ 8.49 (s, 1H), 8.47 (s, 1H), 8.35 (d, 1H), 7.24 (d, 1H), 7.12 (dd, 1H), 2.31 (s, 3H); MS (ESI) m/z: 266.0 (M+H+).
2-클로로-4-(4-메틸-6-니트로피리딘-3-일옥시)피리딘이 THF (11.95 ㎖)/메탄올 (11.95 ㎖)에 용해되고, 그리고 염화암모늄 (0.256 g, 4.78 mmol), 그 이후에 아연 분진 (0.313 g, 4.78 mmol)이 첨가되었다. 생성된 혼합물은 1.5 시간 동안 RT에서 교반되고, 이후 Celite®를 통해 여과되었다. 여과액은 감압 하에 증발되어 자홍색 필름이 산출되고, 이는 에틸 아세테이트/THF (4:1)와 물 간에 분할되었다. 유기층은 염수로 세척되고, 건조되고 (MgSO4), 그리고 증발되어 5-(2-클로로피리딘-4-일옥시)-4-메틸피리딘-2-아민이 갈색 오일 (0.116g, 103%)로서 산출되고, 이는 정제 없이 다음 단계에 이용되었다. MS (ESI) m/z: 236.1(M+H+).
5-(2-클로로피리딘-4-일옥시)-4-메틸피리딘-2-아민 (0.116 g, 0.492 mmol)이 DMF (2 ㎖)에 용해되고, 그리고 1-메틸-1H-피라졸-4-보론 산 피나콜 에스테르 (0.154 g, 0.738 mmol), 그 이후에 탄산세슘 (0.481 g, 1.477 mmol)과 물 (0.667 ㎖)이 첨가되었다. 아르곤이 수분 동안 상기 화합물에 발포되고, 이후 팔라듐 테트라키스트리페닐포스핀 (0.028 g, 0.025 mmol)이 첨가되었다. 플라스크는 환류 응축기로 구비되고, 아르곤으로 씻어 내려지고, 그리고 아르곤 기구 하에 90℃에서 16시간 동안 가열되었다. 생성된 혼합물은 RT로 냉각되고, 그리고 생성된 용액은 에틸 아세테이트와 THF (70 ㎖)의 4:1 혼합물로 희석되었다. 이는 10% 수성 LiCl (2x50 ㎖)과 염수 (50 ㎖)로 세척되고, 건조되고 (MgSO4), 진공에서 증발되고, 그리고 실리카 겔 색층분석 (DCM/MeOH)을 통해 정제되어 4-메틸-5-(2-(1-메틸-1H-피라졸-4-일)피리딘-4-일옥시)피리딘-2-아민이 투명 오일 (0.084g, 61% 수율)로서 산출되었다. 1H NMR (400MHz, DMSO-d 6 ): δ 8.30 (d, 1H), 8.22 (s, 1H), 7.93 (s, 1H), 7.69 (s, 1H), 7.11 (d, 1H), 6.50 (dd, 1H), 6.38 (s, 1H), 5.89 (s, 2H), 3.84 (s, 3H), 1.95 (s, 3H); MS (ESI) m/z: 282.1(M+H+).
실시예 A18:
4-클로로-2-메틸설파닐-피리미딘 (1.4 g, 8.8 mmol), 4-(4,4,5,5-테트라메틸-[1,3,2]디옥사보롤란-2-일)-1H-피라졸 (2.0 g, 10.3 mmol), Na2CO3 (2.8 g, 26.4)과 Pd(PPh3)4 (500 mg, 0.43 mmol)는 톨루엔/EtOH/H2O (4/4/1, 20 ㎖)로 구성된 용매에서 결합되었다. 생성된 혼합물은 진공을 적용하고 아르곤으로 헤드스페이스를 역여과함으로써 탈기되었다. 반응 혼합물은 100℃에서 하룻밤동안 가열되었다. 불용성 부분은 여과되고, 그리고 여과액은 농축되고 실리카 겔 색층분석으로 정제되어 2-(메틸티오)-4-(1H-피라졸-4-일)피리미딘 (1.2 g, 71% 수율)이 제공되었다. 1H NMR (400 MHz, CDCl3) δ 8.45 (d, J = 6.4 Hz, 1 H), 8.24 (s, 1 H), 7.23 (s, 1 H), 7.05 (d, J = 6.4 Hz, 1 H), 2.51 (s, 3 H).
디클로로메탄 (3 ㎖)과 H2O (1 ㎖)에서 2-(메틸티오)-4-(1H-피라졸-4-일)피리미딘 (200 mg, 1 mmol)의 용액에 0℃에서 4-메톡시벤질염화물 (200 mg, 1.28 mmol)이 첨가되었다. 생성된 혼합물은 RT에서 하룻밤동안 교반되었다. 유기층은 분리되고, 염수로 세척되고, 그리고 진공에서 농축되어 가공되지 않은 4-(1-(4-메톡시벤질)-1H-피라졸-4-일)-2-(메틸티오)피리미딘이 제공되었다. 1H NMR (300 MHz, DMSO-d 6 ) δ 8.58 (s, 1 H), 8.50, (d, J = 5.4 Hz, 1 H), 8.16 (s, 1 H), 7.40 (d, J = 5.4 Hz, 1 H), 7.27 (d, J = 8.4 Hz, 2 H), 7.22 (d, J = 8.4 Hz, 2 H), 5.30 (s, 2 H), 3.72 (s, 3 H), 2.51 (s, 3 H); MS (ESI) m/z: 313 (M+H+).
디클로로메탄에서 4-(1-(4-메톡시벤질)-1H-피라졸-4-일)-2-(메틸티오)피리미딘 (200 mg, 0.64 mmol)의 용액에 m-CPBA (220 mg, 1.28 mmol)가 첨가되었다. 반응물은 RT에서 2시간 동안 교반되었다. 물이 첨가되고, 유기층은 분리되고, 그리고 수성 층은 디클로로메탄으로 추출되었다. 합쳐진 유기물은 염수로 세척되고 진공에서 농축되었다. 잔류물은 DMF (5 ㎖)에서 3-아미노-4-플루오르페놀 (165 mg, 1.28 mmol)과 K2CO3 (176 mg, 1.28 mmol)과 결합되고, 그리고 생성된 혼합물은 90℃에서 하룻밤동안 가열되었다. 여과와 농축후, 잔류물은 실리카 겔 칼럼 색층분석으로 정제되어 5-(4-(1-(4-메톡시벤질)-1H-피라졸-4-일)피리미딘-2-일옥시)-2-플루오르벤젠아민 (210 mg, 84% 수율)이 제공되었다. 1H NMR (300 MHz, DMSO-d 6 ) δ 8.50 (s, 1 H), 8.44, (d, J = 5.4 Hz, 1 H), 8.10 (s, 1 H), 7.42 (d, J = 5.4 Hz, 1 H), 7.25 (d, J = 8.4 Hz, 2 H), 6.98 (t, J = 9.6 Hz, 1 H), 6.91 (d, J = 8.4 Hz, 2 H), 6.52 (dd, J = 2.7, 8.7 Hz, 1 H), 6.28 (m, 1 H), 5.30 (br s, 2 H), 5.26 (s, 2 H), 3.72 (s, 3 H); MS (ESI) m/z: 392.2 (M+H+).
디클로로메탄 (3 ㎖)에서 5-(4-(1-(4-메톡시벤질)-1H-피라졸-4-일)피리미딘-2-일옥시)-2-플루오르벤젠아민 (50 mg, 0.13 mmol)의 용액에 0℃에서 TFA (0.3 ㎖)가 첨가되고, 그리고 반응물은 RT에서 12시간 동안 교반되었다. 상기 용매는 진공에서 제거되고, 그리고 잔류물은 에테르로 세척되고 포화된 암모니아 용액으로 처리되었다. 생성된 고체는 여과를 통해 수집되고 진공 하에 건조되어 5-(4-(1H-피라졸-4-일)피리미딘-2-일옥시)-2-플루오르벤젠아민 (15 mg, 43% 수율)이 제공되었다. 1H NMR (300 MHz, MeOD) δ 8.44 (d, J = 5.1 Hz, 1 H), 8.23 (br s, 2 H), 7.40 (d, J = 5.4, 1 H), 7.02 (dd, J = 10.8, 8.7 Hz, 1 H), 6.73 (dd, J = 2.7, 7.2 Hz, 1 H), 6.50 (m, 1 H); MS (ESI) m/z: 272.2 (M+H+).
실시예 A19:
2,5-디플루오르-4-니트로-페놀 (1.739 g, 9.93 mmol)과 3-브로모-4-클로로-피리딘 (0.637 g, 3.31 mmol)은 클로로벤젠 (6 ㎖)에 용해되고 145℃에서 하룻밤동안 가열되었다. 상기 용매는 감압 하에 제거되고, 그리고 잔류물은 EtOAc와 10% K2CO3 ( aq ) 간에 분할되었다. 생성된 혼합물은 EtOAc (2x)로 추출되었다. 합쳐진 유기 추출물은 10% K2CO3 ( aq )과 염수로 세척되고, 건조되고, 증발되고, 그리고 실리카 겔 색층분석 (헥산/EtOAc)으로 정제되어 3-브로모-4-(2,5-디플루오르-4-니트로페녹시)피리딘 (414 mg, 38% 수율)이 산출되었다. 1H NMR (400 MHz, DMSO-d 6 ): δ 8.84 (s, 1H), 8.51-8.45 (m, 2H), 7.82-7.78 (m, 1H), 7.22 (d, 1H); MS (ESI) m/z: 331.0 (M+H+).
3-브로모-4-(2,5-디플루오르-4-니트로페녹시)피리딘 (0.414 g, 1.25 mmol)이 EtOH (30 ㎖)에 용해되었다. 주석 (II) 염화물 이수화물 (1.129 g, 5.00 mmol)이 첨가되고, 그리고 생성된 혼합물은 80℃에서 4시간 동안 가열되었다. 상기 용매는 감압 하에 제거되고, 그리고 잔류물은 sat. NaHCO3 ( aq )로 진정되었다. 생성된 혼합물은 EtOAc로 희석되고 Celite®를 통해 여과되었다. Celite 베드는 물 (2x)과 EtOAc (2x)로 세척되었다. 여과액은 EtOAc (2x)로 추출되었다. 합쳐진 유기 추출물은 건조되고 증발되어 4-(3-브로모피리딘-4-일옥시)-2,5-디플루오르벤젠아민 (0.42 g, 112% 수율)이 산출되었다. 1H NMR (400 MHz, DMSO-d 6 ): δ 8.68 (s, 1H), 8.33 (d, 1H), 7.28-7.23 (m, 1H), 6.76-6.71 (m, 2H), 5.56 (br s, 2H); MS (ESI) m/z: 301.0 (M+H+).
밀봉된 튜브 내에서, 4-(3-브로모피리딘-4-일옥시)-2,5-디플루오르벤젠아민 (0.42 g, 1.395 mmol), 1-메틸-4-(4,4,5,5-테트라메틸-1,3,2-디옥사보롤란-2-일)-1H-피라졸 (0.363 g, 1.744 mmol), 탄산칼륨 (0.578 g, 4.18 mmol), 그리고 테트라키스트리페닐포스핀 팔라듐 (0) (0.081 g, 0.070 mmol)은 디옥산 (8 ㎖)과 물 (1.333 ㎖)에서 현탁되었다. 생성된 혼합물은 Ar로 탈기되고 90℃에서 하룻밤동안 가열되었다. 반응 혼합물은 냉각되고 EtOAc와 sat. NaHCO3 ( aq ) 간에 분할되었다. 생성된 혼합물은 EtOAc (3x)로 추출되었다. 합쳐진 유기 추출물은 건조되고, 증발되고, 그리고 실리카 겔 색층분석 (헥산/EtOAc)으로 정제되어 2,5-디플루오르-4-(3-(1-메틸-1H-피라졸-4-일)피리딘-4-일옥시)벤젠아민 (272 mg, 65% 수율)이 산출되었다. 1H NMR (400 MHz, DMSO-d 6 ): δ 8.80 (s, 1H) 8.22-8.20 (m, 2H), 8.00 (s, 1H), 7.24-7.19 (m, 1H), 6.76-6.71 (m, 1H), 6.62 (d, 1H), 5.50 (br s, 2H), 3.78 (s, 3H); MS (ESI) m/z: 301.0 (M+H+).
실시예 A20:
디클로로메탄에서 실시예 A18로부터 4-(1-(4-메톡시벤질)-1H-피라졸-4-일)-2-(메틸티오)피리미딘 (200 mg, 0.64 mmol)의 용액에 m-CPBA (220 mg, 1.28 mmol)가 첨가되었다. 반응물은 RT에서 2시간 동안 교반되었다. 물이 첨가되고, 유기층은 분리되고, 그리고 수성 층은 디클로로메탄로 추출되었다. 합쳐진 유기물은 염수로 세척되고 진공에서 농축되었다. 잔류물은 DMF (5 ㎖)에서 5-아미노-4-플루오르-2-메틸페놀 (180 mg, 1.28 mmol)과 K2CO3 (176 mg, 1.28 mmol)과 결합되고, 그리고 생성된 혼합물은 90℃에서 하룻밤동안 가열되었다. 여과와 농축후 잔류물은 실리카 겔 칼럼 색층분석으로 정제되어 5-(4-(1-(4-메톡시벤질)-1H-피라졸-4-일)피리미딘-2-일옥시)-2-플루오르-4-메틸벤젠아민 (210 mg, 84% 수율)이 제공되었다.MS (ESI) m/z: 406.2 (M+H+).
디클로로메탄 (20 ㎖)에서 5-(4-(1-(4-메톡시벤질)-1H-피라졸-4-일)피리미딘-2-일옥시)-2-플루오르-4-메틸벤젠아민 (0.5g, 1.2 mmol)의 용액은 0℃에서 TFA (5 ㎖)로 처리되었다. 생성된 혼합물은 RT에서 12시간 동안 교반되었다. 상기 용매는 진공에서 제거되고, 잔류물은 에테르로 세척되고 포화된 암모니아 용액으로 처리되었다. 생성된 고체는 여과를 통해 수집되고 진공 하에 건조되어 5-(4-(1H-피라졸-4-일)피리미딘-2-일옥시)-2-플루오르-4-메틸벤젠아민 (240 mg, 68%, 수율)이 제공되었다. 1H NMR (400 MHz, MeOD): δ 8.41 (d, J = 5.2 Hz, 1 H), 8.21 (br s, 2 H), 7.40 (d, J = 5.2, 1 H), 6.90 (d, J = 11.6 Hz, 1 H), 6.62 (d, J = 8.0 Hz, 1 H), 1.99 (s, 3 H).MS (ESI) m/z: 286.1(M+H+).
실시예 A21:
DMF (2 ㎖)와 TEA (2 ㎖)에서 실시예 A1로부터 4-(2-클로로피리딘-4-일옥시)-2-플루오르아닐린 (0.801 g, 3.36 mmol)의 탈기된 용액에 에티닐트리메틸실란 (0.929 ㎖, 6.71 mmol), 트랜스-디클로로-비스(트리페닐 포스핀) 팔라듐(0) (0.236 g, 0.336 mmol)과 구리 (I) 요오드화물 (0.064 g, 0.336 mmol)이 첨가되고, 그리고 생성된 혼합물은 90℃에서 16시간 동안 교반되었다. 물 (60 ㎖)이 상기 혼합물에 첨가되고, 산물은 EtOAc (2x45 ㎖)로 추출되고, 그리고 합쳐진 유기물은 염수로 세척되고, 건조되고 (Na2SO4), 농축되어 가공되지 않은 산물이 수득되었다. 상기 산물은 메탄올 (10 ㎖)에 용해되고, K2CO3 (0.5 g)이 첨가되고, 그리고 생성된 혼합물은 RT에서 2시간 동안 교반되었다. 용매가 제거되고, 물 (60 ㎖)과 EtOAc (40 ㎖)가 첨가되고, 층은 분리되고, 그리고 수성 층은 EtOAc (1x30 ㎖)로 추출되었다. 합쳐진 유기층은 염수로 세척되고, 건조되고 (Na2SO4), 농축되고, 그리고 칼럼 색층분석 (에틸아세테이트/헥산)으로 정제되어 4-(2-에티닐피리딘-4-일옥시)-2-플루오르벤젠아민이 짙은 잔류물 (0.56 g, 73% 수율)로서 수득되었다. 1H NMR (400 MHz, DMSO-d 6): δ 8.37 (d, J = 6.0 Hz, 1H), 6.98 (dd, J = 8.0 Hz, 2.4 Hz, 1H), 6.95 (d, J = 6.0 Hz, 1H), 6.87 (dd, J = 6.0 Hz, 2.4 Hz, 1H), 6.81-6.73 (m, 2H), 5.20 (brs, 2H), 4.03 (s, 1H); MS (ESI) m/z: 229.1 (M+H+).
아세탈독심 (0.078 g, 1.321 mmol)과 트리에틸아민 (0.246 ㎖, 1.761 mmol)이 마이크로파 반응 바이알 내에서, THF (4 ㎖)에서 4-(2-에티닐피리딘-4-일옥시)-2-플루오르벤젠아민 (0.201 g, 0.881 mmol)의 용액에 첨가되었다. 생성된 용액에 1-클로로피롤리딘-2,5-디온 (0.176 g, 1.32 mmol)이 첨가되고, 그리고 생성된 혼합물은 마이크로파 조사(照射) 하에 130℃에서 45분 동안 교반되었다. 각각 1.5 eq의 아세탈독심과 1-클로로피롤리딘-2,5-디온이 추가로 첨가되고, 그리고 반응물은 130℃에서 추가로 45분 동안 가열되었다. 이러한 과정은 1회 이상 반복되었다. 생성된 혼합물은 물 (40 ㎖)과 EtOAc (30 ㎖)의 이중상 용액에 부어졌다. 유기층은 분리되고, 그리고 수성 층은 EtOAc (2x20 ㎖)로 추출되었다. 합쳐진 유기물은 염수로 세척되고, 건조되고 (Na2SO4), 진공에서 농축되고, 그리고 칼럼 색층분석 (EtOAc-헥산)으로 정제되어 2-플루오르-4-(2-(3-메틸이속사졸-5-일)피리딘-4-일옥시)벤젠아민 (58 mg, 23% 수율)이 밝은 적색 잔류물로서 수득되었다. MS (ESI) m/z: 286.1 (M+H+).
실시예 A22:
실시예 A1에 유사한 절차를 이용하여, 5-아미노-2-히드록시피리딘 (10.15 g, 92 mmol)과 2,4-디클로로피리딘 (13.64 g, 92 mmol)은 결합되어 6-(2-클로로피리딘-4-일옥시)피리딘-3-아민 (7.09 g, 35% 수율)이 제공되었다. 1H NMR (400 MHz, DMSO-d 6 ): δ 8.12 (m, 1H), 7.61 (m, 1H), 7.26 (m, 1H), 7.0 (s, 1H), 6.97-6.94 (m, 2H), 5.4 (brs, 2H); MS (ESI) m/z: 222.0 (M+H+).
실시예 A13에 유사한 절차를 이용하여, 6-(2-클로로피리딘-4-일옥시)피리딘-3-아민 (6.06 g, 27.3 mmol)과 1-메틸-4-(4,4,5,5-테트라메틸-1,3,2-디옥사보롤란-2-일)-1H-피라졸 (8.53 g, 41.0 mmol)은 결합되어 6-(2-(1-메틸-1H-피라졸-4-일)피리딘-4-일옥시)피리딘-3-아민 (4.67 g, 64% 수율)이 제공되었다. 1H NMR (400 MHz, DMSO-d 6 ): δ 8.3 (m, 1H), 8.2 (s, 1H), 7.98 (s, 1H), 7.65 (s, 1H), 7.3 (s, 1H), 7.25-7.2 (m, 1H), 6.85-6.81 (m, 1H), 6.6-6.55 (m, 1H), 5.3 (s, 2H), 3.8 (s, 3H); MS (ESI) m/z: 268.1 (M+H+).
실시예 A23:
나트륨 아지드 (1.942 g, 29.9 mmol)가 물 (5 ㎖)에서 클로로메틸 피발레이트 (3.00 g, 19.92 mmol)의 현탁액에 첨가되고 90℃에서 16시간 동안 활발하게 교반되었다. 반응 혼합물은 물 (20 ㎖)과 EtOAc (20 ㎖)로 희석되었다. 유기층은 염수로 세척되고, 건조되고 (Na2SO4), 그리고 농축되어 아지도메틸 피발레이트가 액체 (2 g, 64% 수율)로서 수득되었다. 1H NMR (400 MHz, 아세톤-d 6): δ 5.23 (s, 2H), 1.22 (s, 9H).
t-부탄올 (0.6 ㎖)과 물 (0.6 ㎖)에서 아지도메틸 피발레이트 (0.075 g, 0.477 mmol), 실시예 A21로부터 4-(2-에티닐피리딘-4-일옥시)-2-플루오르벤젠아민 (0.109 g, 0.477 mmol)의 현탁액에 아스코르빈산나트륨 (0.021 g, 0.095 mmol)이 첨가되었다. 물에서 구리(II) 황산염 (0.048 ㎖, 0.048 mmol)이 상기 현탁액에 첨가되고, 그리고 진한 적색 혼합물은 RT에서 3시간 동안 교반되었다. 이는 물 (30 ㎖)과 EtOAc (20 ㎖)로 희석되고, 층은 분리되고, 그리고 수성 층은 EtOAc (2x15 ㎖)로 추출되었다. 합쳐진 유기물은 염수로 세척되고, 건조되고 (Na2SO4), 그리고 농축되어 (4-(4-(4-아미노-3-플루오르페녹시)피리딘-2-일)-1H-1,2,3-트리아졸-1-일)메틸 피발레이트가 적색 고체로서 수득되었다 (0.165 g, 90% 수율). 1H NMR (400 MHz, DMSO-d 6): δ 8.54 (s, 1H), 8.46 (brs, 1H), 7.60 (s, 1H), 6.98 (d, J = 8.8 Hz, 1H), 6.94 (d, J = 3.6 Hz, 1H), 6.83-6.81 (m, 2H), 6.42 (s, 2H), 4.78 (s, 2H), 1.17 (s, 9H); MS (ESI) m/z: 386.1 (M+H+).
실시예 B1:
THF (40 ㎖)에서 1,1-시클로프로판디카르복실산 (3.07 g, 23.60 mmol)의 용액은 0℃로 냉각되고 Et3N (3.30 ㎖, 23.7 mmol)과 염화티오닐 (1.72 ㎖, 23.6 mmol)로 처리되었다. 생성된 반응 혼합물은 0℃에서 30분 동안 교반되었다. 4-플루오르아닐린 (2.30 ㎖, 23.9 mmol)이 첨가되고, 그리고 반응 혼합물은 하룻밤동안 RT로 천천히 가온되었다. 슬러리는 EtOAc (200 ㎖)로 희석되고 1 N aq NaOH (3 x 60 ㎖) 내로 추출되었다. 수성 부분은 에테르 (50 ㎖)로 세척되고 6 N aq HCl로 pH 1-2로 산성화되었다. 생성된 침전물은 여과로 수집되고 물로 세척되었다. 남아있는 고체는 아세토니트릴-MeOH의 혼합물에 용해되고, 그리고 생성된 용액은 침전이 시작될 때까지 진공에서 농축되었다. 완전한 용해는 70℃로 가온함으로써 달성되었다. 생성된 용액은 큰 결정을 제공하기 위하여 하룻밤동안 RT로 냉각되었다. 이들 결정은 여과에 의해 분리되고, 아세토니트릴로 세척되고, 그리고 진공에서 건조되어 1-((4-플루오르페닐)카르바모일)시클로프로판카르복실산 (1.76 g)이 제공되었다. 이들 모액 (mother liquor)은 2차 결정화를 개시하기 위하여 농축되고, 여기에서 1-((4-플루오르페닐)카르바모일)시클로프로판카르복실산 (1.39 g, 60% 전체 수율)의 추가 수확이 제공되었다. 1H NMR (400 MHz, DMSO-d 6 ): δ 13.06 (s, 1 H), 10.55 (s, 1 H), 7.60 (m, 2 H), 7.12 (m, 2 H), 1.39 (s, 4 H); MS (ESI) m/z: 224.1 (M+H+).
실시예 B2:
THF (5 ㎖)에서 1,1-시클로프로판카르복실산 (0.23 g, 1.74 mmol)의 용액은 0℃로 냉각되고 트리에틸아민 (0.48 ㎖, 3.47 mmol)과 염화티오닐 (0.13 ㎖, 1.74 mmol)로 처리되었다. 반응 혼합물은 0℃에서 30분 동안 교반되었다. THF (5 ㎖)에서 실시예 A3 (0.5 g, 1.65 mmol)의 용액이 첨가되었다. 반응 혼합물은 0℃에서 1시간 동안 교반되고, 이후 RT에서 하룻밤동안 교반되었다. 반응 혼합물은 1 M HCl로 처리되고, 이후 EtOAc가 첨가되었다. 생성된 침전물은 여과로 수집되고, EtOAc로 세척되고, 그리고 진공 하에 건조되어 1-((2,3-디플루오르-4-(2-(1-메틸-1H-피라졸-4-일)피리딘-4-일옥시)페닐)카르바모일)시클로프로판카르복실산 (60% 순도, 0.6 g, 53% 수율)이 수득되었다. MS (ESI) m/z: 415.1 (M+H+). 상기 물질은 추후 정제 없이 이용되었다.
실시예 B3:
THF (4 ㎖)에서 1,1-시클로프로판디카르복실산 (0.178 g, 1.367 mmol)의 교반된 용액에 0℃에서, Et3N (0.190 ㎖, 1.367 mmol), 그 이후에 염화티오닐 (0.099 ㎖, 1.367 mmol)이 첨가되었다. 반응물은 0℃에서 30분 동안 교반되었다. 실시예 A2 (0.370 g, 1.301 mmol), DMF (4.00 ㎖)와 Et3N (0.380 ㎖, 2.73 mmol)이 첨가되고, 그리고 반응물은 RT로 가온과 함께, 하룻밤동안 교반되었다. 반응물은 1M HCl (4 ㎖)로 진정되고 15분 동안 교반되었다. pH는 50% NaOH로 7로 반대로 조정되고, 그리고 생성된 혼합물은 EtOAc (3x)로 추출되었다. 합쳐진 유기물은 H2O (1x)와 염수 (2x)로 세척되고, 건조되고 (MgSO4), 그리고 증발되어 고체로서 수득되었다. 가공되지 않은 고체는 CH2Cl2/헥산으로 분쇄되었다. 남아있는 고체는 여과로 수집되고, 헥산으로 헹굼되고, 그리고 진공에서 건조되어 1-((3-플루오르-4-(2-(1-메틸-1H-피라졸-4-일)피리딘-4-일옥시)페닐)카르바모일)시클로프로판카르복실산 (0.199 g, 39% 수율)이 크림색 고체로서 수득되고, 이는 추후 정제 없이 이용되었다. 1H NMR (400 MHz, DMSO-d 6 ): δ 10.76 (s, 1 H), 8.3 (d, J = 5.7 Hz, 1 H), 8.26 (s, 1 H), 7.96 (s, 1 H), 7.84 (dd, J = 2.4, 13 Hz, 1 H), 7.44-7.43 (m, 1 H), 7.42-7.41 (m, 1 H), 7.33 (s, 1 H), 6.66-6.64 (m, 1 H), 3.84 (s, 3 H), 1.39 (s, 4 H); MS (ESI) m/z: 397.1 (M+H+).
실시예 B4:
염화티오닐 (1.09 ㎖, 15.0 mmol)이 0℃에서, THF (15 ㎖)에서 1,1-시클로프로판디카르복실산 (1.95 g, 15.0 mmol)과 Et3N (4.29 g, 42.4 mmol)의 교반된 용액에 2분에 걸쳐 천천히 첨가되었다. 첨가의 완결후, 반응물은 THF (25 ㎖)로 더욱 희석되고, 그리고 반응물은 0℃에서 30분 동안 활발하게 교반되었다. 실시예 A1의 염산염 염 (4.00 g, 12.5 mmol)이 3회 분할량으로 첨가되고, 그리고 생성된 혼합물은 4시간 동안 RT로 천천히 가온되었다. 반응 혼합물은 진공에서 농축 건조되고, 그리고 잔류물은 수성 MeOH로 침지되었다. 남아있는 고체는 여과로 수집되었다. 상기 고체는 1 M aq NaOH (30 ㎖)와 메탄올에 용해되었다. 메탄올은 진공에서 제거되고, 남아있는 수성 상은 150 ㎖의 부피까지 물로 희석되고 EtOAc (3 x 50 ㎖)로 추출되었다. 합쳐진 EtOAc 추출물은 sat aq NaHCO3으로 세척되었다. 합쳐진 수성 층은 0.5 M HCl로 pH 6으로 산성화되었다. 생성된 미세한 침전물은 여과로 수집되고, 아세토니트릴 (20 ㎖)로 세척되고, 그리고 진공에서 건조되어 1-((2-플루오르-4-(2-(1-메틸-1H-피라졸-4-일)피리딘-4-일옥시)페닐)카르바모일)시클로프로판카르복실산 (1.177 g)이 제공되었다. 남아있는 수성 층은 대략 1/3 부피까지 진공에서 농축되고, 그리고 pH는 1 M aq HCl로 pH 5로 감소되었다. 형성된 추가의 침전물은 여과로 수집되고, 아세토니트릴로 세척되고, 그리고 진공에서 건조되어 1-((2-플루오르-4-(2-(1-메틸-1H-피라졸-4-일)피리딘-4-일옥시)페닐)카르바모일)시클로프로판카르복실산의 추가 수확 (1.34 g) (2.517 g 총, 51% 수율)이 제공되었다. 1H NMR (400 MHz, DMSO-d 6 ): δ 13.51 (br s, 1 H), 11.30 (s, 1 H), 8.37 (d, J = 5.7 Hz, 1 H), 8.25 (s, 1 H), 8.19 (t, J = 9.0 Hz, 1 H), 7.95 (s, 1 H), 7.28 (dd, J = 11.6, 2.7 Hz, 1 H), 7.22 (d, J = 1.6 Hz, 1 H), 7.01 (m, 1 H), 6.69 (dd, J = 5.6, 2.3 Hz, 1 H), 3.84 (s, 3 H), 1.58-1.51 (m, 4 H); MS (ESI) m/z: 397.1 (M+H+).
실시예 B5:
DMF (100 ㎖)에서 실시예 A12 (9.66 g, 32.0 mmol)의 용액에 시클로프로판-1,1-디카르복실산 모노메틸 에스테르 (6.91 g, 47.9 mmol), TBTU (15.39 g, 47.9 mmol)와 DIPEA (27.9 ㎖, 160 mmol)가 첨가되었다. 플라스크의 측면은 DMF (10 ㎖)로 헹굼되고, 그리고 생성된 반응 혼합물은 RT에서 하룻밤동안 교반되었다. 상기 용매는 높은 진공 하에 제거되고, 그리고 잔류물은 EtOAc (600 ㎖)에 용해되었다. 유기 상은 물 (100 ㎖), sat. aq. NaHCO3 (200 ㎖)과 염수 (50 ㎖)로 세척되고, 건조되고 (MgSO4), 진공에서 농축되고, 그리고 실리카 겔 색층분석 (CH2Cl2-MeOH)으로 정제되어 메틸 1-((2,5-디플루오르-4-(2-(1-메틸-1H-피라졸-4-일)피리딘-4-일옥시)페닐)카르바모일)시클로프로판카르복실산염 (10.1 g, 69% 수율)이 제공되었다. 1H NMR (400 MHz, DMSO-d 6 ): δ 10.94 (s, 1 H), 8.39 (d, J = 5.7 Hz, 1 H), 8.29 (s, 1 H), 8.19 (dd, J = 12.2, 7.2 Hz, 1 H), 7.99 (s, 1 H), 7.59 (dd, J = 11.0, 7.4 Hz, 1 H), 7.26 (d, J = 2.6 Hz, 1 H), 6.73 (dd, J = 5.6, 2.5 Hz, 1 H), 3.86 (s, 3 H), 3.70 (s, 3 H), 1.61-1.54 (m, 4 H); MS (ESI): m/z 429.1 [M+1]+.
THF (100 ㎖)에서 메틸 1-((2,5-디플루오르-4-(2-(1-메틸-1H-피라졸-4-일)피리딘-4-일옥시)페닐)카르바모일)시클로프로판카르복실산염 (5.8 g, 13.54 mmol)의 현탁액에 물 (50.0 ㎖)과 수산화리튬 일수화물 (2.84 g, 67.7 mmol)이 첨가되었다. 반응 혼합물은 RT에서 40분 동안 교반되었다. 층은 분리되고, 그리고 유기 상은 염수 (50 ㎖)로 세척되고, 건조되고 (MgSO4), 농축 건조되어 리튬 1-((2,5-디플루오르-4-(2-(1-메틸-1H-피라졸-4-일)피리딘-4-일옥시)페닐)카르바모일)시클로프로판카르복실산염 (5.11 g, 86% 수율)이 회백색 거품으로서 수득되었다. MS (ESI): m/z 415.1 [M+1]+.
실시예 1:
실시예 B1 (0.060 g, 0.269 mmol), 실시예 A3 (0.060 g, 0.198 mmol), TBTU (0.129 g, 0.403 mmol)와 i-Pr2NEt (0.089 ㎖, 0.538 mmol)는 DMF (2 ㎖)에서 결합되었다. 생성된 혼합물은 RT에서 하룻밤동안 교반되었다. 추가 분할량의 실시예 B1 (60 mg), TBTU (120 mg)와 i-Pr2NEt (0.080 ㎖)가 첨가되고, 그리고 생성된 혼합물은 추가로 24시간 동안 교반되었다. 반응 혼합물은 물과 EtOAc 간에 분할되었다. 유기층은 5% aq LiCl로 세척되고, 건조되고 (MgSO4), 진공에서 농축되고, 그리고 실리카 겔과 역상 실리카 겔 상에서 색층분석으로 정제되어 N-(2,3-디플루오르-4-(2-(1-메틸-1H-피라졸-4-일)피리딘-4-일옥시)페닐)-N’-(4-플루오르페닐)시클로프로판-1,1-디카르복사미드 (21 mg, 15% 수율)가 제공되었다. 1H NMR (400 MHz, DMSO-d 6 ): δ 10.82 (s, 1 H), 9.89 (s, 1 H), 8.38 (d, J = 5.5 Hz, 1 H), 8.27 (s, 1 H), 7.97 (s, 1 H), 7.76 (m, 1 H), 7.61-7.57 (m, 2 H), 7.29 (d, J = 2.5 Hz, 1 H), 7.22-7.13 (m, 3 H), 6.71 (m, 1 H), 3.84 (s, 3 H), 1.61 (m, 2 H), 1.55 (m, 2 H); MS (ESI) m/z: 508.1 (M+H+).
실시예 2:
실시예 B1 (51 mg, 0.229 mmol), 실시예 A2 (50 mg, 0.176 mmol), TBTU (85 mg, 0.264 mmol)와 DIEA (35 ㎕, 0.212 mmol)는 DMF (1 ㎖)에서 결합되고 RT에서 하룻밤동안 교반되었다. 반응 혼합물은 EtOAc (20 ㎖)로 희석되고, 그리고 물, satd aq NaHCO3과 염수로 세척되었다. 유기물은 건조되고 (MgSO4), 진공에서 농축되고, 그리고 실리카 겔 색층분석을 통해 정제되어 N-(3-플루오르-4-(2-(1-메틸-1H-피라졸-4-일)피리딘-4-일옥시)페닐)-N’-(4-플루오르페닐)시클로프로판-1,1-디카르복사미드 (65 mg, 76% 수율)가 제공되었다. 1H NMR (400 MHz, DMSO-d 6 ): δ 10.35 (s, 1 H), 9.97 (s, 1 H), 8.35 (d, J = 5.7 Hz, 1 H), 8.25 (s, 1 H), 7.95 (s, 1 H), 7.85 (dd, J = 13.2, 2.2 Hz, 1 H), 7.64-7.60 (m, 2 H), 7.46 (m, 1 H), 7.32 (t, J = 9.0 Hz, 1 H), 7.22 (d, J = 2.5 Hz, 1 H), 7.12 (m, 2 H), 6.60 (dd, J = 5.7, 2.4 Hz, 1 H), 3.84 (s, 3 H), 1.46 (m, 2 H), 1.43 (m, 2 H); MS (ESI) m/z: 490.1 (M+H+).
실시예 3:
실시예 B2 (60% 순도, 0.15 g, 0.22 mmol), 벤질아민 (0.036 ㎖, 0.326 mmol), EDC (0.062 g, 0.326 mmol), HOBT (0.050 g, 0.326 mmol)와 Et3N (0.091 ㎖, 0.652 mmol)은 DMF (2.5 ㎖)에서 결합되고 RT에서 교반되었다. 추가의 벤질 아민 (10 mg)이 첨가되고, 이후 반응물은 RT에서 하룻밤동안 교반되었다. 완결된 반응물은 물에 부어지고 EtOAc (3x)로 추출되었다. 합쳐진 유기층은 NaHCO3, LiCl, 염수로 세척되고, 건조되고 (Na2SO4), 그리고 실리카 겔 칼럼 색층분석 (EtOAc/헥산→MeOH/CH2Cl2)으로 정제되어 냉동건조후 N-벤질-N’-(2,3-디플루오르-4-(2-(1-메틸-1H-피라졸-4-일)피리딘-4-일옥시)페닐)시클로프로판-1,1-디카르복사미드 (22 mg, 20% 수율)가 수득되었다. 1H NMR (400 MHz, DMSO-d 6): δ 11.9 (s, 1 H), 8.45 (t, J = 5.6 Hz, 1 H), 8.38 (m, 1 H), 8.26 (s, 1 H), 7.96 (m, 2 H), 7.1-7.4 (m, 7 H), 6.73 (dd, J = 5.2, 2.4 Hz, 1 H), 4.32 (d, J = 5.6 Hz, 2 H), 3.84 (s, 3 H), 1.55 (s, 4 H); MS (ESI) m/z: 504.1 (M+H+).
실시예 4:
벤질아민 (0.017 ㎖, 0.151 mmol), 실시예 B3 (0.040 g, 0.101 mmol)과 i-Pr2NEt (0.025 ㎖, 0.151 mmol)는 DMF (0.4 ㎖)에서 결합되었다. TBTU (0.049 g, 0.151 mmol)가 첨가되고, 그리고 생성된 혼합물은 RT에서 하룻밤동안 교반되었다. 완결된 반응물은 EtOAc (30 ㎖)로 희석되고, H2O (15 ㎖), 5% 구연산 (15 ㎖)과 포화된 염수로 세척되고, 건조되고 (MgSO4), 진공에서 농축되고, 그리고 색층분석으로 정제되어 N-벤질-N’-(3-플루오르-4-(2-(1-메틸-1H-피라졸-4-일)피리딘-4-일옥시)페닐)시클로프로판-1,1-디카르복사미드 (0.028 g, 57% 수율)가 수득되었다. 이는 HCl (디옥산에서 4.0 M HCl, 1.0 eq.)과 반응함으로써 상응하는 HCl 염으로 전환되었다. 1H NMR (DMSO-d 6 ): δ 10.97 (s, 1 H), 8.55-8.44 (m, 3 H), 8.23 (s, 1 H), 7.90 (dd, J = 13.6, 1.6 Hz, 1 H), 7.59 (s, 1 H), 7.50-7.38 (m, 2 H), 7.31-7.19 (m, 5 H), 6.98 (s, 1 H), 4.31 (d, J = 6.0 Hz, 2 H), 3.89 (s, 3 H), 1.40-1.39 (m, 4 H); MS (ESI) m/z: 486.2 (M+H+).
실시예 5:
실시예 4에 유사한 절차를 이용하여, 아닐린 (0.015 ㎖, 0.159 mmol)과 실시예 B3 (0.042 g, 0.106 mmol)은 결합되어 N-(3-플루오르-4-(2-(1-메틸-1H-피라졸-4-일)피리딘-4-일옥시)페닐)-N’-페닐시클로프로판-1,1-디카르복사미드 (0.040 g, 79% 수율)가 밝은 황색 오일로서 제공되었다. 이는 HCl (디옥산에서 4.0 M HCl, 1.0 eq.)과 반응함으로써 상응하는 HCl 염으로 전환되었다. 1H NMR (DMSO-d 6 ): δ 10.43 (s, 1 H), 9.96 (s, 1 H), 8.52-8.49 (m, 2 H), 8.21 (s, 1 H), 7.92 (d, J = 11.2 Hz, 1 H), 7.64-7.52 (m, 4 H), 7.42 (t, J = 8.8 Hz, 1 H), 7.34-7.30 (m, 2 H), 7.08 (t, J = 6.8 Hz, 1 H), 6.95 (s, 1 H), 3.91 (s, 3 H), 1.50-1.44 (m, 4 H); MS (ESI) m/z: 472.1 (M+H+).
실시예 6:
실시예 4에 유사한 절차를 이용하여, 실시예 B3 (0.042 g, 0.106 mmol)과 3-아미노벤조트리플루오르화물 (0.020 ㎖, 0.159 mmol)은 결합되어 N-(3-플루오르-4-(2-(1-메틸-1H-피라졸-4-일)피리딘-4-일옥시)페닐)-N’-(3-(트리플루오르메틸)페닐)시클로프로판-1,1-디카르복사미드 (0.018 g, 32% 수율)가 밝은 황색 오일로서 제공되었다. 이는 HCl (디옥산에서 4.0 M HCl, 1.0 eq.)과 반응함으로써 상응하는 HCl 염으로 전환되었다. 1H NMR (DMSO-d 6 ): δ 10.39 (s, 1 H), 10.28 (s, 1 H), 8.52-8.46 (m, 2 H), 8.18 (s, 1 H), 8.15 (s, 1 H), 7.58-7.49 (m, 3 H), 7.44-7.38 (m, 2 H), 6.93 (s, 1 H), 3.91 (s, 3 H), 1.50-1.42 (m, 4 H); MS (ESI) m/z: 540.1 (M+H+).
실시예 7:
실시예 B4 (1.19 g, 3.00 mmol), 4-플루오르아닐린 (0.367 g, 3.30 mmol), 그리고 DIEA (0.54 ㎖, 3.27 mmol)는 DMF (10.5 ㎖)에서 결합되었다. TBTU (1.25 g, 3.89 mmol)가 첨가되고, 그리고 생성된 용액은 RT에서 교반되었다. 36시간 후, 반응 혼합물은 EtOAc (150 ㎖)로 희석되고 물 (50 ㎖), 염수 (2 x 50 ㎖), satd 나트륨 중탄산염 용액 (2 x 50 ㎖)과 염수 (50 ㎖)로 세척되었다. 합쳐진 수성 상은 EtOAc (50 ㎖)로 역추출되었다. 합쳐진 유기물은 건조되고 (Na2SO4) 점성 오일로 농축되었다. 잔류물은 아세토니트릴 (15 ㎖)에서 완전히 용해되고, 그리고 생성된 용액은 침전이 발생할 때까지 초음파처리되었다. 미세한 현탁액은 하룻밤동안 방치되고, 여과로 수집되고, 아세토니트릴 (25 ㎖)로 세척되고, 그리고 진공에서 건조되어 N-(2-플루오르-4-(2-(1-메틸-1H-피라졸-4-일)피리딘-4-일옥시)페닐)-N’-(4-플루오르페닐)시클로프로판-1,1-디카르복사미드 (1.258 g)가 제공되었다. 여과액은 대략 3 ㎖ 부피로 농축되어 2차 수확 (0.106 g, 92% 총 수율)이 제공되었다. 1H NMR (400 MHz, DMSO-d 6 ): δ 10.62 (s, 1 H), 9.91 (s, 1 H), 8.38 (d, J = 4.9 Hz, 1 H), 8.25 (s, 1 H), 7.96-7.90 (m, 2 H), 7.60-7.56 (m, 2 H), 7.26-7.23 (m, 2 H), 7.15 (m, 2 H), 7.01 (m, 1 H), 6.67 (m, 1 H), 3.84 (s, 3 H), 1.60 (m, 2 H), 1.54 (m, 2 H); MS (ESI) m/z: 490.2 (M+H+).
실시예 8:
4-메톡시아닐린 (0.020 g, 0.159 mmol)과 실시예 B3 (0.042 g, 0.106 mmol)은 실시예 4에 유사한 절차를 이용하여 결합되어 N-(3-플루오르-4-(2-(1-메틸-1H-피라졸-4-일)피리딘-4-일옥시)페닐)-N’-(4-메톡시페닐)시클로프로판-1,1-디카르복사미드 (0.019 g, 36% 수율)가 제공되었다. 1H NMR (DMSO-d 6 ): δ 10.41 (s, 1 H), 9.76 (s, 1 H), 8.35 (dd, J = 6.0, 1.2 Hz, 1 H), 8.24 (s, 1 H), 7.95 (s, 1 H), 7.85 (d, J = 13.2 Hz, 1 H), 7.50-7.44 (m, 3 H), 7.32 (t, J = 8.8 Hz, 1 H), 7.22 (s, 1 H), 6.86 (dd, J = 9.2, 1.6 Hz, 2 H), 6.60 (m, 1 H), 3.84 (s, 3 H), 3.70 (s, 3 H), 1.50-1.42 (m, 4 H); MS (ESI) m/z: 502.1 (M+H+).
실시예 9:
m-아니시딘 (0.020 g, 0.159 mmol)과 실시예 B3 (0.042 g, 0.106 mmol)은 실시예 4에 유사한 절차를 이용하여 결합되어 N-(3-플루오르-4-(2-(1-메틸-1H-피라졸-4-일)피리딘-4-일옥시)페닐)-N’-(3-메톡시페닐)시클로프로판-1,1-디카르복사미드 (0.031 g, 58% 수율)가 무색 오일로서 제공되었다. 이는 HCl (디옥산에서 4.0 M HCl, 1.0 eq.)과 반응함으로써 상응하는 HCl 염으로 전환되었다. 1H NMR (DMSO-d 6 ): δ 10.42 (s, 1 H), 9.92 (s, 1 H), 8.68 (d, J = 2.4 Hz, 1 H), 8.60 (d, J = 6.8 Hz, 1 H), 8.34 (d, J = 3.6 Hz, 1 H), 7.93 (dd, J = 12.8, 1.6 Hz, 1 H), 7.80 (d, J = 2.8 Hz, 1 H), 7.55-7.52 (m, 1 H), 7.44 (t, J = 8.8 Hz, 1 H), 7.31 (s, 1 H), 7.20-7.16 (m, 3 H), 6.63 (m, 1 H), 3.92 (s, 3 H), 3.70 (s, 3 H), 1.50-1.41 (m, 4 H); MS (ESI) m/z: 502.2 (M+H+).
실시예 10:
