KR20070014142A - 내연 기관용 배기 가스 제어 장치 및 배기 가스 제어 방법 - Google Patents

내연 기관용 배기 가스 제어 장치 및 배기 가스 제어 방법 Download PDF

Info

Publication number
KR20070014142A
KR20070014142A KR1020067020782A KR20067020782A KR20070014142A KR 20070014142 A KR20070014142 A KR 20070014142A KR 1020067020782 A KR1020067020782 A KR 1020067020782A KR 20067020782 A KR20067020782 A KR 20067020782A KR 20070014142 A KR20070014142 A KR 20070014142A
Authority
KR
South Korea
Prior art keywords
exhaust gas
amount
injection
turbine
internal combustion
Prior art date
Application number
KR1020067020782A
Other languages
English (en)
Other versions
KR100794946B1 (ko
Inventor
도모유키 고고
Original Assignee
도요다 지도샤 가부시끼가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 도요다 지도샤 가부시끼가이샤 filed Critical 도요다 지도샤 가부시끼가이샤
Publication of KR20070014142A publication Critical patent/KR20070014142A/ko
Application granted granted Critical
Publication of KR100794946B1 publication Critical patent/KR100794946B1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/024Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus
    • F02D41/0245Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus by increasing temperature of the exhaust gas leaving the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0821Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents combined with particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/18Control of the pumps by bypassing exhaust from the inlet to the outlet of turbine or to the atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/24Control of the pumps by using pumps or turbines with adjustable guide vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0007Controlling intake air for control of turbo-charged or super-charged engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • F02D41/405Multiple injections with post injections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2430/00Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics
    • F01N2430/08Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics by modifying ignition or injection timing
    • F01N2430/085Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics by modifying ignition or injection timing at least a part of the injection taking place during expansion or exhaust stroke
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/03Adding substances to exhaust gases the substance being hydrocarbons, e.g. engine fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/0275Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a NOx trap or adsorbent
    • F02D41/028Desulfurisation of NOx traps or adsorbent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/029Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a particulate filter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Supercharger (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

내연 기관용 배기 가스 제어 장치에 있어서, 상기 장치는 산화 능력이 있는 촉매의 상류 위치에서 배기 통로에 제공된 과급기; 이 과급기의 터빈을 회전시키는데 사용되는 배기 가스의 에너지량을 조정하는 터빈 회전 에너지량 조정 수단 (106); 및 애프터 분사를 실행하는 애프터 분사 실행 수단을 포함하며, 애프터 분사로 인해 압축기의 일량이 증가될 경우에, 증가한 일량을 영으로 감소시키기 위해 터빈 회전 에너지량 조정 수단이 터빈의 회전에 사용되는 배기 가스의 에너지량을 감소시킨다.
배기 가스, NOx

Description

내연 기관용 배기 가스 제어 장치 및 배기 가스 제어 방법{EXHAUST GAS CONTROL APPARATUS AND EXHAUST GAS CONTROL METHOD FOR INTERNAL COMBUSTION ENGINE}
본 발명은 내연 기관용 배기 가스 제어 장치 및 배기 가스 제어 방법에 관한 것이다. 특히, 본 발명은 배기 가스를 정화하기 위해 배기 가스의 에너지를 효율적으로 이용하는 기술에 관한 것이다.
일반적으로, 자동차 등에 장착된 내연 기관, 특히 디젤 기관에서, 배기 가스에 포함된 질소 산화물 (이하, "NOx" 라 칭함) 과 더불어 예컨대 매연과 같은 미립자 물질 (이하, "PM" 이라 칭함) 은 제거될 필요가 있다. 이러한 요구를 충족시키기 위해, 내연 기관의 배기 통로에 저장 환원형 NOx 촉매 (이하, 적절한 곳에서 "NOx 촉매" 라 칭함) 를 지지하는 미립자 필터 (이하, 적절한 곳에서 "필터" 라 칭함) 가 제공되는 방법이 제안되었다.
NOx 촉매는 그 안으로 유동하는 배기 가스 중의 산소 농도가 높을 때 배기 가스 중의 NOx를 저장하고, 그 안으로 유동하는 배기 가스 중의 산소 농도가 낮아질 때 저장된 NOx를 배출한다. 필터는 다수의 세공을 갖는 다공성 기재로 형성되어, 배기 가스가 세공을 통과하는 동안 배기 가스 중의 PM을 수집한다. 따라 서, 내연 기관의 배기 통로에 NOx 촉매를 지지하는 필터를 제공하는 것으로 배기 가스에 포함된 NOx 및 PM을 제거하는 것이 가능하다.
필터에 PM이 축적되면, 필터의 배기 통로가 더 협소해지며, 배기 통로를 통해 유동하는 배기 가스의 저항이 증가한다. 필터에 PM이 과도하게 축적되면, 배기 가스의 압력이 증가하고, 이는 내연 기관의 출력 감소를 유발한다. 따라서, 적절한 시간에 필터의 PM 수집 능력을 회복하기 위해 필터에 축적된 PM을 산화 및 제거하는 PM 회수 처리를 실시할 필요가 있다.
PM 회수 처리에서, 필터의 온도는 대략 500 ~ 700 ℃ 의 고온 범위까지 상승되고, 필터에 유입되는 배기 가스의 공연비는 린 (lean) 상태가 되어, PM이 산화되고 제거된다.
내연 기관에 사용되는 연료는 황 (S) 성분을 포함할 수 있다. 이러한 연료가 내연 기관에서 연소되면, 연료 중의 황 (S) 성분이 산화되어 황산화물 (이하, "SOx" 라 칭함) 이 형성된다. 따라서, 내연 기관으로부터 배출되는 배기 가스는 SOx를 포함한다. SOx를 포함한 배기 가스가 NOx 촉매로 유입되면, SOx는 NOx의 저장과 동일한 메카니즘에 의해 NOx 촉매에 저장된다. NOx 촉매에 저장된 SOx는, 시간의 경과와 함께 안정한 황산바륨 (BaSO4) 을 형성한다. 따라서, NOx 촉매에 유입되는 배기 가스의 산소 농도를 감소시키는 것만으로는 SOx의 분해 및 배출이 어렵고, 따라서 SOx는 NOx 촉매에 축적되는 경향이 있다.
