KR20080106984A - 유전체막들에 대한 스텝 커버리지 및 패턴 로딩 개선 방법 - Google Patents

유전체막들에 대한 스텝 커버리지 및 패턴 로딩 개선 방법 Download PDF

Info

Publication number
KR20080106984A
KR20080106984A KR1020087026336A KR20087026336A KR20080106984A KR 20080106984 A KR20080106984 A KR 20080106984A KR 1020087026336 A KR1020087026336 A KR 1020087026336A KR 20087026336 A KR20087026336 A KR 20087026336A KR 20080106984 A KR20080106984 A KR 20080106984A
Authority
KR
South Korea
Prior art keywords
layer
plasma
dielectric layer
silicon
chamber
Prior art date
Application number
KR1020087026336A
Other languages
English (en)
Korean (ko)
Inventor
미헤라 발시아누
리-쿤 시아
메이-예 쉬크
히쳄 엠'사드
Original Assignee
어플라이드 머티어리얼스, 인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/668,911 external-priority patent/US7601651B2/en
Priority claimed from US11/693,005 external-priority patent/US7780865B2/en
Application filed by 어플라이드 머티어리얼스, 인코포레이티드 filed Critical 어플라이드 머티어리얼스, 인코포레이티드
Publication of KR20080106984A publication Critical patent/KR20080106984A/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • C23C16/045Coating cavities or hollow spaces, e.g. interior of tubes; Infiltration of porous substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/0217Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02211Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound being a silane, e.g. disilane, methylsilane or chlorosilane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02214Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and oxygen
    • H01L21/02216Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and oxygen the compound being a molecule comprising at least one silicon-oxygen bond and the compound having hydrogen or an organic group attached to the silicon or oxygen, e.g. a siloxane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • H01L21/31116Etching inorganic layers by chemical means by dry-etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76822Modification of the material of dielectric layers, e.g. grading, after-treatment to improve the stability of the layers, to increase their density etc.
    • H01L21/76826Modification of the material of dielectric layers, e.g. grading, after-treatment to improve the stability of the layers, to increase their density etc. by contacting the layer with gases, liquids or plasmas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76829Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers
    • H01L21/76834Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers formation of thin insulating films on the sidewalls or on top of conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Formation Of Insulating Films (AREA)
  • Chemical Vapour Deposition (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Drying Of Semiconductors (AREA)
KR1020087026336A 2006-03-31 2007-03-30 유전체막들에 대한 스텝 커버리지 및 패턴 로딩 개선 방법 KR20080106984A (ko)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US78827906P 2006-03-31 2006-03-31
US60/788,279 2006-03-31
US79025406P 2006-04-07 2006-04-07
US60/790,254 2006-04-07
US11/668,911 US7601651B2 (en) 2006-03-31 2007-01-30 Method to improve the step coverage and pattern loading for dielectric films
US11/668,911 2007-01-30
US11/693,005 US7780865B2 (en) 2006-03-31 2007-03-29 Method to improve the step coverage and pattern loading for dielectric films
US11/693,005 2007-03-29

Publications (1)

Publication Number Publication Date
KR20080106984A true KR20080106984A (ko) 2008-12-09

Family

ID=38581763

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020087026336A KR20080106984A (ko) 2006-03-31 2007-03-30 유전체막들에 대한 스텝 커버리지 및 패턴 로딩 개선 방법

Country Status (4)

Country Link
KR (1) KR20080106984A (zh)
CN (1) CN101416293B (zh)
TW (2) TW201415551A (zh)
WO (1) WO2007118026A2 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140140132A (ko) * 2011-08-18 2014-12-08 어플라이드 머티어리얼스, 인코포레이티드 실리콘-및-질소-함유 필름들에 대한 건식-식각
KR20160061129A (ko) * 2014-11-21 2016-05-31 주식회사 원익아이피에스 적층막 제조방법
KR20180030237A (ko) * 2010-03-31 2018-03-21 램 리써치 코포레이션 실리콘 식각을 위한 무기의 급속 교번 프로세스
KR20190022394A (ko) * 2017-08-25 2019-03-06 도쿄엘렉트론가부시키가이샤 피처리체를 처리하는 방법
US10373821B2 (en) 2014-12-08 2019-08-06 Jusung Engineering Co., Ltd. Substrate processing method
KR20200034878A (ko) * 2018-09-21 2020-04-01 주식회사 원익아이피에스 SiCN막의 형성 방법