3-플루오르아닐린 (0.018 g, 0.159 mmol)과 실시예 B3 (0.042 g, 0.106 mmol)은 실시예 4에 유사한 절차를 이용하여 결합되어 N-(3-플루오르-4-(2-(1-메틸-1H-피라졸-4-일)피리딘-4-일옥시)페닐)-N’-(3-플루오르페닐)시클로프로판-1,1-디카르복사미드 (0.022 g, 42% 수율)가 제공되었다. 1H NMR (DMSO-d 6 ): δ 10.27 (s, 1 H), 10.17 (s, 1 H), 8.35 (d, J = 5.6 Hz, 1 H), 8.25 (s, 1 H), 7.95 (s, 1 H), 7.84 (dd, J = 13.2, 2.4 Hz, 1 H), 7.62 (d, J = 12.0 Hz, 1 H), 7.46 (d, J = 8.8, 1.6 Hz, 1 H), 7.38-7.29 (m, 3 H), 7.22 (d, J = 2.0 Hz, 1 H), 6.89 (t, J = 8.0 Hz, 1 H), 6.60 (dd, J = 5.6, 2.0 Hz, 1 H), 3.84 (s, 3 H), 1.47-1.42 (m, 4 H); MS (ESI) m/z: 490.1 (M+H+).
실시예 11:
실시예 B1 (53 mg, 0.237 mmol), 실시예 A4 (51 mg, 0.182 mmol), TBTU (88 mg, 0.273 mmol)와 i-Pr2NEt (0.045 ㎖, 0.272 mmol)는 실시예 2에 유사한 절차를 이용하여 DMF (1 ㎖)에서 결합되어 N-(4-플루오르페닐)-N’-(3-메틸-4-(2-(1-메틸-1H-피라졸-4-일)피리딘-4-일옥시)페닐)시클로프로판-1,1-디카르복사미드 (70 mg, 80% 수율)가 제공되었다. 1H NMR (400 MHz, DMSO-d 6 ): δ 10.12 (s, 1 H), 10.00 (s, 1 H), 8.31 (d, J = 6.0 Hz, 1 H), 8.22 (s, 1 H), 7.92 (s, 1 H), 7.64-7.60 (m, 3 H), 7.54 (m, 1 H), 7.16-7.11 (m, 3 H), 7.04 (d, J = 8.8 Hz, 1 H), 6.46 (dd, J = 5.6, 2.4 Hz, 1 H), 3.84 (s, 3 H), 2.08 (s, 3 H), 1.45 (m, 4 H); MS (ESI) m/z: 486.2 (M+H+).
실시예 12:
건성 에테르 (1.0 ㎖)에서 2-(4-플루오르페닐)아세틸 염화물 (0.173 g, 1.0 mmol)의 용액은 에테르 (1.5 ㎖)에서 은 시안산염 (0.180 g, 1.2 mmol)의 현탁액에 천천히 첨가되었다. 생성된 혼합물은 차후에 N2 하에 2시간 동안 환류되었다. 은염의 여과후, 용매는 감압 하에 제거되고, 그리고 잔류물은 CH2Cl2 (4.0 ㎖)에 용해되었다.
상기 용액 (0.179 g, 1.0 mmol)의 분할량 및 실시예 A2 (0.071 g, 0.25 mmol)는 CH2Cl2 (2.0 ㎖)에서 결합되었다. RT에서 하룻밤동안 교반한 이후, 반응물은 진공에서 농축되고 색층분석으로 정제되어 1-(3-플루오르-4-(2-(1-메틸-1H-피라졸-4-일)피리딘-4-일옥시)페닐)-3-(2-(4-플루오르페닐)아세틸)우레아 (0.020 g, 17% 수율)가 백색 고체로서 수득되었다. 1H NMR (DMSO-d 6 ): δ 11.03 (s, 1 H), 10.57 (s, 1 H), 8.35 (d, J = 5.6 Hz, 1 H), 8.24 (s, 1 H), 7.95 (s, 1 H), 7.76 (dd, J = 12.8, 2.4 Hz, 1 H), 7.37-7.32 (m, 4 H), 7.20-7.13 (m, 3 H), 6.61 (dd, J = 5.6, 2.4 Hz, 1 H), 3.84 (s, 3H), 3.73 (s, 2H); MS (ESI) m/z: 464.1 (M+H+).
실시예 13:
CH2Cl2 (5 ㎖)에서 4-아미노피리딘 (0.019 g, 0.202 mmol)의 용액에 실시예 B3 (0.040 g, 0.101 mmol), TBTU (0.039 g, 0.151 mmol)와 트리에틸아민 (0.020 g, 0.202 mmol)이 첨가되었다. 반응 혼합물은 RT에서 13시간 동안 교반되고, 물로 세척되고, 유기층은 농축되고 색층분석 (THF/아세토니트릴)으로 정제되어 N-(3-플루오르-4-(2-(1-메틸-1H-피라졸-4-일)피리딘-4-일옥시)페닐)-N’-(피리딘-4-일)시클로프로판-1,1-디카르복사미드 (0.032 g, 67% 수율)가 백색 고체로서 제공되었다. 1H NMR (400 MHz, DMSO-d6): δ 10.45 (s, 1H), 10.25 (s, 1H), 8.42 (d, J = 6 Hz, 2 H), 8.35 (d, J =6 Hz, 1 H), 8.25 (s, 1 H), 7.95 (s, 1 H), 7.82 (m, 1 H), 7.65 (d, J =6 Hz, 2 H), 7.44(m, 1 H), 7.32 (m, 1 H), 7.20 (d, J =2.4 Hz, 1 H), 6.60 (m, 1H), 3.85 (s, 3H), 1.47(s, 4 H); MS(ESI) m/z : 473.1 (M+H+).
실시예 14:
실시예 13에 유사한 절차를 이용하여, 3-아미노피리딘 (0.019 g, 0.202 mmol), 실시예 B3 (0.040 g, 0.101 mmol), TBTU (0.039 g, 0.151 mmol)와 트리에틸아민 (0.020 g, 0.202 mmol)은 CH2Cl2 (5 ㎖)에서 결합되어 N-(3-플루오르-4-(2-(1-메틸-1H-피라졸-4-일)피리딘-4-일옥시)페닐)-N’-(피리딘-3-일)시클로프로판-1,1-디카르복사미드 (0.032 g, 67% 수율)가 백색 고체로서 제공되었다. 1H NMR (400 MHz, DMSO-d6): δ 10.36 (s, 1 H), 10.16 (s, 1 H), 8.78 (d, J =2.5 Hz, 1 H), 8.35(d, J =6 Hz, 1 H), 8.25 (m, 2 H), 8.00 (m, 1 H), 7.94 (s, 1 H), 7.84 (m, 1 H), 7.44 (m, 1 H), 7.33 (m, 2 H), 7.22 (d, J =2.5 Hz, 1 H), 6.60 (m, 1 H), 3.85 (s, 3 H), 1.47 (s, 4 H); MS(ESI) m/z : 473.1 (M+H+).
실시예 15:
CH2Cl2 (3 ㎖)에서 3-클로로벤질아민 (0.029 g, 0.202 mmol)의 용액에 실시예 B3 (0.040 g, 0.101 mmol), TBTU (0.039 g, 0.151 mmol)와 트리에틸아민 (0.020 g, 0.202 mmol)이 첨가되었다. 반응 혼합물은 RT에서 13시간 동안 교반되었다. 반응 혼합물은 포화된 NaHCO3과 염수로 세척되고, 건조되고, 그리고 상기 용매가 증발되어 N-(3-클로로벤질)-N’-(3-플루오르-4-(2-(1-메틸-1H-피라졸-4-일)피리딘-4-일옥시)페닐)시클로프로판-1,1-디카르복사미드 (0.036 g, 69% 수율)가 백색 고체로서 제공되었다. 1H NMR (400 MHz, DMSO-d6): δ 10.80 (s, 1 H), 8.49 (m, 2 H), 8.35 (d, J=6 Hz, 1 H), 8.25 (s, 1 H), 7.95 (s, 1 H), 7.82 (m, 2 H), 7.55-7.18 (m, 5 H), 6.60 (m, 1 H), 4.31(d, J = 6 Hz, 2 H), 3.85 (s, 3 H), 1.38 (s, 4 H); MS (ESI) m/z : 520.2 (M+H+).
실시예 16:
CH2Cl2 (3 ㎖)에서 (S)-(-)-알파-메틸벤질아민 (0.024 g, 0.202 mmol)의 용액에 실시예 B3 (0.040 g, 0.101 mmol), TBTU (0.039 g, 0.151 mmol)와 트리에틸아민 (10.21 mg, 0.101 mmol)이 첨가되었다. 반응 혼합물은 RT에서 13시간 동안 교반되었다. 반응 혼합물은 포화된 NaHCO3과 염수로 세척되고, 건조되고, 진공에서 농축되고, 그리고 재결정화 (아세토니트릴)되어 N-(3-플루오르-4-(2-(1-메틸-1H-피라졸-4-일)피리딘-4-일옥시)페닐)-N’-((S)-1-페닐에틸)시클로프로판-1,1-디카르복사미드 (0.04 g, 79% 수율)가 백색 고체로서 제공되었다. 1H NMR (400 MHz, DMSO-d6): δ10.72 (s, 1 H), 8.34 (d, J = 5.5 Hz, 1 H), 8.31 (d, J = 8 Hz, 1 H), 8.25 (s, 1 H), 7.95 (s, 1 H), 7.82 (m,1 H), 7.42 (m, 1 H), 7.29 (m, 5 H), 7.19 (m, 2 H), 6.60 (m, 1 H), 4.99 (m, 1 H), 3.85 (s, 3 H), 1.40 (m, 7 H); MS(ESI) m/z : 500.2 (M+H+).
실시예 17:
실시예 16에 유사한 절차를 이용하여, (R)-(+)-알파-메틸벤질아민 (0.024 g, 0.202 mmol), 실시예 B3 (0.040 g, 0.101 mmol), TBTU (0.039 g, 0.151 mmol)와 트리에틸아민 (0.020 g, 0.202 mmol)은 CH2Cl2 (3 ㎖)에서 결합되고, 그리고 가공되지 않은 물질은 재결정화 (메탄올)되어 N-(3-플루오르-4-(2-(1-메틸-1H-피라졸-4-일)피리딘-4-일옥시)페닐)-N’-((R)-1-페닐에틸)시클로프로판-1,1-디카르복사미드 (0.040 g, 79% 수율)가 백색 고체로서 제공되었다. 1H NMR (400 MHz, DMSO-d6): δ 10.72 (s, 1 H), 8.34 (d, J =5.5 Hz, 1 H), 8.31 (d, J =8 Hz, 1 H), 8.25 (s, 1 H), 7.95 (s, 1 H), 7.82 (m, 1 H), 7.42 (m, 1 H), 7.29 (m, 5 H), 7.19 (m, 2 H), 6.60 (m, 1 H), 4.99 (m, 1 H), 3.85 (s, 3 H), 1.40 (m, 7 H); MS(ESI) m/z : 500.1 (M+H+).
실시예 18:
CH2Cl2에서 4-플루오르벤질아민 (0.019 g, 0.151 mmol)의 용액에 실시예 B3 (0.030 g, 0.076 mmol), TBTU (0.039 g, 0.151 mmol)와 트리에틸아민 (0.015 g, 0.151 mmol)이 첨가되었다. 반응 혼합물은 RT에서 3시간 동안 교반되었다. 반응 혼합물은 포화된 나트륨 중탄산염과 염수로 세척되고, 건조되고, 진공에서 농축되고, 그리고 잔류물은 재결정화 (메탄올)되어 N-(4-플루오르벤질)-N’-(3-플루오르-4-(2-(1-메틸-1H-피라졸-4-일)피리딘-4-일옥시)페닐)시클로프로판-1,1-디카르복사미드 (0.025 g, 66 % 수율)가 백색 고체로서 제공되었다. 1H NMR (400 MHz, DMSO-d6): δ 10.83 (s, 1 H), 8.40 (t, J =5.5 Hz, 1 H), 8.34 (d, J =5.5 Hz, 1H), 8.25 (s, 1 H), 7.95 (s, 1 H), 7.82 (m, 1 H), 7.43 (m, 1 H), 7.30 (m, 3 H), 7.20 (d, J = 2.5 Hz, 1 H), 7.12 (m, 2 H), 6.59 (m, 1 H), 4.32 (d, J=6 Hz, 2 H), 3.85 (s, 3 H), 1.40 (s, 4 H); MS(ESI) m/z : 504.1 (M+H+).
실시예 19:
실시예 31 (0.061 g, 0.128 mmol), K2CO3 (0.053 g, 0.385 mmol)과 요오드에탄 (0.060 g, 0.385 mmol)은 DMSO (1 ㎖)에서 결합되고, 그리고 생성된 혼합물은 RT에서 24시간 동안 교반되었다. 반응 혼합물은 EtOAc (20 ㎖)와 물 (30 ㎖)에 부어졌다. 층은 분리되고, 그리고 수성 층은 EtOAc (15 ㎖)로 추출되었다. 합쳐진 유기물은 염수로 세척되고, 건조되고 (Na2SO4), 농축되고, 그리고 실리카 겔 색층분석 (EtOAc-헥산)으로 정제되어 N-(4-(2-(1-에틸-1H-피라졸-4-일)피리딘-4-일옥시)-3-플루오르페닐)-N’-(4-플루오르페닐)시클로프로판-1,1-디카르복사미드 (37 mg; 57% 수율)가 백색 고체로서 수득되었다. 1H NMR (400 MHz, DMSO-d 6): δ 10.35 (s, 1 H), 9.97 (s, 1 H), 8.35 (d, J = 6.0 Hz, 1 H), 8.23 (s, 1 H), 7.96 (s, 1 H), 7.85 (dd, J = 13.2 Hz, 2.0 Hz, 1 H), 7.63-7.60 (m, 2 H), 7.45 (dd, J = 8.8 Hz, 1.6 Hz, 1 H), 7.31 (t, J = 8.8 Hz, 1 H), 7.23 (d, J = 2.0 Hz, 1 H), 7.15-7.11 (m, 2 H), 6.59 (dd, J = 5.6 Hz, 2.4 Hz, 1 H), 4.13 (q, J = 7.2 Hz, 2 H), 1.45-1.42 (m, 4 H), 1.37 (t, J = 7.2 Hz, 3 H); MS (ESI) m/z: 504.1 (M+H+).
실시예 20:
실시예 19에 유사한 절차를 이용하여, 실시예 31 (0.061 g, 0.128 mmol), K2CO3 (0.053 g, 0.385 mmol)과 1-요오드프로판 (0.11 g, 0.64 mmol)은 결합되어 N-(3-플루오르-4-(2-(1-프로필-1H-피라졸-4-일)피리딘-4-일옥시)페닐)-N'-(4-플루오르페닐)시클로프로판-1,1-디카르복사미드가 백색 고체 (51 mg, 77% 수율)로서 제공되었다. 1H NMR (400 MHz, DMSO-d 6): δ 10.35 (s, 1 H), 9.97 (s, 1 H), 8.35 (d, J = 5.6 Hz, 1 H), 8.28 (s, 1 H), 7.96 (s, 1 H), 7.84 (dd, J = 13.2 Hz, 2.0 Hz, 1 H), 7.63-7.60 (m, 2 H), 7.46 (dd, J = 8.8 Hz, 1.2 Hz, 1 H), 7.31 (t, J = 8.8 Hz, 1 H), 7.23 (d, J = 2.0 Hz, 1 H), 7.15-7.11 (m, 2 H), 6.59 (dd, J = 5.6 Hz, 2.4 Hz, 1 H), 4.06 (t, J = 6.8 Hz, 2 H), 1.82-1.73 (m, 2 H), 1.47-1.41 (m, 4 H), 0.80 (t, J = 7.2 Hz, 3 H); MS (ESI) m/z: 518.2 (M+H+).
실시예 21:
실시예 19에 유사한 절차를 이용하여, 실시예 31 (0.091 g, 0.19 mmol), K2CO3 (0.08 g, 0.57 mmol)과 에틸 2-브로모아세테이트 (0.16 g, 0.96 mmol)는 결합되어 N-(3-플루오르-4-(2-(1-(1-에톡시2-아세틸)-1H-피라졸-4-일)피리딘-4-일옥시)페닐)-N'-(4-플루오르페닐)시클로프로판-1,1-디카르복사미드 (97 mg, 90% 수율)가 백색 고체로서 제공되었다. 1H NMR (400 MHz, DMSO-d 6): δ 10.35 (s, 1 H), 9.97 (s, 1 H), 8.37 (d, J = 5.6 Hz, 1 H), 8.29 (s, 1 H), 8.02 (s, 1 H), 7.85 (dd, J = 13.2 Hz, 2.0 Hz, 1 H), 7.63-7.60 (m, 2 H), 7.47-7.45 (m, 1 H), 7.32 (t, J = 8.8 Hz, 1 H), 7.23 (d, J = 2.8 Hz, 1 H), 7.15-7.11 (m, 2 H), 6.64 (dd, J = 6.0 Hz, 2.4 Hz, 1 H), 5.07 (s, 2 H), 4.14 (q, J = 7.2 Hz, 2 H), 1.45-1.42 (m, 4 H), 1.19 (t, J = 7.2 Hz, 3 H); MS (ESI) m/z: 562.1 (M+H+).
THF (4 ㎖)에서 N-(3-플루오르-4-(2-(1-(1-에톡시2-아세틸)-1H-피라졸-4-일)피리딘-4-일옥시)페닐)-N'-(4-플루오르페닐)시클로프로판-1,1-디카르복사미드 (0.097 g, 0.173 mmol)의 용액에 -78℃에서, LiAlH4 (THF에서 2 M, 0.173 ㎖, 0.345 mmol)가 첨가되었다. 생성된 혼합물은 RT로 가온되고 1시간 동안 교반되었다. 이는 0℃로 냉각되고, 메탄올 (0.2 ㎖)과 sat. aq Na2SO4 용액 (0.2 ㎖)이 첨가되고, 그리고 생성된 혼합물은 RT에서 4시간 동안 교반되었다. 상기 혼합물은 Celite® 패드를 통해 여과되고, 그리고 상기 패드는 THF (2 x 2 ㎖)로 세척되었다. 합쳐진 여과액은 농축되어 가공되지 않은 산물이 제공되고, 이는 실리카 겔 색층분석 (CH2Cl2-MeOH)으로 정제되어 N-(3-플루오르-4-(2-(1-(2-히드록시에틸)-1H-피라졸-4-일)피리딘-4-일옥시)페닐)-N’-(4-플루오르페닐)시클로프로판-1,1-디카르복사미드 (41 mg, 46% 수율)가 제공되었다. 1H NMR (400 MHz, DMSO-d 6): δ 10.35 (s, 1H), 9.97 (s, 1H), 8.35 (d, J = 4.8 Hz, 1H), 8.26 (s, 1H), 7.98 (s, 1H), 7.85 (dd, J = 13.2 Hz, 2.4 Hz, 1H), 7.63-7.60 (m, 2H), 7.47-7.44 (m, 1H), 7.32 (t, J = 9.2 Hz, 1H), 7.24 (d, J = 1.6 Hz, 1H), 7.15-7.11 (m, 2H), 6.62-6.60 (m, 1H), 4.85 (brs, 1H), 4.14 (t, J = 5.2 Hz, 2H), 3.72 (t, J = 5.2 Hz, 2H), 1.47-1.41 (m, 4H); MS (ESI) m/z: 520.1 (M+H+).
실시예 22:
실시예 15에 유사한 절차를 이용하여, CH2Cl2 (5 ㎖)에서 4-클로로아닐린 (0.064 g, 0.505 mmol), 실시예 B4 (0.100 g, 0.252 mmol), TBTU (0.096 g, 0.378 mmol)와 트리에틸아민 (0.051 g, 0.505 mmol)은 결합되고, 그리고 실리카 겔 색층분석 (EtOAc/CH2Cl2)으로 정제되어 N-(4-클로로페닐)-N'-(2-플루오르-4-(2-(1-메틸-1H-피라졸-4-일)피리딘-4-일옥시)페닐)시클로프로판-1,1-디카르복사미드 (0.138 mmol, 55% 수율)가 백색 고체로서 제공되었다. 1H NMR (400 MHz, DMSO-d6): δ 10.48 (s, 1 H), 10.00 (s, 1 H), 8.40 (d, J = 5.5 Hz, 1 H), 8.25 (s, 1 H), 7.95 (s, 1 H), 7.90 (m, 1 H), 7.62 (d, J = 9 Hz, 2 H), 7.37 (d, J = 9 Hz, 2 H), 7.25 (m, 2 H), 7.0 (m, 1 H), 6.66 (m, 1 H), 3.85 (s, 3 H), 1.54 (m, 4 H); MS(ESI) m/z : 506.2 (M+H+).
실시예 23:
실시예 15에 유사한 절차를 이용하여, 실시예 B4 (0.100 g, 0.252 mmol), TBTU (0.071 g, 0.278 mmol), 트리에틸아민 (0.051 g, 0.505 mmol)과 p-톨루이딘 (0.054 g, 0.505 mmol)은 결합되고, 그리고 실리카 겔 색층분석으로 정제되어 N-(2-플루오르-4-(2-(1-메틸-1H-피라졸-4-일)피리딘-4-일옥시)페닐)-N'-p-톨릴시클로프로판-1,1-디카르복사미드 (0.070 g, 57% 수율)가 백색 고체로서 제공되었다. 1H NMR (400 MHz, DMSO-d6):δ 10.68 (s, 1 H), 9.79 (s, 1 H), 8.40 (d, J = 5.5 Hz, 1 H), 8.25 (s, 1 H), 7.95 (m, 2 H), 7.43 (d, J =8 Hz, 2 H), 7.22 (m, 2 H), 7.11 (d, J = 8 Hz, 2 H), 7.02 (m, 1 H), 6.67 (m, 1 H), 3.85 (s, 3 H), 2.24 (s, 3 H), 1.57 (m, 4 H); MS(ESI) m/z : 486.2 (M+H+).
실시예 24:
실시예 15에 유사한 절차를 이용하여, 3,4-디플루오르아닐린 (0.065 g, 0.505 mmol), 실시예 B4 (0.100 g, 0.252 mmol), TBTU (0.071 g, 0.278 mmol)와 트리에틸아민 (0.051 g, 0.505 mmol)은 결합되고, 그리고 실리카 겔 색층분석으로 정제되어 N-(3,4-디플루오르페닐)-N’-(2-플루오르-4-(2-(1-메틸-1H-피라졸-4-일)피리딘-4-일옥시)페닐)시클로프로판-1,1-디카르복사미드 (0.06 g, 47% 수율)가 제공되었다. 1H NMR (400 MHz, DMSO-d6):δ 10.48 (s, 1 H), 10.22 (s, 1 H), 8.46 (d, J = 5.5Hz, 1 H), 8.33 (s, 1 H), 7.99 (s, 1 H), 7.95 (m, 1 H), 7.84 (m, 1 H), 7.40 (m, 2 H), 7.35 (m, 2 H), 7.10 (m, 1 H), 6.74 (m, 1 H), 3.95 (s, 3 H), 1.61 (m, 4 H); MS(ESI) m/z : 508.2 (M+H+).
실시예 25:
4-트리플루오르아닐린 (0.081 g, 0.505 mmol), 실시예 B4 (0.100 g, 0.252 mmol), TBTU (0.071 g, 0.278 mmol)와 트리에틸아민 (0.051 g, 0.505 mmol)은 실시예 15에 유사한 절차를 이용하여 결합되어 N-(2-플루오르-4-(2-(1-메틸-1H-피라졸-4-일)피리딘-4-일옥시)페닐)-N’-(4-(트리플루오르메틸)페닐)시클로프로판-1,1-디카르복사미드 (0.028 g, 21% 수율)가 제공되었다. 1H NMR (400 MHz, DMSO-d6): δ 10.33 (s, 1 H), 10.31 (s, 1 H), 8.40 (d, J = 5.5 Hz, 1 H), 8.25 (s, 1 H), 7.95 (s, 1 H), 7.82 (m, 3 H), 7.67 (m, 2 H), 7.25 (m, 2 H), 7.02 (m, 1 H), 6.66 (m, 1 H), 3.85 (s, 3 H), 1.53 (m, 4 H); MS(ESI) m/z : 540.2 (M+H+).
실시예 26:
실시예 B4 (0.050 g, 0.126 mmol), N,N-디이소프로필에틸아민 (0.016 g, 0.126 mmol), 5-아미노-2-플루오르벤조니트릴 (0.017 g, 0.126 mmol), 그리고 BOP-염화물 (0.032 g, 0.126 mmol)은 실시예 28에 유사한 절차를 이용하여 CH2Cl2 (5 ㎖)에서 결합되어 N-(3-시아노-4-플루오르페닐)-N'-(2-플루오르-4-(2-(1-메틸-1H-피라졸-4-일)피리딘-4-일옥시)페닐)시클로프로판-1,1-디카르복사미드 (0.030 g, 47% 수율)가 제공되었다. 1H NMR (400 MHz, DMSO-d6): δ 10.38 (s, 1 H), 10.27 (s, 1 H), 8.40 (d, J =5.5 Hz, 1 H), 8.25 (s, 1 H), 8.11 (m, 1 H), 7.95 (s, 1 H), 7.88 (m, 2 H), 7.50 (m, 1 H), 7.25 (m, 2 H), 7.02 (d, J = 10 Hz, 1 H), 6.89 (m, 1 H), 3.85 (s, 3 H), 1.55 (m, 4 H); MS(ESI) m/z : 515.2 (M+H+).
실시예 27:
실시예 B4 (0.100 g, 0.252 mmol), N,N-디이소프로필에틸아민 (0.033 g, 0.252 mmol), 2,4-디플루오르아닐린 (0.065 g, 0.505 mmol), 그리고 BOP-염화물 (0.064 g, 0.252 mmol)은 실시예 28에 유사한 절차를 이용하여 CH2Cl2 (5 ㎖)에서 결합되어 N-(2,4-디플루오르페닐)-N'-(2-플루오르-4-(2-(1-메틸-1H-피라졸-4-일)피리딘-4-일옥시)페닐)시클로프로판-1,1-디카르복사미드 (0.034 g, 27% 수율)가 제공되었다. 1H NMR (400 MHz, DMSO-d6): δ 10.59 (s, 1 H), 10.23 (s, 1 H), 8.40 (d, J = 5.5 Hz, 1 H), 8.25 (s, 1 H), 7.95 (s, 1 H), 7.89 (m, 1 H), 7.71 (m, 1 H), 7.35 (m, 1 H), 7.26 (m, 2 H), 7.02 (m, 2 H), 6.68 (m, 1 H), 3.85 (s, 3 H), 1.66 (m, 4 H); MS(ESI) m/z : 508.2 (M+H+).
실시예 28:
CH2Cl2 (5 ㎖)에서 4-아미노벤조니트릴 (0.089 g, 0.757 mmol)의 용액에 실시예 B4 (0.150 g, 0.378 mmol), BOP-염화물 (0.096 g, 0.378 mmol)과 디이소프로필에틸 아민 (0.098 g, 0.757 mmol)이 첨가되었다. 반응 혼합물은 RT에서 13시간 동안 교반되었다. 반응 혼합물로부터 상기 용매는 완전하게 제거되고, 그리고 잔류물은 플래시 색층분석으로 정제되어 N-(4-시아노페닐)-N'-(2-플루오르-4-(2-(1-메틸-1H-피라졸-4-일)피리딘-4-일옥시)페닐)시클로프로판-1,1-디카르복사미드 (0.075 g, 40% 수율)가 제공되었다. 1H NMR (400 MHz, DMSO-d6): δ 10.38 (s, 1 H), 10.15 (s, 1 H), 8.33 (d, J =5.5 Hz, 1 H), 8.20 (s, 1 H), 7.90 (s, 1 H), 7.75 (m, 4 H), 7.20 (m, 3 H), 6.96 (m, 1 H), 6.62 (m, 1 H), 3.85 (m 3 H), 1.50 (m, 4 H); MS(ESI) m/z : 497.2 (M+H+).
실시예 29:
2-클로로-4-플루오르아닐린 (0.073 g, 0.505 mmol), 실시예 B4 (0.100 g, 0.252 mmol), BOP-염화물 (0.064 g, 0.252 mmol)과 디이소프로필에틸아민 (0.065 g, 0.505 mmol)은 실시예 28에 유사한 절차를 이용하여 CH2Cl2 (5 ㎖)에서 결합되어 N-(2-클로로-4-플루오르페닐)-N'-(2-플루오르-4-(2-(1-메틸-1H-피라졸-4-일)피리딘-4-일옥시)페닐)시클로프로판-1,1-디카르복사미드 (0.055 g, 42% 수율)가 제공되었다. 1H NMR (400 MHz, DMSO-d6): δ 10.53 (s, 1 H), 10.48 (s, 1 H), 8.40 (d, J =5.5 Hz, 1 H), 8.25 (s, 1 H), 7.95 (s, 1 H), 7.82 (m, 2 H), 7.50 (m, 1 H), 7.25 (m, 3 H), 7.02 (d, J = 10 Hz, 1 H), 6.89 (m, 1 H), 3.85 (s, 3 H), 1.70 (m, 4 H); MS(ESI) m/z : 524.2 (M+H+).
실시예 30:
실시예 B1 (80 mg, 0.36 mmol), 실시예 A5 (108 mg, 0.36 mmol), i-Pr2NEt (0.1 ㎖, 0.54 mmol)와 TBTU (180 mg, 0.54 mmol)는 DMF (3 ㎖)에서 결합되고, 그리고 생성된 혼합물은 RT에서 하룻밤동안 교반되었다. 물이 첨가되고, 그리고 생성된 침전물은 여과로 수집되었다. 생성된 고체는 EtOAc에 용해되고, 그리고 유기층은 건조되고 (Na2SO4), 진공에서 농축되고, 실리카 겔 색층분석 (EtOAc-헥산)으로 정제되었다. 순수한 분획물은 합쳐지고 진공에서 농축되고, 그리고 잔류물은 EtOAc-헥산으로부터 침전되었다. 생성된 고체는 여과로 수집되고 진공 하에 건조되어 N-(3-클로로-4-(2-(1-메틸-1H-피라졸-4-일)피리딘-4-일옥시)페닐)-N’-(4-플루오르페닐)시클로프로판-1,1-디카르복사미드 (95 mg, 52% 수율)가 수득되었다. 1H NMR (400 MHz, DMSO-d 6): δ 10.3 (s, 1 H), 9.99 (s, 1 H), 8.34 (d, J = 5.6 Hz, 1 H), 8.25 (s, 1 H), 8.04 (d, J = 2.4 Hz, 1 H), 7.95 (s, 1 H), 7.62 (m, 3 H), 7.32 (d, J = 8.8 Hz, 1 H), 7.20 (d, J = 2.8 Hz, 1 H), 7.11 (m, 2 H), 6.52 (dd, J = 5.6, 2.4, Hz, 1 H), 3.89 (s, 3 H), 1.44 (m, 4 H); MS (ESI) m/z: 506.1 (M+H+).
실시예 31:
DMF (3 ㎖)에서 실시예 A6 (0.242 g, 0.896 mmol)의 용액에 실시예 B1 (0.20 g, 0.896 mmol), EDC (0.258 g, 1.344 mmol), 그리고 HOBt (0.206 g, 1.344 mmol)가 첨가되었다. 생성된 혼합물은 RT에서 3시간 동안 교반되었다. 물이 첨가되고, 그리고 생성된 용액은 EtOAc (3x)로 추출되었다. 유기 추출물은 염수로 세척되고, 건조되고 (Na2SO4), 진공에서 농축되고, 그리고 실리카 겔 칼럼 색층분석 (EtOAc/헥산)으로 정제되었다. 산물을 포함하는 순수한 분획물은 합쳐지고 농축되었다. 잔류물은 EtOAc/헥산으로 처리되고, 그리고 생성된 침전물은 여과로 수집되고 진공 하에 건조되어 N-(4-(2-(1H-피라졸-4-일)피리딘-4-일옥시)-3-플루오르페닐)-N’-(4-플루오르페닐)시클로프로판-1,1-디카르복사미드 (0.205 g, 48% 수율)가 수득되었다. 1H NMR (400 MHz, DMSO-d 6): δ 13.1 (br s, 1 H), 10.4 (s, 1 H), 9.98 (s, 1 H), 8.35 (d, J = 5.2 Hz, 1 H), 8.32 (brs, 1 H), 8.02 (br s, 1 H), 7.85 (dd, J = 13.2, 2.4 Hz, 1 H), 7.61 (m, 2 H), 7.46 (m, 1 H), 7.32 (m, 2 H), 7.13 (m, 2 H), 6.58 (dd, J = 6.6, 2.4 Hz, 1 H), 1.44 (m, 4 H); MS (ESI) m/z: 476.2 (M+H+).
실시예 32:
CH2Cl2 (5 ㎖)에서 실시예 B1 (0.100 g, 0.448 mmol)의 용액에 실시예 A7 (0.134 g, 0.448 mmol), BOP-염화물 (0.228 g, 0.896 mmol)과 디이소프로필에틸아민 (0.116 g, 0.896 mmol)이 첨가되었다. 반응 혼합물은 RT에서 15시간 동안 교반되었다. 반응 혼합물로부터 용매는 완전히 제거되고, 그리고 잔류물은 재결정화 (아세토니트릴)되어 N-(2-플루오르-3-메틸-4-(2-(1-메틸-1H-피라졸-4-일)피리딘-4-일옥시)페닐)-N'-(4-플루오르페닐)시클로프로판-1,1-디카르복사미드 (0.060 g, 27% 수율)가 제공되었다. 1H NMR (400 MHz, DMSO-d 6): δ 10.74 (s, 1H), 9.80 (s, 1 H), 8.40 (d, J = 5.5 Hz, 1H), 8.25 (s, 1 H), 7.95 (s, 1 H), 7.82 (m, 1 H), 7.60 (m, 2 H), 7.20 (m, 3 H), 6.95 (d, J = 10 Hz, 1 H), 6.56 (m, 1 H), 3.83 (s, 3 H), 2.00 (s, 3 H), 1.65 (m, 4 H); MS(ESI) m/z : 504.2 (M+H+).
실시예 33:
실시예 B3 (65 mg, 0.164 mmol), TBTU (79 mg, 0.246 mmol), DIEA (0.114 ㎖, 0.656 mmol)와 (S)-1-(4-플루오르페닐)에틸아민 (27.4 mg, 0.197 mmol)은 DMF (2 ㎖)에서 결합되고 RT에서 하룻밤동안 교반되었다. 반응물은 satd. NaHCO3으로 희석되고 EtOAc (2x)로 추출되었다. 합쳐진 유기물은 satd. LiCl (2x)로 세척되고, 건조되고 (MgSO4), 진공에서 농축되고, 그리고 역상 C18 색층분석 (MeCN (w/ 0.1% TFA)/H2O (w/0.1% TFA))에 의해 정제되었다. 순수한 분획물은 합쳐지고, satd. NaHCO3 (pH 8)으로 처리되고, 그리고 EtOAc (3x)로 추출되었다. 합쳐진 유기물은 염수 (1x)로 세척되고, 건조되고 (MgSO4), 여과되고, 증발되었다. 상기 물질은 MeCN/H2O에 용해되고, 0.1 N HCl (1.14 ㎖, 0.114 mmol)로 처리되고, 동결되고, 그리고 냉동건조되어 N-(3-플루오르-4-(2-(1-메틸-1H-피라졸-4-일)피리딘-4-일옥시)페닐)-N’-((S)-1-(4-플루오르페닐)에틸)시클로프로판-1,1-디카르복사미드 염산염 (55 mg)이 백색 고체로서 제공되었다. 1H NMR (400 MHz, DMSO-d 6 ): δ 10.78 (s, 1 H), 8.48-8.47 (m, 2 H), 8.29 (d, J = 7.95 Hz, 1 H), 8.16 (br s, 1 H), 7.90 (dd, J = 2.0, 14 Hz, 1 H), 7.54-7.32 (m, 5 H), 7.14-7.1 (m, 2 H), 6.92 (br s, 1 H), 5.04-4.97 (m, 1 H), 3.89 (s, 3 H), 1.41-1.36 (m, 7 H); MS(ESI) m/z : 518.2 (M+H+).
실시예 34:
실시예 33에 유사한 절차를 이용하여, 실시예 B3 (65 mg, 0.164 mmol), TBTU (79 mg, 0.246 mmol), DIEA (0.114 ㎖, 0.656 mmol)와 (1S)-1-(4-플루오르페닐)프로필아민 염산염 (37.3 mg, 0.197 mmol)은 DMF (2 ㎖)에서 결합되어 N-(3-플루오르-4-(2-(1-메틸-1H-피라졸-4-일)피리딘-4-일옥시)페닐)-N’-((S)-1-(4-플루오르페닐)프로필)시클로프로판-1,1-디카르복사미드가 제공되었다. 이는 0.1 N HCl (0.94 ㎖, 1.0 eq)과 더욱 반응되어 N-(3-플루오르-4-(2-(1-메틸-1H-피라졸-4-일)피리딘-4-일옥시)페닐)-N’-((S)-1-(4-플루오르페닐)프로필)시클로프로판-1,1-디카르복사미드 염산염 (49 mg)이 회백색 고체로서 제공되었다. 1H NMR (400 MHz, DMSO-d 6 ): δ 10.8 (s, 1 H), 8.49-8.47 (m, 2 H), 8.26 (d, J = 8.4 Hz, 1 H), 8.2 (br s, 1 H), 7.88 (dd, J = 2.1, 13.2 Hz, 1 H), 7.54-7.31 (m, 5 H), 7.14-7.1 (m, 2 H), 6.9 (brs, 1 H), 4.73 (q, J = 8.3 Hz. 1 H), 3.89 (s, 3 H), 1.78-1.63 (m, 2 H), 1.44-1.32 (m, 4 H), 0.83 (t, J = 7.1 Hz, 3 H); MS(ESI) m/z : 532.2 (M+H+).
실시예 35:
tBuOH (10 ㎖)에서 티오펜카르복실산 (0.5 g, 3.90 mmol)의 용액에 Et3N (0.571 ㎖, 4.10 mmol)과 DPPA (0.883 ㎖, 4.10 mmol)가 첨가되었다. 생성된 용액은 90℃에서 4시간 동안 가열되었다. 반응 혼합물은 RT로 냉각되고, 그리고 상기 용매는 진공에서 제거되었다. 잔류물은 벤젠으로 처리되고, 그리고 생성된 용액은 5% 구연산과 sat'd NaHCO3으로 세척되었다. 고체는 여과되고, 그리고 여과액은 염수로 세척되었다. 유기층은 건조되고 (MgSO4), 진공에서 농축되고, 그리고 잔류물은 실리카 겔 칼럼 색층분석 (EtOAc/헥산)으로 정제되어 tert-부틸 티오펜-2-일카르밤산염 (0.39 g, 50% 수율)이 수득되었다. 1H NMR (400 MHz, DMSO-d 6): δ 10.4 (brs, 1H), 6.84 (dd, J = 1.6, 그리고 5.2 Hz, 1H), 6.75 (dd, J = 4.0, 그리고 5.6 Hz, 1H), 6.48 (dd, J = 1.6, 그리고 4.0 Hz, 2H), 1.45 (s, 9H); MS (ESI) m/z: 222.0 (M+22+H+).
아세틸 염화물 (0.36 ㎖)이 0℃에서, EtOAc (4 ㎖)와 MeOH (0.203 ㎖)의 용액에 방울방울 첨가되었다. 온도를 0℃ 미만으로 유지하면서, EtOAc (1 ㎖)에서 tert-부틸 티오펜-2-일카르밤산염 (0.10 g, 0.502 mmol)의 용액이 상기 반응 혼합물에 방울방울 첨가되었다. 생성된 용액은 1시간 (이 시간 동안 얼음 중탕이 용해되었다) 동안 교반되고, 이후 농축되어 티오펜-2-아민이 수득되고, 이는 정제 없이 다음 반응에 이용되었다.
실시예 B4 (0.10 g, 0.252 mmol), 티오펜-2-아민 (0.050 g, 0.505 mmol), 그리고 DIEA (0.125 ㎖, 0.757 mmol)는 DMF (2 ㎖)에서 결합되었다. TBTU (0.105 g, 0.328 mmol)가 첨가되고, 그리고 생성된 용액은 RT에서 하룻밤동안 교반되었다. 반응물은 물로 희석되고 EtOAc (3x)로 추출되었다. 합쳐진 유기 상은 염수로 세척되고, 건조되고 (Na2SO4), 진공에서 농축되고, 그리고 실리카 겔 칼럼 색층분석 (EtOAc/헥산)으로 정제되어 잔류물이 제공되었다. 잔류물은 CH3CN: H2O (1:1, 4 ㎖)로 처리되고 냉동건조되어 N-(2-플루오르-4-(2-(1-메틸-1H-피라졸-4-일)피리딘-4-일옥시)페닐)-N’-(티오펜-2-일)시클로프로판-1,1-디카르복사미드 (0.025 g, 21% 수율)가 수득되었다. 1H NMR (400 MHz, DMSO-d 6): δ 11.0 (s, 1H), 10.6 (s, 1H), 8.38 (d, J = 5.6 Hz, 1H), 8.25 (s, 1H), 7.95 (m, 2H), 7.25 (m, 2H), 7.02 (m, 1H), 6.98 (dd, J = 1.2, 그리고 5.6 Hz, 1H), 6.83 (m, 2H), 6.68 (m, 1H), 3.84 (s, 3H), 1.57 (m, 4H); MS (ESI) m/z: 478.0 (M+H+).
실시예 36:
DMF (2 ㎖)에서 실시예 B3 (65 mg, 0.164 mmol), TBTU (79 mg, 0.246 mmol)와 (R)-1-(4-플루오르페닐)-2-메톡시에탄아민 (40.5 mg, 0.197 mmol; 공개된 방법: J. Med. Chem. (1999), 42(24), 4981에 따라 제조됨)의 교반 현탁액에 DIEA (0.171 ㎖, 0.984 mmol)가 첨가되었다. 생성된 투명 용액은 RT에서 하룻밤동안 교반되었다. 하룻밤동안 교반후, 반응물은 satd. NaHCO3으로 희석되고 EtOAc (2x)로 추출되었다. 합쳐진 유기물은 satd. NaHCO3 (1x), satd. LiCl (2x)과 염수 (1x)로 세척되고, 건조되고 (MgSO4), 진공에서 증발되고, 그리고 역상 색층분석에 의해 정제되었다. 순수한 분획물은 모아지고, satd. NaHCO3 (pH 8)으로 처리되고, EtOAc (3x)로 추출되었다. 합쳐진 유기물은 satd. NaHCO3 (1x), 염수 (1x)로 세척되고, 건조되고 (MgSO4), 그리고 증발되어 N-(3-플루오르-4-(2-(1-메틸-1H-피라졸-4-일)피리딘-4-일옥시)페닐)-N'-((R)-1-(4-플루오르페닐)-2-메톡시에틸)시클로프로판-1,1-디카르복사미드가 오일로서 제공되었다. 이는 4:1 MeCN/H2O에 용해되고, 공인된 0.1N HCl (1.37 ㎖, 1.0 eq)로 처리되고, 동결되고, 그리고 냉동건조되어 63 mg (66% 수율)의 HCl 염이 고체로서 제공되었다. 1H NMR (400 MHz, DMSO-d 6 ): δ 10.64 (s, 1H), 8.49-8.48 (m, 2H), 8.44-8.42 (m, 1H), 8.18 (brs, 1H), 7.89-7.85 (m, 1H), 7.54 (brs, 1H), 7.48-7.35 (m, 4H), 7.16-7.11 (m, 2H), 6.92 (brs, 1H), 5.13-5.06 (m, 1H), 3.89 (s, 3H), 3.61-3.56 (m, 1H), 3.49-3.46 (m, 1H), 3.25 (s, 3H), 1.45-1.33 (m, 4H); MS (ESI) m/z: 516.1 (M+H+).
실시예 37:
DMF (1 ㎖)에서 실시예 B1 (0.070 g, 0.314 mmol)의 용액에 실시예 A8 (0.100 g, 0.314 mmol), Hunigs 염기 (0.078 ㎖, 0.470 mmol)와 TBTU (0.151 g, 0.470 mmol)가 첨가되었다. 생성된 혼합물은 RT에서 하룻밤동안 교반되고, 이후 EtOAc로 희석되었다. 생성된 용액은 물과 NaHCO3으로 세척되고, 건조되고 (Na2SO4), 진공에서 농축되고, 그리고 실리카 겔 칼럼 색층분석 (EtOAc/헥산)으로 정제되어 잔류물이 제공되었다. 잔류물은 CH3CN으로 처리되고 RT에서 하룻밤동안 유지되었다. 생성된 고체는 여과되고 진공 하에 건조되어 N-(4-플루오르페닐)-N’-(4-(2-(4-(트리플루오르메틸)-1H-이미다졸-2-일)피리딘-4-일옥시)페닐)시클로프로판-1,1-디카르복사미드 (0.105 g, 64% 수율)가 수득되었다. 1H NMR (400 MHz, DMSO-d 6, 다량 이성질체): δ 13.5 (s, 1H), 10.2 (s, 1H), 10.1 (s, 1H), 8.52 (d, J = 5.6 Hz, 1H), 7.84 (m, 1H), 7.75 (m, 2H), 7.62 (m, 2H), 7.35 (d, J = 2.8 Hz, 1H), 7.14 (m, 2H), 7.12 (m, 3H), 7.06 (dd, J = 2.4, 그리고 5.6 Hz, 1H), 1.44 (m, 4H); MS (ESI) m/z: 526.1 (M+H+).
Figure pct00113