NOx 촉매에 저장된 SOx의 양이 증가하면, NOx 촉매의 NOx 저장 능력이 저하 되어, 배기 가스 중의 NOx 제거 능력이 저하된다. 즉, 소위 황 피독 (poisoning)(이하, "S 피독" 이라 칭함) 이 발생한다. 따라서, 내연 기관의 배기 통로에 NOx 촉매가 제공되었을 경우에는, NOx 촉매의 NOx 저장 능력이 과도하게 저하되기 전에, S 피독으로부터 NOx 촉매를 회복시키고, NOx 촉매의 NOx 제거 능력을 회복시키는 S 회수 처리를 실시할 필요가 있다.
S 회수 처리에서, NOx 촉매의 주변 온도는 대략 500 ~ 700℃의 고온 범위까지 증가되고, 환원제로서 작용하는 연료가 NOx 촉매의 상류측에 유입되는 배기 가스에 첨가되어, 이에 따라 NOx 촉매에 유입되는 배기 가스의 공연비가 리치 (rich) 상태가 되어, SOx가 배출 및 환원된다.
전술한 바와 같이, PM 회수 처리 또는 S 회수 처리에 있어서, 필터 또는 NOx 촉매의 온도는 대략 500 ~ 700℃의 고온 영역까지 증가되어야 한다. 따라서, 내연 기관으로부터 배출되어 NOx 촉매로 유입되는 배기 가스의 온도는, 주연료 분사에 가세해 부차적으로 연료를 분사함으로써 촉매가 활성화되는 온도 범위까지 증가될 수 있다.
그러나, 원심 과급기를 구비한 내연 기관에서, 내연 기관으로부터 배출되는 배기 가스의 온도가 증가되었다 하더라도, 배기 가스의 에너지는 터빈의 회전 속도를 올리는데 사용된다. 따라서, NOx 촉매에 유입되는 배기 가스의 온도는 충분히 올라갈 수 없다.
또한, 배기 가스의 에너지가 터빈의 회전 속도를 올리는 일에 사용되어 터빈의 회전 속도가 증가하는데 따라, 압축기의 회전 속도도 증가하여, 기통에 흡입되 는 공기의 양이 증가한다. 따라서, 흡기 스로틀 밸브의 개도를 감소시킴으로써흡기량이 조절될 필요가 있다. 그 결과, 내연 기관의 펌핑 손실 (pumping loss) 이 증가되어, 연비의 악화가 유발된다.
이러한 문제점을 해결하기 위해, 원심 과급기에 제공된 가변 노즐 또는 웨이스트게이트 밸브 (wastegate valve) 가 완전히 개방되어, 배기 가스의 에너지가 터빈의 회전 속도를 올리는데 사용되는 것을 방지하는 기술이 제안되었다. (예를 들면, 일본 공개특허공보 제2002-276340호 참조).
특허 일본 공개특허공보 제2002-276340호에 기재된 기술의 경우, 원심 과급기에 제공된 가변 노즐 또는 웨이스트게이트 밸브가 완전히 개방되기 때문에, 터빈의 회전 속도를 증가시키는데 사용되는 배기 가스의 에너지량이 감소된다. 그 결과, 가변 노즐 또는 웨이스트게이트 밸브가 완전히 개방되기 전보다 흡기량이 감소하고, 이는 스모크량의 증가를 초래할 수 있다.
본 발명의 목적은, 배기 배출물질 (emission) 의 특성을 악화시키지 않으면서 배기 가스의 에너지를 효율적으로 이용할 수 있는, 내연 기관용 배기 가스 제어 장치 및 배기 가스 제어 방법을 제공하는 것이다.
본 발명의 제 1 양태에 따르면, 내연 기관의 배기 통로에 제공되고 산화 능력이 있는 촉매가 제공된 내연 기관용 배기 가스 제어 장치; 배기 통로의 촉매의 상류 위치에 제공되고 배기 가스에 의해 회전되는 터빈 및, 이 터빈의 회전에 따라 회전되고 과급을 실시하는 압축기를 포함하는 과급기; 터빈을 회전시키는데 사용되는 배기 가스의 에너지량을 조정하는 터빈 회전 에너지량 조정 수단; 내연 기관으로부터 배출되어 촉매에 유입되는 배기 가스의 온도를 상승시키기 위해, 주연료 분사 후에 연료를 분사하는 애프터 분사를 실행하는 애프터 분사 실행 수단이 제공된다. 애프터 분사 실행 수단에 의해 실행된 애프터 분사로 인해 압축기의 일량이 증가될 경우에, 터빈 회전 에너지량 조정 수단은 증가한 일량을 영 (zero) 으로 감소시키기 위해 터빈의 회전에 사용되는 배기 가스의 에너지량을 감소시킨다.
이와 같이 배기 통로의 촉매의 상류 위치에 과급기가 제공된 내연 기관에 있어서, 애프터 분사 실행 수단이 애프터 분사를 실행하여 내연 기관으로부터 배출된 배기 가스의 온도를 상승시킨다 하더라도, 배기 가스의 에너지의 일부가 터빈의 회전 속도를 올리는데 이용된다면, 배기 가스의 온도가 내려가고, 이에 따라 촉매에 유입되는 배기 가스의 온도가 충분히 높아지지 않는다.
이와는 대조적으로, 제 1 양태에 따른 내연 기관용 배기 가스 제어 장치에는 터빈의 회전에 사용되는 배기 가스의 양을 조정하는 터빈 회전 에너지량 조정 수단이 제공된다. 애프터 분사의 실행에 의해 압축기의 일량이 증가되었을 경우에, 터빈 회전 에너지량 조정 수단은 애프터 분사에 의해 이미 증가된 배기 가스의 에너지의 일부가 터빈의 회전 속도를 올리는데 이용되고 있다고 판단하고, 증가한 일량을 영으로 감소시키기 위해 터빈을 회전시키는데 사용되는 배기 가스의 에너지량을 감소시킨다. 따라서, 촉매의 온도를 상승시키기 위하여 애프터 분사에 의해 증가된 배기 가스의 에너지를 효율적으로 이용하는 것이 가능하다. 또한, 애프터 분사의 실행에 의해 증가한 압축기의 일량을 영으로 감소시키기 위해, 즉, 압축기의 일량을 애프터 분사가 실행되기 전에 측정된 값과 동일하게 하기 위해 터빈의 회전에 사용되는 배기 가스의 에너지량은 감소된다. 따라서, 흡기량은 애프터 분사가 실행되기 전보다 적어지지 않는다. 그러므로, 터빈의 회전에 사용되는 배기 가스의 에너지량의 과도한 감소로 인해 스모크량이 증가하는 상황을 방지할 수 있다.
