KR20080092084A - 멀티 프로세서 시스템에서 불휘발성 메모리의 공유적사용을 제공하기 위한 멀티패쓰 억세스블 반도체 메모리장치 - Google Patents
멀티 프로세서 시스템에서 불휘발성 메모리의 공유적사용을 제공하기 위한 멀티패쓰 억세스블 반도체 메모리장치 Download PDFInfo
- Publication number
- KR20080092084A KR20080092084A KR1020070035485A KR20070035485A KR20080092084A KR 20080092084 A KR20080092084 A KR 20080092084A KR 1020070035485 A KR1020070035485 A KR 1020070035485A KR 20070035485 A KR20070035485 A KR 20070035485A KR 20080092084 A KR20080092084 A KR 20080092084A
- Authority
- KR
- South Korea
- Prior art keywords
- memory
- data
- processor
- area
- flash memory
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C16/00—Erasable programmable read-only memories
- G11C16/02—Erasable programmable read-only memories electrically programmable
- G11C16/04—Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F15/00—Digital computers in general; Data processing equipment in general
- G06F15/16—Combinations of two or more digital computers each having at least an arithmetic unit, a program unit and a register, e.g. for a simultaneous processing of several programs
- G06F15/163—Interprocessor communication
- G06F15/167—Interprocessor communication using a common memory, e.g. mailbox
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C16/00—Erasable programmable read-only memories
- G11C16/02—Erasable programmable read-only memories electrically programmable
- G11C16/06—Auxiliary circuits, e.g. for writing into memory
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C16/00—Erasable programmable read-only memories
- G11C16/02—Erasable programmable read-only memories electrically programmable
- G11C16/06—Auxiliary circuits, e.g. for writing into memory
- G11C16/08—Address circuits; Decoders; Word-line control circuits
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2212/00—Indexing scheme relating to accessing, addressing or allocation within memory systems or architectures
- G06F2212/20—Employing a main memory using a specific memory technology
- G06F2212/202—Non-volatile memory
- G06F2212/2022—Flash memory
Landscapes
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Theoretical Computer Science (AREA)
- Software Systems (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Memory System (AREA)
- Multi Processors (AREA)
Abstract
프로세서들 간에 인터페이싱 기능을 제공하며 플래시 메모리를 간접적으로 제어할 수 있도록 해주는 멀티패쓰 억세스블 반도체 메모리 장치가 개시되어 있다. 그러한 멀티패쓰 억세스블 반도체 메모리 장치는, 제1 및 제2 프로세서에 의해 서로 다른 포트를 통해 억세스 되며 메모리 셀 어레이의 일부에 할당된 공유 메모리 영역과; 상기 메모리 셀 어레이의 외부에 위치되며 상기 제1 및 제2 프로세서에 의해 억세스 되는 내부 레지스터와; 상기 제2 프로세서만이 플래시 메모리와 연결되어 있는 경우에도, 상기 제1 프로세서가 상기 공유 메모리 영역과 상기 내부 레지스터를 이용하여 상기 플래시 메모리를 간접적으로 억세스할 수 있도록 하기 위해, 상기 공유 메모리 영역에 상기 플래시 메모리의 어드레스 맵핑 데이터가 저장되도록 하며, 상기 공유 메모리 영역을 상기 제1 및 제2 프로세서 중의 하나에 동작적으로 연결하는 패쓰를 제어하기 위한 콘트롤 유닛을 구비한다. 본 발명의 반도체 메모리 장치에 따르면, 프로세서들이 플래시 메모리를 공유적으로 사용할 수 있으므로 멀티 프로세서 시스템의 사이즈가 콤팩트하게 되며, 멀티 프로세서 시스템 내에서 차지하는 메모리의 코스트가 대폭적으로 줄어드는 효과가 있다.
멀티 프로세서, 공유 메모리 영역, 디램 인터페이스, 플래시 억세스
Description
도 1은 모바일 통신 디바이스에 채용될 수 있는 일반적인 멀티 프로세서 시스템의 블록도
도 2는 도 1보다 개량된 구성을 갖는 통상적 멀티 프로세서 시스템의 블록도
도 3은 본 발명의 일실시 예에 따라 플래시 메모리의 공유적 사용을 제공하는 멀티패쓰 억세스블 DRAM을 갖는 멀티 프로세서 시스템의 블록도
도 4는 도 3의 멀티패쓰 억세스블 DRAM의 상세 블록도
도 5는 도 4의 메모리 영역들 및 내부 레지스터에 대한 어드레스 할당 개념도
도 6은 도 3중 플래시 메모리에 대한 논리 어드레스와 물리 어드레스의 매칭 예를 보여주는 어드레스 맵 테이블
도 7은 도 4중 공유 메모리 영역과 내부 레지스터의 멀티패쓰 억세싱에 관련된 회로 블록도
도 8은 도 7의 구체적 예시 회로를 보여주는 상세도
도 9는 도 4, 도 7, 및 도 8에서 나타낸 콘트롤 유닛의 구현 예를 보여주는 회로도
도 10은 도 7 및 도 8에서 나타낸 어드레스 멀티플렉서의 예시를 보여주는 회로도
도 11은 도 4의 멀티패쓰 억세스블 DRAM을 통해 플래시 메모리로 데이터를 라이트 하기 위한 프로세서들의 라이트 동작 플로우 챠트
도 12는 도 4의 멀티패쓰 억세스블 DRAM을 통해 플래시 메모리로부터 데이터를 리드 하기 위한 프로세서들의 리드 동작 플로우 챠트
본 발명은 반도체 메모리 장치에 관한 것으로, 특히 복수의 프로세서들 간 에 채용하기 적합한 멀티패쓰 억세스블 반도체 메모리 장치에 관한 것이다.
일반적으로, 복수의 억세스 포트를 가지는 반도체 메모리 소자는 멀티포트 메모리로 불려지고 특히 2개의 억세스 포트를 갖는 메모리 소자는 듀얼포트 메모리로 칭해지고 있다. 전형적인 듀얼포트 메모리는 본 분야에 널리 공지된 것으로서, 랜덤 시퀀스로 억세스 가능한 RAM포트와 시리얼 시퀀스만으로 억세스 가능한 SAM 포트를 가지는 이미지 프로세싱용 비디오 메모리이다.
한편, 후술될 본 발명의 설명에서 보다 명확하게 구별될 것이지만, 그러한 비디오 메모리의 구성과는 달리, SAM 포트를 가지지 않으며 DRAM 셀로 구성된 메모리 셀 어레이 중 공유 메모리 영역을 복수의 억세스 포트를 통하여 리드 또는 라이트 하기 위한 다이나믹 랜덤 억세스 메모리를 우리는 상기 멀티포트 메모리와 철저히 구별하기 위하여 본 발명에서 멀티패쓰 억세스블 반도체 메모리 장치라고 칭하기로 한다.
오늘날 인간생활의 유비쿼터스 지향추세에 따라, 인간이 취급하게 되는 전자 시스템도 그에 부응하여 눈부시게 발전되어 지고 있다. 최근에 모바일 통신 시스템예를 들어 휴대용 멀티미디어 플레이어나 핸드 헬드 폰, 또는 PDA 등의 전자기기에서는 통신 및 각종 사용자 편의 기능이나 동작 수행의 고속화 및 원활화를 도모하기 위하여 제조 메이커는 도 1에서 보여지는 바와 같이 복수의 프로세서를 채용한 멀티 프로세서 시스템을 구현해왔다.
모바일 통신 디바이스에 채용될 수 있는 일반적인 멀티 프로세서 시스템의 블록을 보여주는 도 1을 참조하면, 제1 프로세서(101)와 제2 프로세서(201)는 접속라인(B3)을 통해 서로 연결되어 있고, 플래시 메모리(301)와 DRAM(401)은 설정된 시스템 버스(B1)을 통해 상기 제1 프로세서(101)에 버싱되고, DRAM(402)과 플래시 메모리(302)는 설정된 버스(B2)를 통해 상기 제2 프로세서(201)에 버싱되어 있는 것이 나타나 있다. 여기서, 상기 제1 프로세서(101)는 통신 데이터의 처리나 게임, 오락 등의 사용자 편의 기능을 수행하기 위한 어플리케이션 기능을 담당할 수 있고, 상기 제2 프로세서(201)는 통신신호의 변조 및 복조를 수행하는 모뎀기능을 담 당할 수 있다. 상기 플래시 메모리들(301,302)은, 각기, 셀 어레이의 구성이 NOR 구조를 갖게 되는 NOR 플래시 메모리나 셀 어레이의 구성이 NAND 구성을 갖게 되는 NAND 플래시 메모리일 수 있다. NOR 플래시 메모리나 NAND 플래시 메모리 모두는 플로팅 게이트를 갖는 트랜지스터 메모리 셀을 갖는 불휘발성 메모리로서, 전원이 오프되더라도 지워져서는 아니되는 데이터 예컨대 휴대용 기기의 고유 코드 및 보존용 데이터의 저장을 위해 탑재되며, DRAM들(401、402)은 각기 대응되는 프로세서들(101,201)의 데이터 처리를 위한 메인 메모리로서 기능한다.
그러나, 도 1과 같은 멀티 프로세서 시스템에서는 각 프로세서마다 DRAM이 각기 대응적으로 할당되어야 하고 상대적으로 저속의 UART,SPI,SRAM 인터페이스가 사용되기 때문에, 데이터 전송속도가 충분히 확보되기 어렵고 사이즈의 복잡성이 초래되며 메모리 구성 비용도 부담스럽다. 따라서, 점유 사이즈를 줄임은 물론 데이터 전송속도를 높이고 DRAM 메모리의 채용 개수를 줄이기 위한 스킴이 도 2에 도시되어 있다.
도 1보다 개량된 구성을 갖는 도 2를 참조하면, 도 1의 시스템에 비해 하나의 DRAM(403)이 제1 및 제2 프로세서(101,201)에 버스들(B1,B2)을 통해 연결되어 있는 것이 특이하게 보여진다. 도 1과 유사하게 상기 제1 프로세서(101)는 어플리케이션 기능을 담당하기 위해 버스(B4)를 통해 플래시 메모리(303)와 연결되어 있고, 상기 제2 프로세서(201)와는 라인(B3)을 통해 연결되어 있다. 상기 제2 프로세서(201)는 모뎀기능을 담당하기 위해 버스(B5)를 통해 플래시 메모리(304)와 연결되어 있고, 상기 제1 프로세서(101)와는 라인(B3)을 통해 연결되어 있다.
도 2의 멀티 프로세서 시스템의 구조와 같이, 하나의 DRAM(403)이 2개의 패쓰를 통하여 제1,2 프로세서들(101,201)에 의해 억세스 될 수 있도록 하기 위해, DRAM(403)의 내부에는 상기 버스들(B1,B2)에 각기 대응적으로 연결되는 2개의 포트 가 마련된다. 그러한 복수의 포트 구성은 단일 포트를 갖는 통상의 DRAM과는 상이하다.
멀티 프로세서 시스템에 적합한 메모리를 기본적으로 구현하려는 본 발명자들의 의도와 유사하게, 공유 메모리 영역이 복수의 프로세서에 의해 억세스될 수 있는 선행기술이 에우지니 피.매터(Matter)외 다수에 의해 발명되어 2003년 5월 15일자로 미합중국에서 특허공개된 공개번호 US2003/0093628호에 개시되어 있다. 상기 선행기술에서, 메모리 어레이는 제1,2,3 포션으로 이루어져 있고, 상기 메모리 어레이의 제1 포션은 제1 프로세서에 의해서만 억세스되고 상기 제2 포션은 제2 프로세서에 의해서만 억세스되며, 제3 포션은 공유 메모리 영역으로서 상기 제1,2 프로세서들 모두에 의해 억세스 된다. 상기 선행기술을 DRAM 구조에서 구현하기 위해서는 몇 가지의 과제들이 해결되어져야 한다. 그러한 해결 과제들 중의 하나로서, 제1,2,3 포션들에 대한 적절한 리드/라이트 패쓰(경로)의 제어 테크닉이 포함된다.
또한, 종래의 프로세서들 예를 들어 모뎀과 애플리케이션 프로세서(혹은 멀티미디어 코프로세서)간의 통신을 위해서는 UART,SPI,혹은 SRAM 인터페이스가 사용되어 왔는데, 그러한 인터페이스는 속도의 제한, 핀 개수의 증가 등의 문제점이 수반된다. 특히, 3차원 게임이나 화상통신, HDPDA, 와이브로(wibro)등의 원활한 구현을 제공하기 위해서는 모뎀과 프로세서 간의 데이터 트래픽이 크게 늘어나야 하기 때문에, 프로세서들 간의 고속의 인터페이스의 필요성이 증가되는 실정이다.
그러나, 도 2와 같은 멀티 프로세서 시스템에서는 프로세서들이 DRAM 메모리 셀 어레이 내에 할당된 공유 메모리 영역을 공유하지만, DRAM 외부에서 라인(B3)을 통해 프로세서들 간의 인터페이싱을 수행하기 때문에 상기한 바와 같은 속도의 제한이나 핀 개수의 증가 문제가 있다. 또한, 각각의 프로세서 마다 플래시 메모리가 각기 채용되어 있으므로, 시스템 구성의 복잡성이나 시스템 구현의 가격상승이 문제시된다.