실시예 38:
디클로로메탄 (5 ㎖)에서 실시예 B1 (0.100 g, 0.448 mmol)의 용액에 실시예 A22 (0.120 g, 0.448 mmol), 그 이후에 Bop-염화물 (0.228 g, 0.896 mmol)과 디이소프로필에틸아민 (0.116 g, 0.896 mmol)이 첨가되었다. 반응 혼합물은 RT에서 15시간 동안 교반되고, 진공에서 농축되고, 물과 함께 교반되고, 여과되고, 세척되고, 건조되었다. 생성된 고체는 색층분석 (에틸 아세테이트/헥산)으로 정제되어 N-(4-플루오르페닐)-N'-(6-(2-(1-메틸-1H-피라졸-4-일)피리딘-4-일옥시)피리딘-3-일)시클로프로판-1,1-디카르복사미드 (0.055g, 26% 수율)가 회백색 고체로서 제공되었다. 1H NMR(400 MHz, DMSO-d6 δ10.25 (s, 1H), 10.03 (s, 1H), 8.45(s, 1H), 8.40 (m, 1H), 8.25(s, 1H), 8.18 (m, 1H), 8.00 (s, 1H), 7.60 (m, 2H), 7.40(s, 1H), 7.16 (m 3H), 6.85(m, 1H), 3.80 (s, 3H), 1.40 (s, 4H); MS (ESI) m/z : 473.1 (M+H+).
실시예 39:
톨루엔 (8.0 ㎖)에서 4-플루오르페닐아세틸 염화물 (0.500 g, 2.90 mmol)의 용액에 RT에서 은 시안산염 (0.456 g, 3.05 mmol)이 첨가되었다. 반응 혼합물은 빛으로부터 보호되고 환류로 가열되었다. 2시간 후, 생성된 혼합물은 RT로 냉각되고, 그리고 생성된 용액은 0.45 μM Teflon 주사기 필터를 이용하여 여과되었다. 여과액, 2-(4-플루오르페닐)아세틸 이소시안산염 용액 (0.4M: 0.52 g/7 ㎖)은 다음 반응에 본래대로 이용되었다.
톨루엔 (4.68 ㎖)에서 2-(4-플루오르페닐)아세틸 이소시안산염 (4.68 ㎖, 1.873 mmol)의 용액에 실시예 A8 (0.10 g, 0.312 mmol)이 첨가되어 이질성 혼합물이 형성되었다. THF (5 ㎖)가 첨가되고, 그리고 반응 혼합물은 RT에서 하룻밤동안 교반되었다. 생성된 고체는 여과되고, 그리고 실리카 겔 칼럼 색층분석 (EtOAc/헥산)으로 정제되어 1-(2-(4-플루오르페닐)아세틸)-3-(4-(2-(4-(트리플루오르메틸)-1H-이미다졸-2-일)피리딘-4-일옥시)페닐)우레아 (0.097 g, 62% 수율)가 수득되었다. 1H NMR (400 MHz, DMSO-d 6, 다량 이성질체): δ 13.5 (s, 1H), 11.0 (s, 1H), 10.5 (s, 1H), 8.52 (d, J = 5.6 Hz, 1H), 7.83 (m, 1H), 7.64 (m, 2H), 7.1-7.4 (m, 7H), 7.04 (dd, J = 2.8, 그리고 5.6 Hz, 1H), 3.71 (s, 2H); MS (ESI) m/z: 500.1 (M+H+).
실시예 40:
DMF (80 ㎖)에서 실시예 B5 (9.91 g, 23.58 mmol)의 용액에, 아르곤 공기 하에, TBTU (11.36 g, 35.4 mmol), DIPEA (20.59 ㎖, 118 mmol)와 4-플루오르아닐린 (3.93 g, 35.4 mmol)이 첨가되었다. 반응 혼합물은 RT에서 하룻밤동안 교반되었다. 추가 분할량의 TBTU (7.5 g, 17.8 mmol)가 첨가되고 교반이 지속되었다. 2시간 후, 추가 분할량의 TBTU (3.5 g, 8.33 mmol)가 첨가되고 교반이 2시간 동안 지속되었다. 상기 용매는 높은 진공 하에 제거되고, 그리고 잔류물은 EtOAc (700 ㎖)에 용해되고 sat. aq. NaHCO3 (2 x 200 ㎖)과 염수 (50 ㎖)로 세척되고, 건조되고 (MgSO4), 농축 건조되고, 그리고 실리카 겔 색층분석 (MeOH-DCM)으로 정제되어 N-(2,5-디플루오르-4-(2-(1-메틸-1H-피라졸-4-일)피리딘-4-일옥시)페닐)-N'-(4-플루오르페닐)시클로프로판-1,1-디카르복사미드 (7.2 g, 59% 수율)가 제공되었다. 1H NMR (400 MHz, DMSO-d 6 ): δ 11.14 (s, 1 H), 9.76 (s, 1 H), 8.39 (d, J = 5.6 Hz, 1 H), 8.28 (s, 1 H), 8.13 (dd, J = 12.1, 7.1 Hz, 1 H), 7.99 (s, 1 H), 7.62-7.53 (m, 3 H), 7.27 (d, J = 2.6 Hz, 1 H), 7.22-7.15 (m, 2 H), 6.71 (dd, J = 5.6, 2.4 Hz, 1 H), 3.86 (s, 3 H), 1.69-1.56 (m, 4 H); MS (ESI): m/z 508.1 [M+1]+.
실시예 41:
디클로로메탄 (5 ㎖)에서 실시예 B1 (0.100 g, 0.448 mmol)의 용액에 실시예 A13 (0.120 g, 0.448 mmol), 그 이후에 Bop-염화물 (0.228 g, 0.896 mmol)과 디이소프로필에틸아민 (0.116 g, 0.896 mmol)이 첨가되었다. 반응 혼합물은 RT에서 15시간 동안 교반되고, 진공에서 농축되고, 물과 함께 교반되고, 여과되고, 세척되고, 건조되고, 그리고 결정화 (아세토니트릴)되어 N-(4-플루오르페닐)-N’-(5-(2-(1-메틸-1H-피라졸-4-일)피리딘-4-일옥시)피리딘-2-일)시클로프로판-1,1-디카르복사미드 (0.005g, 2.3% 수율)가 고체로서 제공되었다. 1H NMR(400 MHz, DMSO-d6 δ 9.70 (s, 1H), 8.40 (d, J = 5Hz, 1H), 8.26 (s, 1H), 8.15 (d, J = 11Hz, 1H), 7.98 (s, 1H), 7.65 (dd, J = 9, 5 Hz, 1H), 7.60 (m, 2H), 7.20 (brs, 1H), 7.15 (m, 2H), 6.70 (m, 1H), 3.80 (s, 3H), 1.60 (m, 2H), 1.50 (m, 2H); MS(ESI) m/z : 473.2 (M+H+).
실시예 42:
4-플루오르페닐아세트산 (1 g, 6.49 mmol)이 아세토니트릴 (40 ㎖)에 용해되고 얼음 중탕에서 0℃로 냉각되었다. 1-에틸-3-(3-디메틸아미노프로필)카르보디이미드 염산염 (1.492 g, 7.79 mmol), 그 이후에 1-히드록시벤조트리아졸 (1.19 g, 7.79 mmol)이 첨가되었다. 생성된 혼합물은 0℃에서 2.5시간 동안 교반되고, 이후 농축된 수산화암모늄 (0.865 ㎖, 13.0 mmol)이 천천히 첨가되었다. 생성된 혼합물은 RT에서 추가로 2시간 동안 교반되었다. 이후, 고체는 여과되고, 그리고 여과액은 에틸 아세테이트 (50 ㎖)로 희석되었다. 생성된 용액은 포화된 수성 NaHCO3 (2x50 ㎖)과 염수 (50 ㎖)로 세척되고, 건조되고 (MgSO4), 그리고 진공에서 농축되어 2-(4-플루오르페닐)아세트아미드 (0.87g, 88% 수율)가 백색 고체로서 산출되고, 이는 다음 반응에서 본래대로 이용되었다. 1H NMR (400MHz, DMSO-d 6 ): δ 7.45 (넓은 s, 1H), 7.26 (m, 2H), 7.09 (m, 2H), 6.87 (넓은 s, 1H ), 3.34 (s, H).
2-(4-플루오르페닐)아세트아미드 (0.046 g, 0.298 mmol)가 디클로로에탄 (3 ㎖)에 용해되고 옥살릴 염화물 (0.026 ㎖, 0.298 mmol)이 첨가되었다. 생성된 혼합물은 아르곤 기구 하에 85℃ 오일 중탕에서 14시간 동안 가열되었다. 반응 혼합물은 RT로 냉각되고 감압 하에 농축 건조되었다. 이는 NMP (1.5 ㎖)에 용해되고 실시예 A12 (0.045 g, 0.149 mmol)가 첨가되었다. 생성된 혼합물은 RT에서 1.5시간 동안 교반되고, 이후 에틸 아세테이트 (50 ㎖)로 희석되고, 물 (3X50 ㎖)과 염수 (50 ㎖)로 세척되고, 건조되고 (MgSO4), 진공에서 농축되고, 그리고 실리카 겔 색층분석 (THF-헥산)을 통해 정제되어 1-(2,5-디플루오르-4-(2-(1-메틸-1H-피라졸-4-일)피리딘-4-일옥시)페닐)-3-(2-(4-플루오르페닐)아세틸)우레아가 회백색 고체 (0.059g, 82% 수율)로서 산출되었다. 1H NMR (400MHz, DMSO-d 6 ): δ 11.26 (s, 1H), 10.89 (s,1H), 8.36 (d, 1H), 8.26 (s, 1H), 8.18 (dd, 1H), 7.97 (s, 1H), 7.59 (dd, 1H), 7.34 (m, 2H), 7.22 (d, 1H), 7.16 (m, 2H), 6.70 (dd, 1H), 3.84 (s, 3H), 3.74 (s, 2H); MS (ESI) m/z: 482.1 (M+H+).
실시예 43:
4-플루오르페닐아세틸 염화물 (0.5 g, 2.90 mmol)이 RT에서, 톨루엔 (8 ㎖)에서 은 시안산염 (1.30 g, 8.70 mmol)의 현탁액에 첨가되었다. 반응 혼합물은 빛으로부터 보호되고 환류로 가열되었다. 2시간 후, 생성된 혼합물은 RT로 냉각되고 여과되었다. 2-(4-플루오르페닐)아세틸 이소시안산염 (0.363 M)을 포함하는 여과액은 추후 정제 없이 이용되었다. 2-(4-플루오르페닐)아세틸 이소시안산염 용액 (톨루엔에서 0.363 M, 3.5 ㎖, 1.271 mmol)의 분취량은 실시예 A3 (0.192 g, 0.635 mmol)으로 처리되고, 그리고 생성된 혼합물은 RT에서 하룻밤동안 교반되었다. 생성된 침전물은 여과로 수집되고 역상 실리카 겔 색층분석 (아세토니트릴/물 (0.1% TFA))에 의해 더욱 정제되었다. 순수한 분획물은 결합되고, 농축되고, NaHCO3으로 염기화되고, EtOAc (2x)로 추출되었다. 합쳐진 추출물은 염수로 세척되고, 건조되고 (MgSO4), 그리고 진공에서 농축되어 1-(2,3-디플루오르-4-(2-(1-메틸-1H-피라졸-4-일)피리딘-4-일옥시)페닐)-3-(2-(4-플루오르페닐)아세틸)우레아 (0.066 g, 22% 수율)가 백색 고체로서 제공되었다. 1H NMR (400 MHz, DMSO-d 6): δ 11.25 (s, 1 H), 10.84 (s, 1 H), 8.39 (d, J = 5.6 Hz, 1 H), 8.28 (s, 1 H), 8.01-7.97 (m, 2 H), 7.39-7.35 (m, 2 H), 7.27 (d, J = 2.5 Hz, 1 H), 7.26-7.21 (m, 1 H), 7.21-7.15 (m, 2 H), 6.75 (dd, J = 5.6, 2.6 Hz, 1 H), 3.86 (s, 3 H), 3.76 (s, 2 H); MS (ESI) m/z: 482.1 (M+H+).
실시예 44:
실시예 42로부터 2-(4-플루오르페닐)아세트아미드 (0.115 g, 0.748 mmol)는 디클로로에탄 (8 ㎖)에 용해되고 옥살릴 염화물 (0.082 ㎖, 0.935 mmol)이 첨가되었다. 생성된 혼합물은 아르곤 기구 하에 85℃에서 18시간 동안 교반되었다. 상기 혼합물은 RT로 냉각되고, 증발 건조되고, 그리고 NMP (5 ㎖)에서 실시예 A13 (0.357 g, 0.935 mmol)의 용액에 첨가되었다. 생성된 혼합물은 RT에서 45분 동안 교반되고, 에틸 아세테이트 (50 ㎖)로 희석되고, 물 (2x50 ㎖)과 염수 (50 ㎖)로 세척되고, 건조되고 (MgSO4), 감압 하에 농축되고, 그리고 실리카 겔 색층분석 (THF-헥산)을 통해 정제되어 1-(2-(4-플루오르페닐)아세틸)-3-(5-(2-(1-메틸-1H-피라졸-4-일)피리딘-4-일옥시)피리딘-2-일)우레아 (0.185g, 54% 수율)가 산출되었다. 1H NMR (400MHz, DMSO-d 6 ): δ 11.12 (s, 1H), 10.93 (s, 1H), 8.36 (d, 1H), 8.24 (m, 2H), 8.07 (d, 1H), 7.96 (s, 1H), 7.72 (dd, 1H), 7.35 (m, 2H), 7.18 (m, 3H), 6.69 (dd, 1H), 3.83 (s, 3H), 3.74 (s, 2H); MS (ESI) m/z: 447.2 (M+H+).
실시예 45:
실시예 2에 유사한 절차를 이용하여, 실시예 B5 (0.11 g, 0.265 mmol), 디이소프로필에틸아민 (0.051 ㎖, 0.292 mmol), 아닐린 (1.004 ㎖, 0.345 mmol)과 TBTU (0.111 g, 0.345 mmol)는 결합되고, 그리고 실리카 겔 색층분석 (메탄올-메틸렌 염화물)을 통해 정제되어 N-(2,5-디플루오르-4-(2-(1-메틸-1H-피라졸-4-일)피리딘-4-일옥시)페닐)-N'-페닐시클로프로판-1,1-디카르복사미드가 투명 필름 (0.030g, 23% 수율)으로서 산출되었다. MS (ESI) m/z: 490.2 (M+H+).
N-(2,5-디플루오르-4-(2-(1-메틸-1H-피라졸-4-일)피리딘-4-일옥시)페닐)-N'-페닐시클로프로판-1,1-디카르복사미드는 아세토니트릴 (5 ㎖)에 용해되고 디옥산에서 4M HCl (0.068 ㎖, 0.274 mmol)이 교반과 함께, 천천히 첨가되었다. 생성된 혼합물은 RT에서 1.5시간 동안 교반되고, 이때 백색 고체가 상기 용액으로부터 천천히 침전되었다. 생성된 염은 흡입 여과를 통해 수집되고 디에틸 에테르로 세척되었다. 아세토니트릴과 물의 4:1 혼합물에서 상기 산물의 현탁액은 하룻밤동안 냉동건조되어 N-(2,5-디플루오르-4-(2-(1-메틸-1H-피라졸-4-일)피리딘-4-일옥시)페닐)-N'-페닐시클로프로판-1,1-디카르복사미드 염산염이 백색 분말 (0.047g, 65% 수율)로서 수득되었다. 1H NMR (400MHz, DMSO-d 6 ): δ 11.18 (s, 1H), 9.64 (s, 1H), 8.43 (m, 2H), 8.13 (m, 2H), 7.60 (m, 1H), 7.51 (m, 3H), 7.28 (m, 2H), 7.05 (m, 1H), 6.97 (넓은 s, 1H), 3.84 (s, 3H), 1.63 (m, 2H), 1.53 (m, 2H); MS (ESI) m/z: 490.2 (M+H+).
실시예 46:
4-플루오르페닐아세트산 (0.144 g, 0.941 mmol)이 디클로로에탄 (9.51 ㎖)에 용해되고 옥살릴 염화물 (0.082 ㎖, 0.941 mmol)이 첨가되었다. 생성된 혼합물은 아르곤 하에 85℃ 오일 중탕에서 14시간 동안 가열되고, RT로 냉각되고, 감압 하에 농축되었다. 가공되지 않은 황색 오일은 이후, NMP (4.75 ㎖)에 재-용해되고 실시예 A14 (.15 g, 0.471 mmol)가 첨가되었다. 생성된 혼합물은 RT에서 2.5시간 동안 교반되고, 에틸 아세테이트 (70 ㎖)로 희석되고, 물 (2x40 ㎖)과 염수 (40 ㎖)로 세척되고, 건조되고 (MgSO4), 진공에서 농축되고, 그리고 실리카 겔 색층분석 (에틸 아세테이트/헥산)을 통해 정제되어 1-(5-클로로-2-플루오르-4-(2-(1-메틸-1H-피라졸-4-일)피리딘-4-일옥시)페닐)-3-(2-(4-플루오르페닐)아세틸)우레아가 백색 고체로서 산출되었다. 이는 DCM (4 ㎖)과 에틸 아세테이트 (.2 ㎖)에서 분쇄되고, 그리고 흡입 여과에 의해 수집되어 1-(5-클로로-2-플루오르-4-(2-(1-메틸-1H-피라졸-4-일)피리딘-4-일옥시)페닐)-3-(2-(4-플루오르페닐)아세틸)우레아 (0.1456g, 62% 수율)가 제공되었다. MS (ESI) m/z: 498.1 (M+H+).
1-(5-클로로-2-플루오르-4-(2-(1-메틸-1H-피라졸-4-일)피리딘-4-일옥시)페닐)-3-(2-(4-플루오르페닐)아세틸)우레아 (0.146 g, 0.293 mmol)는 THF (4 ㎖), 아세토니트릴 (4 ㎖), 그리고 메탄올 (.5 ㎖)의 혼합물에 완전하게 용해되었다. 메탄설폰산 (19 ㎕, 0.293 mmol)이 첨가되고, 그리고 수분 동안 교반후, 침전물이 형성되기 시작하였다. 생성된 혼합물은 RT에서 5시간 동안 교반되었다. 1-(5-클로로-2-플루오르-4-(2-(1-메틸-1H-피라졸-4-일)피리딘-4-일옥시)페닐)-3-(2-(4-플루오르페닐)아세틸)우레아 메실레이트 염이 흡입 여과에 의해 수득되고 아세토니트릴 (0.148g, 82% 수율)로 세척되었다. 1H NMR (500MHz, DMSO-d 6 ): δ 11.33 (s, 1H), 10.97 (s, 1H), 8.59 (m, 2H), 8.46 (d, 1H), 8.26 (s, 1H), 7.74 (d, 1H), 7.65 (s, 1H), 7.36 (m, 2H), 7.17 (m, 3H), 3.92 (s, 3H), 3.77 (s, 2H), 2.33 (s, 3H); MS (ESI) m/z: 498.1 (M+H+).
실시예 47:
실시예 B1 (1.484 g, 6.65 mmol)이 60℃에서 염화티오닐 (14 ㎖, 192 mmol)에 용해되었다. 반응 혼합물은 아르곤 하에 30분 동안 교반되고, 이후 상기 용액은 RT로 냉각되고, 그리고 생성된 혼합물은 톨루엔 (4 x 10 ㎖)과 공비 혼합되어 1-((4-플루오르페닐)카르바모일)시클로프로판카르보닐 염화물이 회백색 고체로서 제공되고, 이는 100% 수율을 가정하여 정제 없이 다음 단계에 이용되었다. MS (ESI) m/z (메탄올 진정): 238.1 (M+H+).
실시예 A14 (1.696 g, 5.32 mmol)가 THF (15 ㎖)에 용해되고 1-((4-플루오르페닐)카르바모일)시클로프로판카르보닐 염화물 (1.545 g, 6.39 mmol), 그 이후에 트리에틸아민 (0.964 ㎖, 6.92 mmol)이 첨가되었다. 생성된 혼합물은 RT에서 5분 동안 교반되고, 이후 상기 혼합물은 트리에틸아민 HCl을 제거하기 위하여 여과되었다. 여과액은 감압 하에 농축되고, 그리고 실리카 겔 색층분석 (DCM/MeOH)을 통해 정제되어 N-(5-클로로-2-플루오르-4-(2-(1-메틸-1H-피라졸-4-일)피리딘-4-일옥시)페닐)-N'-(4-플루오르페닐)시클로프로판-1,1-디카르복사미드가 백색 거품 (2.55g, 91% 수율)으로서 산출되었다. 1H NMR (400MHz, DMSO-d 6 ): δ 11.03 (s, 1H), 9.77 (s, 1H), 8.37 (d, 1H), 8.27 (m, 2H), 7.97 (s, 1H), 7.57 (m, 3H), 7.22 (d, 1H), 7.16 (m, 2H), 6.61 (dd, 1H), 3.84 (s, 3H), 1.64(m, 2H), 1.56 (m, 2H); MS (ESI) m/z: 524.2 (M+H+).
실시예 48:
톨루엔 (8.0 ㎖)에서 은 시안산염 (0.434 g, 2.90 mmol)의 현탁액은 4-플루오르페닐아세틸 염화물 (0.397 ㎖, 2.90 mmol)로 처리되고, 생성된 혼합물은 빛으로부터 보호되고 2시간 동안 환류로 가열되었다. 상기 혼합물은 RT로 냉각되고, 주사기 필터를 통해 여과되고, 실시예 A10 (0.438 g, 1.449 mmol)으로 처리되고, 그리고 RT에서 하룻밤동안 교반되었다. 생성된 고체는 여과되고, 소량의 톨루엔으로 헹굼되고, 그리고 진공 오븐에서 70℃에서 2일 동안 건조되어 1-(3,5-디플루오르-4-(2-(1-메틸-1H-피라졸-4-일)피리딘-4-일옥시)페닐)-3-(2-(4-플루오르페닐)아세틸)우레아 (620 mg, 89% 수율)가 백색 고체로서 제공되었다. 1H NMR (400 MHz, DMSO-d 6 ): 3.74 (s, 2H), 3.84 (s, 3H), 6.71 (dd, 1H), 7.15 (t, 2H), 7.27 (d, 1H), 7.34 (m, 2H), 7.62 (d, 2H), 7.98 (s, 1H), 8.27 (s, 1H), 8.37 (d, 1H), 10.65 (s, 1H), 11.10 (s, 1H); MS (ESI) m/z: 482.2 (M+H+).
실시예 49:
실시예 B1 (0.241 g, 1.078 mmol)이 염화티오닐 (4 ㎖, 54.8 mmol)에 용해되고 60℃에서 3시간 동안 가열되었다. 반응물은 톨루엔 (3x)과 공비 혼합되었다. 가공되지 않은 산성 염화물은 THF (5 ㎖)에 용해되고 THF (5 ㎖)에서 실시예 A15 (0.31 g, 0.980 mmol)와 N,N-디이소프로필에틸아민 (0.171 ㎖, 0.980 mmol)의 0℃ 용액에 방울방울 첨가되었다. 생성된 혼합물은 RT에서 하룻밤동안 교반되고, 포화된 aq. NaHCO3 (25 ㎖)이 첨가되고, 그리고 생성된 혼합물은 EtOAc (3 x 25 ㎖)로 추출되었다. 합쳐진 유기 추출물은 건조되고 (Na2SO4), 증발되고, 그리고 실리카 겔 색층분석 (헥산/EtOAc)에 의해 정제되어 2가지 산물이 용리되었다. N-(4-(2-(1,3-디메틸-1H-피라졸-4-일)피리딘-4-일옥시)-2,5-디플루오르페닐)-N'-(4-플루오르페닐)시클로프로판-1,1-디카르복사미드 (278 mg; 54.4%) (먼저 용리됨) 및 N-(4-(2-(1,5-디메틸-1H-피라졸-4-일)피리딘-4-일옥시)-2,5-디플루오르페닐)-N-(4-플루오르페닐)시클로프로판-1,1-디카르복사미드 (81 mg; 16%) (두 번째로 용리됨). N-(4-(2-(1,3-디메틸-1H-피라졸-4-일)피리딘-4-일옥시)-2,5-디플루오르페닐)-N'-(4-플루오르페닐)시클로프로판-1,1-디카르복사미드: 1H NMR (400 MHz, DMSO-d 6 ): δ 11.07 (s, 1H), 9.75 (s, 1H), 8.42 (d, 1H), 8.12-8.07 (m, 1H), 7.85 (s, 1H), 7.83-7.15 (m, 4H), 7.20-7.12 (m, 2H), 6.68-6.6.66 (m, 1H), 3.75 (s, 3H), 2.54 (s, 3H), 1.67-1.64 (m, 2H), 1.58-1.55 (m, 2H); MS (ESI) m/z: 522.2 (M+H+). N-(4-(2-(1,5-디메틸-1H-피라졸-4-일)피리딘-4-일옥시)-2,5-디플루오르페닐)-N’-(4-플루오르페닐)시클로프로판-1,1-디카르복사미드: 1H NMR (400 MHz, DMSO-d 6 ): δ 11.10 (s, 1H), 9.74 (s, 1H), 8.41 (d, 1H), 8.14-8.08 (m, 2H), 7.59-7.53 (m, 4H), 7.19-7.14 (m, 1H), 7.07 (d, 1H), 6.72-6.70 (m, 1H), 3.75 (s, 3H), 2.36 (s, 3H), 1.67-1.64 (m, 2H), 1.58-1.55 (m, 2H); MS (ESI) m/z: 522.2 (M+H+).
N-(4-(2-(1,3-디메틸-1H-피라졸-4-일)피리딘-4-일옥시)-2,5-디플루오르페닐)-N'-(4-플루오르페닐)시클로프로판-1,1-디카르복사미드 (0.278 g, 0.533 mmol)는 THF (5 ㎖)에 용해되고 환류 때까지 가온되었다. 메탄설폰산 (0.035 ㎖, 0.533 mmol)이 첨가되었다. 직후에 침전물이 형성되었다. 생성된 혼합물은 10분 동안 초음파처리되고 RT로 냉각되었다. 침전물은 여과되고 건조 피스톨 (80℃) 내에서 하룻밤동안 건조되어 N-(4-(2-(1,3-디메틸-1H-피라졸-4-일)피리딘-4-일옥시)-2,5-디플루오르페닐)-N'-(4-플루오르페닐)시클로프로판-1,1-디카르복사미드 메실레이트 (234 mg, 71.1% 수율)가 산출되었다. 1H NMR (400 MHz, DMSO-d 6 ): δ 11.20 (s, 1H), 9.71 (s, 1H), 8.57 (d, 1H), 8.19-8.14 (m, 1H), 7.90 (s, 1H), 7.66-7.62 (m, 1H), 7.58-7.55 (m, 2H), 7.38 (s, 1H), 7.19-7.14 (m, 2H), 7.05-7.02 (m, 1H), 3.79 (s, 3H), 2.34 (s, 3H), 2.29 (s, 3H), 1.68-1.65 (m, 2H), 1.58-1.56 (m, 2H); MS (ESI) m/z: 522.2 (M+H+).
실시예 50:
실시예 49로부터 N-(4-(2-(1,5-디메틸-1H-피라졸-4-일)피리딘-4-일옥시)-2,5-디플루오르페닐)-N’-(4-플루오르페닐)시클로프로판-1,1-디카르복사미드 (0.081 g, 0.155 mmol)는 THF (2.5 ㎖)에 용해되고 환류 때까지 가온되었다. 메탄설폰산 (10.09 ㎕, 0.155 mmol)이 첨가되고, 그리고 생성된 혼합물은 RT로 냉각되었다. 상기 혼합물은 Et2O (5 ㎖)로 천천히 희석되었다. 첨가 직후에 침전물이 형성되기 시작하였다. 첨가가 완결된 이후, 생성된 혼합물은 20분 동안 초음파처리되었다. 침전물은 여과되어 N-(4-(2-(1,5-디메틸-1H-피라졸-4-일)피리딘-4-일옥시)-2,5-디플루오르페닐)-N’-(4-플루오르페닐)시클로프로판-1,1-디카르복사미드 메실레이트 (79 mg, 82% 수율)가 산출되었다. 1H NMR (400 MHz, DMSO-d 6 ): δ 11.18 (s, 1H), 9.72 (s, 1H), 8.52 (d, 1H), 8.20-8.14 (m, 2H), 7.63-7.56 (m, 3H), 7.25 (s, 1H), 7.18-7.14 (m, 2H), 6.99-6.94 (m, 1H), 3.74 (s, 3H), 2.35 (s, 3H), 2.28 (s, 3H), 1.67-1.64 (m, 2H), 1.58-1.55 (m, 2H); MS (ESI) m/z: 522.2 (M+H+).
실시예 51:
실시예 47에서 절차를 통해 제조된 1-((4-플루오르페닐)카르바모일)시클로프로판카르보닐 염화물 (0.13 g, 0.538 mmol), 실시예 A9 (0.123 g, 0.414 mmol), 그리고 트리에틸아민 (0.065 ㎖, 0.621 mmol)은 THF (3 ㎖)에 용해되었다. 생성된 혼합물은 RT에서 30분 동안 교반되고, 트리에틸아민 HCl을 제거하기 위하여 여과되고, 감압 하에 농축되고, 그리고 실리카 겔 칼럼 색층분석 (MeOH/DCM)으로 정제되어 N-(2-플루오르-5-메틸-4-(2-(1-메틸-1H-피라졸-4-일)피리딘-4-일옥시)페닐)-N’-(4-플루오르페닐)시클로프로판-1,1-디카르복사미드 (0.067g, 32% 수율)가 수득되었다. MS (ESI) m/z: 504.2 (M+H+).
N-(2-플루오르-5-메틸-4-(2-(1-메틸-1H-피라졸-4-일)피리딘-4-일옥시)페닐)-N’-(4-플루오르페닐)시클로프로판-1,1-디카르복사미드 (0.067 g, 0.133 mmol)는 CH2Cl2 (1 ㎖)에 용해되고, 1.0 M 메탄설폰산 (0.133 ㎖, 0.133 mmol)이 첨가되고, 그리고 반응 혼합물은 RT에서 1시간 동안 교반되었다. 생성된 고체는 여과되어 N-(2-플루오르-5-메틸-4-(2-(1-메틸-1H-피라졸-4-일)피리딘-4-일옥시)페닐)-N’-(4-플루오르페닐)시클로프로판-1,1-디카르복사미드 메탄설포네이트 염 (55 mg, 67% 수율)이 수득되었다. 1H NMR (400 MHz, DMSO-d 6): δ 10.8 (brs, 1H), 9.81 (s, 1H), 8.53 (m, 2H), 8.18 (m, 1H), 8.01 (m, 1H), 7.57 (m, 3H), 7.32 (m, 1H), 7.16 (m, 2H), 6.94 (m, 1H), 3.90 (s, 3H), 2.29 (s, 3H), 2.09 (s, 3H), 1.5-1.7 (m, 4H).
실시예 52:
THF (3.0 ㎖)에서 실시예 A11 (0.107 g, 0.359 mmol)과 트리에틸아민 (0.075 ㎖, 0.538 mmol)의 용액은 수분 동안 아르곤이 살포되고, 실시예 51로부터 1-((4-플루오르페닐)카르바모일)시클로프로판카르보닐 염화물 (0.130 g, 0.538 mmol)로 처리되고, 그리고 생성된 혼합물은 아르곤 공기 하에 RT에서 30분 동안 교반되었다. 상기 혼합물은 여과되고, THF로 헹굼되고, 그리고 여과액은 농축 건조되었다. 생성된 잔류물은 디에틸 에테르로 분쇄되고, 수분 동안 초음파처리되고, 그리고 생성된 고체는 여과되고, Et2O로 헹굼되고, 진공에서 건조되어 N-(2-플루오르-4-메틸-5-(4-(1-메틸-1H-피라졸-4-일)피리미딘-2-일옥시)페닐)-N'-(4-플루오르페닐)시클로프로판-1,1-디카르복사미드 (154 mg, 85% 수율)가 회백색 고체로서 제공되었다. 1H NMR (400 MHz, DMSO-d 6 ): 1.52 (m, 2H), 1.57 (m, 2H), 2.04 (s, 3H), 3.87 (s, 3H), 7.15 (t, 2H), 7.25 (d, 1H), 7.44 (d, 1H), 7.56 (m, 2H), 7.71 (d, 1H), 8.08 (s, 1H), 8.43 (m, 2H), 9.83 (brs, 1H), 10.71 (brs, 1H); MS (ESI) m/z: 505.2 (M+H+).
실시예 53:
아세토니트릴 (5 ㎖)에서 실시예 B1 (0.293 g, 1.315 mmol)과 시아누르산 염화물 (0.097 g, 0.526 mmol)의 현탁액에 N-메틸피롤리딘 (0.112 g, 1.32 mmol)이 첨가되고, 그리고 반응물은 RT에서 20분 동안 교반되었다. 상기 반응 혼합물에 실시예 A16 (0.250 g, 0.876 mmol)이 첨가되고, 그리고 RT에서 13시간 동안 교반이 지속되었다. 반응 혼합물은 진공에서 농축되고, 그리고 잔류물은 디클로로메탄에서 교반되고, 여과되고, 세척되고, 건조되었다. 생성된 고체는 뜨거운 메탄올에서 교반되고, RT로 냉각되고, 여과되고, 세척되고, 그리고 건조되어 N-(2-플루오르-5-(4-(1-메틸-1H-피라졸-4-일)피리미딘-2-일옥시)페닐)-N'-(4-플루오르페닐)시클로프로판-1,1-디카르복사미드 (0.096g, 22% 수율)가 백색 고체로서 제공되었다. 1H NMR (400 MHz, DMSO-d6) δ 11.15 (s, 1H), 10.89 (s,1H)), 9.79 (s, 1H), 8.47 (d, J = 5Hz, 1H), 8.42 (s, 1H), 8.08 (s, 1H), 7.86 (s, 1H), 7.57 (m, 1H), 7.45 (d, J = 5.7Hz, 1H), 7.32 (dd, J = 9, 11.5 Hz, 1H), 7.15 (t, J = 9Hz, 2H), 7.00 (m, 1H), 3.87(s, 3H), 1.60 (m, 2H), 1.53 (m, 2H); MS (ESI) m/z: 491.2 (M+H+).
실시예 54:
실시예 51로부터 1-((4-플루오르페닐)카르바모일)시클로프로판카르보닐 염화물 (0.13 g, 0.538 mmol), 실시예 A20 (0.102 g, 0.359 mmol), 그리고 트리에틸아민 (0.075 ㎖, 0.717 mmol)은 THF (3 ㎖)에 용해되었다. 생성된 혼합물은 RT에서 교반되었다. 1시간 후, 반응물은 트리에틸아민 HCl을 제거하기 위하여 여과되고, 진공에서 농축되고, 그리고 실리카 겔 칼럼 색층분석 (EtOAc/헥산)으로 정제되어 잔류물이 획득되었다. 잔류물은 Et2O로 처리되었다. 형성된 고체는 여과되고 건조되어 N-(5-(4-(1H-피라졸-4-일)피리미딘-2-일옥시)-2-플루오르-4-메틸페닐)-N’-(4-플루오르페닐)시클로프로판-1,1-디카르복사미드 (80 mg, 45% 수율)가 수득되었다. 1H NMR (400 MHz, DMSO-d 6): δ 13.3 (s, 1H), 10.7 (s, 1H), 9.84 (s, 1H), 8.49 (s, 1H), 8.43 (d, J = 5.2 Hz, 1H), 8.11 (d, J = 1.6 Hz, 1H), 7.70 (d, J = 7.2 Hz, 1H), 7.56 (m, 2H), 7.49 (d, J = 5.2 Hz, 1H), 7.25 (d, J = 11.6 Hz, 1H), 7.13 (m, 2H), 2.05 (s, 3H), 1.58 (m, 2H), 1.51 (m, 2H); MS (ESI) m/z: 491.2 (M+H+).