터빈 회전 에너지량 조정 수단은, 과급기에 제공된 가변 노즐의 개도 및/또는 웨이스트게이트 밸브의 개도를 크게 함으로써 터빈의 회전에 사용되는 배기 가스의 에너지량을 감소시킬 수 있다.
가변 노즐의 개도가 커지면, 노즐 통로의 단면적이 확대된다. 따라서, 노즐 통로를 통해 유동하는 배기 가스의 유속 및 압력이 낮아져 터빈의 회전에 사용되는 배기 가스의 에너지량이 감소한다. 한편, 웨이스트게이트 밸브의 개도가 커지면, 터빈의 회전에 사용되는 배기 가스의 양 자체가 감소된다. 따라서, 터빈의 회전에 사용되는 배기 가스의 에너지량이 감소한다. 가변 노즐 및 웨이스트게이트 밸브의 개도의 증가는 배기 가스의 에너지량을 감소시키지 않으면서 촉매로 배기 가스를 주입하는 것을 가능케 한다. 따라서, 애프터 분사로 인해 증가된 배기 가스의 에너지량은 효율적으로 촉매의 온도 상승에 이용될 수 있다.
애프터 분사 실행 수단은, 촉매가 활성화되는 온도에 기초하여 애프터 분사에 의해 분사된 연료량을 결정할 수도 있다. 터빈 회전 에너지량 조정 수단은 과급기에 제공된 가변 노즐의 개도 및/또는 웨이스트게이트 밸브의 개도를 애프터 분사에 의해 분사된 연료량만큼 크게 할 수도 있다.
예를 들어, 애프터 분사 실행 수단은, 촉매가 활성화되는 온도와 애프터 분사가 실행되기 전에 촉매에 유입되는 배기 가스의 실제로 측정된 온도와의 차이, 또는 촉매가 활성화되는 온도와 애프터 분사가 실행되기 전에 내연 기관의 운전 상태에 기초하여 추정되는 촉매에 유입되는 배기 가스의 온도와의 차이에 기초하여 애프터 분사에 의해 분사되는 연료량을 결정할 수도 있다.
애프터 분사에 의해 분사되는 연료량이 증가함에 따라, 가변 노즐의 개도가 웨이스트게이트 밸브의 개도와 같아지는 경우에, 애프터 분사에 의해 발생되는 배기 가스의 에너지량이 증가한다. 따라서, 터빈의 회전에 사용되는 배기 가스의 에너지량도 증가한다. 그러므로, 애프터 분사량이 증가하는 만큼, 가변 노즐 또는 웨이스트게이트 밸브의 개도를 증가시킴으로써, 애프터 분사에 의해 증가된 배기 가스의 에너지량이 촉매의 온도를 상승시키는데 효율적으로 이용될 수 있다.
또, 내연 기관의 흡기 통로에, 내연 기관의 흡기 통로를 통해서 유동하는 흡기량을 검출하는 흡기량 검출 수단 또는 흡기압을 검출하는 흡기압 검출 수단 중 하나 이상이 추가로 구비될 수 있다. 터빈 회전 에너지량 조정 수단은, 애프터 분사가 실행된 후에 흡기량 검출 수단 또는 흡기압 검출 수단에 의해 검출된 값이 애프터 분사가 실행되기 전에 흡기량 검출 수단 또는 흡기압 검출 수단에 의해 검출된 값보다 큰 경우에, 터빈의 회전에 사용되는 배기 가스의 에너지량을 감소시킬 수 있다.
흡기량 검출 수단 또는 흡기압 검출 수단을 이용하는 것으로, 애프터 분사의 실행에 의해 압축기의 일량의 증가여부를 간단하고 정확하게 판정하는 것이 가능해 진다. 따라서, 애프터 분사가 실행된 후에 흡기량 검출 수단 또는 흡기압 검출 수단에 의해 검출된 값이 애프터 분사가 실행되기 전보다 큰 경우에, 터빈의 회전에 사용되는 배기 가스의 양을 감소시킴으로써, 애프터 분사로 인하여 증가된 배기 가스의 에너지량이 촉매의 온도를 상승시키는데 효율적으로 이용될 수 있다.
이상 설명한 바와 같이, 본 발명의 제 1 양태에 따른 내연 기관용 배기 가스 제어 장치에 의하면, 배기 가스의 에너지는 배기 배출물질의 특성을 악화시키지 않으면서 효율적으로 이용될 수 있다.
본 발명의 제 2 양태에 따르면, 내연 기관의 배기 통로에 제공되고 산화 능력이 있는 촉매가 제공된 내연 기관용 배기 가스 제어 방법; 배기 통로의 촉매의 상류 위치에 제공되고 배기 가스에 의해 회전되는 터빈과 및, 이 터빈의 회전에 따라 회전되고 과급을 실시하는 압축기를 포함하는 과급기; 터빈을 회전시키는데 사용되는 배기 가스의 에너지량을 조정하는 터빈 회전 에너지량 조정 수단; 내연 기관으로부터 배출되어 촉매로 유입되는 배기 가스의 온도를 상승시키기 위해, 주연료 분사 후에 연료를 분사하는 애프터 분사를 실행하는 애프터 분사 실행 수단이 제공된다. 애프터 분사 실행 수단에 의해 실행된 애프터 분사로 인해 압축기의 일량이 증가될 경우에, 터빈 회전 에너지량 조정 수단은 증가한 일량을 영으로 감소시키기 위해 터빈의 회전에 사용되는 배기 가스의 에너지량을 감소시킨다.
본 발명의 전술한 목적, 특징, 장점, 기술적 의미 및 산업적 의미는 이하의 본 발명에 따른 바람직한 실시형태에 대한 설명과 첨부 도면을 통해서 더욱 잘 이해될 것이다.
도 1 은 본 발명의 실시형태에 따른 내연 기관용 배기 가스 제어 장치가 적용된 내연 기관과 흡기 및 배기 시스템의 구성을 나타내는 개략도이다.
도 2a 및 도 2b 는 실시형태에 따른 회수 처리 제어의 흐름도이다.
도 3a 및 도 3b 는 실시형태에 따른 또 다른 회수 처리 제어의 흐름도이다.
이하, 도면을 참조하여 본 발명의 바람직한 실시형태를 상세하게 설명한다. 단, 특정적인 기재가 없는 한, 본 발명의 범위는 실시형태에 기재되어 있는 구성 부품의 치수, 재질, 형상, 및 배치에 한정되지 않는다.