바람직하기로는 둘 이상의 프로세서들을 가지는 멀티 프로세서 시스템에서, 하나의 DRAM과 하나의 플래시 메모리가 공유적으로 사용되며, 프로세서들 간의 인터페이스가 도 2와 같은 멀티패쓰 억세스블 DRAM을 통해 구현될 것이 요망된다. 결국, 이는 플래시 메모리와 직접적으로 연결되어 있지 아니한 프로세서가 디램을 통하여 플래시 메모리를 간접적으로 억세스할 수 있는 것을 의미한다.
따라서, 본 발명의 목적은 프로세서들 간에 인터페이싱 기능을 제공하며 플래시 메모리를 간접적으로 제어할 수 있도록 하는 반도체 메모리 장치를 제공함에 있다.
본 발명의 다른 목적은 둘 이상의 프로세서를 가지는 멀티 프로세서 시스템에서 공유 메모리 영역을 통하여 플래시 메모리의 데이터를 억세스할 수 있도록 하는 멀티 패쓰 억세스블 반도체 메모리 장치를 제공함에 있다.
본 발명의 또 다른 목적은 멀티 프로세서 시스템에서 플래시 메모리와 직접적으로 연결되어 있지 아니한 프로세서가 타의 프로세서에 연결된 플래시 메모리를 간접적으로 억세스 할 수 있도록 해주는 멀티 패쓰 억세스블 반도체 메모리 장치를 제공함에 있다.
본 발명의 또 다른 목적은 외부 인터페이스 없이도 공유 메모리 영역을 통해 프로세서들 간에 데이터 통신을 할 수 있도록 함은 물론, 하나의 플래시 메모리를 공유적으로 사용할 수 있도록 하는 디램 타입 반도체 메모리 장치를 제공함에 있다.
본 발명의 또 다른 목적은 공유 메모리 영역과, 메모리 셀 어레이 외부의 내부 레지스터를 활용하여 플래시 메모리의 데이터를 리드하거나 플래시 메모리에 데이터를 라이트 할 수 있는 방법을 제공함에 있다.
본 발명의 또 다른 목적은 공유 메모리 영역의 설정된 워드라인을 인에이블 시키는 로우 어드레스를 디램 칩 내부에 마련된 내부 레지스터에 변경적으로 할당하고, 이를 통해 플래시 메모리의 억세스 기능을 위한 공유 메모리 영역의 점유권, 점유권의 획득을 위한 점유 요청, 및 데이터 전달 메시지가 상대 프로세서에게 인식될 수 있도록 하는 멀티 프로세서 시스템 또는 방법을 제공함에 있다.
본 발명의 여전히 다른 목적도 멀티 프로세서 시스템에서 플래시 메모리의 어드레스 맵 데이터를 공유 메모리 영역에 로딩하고 이를 이용하여 플래시 메모리를 간접적으로 억세스 할 수 있도록 하는 메모리 제어 방법을 제공함에 있다.
상기한 본 발명의 목적들의 일부를 달성하기 위하여 본 발명의 일 양상에 따 른 반도체 메모리 장치는: 제1 및 제2 프로세서에 의해 서로 다른 포트를 통해 억세스 되며 메모리 셀 어레이의 일부에 할당된 공유 메모리 영역과; 상기 메모리 셀 어레이의 외부에 위치되며 상기 제1 및 제2 프로세서에 의해 억세스 되는 내부 레지스터와; 상기 제2 프로세서만이 플래시 메모리와 연결되어 있는 경우에도, 상기 제1 프로세서가 상기 공유 메모리 영역과 상기 내부 레지스터를 이용하여 상기 플래시 메모리를 간접적으로 억세스할 수 있도록 하기 위해, 상기 공유 메모리 영역에 상기 플래시 메모리의 어드레스 맵핑 데이터가 저장되도록 하며, 상기 공유 메모리 영역을 상기 제1 및 제2 프로세서 중의 하나에 동작적으로 연결하는 패쓰를 제어하기 위한 콘트롤 유닛을 구비한다.
바람직하기로, 상기 메모리 셀 어레이 내에는 상기 제1 및 제2 프로세서 각각에 의해 전용으로 억세스 되는 전용 메모리 영역들이 더 구비될 수 있으며, 상기 내부 레지스터는 상기 공유 메모리 영역의 특정 어드레스에 대응하여 대치적으로 억세스 될 수 있다.
또한, 바람직하기로, 상기 어드레스 맵핑 데이터는 상기 플래시 메모리의 논리 어드레스와 상기 논리 어드레스에 맵핑되어 있는 물리 어드레스를 포함하는 데이터이며, 상기 내부 레지스터는 컬럼 어드레스에 의해 구별되는 세맵퍼 영역과 메일박스 영역들을 포함할 수 있다.
바람직하기로, 상기 공유 메모리 영역은 디램 셀들로 이루어지고 상기 내부 레지스터는 플립플롭으로 이루어질 수 있으며, 상기 제1 프로세서는 상기 플래시 메모리를 억세스할 경우에 상기 플래시 메모리의 논리 어드레스에 대응되는 물리 어드레스를 상기 내부 레지스터에 인가하거나 상기 플래시 메모리의 논리 어드레스를 상기 내부 레지스터에 그대로 인가할 수 있다.
상기 제1 프로세서는 상기 플래시 메모리에 데이터가 라이트되도록 할 경우에 상기 공유 메모리 영역에는 라이트용 데이터를 쓰고, 상기 메일박스 영역들 중 송신용 메일박스 영역에는 플래시 메모리의 물리 어드레스, 데이터 사이즈, 라이트용 데이터가 쓰여진 상기 공유 메모리 영역의 어드레스, 및 라이트 코멘드를 쓸 수 있다. 이 경우에, 상기 제2 프로세서는 상기 공유 메모리 영역에 대한 점유권을 획득한 후, 상기 송신용 메일박스를 리드하고 상기 라이트용 데이터를 상기 공유 메모리 영역으로부터 리드한 다음, 상기 리드된 플래시 메모리의 물리 어드레스에 상기 라이트용 데이터를 라이트할 수 있다.
상기 제1 프로세서는 상기 플래시 메모리로부터 데이터를 리드할 경우에 상기 메일박스 영역들 중 송신용 메일박스 영역에는 플래시 메모리의 물리 어드레스, 데이터 사이즈, 리드 데이터가 들어 있게 될 상기 공유 메모리 영역의 어드레스, 및 리드 코멘드를 쓸 수 있다. 이 경우에, 상기 제2 프로세서는 상기 공유 메모리 영역에 대한 점유권을 획득한 후, 상기 송신용 메일박스를 리드하여 상기 리드된 플래시 메모리의 물리 어드레스에 대응되는 메모리 영역으로부터 플래시 데이터를 리드한 다음, 상기 공유 메모리 영역의 지정된 어드레스에 상기 리드된 데이터를 라이트할 수 있다.
본 발명의 다른 양상에 따라, 플래시 메모리와 연결된 제2 프로세서와, 제1 프로세서 간에 연결되기 적합한 반도체 메모리 장치는,
상기 프로세서들에 대하여 각기 독립적으로 할당된 포트들을 통해 선택적으로 억세스 되며, 상기 플래시 메모리의 어드레스 맵핑 데이터를 일부 영역에 저장하기 위해 메모리 셀 어레이 내의 메모리 뱅크로서 할당된 공유 메모리 영역과;
상기 메모리 셀 어레이의 외부에 위치되어 상기 프로세서들에 의해 선택적으로 억세스 되며, 상기 제1 프로세서가 상기 공유 메모리 영역을 통해 상기 플래시 메모리를 억세스할 수 있도록 하기 위해 상기 공유 메모리 영역의 특정 어드레스에 대응하여 대치적으로 억세스 되는 인터페이싱 부와;
상기 프로세서들로부터 인가되는 외부신호들에 응답하여 상기 포트들 중 선택된 하나의 포트와 상기 공유 메모리 영역간의 데이터 억세스 패쓰가 형성되도록 하는 콘트롤 유닛을 구비한다.
본 발명의 또 다른 양상에 따라, 반도체 메모리 장치의 구동방법은, 제1 및 제2 프로세서에 의해 서로 다른 포트를 통해 억세스 되며 메모리 셀 어레이의 일부에 할당된 공유 메모리 영역과, 상기 메모리 셀 어레이의 외부에 위치되며 상기 제1 및 제2 프로세서에 의해 억세스 되는 내부 레지스터를 준비하는 단계와;
상기 공유 메모리 영역에 상기 플래시 메모리의 어드레스 맵핑 데이터를 저장하는 단계와;
상기 제2 프로세서만이 플래시 메모리와 연결되어 있는 경우에도, 상기 제1 프로세서가 상기 공유 메모리 영역과 상기 내부 레지스터를 이용하여 상기 플래시 메모리를 간접적으로 억세스할 수 있도록 하기 위해, 상기 공유 메모리 영역을 상기 제1 및 제2 프로세서 중의 하나에 동작적으로 연결하는 단계를 가진다.
본 발명의 또 다른 양상에 따라, 모바일 통신 시스템은,
제1 설정 타스크를 수행하는 제1 프로세서;
제2 설정 타스크를 수행하는 제2 프로세서;
상기 제2 프로세서에 연결되어 있는 플래시 메모리; 및
상기 제1 및 제2 프로세서에 의해 서로 다른 포트를 통해 억세스 되며 메모리 셀 어레이의 일부에 할당된 공유 메모리 영역과, 상기 메모리 셀 어레이의 외부에 위치되며 상기 제1 및 제2 프로세서에 의해 억세스 되는 내부 레지스터와, 상기 제1 프로세서가 상기 공유 메모리 영역과 상기 내부 레지스터를 이용하여 상기 플래시 메모리를 간접적으로 억세스할 수 있도록 하기 위해 상기 공유 메모리 영역에 상기 플래시 메모리의 어드레스 맵핑 데이터가 저장되도록 하며 상기 공유 메모리 영역을 상기 제1 및 제2 프로세서 중의 하나에 동작적으로 연결하는 패쓰를 제어하기 위한 콘트롤 유닛을 포함하는 통합형 다이나믹 랜덤 억세스 메모리를 구비한다.
따라서, 상기한 본 발명의 장치적 방법적 구성들에 따르면, 프로세서들이 플래시 메모리를 공유적으로 사용할 수 있으므로 멀티 프로세서 시스템의 사이즈가 콤팩트하게 되며, 멀티 프로세서 시스템 내에서 차지하는 메모리의 코스트가 대폭적으로 줄어든다.
이하에서는 본 발명에 따라, 멀티 프로세서 시스템에서 불휘발성 메모리의 공유적 사용을 제공하기 위한 멀티패쓰 억세스블 반도체 메모리 장치에 관한 바람 직한 실시예가 첨부된 도면들을 참조로 설명될 것이다.
이하의 실시예에서 많은 특정 상세들이 도면을 따라 예를 들어 설명되고 있지만, 이는 본 분야의 통상의 지식을 가진 자에게 본 발명의 보다 철저한 이해를 돕기 위한 의도 이외에는 다른 의도 없이 설명되었음을 주목(note)하여야 한다. 그렇지만, 본 발명이 이들 특정한 상세들 없이도 실시될 수 있을 것임은 본 분야의 숙련된 자들에 의해 이해될 수 있을 것이다. 다른 예증, 공지 방법들, 프로시져들, 및 통상적인 다이나믹 랜덤 억세스 메모리 및 내부적 회로들은 본 발명의 요지를 모호하지 않도록 하기 위해 상세히 설명되지 않는다.
도 3은 본 발명의 일실시 예에 따라 플래시 메모리의 공유적 사용을 제공하는 멀티패쓰 억세스블 DRAM을 갖는 멀티 프로세서 시스템의 블록도이다.
도 3을 참조하면, 멀티패쓰 억세스블 DRAM(400)이 제1 프로세서(100)와 제2 프로세서(200) 사이에 연결되어 있고, 플래시 메모리(300)가 제2 프로세서(200)에 연결된 멀티 프로세서 시스템의 구성이 보여진다.
상기 제1 프로세서(100)는 버스(B1)를 통해 상기 DRAM(400)과 연결되고, 상기 제2 프로세서(200)는 버스(B2)를 통해 상기 DRAM(400)과 연결된다. 상기 시스템의 초기 부팅시에 상기 플래시 메모리의 어드레스 맵 데이터는 상기 DRAM(400)내의 공유 메모리 영역에 테이블 형태로서 저장된다. 이에 따라, 상기 제1 프로세서(100)는 외부 인터페이싱 없이 상기 DRAM(400)을 통해 상기 제2 프로세서(200)와 통신하여 상기 플래시 메모리(300)를 간접적으로 억세스 한다. 결국, DRAM(400)과 연결되어 있는 제1 프로세서(100) 예컨대, 어플리케이션 프로세서가, 제2 프로세 서(200) 예컨대, 에이직(ASIC)과 연결되어 있는 플래시 메모리(300)를 간접적으로 억세스 할 경우에, 디램 인터페이스를 경유하여 디램(400)의 공유 메모리 영역에 들어 있는 플래시 메모리의 어드레스 맵 데이터를 참조한다.