실시예 55:
THF (2 ㎖)에서 실시예 B1 (196 mg, 0.811 mmol)의 용액은 THF (4 ㎖)에서 트리에틸아민 (200 mg, 2.212 mmol)과 실시예 A18 (200 mg, 0.737 mmol)의 교반된 혼합물에 첨가되었다. 생성된 혼합물은 RT에서 교반되었다. 상기 혼합물은 THF (1 ㎖)에서 실시예 B1 (~75 mg)로 더욱 처리되었다. 혼합물은 RT에서 3시간 동안 교반되고, 이후 에틸 아세테이트 (30 ㎖)로 희석되고 10% 탄산칼륨 (30 ㎖), 염수 (30 ㎖)로 세척되고, 건조되고 (Na2SO4), 감압에서 증발되고, 그리고 역상 색층분석 (0.1% TFA를 포함하는 CH3CN/H2O)에 의해 정제되어 수성 잔류물이 제공되고, 이는 이후, 포화된 나트륨 중탄산염 (4 ㎖)으로 처리되고 침전되었다. 생성된 고체는 여과로 수집되고, 물 (1 ㎖)로 세척되고, 그리고 높은 진공 라인에서 80℃에서 건조되어 N-(5-(4-(1H-피라졸-4-일)피리미딘-2-일옥시)-2-플루오르페닐)-N'-(4-플루오르페닐)시클로프로판-1,1-디카르복사미드 (26 mg, 7% 수율)가 제공되었다. 1H NMR (400 MHz, DMSO-d 6): δ 1.50-1.60 (m, 4 H), 6.90-7.01 (m, 1 H), 7.15 (t, 2 H), 7.31 (t, 1 H), 7.49-7.50 (m, 1 H), 7.55-7.58 (m, 2 H), 7.84-7.85 (m, 1 H), 8.15 (br. s, 1 H), 8.46 (d, 1 H), 8.50 (br. s, 1 H), 9.80 (s, 1 H), 10.87 (s, 1 H), 13.3 (s, 1H); MS (ES-API) m/z: 477.2 (M+H+).
실시예 56:
실시예 42로부터 2-(4-플루오르페닐)아세트아미드 (0.091 g, 0.597 mmol)가 디클로로에탄 (6 ㎖)에 용해되고 옥살릴 염화물 (0.052 ㎖, 0.597 mmol)이 첨가되었다. 생성된 혼합물은 아르곤 기구 하에 85℃에서 15시간 동안 가열되었다. 반응 혼합물은 RT로 냉각되고, 그리고 상기 용매가 감압 하에 제거되었다. 남아있는 잔류물은 NMP (3.00 ㎖)에 용해되고 실시예 A17 (0.084 g, 0.299 mmol)에 첨가되었다. 생성된 용액은 아르곤 하에 RT에서 30분 동안 교반되었다. 반응 혼합물은 에틸 아세테이트와 THF (60 ㎖)의 4:1 혼합물로 희석되고, 10% 수성 LiCl (2x50 ㎖)과 염수 (50 ㎖)로 세척되고, 건조되고 (MgSO4), 진공에서 증발되고, 그리고 실리카 겔 색층분석 (에틸 아세테이트/헥산)을 통해 정제되어 1-(2-(4-플루오르페닐)아세틸)-3-(4-메틸-5-(2-(1-메틸-1H-피라졸-4-일)피리딘-4-일옥시)피리딘-2-일)우레아가 회백색 고체 (0.097g, 71% 수율)로서 산출되었다. 1H NMR (400MHz, DMSO-d 6 ): δ 11.11 (s, 1H), 10.89 (s, 1H), 8.33 (d, 1H), 8.24 (s, 1H), 8.12 (s, 1H), 8.00 (s, 1H), 7.95 (s, 1H), 7.35 (m, 2H), 7.25 (m, 1H), 7.14 (m, 2H), 6.59 (dd, 1H), 3.83 (s, 3H), 3.74 (s, 2H), 2.15 (s, 3H); MS (ESI) m/z: 461.1(M+H+).
실시예 57:
실시예 B1 (0.092 g, 0.412 mmol)이 염화티오닐 (6 ㎖, 82 mmol)에 용해되고 80℃에서 1시간 동안 가열되었다. 생성된 혼합물은 냉각되고 톨루엔 (3x10 ㎖)과 공비 혼합되었다. 가공되지 않은 산성 염화물은 THF (5 ㎖)에 용해되고 THF (5 ㎖)에서 실시예 A19 (0.113 g, 0.375 mmol)와 N,N-디에틸이소프로필아민 (0.131 ㎖, 0.749 mmol)의 0℃ 용액에 방울방울 첨가되었다. 생성된 혼합물은 RT에서 하룻밤동안 교반되었다. 반응은 완전하지 않았다. 상기 방법을 이용하여 실시예 B1 (65 mg, 0.29 mmol)로부터 추가의 산성 염화물이 산출되었다. 가공되지 않은 산성 염화물은 THF (5 ㎖)에 용해되고 상기 반응 혼합물에 첨가되었다. 생성된 용액은 RT에서 4시간 동안 교반되고, EtOAc로 희석되고, sat. NaHCO3 ( aq )로 세척되었다. 유기 추출물은 건조되고, 증발되고, 실리카 겔 색층분석 (헥산/EtOAc) 및 역상 색층분석 (물 (0.1% TFA)/아세토니트릴 (0.1% TFA))으로 정제되고, 염기성이 될 때까지 sat. NaHCO3 ( aq )로 처리되고, 그리고 생성된 고체는 여과에 의해 제거되었다. 상기 고체는 진공 하에 80℃에서 건조되어 N-(2,5-디플루오르-4-(3-(1-메틸-1H-피라졸-4-일)피리딘-4-일옥시)페닐)-N’-(4-플루오르페닐)시클로프로판-1,1-디카르복사미드 (57 mg, 30% 수율)가 산출되었다. 메실레이트 염은 N-(2,5-디플루오르-4-(3-(1-메틸-1H-피라졸-4-일)피리딘-4-일옥시)페닐)-N’-(4-플루오르페닐)시클로프로판-1,1-디카르복사미드 (0.057 g, 0.112 mmol)를 뽑아내고, 그리고 이를 환류 아세토니트릴 (5 ㎖)에서 용해시킴으로써 형성되었다. 메탄설폰산 (7.29 ㎕, 0.112 mmol)이 첨가되고, 그리고 생성된 혼합물은 RT로 냉각되고, 농축되고 (~ 2 ㎖), 에테르 (5 ㎖)가 방울방울 첨가되었다. 고체가 침전되었다. 생성된 혼합물은 30분 동안 초음파처리되었다. 생성된 고체는 여과되고 건조 피스톨 내에서 하룻밤동안 건조되어 N-(2,5-디플루오르-4-(3-(1-메틸-1H-피라졸-4-일)피리딘-4-일옥시)페닐)-N’-(4-플루오르페닐)시클로프로판-1,1-디카르복사미드 메실레이트 (50 mg, 74% 수율)가 산출되었다. 1H NMR (400 MHz, DMSO-d 6 ): δ 11.27 (s, 1H), 9.74 (s, 1H), 9.11 (s, 1H), 8.49 (d, 1H), 8.43 (s, 1H), 8.22-8.19 (m, 1H), 8.16 (d, 1H), 7.74-7.70 (m, 1H), 7.60-7.57 (m, 2H), 7.21-7.15 (m, 3H), 3.92 (s, 3H), 2.34 (s, 3H), 1.71-1.68 (m, 2H), 1.61-1.59 (m, 2H); MS (ESI) m/z: 508.2 (M+H+).
실시예 58:
실시예 B1에 유사한 절차를 이용하여, 1,1-시클로프로판디카르복실산 (2 g, 15.37 mmol), Et3N (2.14 ㎖, 15.4 mmol), 염화티오닐 (1.12 ㎖, 15.4 mmol), 그리고 4-플루오르-N-메틸아닐린 (1.83 g, 14.6 mmol)은 결합되어 1-((4-플루오르페닐)(메틸)카르바모일)시클로프로판카르복실산 (2.79 g, 72% 수율)이 제공되었다. MS (ESI) m/z: 260.0 (M+Na+).
실시예 A2 (136 mg, 0.479 mmol), 1-((4-플루오르페닐)(메틸)카르바모일)시클로프로판카르복실산 (125 mg, 0.525 mmol), TBTU (0.169 g, 0.525 mmol)와 i-Pr2NEt (0.18 ㎖, 1.050 mmol)는 DMF (3 ㎖)에서 결합되었다. 생성된 혼합물은 RT에서 하룻밤동안 교반되었다. 추가 분할량의 TBTU (0.169 g, 0.525 mmol)와 i-Pr2NEt (0.18 ㎖, 1.05 mmol)가 첨가되고, 그리고 생성된 혼합물은 추가로 24시간 동안 교반되었다. 반응 혼합물은 물 (30 ㎖)에 부어지고 EtOAc (3 x 30 ㎖)로 추출되었다. 유기 추출물은 satd aq NaHCO3과 염수로 세척되고, 건조되고 (MgSO4), 그리고 진공에서 농축되었다. 잔류물은 CH2Cl2 (20 ㎖)에 용해되고, 그리고 생성된 용액은 중합체-결합된 이소시안산염 수지 (1.7 mmol/g; 0.5 g)와 함께 하룻밤동안 진탕되었다. 생성된 혼합물은 여과되고, 그리고 여과액은 농축 건조되고 역상 색층분석 (아세토니트릴 (0.1% TFA가 첨가됨)/물 (0.1% TFA가 첨가됨))에 의해 정제되었다. 순수한 분획물은 결합되고 농축 건조되었다. THF (10 ㎖)와 중합체-결합된 탄산염 수지 (200 mg)가 상기 잔류물에 첨가되고, 그리고 생성된 혼합물은 2시간 동안 진탕되었다. 생성된 혼합물은 여과되고, 그리고 여과액은 aq HCl (2 N, 2 ㎖, 4 mmol)로 처리되었다. 생성된 용액은 진공에서 농축되고, 아세토니트릴-물 (1:1, 6 ㎖)에 용해되고, 동결되고, 그리고 냉동건조되어 N-(3-플루오르-4-(2-(1-메틸-1H-피라졸-4-일)피리딘-4-일옥시)페닐)-N'-(4-플루오르페닐)-N'-메틸시클로프로판-1,1-디카르복사미드 HCl 염이 황색 분말 (50 mg, 18% 수율)로서 제공되었다. 1H NMR (400 MHz, DMSO-d 6 ): δ 10.00 (br s, 1 H), 8.70 (s, 1 H), 8.54 (d, 1 H), 8.38 (s, 1 H), 7.73 (s, 1 H), 7.51 (br s, 1 H), 7.44-7.20 (m, 4 H), 7.15-6.97 (m, 3 H), 3.93 (s, 3 H), 3.23 (s, 3 H), 1.43 (s, 2 H), 1.22 (s, 2 H); MS (ESI) m/z: 504.1 (M+H+).
실시예 59:
염화티오닐 (1 ㎖, 13.70 mmol)이 실시예 B1 (0.131 g, 0.589 mmol; DP-4180)에 첨가되고, 그리고 생성된 혼합물은 Ar 공기 하에 60℃에서 30분 동안 교반되었다. 상기 혼합물은 진공에서 농축되고 톨루엔 (2x8 ㎖)과 공비 혼합되어 산성 염화물이 백색 고체로서 제공되었다. 상기 고체에 THF (3 ㎖)에서 실시예 A21 (0.12 g, 0.421 mmol)와 트리에틸아민 (0.292 ㎖, 2.10 mmol)의 용액이 첨가되고, 그리고 반응물은 RT에서 1시간 동안 교반되었다. 생성된 혼합물은 EtOAc (30 ㎖)와 NaHCO3 용액 (30 ㎖) 간에 분할되었다. 수성 층은 EtOAc (1x20 ㎖)로 추출되고, 그리고 합쳐진 유기물은 염수로 세척되고, 건조되고 (Na2SO4), 진공에서 농축되고, 색층분석 (에틸아세테이트/헥산)으로 정제되어 N-(2-플루오르-4-(2-(3-메틸이속사졸-5-일)피리딘-4-일옥시)페닐)-N'-(4-플루오르페닐)시클로프로판-1,1-디카르복사미드 (87 mg, 42% 수율)가 백색 고체로서 제공되었다. 1H NMR (400 MHz, DMSO-d 6): δ 10.06 (s, 1H), 9.92 (s, 1H), 8.57 (d, J = 5.6 Hz, 1H), 7.97 (t, J = 8.8 Hz, 1H), 7.61-7.57 (m, 2H), 7.37 (d, J = 2.4 Hz 1H), 7.34 (dd, J = 11.6 Hz, 2.4 Hz, 1H), 7.15 (t, J = 9.2 Hz, 2H), 7.09 (dd, J = 8.8 Hz, 1.6 Hz, 1H), 7.03 (dd, J = 5.6 Hz, 2.4 Hz, 1H), 6.96 (s, 1H), 2.28 (s, 3H), 1.58-1.54 (m, 4H); MS (ESI) m/z: 491.2 (M+H+).
실시예 60:
실시예 59에 유사한 절차를 이용하여, 실시예 B1 (0.113 g, 0.506 mmol)이 1-(4-플루오르페닐카르바모일)시클로프로판카르보닐 염화물로 전환되었다. 상기 고형 산성 염화물에 THF (4 ㎖)에서 실시예 A23 (0.13 g, 0.337 mmol)과 트리에틸아민 (0.187 ㎖, 1.349 mmol)의 용액이 첨가되었다. 생성된 혼합물은 RT에서 5시간 동안 교반되고, 진공에서 농축되고, 메탄올 (4 ㎖)에 용해되고, 그리고 2N aq. NaOH (0.093 ㎖, 0.186 mmol)가 첨가되었다. 생성된 혼합물은 RT에서 30분 동안 교반되고, 진공에서 농축되고, 5% 구연산 (25 ㎖)으로 희석되고, 그리고 EtOAc (2x35 ㎖)로 추출되었다. 합쳐진 유기물은 염수로 세척되고, 건조되고 (Na2SO4), 진공에서 농축되고, 그리고 역상 색층분석 (아세토니트릴/물 (0.1%TFA))에 의해 정제되어 N-(4-(2-(1H-1,2,3-트리아졸-4-일)피리딘-4-일옥시)-2-플루오르페닐)-N'-(4-플루오르페닐)시클로프로판-1,1-디카르복사미드 (37 mg, 42% 수율)가 백색 고체로서 제공되었다. 1H NMR (400 MHz, DMSO-d 6): δ 10.49 (s, 1H), 9.91 (s, 1H), 8.45 (brs, 1H), 8.17 (s, 1H), 7.90 (t, J = 8.8 Hz, 1H), 7.55 (dd, J = 8.8 Hz, 5.2 Hz, 2H) 7.31 (brs, 1H), 7.29-7.26 (m, 1H), 7.10 (t, J = 8.8 Hz, 2H), 7.03 (d, J = 8.0 Hz, 1H), 6.91 (s, 1H), 1.55-1.50 (m, 4H); MS (ESI) m/z: 477.2 (M+H+).
섹션 4. 생물학적 데이터
c- KIT 키나아제 분석법
c-KIT 키나아제 (Seq. ID no. 1)의 활성은 피루브산염 키나아제/젖산염 디하이드로게나아제 시스템과의 결합을 통한 키나아제 반응으로부터 ADP의 생산을 추적함으로써 측정되었다 (가령, Schindler et al. Science (2000) 289: 1938-1942). 이러한 분석에서, NADH의 산화 (따라서 A340nm에서 감소)는 분광광도법에 의해 연속적으로 모니터되었다. 반응 혼합물 (100 ㎕)은 0.2% 옥틸-글루코시드와 1% DMSO, pH 7.5를 포함하는 90 mM Tris 완충액에서 c-KIT (cKIT 잔기 T544-V976, ProQinase, 5.4 nM), polyE4Y (1 mg/㎖), MgCl2 (10 mM), 피루브산염 키나아제 (4 unit), 젖산염 디하이드로게나아제 (0.7 unit), 포스포에놀 피루브산염 (1 mM), 그리고 NADH (0.28 mM)를 포함하였다. 검사 화합물은 22℃에서 < 2분 동안 c-KIT (Seq. ID no. 1)와 다른 반응 시약과 함께 항온처리되고, 이후 반응이 시작되도록 ATP (200 μM)가 첨가되었다. 340 nm에서 흡수는 30℃에서 0.5시간 동안 Polarstar Optima 평판 판독기 (BMG)에서 연속적으로 모니터되었다. 반응 속도는 0 내지 0.5h 시간 프레임을 이용하여 계산되었다. 저해 비율은 대조 (즉, 검사 화합물 없음)의 반응 속도와의 반응 속도 비교에 의해 획득되었다. IC50 값은 GraphPad Prism 소프트웨어 패키지에서 실행되는 바와 같은 소프트웨어 루틴을 이용하여 일정한 범위의 저해물질 농도에서 측정된 일련의 저해 비율 값으로부터 계산되었다.
N-말단 GST 융합을 보유하는 c- KIT ( Seq ID No . 1)
LGYWKIKGLVQPTRLLLEYLEEKYEEHLYERDEGDKWRNKKFELGLEFPNLPYYIDGDVKLTQSMAIIRYIADKHNMLGGCPKERAEISMLEGAVDIRYGVSRIAYSKDFETLKVDFLSKLPEMLKMFEDRLCHKTYLNGDHVTHPDFMLYDALDVVLYMDPMCLDAFPKLVCFKKRIEAIPQIDKYLKSSKYIWPLQGWQATFGGGDHPPKSDLVPRHNQTSLYKKAGSAAAVLEENLYFQGTYKYLQKPMYEVQWKVVEEINGNNYVYIDPTQLPYDHKWEFPRNRLSFGKTLGAGAFGKVVEATAYGLIKSDAAMTVAVKMLKPSAHLTEREALMSELKVLSYLGNHMNIVNLLGACTIGGPTLVITEYCCYGDLLNFLRRKRDSFICSKQEDHAEAALYKNLLHSKESSCSDSTNEYMDMKPGVSYVVPTKADKRRSVRIGSYIERDVTPAIMEDDELALDLEDLLSFSYQVAKGMAFLASKNCIHRDLAARNILLTHGRITKICDFGLARDIKNDSNYVVKGNARLPVKWMAPESIFNCVYTFESDVWSYGIFLWELFSLGSSPYPGMPVDSKFYKMIKEGFRMLSPEHAPAEMYDIMKTCWDADPLKRPTFKQIVQLIEKQISESTNHIYSNLANCSPNRQKPVVDHSVRINSVGSTASSSQPLLVHDDV
c- MET 키나아제 분석법
c-MET 키나아제 (Seq. ID no. 2)의 활성은 피루브산염 키나아제/젖산염 디하이드로게나아제 시스템과의 결합을 통한 키나아제 반응으로부터 ADP의 생산을 추적함으로써 측정되었다 (가령, Schindler et al. Science (2000) 289: 1938-1942). 이러한 분석에서, NADH의 산화 (따라서 A340nm에서 감소)는 분광광도법에 의해 연속적으로 모니터되었다. 반응 혼합물 (100 ㎕)은 0.25 mM DTT, 0.2% 옥틸-글루코시드와 1% DMSO, pH 7.5를 포함하는 90 mM Tris 완충액에서 c-MET (c-MET 잔기: 956-1390, Invitrogen, 카탈로그 #PV3143, 6 nM), polyE4Y (1 mg/㎖), MgCl2 (10 mM), 피루브산염 키나아제 (4 unit), 젖산염 디하이드로게나아제 (0.7 unit), 포스포에놀 피루브산염 (1 mM), 그리고 NADH (0.28 mM)를 포함하였다. 검사 화합물은 22℃에서 0.5시간 동안 C-Met (Seq. ID no. 2)와 다른 반응 시약과 함께 항온처리되고, 이후 반응이 시작되도록 ATP (100 μM)가 첨가되었다. 340 nm에서 흡수는 30℃에서 2시간 동안 Polarstar Optima 평판 판독기 (BMG)에서 연속적으로 모니터되었다. 반응 속도는 1.0 내지 2.0h 시간 프레임을 이용하여 계산되었다. 저해 비율은 대조 (즉, 검사 화합물 없음)의 반응 속도와의 반응 속도 비교에 의해 획득되었다. IC50 값은 GraphPad Prism 소프트웨어 패키지에서 실행되는 바와 같은 소프트웨어 루틴을 이용하여 일정한 범위의 저해물질 농도에서 측정된 일련의 저해 비율 값으로부터 계산되었다
cMET 키나아제 ( Seq ID No . 2)
MSYYHHHHHHDYDIPTTENLYFQGAMLVPRGSPWIPFTMKKRKQIKDLGSELVRYDARVHTPHLDRLVSARSVSPTTEMVSNESVDYRATFPEDQFPNSSQNGSCRQVQYPLTDMSPILTSGDSDISSPLLQNTVHIDLSALNPELVQAVQHVVIGPSSLIVHFNEVIGRGHFGCVYHGTLLDNDGKKIHCAVKSLNRITDIGEVSQFLTEGIIMKDFSHPNVLSLLGICLRSEGSPLVVLPYMKHGDLRNFIRNETHNPTVKDLIGFGLQVAKGMKYLASKKFVHRDLAARNCMLDEKFTVKVADFGLARDMYDKEYYSVHNKTGAKLPVKWMALESLQTQKFTTKSDVWSFGVLLWELMTRGAPPYPDVNTFDITVYLLQGRRLLQPEYCPDPLYEVMLKCWHPKAEMRPSFSELVSRISAIFSTFIGEHYVHVNATYVNVKCVAPYPSLLSSEDNADDEVDTRPASFWETS
KDR 키나아제 분석법
분석법 K1
KDR 키나아제의 활성은 피루브산염 키나아제/젖산염 디하이드로게나아제 시스템과의 결합을 통한 키나아제 반응으로부터 ADP의 생산을 추적함으로써 측정되었다 (가령, Schindler et al. Science (2000) 289: 1938-1942). 이러한 분석에서, NADH의 산화 (따라서 A340nm에서 감소)는 분광광도법에 의해 연속적으로 모니터되었다. 반응 혼합물 (100 ㎕)은 0.13% 옥틸-글루코시드, 13 mM MgCl2, 6.8 mM DTT, 그리고 3.5% DMSO, pH 7.5를 포함하는 60 mM Tris 완충액에서 KDR (Seq ID No . 3, 1.5 nM 내지 7.1 nM, 명목 농도), polyE4Y (1 mg/㎖), 피루브산염 키나아제 (3.5 unit), 젖산염 디하이드로게나아제 (5.5 unit), 포스포에놀 피루브산염 (1 mM), 그리고 NADH (0.28 mM)를 포함하였다. 반응은 ATP (0.2 mM, 최종 농도)를 첨가함으로써 시작되었다. 340 nm에서 흡수는 30℃에서 3시간 동안 Polarstar Optima 평판 판독기 (BMG) 또는 유사한 능력의 기구에서 연속적으로 모니터되었다. 반응 속도는 1 내지 2h 시간 프레임을 이용하여 계산되었다. 저해 비율은 대조 (즉, 검사 화합물 없음)의 반응 속도와의 반응 속도 비교에 의해 획득되었다. IC50 값은 GraphPad Prism 소프트웨어 패키지에서 실행되는 바와 같은 소프트웨어 루틴을 이용하여 일정한 범위의 저해물질 농도에서 측정된 일련의 저해 비율 값으로부터 계산되었다.
분석법 K2
KDR 키나아제 분석 K2는 (1) 2.1 nM의 명목 농도의 효소가 이용되고, (2) 반응물이 ATP로 시작에 앞서 30℃에서 2시간 동안 전-항온처리되고, 그리고 (3) 반응이 시작되도록 1.0 mM ATP (최종 농도)가 이용되는 점을 제외하고, 분석 K1에서와 동일하다.
분석법 K3
KDR 키나아제 분석 K3은 (1) 1.1 nM의 명목 농도의 효소가 이용되고, (2) 100 ㎕ 반응 혼합물에 대한 완충액 성분이 아래와 같고: 0.066% 옥틸-글루코시드, 17 mM MgCl2, 그리고 1% DMSO, pH 7.5를 포함하는 75 mM Tris 완충액, (3) DTT의 최종 농도가 0.66 mM이고, (4) 반응물이 ATP로 시작에 앞서 30℃에서 1시간 동안 전-항온처리되고, 그리고 (5) 반응이 시작되도록 1.0 mM ATP (최종 농도)가 이용되는 점을 제외하고, 분석 K1에서와 동일하다.
스크리닝에 이용되는 KDR 단백질 서열 ( Seq . ID No . 3)
DPDELPLDEHCERLPYDASKWEFPRDRLKLGKPLGRGAFGQVIEADAFGIDKTATCRTVAVKMLKEGATHSEHRALMSELKILIHIGHHLNVVNLLGACTKPGGPLMVIVEFCKFGNLSTYLRSKRNEFVPYKVAPEDLYKDFLTLEHLICYSFQVAKGMEFLASRKCIHRDLAARNILLSEKNVVKICDFGLARDIYKDPDYVRKGDARLPLKWMAPETIFDRVYTIQSDVWSFGVLLWEIFSLGASPYPGVKIDEEFCRRLKEGTRMRAPDYTTPEMYQTMLDCWHGEPSQRPTFSELVEHLGNLLQANAQQD
HUVEC 세포 배양
HUVEC (인간 제대 정맥 내피 세포) 세포는 Lonza (Lonza, Walkersville, MD)로부터 입수되었다. 간단히 말하면, 세포는 37℃, 5%CO2, 95% 습도에서 EGM-2 (Lonza, Walkersville, MD)에서 성장되었다. 세포는 90-95% 포화 (saturation)에 도달할 때까지 확장되고, 이 시점에서 이들 세포는 분석 용도로 2차 배양되거나 수확되었다. 분석 용도를 위하여, 세포는 수확되고 2% FBS로 보충된 EGM-2 배지 (Lonza, Walkersville, MD)에서 성장되었다.
HUVEC VEGF / KDR ELISA
96-웰(well) 블랙 투명 바닥 평판 (Corning, Corning, NY) 내에서 웰당 25,000개의 세포가 첨가되었다. 세포는 이후, 37℃, 5% CO2, 95% 습도에서 하룻밤동안 배양되었다. 일련의 희석된 검사 화합물이 2% FBS로 보충된 EBM-2를 포함하는 다른 96-웰 블랙 투명 바닥 평판 (Corning, Corning, NY)으로 분배되었다. 화합물이 세포를 포함하는 평판에 첨가되고 37℃, 5% CO2, 95% 습도에서 4시간 동안 배양되었다. 세포는 100ng/㎖ VEGF (R&D Systems, Minneapolis, MN)로 5분 동안 자극되고, 이후 용해되었다. 세포 용해질은 DuoSet IC HUVEC VEGF/KDR ELISA (R&D Systems, Minneapolis, MN)를 이용하여 포스포-VEGF R2를 검출하는데 이용되었다. 데이터는 IC50 값을 계산하는 Prism 소프트웨어 (Graphpad, San Diego, CA)를 이용하여 분석되었다.
EBC -1 세포 배양
EBC-1 세포 (카탈로그 #JCRB0820)는 Japan Health Science Research Resources Bank (Osaka, Japan)으로부터 입수되었다. 간단히 말하면, 세포는 37℃, 5%CO2, 95% 습도에서, 10% 특성화된 소 태아 혈청으로 보충된 DMEM (Invitrogen, Carlsbad, CA)에서 성장되었다. 세포는 70-95% 합류(confluency)에 도달할 때까지 확장되고, 이 시점에서 이들 세포는 분석 용도로 2차 배양되거나 수확되었다.
EBC -1 세포 증식 분석법
일련의 희석된 검사 화합물이 96-웰 블랙 투명 바닥 평판 (Corning, Corning, NY)으로 분배되었다. 각 세포주에 대하여, 200 ㎕ 완전 성장 배지에서 웰당 5,000개의 세포가 첨가되었다. 평판은 37℃, 5% CO2, 95% 습도에서 67시간 동안 배양되었다. 배양 기간의 종결 시점에서, 40 ㎕의 PBS에서 440 μM 레사주린 (Sigma, St. Louis, MO) 용액이 각 웰에 첨가되고 37℃, 5% CO2, 95% 습도에서 추가로 5시간 동안 배양되었다. 평판은 540 nM의 여기 (excitation)와 600 nM의 방출 (emission)을 이용하여 Synergy2 판독기 (Biotek, Winooski, VT)에서 판독되었다. 데이터는 IC50 값을 계산하는 Prism 소프트웨어 (Graphpad, San Diego, CA)를 이용하여 분석되었다.
M- NFS -60 세포 배양
M-NFS-60 세포 (카탈로그 #CRL-1838)는 American Type Culture Collection (ATCC, Manassas, VA)로부터 입수되었다. 간단히 말하면, 세포는 37℃, 5% CO2, 그리고 95% 습도에서 10% 특성화된 소 태아 혈청 (Invitrogen, Carlsbad, CA), 0.05 mM 2-메르캅토에탄올, 그리고 20 ng/㎖ 생쥐 재조합 대식세포 콜로니 자극 인자 (M-CSF)로 보충된 RPMI 1640 배지에서 현탁 배양되었다. 세포는 포화 (saturation)에 도달할 때까지 확장되고, 이 시점에서 이들 세포는 분석 용도로 2차 배양되거나 수확되었다.
M- NFS -60 세포 증식 분석법
일련의 희석된 검사 화합물이 384-웰 블랙 투명 바닥 평판 (Corning, Corning, NY)으로 분배되었다. 50 ㎕ 완전 성장 배지에서 웰당 2,500개의 세포가 첨가되었다. 평판은 37℃, 5% CO2, 95% 습도에서 67시간 동안 배양되었다. 배양 기간의 종결 시점에서, 10 ㎕의 PBS에서 440 μM 레사주린 (Sigma, St. Louis, MO) 용액이 각 웰에 첨가되고 37℃, 5% CO2, 그리고 95% 습도에서 추가로 5시간 동안 배양되었다. 평판은 540 nM의 여기 (excitation)와 600 nM의 방출 (emission)을 이용하여 Synergy2 판독기 (Biotek, Winooski, VT)에서 판독되었다. 데이터는 IC50 값을 계산하는 Prism 소프트웨어 (Graphpad, San Diego, CA)를 이용하여 분석되었다.
FMS 키나아제 분석법
FMS 키나아제의 활성은 피루브산염 키나아제/젖산염 디하이드로게나아제 시스템과의 결합을 통한 키나아제 반응으로부터 ADP의 생산을 추적함으로써 측정되었다 (가령, Schindler et al. Science (2000) 289: 1938-1942). 이러한 분석에서, NADH의 산화 (따라서 A340nm에서 감소)는 분광광도법에 의해 연속적으로 모니터되었다. 반응 혼합물 (100 ㎕)은 0.2% 옥틸-글루코시드와 1% DMSO, pH 7.5를 포함하는 90 mM Tris 완충액에서 FMS (Invitrogen 또는 Millipore, 6 nM), polyE4Y (1 mg/㎖), MgCl2 (10 mM), 피루브산염 키나아제 (4 unit), 젖산염 디하이드로게나아제 (0.7 unit), 포스포에놀 피루브산염 (1 mM), NADH (0.28 mM)와 ATP (500 μM)를 포함하였다. 저해 반응은 연속 희석된 검사 화합물을 상기 반응 혼합물과 혼합함으로써 시작되었다. 340 nm에서 흡수는 30℃에서 4시간 동안 Polarstar Optima 또는 Synergy 2 평판 판독기에서 연속적으로 모니터되었다. 반응 속도는 2 내지 3h 시간 프레임을 이용하여 계산되었다. 저해 비율은 대조 (즉, 검사 화합물 없음)의 반응 속도와의 반응 속도 비교에 의해 획득되었다. IC50 값은 GraphPad Prism 소프트웨어 패키지에서 실행되는 바와 같은 소프트웨어 루틴을 이용하여 일정한 범위의 저해물질 농도에서 측정된 일련의 저해 비율 값으로부터 계산되었다.
PDGFR α 키나아제 분석법
PDGFRα 키나아제의 활성은 피루브산염 키나아제/젖산염 디하이드로게나아제 시스템과의 결합을 통한 키나아제 반응으로부터 ADP의 생산을 추적함으로써 측정되었다. 이러한 분석에서, NADH의 산화 (따라서 A340nm에서 감소)는 분광광도법에 의해 연속적으로 모니터되었다. 반응 혼합물 (100 ㎕)은 0.2% 옥틸-글루코시드와 1% DMSO, pH 7.5를 포함하는 90 mM Tris 완충액에서 PDGFRα (Invitrogen, 10 nM), polyE4Y (1 mg/㎖), MgCl2 (10 mM), 피루브산염 키나아제 (4 unit), 젖산염 디하이드로게나아제 (0.7 unit), 포스포에놀 피루브산염 (1 mM), NADH (0.28 mM)와 ATP (500 μM)를 포함하였다. 저해 반응은 연속 희석된 검사 화합물을 상기 반응 혼합물과 혼합함으로써 시작되었다. 340 nm에서 흡수는 30℃에서 4시간 동안 Polarstar Optima 또는 Synergy 2 평판 판독기에서 연속적으로 모니터되었다. 반응 속도는 2 내지 3h 시간 프레임을 이용하여 계산되었다. 저해 비율은 대조 (즉, 검사 화합물 없음)의 반응 속도와의 반응 속도 비교에 의해 획득되었다. IC50 값은 GraphPad Prism 소프트웨어 패키지에서 실행되는 바와 같은 소프트웨어 루틴을 이용하여 일정한 범위의 저해물질 농도에서 측정된 일련의 저해 비율 값으로부터 계산되었다.
PDGFR β 키나아제 분석법
이는 PDGFRβ (Invitrogen, 11 nM)가 이용되는 점을 제외하고, PDGFRα에서 기술된 바와 같이 수행되었다.
표 1과 2에서 도시된 바와 같이, 화학식 Ia의 화합물은 ≤ 10 μM 농도에서 평가될 때, 전술한 분석법 중에서 한 가지 이상에서 저해 활성을 보였다.
Figure pct00114
Figure pct00115