도 1 은 본 발명의 실시형태에 따른 배기 가스 제어 장치가 적용된 내연 기관과 흡기 및 배기 시스템의 구성을 나타내는 개략도이다.
도 1 에 도시된 내연 기관 (1) 은, 4개의 기통 (2) 을 갖는 수냉식 4 행정 디젤 기관이다. 내연 기관 (1) 은 각 기통 (2) 의 연소실에 직접 연료를 분사하는 연료 분사 밸브 (3) 를 포함한다. 각 연료 분사 밸브 (3) 는 축압실 (커먼 레일)(4) 로 연결되고, 커먼 레일 (4) 은 연료 공급관 (5) 을 통해 연료 펌프 (6) 와 연결된다.
흡기 통로 (7) 는 내연 기관 (1) 에 연결되고, 흡기 통로 (7) 는 공기 청정기 박스 (8) 에 연결된다. 흡기 통로로 유입되는 흡기의 질량에 대응하는 전기신호를 출력하는 공기 유량계 (9) 가 공기 청정기 상자 (8) 의 하류 위치에서 흡기 통로 (7) 에 부착되어 있다.
과급기 (10) 의 압축기 하우징 (10a) 은 공기 유량계 (9) 의 하류 위치에서 흡기 통로 (7) 에 제공된다. 인터쿨러 (11) 는 압축기 하우징 (10a) 의 하류 위치에서 흡기 통로 (7) 에 부착된다. 게다가, 흡기 통로 (7) 로 유입되는 흡기의 유량을 조절하는 흡기 스로틀 밸브 (12) 는 인터쿨러 (11) 의 하류 위치에서 흡기 통로 (7) 에 제공된다. 흡기 스로틀 액츄에이터 (13) 는 흡기 스로틀 밸브 (12) 에 부착된다. 또한, 흡기 통로 (7) 내의 압축 공기의 압력, 이른바 과급압에 따른 전기 신호를 출력하는 압력 센서 (14) 는 흡기 스로틀 밸브 (12) 의 하류 위치에서 흡기 통로 (7) 에 부착된다.
4개의 분기관이 한 개의 집합관에 합류하는 배기 분기관 (15) 은 내연 기관 (1) 과 연결된다. 배기 분기관 (15) 의 각 분기관은 각 배기 포트를 통해 각 기통 (2) 의 연소실과 연결된다. 그리고, 배기 분기관 (15) 의 집합관은 과급기 (10) 의 터빈 하우징 (10b) 를 통해 배기관 (16) 에 연결된다. 배기관 (16) 은 하류에서 머플러 (미도시) 에 연결된다. 이와 같이, 배기 분기관 (15) 및 배기관 (16) 은 배기 통로로서 기능한다.
또한, 저장 환원형 NOx 촉매 (이하, "NOx 촉매" 라고 함) 를 지지하는 미립자 필터 (17) 는 터빈 하우징 (10b) 의 하류 위치에서 배기관 (16) 에 제공된다. 배기관 (16) 을 통해 유동하는 배기 가스의 공연비에 상응하는 전기 신호를 출력하는 공연비 센서 (18) 및 배기관 (16) 을 통해 유동하는 배기 가스의 온도에 상응하는 전기 신호를 출력하는 배기 온도 센서 (19) 는 필터 (17) 의 상류 위치에서 배기관 (16) 에 부착된다. 추가적으로, 필터 (17) 의 상류 위치와 하류 위치 사 이의 배기관 (16) 의 압력의 차이에 상응하는 전기 신호를 출력하는 압력차 센서 (20) 가 제공된다.
실시 형태에서, 과급기 (10) 는 내연 기관 (1) 으로부터 배출된 배기 가스의 열에너지를 구동원으로서 이용하여 작동하는 가변 노즐 (VN) 형 원심 과급기 (가변 노즐형 터보 챠저) 이다. 압축기와 연결된 터빈은 터빈 하우징 (10b) 에 회전 가능하게 내장되고, 터빈은 배기 가스의 압력을 받아 회전된다.
더욱이, 터빈 하우징 (10b) 내의 배기 통로 (노즐 통로) 의 단면적을 변화시키는 노즐 베인은 터빈 하우징 (10b) 에 제공된다. 노즐 베인은 NV 액츄에이터 (10c) 에 의해 개방/폐쇄된다.
NV 액츄에이터 (10c) 에 의해 노즐 베인의 개도 (이하, "NV 개도" 라고 함) 가 작아지면, 노즐 통로의 단면적이 축소된다. 따라서, 노즐 통로를 통해 유동하는 배기 가스의 유속 및 압력이 증가되어, 터빈의 회전 속도 및 회전 토크가 높아진다.
반면에, NV 액츄에이터 (10c) 에 의해 NV 개도가 커지면, 노즐 통로의 단면적이 확대된다. 따라서, 노즐 통로를 통해서 유동하는 배기 가스의 유속 및 압력이 낮아지게 되고, 터빈의 회전 속도 및 회전 토크의 과도한 증가가 억제된다.
따라서, 내연 기관 (1) 이 낮은 회전 속도로 작동하고 있을 때, 바꾸어 말하면, 내연 기관 (1) 으로부터 배출되는 배기 가스의 유속 및 압력이 낮아질 때에는, VN 개도를 작게 함으로써 터빈의 회전 속도 및 회전 토크를 증가시켜, 흡기의 과급압이 높아질 수 있다.
반면에, 내연 기관 (1) 이 높은 회전 속도로 작동하고 있을 때, 바꾸어 말하면, 내연 기관 (1) 으로부터 배출되는 배기 가스의 유속 및 압력이 높아질 때에는, VN 개도를 크게 함으로써 터빈의 회전 속도 및 회전 토크의 과도한 증가를 억제시켜, 흡기의 과급압의 과도한 상승이 억제될 수 있다.
또한, 배기 분기관 (15) 및 배기관 (16) 사이의 연통은 우회 통로 (21) 를 통해서 가능해지며, 배기 분기관 (15) 측의 우회 통로 (21) 의 개구 단부를 개방/폐쇄하는 웨이스트게이트 (W/G) 밸브 (22) 는 우회 통로 (21) 에 부착된다. 웨이스트게이트 밸브 (22) 는 솔레노이드 스위치, 전기 모터 등으로 이루어지는 W/G 밸브 액츄에이터 (23) 에 의해 개방/폐쇄된다.