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7935643B2 (en) * 2009-08-06 2011-05-03 Applied Materials, Inc. Stress management for tensile films
US8637411B2 (en) 2010-04-15 2014-01-28 Novellus Systems, Inc. Plasma activated conformal dielectric film deposition
US9390909B2 (en) 2013-11-07 2016-07-12 Novellus Systems, Inc. Soft landing nanolaminates for advanced patterning
US9892917B2 (en) 2010-04-15 2018-02-13 Lam Research Corporation Plasma assisted atomic layer deposition of multi-layer films for patterning applications
US20110256734A1 (en) 2010-04-15 2011-10-20 Hausmann Dennis M Silicon nitride films and methods
US9076646B2 (en) 2010-04-15 2015-07-07 Lam Research Corporation Plasma enhanced atomic layer deposition with pulsed plasma exposure
US9611544B2 (en) * 2010-04-15 2017-04-04 Novellus Systems, Inc. Plasma activated conformal dielectric film deposition
US9257274B2 (en) 2010-04-15 2016-02-09 Lam Research Corporation Gapfill of variable aspect ratio features with a composite PEALD and PECVD method
US9373500B2 (en) 2014-02-21 2016-06-21 Lam Research Corporation Plasma assisted atomic layer deposition titanium oxide for conformal encapsulation and gapfill applications
US9997357B2 (en) 2010-04-15 2018-06-12 Lam Research Corporation Capped ALD films for doping fin-shaped channel regions of 3-D IC transistors
US8956983B2 (en) 2010-04-15 2015-02-17 Novellus Systems, Inc. Conformal doping via plasma activated atomic layer deposition and conformal film deposition
US9685320B2 (en) 2010-09-23 2017-06-20 Lam Research Corporation Methods for depositing silicon oxide
WO2013043330A1 (en) * 2011-09-23 2013-03-28 Novellus Systems, Inc. Plasma activated conformal dielectric film deposition
US8592328B2 (en) 2012-01-20 2013-11-26 Novellus Systems, Inc. Method for depositing a chlorine-free conformal sin film
CN102832119B (zh) * 2012-07-03 2015-12-16 上海华力微电子有限公司 低温二氧化硅薄膜的形成方法
CN102768955A (zh) * 2012-07-03 2012-11-07 上海华力微电子有限公司 一种形成低负载效应薄膜的方法
CN102820220A (zh) * 2012-07-03 2012-12-12 上海华力微电子有限公司 低温二氧化硅薄膜的形成方法
TWI595112B (zh) 2012-10-23 2017-08-11 蘭姆研究公司 次飽和之原子層沉積及保形膜沉積
SG2013083241A (en) 2012-11-08 2014-06-27 Novellus Systems Inc Conformal film deposition for gapfill
JP6538300B2 (ja) 2012-11-08 2019-07-03 ノベラス・システムズ・インコーポレーテッドNovellus Systems Incorporated 感受性基材上にフィルムを蒸着するための方法
US20140131308A1 (en) * 2012-11-14 2014-05-15 Roman Gouk Pattern fortification for hdd bit patterned media pattern transfer
CN103390703B (zh) * 2013-08-05 2016-08-17 聚灿光电科技股份有限公司 低损伤、高致密性膜的制备方法以及具有该膜的led芯片
CN104752315B (zh) * 2013-12-25 2018-03-06 旺宏电子股份有限公司 半导体元件及其制造方法
US9214334B2 (en) 2014-02-18 2015-12-15 Lam Research Corporation High growth rate process for conformal aluminum nitride
CN105322013B (zh) 2014-07-17 2020-04-07 联华电子股份有限公司 半导体元件及其形成方法
US9478411B2 (en) 2014-08-20 2016-10-25 Lam Research Corporation Method to tune TiOx stoichiometry using atomic layer deposited Ti film to minimize contact resistance for TiOx/Ti based MIS contact scheme for CMOS
US9478438B2 (en) 2014-08-20 2016-10-25 Lam Research Corporation Method and apparatus to deposit pure titanium thin film at low temperature using titanium tetraiodide precursor
US9564312B2 (en) 2014-11-24 2017-02-07 Lam Research Corporation Selective inhibition in atomic layer deposition of silicon-containing films
US9508976B2 (en) 2015-01-09 2016-11-29 Applied Materials, Inc. Battery separator with dielectric coating
US10566187B2 (en) 2015-03-20 2020-02-18 Lam Research Corporation Ultrathin atomic layer deposition film accuracy thickness control
US9502238B2 (en) 2015-04-03 2016-11-22 Lam Research Corporation Deposition of conformal films by atomic layer deposition and atomic layer etch
KR20230149342A (ko) * 2015-06-05 2023-10-26 어플라이드 머티어리얼스, 인코포레이티드 유전체 코팅을 갖는 배터리 분리기