상기 도 3의 멀티 프로세서 시스템은 이동통신 디바이스(예 셀룰러 폰), 양방향 라디오 통신 시스템, 단방향 페이저, 양방향 페이저, 개인용 통신 시스템, 또는 휴대용 컴퓨터, 등과 같은 휴대용 컴퓨팅 디바이스 또는 모바일 통신 디바이스가 될 수 있다. 본 발명의 스코프와 응용이 이들에 한정되는 것이 아님은 이해되어야 한다.
상기 도 3의 시스템에서 프로세서들의 개수는 3개 이상으로 확장될 수 있다. 상기 시스템의 프로세서는 마이크로프로세서, CPU, ASIC, 디지털 신호 프로세서, 마이크로 콘트롤러, 리듀스드 명령 세트 컴퓨터, 콤플렉스 명령 세트 컴퓨터, 또는 그와 유사한 것이 될 수 있다. 그러나 시스템 내의 프로세서들의 개수에 의해 본 발명의 범위가 제한되지 않음은 이해되어져야 한다. 부가하면, 본 발명의 범위는 프로세서들이 동일 또는 다르게 되는 경우에 프로세서들의 어느 특별한 조합에 한정되지 않는다.
도 3에서 보여지는 프로세서들(100,200)간의 통신 시 디램 인터페이스를 제공하기 위해, 상기 디램(400)내에는 도 4에서 보여지는 바와 같이 인터페이스 부로서 기능하는 내부 레지스터(50)가 마련된다. 상기 내부 레지스터(50)는 세맵퍼 영역과 메일박스 영역들을 포함하는 것에 의해, 상기 프로세서들(100,200)이 공통으로 억세스 가능한 공유 메모리 영역(11)을 통해 데이터 통신이 수행되도록 한다.
도 3의 멀티패쓰 억세스블 DRAM의 상세 블록을 보여주는 도 4를 참조하면, 4개의 메모리 영역들(10,11,12,13)은 메모리 셀 어레이를 구성하며, 메모리 셀 어레이의 외부에는 내부 레지스터(50)가 배치된 것이 보여진다. 또한, 제1,2 패쓰부들(20,21), 멀티플렉서들(40,41), 및 콘트롤 유닛(30)도 상기 메모리 셀 어레이의 외부에 배치된다. 한정되는 것은 아니지만, 도 4에서 보여지는 상기 DRAM(400)은 서로 독립적인 2개의 포트를 갖는다. 설명의 편의상 버스(B1)와 연결되는 포트를 제1 포트(60)라고 하면 버스(B2)와 연결되는 포트는 제2 포트(61)가 된다. 여기서, 상기 버스들(B1,B2)은 범용 입출력(GIPO)라인으로 구현 가능하다.
도 4에서, 전용 메모리 영역 A(10)은 제1 포트(60)를 통하여 도 3의 제1 프로세서(100)에 의해 억세스 되고, 전용 메모리 영역들 B(12,13)는 제2 포트(61)를 통하여 도 3의 제2 프로세서(200)에 의해 억세스 되며, 공유 메모리 영역(11)은 서로 다른 포트인 제1,2 포트(60,61)를 통하여 제1,2프로세서들(100,200) 모두에 의해 억세스 된다. 결국, 메모리 셀 어레이 내에서 B 뱅크(11)은 공유 메모리 영역으로서 할당되고, A,C, 및 D 뱅크들(10,12,13)은 각기 대응되는 프로세서에 의해서만 억세스되는 전용 메모리 영역으로서 할당된다. 상기 4개의 메모리 영역들(10-13)은 각기 DRAM의 뱅크 단위로 구성될 수 있으며, 하나의 뱅크는 예컨대 64Mb, 128Mb, 256Mb, 512Mb, 또는 1024Mb 의 메모리 스토리지를 가질 수 있다.
본 발명의 실시예의 경우에 상기 공유 메모리 영역(11)내에는 플래시 메모리(300)의 어드레스 맵핑 데이터를 저장하기 위한 저장 테이블 영역(110)이 마련된다. 상기 어드레스 맵핑 데이터는 플래시 메모리(300)의 논리 어드레스와 그 논리 어드레스에 대응되는 물리 어드레스가 매칭되어 있는 맵핑 정보를 나타낸다.
도 4에서, 프로세스들 간의 인터페이스를 제공하기 위해 인터레이스 부로서 기능하는 상기 내부 레지스터(50)는 상기 제1 및 제2 프로세서(100,200) 모두에 의해 억세스 되며, 플립플롭, 데이터 래치, 또는 SRAM 셀로 구성된다. 상기 내부 레지스터(50)는 세맵퍼(semaphore)영역(51), 제1 메일 박스 영역(mail box A to B :52), 제2 메일 박스 영역(mail box B to A:53), 체크 비트 영역(54), 및 예비 영역(55)으로 구별될 수 있다. 상기 영역들(51-55)은 상기 특정 로우 어드레스에 의해 공통적으로 인에이블 될 수 있으며, 인가되는 컬럼 어드레스에 따라 각기 개별적으로 억세스된다. 예를 들어, 상기 공유 메모리 영역(11)의 특정한 로우 영역(121)를 가리키는 로우 어드레스(1FFF800h ~ 1FFFFFFh)가 인가될 때, 공유 메모리 영역 내의 일부 영역(121)은 디세이블되며, 대신에 상기 내부 레지스터(50)가 인에이블된다.
프로세싱 시스템 개발자에게 익숙한 개념의 상기 세맵퍼 영역(51)에는 공유 메모리 영역(11)에 대한 제어 권한이 라이트되고, 상기 제1,2 메일박스 영역들(52,53)에는 미리 설정된 전송방향에 따라 상대 프로세서에게 주는 메시지(권한 요청, 플래시 메모리의 논리/물리 어드레스나 데이터 사이즈 또는 데이터가 저장될 공유 메모리의 어드레스를 나타내는 전송 데이터, 및 명령어 등)가 쓰여진다.
콘트롤 유닛(30)은, 상기 제2 프로세서(200)만이 플래시 메모리(300)와 연결되어 있는 경우에도, 상기 제1 프로세서(100)가 상기 공유 메모리 영역(11)과 상기 내부 레지스터(50)를 이용하여 상기 플래시 메모리(300)를 간접적으로 억세스할 수 있도록 하기 위해, 상기 공유 메모리 영역(11)내의 저장 테이블 영역(110)에 상기 플래시 메모리(300)의 어드레스 맵핑 데이터가 저장되도록 하며, 상기 공유 메모리 영역(11)을 상기 제1 및 제2 프로세서(100,200) 중의 하나에 동작적으로 연결하는 패쓰를 제어한다. 상기 제1 포트(60)에서 콘트롤 유닛(30)으로 연결된 신호라인(R1)은 상기 제1 프로세서(100)에서 버스(B1)를 통해 인가되는 제1 외부신호를 전달하고, 상기 제2 포트(61)에서 콘트롤 유닛(30)으로 연결된 신호라인(R2)은 상기 제2 프로세서(200)에서 버스(B2)를 통해 인가되는 제2 외부신호를 전달한다. 여기서, 제1,2 외부신호들은 상기 제1,2 포트(60,61)를 통해 각기 인가되는 로우 어드레스 스트로브 신호(RASB)와 라이트 인에이블 신호(WEB)및 뱅크 선택 어드레스(BA)를 포함할 수 있다. 상기 콘트롤 유닛(30)에서 상기 멀티플렉서들(40,41)로 연결된 신호라인들(C1,C2)은 공유 메모리 영역(11)을 제1 포트 또는 제2 포트에 동작적으로 연결되도록 하기 위한 패쓰 결정신호(MA,MB)를 각기 전달한다.
도 5는 도 4의 메모리 영역들 및 내부 레지스터에 대한 어드레스 할당 개념도이다. 각 뱅크들(10-13)이 16메가 비트의 용량으로 되어 있다고 하면, 공유 메모리 영역인 B 뱅크(11)내의 2킬로 비트는 디세이블 영역으로 설정된다. 즉, DRAM 내의 공유 메모리 영역(11)의 임의의 1행을 인에이블 시키는 특정 로우 어드레스(1FFF800h ~ 1FFFFFFh, 2KB 사이즈 = 1 로우 사이즈)가 상기 인터페이스 부로서의 내부 레지스터(50)에 변경적으로 할당된다. 이에 따라, 상기 특정 로우 어드레스(1FFF800h ~ 1FFFFFFh)가 인가될 때, 공유 메모리 영역(11)의 대응되는 특정 워드라인(121)은 디세이블되며, 대신에 상기 내부 레지스터(50)가 인에이블된다. 결 국, 시스템적으로는 다이렉트 어드레스 매핑 방법을 사용하여 상기 세맵퍼 영역(51)과 메일박스 영역들(52,53)이 억세스되도록 하는 것이고, 디램 내부적으로는 디세이블된 해당 어드레스로 접근하는 명령어를 해석하여 디램 내부의 레지스터로 매핑을 시키는 것이다. 따라서, 칩셋의 메모리 콘트롤러는 이 영역을 다른 메모리의 셀과 동일한 방법으로 코멘드를 발생시키게 되며, 이는 오픈 팔리시를 사용하는 콘트롤러로 인해 야기될 수 있는 프리차아지 미스 문제를 사전에 방지할 수 있게 한다. 도 5에서, 상기 세맵퍼 영역(51), 제1 메일 박스 영역(52), 및 제2 메일 박스 영역(53)은 각기 16비트로 할당될 수 있으며, 체크 비트 영역(54)은 4비트로 할당될 수 있다.
도 6은 도 3중 플래시 메모리에 대한 논리 어드레스와 물리 어드레스의 매칭 예를 가상적으로 보여주는 어드레스 맵 테이블이다. 도면을 참조하면, 논리(Logical) 어드레스를 나타내는 어드레스 영역들(LA1-LA8)은 물리(Physical)어드레스를 나타내는 어드레스 영역들(PA1-PA10)과 일대일로 매칭되어 있는 것이 보여진다. 그렇지만, 낸드 플래시 메모리 등과 같은 메모리의 특성상 배드 섹터가 존재하기 때문에, 논리 어드레스는 물리 어드레스와 반드시 일치하지 않는다. 예를 들어, 화살 부호(AR4)에서 보여지는 바와 같이, 논리 어드레스 영역(LA4)은 물리 어드레스 영역(PA4)과 일치되는 것이 바람직하지만, 실제로 그 어드레스에 대응되는 메모리 셀이 불량난 경우에 물리 어드레스 영역(PA5)에 매칭되어진다. 결국, 프로세서가 논리 어드레스 0x0FFFFFFh의 영역을 억세스 할 경우에 플래시 메모리의 물리 어드레스 영역(PA5)이 억세스되는 것이다. 따라서, 제1 프로세서(100)가 플래시 메모리(300)를 억세스할 경우에 논리 어드레스에 대응되는 물리 어드레스를 상기 내부 레지스터(50)에 쓰거나, 논리 어드레스 자체를 상기 내부 레지스터(50)에 직접적으로 쓰는 방법이 선택적으로 존재한다. 전자의 경우에 상기 제1 프로세서(100)는 도 4의 공유 메모리 영역(11)내의 저장 테이블 영역(110)을 참조한다. 후자의 경우에 상기 제2 프로세서(200)가 상기 저장 테이블 영역(110)을 참조할 수 있다. 상기 저장 테이블 영역(110)에 저장되는 플래시 메모리(300)의 어드레스 맵 데이터는 시스템의 초기 부팅 시에 상기 제2 프로세서(200)에 의해 로딩되는 데이터이다.
도 7은 도 4중 공유 메모리 영역과 내부 레지스터의 멀티패쓰 억세싱에 관련된 회로 블록도이고, 도 8은 도 7의 구체적 예시 회로를 보여주는 상세도이다. 도 7 및 도 8을 함께 참조하면, 공유 메모리 영역(11)을 중심으로 제2 멀티플렉서(40)와 제2 멀티플렉서(41)가 서로 대칭적으로 배치되고, 입출력 센스앰프 및 드라이버(22)와 입출력 센스앰프 및 드라이버(23)가 서로 대칭적으로 배치된 것이 보여진다. 상기 공유 메모리 영역(11)내에서, 하나의 억세스 트랜지스터(AT)와 스토리지 커패시터(C)로 구성된 디램 셀(4)은 단위 메모리 소자를 형성한다. 상기 디램 셀(4)은 복수의 워드라인과 복수의 비트라인의 교차점에 연결되어 매트릭스 형태의 뱅크 어레이가 형성되도록 한다. 도 8에서 보여지는 워드라인(WL)은 상기 디램 셀(4)의 억세스 트랜지스터(AT)의 게이트와 로우 디코더(75)간에 배치된다. 상기 로우 디코더(75)는 로우 어드레스 멀티 플렉서(71)의 선택 로우 어드레스(SADD)에 응답하여 로우 디코딩 신호를 상기 워드라인 및 상기 레지스터(50)로 인가한다. 비 트라인 페어를 구성하는 비트라인(BLi)은 상기 억세스 트랜지스터(AT)의 드레인과 컬럼 선택 트랜지스터(T1)에 연결된다. 상보(컴플리멘터리)비트라인(BLBi)은 컬럼 선택 트랜지스터(T2)에 연결된다. 상기 비트라인 페어(BLi,BLBi)에 연결된 피형 모오스 트랜지스터들(P1,P2)과 엔형 모오스 트랜지스터들(N1,N2)은 비트라인 센스앰프를 구성한다. 센스앰프 구동용 트랜지스터들(PM1,NM1)은 구동 신호(LAPG,LANG)를 각기 수신하여 상기 비트라인 센스앰프를 구동한다. 상기 컬럼 선택 트랜지스터들(T1,T2)로 구성된 컬럼 선택 게이트(6)는 컬럼 디코더(74)의 컬럼 디코딩 신호를 전달하는 컬럼 선택 라인(CSL)에 연결된다. 상기 컬럼 디코더(74)는 컬럼 어드레스 멀티 플렉서(70)의 선택 컬럼 어드레스(SCADD)에 응답하여 컬럼 디코딩 신호를 상기 컬럼 선택라인 및 상기 레지스터(50)로 인가한다.