W/G 밸브 액츄에이터 (23) 에 의해 웨이스트게이트 밸브 (22) 의 개도 (이하, "W/G밸브 개도" 라고 함) 가 커지면, 배기 분기관 (15) 을 통해 유동하는 배기 가스의 일부가 우회 통로 (21) 를 통해 배기관 (16) 으로 유동한다. 터빈 하우징 (10b) 에 유입되는 배기 가스의 양이 감소하여, 터빈 하우징 (10b) 내에서 터빈에 인가되는 배기 가스의 압력이 저하된다. 이 결과, 터빈으로부터 압축기로 전달되는 회전 에너지도 감소된다.
또한, 내연 기관 (1) 의 제 1 기통 (#1) 의 배기 포트를 통해 유동하는 배기 가스에 환원제로서 작용하는 연료를 첨가하는 연료 첨가 밸브 (24) 는 이 배기 포트에 부착된다. 연료 첨가 밸브 (24) 는 연료 통로 (25) 를 통해 연료 펌프 (6) 에 연결된다.
이렇게 구성된 내연 기관 (1) 에는, 내연 기관 (1) 을 제어하기 위한 전자 제어 유니트 (ECU)(26) 가 제공된다. ECU (26) 는 CPU, ROM, RAM, 백업 RAM 등을 포함하는 산술 및 논리 유니트이다.
ECU (26) 는 공기 유량계 (9) , 흡기 압력 센서 (14) , 공연비 센서 (18) , 배기 온도 센서 (19) , 및 압력차 센서 (20) 에 연결되며, 또한 내연 기관 (1) 에 부착된 크랭크 위치 센서 (미도시) 및 냉각제 센서 (미도시), 그리고 내연 기관 (1) 을 탑재한 차량의 실내에 제공된 가속 페달 위치 센서 (미도시) 등의 각종 센서에도 전기 배선을 통해 연결된다. 각종 센서로부터 온 출력 신호가 ECU (26) 로 입력된다.
또한, ECU (26) 는 연료 분사 밸브 (3), VN 액츄에이터 (10c), 흡기 스로틀 액츄에이터 (13), W/G 밸브 액츄에이터 (23), 연료 첨가 밸브 (24) 등에 전기 배선을 통해 연결된다. 따라서, ECU (26) 는 연료 분사 밸브 (3), VN 액츄에이터 (10c), 흡기 스로틀 액츄에이터 (13) , W/G 밸브 액츄에이터 (23) 및 연료 첨가 밸브 (24) 등을 제어할 수 있다.
예를 들어, 일정 시간마다 실행되는 기본 루틴으로, ECU (26) 는 각종 센서의 출력 신호를 입력하고, 기관 회전 속도, 연료 분사량, 및 연료 분사 시기를 연산한다. 기본 루틴에서 ECU (26) 에 입력된 신호 및 ECU (26) 에 의해 연산되어 얻어진 제어값은 ECU (26) 의 RAM에 일시적으로 기억된다.
더욱이, 각종 센서 및 스위치로부터의 신호의 입력, 일정시간의 경과, 또는 크랭크 위치 센서로부터의 펄스 신호의 입력 등에 의해 개시되는 인터럽트 처리 (interrupt process) 에 있어서, ECU (26) 는 RAM 으로부터 다양한 제어값을 읽어 내고, 제어값에 기초하여 연료 분사 밸브 (3) 등을 제어한다.
이하, PM 회수 처리를 상세하게 설명한다. 필터 (17) 에 PM이 축적되면, 필터내의 배기 유로가 좁아져, 배기 통로를 통해 유동하는 배기 가스의 저항이 증가한다. 필터 (17) 에 PM이 과도하게 축적되면, 배기 가스의 압력이 상승하여, 내연 기관의 출력 저하를 유발한다. 따라서, 적절한 시기에 필터 (17) 에 축적된 PM을 산화 및 제거하는 PM회수 처리를 실행하여 필터 (17) 의 PM 수집 능력을 회복시킬 필요가 있다. 그 때문에, ECU (26) 는 PM 회수 처리 개시 조건이 성립했을 때, 다음의 방법으로 PM 회수 처리를 실행한다.
PM 회수 처리 개시 조건의 예로는 필터에 축적한 PM 양이 예정된 값 이상인 조건이 있다. 예정된 값은 PM 이 필터에 축적함으로써 필터의 막힘 (clogging) 을 유발하고, 막힘이 배기 가스의 저항의 증가를 일으키게 하여 내연 기관의 출력이 저하되는 한계 PM 축적량보다 약간 적은 값으로 설정된다.
필터에 축적한 PM 량이 예정된 값 이상인지 여부를 판정하는 방법의 예로는, 압력차 센서 (20) 의 검출 값에 기초하여 산출된 필터 (17) 의 상류 위치와 필터 (17) 의 하류 위치 사이의 배기 통로의 압력 (배기 가스 압력) 의 차이가 예정된 값 이상일 때 필터에 축적한 PM 량이 예정된 값 이상이라고 판정하는 방법, 및 전회의 PM 회수 처리 종료시부터의 연료 분사량을 누적하여 얻은 값이 예정된 값 이상일 때 필터에 축적한 PM 량이 예정된 값 이상이라고 판정하는 방법이 있다.
전술한 방법에 따라 PM 회수 처리 개시 조건이 성립한다고 판정되었을 경우, ECU (26) 는 필터의 온도를 대략 500 ~ 700℃의 고온 지역까지 승온 시키기 위한 필터 승온 처리를 실시하고, 필터 (17) 로 유입되는 배기 가스의 분위기를 산소 과잉인 분위기화하기 위한 린 공연비 처리를 실시한다.
필터 승온 처리를 실행하는 방법의 예로는, 배기 행정 또는 팽창 행정 (power stroke) 중에 기통 내에 연료를 부차적으로 분사하는 포스트 분사 (post-injection) 가 있다. 포스트 분사에 있어서, 배기 행정 또는 팽창 행정 중에 분사된 연료가 미연소 연료로서 필터 (17) 에 의해 지지된 NOx 촉매로 유입되고, 촉매에 의해 생성된 반응열에 기인하여 촉매의 온도가 상승하여, 결국 필터의 온도가 상승한다.