US10526701B2 (en) 2015-07-09 2020-01-07 Lam Research Corporation Multi-cycle ALD process for film uniformity and thickness profile modulation
US20170178899A1 (en) * 2015-12-18 2017-06-22 Lam Research Corporation Directional deposition on patterned structures
CN107437503A (zh) * 2016-05-26 2017-12-05 灿美工程股份有限公司 基板处理方法
US9773643B1 (en) 2016-06-30 2017-09-26 Lam Research Corporation Apparatus and method for deposition and etch in gap fill
US10062563B2 (en) 2016-07-01 2018-08-28 Lam Research Corporation Selective atomic layer deposition with post-dose treatment
US10037884B2 (en) 2016-08-31 2018-07-31 Lam Research Corporation Selective atomic layer deposition for gapfill using sacrificial underlayer
US10269559B2 (en) 2017-09-13 2019-04-23 Lam Research Corporation Dielectric gapfill of high aspect ratio features utilizing a sacrificial etch cap layer
US10910216B2 (en) 2017-11-28 2021-02-02 Taiwan Semiconductor Manufacturing Co., Ltd. Low-k dielectric and processes for forming same
SG11202010449RA (en) * 2018-06-19 2021-01-28 Applied Materials Inc Pulsed plasma deposition etch step coverage improvement
CN110896050A (zh) * 2018-09-12 2020-03-20 长鑫存储技术有限公司 介电薄膜的形成方法
CN114127890A (zh) 2019-05-01 2022-03-01 朗姆研究公司 调整的原子层沉积
TW202229613A (zh) * 2020-10-14 2022-08-01 荷蘭商Asm Ip私人控股有限公司 於階梯式結構上沉積材料的方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5641710A (en) * 1996-06-10 1997-06-24 Taiwan Semiconductor Manufacturing Company, Ltd. Post tungsten etch back anneal, to improve aluminum step coverage
US6303523B2 (en) * 1998-02-11 2001-10-16 Applied Materials, Inc. Plasma processes for depositing low dielectric constant films
US6068884A (en) * 1998-04-28 2000-05-30 Silcon Valley Group Thermal Systems, Llc Method of making low κ dielectric inorganic/organic hybrid films
US6297163B1 (en) * 1998-09-30 2001-10-02 Lam Research Corporation Method of plasma etching dielectric materials
TW460408B (en) * 1999-04-20 2001-10-21 Applied Materials Inc Remote plasma nitridation of silicon
JP4554011B2 (ja) * 1999-08-10 2010-09-29 ルネサスエレクトロニクス株式会社 半導体集積回路装置の製造方法
US6399208B1 (en) * 1999-10-07 2002-06-04 Advanced Technology Materials Inc. Source reagent composition and method for chemical vapor deposition formation or ZR/HF silicate gate dielectric thin films
US6410462B1 (en) * 2000-05-12 2002-06-25 Sharp Laboratories Of America, Inc. Method of making low-K carbon doped silicon oxide
TW447077B (en) * 2000-07-17 2001-07-21 Taiwan Semiconductor Mfg Method for improving the characteristics of dielectric layer with a low dielectric constant formed by chemical vapor deposition
TW563202B (en) * 2000-10-25 2003-11-21 Ibm An ultralow dielectric constant material as an intralevel or interlevel dielectric in a semiconductor device and an electronic device containing the same
US6531412B2 (en) * 2001-08-10 2003-03-11 International Business Machines Corporation Method for low temperature chemical vapor deposition of low-k films using selected cyclosiloxane and ozone gases for semiconductor applications
TW497140B (en) * 2001-10-09 2002-08-01 Taiwan Semiconductor Mfg Process system for plasma etching and chemical vapor deposition
JP2005510082A (ja) * 2001-11-16 2005-04-14 トリコン ホールディングス リミティド 低k誘電層の形成
US6800566B2 (en) * 2002-02-21 2004-10-05 Taiwan Semiconductor Manufacturing Company Adjustment of N and K values in a DARC film
US7335609B2 (en) * 2004-08-27 2008-02-26 Applied Materials, Inc. Gap-fill depositions introducing hydroxyl-containing precursors in the formation of silicon containing dielectric materials
US6858542B2 (en) * 2003-01-17 2005-02-22 Freescale Semiconductor, Inc. Semiconductor fabrication method for making small features
US7037855B2 (en) * 2004-08-31 2006-05-02 Asm Japan K.K. Method of forming fluorine-doped low-dielectric-constant insulating film