도 7에서 보여지는 로컬 입출력 라인(LIO)은 실제로 도 8에서와 같이 로컬 입출력 라인 페어(LIO,LIOB)로서 구현된다. 제1 멀티플렉서(7:F-MUX))를 구성하는 트랜지스터들(T10,T11)이 로컬 입출력 라인 제어신호(LIOC)에 의해 턴온될 때, 로컬 입출력 라인 페어(LIO,LIOB)는 글로벌 입출력 라인 페어(GIO,GIOB)와 연결된다. 이에 따라 데이터의 리드 동작 모드에서는 로컬 입출력 라인 페어(LIO,LIOB)에 나타나는 데이터가 상기 글로벌 입출력 라인 페어(GIO,GIOB)로 전달된다. 한편, 반대로 데이터의 라이트 동작 모드에서는 상기 글로벌 입출력 라인 페어(GIO,GIOB)에 인가된 라이트 데이터가 상기 로컬 입출력 라인 페어(LIO,LIOB)로 전달된다. 여기서, 상기 로컬 입출력 라인 제어신호(LIOC)는 상기 로우 디코더(75)에서 출력되는 디코딩 신호에 응답하여 생성되는 신호일 수 있다.
콘트롤 유닛(30)으로부터 출력되는 패쓰 결정신호(MA)가 활성화 상태인 경우에, 상기 글로벌 입출력 라인 페어(GIO,GIOB)으로 전달된 리드 데이터는 상기 제2 멀티플렉서(40)를 통해 입출력 센스앰프 및 드라이버(22)로 전달된다. 입출력 센스앰프(22)는, 지금까지의 데이터 경로를 통해 전달됨에 따라 레벨이 미약해진 데이터를 재차로 증폭하는 역할을 담당한다. 상기 입출력 센스앰프(22)로부터 출력된 리드 데이터는 멀티플렉서 및 드라이버(26)를 통해 제1 포트(60)로 전달된다. 한편, 이 경우에 패쓰 결정신호(MB)는 비활성화 상태이므로 상기 제2 멀티플렉서(41)는 디세이블된다. 따라서, 상기 공유 메모리 영역(11)에 대한 제2 프로세서(200)의 억세스 동작은 차단된다. 그렇지만, 이 경우에 제2 프로세서(200)는 제2포트(61)를 통해 상기 공유 메모리 영역(11)이외의 전용 메모리 영역들(12,13)을 억세스 할 수 있다.
상기 콘트롤 유닛(30)으로부터 출력되는 패쓰 결정신호(MA)가 활성화 상태인 경우에, 제1 포트(60)를 통해 인가되는 라이트 데이터는 멀티플렉서 및 드라이버(26), 입출력 센스앰프 및 드라이버(22), 및 상기 제2 멀티플렉서(40)를 차례로 거쳐서 상기 글로벌 입출력 라인 페어(GIO,GIOB)로 전달된다. 상기 제1 멀티플렉서(7:F-MUX))가 활성화되면 상기 라이트 데이터는 로컬 입출력 라인 페어(LIO,LIOB)로 전달되어, 선택된 메모리 셀(4)에 저장된다.
도 8에서 보여지느 출력 버퍼 및 드라이버(60-1)와 입력 버퍼(60-2)는 도 7의 제1 포트(60)에 대응되거나 포함될 수 있다.
상기 공유 메모리 영역(11)에는 입출력 센스앰프 및 드라이버가 2개(22,23) 로 배치되며, 상기 제2 멀티 플렉서(40,41)는, 2개의 프로세서가 동시에 공유 메모리 영역(11)의 데이터를 억세스하는 경우를 방지하기 위해, 서로 상보적 동작을 가진다.
제1,2 프로세서들(100,200)은, 억세스 동작시에 글로벌 입출력 라인 페어(GIO,GIOB)와 메모리 셀(4)간에 존재하는 회로 소자들 및 라인들을 공통으로 사용하고, 각 포트에서 상기 제2 멀티플렉서(40,41)까지의 입출력 관련 회로 소자들 및 라인들을 독립적으로 사용한다.
보다 구체적으로, 상기 공유 메모리 영역(11)의 글로벌 입출력 라인 페어(GIO,GIOB)와, 상기 글로벌 입출력 라인 페어와 동작적으로 연결되는 로컬 입출력 라인 페어(LIO,LIOB)와, 상기 로컬 입출력 라인 페어와는 컬럼 선택신호(CSL)에 의해 동작적으로 연결되는 비트라인 페어(BL,BLB)와, 상기 비트라인 페어(BL,BLB)에 설치되어 비트라인의 데이터를 감지 증폭하는 비트라인 센스앰프(5)와, 상기 비트라인(BL)에 억세스 트랜지스터(AT)가 연결된 메모리 셀(4)은, 상기 제1,2 포트(60,61)를 통하여, 각기 상기 제1,2 프로세서들(100,200)에 의해 공유됨을 주목하여야 한다. 도 7에서 미설명된 참조 부호 24는 도 4의 전용 메모리 영역 A(10)에 관련된 입출력 센스앰프 및 드라이버를 가리키고, 참조부호 25는 전용 메모리 영역 B(12)에 관련된 입출력 센스앰프 및 드라이버를 가리킨다.
상기한 바와 같이, 도 7 및 도 8에서 보여진 바와 같은 도 4의 DRAM(400)에 의해, 프로세서들(100,200)간의 인터페이싱 기능이 달성된다. 인터페이스 부로서 기능하는 내부 레지스터(50)를 활용함에 의해 상기 프로세서들(100,200)은 공통으 로 억세스 가능한 공유 메모리 영역(11)을 통해 데이터 통신을 수행하며, 플래시 메모리(300)와 직접적으로 연결되어 있지 아니한 프로세서(100)가 타의 프로세서(200)에 연결된 플래시 메모리(300)를 간접적으로 억세스 할 수 있게 된다. 이에 따라, 외부 인터페이스 없이도 공유 메모리 영역을 통해 프로세서들 간에 데이터 통신을 할 수 있게 됨은 물론, 하나의 플래시 메모리를 공유적으로 사용할 수 있게 된다. 그리고, 부가적으로, 프로세서들 간의 인터페이싱이 디램 메모리 내부를 통해 제공될 경우에 할당된 공유 메모리 영역을 복수의 프로세서들이 고속으로 억세스할 수 있게 되어, 데이터 전송 및 처리속도가 개선되고 시스템 사이즈가 콤팩트하게 된다.
도 9는 도 4, 도 7, 및 도 8에서 나타낸 콘트롤 유닛의 구현 예를 보여주는 회로도이다. 도 9를 참조하면, 게이팅부(30a)는 복수의 논리 게이트들로 구성되어 있고 상기 제1,2 포트(60,61)를 통해 각기 인가되는 로우 어드레스 스트로브 신호(RASB_A,B)와 라이트 인에이블 신호(WEB_A,B)및 뱅크 선택 어드레스(BA_A,B)를 수신하여 도면의 하부에 보여지는 타이밍을 갖는 게이팅 신호들(PA,PB)을 생성한다. 예를 들어, 상기 게이팅 신호(PA)가 논리 로우레벨로 출력되는 경우에 상기 패쓰 결정신호(MA)는 논리 로우레벨로서 출력된다. 한편, 상기 게이팅 신호(PA)가 논리 로우레벨로 출력되는 경우에 상기 게이팅 신호(PB)는 논리 하이레벨로 유지되며, 상기 패쓰 결정신호(MB)는 논리 하이레벨로서 출력된다. 상기 게이팅부(30a)는 포트들 중 하나의 포트에서 로우 어드레스 스트로브 신호(RASB)가 먼저 들어오게 되면, 그 들어온 포트에 상기 공유 메모리 영역(11)이 어랜지되도록 한다. 만약, 동시에 로우 어드레스 스트로브 신호(RASB)가 인가될 경우는 시스템의 스펙시피케이션으로써 차단하여 우선권을 부여받은 프로세서가 상기 공유 메모리 영역(11)을 억세스할 수 있도록 하는 것이 바람직하다.
상기 콘트롤 유닛(30)은 또한, 인버터들(30b,30c,30h, 및 30i)과 낸드 게이트들(30d,30e), 딜레이 소자들(30f,30g), 및 낸드 게이트들(30h,30i)을 포함하며, 도 9에서 보여지는 바와 같은 와이어링 구조를 갖는다. 상기 구성에 의해, 상기 패쓰 결정신호(MA)는 상기 게이팅 신호(PA)가 일정시간 지연 및 래치된 신호로서 나타나고, 상기 패쓰 결정신호(MB)는 상기 게이팅 신호(PB)가 일정시간 지연 및 래치된 신호로서 나타난다.
도 10은 도 7 및 도 8에서 나타낸 어드레스 멀티플렉서의 예시를 보여주는 회로도이다. 도 10에서 보여지는 어드레스 멀티플렉서는 도 7 및 도 8에서 보여지는 로우 어드레스 멀티플렉서(71) 또는 컬럼 어드레스 멀티 플렉서(70) 중의 하나를 예로써 보여준다. 결국, 동일한 회로소자들을 이용하여 하나의 어드레스 멀티플렉서가 구현되고, 이는 입력되는 신호의 종류에 따라 로우 어드레스 멀티플렉서 또는 컬럼 어드레스 멀티플렉서로서 기능하게 된다.
컬럼 어드레스 멀티플렉서(70)는 두 포트들을 통해 두 개의 컬럼 어드레스 (A_CADD,B_CADD)를 두 입력단으로 각기 수신하고 상기 패쓰 결정신호(MA,MB)의 논리 상태에 따라 두 입력 중 하나를 선택하여 선택 컬럼 어드레스(SCADD)로서 출력하기 위해, 피형 및 엔형 모오스 트랜지스터들(P1-P4,N1-N4)로 이루어진 클럭드 씨모오스 인버터들과, 인버터들(INV1,INV2)로 구성된 인버터 래치(LA1)를 포함한다. 엔형 모오스 트랜지스터(N5)와 노아 게이트(NOR1)는 상기 인버터 래치(LA1)의 입력단과 접지 간에 방전경로를 형성하기 위해 마련된다. 또한, 인버터들(IN1,IN2)은 상기 패쓰 결정신호(MA,MB)의 논리 상태를 각기 반전하는 역할을 하기 위해 채용된다.
도 10에서, 예를 들어, 상기 패쓰 결정신호(MA)가 논리 로우레벨로 인가되면, 제1 포트(60)를 통해 인가되는 컬럼 어드레스(A_CADD)가 피형 및 엔형 모오스 트랜지스터(P2,N1)로 구성된 인버터를 통해 반전되고 이는 인버터(INV1)에 의해 다시 인버팅되어 선택 컬럼 어드레스(SCADD)로서 출력된다. 한편, 이 경우에 상기 패쓰 결정신호(MB)는 논리 하이레벨로 인가되기 때문에, 제2 포트(61)를 통해 인가될 수 있는 컬럼 어드레스(B_CADD)는 피형 및 엔형 모오스 트랜지스터(P4,N3)로 구성된 인버터가 비활성화 상태이므로 상기 래치(LA1)의 입력단에 제공되지 못한다. 결국, 제2 포트(61)를 통해 인가될 수 있는 컬럼 어드레스(B_CADD)는 선택 컬럼 어드레스(SCADD)로서 출력되지 못한다. 한편, 도 10에서, 상기 노아 게이트(NOR1)의 출력이 하이 레벨로 되면 상기 엔형 모오스 트랜지스터(N5)가 턴온되고 상기 래치(LA1)에 래치된 논리 레벨은 로우 레벨로 초기화된다.
도 11은 도 4의 멀티패쓰 억세스블 DRAM(400)을 통해 플래시 메모리(300)로 데이터를 라이트 하기 위한 프로세서들의 라이트 동작 플로우 챠트이다.