다만, 예컨대 경부하 (low load) 운전 영역과 같은 내연 기관 (1) 으로부터 배출되는 배기 가스의 온도가 낮은 운전 영역에 있어서, NOx 촉매의 온도는 NOx 촉매가 활성화되는 온도에 도달하지 않을 수 있다. 이러한 경우에, 포스트 분사가 실행되어도, 미연소 연료는 쉽사리 반응하지 않으며, 필터의 온도는 상승하기 어렵다. 그 때문에, 이러한 경우에, NOx 촉매의 온도를 NOx 촉매가 활성화되는 온도까지 높이기 위해서, 애프터 분사 실행 수단으로서도 기능하는 ECU (26) 가 연료 분사 밸브 (3) 를 제어하여, 애프터 분사를 실행한다. 애프터 분사에서, 내연 기관 (1) 으로부터 배출되는 배기 가스 자체의 온도를 상승시키기 위하여, 연료는 주연료 분사 후 비교적 단기간 안에 (팽창 행정 중에 포스트 분사가 실행되는 경우에는, 애프터 분사가 포스트 분사의 분사 시기보다 빠른 시기에 실행된다) 분사되어, 기통 내에서 연소된다.
또한, 전술한 포스트 분사 대신에 또는 포스트 분사와 더불어, 연료 첨가 밸 브 (24) 로부터 배기 가스까지 환원제로서 작용하는 연료를 첨가시킴으로써, 미연소 연료 성분은 NOx 촉매에서 산화될 수 있으며, 산화에 의해 생성된 열을 이용하여 필터의 온도가 높아질 수 있다.
즉, 필터 승온 처리로서, 내연 기관의 운전 상태 또는 배기 온도 센서 (19) 에의해 검출된 배기 가스의 온도에 기초하여, 애프터 분사를 실행함과 더불어 포스트분사 및/또는 연료 첨가 밸브 (24) 에 의한 연료 첨가를 실행하는 양태와 애프터 분사를 실행하지 않고 포스트분사 및/또는 연료 첨가 밸브 (24) 에 의한 연료 첨가를 실행하는 처리가 선택적으로 실시된다.
린 공연비 처리는, 공연비 센서 (18) 의 출력 신호값이 린 공연비에 상당하는 값이 되도록, 연료 분사 밸브 (3) 로부터 분사되는 연료량 또는 연료 첨가 밸브 (24) 로부터 배기 가스로 첨가되는 연료량을 조정하는 제어이다.
이하, S 회수 처리를 상세하게 설명한다. 촉매에 유입되는 배기 가스의 공연비가 린 공연비인경우, 필터 (17) 에 의해 지지되는 NOx 촉매는 NOx를 저장함으로써 배기 가스 중의 NOx가 대기로 방출되지 못하게 한다. 촉매로 유입되는 배기 가스의 공연비가 화학양론적 공연비 또는 리치 공연비인경우, 필터 (17) 에 의해 지지되는 NOx 촉매는 NOx를 방출 및 환원함으로써 저장된 NOx를 제거한다.
황 (S) 성분은 연료 또는 오일에 포함되어 있으며, S성분은 산소와 반응하여 황산화물 (SOx) 을 형성한다. NOx 촉매는 NOx 저장과 동일한 기구에 의해 배기가스 중의 SOx를 저장하기 때문에, NOx 촉매에 저장된 SOx량이 증가하면, NOx 촉매의 NOx 제거 능력이 저하하는, 이른바 S 피독이 발생한다.
NOx 촉매에 S 피독이 발생하면, NOx 제거 능력이 저하되어, 배기 가스에 포함된 NOx가 NOx 촉매 (15) 에서 제거되지 않고 대기로 배출될 수도 있다. 따라서, 본 실시 형태에 있어서는, NOx 촉매에 저장된 SOx를 방출 및 환원하여 SOx를 제거하고 NOx 촉매의 NOx 정화 능력을 회복시키는 S 회수 처리가 실행된다. 그 때문에, ECU (26) 은, S 회수 처리 개시 조건이 성립했을 때, 다음과 같은 방법으로 흡기량 처리를 실행한다.
S 회수 처리 개시 조건의 예로는, 전회의 S 회수 처리가 종료된 때부터 소정 기간이 경과 하고 있는 조건, 전회의 S 회수 처리가 종료된 이후로 차량이 소정의 거리를 주행한 조건이 있다.
S 회수 처리 개시 조건이 성립한다고 판정되었을 경우, ECU (26) 는 NOx 촉매의 베드 온도 (bed temperature) 를 500 ~ 700℃의 범위의 값으로 높이는 촉매 승온 처리를 실시하고, NOx 촉매로 유입되는 배기 가스의 공연비를 리치 공연비로 하는 리치 공연비 처리를 실시한다.
촉매 승온 처리는 전술한 필터 승온 처리와 동일하기 때문에, 이하 이에 대한 상세한 설명은 생략한다. 리치 공연비 처리는 공연비 센서 (18) 로부터 출력된 신호가 지시하는 값이 리치 공연비에 상당하는 값이 되도록 연료 분사 밸브 (3) 로부터 분사되는 연료량 또는 연료 첨가 밸브 (24) 로부터 배기 가스로 첨가되는 연료량을 조정하는 제어이다.
전술한 PM 회수 처리 또는 S 회수 처리가 실행될 때, 필터 승온 처리 또는 촉매 승온 처리가 실시된다. 각각의 필터 승온 처리 및 촉매 승온 처리에 있어 서, 필터 (17) 의 온도를 높이기 위해서, 내연 기관 (1) 으로부터 배출되는 배기 가스의 온도를 상승시키기 위한 애프터 분사가 실시될 수 있다.
전술한 바와 같이, 터빈 하우징 (10b) 은 필터 (17) 의 상류 위치에서 배기관 (16) 에 제공되며, 터빈 하우징 (10b) 내에 회전 가능하게 제공된 터빈은 배기 가스의 압력을 받아 회전한다. 즉, 배기 가스의 에너지의 일부가 터빈을 회전시키는 에너지로서 사용된다. 그러므로, 내연 기관 (1) 으로부터 배출되는 배기 가스의 온도는 터빈을 회전시키는데 사용된 에너지량에 따라 내려간다.