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180030237A (ko) * 2010-03-31 2018-03-21 램 리써치 코포레이션 실리콘 식각을 위한 무기의 급속 교번 프로세스
KR20140140132A (ko) * 2011-08-18 2014-12-08 어플라이드 머티어리얼스, 인코포레이티드 실리콘-및-질소-함유 필름들에 대한 건식-식각
KR20160061129A (ko) * 2014-11-21 2016-05-31 주식회사 원익아이피에스 적층막 제조방법
US10373821B2 (en) 2014-12-08 2019-08-06 Jusung Engineering Co., Ltd. Substrate processing method
KR20190022394A (ko) * 2017-08-25 2019-03-06 도쿄엘렉트론가부시키가이샤 피처리체를 처리하는 방법
US11735423B2 (en) 2017-08-25 2023-08-22 Tokyo Electron Limited Workpiece processing method
KR20200034878A (ko) * 2018-09-21 2020-04-01 주식회사 원익아이피에스 SiCN막의 형성 방법

Also Published As

Publication number Publication date
CN101416293A (zh) 2009-04-22
TW201415551A (zh) 2014-04-16
WO2007118026A2 (en) 2007-10-18
WO2007118026A3 (en) 2008-01-10
TW200816310A (en) 2008-04-01
TWI424498B (zh) 2014-01-21
CN101416293B (zh) 2011-04-20

Similar Documents

Publication Publication Date Title
KR20080106984A (ko) 유전체막들에 대한 스텝 커버리지 및 패턴 로딩 개선 방법
US7780865B2 (en) Method to improve the step coverage and pattern loading for dielectric films
TWI787492B (zh) 使用矽氫鹵化物前驅物沉積SiN的方法
US7601651B2 (en) Method to improve the step coverage and pattern loading for dielectric films
JP7062817B2 (ja) SiNの堆積
KR102696249B1 (ko) 트렌치들의 측벽들 또는 평탄 표면들 상에 선택적으로 실리콘 질화물 막을 형성하는 방법
JP6856651B2 (ja) 半導体アプリケーション用の水平ゲートオールアラウンドデバイスのためのナノワイヤ製造方法
US8563090B2 (en) Boron film interface engineering
US9611544B2 (en) Plasma activated conformal dielectric film deposition
US7435684B1 (en) Resolving of fluorine loading effect in the vacuum chamber
US7148155B1 (en) Sequential deposition/anneal film densification method
JP4439860B2 (ja) 半導体基板上への成膜方法
KR20050034566A (ko) 실리콘 탄화물막을 제조하는 방법
TWI766014B (zh) 在溝槽的側壁或平坦表面上選擇性地形成氮化矽膜之方法
KR102691504B1 (ko) 펄스형 플라즈마 증착 에칭 스텝 커버리지 개선
KR20230093782A (ko) 반도체 소자의 갭필 방법
TW202328486A (zh) 薄膜沉積方法及系統以及根據此方法形成的結構
TW202432870A (zh) 含矽膜中的氟減少

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application
J201 Request for trial against refusal decision
J301 Trial decision

Free format text: TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20110525

Effective date: 20120417