또한, 도 12는 도 4의 멀티패쓰 억세스블 DRAM(400)을 통해 플래시 메모리(300)로부터 데이터를 리드 하기 위한 프로세서들의 리드 동작 플로우 챠트이다.
먼저, 도 11을 참조하여 플래시 메모리(300)로 제1 프로세서(100)의 데이터를 라이트 하는 경우가 첨부된 도면들을 참조로 설명될 것이다.
먼저, 제1 프로세서(100)는 라이트 동작 시에 플래시 메모리의 논리 어드레스만 취급할 수도 있지만, 논리 어드레스에 대응되는 물리 어드레스를 서치할 수 도 있다. 상기 제1 프로세서(100)가 플래시 메모리의 논리 어드레스만 취급할 경우에 상기 제2 프로세서(200)가 논리 어드레스에 대응되는 물리 어드레스를 서치하는 역할을 하여야 한다.
도 11의 경우에는 제1 프로세서(100)가 논리 어드레스에 대응되는 물리 어드레스를 서치한 다음 라이트 코멘드를 인가한다. 우선, 도 3의 멀티 프로세서 시스템의 초기 부팅시에 플래시 메모리(300)의 논리 어드레스와 그에 대응되는 물리 어드레스에 관련된 어드레스 맵 데이터(AMD)는 상기 제2 프로세서(200)에 의해 상기 도 4의 공유 메모리 영역(11)내의 저장 테이블 영역(110)에 로딩된다.
제2 프로세서(200)가 제어 권한을 획득하기 위해서는 내부 레지스터(50)내의 세맵퍼 영역(51)와 제2 메일박스(53)를 활용할 수 있다. 제어 권한의 획득은 프로세서들의 공유자원인 공유 메모리 영역(11)을 서로 충돌 없이 사용하기 위해 필요해진다. 통상적인 디램 메모리의 초기화과정에서 2회의 오토 리프레쉬 수행 후 MRS(모드 레지스터 세트)신호가 세트되는데, 여기서는 메모리의 초기화가 완료되기 이전이므로 오토 리프레쉬가 수행되지 못한다. 오토 리프레쉬가 수행되지 못하는 것을 방지하기 위해 공유 메모리 영역(11)의 제어권한을 디폴트로 한쪽 프로세서(200)에 할당할 수 있다. 이 후 권한이 없는 다른 프로세서(100)가 상기 공유 메 모리 영역(11)을 사용하고 싶을 때에는 권한이 있는 프로세서(200)에게 권한을 요청하는 신호를 제1 메일박스(52)를 통해 보내고, 제1 프로세서(100)는 제어권한의 획득 유무를 확인하기 위해 주기적으로 상기 세맵퍼 영역(51)을 모니터링한다. 제2 프로세서(200)의 수행 작업이 완료되면 세맵퍼 영역(51)은 릴리즈된다. 따라서, 제1 프로세서(100)는 세맵퍼의 릴리즈를 확인하고 공유 자원인 공유 메모리 영역(11)에 대한 억세스 권한을 비로서 획득하게 된다. 이와 같이, 세맵퍼 영역(51)의 플래그 데이터를 확인하고 상기 제1 프로세서(100)가 공유 메모리 영역(11)에 대한 점유를 획득하는 과정은 도 11의 단계 S10에 상응된다.
도 11의 단계 S10을 통해 공유 메모리 영역(11)에 대한 점유를 획득한 상기 제1 프로세서(100)는 단계 S11의 동작을 수행한다. 상기 단계 S11에서, 상기 제1 프로세서(100)는 공유 메모리 영역(11)내의 저장 테이블 영역(110)을 참조하여 라이트 데이터가 쓰여질 논리 어드레스에 대응되는 물리 어드레스를 찾는다. 예컨대 도 6에서 보여지는 바와 같은 어드레스 맵 테이블을 참조(억세스)함에 의해 상기 제1 프로세서(100)는 플래시 메모리의 논리 어드레스에 대응되는 물리 어드레스를 찾게된다. 결국, 제1 프로세서(100)는 논리 어드레스를 내어 놓고 물리 어드레스를 가져가는 셈이다.
단계 S12에서, 상기 제1 프로세서(100)는 제1 메일박스 영역(52)에 플래시 메모리의 물리 어드레스, 라이트 하려는 데이터 사이즈, 라이트 하려는 데이터가 들어 있는 공유 메모리 영역(11)의 어드레스, 및 라이트 코멘드를 쓴다. 그리고, 상기 제1 프로세서(100)는 상기 공유 메모리 영역(11)에는 라이트 할 데이터를 써 놓는다. 단계 S13에서 상기 제1 프로세서(100)는 인터럽트(INTb)신호를 전송한다. 이에 따라, 세맵퍼 영역(51)에 "1"로 표시되어 있던 데이터는 "0"으로 바뀌어 제1 프로세서(100)가 억세스 권한을 넘긴다는 의미를 제2 프로세서(200)가 알 수 있게 된다. 상기 세맵퍼 영역(51)을 포함하는 내부 레지스터(50)의 타 영역들은 플립플롭이나 래치형태의 저장 셀을 가지고 있어 프리차아지 동작이 필요 없다.
상기 세맵퍼 영역(51)을 주기적으로 체크하던 상기 제2 프로세서(200)는 상기 세맵퍼 영역(51)의 플래그 데이터를 리드하고 나서 이제부터는 억세스 권한이 자기에게 있음을 인지한다. 이는 도 11의 단계 S14 및 S15에 대응된다.
ASIC으로 구현 가능한 상기 제2 프로세서(200)는 상기 공유 메모리 영역(11)에 대한 점유를 획득한 후, 상기 제1 메일박스 영역(52)에 쓰여진 내용을 단계 S16에서 읽는다. 그리고, 상기 공유 메모리 영역(11)에 쓰여진 라이트 데이터를 리드한 다음, 상기 제1 메일박스 영역(52)를 읽은 내용에 따라, 단계S17에서, 상기 리드된 라이트 데이터가 플래시 메모리(300)의 해당 물리 어드레스에 라이트 되도록 한다. 상기 플래시 메모리(300)의 라이트 동작은 플로팅 게이트를 갖는 메모리 셀 트랜지스터에 약 12 내지 18볼트 정도의 고전압을 인가하여 F-N 터널링 동작이 발생되도록 하는 작업이다. 그러한 플래시 메모리의 라이트 동작은 낸드 플래시 메모리 또는 노아 플래시 메모리의 당업자에게 있어서 널리 알려져 있으므로 더 이상의 설명은 약한다.
상기 도 11의 설명에서는 상기 제1 프로세서(100)가 논리 어드레스에 대응되는 물리 어드레스를 저장 테이블 영역(110)을 서치한 후, 라이트 리퀘스트를 행하 는 것이 설명되었으나, 이에 한정됨이 없이 상기 제1 프로세서(100)는 라이트 동작 시에 플래시 메모리의 논리 어드레스만 취급할 수 있다. 이 경우에, 도 11의 단계 S11은 스킵되고, 단계 S12에서 제1 메일 박스 영역(5)에는 플래시의 논리 어드레스가 라이트된다. 따라서, 상기 제2 프로세서(200)는 상기 저장 테이블 영역(110)을 참조하여 논리 어드레스에 대응되는 물리 어드레스를 서치한다. 상기 제2 프로세서(200)가 물리 어드레스를 서치하는 경우에 상기 제2 프로세서(200)는 플래시 메모리(300)의 내부에 할당된 어드레스 맵 테이블을 직접적으로 서치할 수도 있을 것이다.
이제부터는 도 12를 참조하여 제1 프로세서(100)가 플래시 메모리(300)로부터 데이터를 리드하는 경우가 설명될 것이다.
라이트 동작의 경우와 유사하게, 상기 제1 프로세서(100)는 리드 동작 시에 플래시 메모리의 논리 어드레스만 취급할 수도 있지만, 논리 어드레스에 대응되는 물리 어드레스를 서치할 수 도 있다.
도 12의 경우에는 제1 프로세서(100)가 논리 어드레스에 대응되는 물리 어드레스를 서치한 다음 리드 코멘드를 인가한다. 제1 프로세서(100)는 단계 S20에서 공유 메모리 영역(11)에 대한 억세스 권한을 획득한 후, 단계 S21의 동작을 수행한다. 상기 단계 S21에서, 상기 제1 프로세서(100)는 공유 메모리 영역(11)내의 저장 테이블 영역(110)을 참조하여 논리 어드레스에 대응되는 물리 어드레스를 찾는다.
단계 S22에서, 상기 제1 프로세서(100)는 제1 메일박스 영역(52)에 플래시 메모리의 물리 어드레스, 리드 하려는 데이터 사이즈, 리드 데이터가 들어 있게 될 공유 메모리 영역(11)의 어드레스, 및 리드 코멘드를 쓴다. 단계 S23에서 상기 제1 프로세서(100)는 인터럽트(INTb)신호를 전송한다. 이에 따라, 세맵퍼 영역(51)에 "1"로 표시되어 있던 데이터는 "0"으로 바뀌어 제1 프로세서(100)가 억세스 권한을 넘긴다는 의미를 제2 프로세서(200)가 알 수 있게 된다.
상기 세맵퍼 영역(51)을 주기적으로 체크하던 상기 제2 프로세서(200)는 상기 세맵퍼 영역(51)의 플래그 데이터를 리드하고 나서 이제부터는 억세스 권한이 자기에게 있음을 인지한다. 이는 도 12의 단계 S24 및 S25에 대응된다.
ASIC으로 구현 가능한 상기 제2 프로세서(200)는 상기 공유 메모리 영역(11)에 대한 점유를 획득한 후, 상기 제1 메일박스 영역(52)에 쓰여진 내용을 단계 S26에서 읽는다. 상기 제2 프로세서(200)는 상기 제1 메일박스 영역(52)를 읽은 내용에 따라, 단계 S27에서, 플래시 메모리(300)를 억세스하여 상기 제1 프로세서(100)가 지정한 물리 어드레스에 저장된 데이터를 리드한 다음, 단계 S28에서 이를 상기 공유 메모리 영역(11)내의 지정된 어드레스에 쓴다. 이후에 단계 S29에서, 상기 제2 프로세서(200)는 제2 메일박스 영역(53)에 알림정보를 쓴 다음, INTa를 전송한다. 이에 따라서, 제1 프로세서(100)는 세맵퍼 영역(51) 및 상기 제2 메일박스 영역(53)를 확인한 다음, 상기 디램(400)내의 공유 메모리 영역(11)에 에이직(200)이 써둔 플래시 메모리(300)의 데이터를 비로서 리드하게 된다.
상기 플래시 메모리(300)의 리드 동작은 라이트 시의 전압 보다는 저전압을 메모리 셀 트랜지스터에 인가함에 의해 선택된 메모리 셀이 온 셀 인지 오프 셀 인지를 감지하는 작업이다. 그러한 플래시 메모리의 리드 동작은 낸드 플래시 메모리 또는 노아 플래시 메모리의 당업자에게 있어서 널리 알려져 있으므로 더 이상의 설명은 약한다.
상기 도 12에서의 설명은 어드레스 맵 데이터(AMD)의 서칭 작업 주체가 응용 프로세서인 제1 프로세서(100)로 되어 있지만, 사안이 다른 경우에 상기 제1 프로세서(100)는 논리 어드레스를 취급하고 제2 프로세서(200)가 물리 어드레스를 서칭하는 주체가 될 수 있을 것이다.
상기한 바와 같이, 플래시 메모리로 데이터를 라이트 하거나 플래시 메모리로부터 데이터를 리드하기 위해서는 상기 멀티 패쓰 억세스블 디램(400)의 멀티패쓰 억세스 동작이 서포팅 되어야 한다.
첨족 같지만, 상기 제1,2 프로세서(100,200) 모두에 의해서 억세스될 수 있는 공유 메모리 영역(11)의 경우를 예를 들면, 공유 메모리 영역(11)에 연결된 글로벌 입출력 라인페어(GIO,GIOB)는 상기 제1,2 프로세서들(100,200)에 각기 대응적으로 연결되는 제1,2 포트(60,61)중의 하나에 선택적으로 연결될 수 있다. 그러한 선택적 연결은 콘트롤 유닛(30)의 제어 동작에 의해 달성된다. 상기 콘트롤 유닛(30)의 패쓰 결정신호(MA,MB)는 도 10에서와 같이 로우 및 컬럼 어드레스 멀티플렉서(71,70)에도 인가된다. 상기 로우 및 컬럼 어드레스 멀티플렉서(71,70)는 상기 제1,2 포트(60,61)를 통해 각기 인가되는 로우 및 컬럼 어드레스들(A_ADD,B_ADD,A_CADD,B_CADD)중에서 하나의 로우 및 컬럼 어드레스(SADD, SCADD)를 선택하고 이를 상기 공유 메모리 영역(11)과 연결되어 있는 로우 디코더(75) 및 컬럼 디코더(74)에 각기 인가한다.