+ 10 μM 미만 활성
++ 2 μM 미만 활성
+++ 200 nM 미만 활성
NT 조사되지 않음
Figure pct00116
+ 10 μM 미만 활성
++ 2 μM 미만 활성
+++ 200 nM 미만 활성
NT 조사되지 않음
등가물
당업자는 일과적인 실험을 이용하여, 본 명세서에서 특정하게 기술된 특정 구체예에 대한 다수의 등가물을 인지하거나, 또는 확인할 수 있을 것이다. 이런 등가물은 아래의 특허청구범위의 범위 내에 포함되는 것으로 의도된다.
SEQUENCE LISTING <110> FLYNN, DANIEL L. PETILLO, PETER A. KAUFMAN, MICHAEL D. <120> CYCLOPROPANE AMIDES AND ANALOGS EXHIBITING ANTI-CANCER AND ANTI-PROLIFERATIVE ACTIVITIES <130> 2203511.138US2 <140> US 12/608,578 <141> 2010-01-15 <150> US 61/109,309 <151> 2008-10-29 <160> 4 <170> PatentIn version 3.5 <210> 1 <211> 676 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic polypeptide <400> 1 Leu Gly Tyr Trp Lys Ile Lys Gly Leu Val Gln Pro Thr Arg Leu Leu 1 5 10 15 Leu Glu Tyr Leu Glu Glu Lys Tyr Glu Glu His Leu Tyr Glu Arg Asp 20 25 30 Glu Gly Asp Lys Trp Arg Asn Lys Lys Phe Glu Leu Gly Leu Glu Phe 35 40 45 Pro Asn Leu Pro Tyr Tyr Ile Asp Gly Asp Val Lys Leu Thr Gln Ser 50 55 60 Met Ala Ile Ile Arg Tyr Ile Ala Asp Lys His Asn Met Leu Gly Gly 65 70 75 80 Cys Pro Lys Glu Arg Ala Glu Ile Ser Met Leu Glu Gly Ala Val Asp 85 90 95 Ile Arg Tyr Gly Val Ser Arg Ile Ala Tyr Ser Lys Asp Phe Glu Thr 100 105 110 Leu Lys Val Asp Phe Leu Ser Lys Leu Pro Glu Met Leu Lys Met Phe 115 120 125 Glu Asp Arg Leu Cys His Lys Thr Tyr Leu Asn Gly Asp His Val Thr 130 135 140 His Pro Asp Phe Met Leu Tyr Asp Ala Leu Asp Val Val Leu Tyr Met 145 150 155 160 Asp Pro Met Cys Leu Asp Ala Phe Pro Lys Leu Val Cys Phe Lys Lys 165 170 175 Arg Ile Glu Ala Ile Pro Gln Ile Asp Lys Tyr Leu Lys Ser Ser Lys 180 185 190 Tyr Ile Trp Pro Leu Gln Gly Trp Gln Ala Thr Phe Gly Gly Gly Asp 195 200 205 His Pro Pro Lys Ser Asp Leu Val Pro Arg His Asn Gln Thr Ser Leu 210 215 220 Tyr Lys Lys Ala Gly Ser Ala Ala Ala Val Leu Glu Glu Asn Leu Tyr 225 230 235 240 Phe Gln Gly Thr Tyr Lys Tyr Leu Gln Lys Pro Met Tyr Glu Val Gln 245 250 255 Trp Lys Val Val Glu Glu Ile Asn Gly Asn Asn Tyr Val Tyr Ile Asp 260 265 270 Pro Thr Gln Leu Pro Tyr Asp His Lys Trp Glu Phe Pro Arg Asn Arg 275 280 285 Leu Ser Phe Gly Lys Thr Leu Gly Ala Gly Ala Phe Gly Lys Val Val 290 295 300 Glu Ala Thr Ala Tyr Gly Leu Ile Lys Ser Asp Ala Ala Met Thr Val 305 310 315 320 Ala Val Lys Met Leu Lys Pro Ser Ala His Leu Thr Glu Arg Glu Ala 325 330 335 Leu Met Ser Glu Leu Lys Val Leu Ser Tyr Leu Gly Asn His Met Asn 340 345 350 Ile Val Asn Leu Leu Gly Ala Cys Thr Ile Gly Gly Pro Thr Leu Val 355 360 365 Ile Thr Glu Tyr Cys Cys Tyr Gly Asp Leu Leu Asn Phe Leu Arg Arg 370 375 380 Lys Arg Asp Ser Phe Ile Cys Ser Lys Gln Glu Asp His Ala Glu Ala 385 390 395 400 Ala Leu Tyr Lys Asn Leu Leu His Ser Lys Glu Ser Ser Cys Ser Asp 405 410 415 Ser Thr Asn Glu Tyr Met Asp Met Lys Pro Gly Val Ser Tyr Val Val 420 425 430 Pro Thr Lys Ala Asp Lys Arg Arg Ser Val Arg Ile Gly Ser Tyr Ile 435 440 445 Glu Arg Asp Val Thr Pro Ala Ile Met Glu Asp Asp Glu Leu Ala Leu 450 455 460 Asp Leu Glu Asp Leu Leu Ser Phe Ser Tyr Gln Val Ala Lys Gly Met 465 470 475 480 Ala Phe Leu Ala Ser Lys Asn Cys Ile His Arg Asp Leu Ala Ala Arg 485 490 495 Asn Ile Leu Leu Thr His Gly Arg Ile Thr Lys Ile Cys Asp Phe Gly 500 505 510 Leu Ala Arg Asp Ile Lys Asn Asp Ser Asn Tyr Val Val Lys Gly Asn 515 520 525 Ala Arg Leu Pro Val Lys Trp Met Ala Pro Glu Ser Ile Phe Asn Cys 530 535 540 Val Tyr Thr Phe Glu Ser Asp Val Trp Ser Tyr Gly Ile Phe Leu Trp 545 550 555 560 Glu Leu Phe Ser Leu Gly Ser Ser Pro Tyr Pro Gly Met Pro Val Asp 565 570 575 Ser Lys Phe Tyr Lys Met Ile Lys Glu Gly Phe Arg Met Leu Ser Pro 580 585 590 Glu His Ala Pro Ala Glu Met Tyr Asp Ile Met Lys Thr Cys Trp Asp 595 600 605 Ala Asp Pro Leu Lys Arg Pro Thr Phe Lys Gln Ile Val Gln Leu Ile 610 615 620 Glu Lys Gln Ile Ser Glu Ser Thr Asn His Ile Tyr Ser Asn Leu Ala 625 630 635 640 Asn Cys Ser Pro Asn Arg Gln Lys Pro Val Val Asp His Ser Val Arg 645 650 655 Ile Asn Ser Val Gly Ser Thr Ala Ser Ser Ser Gln Pro Leu Leu Val 660 665 670 His Asp Asp Val 675 <210> 2 <211> 474 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic polypeptide <400> 2 Met Ser Tyr Tyr His His His His His His Asp Tyr Asp Ile Pro Thr 1 5 10 15 Thr Glu Asn Leu Tyr Phe Gln Gly Ala Met Leu Val Pro Arg Gly Ser 20 25 30 Pro Trp Ile Pro Phe Thr Met Lys Lys Arg Lys Gln Ile Lys Asp Leu 35 40 45 Gly Ser Glu Leu Val Arg Tyr Asp Ala Arg Val His Thr Pro His Leu 50 55 60 Asp Arg Leu Val Ser Ala Arg Ser Val Ser Pro Thr Thr Glu Met Val 65 70 75 80 Ser Asn Glu Ser Val Asp Tyr Arg Ala Thr Phe Pro Glu Asp Gln Phe 85 90 95 Pro Asn Ser Ser Gln Asn Gly Ser Cys Arg Gln Val Gln Tyr Pro Leu 100 105 110 Thr Asp Met Ser Pro Ile Leu Thr Ser Gly Asp Ser Asp Ile Ser Ser 115 120 125 Pro Leu Leu Gln Asn Thr Val His Ile Asp Leu Ser Ala Leu Asn Pro 130 135 140 Glu Leu Val Gln Ala Val Gln His Val Val Ile Gly Pro Ser Ser Leu 145 150 155 160 Ile Val His Phe Asn Glu Val Ile Gly Arg Gly His Phe Gly Cys Val 165 170 175 Tyr His Gly Thr Leu Leu Asp Asn Asp Gly Lys Lys Ile His Cys Ala 180 185 190 Val Lys Ser Leu Asn Arg Ile Thr Asp Ile Gly Glu Val Ser Gln Phe 195 200 205 Leu Thr Glu Gly Ile Ile Met Lys Asp Phe Ser His Pro Asn Val Leu 210 215 220 Ser Leu Leu Gly Ile Cys Leu Arg Ser Glu Gly Ser Pro Leu Val Val 225 230 235 240 Leu Pro Tyr Met Lys His Gly Asp Leu Arg Asn Phe Ile Arg Asn Glu 245 250 255 Thr His Asn Pro Thr Val Lys Asp Leu Ile Gly Phe Gly Leu Gln Val 260 265 270 Ala Lys Gly Met Lys Tyr Leu Ala Ser Lys Lys Phe Val His Arg Asp 275 280 285 Leu Ala Ala Arg Asn Cys Met Leu Asp Glu Lys Phe Thr Val Lys Val 290 295 300 Ala Asp Phe Gly Leu Ala Arg Asp Met Tyr Asp Lys Glu Tyr Tyr Ser 305 310 315 320 Val His Asn Lys Thr Gly Ala Lys Leu Pro Val Lys Trp Met Ala Leu 325 330 335 Glu Ser Leu Gln Thr Gln Lys Phe Thr Thr Lys Ser Asp Val Trp Ser 340 345 350 Phe Gly Val Leu Leu Trp Glu Leu Met Thr Arg Gly Ala Pro Pro Tyr 355 360 365 Pro Asp Val Asn Thr Phe Asp Ile Thr Val Tyr Leu Leu Gln Gly Arg 370 375 380 Arg Leu Leu Gln Pro Glu Tyr Cys Pro Asp Pro Leu Tyr Glu Val Met 385 390 395 400 Leu Lys Cys Trp His Pro Lys Ala Glu Met Arg Pro Ser Phe Ser Glu 405 410 415 Leu Val Ser Arg Ile Ser Ala Ile Phe Ser Thr Phe Ile Gly Glu His 420 425 430 Tyr Val His Val Asn Ala Thr Tyr Val Asn Val Lys Cys Val Ala Pro 435 440 445 Tyr Pro Ser Leu Leu Ser Ser Glu Asp Asn Ala Asp Asp Glu Val Asp 450 455 460 Thr Arg Pro Ala Ser Phe Trp Glu Thr Ser 465 470 <210> 3 <211> 315 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic polypeptide <400> 3 Asp Pro Asp Glu Leu Pro Leu Asp Glu His Cys Glu Arg Leu Pro Tyr 1 5 10 15 Asp Ala Ser Lys Trp Glu Phe Pro Arg Asp Arg Leu Lys Leu Gly Lys 20 25 30 Pro Leu Gly Arg Gly Ala Phe Gly Gln Val Ile Glu Ala Asp Ala Phe 35 40 45 Gly Ile Asp Lys Thr Ala Thr Cys Arg Thr Val Ala Val Lys Met Leu 50 55 60 Lys Glu Gly Ala Thr His Ser Glu His Arg Ala Leu Met Ser Glu Leu 65 70 75 80 Lys Ile Leu Ile His Ile Gly His His Leu Asn Val Val Asn Leu Leu 85 90 95 Gly Ala Cys Thr Lys Pro Gly Gly Pro Leu Met Val Ile Val Glu Phe 100 105 110 Cys Lys Phe Gly Asn Leu Ser Thr Tyr Leu Arg Ser Lys Arg Asn Glu 115 120 125 Phe Val Pro Tyr Lys Val Ala Pro Glu Asp Leu Tyr Lys Asp Phe Leu 130 135 140 Thr Leu Glu His Leu Ile Cys Tyr Ser Phe Gln Val Ala Lys Gly Met 145 150 155 160 Glu Phe Leu Ala Ser Arg Lys Cys Ile His Arg Asp Leu Ala Ala Arg 165 170 175 Asn Ile Leu Leu Ser Glu Lys Asn Val Val Lys Ile Cys Asp Phe Gly 180 185 190 Leu Ala Arg Asp Ile Tyr Lys Asp Pro Asp Tyr Val Arg Lys Gly Asp 195 200 205 Ala Arg Leu Pro Leu Lys Trp Met Ala Pro Glu Thr Ile Phe Asp Arg 210 215 220 Val Tyr Thr Ile Gln Ser Asp Val Trp Ser Phe Gly Val Leu Leu Trp 225 230 235 240 Glu Ile Phe Ser Leu Gly Ala Ser Pro Tyr Pro Gly Val Lys Ile Asp 245 250 255 Glu Glu Phe Cys Arg Arg Leu Lys Glu Gly Thr Arg Met Arg Ala Pro 260 265 270 Asp Tyr Thr Thr Pro Glu Met Tyr Gln Thr Met Leu Asp Cys Trp His 275 280 285 Gly Glu Pro Ser Gln Arg Pro Thr Phe Ser Glu Leu Val Glu His Leu 290 295 300 Gly Asn Leu Leu Gln Ala Asn Ala Gln Gln Asp 305 310 315 <210> 4 <211> 5 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic polypeptide <400> 4 Glu Glu Glu Glu Tyr 1 5