따라서, 전술한 애프터 분사가 실행되더라도, 터빈을 회전시키는데 사용된 에너지량에 따라 배기 가스의 온도는 내려가고, 온도가 내려간 연료 가스는 필터 (17) 로 유입된다. 이러한 경우에, 터빈의 회전 속도는 애프터 분사에 기인한 터빈의 회전 에너지의 증가량에 따라 증가하며, 압축기의 회전 속도도 증가한다. 결과적으로, 흡기량은 애프터 분사가 실행되기 전보다 많아지며, 내연 기관 (1) 으로부터 배출되는 배기 가스의 양도 많아진다. 따라서, 필터 (17) 로 유입되는 배기 가스의 양도 많아진다. 그 후, 필터 (17) 의 온도는 필터 (17) 로 유입되는 배기 가스에 의해 낮아진다. 따라서, 비록 애프터 분사가 실행되더라도, 필터 (17) 의 온도를 높이는 것이 어려워진다.
이하, 회수 처리 제어를 상세하게 설명한다. 본 발명에 따른 PM 회수 처리 또는 S 회수 처리가 실행되는 경우에, 애프터 분사가 수행될 때 필터 (17) 로 유입되는 배기 가스의 온도가 소망하는 온도에 도달하지 않는다면, 배기 가스의 온도가 소망하는 온도가 되도록 VN 개도 또는 W/G 밸브 개도가 조정된다.
애프터 분사의 실행에 의해 증가된 배기 가스의 에너지가 터빈을 회전시키는데 사용되기 때문에, 필터 (17) 로 유입되는 배기 가스의 온도는 애프터 분사가 실행되더라도 소망하는 값에 도달하지 못한다. 에너지가 터빈을 회전시키는데 사용되었는지의 여부는 압축기의 일량이 애프터 분사에 의해 증가되었는지의 여부, 즉 흡기량이 애프터 분사가 실행되기 전보다 많아졌는지의 여부, 또는 흡기압이 애프터 분사가 실행되기 전보다 높아졌는지의 여부에 기초하여 판정된다.
필터 (17) 로 유입되는 배기 가스의 온도가 터빈 하우징 (10b) 내에서 내려가는 것을 방지하기 위해서, 노즐 베인 또는 웨이스트게이트 밸브 (22) 는 완전히 개방되는 것이 바람직하다. 그러나, 개도가 증가할수록, 과급압이 감소하여 흡기량이 감소하고, 이는 스모크량의 증가를 초래할 수 있다. 따라서, 본 실시형태에서, 개도는 소망하는 온도가 얻어질 수 있는 값으로 조정된다.
이하, 본 실시 형태에 따른 회수 처리 제어를 도 2a 및 도 2b 에 도시된 흐름도를 참조하여 상세하게 설명한다. 제어 루틴은 ECU (26) 의 ROM에 미리 저장되며, 일정시간의 경과, 크랭크 위치 센서로부터의 펄스 신호의 입력 등에 의해 개시되는 인터럽트 처리로서 ECU (26) 에 의해 실행된다.
루틴에서, ECU (26) 는 전술한 회수 처리 개시 조건이 성립되는지의 여부를 단계 (S101) 에서 초기에 판정한다. 이를 테면, ECU (26) 는 PM 회수 처리가 실행될 때 전술한 PM 회수 처리 개시 조건이 성립되는지 여부를 판정하며, ECU (26) 는 S 회수 처리가 실행될 때 전술한 S 회수 처리 개시 조건이 성립되는지 여부를 판정한다. 단계 (S101) 에서 긍정 판정이 내려진 후에, 단계 (S102) 이 실행된다. 반면에, 단계 (S101) 에서 부정 판정이 내려진 경우, 루틴은 종료한다.
단계 (S102) 에서, 회수 처리가 실행된다. 전술한 바와 같이, PM 회수 처리가 실행되면, 필터 승온 처리가 실행되며 린 공연비 처리도 실시된다. 전술한 바와 같이, S 회수 처리가 실행되면, 촉매 승온 처리가 실행되며 리치 공연비 처리도 실시된다.
그 후 단계 (S103) 가 실행되어, ECU (26) 는 배기 온도 센서 (19) 에 의해 검출된 필터 (17) 로 유입되는 배기 가스의 온도가 소정 온도보다 낮은지 여부를 판정한다. 예를 들면, 소정 온도는 필터 (17) 에 의해 지지된 NOx 촉매가 활성화되는 온도와 같은 온도일 수 있다. 긍정 판정이 내려지면, 필터 (17) 로 유입되는 배기 가스의 온도를 높임으로써 NOx 촉매의 온도를 NOx 촉매가 활성화되는 온도와 동일하게 하기 위해서, 단계 (S104) 이 실행되어, 애프터 분사가 실행된다. 반면에, 단계 (S103) 에서 부정 판정이 내려지면, NOx 촉매가 활성화 되었다고 판단될 수 있다. 따라서, 단계 (S108) 이 실행되어 회수 처리가 계속된다. 단계 (S104) 에서 실행되는 애프터 분사에 의한 연료 분사량은, 배기 온도 센서 (19) 에 의해 검출된 배기 가스의 온도 및 내연 기관 (1) 의 운전 상태에 기초하여 결정된다.
단계 (S105) 에서, ECU (26) 는 공기 유량계 (9) 에 의해 검출된 흡기량 또는 압력 센서 (14) 에 의해 검출된 흡기압이 애프터 분사 실행 전보다 커졌는지 여부를 판정한다. 단계 (S105) 에서 긍정 판정이 내려진 경우, 애프터 분사에 의 해 높아진 배기 가스 에너지의 일부가 터빈을 회전시키는데 이용되어, NOx 촉매에 유입되는 배기 가스의 온도가 소정 온도까지 도달하지 않아서 NOx 촉매의 온도가 NOx 촉매가 활성화되는 온도까지 높아지지 않았기 때문에, 단계 (S106) 가 실행되어, VN 개도 및/또는 W/G 밸브 개도가 증가된다. 반면에, 단계 (S105) 에서 부정 판정이 내려진 경우, 현시점의 VN 개도 및 W/G 밸브 개도에서 애프터 분사에 의해 높아진 배기 가스의 에너지가 NOx 촉매의 온도를 NOx 촉매가 활성화되는 온도까지 높이기 위해서 효율적으로 이용되었기 때문에, VN 개도 및/또는 W/G 밸브 개도를 변경하지 않으면서 단계 (S108) 이 실행되어 회수 처리가 계속된다.
내연 기관 (1) 의 운전 상태에 따라서, 공기 유량계 (9)또는 압력 센서 (14) 에 의해 검출된 값은 안정하지 않다. 따라서, 본 단계의 경우, ECU (26) 는 공기 유량계 (9) 에 의해 검출된 흡기량 또는 압력 센서 (14) 에 의해 검출된 흡기압이 애프터 분사가 실행되기 전에 검출된 값으로부터 소정 범위의 상한을 초과하는 양만큼 증가되었는지 여부를 판정할 수도 있다.