상기 제1 프로세서(100가 상기 공유 메모리 영역(11)을 억세스 하는 경우라고 가정하고, 그 때의 동작 모드를 리드동작이라고 가정하면, 도 8의 콘트롤 유닛(30)은 제1 프로세서(100)로부터 인가되는 외부신호들을 논리 조합하여 패쓰 결정신호(MA)를 활성화하고, 패쓰 결정신호(MB)를 비활성화한다. 로우 어드레스 멀티플렉서(71)는 제1 포트(60)를 통해 인가되는 로우(row) 어드레스(A_ADD)를 선택하고 이를 로우 디코더(75)에 인가한다. 로우 디코더(75)는 상기 제1 프로세서(100)가 억세스하기를 원하는 상기 공유 메모리 영역(11)내의 워드라인(WL)이 활성화되도록 한다. 상기 워드라인(WL)이 활성화되면 동일 워드라인에 억세스 트랜지스터의 게이트가 연결된 메모리 셀들의 데이터는 대응되는 비트라인 페어(BLi,BLBi)에 디벨롭된다. 비트라인 센스앰프(5)는 상기 디벨롭을 감지 및 증폭하여 출력하고, 이 비트라인 데이터는 컬럼 선택 신호(CSL)의 활성화에 응답하는 컬럼 선택 게이트(6)가 턴온될 때, 대응되는 로컬 입출력라인 페어(LIO,LIOB)에 전달된다. 상기 컬럼 선택 게이트(6)의 턴온과정은 다음과 같다. 상기 워드라인(WL)이 활성화되어 상기 비트라인에 메모리 셀(4)의 데이터가 하이 또는 로우 레벨의 포텐셜로서 나타난 이후에, 상기 컬럼 어드레스 멀티플렉서(70)는 제1 포트(60)의 컬럼 어드레스(A_CADD)를 선택하고 이를 컬럼 디코더(74)에 출력한다. 컬럼 디코더(74)는 결국 상기 제1 프로세서(100)가 억세스하기를 원하는 컬럼을 선택하는 컬럼 선택 신호(CSL)를 활성화한다.
전위레벨로써 나타나는 상기 로컬 입출력 라인 페어(LIO,LIOB)의 데이터는, 제1 멀티플렉서(7))를 구성하는 트랜지스터들(T10,T11)이 턴온될 때, 글로벌 입출 력 라인 페어(GIO,GIOB)로 전달된다. 이 경우에는 패쓰 결정신호(MA)가 활성화 상태로 출력되는 경우이므로, 상기 글로벌 입출력 라인 페어(GIO,GIOB)로 전달된 데이터는 상기 제2 멀티플렉서(40)를 통해 입출력 센스앰프 및 드라이버(22)로 전달된다. 상기 입출력 센스앰프 및 드라이버(22)에서 출력된 데이터는 멀티플렉서 및 드라이버(26)를 통해 제1 포트(60)로 전달된다.
또한, 본 실시예에서 메일 박스 영역을 통해 데이터 혹은 코멘드를 전송하는 경우에 대한 이점은 다음과 같다. 공유 메모리 영역(11)의 데이터 억세스는 공유 메모리 영역의 제어권한을 획득한 프로세서 만에 의해 허용되나, 메일박스 영역은 제어 권한과는 상관없이 언제든지 양쪽의 프로세서들 모두가 억세스 할 수 있다. 따라서, 양쪽의 프로세서들은 특정 비트를 할당하여 상대 프로세서에게 데이터 전송 혹은 코멘드 전송을 행할 수 있는 것이다. 메일 박스를 통해 데이터 전송 혹은 코멘드를 전송한다면 제어 권한을 요청하는 시간 손실 없이 메일 박스 크기 만큼의 데이터를 담아 주고 받을 수 있는 장점이 있다.
상기한 설명에서는 본 발명의 실시예를 위주로 도면을 따라 예를 들어 설명하였지만, 본 발명의 기술적 사상의 범위 내에서 본 발명을 다양하게 변형 또는 변경할 수 있음은 본 발명이 속하는 분야의 당업자에게는 명백한 것이다. 예를 들어, 사안이 다른 경우에 본 발명의 기술적 사상을 벗어남이 없이 메모리 내부의 레지스터 구성이나 뱅크 구성, 또는 회로 구성 및 억세스 방법을 다양하게 변형 또는 변경할 수 있음은 물론이다.
예를 들어, 플래시 메모리 대신에 PRAM이나 RRAM, MRAM 등과 같은 불휘발성 반도체 메모리가 적용될 수 있으며, 디램 내의 4개의 메모리 영역중 2개를 공유 메모리 영역으로 나머지 2개를 전용 메모리 영역으로 지정하거나, 4개의 메모리 영역 모두를 공유 메모리 영역으로 설정할 수 있을 것이다. 또한, 2개의 프로세서를 사용하는 시스템의 경우를 위주로 예를 들었으나, 3개 이상의 프로세서가 시스템에 채용되는 경우에 하나의 디램에 3개 이상의 포트를 설치하고 특정한 타임에 3개 중의 하나의 프로세서가 설정된 공유 메모리를 억세스하도록 할 수 있을 것이다. 그리고, 디램의 경우를 예를 들었으나 여기에 한정됨이 없이 스태이틱 랜덤 억세스 메모리나 불휘발성 메모리 등에서도 본 발명의 기술적 사상이 확장가능 할 수 있을 것이다.
상술한 바와 같이, 본 발명의 반도체 메모리 장치에 따르면, 플래시 메모리 등과 같은 불휘발성 반도체 메모리와 직접적으로 연결되어 있지 않은 프로세서도 반도체 메모리 장치의 내부 인터페이싱을 통해 플래시 메모리를 간접적으로 억세스 할 수 있으므로, 프로세서들이 플래시 메모리를 공유적으로 사용할 수 있는 효과를 갖는다. 따라서, 멀티 프로세서 시스템의 사이즈가 콤팩트하게 되며, 멀티 프로세서 시스템 내에서 차지하는 메모리의 코스트가 대폭적으로 줄어드는 이점이 있다.
Claims (37)
- 반도체 메모리 장치에 있어서:제1 및 제2 프로세서에 의해 서로 다른 포트를 통해 억세스 되며 메모리 셀 어레이의 일부에 할당된 공유 메모리 영역과;상기 메모리 셀 어레이의 외부에 위치되며 상기 제1 및 제2 프로세서에 의해 억세스 되는 내부 레지스터와;상기 제2 프로세서만이 플래시 메모리와 연결되어 있는 경우에도, 상기 제1 프로세서가 상기 공유 메모리 영역과 상기 내부 레지스터를 이용하여 상기 플래시 메모리를 간접적으로 억세스할 수 있도록 하기 위해, 상기 공유 메모리 영역에 상기 플래시 메모리의 어드레스 맵핑 데이터가 저장되도록 하며, 상기 공유 메모리 영역을 상기 제1 및 제2 프로세서 중의 하나에 동작적으로 연결하는 패쓰를 제어하기 위한 콘트롤 유닛을 구비함을 특징으로 하는 반도체 메모리 장치.
- 제1항에 있어서, 상기 메모리 셀 어레이 내에는 상기 제1 및 제2 프로세서 각각에 의해 전용으로 억세스 되는 전용 메모리 영역들이 더 구비됨을 특징으로 하는 반도체 메모리 장치.
- 제1항에 있어서, 상기 내부 레지스터는 상기 공유 메모리 영역의 특정 어드레스에 대응하여 대치적으로 억세스 됨을 특징으로 하는 반도체 메모리 장치.
- 제1항에 있어서, 상기 어드레스 맵핑 데이터는 상기 플래시 메모리의 논리 어드레스와 상기 논리 어드레스에 맵핑되어 있는 물리 어드레스를 포함하는 데이터임을 특징으로 하는 반도체 메모리 장치.
- 제3항에 있어서, 상기 내부 레지스터는 컬럼 어드레스에 의해 구별되는 세맵퍼 영역과 메일박스 영역들을 포함함을 특징으로 하는 반도체 메모리 장치.
- 제1항에 있어서, 상기 공유 메모리 영역은 디램 셀들로 이루어지고 상기 내부 레지스터는 플립플롭으로 이루어짐을 특징으로 하는 반도체 메모리 장치.
- 제4항에 있어서, 상기 제1 프로세서는 상기 플래시 메모리를 억세스할 경우에 상기 플래시 메모리의 논리 어드레스에 대응되는 물리 어드레스를 상기 내부 레지스터에 인가함을 특징으로 하는 반도체 메모리 장치.
- 제4항에 있어서, 상기 제1 프로세서는 상기 플래시 메모리를 억세스할 경우에 상기 플래시 메모리의 논리 어드레스를 상기 내부 레지스터에 그대로 인가함을 특징으로 하는 반도체 메모리 장치.
- 제5항에 있어서, 상기 제1 프로세서는 상기 플래시 메모리에 데이터가 라이트되도록 할 경우에 상기 공유 메모리 영역에는 라이트용 데이터를 쓰고, 상기 메일박스 영역들 중 송신용 메일박스 영역에는 플래시 메모리의 물리 어드레스, 데이터 사이즈, 라이트용 데이터가 쓰여진 상기 공유 메모리 영역의 어드레스, 및 라이트 코멘드를 쓰는 것을 특징으로 하는 반도체 메모리 장치.
- 제9항에 있어서, 상기 제2 프로세서는 상기 공유 메모리 영역에 대한 점유권을 획득한 후, 상기 송신용 메일박스를 리드하고 상기 라이트용 데이터를 상기 공유 메모리 영역으로부터 리드한 다음, 상기 리드된 플래시 메모리의 물리 어드레스에 상기 라이트용 데이터를 라이트함을 특징으로 하는 반도체 메모리 장치.
- 제5항에 있어서, 상기 제1 프로세서는 상기 플래시 메모리로부터 데이터를 리드할 경우에 상기 메일박스 영역들 중 송신용 메일박스 영역에는 플래시 메모리의 물리 어드레스, 데이터 사이즈, 리드 데이터가 들어 있게 될 상기 공유 메모리 영역의 어드레스, 및 리드 코멘드를 쓰는 것을 특징으로 하는 반도체 메모리 장치.
- 제11항에 있어서, 상기 제2 프로세서는 상기 공유 메모리 영역에 대한 점유권을 획득한 후, 상기 송신용 메일박스를 리드하여 상기 리드된 플래시 메모리의 물리 어드레스에 대응되는 메모리 영역으로부터 플래시 데이터를 리드한 다음, 상기 공유 메모리 영역의 지정된 어드레스에 상기 리드된 데이터를 라이트함을 특징으로 하는 반도체 메모리 장치.
- 제5항에 있어서, 상기 제1 프로세서는 상기 플래시 메모리에 데이터가 라이트되도록 할 경우에 상기 공유 메모리 영역에는 라이트용 데이터를 쓰고, 상기 메일박스 영역들 중 송신용 메일박스 영역에는 플래시 메모리의 논리 어드레스, 데이터 사이즈, 라이트용 데이터가 쓰여진 상기 공유 메모리 영역의 어드레스, 및 라이트 코멘드를 쓰는 것을 특징으로 하는 반도체 메모리 장치.
- 제13항에 있어서, 상기 제2 프로세서는 상기 공유 메모리 영역에 대한 점유권을 획득한 후, 상기 송신용 메일박스를 리드하여 상기 라이트용 데이터를 상기 공유 메모리 영역으로부터 리드한 다음, 상기 리드된 플래시 메모리의 논리 어드레스에 대응되는 물리 어드레스를 상기 공유 메모리 영역에 저장된 어드레스 맵핑 데이터로부터 찾아 상기 플래시 메모리에 상기 라이트용 데이터를 라이트함을 특징으로 하는 반도체 메모리 장치.
- 제5항에 있어서, 상기 제1 프로세서는 상기 플래시 메모리로부터 데이터를 리드할 경우에 상기 메일박스 영역들 중 송신용 메일박스 영역에는 플래시 메모리의 논리 어드레스, 데이터 사이즈, 리드 데이터가 들어 있게 될 상기 공유 메모리 영역의 어드레스, 및 리드 코멘드를 쓰는 것을 특징으로 하는 반도체 메모리 장치.
- 제15항에 있어서, 상기 제2 프로세서는 상기 공유 메모리 영역에 대한 점유권을 획득한 후, 상기 송신용 메일박스를 리드하고 플래시 메모리의 논리 어드레스에 대응되는 물리 어드레스를 상기 공유 메모리 영역에서 찾아 플래시 메모리로부터 플래시 데이터를 리드한 다음, 상기 공유 메모리 영역의 지정된 어드레스에 상기 리드된 데이터를 라이트함을 특징으로 하는 반도체 메모리 장치.
- 플래시 메모리와 연결된 제2 프로세서와, 제1 프로세서 간에 연결되기 적합한 반도체 메모리 장치에 있어서:상기 프로세서들에 대하여 각기 독립적으로 할당된 포트들을 통해 선택적으로 억세스 되며, 상기 플래시 메모리의 어드레스 맵핑 데이터를 일부 영역에 저장하기 위해 메모리 셀 어레이 내의 메모리 뱅크로서 할당된 공유 메모리 영역과;상기 메모리 셀 어레이의 외부에 위치되어 상기 프로세서들에 의해 선택적으로 억세스 되며, 상기 제1 프로세서가 상기 공유 메모리 영역을 통해 상기 플래시 메모리를 억세스할 수 있도록 하기 위해 상기 공유 메모리 영역의 특정 어드레스에 대응하여 대치적으로 억세스 되는 인터페이싱 부와;상기 프로세서들로부터 인가되는 외부신호들에 응답하여 상기 포트들 중 선택된 하나의 포트와 상기 공유 메모리 영역간의 데이터 억세스 패쓰가 형성되도록 하는 콘트롤 유닛을 구비함을 특징으로 하는 반도체 메모리 장치.