Claims (44)

  1. 화학식 Ia 화합물, 이런 화합물의 입체이성질체, 위치이성질체와 호변체, 그리고 이들의 제약학적으로 허용되는 염, 수화물, 용매화합물, 프로드러그와 호변체:
    [화학식 Ia]
    Figure pct00117

    Q1, Q2, 그리고 Q3은 각각 개별적으로 및 독립적으로 N과 CH로 구성된 군에서 선택되고, 그리고 여기서 Q1과 Q2 중에서 적어도 하나는 N이고;
    그리고 여기서 Q1과 Q2를 보유하는 고리는 (R20)x 모이어티로 선택적으로 치환될 수 있고;
    각각의 D는 개별적으로 C, CH, C-R20, N-Z3, N, 그리고 O로 구성된 군에서 선택되고, 따라서 생성된 고리는 피라졸릴, 이속사졸릴, 트리아졸릴과 이미다졸릴로 구성된 군에서 선택되고;
    그리고 여기서 Q3을 보유하는 고리는 1개 내지 3개의 R16 모이어티로 선택적으로 치환될 수 있고;
    V는 NR4, 또는
    Figure pct00118
    이고;
    각각의 Q5는 C(Z2B)2이고;
    W는 직접 결합, -[C(R13)R14]m-, -[C(R13)R14]mNR4-, 또는 NR4이고;
    A는 인다닐, 테트라히드로나프틸, 티에닐, 페닐, 나프틸, 피라지닐, 피리다지닐, 트리아지닐, 피리디닐, 그리고 피리미디닐로 구성된 군에서 선택되고;
    X2는 -O-이고;
    A가 하나 이상의 치환가능 sp2-혼성 탄소 원자를 보유할 때, 각 개별 sp2 혼성 탄소 원자는 Z1B 치환기로 선택적으로 치환될 수 있고;
    A가 하나 이상의 치환가능 sp3-혼성 탄소 원자를 보유할 때, 각 개별 sp3 혼성 탄소 원자는 Z2B 치환기로 선택적으로 치환될 수 있고;
    각각의 Z1B는 독립적으로 및 개별적으로 수소, C1-6알킬, 가지형 C3-C7알킬, 할로겐, 플루오르C1-C6알킬 (이때, 알킬 모이어티는 부분적으로 또는 완전히 불화될 수 있다), C1-C6알콕시, 플루오르C1-C6알콕시 (이때, 알킬 모이어티는 부분적으로 또는 완전히 불화될 수 있다), 그리고 -(CH2)nCN으로 구성된 군에서 선택되고;
    각각의 Z2B는 독립적으로 및 개별적으로 수소, C1-C6알킬, 그리고 가지형 C3-C7알킬로 구성된 군에서 선택되고;
    각각의 Z3은 독립적으로 및 개별적으로 수소, C1-C6알킬, 가지형 C3-C7알킬, C3-C8시클로알킬, 플루오르C1-C6알킬 (이때, 알킬 모이어티는 부분적으로 또는 완전히 불화될 수 있다), 히드록시C2-C6알킬-, R5C(O)(CH2)n-, (R4)2NC(O)C1-C6알킬-, R8C(O)N(R4)(CH2)q-, -(CH2)qCN, -(CH2)qR5, 그리고 -(CH2)qN(R4)2로 구성된 군에서 선택되고;
    각각의 R2는 수소, R17-치환된 아릴-, C1-C6알킬, 가지형 C3-C8알킬, R19 치환된 C3-C8시클로알킬-, 그리고 플루오르C1-C6알킬- (이때, 알킬은 완전히 또는 부분적으로 불화된다)로 구성된 군에서 선택되고;
    각각의 R3은 독립적으로 및 개별적으로 수소, C1-C6알킬, 가지형 C3-C7알킬, 그리고 C3-C8시클로알킬로 구성된 군에서 선택되고;
    각각의 R4는 독립적으로 및 개별적으로 수소, C1-C6알킬, 히드록시C1-C6알킬-, 디히드록시C1-C6알킬-, C1-C6알콕시C1-C6알킬-, 가지형 C3-C7알킬, 히드록실 치환된 가지형 C3-C6알킬-, C1-C6알콕시 가지형 C3-C6알킬-, 디히드록시 치환된 가지형 C3-C6알킬-, -(CH2)pN(R7)2, -(CH2)pR5, -(CH2)pC(O)N(R7)2, -(CH2)nC(O)R5, -(CH2)nC(O)OR3, 그리고 R19 치환된 C3-C8시클로알킬-로 구성된 군에서 선택되고;
    각각의 R5는 독립적으로 및 개별적으로
    Figure pct00119

    로 구성된 군에서 선택되고;
    그리고 여기서 기호 (##)는 R5 모이어티를 보유하는 개별 R4, R7, R8, R20 또는 Z3 모이어티에 대한 부착점이고;
    각각의 R7은 독립적으로 및 개별적으로 수소, C1-C6알킬, 히드록시C2-C6알킬-, 디히드록시C2-C6알킬-, C1-C6알콕시C2-C6알킬-, 가지형 C3-C7알킬, 히드록시 치환된 가지형 C3-C6알킬-, C1-C6알콕시 가지형 C3-C6알킬-, 디히드록시 치환된 가지형 C3-C6알킬-, -(CH2)qR5, -(CH2)nC(O)R5, -(CH2)nC(O)OR3, R19 치환된 C3-C8시클로알킬-, 그리고 -(CH2)nR17로 구성된 군에서 선택되고;
    각각의 R8은 독립적으로 및 개별적으로 C1-C6알킬, 가지형 C3-C7알킬, 플루오르C1-C6알킬- (이때, 알킬 모이어티는 부분적으로 또는 완전히 불화된다), R19 치환된 C3-C8시클로알킬-, 페닐, 페닐C1-C6알킬-, OH, C1-C6알콕시, -N(R3)2, -N(R4)2, 그리고 R5로 구성된 군에서 선택되고;
    각각의 R10은 독립적으로 및 개별적으로 -CO2H, -CO2C1-C6알킬, -C(O)N(R4)2, OH, C1-C6알콕시, 그리고 -N(R4)2로 구성된 군에서 선택되고;
    R13과 R14는 각각 개별적으로 및 독립적으로 수소, C1-C6알킬, 가지형 C3-C8알킬, 플루오르C1-C6알킬- (이때, 알킬은 완전히 또는 부분적으로 불화된다), 히드록실 치환된 C1-C6알킬-, C1-C6알콕시 치환된 C1-C6알킬-, 히드록실 치환된 가지형 C3-C8알킬-, 그리고 알콕시 치환된 가지형 C3-C8알킬로 구성된 군에서 선택되고;
    각각의 R16은 독립적으로 및 개별적으로 수소, C1-C6알킬, 가지형 C3-C7알킬, R19 치환된 C3-C8시클로알킬-, 할로겐, 플루오르C1-C6알킬- (이때, 알킬 모이어티는 부분적으로 또는 완전히 불화될 수 있다), 시아노, 히드록실, C1-C6알콕시, 플루오르C1-C6알콕시- (이때, 알킬 모이어티는 부분적으로 또는 완전히 불화될 수 있다), -N(R3)2, -N(R4)2, R3 치환된 C2-C3알키닐-, 그리고 니트로로 구성된 군에서 선택되고;
    각각의 R17은 독립적으로 및 개별적으로 수소, C1-C6알킬, 가지형 C3-C7알킬, 히드록시C2-C6알킬-, R19 치환된 C3-C8시클로알킬-, 할로겐, 플루오르C1-C6알킬- (이때, 알킬 모이어티는 부분적으로 또는 완전히 불화될 수 있다), 시아노, 히드록실, C1-C6알콕시, 플루오르C1-C6알콕시- (이때, 알킬 모이어티는 부분적으로 또는 완전히 불화될 수 있다), -N(R3)2, -N(R4)2, 그리고 니트로로 구성된 군에서 선택되고;
    각각의 R19는 독립적으로 및 개별적으로 수소, OH, 그리고 C1-C6알킬로 구성된 군에서 선택되고;
    각각의 R20은 독립적으로 및 개별적으로 수소, C1-C6알킬, 가지형 C3-C7알킬, R19 치환된 C3-C8시클로알킬-, 할로겐, 플루오르C1-C6알킬- (이때, 알킬 모이어티는 부분적으로 또는 완전히 불화될 수 있다), 시아노, 히드록실, 히드록시C1-C6알킬-, C1-C6알콕시C1-C6알킬-, C1-C6알콕시, 플루오르C1-C6알콕시- (이때, 알킬 모이어티는 부분적으로 또는 완전히 불화될 수 있다), -N(R3)2, -N(R4)2, -(CH2)nR5, -(CH2)nN(R3)C(O)R3, -(CH2)nC(O)N(R3)2, 그리고 니트로로 구성된 군에서 선택되고;
    각각의 m은 독립적으로 및 개별적으로 1-3이고, 각각의 n은 독립적으로 및 개별적으로 0-6이고; 각각의 p는 독립적으로 및 개별적으로 1-4이고; 각각의 q는 독립적으로 및 개별적으로 2-6이고; 각각의 v는 독립적으로 및 개별적으로 1 또는 2이고; 각각의 x는 독립적으로 및 개별적으로 0-2이다.
  2. 제 1 항에 있어서,
    Figure pct00120

    Figure pct00121

    로 구성된 군에서 선택되고, 여기서 기호 (**)는 헤테로아릴 Q1, Q2 보유 고리에 대한 부착점을 지시하는 것을 특징으로 하는 화합물.
  3. 제 2 항에 있어서, 화합물은 화학식 Ib를 갖는 것을 특징으로 하는 화합물:
    Figure pct00122
    .
  4. 제 3 항에 있어서, 화합물은 화학식 Ic를 갖는 것을 특징으로 하는 화합물:
    Figure pct00123
    .
  5. 제 3 항에 있어서, 화합물은 화학식 Id를 갖는 것을 특징으로 하는 화합물:
    Figure pct00124
    .
  6. 제 3 항에 있어서, 화합물은 화학식 Ie를 갖는 것을 특징으로 하는 화합물:
    Figure pct00125
    .
  7. 제 2 항에 있어서, 화합물은 화학식 If를 갖는 것을 특징으로 하는 화합물:
    Figure pct00126
  8. 제 7 항에 있어서, 화합물은 화학식 Ig를 갖는 것을 특징으로 하는 화합물:
    Figure pct00127
    .
  9. 제 7 항에 있어서, 화합물은 화학식 Ih를 갖는 것을 특징으로 하는 화합물:
    Figure pct00128
    .
  10. 제 7 항에 있어서, 화합물은 화학식 Ii를 갖는 것을 특징으로 하는 화합물:
    Figure pct00129
    .
  11. 제 2 항에 있어서, 화합물은 화학식 Ij를 갖는 것을 특징으로 하는 화합물:
    Figure pct00130
  12. 제 11 항에 있어서, 화합물은 화학식 Ik를 갖는 것을 특징으로 하는 화합물:
    Figure pct00131
    .
  13. 제 11 항에 있어서, 화합물은 화학식 Il을 갖는 것을 특징으로 하는 화합물:
    Figure pct00132
    .
  14. 제 11 항에 있어서, 화합물은 화학식 Im을 갖는 것을 특징으로 하는 화합물:
    Figure pct00133
    .
  15. 제 2 항에 있어서, 화합물은 화학식 In을 갖는 것을 특징으로 하는 화합물:
    Figure pct00134
  16. 제 15 항에 있어서, 화합물은 화학식 Io를 갖는 것을 특징으로 하는 화합물:
    Figure pct00135
    .
  17. 제 15 항에 있어서, 화합물은 화학식 Ip를 갖는 것을 특징으로 하는 화합물:
    Figure pct00136
    .
  18. 제 15 항에 있어서, 화합물은 화학식 Iq를 갖는 것을 특징으로 하는 화합물:
    Figure pct00137
    .
  19. 제 2 항에 있어서, 화합물은 화학식 Ir을 갖는 것을 특징으로 하는 화합물:
    Figure pct00138
    .
  20. 제 19 항에 있어서, 화합물은 화학식 Is를 갖는 것을 특징으로 하는 화합물:
    Figure pct00139
    .
  21. 제 19 항에 있어서, 화합물은 화학식 It를 갖는 것을 특징으로 하는 화합물:
    Figure pct00140
    .
  22. 제 19 항에 있어서, 화합물은 화학식 Iu를 갖는 것을 특징으로 하는 화합물:
    Figure pct00141
    .
  23. 제 2 항에 있어서, 화합물은 화학식 Iv를 갖는 것을 특징으로 하는 화합물:
    Figure pct00142
    .
  24. 제 23 항에 있어서, 화합물은 화학식 Iw를 갖는 것을 특징으로 하는 화합물:
    Figure pct00143
    .
  25. 제 23 항에 있어서, 화합물은 화학식 Ix를 갖는 것을 특징으로 하는 화합물:
    Figure pct00144
    .
  26. 제 23 항에 있어서, 화합물은 화학식 Iy를 갖는 것을 특징으로 하는 화합물:
    Figure pct00145
    .
  27. 제 2 항에 있어서, 화합물은 화학식 Iz를 갖는 것을 특징으로 하는 화합물:
    Figure pct00146
  28. 제 27 항에 있어서, 화합물은 화학식 Iaa를 갖는 것을 특징으로 하는 화합물:
    Figure pct00147
    .
  29. 제 27 항에 있어서, 화합물은 화학식 Ibb를 갖는 것을 특징으로 하는 화합물:
    Figure pct00148
    .
  30. 제 27 항에 있어서, 화합물은 화학식 Icc를 갖는 것을 특징으로 하는 화합물:
    Figure pct00149
    .
  31. 제 2 항에 있어서, 화합물은 화학식 Idd를 갖는 것을 특징으로 하는 화합물:
    Figure pct00150
    .
  32. 제 31 항에 있어서, 화합물은 화학식 Iee를 갖는 것을 특징으로 하는 화합물:
    Figure pct00151
    .
  33. 제 31 항에 있어서, 화합물은 화학식 Iff를 갖는 것을 특징으로 하는 화합물:
    Figure pct00152
    .
  34. 제 31 항에 있어서, 화합물은 화학식 Igg를 갖는 것을 특징으로 하는 화합물:
    Figure pct00153
    .
  35. 제 2 항에 있어서, 화합물은 화학식 Ihh를 갖는 것을 특징으로 하는 화합물:
    Figure pct00154
  36. 제 35 항에 있어서, 화합물은 화학식 Iii를 갖는 것을 특징으로 하는 화합물:
    Figure pct00155
    .
  37. 제 35 항에 있어서, 화합물은 화학식 Ijj를 갖는 것을 특징으로 하는 화합물:
    Figure pct00156
    .
  38. 제 35 항에 있어서, 화합물은 화학식 Ikk를 갖는 것을 특징으로 하는 화합물:
    Figure pct00157
    .
  39. N-(3-플루오르-4-(2-(1-메틸-1H-피라졸-4-일)피리딘-4-일옥시)페닐)-N'-(4-플루오르페닐)시클로프로판-1,1-디카르복사미드, N-(2-플루오르-4-(2-(1-메틸-1H-피라졸-4-일)피리딘-4-일옥시)페닐)-N'-(4-플루오르페닐)시클로프로판-1,1-디카르복사미드, 1-(3-플루오르-4-(2-(1-메틸-1H-피라졸-4-일)피리딘-4-일옥시)페닐)-3-(2-(4-플루오르페닐)아세틸)우레아, N-(2,5-디플루오르-4-(2-(1-메틸-1H-피라졸-4-일)피리딘-4-일옥시)페닐)-N'-(4-플루오르페닐)시클로프로판-1,1-디카르복사미드, N-(4-플루오르페닐)-N'-(5-(2-(1-메틸-1H-피라졸-4-일)피리딘-4-일옥시)피리딘-2-일)시클로프로판-1,1-디카르복사미드, N-(2,5-디플루오르-4-(2-(1-메틸-1H-피라졸-4-일)피리딘-4-일옥시)페닐카르바모일)-2-(4-플루오르페닐)아세트아미드, 2-(4-플루오르페닐)-N-(5-(2-(1-메틸-1H-피라졸-4-일)피리딘-4-일옥시)피리딘-2-일카르바모일)아세트아미드, N-(2,5-디플루오르-4-(2-(1-메틸-1H-피라졸-4-일)피리딘-4-일옥시)페닐)-N-페닐시클로프로판-1,1-디카르복사미드, N-(5-클로로-2-플루오르-4-(2-(1-메틸-1H-피라졸-4-일)피리딘-4-일옥시)페닐카르바모일)-2-(4-플루오르페닐)아세트아미드, N-(5-클로로-2-플루오르-4-(2-(1-메틸-1H-피라졸-4-일)피리딘-4-일옥시)페닐)-N-(4-플루오르페닐)시클로프로판-1,1-디카르복사미드, N-(4-플루오르페닐)-N-(4-(2-(4-(트리플루오르메틸)-1H-이미다졸-2-일)피리딘-4-일옥시)페닐)시클로프로판-1,1-디카르복사미드, 그리고 이들의 제약학적으로 허용되는 염, 용매화합물, 수화물과 호변체로 구성된 군에서 선택되는 화합물.
  40. 질환 발병 또는 진행이 PDGFR-α 키나아제, PDGFR-β 키나아제, c-KIT 키나아제, c-FMS 키나아제, 또는 c-MET 키나아제, 그리고 이들의 발암성 형태, 비정상적 융합 단백질과 다형체의 키나아제 활성에 의해 적어도 부분적으로 매개되는 포유동물 질환을 치료하는 방법에 있어서, 제 1 항의 화합물을 포유동물에 투여하는 단계를 포함하는 것을 특징으로 하는 방법.
  41. 제 40 항에 있어서, 키나아제는 c-MET 단백질 키나아제, 그리고 이의 융합 단백질, 돌연변이와 다형체인 것을 특징으로 하는 방법.
  42. 제약학적으로 허용되는 담체와 함께, 어쥬번트, 부형제, 희석제, 그리고 안정화제로 구성된 군에서 선택되는 첨가제를 선택적으로 포함하는 제 1 항의 화합물을 포함하는 제약학적 조성물.
  43. 암, 과증식성 질환, 물질대사 질환, 신경변성 질환, 또는 혈관신생으로 특징되는 질환, 예를 들면, 고형 종양, 흑색종, 아교모세포종, 난소 암, 췌장 암, 전립선 암, 폐암, 유방 암, 신장암, 간암, 자궁경부 암종, 원발성 종양 부위의 전이, 골수증식성 질환, 만성 골수성 백혈병, 백혈병, 갑상샘 유두 암종, 비-소세포 폐암, 중피종, 과호산구 증후군, 위장관 간질 종양, 대장암, 망막증, 당뇨성 망막증, 연령-관련된 황반 변성과 과호산구 증후군을 비롯한 시각상실을 유발하는 과증식으로 특징되는 안과 질환, 류머티스성 관절염, 천식, 만성 폐쇄성 폐 질환, 비만세포증, 비만 세포 백혈병, 그리고 PDGFR-α 키나아제, PDGFR-β 키나아제, c-KIT 키나아제, cFMS 키나아제, c-MET 키나아제, 그리고 전술한 키나아제 중에서 한 가지의 발암성 형태, 비정상적 융합 단백질과 다형체에 의해 유발되는 질환으로 구성된 군에서 선택되는 질환으로 고통받는 개체를 치료하는 방법에 있어서, 제 1 항의 화합물을 이런 개체에 투여하는 단계를 포함하는 것을 특징으로 하는 방법.
  44. 제 43 항에 있어서, 상기 화합물은 경구, 비경구, 흡입, 그리고 피하로 구성된 군에서 선택되는 방법에 의해 투여되는 것을 특징으로 하는 방법.
KR1020117012338A 2008-10-29 2009-10-29 항-암과 항-증식성 활성을 나타내는 시클로프로판 아미드와 유사체 KR20110099687A (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10930908P 2008-10-29 2008-10-29
US61/109,309 2008-10-29