- 제17항에 있어서, 상기 인터페이싱 부는 컬럼 어드레스에 의해 서로 구별되는 세맵퍼 영역과 제1,2 메일박스 영역들을 포함함을 특징으로 하는 반도체 메모리 장치.
- 제18에 있어서, 상기 메모리 셀 어레이 내에는 상기 제1 및 제2 프로세서 각각에 의해 전용으로 억세스 되는 전용 메모리 영역들이 더 구비됨을 특징으로 하는 반도체 메모리 장치.
- 제19항에 있어서, 상기 어드레스 맵핑 데이터는 상기 플래시 메모리의 논리 어드레스와 상기 논리 어드레스에 맵핑되어 있는 물리 어드레스를 포함하는 데이터임을 특징으로 하는 반도체 메모리 장치.
- 제20항에 있어서, 상기 공유 메모리 영역은 디램 셀들로 이루어지고 상기 인터페이싱 부는 데이터 래치로 이루어짐을 특징으로 하는 반도체 메모리 장치.
- 제21항에 있어서, 상기 제1 프로세서는 상기 플래시 메모리를 억세스할 경우에 상기 플래시 메모리의 논리 어드레스에 대응되는 물리 어드레스를 상기 인터페이싱 부에 인가함을 특징으로 하는 반도체 메모리 장치.
- 제21항에 있어서, 상기 제1 프로세서는 상기 플래시 메모리를 억세스할 경우 에 상기 플래시 메모리의 논리 어드레스를 상기 인터페이싱 부에 그대로 인가함을 특징으로 하는 반도체 메모리 장치.
- 제18항에 있어서, 상기 제1 프로세서는 상기 플래시 메모리에 데이터가 라이트되도록 할 경우에 상기 공유 메모리 영역에는 라이트용 데이터를 쓰고, 상기 제1 메일박스 영역에는 플래시 메모리의 물리 어드레스, 데이터 사이즈, 라이트용 데이터가 쓰여진 상기 공유 메모리 영역의 어드레스, 및 라이트 코멘드를 쓰는 것을 특징으로 하는 반도체 메모리 장치.
- 제24항에 있어서, 상기 제2 프로세서는 상기 공유 메모리 영역에 대한 점유권을 획득한 후, 상기 제1 메일박스 영역을 리드하고 상기 라이트용 데이터를 상기 공유 메모리 영역으로부터 리드한 다음, 상기 리드된 플래시 메모리의 물리 어드레스에 상기 라이트용 데이터를 라이트함을 특징으로 하는 반도체 메모리 장치.
- 제18항에 있어서, 상기 제1 프로세서는 상기 플래시 메모리로부터 데이터를 리드할 경우에 상기 제1 메일박스 영역에는 플래시 메모리의 물리 어드레스, 데이터 사이즈, 리드 데이터가 들어 있게 될 상기 공유 메모리 영역의 어드레스, 및 리 드 코멘드를 쓰는 것을 특징으로 하는 반도체 메모리 장치.
- 제26항에 있어서, 상기 제2 프로세서는 상기 공유 메모리 영역에 대한 점유권을 획득한 후, 상기 제1 메일박스 영역을 리드하여 상기 리드된 플래시 메모리의 물리 어드레스에 대응되는 메모리 영역으로부터 플래시 데이터를 리드한 다음, 상기 공유 메모리 영역의 지정된 어드레스에 상기 리드된 데이터를 라이트함을 특징으로 하는 반도체 메모리 장치.
- 제18항에 있어서, 상기 제1 프로세서는 상기 플래시 메모리에 데이터가 라이트되도록 할 경우에 상기 공유 메모리 영역에는 라이트용 데이터를 쓰고, 상기 제1 메일박스 영역에는 플래시 메모리의 논리 어드레스, 데이터 사이즈, 라이트용 데이터가 쓰여진 상기 공유 메모리 영역의 어드레스, 및 라이트 코멘드를 쓰는 것을 특징으로 하는 반도체 메모리 장치.
- 제28항에 있어서, 상기 제2 프로세서는 상기 공유 메모리 영역에 대한 점유권을 획득한 후, 상기 제1 메일박스 영역을 리드하여 상기 라이트용 데이터를 상기 공유 메모리 영역으로부터 리드한 다음, 상기 리드된 플래시 메모리의 논리 어드레 스에 대응되는 물리 어드레스를 상기 공유 메모리 영역에 저장된 어드레스 맵핑 데이터로부터 찾아 상기 플래시 메모리에 상기 라이트용 데이터를 라이트함을 특징으로 하는 반도체 메모리 장치.
- 제18항에 있어서, 상기 제1 프로세서는 상기 플래시 메모리로부터 데이터를 리드할 경우에 상기 제1 메일박스 영역에는 플래시 메모리의 논리 어드레스, 데이터 사이즈, 리드 데이터가 들어 있게 될 상기 공유 메모리 영역의 어드레스, 및 리드 코멘드를 쓰는 것을 특징으로 하는 반도체 메모리 장치.
- 제30항에 있어서, 상기 제2 프로세서는 상기 공유 메모리 영역에 대한 점유권을 획득한 후, 상기 제1 메일박스 영역을 리드하고 플래시 메모리의 논리 어드레스에 대응되는 물리 어드레스를 상기 공유 메모리 영역에서 찾아 플래시 메모리로부터 플래시 데이터를 리드한 다음, 상기 공유 메모리 영역의 지정된 어드레스에 상기 리드된 데이터를 라이트함을 특징으로 하는 반도체 메모리 장치.
- 제1 및 제2 프로세서에 의해 서로 다른 포트를 통해 억세스 되며 메모리 셀 어레이의 일부에 할당된 공유 메모리 영역과, 상기 메모리 셀 어레이의 외부에 위 치되며 상기 제1 및 제2 프로세서에 의해 억세스 되는 내부 레지스터를 준비하는 단계와;상기 공유 메모리 영역에 상기 플래시 메모리의 어드레스 맵핑 데이터를 저장하는 단계와;상기 제2 프로세서만이 플래시 메모리와 연결되어 있는 경우에도, 상기 제1 프로세서가 상기 공유 메모리 영역과 상기 내부 레지스터를 이용하여 상기 플래시 메모리를 간접적으로 억세스할 수 있도록 하기 위해, 상기 공유 메모리 영역을 상기 제1 및 제2 프로세서 중의 하나에 동작적으로 연결하는 단계를 가짐을 특징으로 하는 반도체 메모리 장치의 구동방법.
- 복수의 프로세서들에 의해 억세스 가능한 공유 메모리 영역에 플래시 메모리의 어드레스 맵 데이터를 저장하여 두고 디램 인터페이스를 통해 어느 한 프로세서가 다른 프로세서와 통신하여 플래시 메모리를 간접적으로 억세스하는 것을 특징으로 하는 플래시 메모리 억세스 방법.
- 디램과 연결되어 있는 어플리케이션 프로세서가 에이직과 연결되어 있는 플래시 메모리를 간접적으로 억세스 하기 위해, 디램 인터페이스를 경유하여 디램의 공유 메모리 영역에 들어 있는 플래시 메모리의 어드레스 맵 데이터를 참조하는 것 을 특징으로 하는 플래시 메모리 억세스 방법.
- 프로세서들 간의 통신 시 디램 인터페이스를 사용하고, 세맵퍼 영역과 메일박스 영역들을 갖는 디램 내의 인터페이스 부를 이용하여 상기 프로세서들이 공통으로 억세스 가능한 공유 메모리 영역을 통해 데이터 통신이 수행되도록 하며, 상기 공유 메모리 영역에 플래시 메모리의 어드레스 맵 테이블을 저장하여 상기 플래시 메모리와 연결되어 있지 아니한 프로세서가 상기 플래시 메모리를 간접적으로 억세스 하는 것을 특징으로 하는 프로세서들 간 인터페이싱 방법.
- 제1 및 제2 프로세서에 의해 서로 다른 포트를 통해 억세스 되며 메모리 셀 어레이의 일부에 할당된 공유 메모리 영역과, 상기 메모리 셀 어레이의 외부에 위치되며 상기 제1 및 제2 프로세서에 의해 억세스 되는 내부 레지스터를 준비하는 단계와;초기 부팅 시에 상기 제2 프로세서 측에서 상기 공유 메모리 영역에 상기 플래시 메모리의 어드레스 맵핑 데이터를 로딩하는 단계와;상기 제1 프로세서 측에서 상기 공유 메모리 영역에 라이트용 데이터를 쓰고, 상기 메일박스 영역들 중 송신용 메일박스 영역에 플래시 메모리의 물리 어드레스, 데이터 사이즈, 라이트용 데이터가 쓰여진 상기 공유 메모리 영역의 어드레 스, 및 라이트 코멘드를 쓰는 단계와;상기 제2 프로세서 측에서 상기 송신용 메일박스를 리드하고 상기 라이트용 데이터를 상기 공유 메모리 영역으로부터 리드한 다음, 상기 리드된 플래시 메모리의 물리 어드레스에 상기 라이트용 데이터를 라이트하는 단계를 가짐을 특징으로 하는 플래시 메모리로의 데이터 라이팅 방법.