Publications (1)

Publication Number Publication Date
KR20110099687A true KR20110099687A (ko) 2011-09-08

Family

ID=42129269

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020117012338A KR20110099687A (ko) 2008-10-29 2009-10-29 항-암과 항-증식성 활성을 나타내는 시클로프로판 아미드와 유사체

Country Status (13)

Country Link
US (2) US8278331B2 (ko)
EP (1) EP2365752B1 (ko)
JP (1) JP5444365B2 (ko)
KR (1) KR20110099687A (ko)
CN (1) CN102256493A (ko)
AU (1) AU2009308853A1 (ko)
BR (1) BRPI0920765A2 (ko)
CA (1) CA2742007C (ko)
EA (1) EA201170627A1 (ko)
IL (1) IL212574A0 (ko)
MX (1) MX2011004535A (ko)
NZ (1) NZ603654A (ko)
WO (1) WO2010051373A1 (ko)

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2011119478A (ru) 2008-10-14 2012-11-27 Нин Си Соединения и способы применения
JP5583751B2 (ja) 2009-03-21 2014-09-03 クイ ニング アミノエステル誘導体、その塩、及び使用方法
SG10201503394PA (en) * 2010-04-29 2015-06-29 Deciphera Pharmaceuticals Llc Cyclopropyl Dicarboxamides And Analogs Exhibiting Anti-Cancer And Anti-Proliferative Activities
US8569319B2 (en) 2010-04-29 2013-10-29 Deciphera Pharmaceuticals, LLS Pyridone amides and analogs exhibiting anti-cancer and anti-proliferative activities
WO2012042314A1 (en) 2010-10-02 2012-04-05 Link Research & Grants Corporation Treatment of tinnitus and related auditory dysfunctions
CN102558144A (zh) * 2010-12-22 2012-07-11 北大方正集团有限公司 一种芳基脲衍生物
WO2012133416A1 (ja) * 2011-03-29 2012-10-04 エーザイ・アール・アンド・ディー・マネジメント株式会社 フェノキシピリジン誘導体の製造方法(3)
TW201242701A (en) * 2011-04-22 2012-11-01 Hon Hai Prec Ind Co Ltd Guideway mechanism
AU2013259583A1 (en) 2012-05-08 2014-11-13 The Regents Of The University Of California Alpha 7 nicotinic acetylcholine allosteric modulators, their derivatives and uses thereof
US8461179B1 (en) 2012-06-07 2013-06-11 Deciphera Pharmaceuticals, Llc Dihydronaphthyridines and related compounds useful as kinase inhibitors for the treatment of proliferative diseases
BR112015022263B1 (pt) * 2013-03-15 2023-01-03 Deciphera Pharmaceuticals Llc N-acil-n-(piridin-2-il) uréias e análogos apresentando atividades anticâncer e antiproliferativas, seus usos, e composição farmacêutica
WO2014145023A1 (en) * 2013-03-15 2014-09-18 Deciphera Pharmaceuticals, Llc 1,2,4-triazol-5-ones and analogs exhibiting anti-cancer and anti-proliferative activities
AU2014233411B2 (en) * 2013-03-15 2018-09-13 Deciphera Pharmaceuticals, Llc 2-aminopyrimidin-6-ones and analogs exhibiting anti-cancer and anti-proliferative activities
WO2014145029A2 (en) * 2013-03-15 2014-09-18 Deciphera Pharmaceuticals, Llc N-acyl-n'-(pyridin-2-yl) ureas and analogs exhibiting anti-cancer and anti-proliferative activities
US9012635B2 (en) 2013-03-15 2015-04-21 Deciphera Pharmaceuticals, Llc Pyridone amides and analogs exhibiting anti-cancer and anti-proliferative activities
US9133183B2 (en) 2013-03-15 2015-09-15 Deciphera Pharmaceuticals, Llc Imidazolidinones and analogs exhibiting anti-cancer and anti-proliferative activities
CN104119319B (zh) * 2014-06-27 2016-03-16 郑州大学 含1,2,3-三氮唑和脲结构单元的嘧啶衍生物及其制备方法和用途
KR20160024639A (ko) 2014-08-26 2016-03-07 삼성전자주식회사 c-Met 표적 치료제의 저항성 또는 효능 예측을 위한 바이오마커 PDGF
UA124879C2 (uk) 2016-02-12 2021-12-08 Сайтокінетікс, Інкорпорейтед Похідні тетрагідроізохіноліну
CN106748830B (zh) * 2017-02-28 2018-11-30 金凯(辽宁)化工有限公司 一种3-氨基-4-氟苯酚的制备方法
CN108530464B (zh) * 2017-03-02 2020-10-27 深圳海王医药科技研究院有限公司 一种多靶点激酶抑制剂
CN110461849B (zh) * 2017-06-19 2020-09-01 上海和誉生物医药科技有限公司 一种csf1r抑制剂及其制备方法和应用
BR112020015581A2 (pt) 2018-01-31 2021-02-02 Deciphera Pharmaceuticals, Llc terapia de combinação para o tratamento de tumores estromais gastrointestinais
CN109384799B (zh) * 2018-11-12 2020-07-14 深圳海王医药科技研究院有限公司 一种多靶点激酶抑制剂化合物的晶型a及制备方法和含有其的药物组合物
CN113453684B (zh) 2018-12-28 2024-05-14 德西费拉制药有限责任公司 用于治疗癌症的csf1r抑制剂
CN113710322A (zh) 2019-01-25 2021-11-26 埃克塞里艾克西斯公司 用于治疗激酶依赖性病症的化合物
SI3966207T1 (sl) 2019-05-10 2023-12-29 Deciphera Pharmaceuticals, Llc Fenilaminopirimidinamidni zaviralci avtofagije in načini njihove uporabe
EP3966206B1 (en) 2019-05-10 2023-08-09 Deciphera Pharmaceuticals, LLC Heteroarylaminopyrimidine amide autophagy inhibitors and methods of use thereof
AU2020297422B2 (en) 2019-06-17 2024-03-21 Deciphera Pharmaceuticals, Llc Aminopyrimidine amide autophagy inhibitors and methods of use thereof
JP2022544234A (ja) 2019-08-12 2022-10-17 デシフェラ・ファーマシューティカルズ,エルエルシー 胃腸間質腫瘍を治療するためのリプレチニブ
WO2021030405A1 (en) 2019-08-12 2021-02-18 Deciphera Pharmaceuticals, Llc Ripretinib for treating gastrointestinal stromal tumors
EP4327827A3 (en) 2019-12-30 2024-05-29 Deciphera Pharmaceuticals, LLC Amorphous kinase inhibitor formulations and methods of use thereof
IL293864A (en) 2019-12-30 2022-08-01 Deciphera Pharmaceuticals Llc Preparations of 1-(4-bromo-5-(1-ethyl-7-(methylamino)-2-oxo-1,2-dihydro-1,6-naphthyridin-3-yl)-2-fluorophenyl)-3- phenylurea
EP4103188A4 (en) * 2020-02-10 2024-04-10 Stemsynergy Therapeutics Inc MYC INHIBITORS AND THEIR USES
CN115244041A (zh) * 2020-03-10 2022-10-25 南京明德新药研发有限公司 乙烯基取代吡啶类化合物
IL302807A (en) 2020-11-18 2023-07-01 Deciphera Pharmaceuticals Llc GCN2 and PERK kinase inhibitors and methods of using them
PE20240327A1 (es) 2021-04-13 2024-02-22 Nuvalent Inc Heterociclos con sustitucion amino para tratar canceres con mutaciones de egfr
US11779572B1 (en) 2022-09-02 2023-10-10 Deciphera Pharmaceuticals, Llc Methods of treating gastrointestinal stromal tumors

Family Cites Families (90)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB971307A (en) 1961-03-02 1964-09-30 Wellcome Found 5-anilinopyrimidines
GB1127875A (en) 1967-03-23 1968-09-18 Parke Davis & Co 4-(5-nitro-2-furyl) thiazolyl hydantoins and hydrouracils
US3949002A (en) 1970-11-13 1976-04-06 Imperial Chemical Industries Limited Process for producing sulfone containing thiophenols
US3818024A (en) 1972-02-16 1974-06-18 Velsicol Chemical Corp Benzothiazol substituted thiadiazolidines
CH565887A5 (ko) 1972-08-22 1975-08-29 Ciba Geigy Ag
US3939122A (en) 1973-04-11 1976-02-17 Bayer Aktiengesellschaft Process for the preparation of compounds which contain hydantoin rings
FR2337554A1 (fr) 1976-01-08 1977-08-05 Buzas Andre Nouveaux derives de la pyrazolidinedione
US4093624A (en) 1977-01-31 1978-06-06 Icn Pharmaceuticals, Inc. 1,2,4-Thiadiazolidine-3,5-dione
FR2396549A2 (fr) 1977-07-06 1979-02-02 Buzas Andre Nouveaux derives de la pyrazolidinedione
US4256758A (en) 1979-06-11 1981-03-17 Merck & Co., Inc. 4-Substituted-3-hydroxy-3-pyrroline-2,5-dione inhibitors of glycolic acid oxidase
US4298743A (en) 1979-09-11 1981-11-03 Merck & Co., Inc. 4-(Substituted phenyl thiazolyl)-3-hydroxy-3-pyrroline-2,5-diones
US4296237A (en) 1979-09-11 1981-10-20 Merck & Co., Inc. 4-(Pyridyl, piperazinyl and thiazolyl substituted thiazolyl)-3-hydroxy-3-pyrroline-2,5-diones
US4432992A (en) 1979-11-05 1984-02-21 Merck & Co., Inc. 4-[5(and 4)-Substituted-2-thienyl]-3-hydroxy-3-pyrroline-2,5-dione inhibitors of glycolic acid oxidase
US4366189A (en) 1979-12-21 1982-12-28 Ciba-Geigy Corporation 4-Heterocyclyl-4'-vinylstilbenes
JPS5915247A (ja) 1982-07-16 1984-01-26 Mitsubishi Paper Mills Ltd 画像形成方法
JPS59177557A (ja) 1983-03-28 1984-10-08 Fuji Photo Film Co Ltd ハロゲン化銀カラ−写真感光材料
US4816454A (en) 1984-09-21 1989-03-28 Cassella Aktiengesellschaft 4,5-dihydro-3(2H)-pyridazinones and their pharmacological use
US5103014A (en) 1987-09-30 1992-04-07 American Home Products Corporation Certain 3,3'-[[[(2-phenyl-4-thiazolyl)methoxy]phenyl]methylene]dithiobis-propanoic acid derivatives
AU606808B2 (en) 1988-06-29 1991-02-14 Otsuka Pharmaceutical Factory, Inc. Arylcarboxamide substituted by alkylphosphonates, process for preparing the same and a pharmaceutical composition containing the same
GB9012936D0 (en) 1990-06-11 1990-08-01 Fujisawa Pharmaceutical Co Thiophene derivatives,processes for preparation thereof and pharmaceutical composition comprising the same
US5254715A (en) 1990-11-07 1993-10-19 Warner-Lambert Company Aminosulfonyl carbamates
ES2106855T3 (es) 1991-01-21 1997-11-16 Shionogi & Co Analogos de 3-benciliden-1-carbamoil-2-pirrolidona.
US5228980A (en) * 1991-01-31 1993-07-20 Engelhard Corporation Fluidized catalytic cracking process employing shell-coated FCC catalysts
US5162360A (en) 1991-06-24 1992-11-10 Warner-Lambert Company 2-heteroatom containing urea and thiourea ACAT inhibitors
DE4302702A1 (de) 1993-02-01 1994-08-04 Bayer Ag Arylaminosulfonylharnstoffe
AU6518694A (en) 1993-03-19 1994-10-11 Dowelanco A process for preparing halogenated isothiazoles
CA2159344A1 (en) 1993-03-30 1994-10-13 Minoru Moriwaki Cell adhesion inhibitor and thienotriazolodiazepine compound
WO1994024095A1 (en) 1993-04-16 1994-10-27 Abbott Laboratories Immunosuppressive agents
CA2123728A1 (en) 1993-05-21 1994-11-22 Noriyoshi Sueda Urea derivatives and their use as acat inhibitors
DE4337847A1 (de) 1993-11-05 1995-05-11 Bayer Ag Substituierte Phenylaminosulfonylharnstoffe
WO1995015954A1 (en) 1993-12-07 1995-06-15 Smithkline Beecham Plc Heterocyclic biphenylylamides useful as 5ht1d antagonists
DE4343831A1 (de) 1993-12-22 1995-06-29 Magyar Tudomanyos Akademia Substituierte Sulfonylharnstoffe
FR2715155B1 (fr) 1994-01-19 1996-07-26 Mayoly Spindler Inhibiteurs de la monoamine oxydase B et leurs procédés de préparation.
DE4414840A1 (de) 1994-04-28 1995-11-02 Bayer Ag Substituierte Phenylaminosulfonylharnstoffe
CN1104418C (zh) 1994-06-15 2003-04-02 大塚制药株式会社 苯并杂环衍生物
DK0793656T3 (da) 1994-11-24 2003-07-21 Basilea Pharmaceutica Ag Hidtil ukendte benzyl-pyrimidiner
US5494925A (en) 1994-12-02 1996-02-27 Sterling Winthrop Inc. 2-heterocyclyloxymethyl and 2-heterocyclylthiomethyl-1,2,5-thiadiazolidin-3-one 1,1-dioxides and compositions and method of use thereof
EP0739884B1 (en) 1995-04-24 2003-08-13 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal compound and liquid crystal composition containing the same
JPH09221476A (ja) 1995-12-15 1997-08-26 Otsuka Pharmaceut Co Ltd 医薬組成物
US6020357A (en) 1996-12-23 2000-02-01 Dupont Pharmaceuticals Company Nitrogen containing heteroaromatics as factor Xa inhibitors
ATE230742T1 (de) 1997-03-27 2003-01-15 Great Lakes Chemical Europ 2-(2'-hydroxphenyl)-benzotriazole und ihre verwendung als lichtschutzmittel für organische polymere
US6235786B1 (en) 1997-08-06 2001-05-22 Abbott Laboratories Reverse hydroxamate inhibitors of matrix metalloproteinases
US6294573B1 (en) 1997-08-06 2001-09-25 Abbott Laboratories Reverse hydroxamate inhibitors of matrix metalloproteinases
WO1999023091A1 (en) 1997-11-03 1999-05-14 Boehringer Ingelheim Pharmaceuticals, Inc. Aromatic heterocyclic compounds as anti-inflammatory agents
US6887893B1 (en) 1997-12-24 2005-05-03 Sankyo Company, Limited Methods and compositions for treatment and prevention of tumors, tumor-related disorders and cachexia
SI0928790T1 (en) 1998-01-02 2003-06-30 F. Hoffmann-La Roche Ag Thiazole derivatives
DK0956855T3 (da) 1998-04-24 2003-07-14 Leuven K U Res & Dev Immunhæmmende effekter af 8-substituerede xanthin-derivater
US6197599B1 (en) 1998-07-30 2001-03-06 Guorong Chin Method to detect proteins
GB9823873D0 (en) 1998-10-30 1998-12-30 Pharmacia & Upjohn Spa 2-ureido-thiazole derivatives,process for their preparation,and their use as antitumour agents
UA73492C2 (en) 1999-01-19 2005-08-15 Aromatic heterocyclic compounds as antiinflammatory agents
JP2000275886A (ja) 1999-03-23 2000-10-06 Konica Corp 電子写真感光体、それを用いたプロセスカートリッジ及び画像形成装置
US6410254B1 (en) 1999-05-18 2002-06-25 Cytokinetics Compositions and assays utilizing ADP or phosphate for detecting protein modulators
JP3972163B2 (ja) 1999-06-18 2007-09-05 株式会社大塚製薬工場 ホスホン酸ジエステル誘導体
US6525046B1 (en) 2000-01-18 2003-02-25 Boehringer Ingelheim Pharmaceuticals, Inc. Aromatic heterocyclic compounds as antiinflammatory agents
US6500628B1 (en) 2000-05-25 2002-12-31 Millennium Pharmaceuticals, Inc. Nucleic acid molecules encoding human kinase and phosphatase homologues and uses therefor
US6645990B2 (en) 2000-08-15 2003-11-11 Amgen Inc. Thiazolyl urea compounds and methods of uses
MXPA03006749A (es) 2001-02-15 2004-05-31 Boehringer Ingelheim Pharma Proceso para la sintesis de compuestos de urea sustituidos con heteroarilo, utiles como agentes antiinflamatorios.
JP4343534B2 (ja) 2001-03-02 2009-10-14 ゲーペーツェー バイオテック アクチェンゲゼルシャフト 3ハイブリッド・アッセイ・システム
DE60214532T2 (de) 2001-03-23 2007-04-12 Merck Sharp & Dohme Ltd., Hoddesdon Imidazopyrimidin-derivate als liganden für gaba-rezeptoren
US20030092736A1 (en) * 2001-05-30 2003-05-15 Cheng Peter T. Substituted azole acid derivatives useful as antidiabetic and antiobesity agents and method
WO2003000660A1 (en) * 2001-06-22 2003-01-03 Kirin Beer Kabushiki Kaisha Quinoline derivative and quinazoline derivative inhibiting self-phosphorylation of hepatocytus proliferator receptor, and medicinal composition containing the same
EP1281399A3 (en) 2001-08-01 2004-02-11 Warner-Lambert Company Dual inhibitors of wax ester and cholesteryl ester synthesis for inhibiting sebum production
JP2005503400A (ja) 2001-09-13 2005-02-03 ベーリンガー インゲルハイム ファーマシューティカルズ インコーポレイテッド サイトカイン媒介病の治療方法
JP4636486B2 (ja) 2002-02-11 2011-02-23 バイエル、ファーマシューテイカルズ、コーポレイション 脈管形成阻害活性を有するアリール尿素
CA2473634C (en) 2002-02-25 2011-11-29 Boehringer Ingelheim Pharmaceuticals, Inc. 1,4-disubstituted benzofused cycloalkyl urea compounds useful in treating cytokine mediated diseases
US20040171075A1 (en) 2002-12-31 2004-09-02 Flynn Daniel L Modulation of protein functionalities
US7144911B2 (en) 2002-12-31 2006-12-05 Deciphera Pharmaceuticals Llc Anti-inflammatory medicaments
US7202257B2 (en) 2003-12-24 2007-04-10 Deciphera Pharmaceuticals, Llc Anti-inflammatory medicaments
US20080045531A1 (en) 2002-12-31 2008-02-21 Flynn Daniel L Anti-inflammatory medicaments
US7557129B2 (en) 2003-02-28 2009-07-07 Bayer Healthcare Llc Cyanopyridine derivatives useful in the treatment of cancer and other disorders
US20050014753A1 (en) 2003-04-04 2005-01-20 Irm Llc Novel compounds and compositions as protein kinase inhibitors
ES2371383T3 (es) * 2003-09-26 2011-12-30 Exelixis, Inc. N-[3-fluoro-4-({6-(metiloxi)-7-[(3-morfolin-4-ilpropil)oxi]quinolin-4-il}oxi)fenil]-n'-(4-fluorofenil)ciclopropan-1,1-dicarboxamida para el tratamiento del cáncer.
US20050171172A1 (en) 2003-11-13 2005-08-04 Ambit Biosciences Corporation Amide derivatives as PDGFR modulators
US7211272B2 (en) * 2003-12-22 2007-05-01 Bausch & Lomb Incorporated Drug delivery device
US20070191336A1 (en) 2003-12-24 2007-08-16 Flynn Daniel L Anti-inflammatory medicaments
US20080220497A1 (en) 2003-12-24 2008-09-11 Flynn Daniel L Modulation of protein functionalities
UA85087C2 (en) * 2004-04-23 2008-12-25 Бристол-Майэрс Сквибб Компани Monocyclic heterocycles as kinase inhibitors
US7459562B2 (en) * 2004-04-23 2008-12-02 Bristol-Myers Squibb Company Monocyclic heterocycles as kinase inhibitors
EP2942349A1 (en) 2004-12-23 2015-11-11 Deciphera Pharmaceuticals, LLC Enzyme modulators and treatments
CA2592116A1 (en) 2004-12-23 2006-08-03 Deciphera Pharmaceuticals, Llc Anti-inflammatory medicaments
US7622583B2 (en) 2005-01-14 2009-11-24 Chemocentryx, Inc. Heteroaryl sulfonamides and CCR2
WO2008041053A2 (en) * 2005-05-20 2008-04-10 Methylgene, Inc. Inhibitors of vegf receptor and hgf receptor signaling
BRPI0610382A2 (pt) * 2005-05-20 2010-06-15 Methylgene Inc inibidores de sinalização de receptor de vegf e receptor de hgf
TW200804349A (en) 2005-12-23 2008-01-16 Kalypsys Inc Novel substituted pyrimidinyloxy ureas as inhibitors of protein kinases
US7790756B2 (en) * 2006-10-11 2010-09-07 Deciphera Pharmaceuticals, Llc Kinase inhibitors useful for the treatment of myleoproliferative diseases and other proliferative diseases
MX2009004141A (es) * 2006-10-20 2009-05-01 Irm Llc Composiciones y metodos para modular receptores de c-kit y pdgfr.
US20080248548A1 (en) 2007-04-09 2008-10-09 Flynn Daniel L Modulation of protein functionalities
US20080248487A1 (en) 2007-04-09 2008-10-09 Flynn Daniel L Modulation of protein functionalities
EP2146717A4 (en) * 2007-04-20 2010-08-11 Deciphera Pharmaceuticals Llc KINASE INHIBITORS USEFUL FOR THE TREATMENT OF MYOLEOPROLIFERATIVE DISEASES AND OTHER PROLIFERATIVE DISEASES
SG10201503394PA (en) * 2010-04-29 2015-06-29 Deciphera Pharmaceuticals Llc Cyclopropyl Dicarboxamides And Analogs Exhibiting Anti-Cancer And Anti-Proliferative Activities

Also Published As

Publication number Publication date
EA201170627A1 (ru) 2011-10-31
WO2010051373A1 (en) 2010-05-06
US8278331B2 (en) 2012-10-02
CA2742007A1 (en) 2010-05-06
US8486951B2 (en) 2013-07-16
EP2365752A4 (en) 2012-06-20
CN102256493A (zh) 2011-11-23
JP2012507551A (ja) 2012-03-29
IL212574A0 (en) 2011-06-30
CA2742007C (en) 2014-07-08
JP5444365B2 (ja) 2014-03-19
AU2009308853A1 (en) 2010-05-06
MX2011004535A (es) 2011-11-18
US20100120806A1 (en) 2010-05-13
NZ603654A (en) 2014-09-26
US20130079362A1 (en) 2013-03-28
EP2365752B1 (en) 2014-09-24
EP2365752A1 (en) 2011-09-21
BRPI0920765A2 (pt) 2015-08-18

Similar Documents

Publication Publication Date Title
EP2365752B1 (en) Cyclopropane amides and analogs exhibiting anti-cancer and anti-proliferative activities
JP6203439B2 (ja) テトラヒドロピラニルメチル基を有するピリドン誘導体
JP6666263B2 (ja) グルタミナーゼの新規阻害剤
TWI429644B (zh) 調控wnt訊號傳導路徑之組合物及方法
CN113166078A (zh) 2-氧代喹唑啉衍生物作为甲硫氨酸腺苷转移酶2a抑制剂
TW201206921A (en) Compositions and methods for modulating the Wnt signaling pathway
IL210514A (en) Pyridino-pyridinone derivatives, their preparation and medical use
AU2008242720A1 (en) Kinase inhibitors useful for the treatment of myleoproliferative diseases and other proliferative diseases
CA2781935A1 (fr) Derives de pyridino-pyridinones, leur preparation et leur application en therapeutique
CN103906733A (zh) Trpm8拮抗剂及其在治疗中的用途
WO2020038460A1 (zh) 一种新型的喹啉衍生物抑制剂
KR20180107232A (ko) 오렉신 수용체 조정제로서의 할로-치환된 피페리딘
JP2022502425A (ja) Nadphオキシダーゼ阻害剤としての新規化合物
JP2020512401A (ja) Gpr6のモジュレーターとしてのピペリジニルおよびピペラジニル置換された複素芳香族カルボキサミド
JP2014101287A (ja) インドール誘導体
TWI790810B (zh) Ret激酶抑制劑
KR20190041552A (ko) 페닐아세틸렌 유도체를 포함하는 pd-1과 pd-l1의 상호작용 억제제

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E601 Decision to refuse application