- 모바일 통신 시스템에 있어서:제1 설정 타스크를 수행하는 제1 프로세서;제2 설정 타스크를 수행하는 제2 프로세서;상기 제2 프로세서에 연결되어 있는 플래시 메모리; 및상기 제1 및 제2 프로세서에 의해 서로 다른 포트를 통해 억세스 되며 메모리 셀 어레이의 일부에 할당된 공유 메모리 영역과, 상기 메모리 셀 어레이의 외부에 위치되며 상기 제1 및 제2 프로세서에 의해 억세스 되는 내부 레지스터와, 상기 제1 프로세서가 상기 공유 메모리 영역과 상기 내부 레지스터를 이용하여 상기 플래시 메모리를 간접적으로 억세스할 수 있도록 하기 위해 상기 공유 메모리 영역에 상기 플래시 메모리의 어드레스 맵핑 데이터가 저장되도록 하며 상기 공유 메모리 영역을 상기 제1 및 제2 프로세서 중의 하나에 동작적으로 연결하는 패쓰를 제어하기 위한 콘트롤 유닛을 포함하는 통합형 다이나믹 랜덤 억세스 메모리를 구비함을 특징으로 하는 모바일 통신 시스템.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020070035485A KR100887417B1 (ko) | 2007-04-11 | 2007-04-11 | 멀티 프로세서 시스템에서 불휘발성 메모리의 공유적사용을 제공하기 위한 멀티패쓰 억세스블 반도체 메모리장치 |
US12/053,742 US20080256305A1 (en) | 2007-04-11 | 2008-03-24 | Multipath accessible semiconductor memory device |
TW097112040A TW200847181A (en) | 2007-04-11 | 2008-04-02 | A multipath accessible semiconductor memory device |
CNA2008100911930A CN101286144A (zh) | 2007-04-11 | 2008-04-09 | 多路径可存取半导体存储器设备 |
DE102008019522A DE102008019522A1 (de) | 2007-04-11 | 2008-04-11 | Halbleiterspeicherbauelement und zugehöriges Treiberverfahren, Verfahren zum Schreiben von Daten in einen Flashspeicher und mobiles Kommunikationssystem |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020070035485A KR100887417B1 (ko) | 2007-04-11 | 2007-04-11 | 멀티 프로세서 시스템에서 불휘발성 메모리의 공유적사용을 제공하기 위한 멀티패쓰 억세스블 반도체 메모리장치 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20080092084A true KR20080092084A (ko) | 2008-10-15 |
KR100887417B1 KR100887417B1 (ko) | 2009-03-06 |
Family
ID=39777768
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020070035485A KR100887417B1 (ko) | 2007-04-11 | 2007-04-11 | 멀티 프로세서 시스템에서 불휘발성 메모리의 공유적사용을 제공하기 위한 멀티패쓰 억세스블 반도체 메모리장치 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20080256305A1 (ko) |
KR (1) | KR100887417B1 (ko) |
CN (1) | CN101286144A (ko) |
DE (1) | DE102008019522A1 (ko) |
TW (1) | TW200847181A (ko) |
Families Citing this family (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9123077B2 (en) | 2003-10-07 | 2015-09-01 | Hospira, Inc. | Medication management system |
US8065161B2 (en) | 2003-11-13 | 2011-11-22 | Hospira, Inc. | System for maintaining drug information and communicating with medication delivery devices |
US20080091466A1 (en) | 2006-10-16 | 2008-04-17 | Hospira, Inc. | System and method for comparing and utilizing activity information and configuration information from multiple device management systems |
KR20090103070A (ko) * | 2008-03-27 | 2009-10-01 | 삼성전자주식회사 | 멀티 링크 아키텍쳐에서 저장 상태정보의 다이렉트전송기능을 갖는 멀티 프로세서 시스템 |
TWI393142B (zh) * | 2008-12-29 | 2013-04-11 | Macronix Int Co Ltd | 記憶體裝置與其控制方法 |
KR20100085564A (ko) * | 2009-01-21 | 2010-07-29 | 삼성전자주식회사 | 데이터 처리 시스템과 데이터 처리 방법 |
TWI409816B (zh) * | 2009-02-27 | 2013-09-21 | Himax Tech Ltd | 解決單埠靜態隨機存取記憶體之請求衝突的系統及方法 |
US8271106B2 (en) | 2009-04-17 | 2012-09-18 | Hospira, Inc. | System and method for configuring a rule set for medical event management and responses |
JP5749732B2 (ja) * | 2009-12-04 | 2015-07-15 | ナパテック アクティーゼルスカブ | キューの充填レベルの更新を制御することにより帯域幅を節約しながらデータを受信し記憶するアセンブリおよび方法 |
US8934341B2 (en) | 2009-12-04 | 2015-01-13 | Napatech A/S | Apparatus and a method of receiving and storing data packets controlled by a central controller |
CN102135894B (zh) | 2010-10-13 | 2015-11-25 | 华为技术有限公司 | 一种多核在线补丁方法和装置 |
CN102654858B (zh) * | 2011-03-04 | 2015-02-04 | 国基电子(上海)有限公司 | 双处理器系统及双处理器系统的通信方法 |
CN102360278A (zh) * | 2011-09-07 | 2012-02-22 | 苏州科雷芯电子科技有限公司 | 控制类指令与计算类指令分离式计算机系统 |
ES2959510T3 (es) | 2011-10-21 | 2024-02-26 | Icu Medical Inc | Sistema de actualización de dispositivos médicos |
KR101965125B1 (ko) * | 2012-05-16 | 2019-08-28 | 삼성전자 주식회사 | 칩-투-칩 링크를 통해 공유 메모리로의 억세스를 지원하는 시스템 온칩, 상기 시스템온칩의 동작 방법, 및 상기 시스템온칩을 포함하는 전자 시스템 |
KR102011137B1 (ko) | 2012-12-07 | 2019-08-14 | 삼성전자주식회사 | 데이터 처리 장치와 회로 |
CN203117956U (zh) * | 2013-01-15 | 2013-08-07 | 徐骁 | 一种多媒体信息的间接存取管理系统 |
US9641432B2 (en) | 2013-03-06 | 2017-05-02 | Icu Medical, Inc. | Medical device communication method |
US9679615B2 (en) * | 2013-03-15 | 2017-06-13 | Micron Technology, Inc. | Flexible memory system with a controller and a stack of memory |
AU2014312122A1 (en) | 2013-08-30 | 2016-04-07 | Icu Medical, Inc. | System and method of monitoring and managing a remote infusion regimen |
US9662436B2 (en) | 2013-09-20 | 2017-05-30 | Icu Medical, Inc. | Fail-safe drug infusion therapy system |
US10311972B2 (en) | 2013-11-11 | 2019-06-04 | Icu Medical, Inc. | Medical device system performance index |
WO2015077320A1 (en) | 2013-11-19 | 2015-05-28 | Hospira, Inc. | Infusion pump automation system and method |
JP6853669B2 (ja) | 2014-04-30 | 2021-03-31 | アイシーユー・メディカル・インコーポレーテッド | 条件付きの警報転送を用いた患者治療システム |
US9724470B2 (en) | 2014-06-16 | 2017-08-08 | Icu Medical, Inc. | System for monitoring and delivering medication to a patient and method of using the same to minimize the risks associated with automated therapy |
US9539383B2 (en) | 2014-09-15 | 2017-01-10 | Hospira, Inc. | System and method that matches delayed infusion auto-programs with manually entered infusion programs and analyzes differences therein |
WO2016189417A1 (en) | 2015-05-26 | 2016-12-01 | Hospira, Inc. | Infusion pump system and method with multiple drug library editor source capability |
WO2018013842A1 (en) | 2016-07-14 | 2018-01-18 | Icu Medical, Inc. | Multi-communication path selection and security system for a medical device |
CN107766280B (zh) * | 2016-08-23 | 2022-05-17 | 北京小米移动软件有限公司 | 终端通信方法及装置 |
US11169953B2 (en) * | 2018-02-28 | 2021-11-09 | SK Hynix Inc. | Data processing system accessing shared memory by using mailbox |
CA3106519A1 (en) | 2018-07-17 | 2020-01-23 | Icu Medical, Inc. | Systems and methods for facilitating clinical messaging in a network environment |
US11139058B2 (en) | 2018-07-17 | 2021-10-05 | Icu Medical, Inc. | Reducing file transfer between cloud environment and infusion pumps |
US11152108B2 (en) | 2018-07-17 | 2021-10-19 | Icu Medical, Inc. | Passing authentication token to authorize access to rest calls via web sockets |
NZ771914A (en) | 2018-07-17 | 2023-04-28 | Icu Medical Inc | Updating infusion pump drug libraries and operational software in a networked environment |
WO2020021551A1 (en) * | 2018-07-24 | 2020-01-30 | Jerusalem College Of Technology | System for implementing shared lock free memory implementing composite assignment |
US10692595B2 (en) | 2018-07-26 | 2020-06-23 | Icu Medical, Inc. | Drug library dynamic version management |
EP3827337A4 (en) | 2018-07-26 | 2022-04-13 | ICU Medical, Inc. | MEDICATION LIBRARY MANAGEMENT SYSTEM |
CN109542830B (zh) * | 2018-11-21 | 2022-03-01 | 北京灵汐科技有限公司 | 一种数据处理系统及数据处理方法 |
KR20200109973A (ko) * | 2019-03-15 | 2020-09-23 | 에스케이하이닉스 주식회사 | 메모리 공유를 위한 메모리 시스템 및 그것을 포함하는 데이터 처리 시스템 |
US11043246B2 (en) | 2019-04-18 | 2021-06-22 | Samsung Electronics Co, Ltd. | Memory modules including a mirroring circuit and methods of operating the same |
CN115240733B (zh) * | 2022-09-23 | 2023-01-03 | 浙江力积存储科技有限公司 | 减小读出放大器面积的方法、电路及dram存储装置 |
CN115599459B (zh) * | 2022-12-13 | 2023-04-07 | 成都启英泰伦科技有限公司 | 一种跨电源域多处理器运行装置及其通信方法 |
CN115904254B (zh) * | 2023-01-09 | 2023-06-02 | 苏州浪潮智能科技有限公司 | 一种硬盘控制系统、方法及相关组件 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3582902A (en) * | 1968-12-30 | 1971-06-01 | Honeywell Inc | Data processing system having auxiliary register storage |
US5239639A (en) * | 1990-11-09 | 1993-08-24 | Intel Corporation | Efficient memory controller with an independent clock |
US5491808A (en) * | 1992-09-30 | 1996-02-13 | Conner Peripherals, Inc. | Method for tracking memory allocation in network file server |
US5603001A (en) * | 1994-05-09 | 1997-02-11 | Kabushiki Kaisha Toshiba | Semiconductor disk system having a plurality of flash memories |
JPH08339353A (ja) * | 1995-06-09 | 1996-12-24 | Hitachi Ltd | マルチプロセッサ装置 |
KR100383774B1 (ko) * | 2000-01-26 | 2003-05-12 | 삼성전자주식회사 | 공통 인터페이스 방식의 메모리 장치들을 구비한 시스템 |
WO2001098952A2 (en) * | 2000-06-20 | 2001-12-27 | Orbidex | System and method of storing data to a recording medium |
KR100465875B1 (ko) * | 2002-06-07 | 2005-01-13 | 삼성전자주식회사 | 내장 메모리 소자들의 패드 연결구조 |
JP2005259320A (ja) * | 2004-03-15 | 2005-09-22 | Nec Electronics Corp | パーシャル・デュアル・ポート・メモリ及び該メモリを用いた電子機器 |
-
2007
- 2007-04-11 KR KR1020070035485A patent/KR100887417B1/ko not_active IP Right Cessation
-
2008
- 2008-03-24 US US12/053,742 patent/US20080256305A1/en not_active Abandoned
- 2008-04-02 TW TW097112040A patent/TW200847181A/zh unknown
- 2008-04-09 CN CNA2008100911930A patent/CN101286144A/zh active Pending
- 2008-04-11 DE DE102008019522A patent/DE102008019522A1/de not_active Withdrawn
Also Published As
Publication number | Publication date |
---|---|
CN101286144A (zh) | 2008-10-15 |
US20080256305A1 (en) | 2008-10-16 |
DE102008019522A1 (de) | 2008-10-30 |
TW200847181A (en) | 2008-12-01 |
KR100887417B1 (ko) | 2009-03-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100887417B1 (ko) | 멀티 프로세서 시스템에서 불휘발성 메모리의 공유적사용을 제공하기 위한 멀티패쓰 억세스블 반도체 메모리장치 | |
KR100745369B1 (ko) | 포트상태 시그날링 기능을 갖는 멀티패쓰 억세스블 반도체메모리 장치 | |
US7941612B2 (en) | Multipath accessible semiconductor memory device with host interface between processors | |
KR100735612B1 (ko) | 멀티패쓰 억세스블 반도체 메모리 장치 | |
KR20090033539A (ko) | 프로토콜 정의영역을 갖는 멀티포트 반도체 메모리 장치 및그를 채용한 멀티 프로세서 시스템과 멀티포트 반도체메모리 장치의 억세스 방법 | |
KR100725100B1 (ko) | 포트간 데이터 전송기능을 갖는 멀티패쓰 억세스블 반도체메모리 장치 | |
KR100772841B1 (ko) | 프로세서들간 호스트 인터페이싱 기능을 갖는 멀티패쓰억세스블 반도체 메모리 장치 | |
KR20090008519A (ko) | 공유 레지스터를 갖는 멀티패쓰 억세스블 반도체 메모리장치 및 그에 따른 공유 레지스터 운영방법 | |
KR20100133649A (ko) | 메모리 링크 아키텍쳐에서 파워 오프 시 데이터 로스를 방지하는 기능을 갖는 멀티 프로세서 시스템 | |
KR20100041309A (ko) | 각 프로세서들의 어플리케이션 기능을 모두 활용 가능한 멀티 프로세서 시스템 | |
KR20090013342A (ko) | 멀티 포트 반도체 메모리 장치 및 그에 따른 리프레쉬 방법 | |
US8171233B2 (en) | Multi port semiconductor memory device with direct access function in shared structure of nonvolatile memory and multi processor system thereof | |
KR100855580B1 (ko) | 프로세서 리셋 기능을 갖는 반도체 메모리 장치 및 그를 채용한 멀티 프로세서 시스템과 그에 따른 프로세서 리셋 제어방법 | |
KR101430687B1 (ko) | 다이렉트 억세스 부팅동작을 갖는 멀티 프로세서 시스템 및그에 따른 다이렉트 억세스 부팅방법 | |
US8078838B2 (en) | Multiprocessor system having multiport semiconductor memory with processor wake-up function responsive to stored messages in an internal register | |
KR20090092371A (ko) | 래치타입 메모리 셀들로 이루어진 공유 메모리 영역을 갖는멀티포트 반도체 메모리 장치 및 그를 채용한 멀티프로세서 시스템과 멀티포트 반도체 메모리 장치의구동방법 | |
US20100070691A1 (en) | Multiprocessor system having multiport semiconductor memory device and nonvolatile memory with shared bus | |
KR20100034415A (ko) | 메모리 링크 아키텍쳐를 활용한 부팅기능을 갖는 멀티 프로세서 시스템 | |
KR20090103070A (ko) | 멀티 링크 아키텍쳐에서 저장 상태정보의 다이렉트전송기능을 갖는 멀티 프로세서 시스템 | |
KR100879463B1 (ko) | 억세스 권한 이양 시 프리차아지 스킵을 방지하는 동작을갖는 멀티패쓰 억세스블 반도체 메모리 장치 | |
US20090216961A1 (en) | Multi-port semiconductor memory device for reducing data transfer event and access method therefor | |
KR20090005786A (ko) | 메모리 사용확장 기능을 갖는 멀티패쓰 억세스블 반도체메모리 장치 및 그에 따른 메모리 사용확장 방법 | |
KR100781974B1 (ko) | 레지스터 억세스회로를 가지는 멀티패스 억세스블 반도체메모리 장치 | |
KR20080103183A (ko) | 부트 램을 반도체 메모리 장치 내에 구비한 멀티 프로세서시스템 및 그를 이용한 프로세서 부팅 방법 | |
KR100850277B1 (ko) | 멀티패쓰 억세스블 반도체 메모리 장치에서의 뱅크어드레스 할당방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20130131 Year of fee payment: 5 |
|
FPAY | Annual fee payment |
Payment date: 20140129 Year of fee payment: 6 |
|
FPAY | Annual fee payment |
Payment date: 20150202 Year of fee payment: 7 |
|
LAPS | Lapse due to unpaid annual fee |