단계 (S106) 에서, VN 액츄에이터 (10c) 및/또는 W/G 밸브 액츄에이터 (23) 를 제어함으로써, VN 개도 및/또는 W/G 밸브 개도가 커진다. VN 개도 및 W/G 밸브 개도 중 무엇이 변경될지, 또는 VN 개도 및 W/G 밸브 개도 양자 모두가 변경될지 여부는 내연 기관 (1) 의 사양에 따라 미리 정해진다. 또한, 애프터 분사에 의해 증가된 흡기량 또는 흡기압과 VN 개도 및/또는 W/G 밸브 개도의 변경량 사이에는 상관관계가 있다. 따라서, 이 상관관계는 미리 얻어져 맵으로서 ROM에 기억된다. 단계 (S106) 에서, 당해 맵과 올라간 흡기량 또는 흡기압에 기초하 여 VN 개도 및/또는 W/G 밸브 개도의 변경량이 산출되어, 개도는 산출된 값에 의해 커지게 된다. 또한, 단계 (S104) 에서 실행되는 애프터 분사에 의해 분사된 연료량에 따라 VN 개도 및/또는 W/G 밸브 개도의 변경량이 보정될 수 있다. 즉, 변경량은 애프터 분사에 의해 분사된 연료량이 많을수록 VN 개도 및/또는 W/G 밸브 개도의 변경량이 증가되도록 보정된다. 따라서, 단계 (S106) 은 터빈 회전 에너지량 조정 수단으로서 기능한다.
그 후 단계 (S107) 이 실행되어, ECU (26) 는 공기 유량계 (9) 에 의해 검출된 흡기량 또는 압력 센서 (14) 에 의해 검출된 흡기압이 애프터 분사가 실행 되기 전과 같게 되었는지 여부를 판정한다. 긍정 판정이 내려진 경우, 애프터 분사에 의해 높아진 배기 가스 에너지가 NOx 촉매의 온도를 NOx 촉매가 활성화되는 온도까지 높이는데 효율적으로 이용되었다고 생각될 수 있기 때문에, 단계 (S108) 이 실행되어, 회수 처리가 계속된다. 반면에, 부정 판정이 내려진 경우, 애프터 분사에 의해 높아진 배기 가스 에너지의 일부가 여전히 터빈을 회전시키는 에너지에 이용되어, NOx 촉매에 유입되는 배기 가스의 온도가 소정 온도까지 도달하지 않고 NOx 촉매의 온도가 NOx 촉매가 활성화되는 온도까지 높아질 수 없다고 생각될 수 있기 때문에, 단계 (S106) 이 재차 실행된다.
본 단계에서, ECU (26) 는 공기 유량계 (9) 에 의해 검출된 흡기량 또는 압력 센서 (14) 에 의해 검출된 흡기압이 애프터 분사가 실행되기 전에 검출된 값으로부터 소정의 범위 내의 변동량만큼 변경되었는지 여부를 판정할 수 있다.
단계 (S108) 에서, 회수 처리는 계속된다. NOx 촉매의 온도가 NOx 촉매 가 활성화되는 온도에 도달하였기 때문에, 단계 (S108) 이 실행된다. 따라서, 승온 처리에 있어서, 애프터 분사의 실행 없이 포스트 분사 및/또는 연료 첨가 밸브 (14) 에 의한 연료 첨가가 실행된다.
단계 (S109) 에서, ECU (26) 는 회수 처리 종료 조건이 성립하는지 여부를 판정한다. PM 회수 처리에 있어서, 이 회수 처리 종료 조건의 예로는 압력차 센서 (20) 에 의한 검출치에 기초하여 산출된 필터 (17) 의 상류 위치 및 필터 (17) 의 하류 위치 사이의 배기 통로에서의 압력차가 소정의 값 이하인 조건, 및 PM 회수 처리가 개시된 후에 소정의 기간이 경과한 조건이 있다. S 회수 처리에 있어서, 회수 처리 종료 조건의 예로는 S 회수 처리가 개시되 후에 소정 기간이 경과한 조건이 있다. 단계 (S109) 에서 긍정정인 판정이 내려진 경우, 루틴은 종료한다. 반면에, 단계 (S109) 에서 부정 판정이 내려진 경우, 회수 처리 종료 조건이 성립할 때까지 회수 처리를 계속하기 위하여 단계 (S108) 이 실행된다.
이러한 회수 처리 제어를 실행함으로써, 애프터 분사에 의해 증가된 배기 가스의 에너지를 NOx 촉매의 온도 상승에 효율적으로 이용하는 것이 가능하다. 공기 유량계 (9) 에 의해 검출된 흡기량 또는 압력 센서 (14) 에 의해 검출된 흡기압이 애프터 분사가 실행되기 전과 같게 되도록, 즉 애프터 분사의 실행에 의해 증가된 압축기의 일량이 영이 되도록, 터빈을 회전시키는데 사용되는 배기 가스의 에너지량을 감소시키기 위하여 VN 개도 및/또는 W/G 밸브 개도가 커진다. 따라서, 흡기량은 애프터 분사가 실행되기 전보다 감소하지 않는다. 그러므로, 터빈을 회전시키는데 사용된 배기 가스의 에너지량의 지나친 감소로 인하여 스모크량 이 증가되는 상황을 방지할 수 있다.
전술한 회수 처리 제어에 있어서, 흡기량 또는 흡기압의 변동에 기초하여 VN 개도 및/또는 W/G 밸브 개도가 변경될지 여부가 결정된다. 하지만, 배기 가스 온도 센서 (19) 에 의해 검출되는 필터 (17) 로 유입되는 배기 가스의 온도에 기초하여 VN 개도 및/또는 W/G 밸브 개도가 변경될지 여부가 결정될 수도 있다.
도 3a 및 도 3b 는 이러한 경우에 사용되는 흐름도를 나타낸다. 도 3a 및 도 3b 에 도시된 흐름도는 단계 (S205) 및 단계 (S207) 을 제외하고는 도 2a 및 도 2b 에 도시된 흐름도와 동일하다. 따라서, 이하 단계 (S205) 및 단계 (S207) 만을 중점적으로 설명한다. 도시된 그 외의 단계들은 동일한 참조 번호로 도시되고, 여기에서 그 설명은 생략한다.
단계 (S205) 에 있어서, ECU (26) 는 배기 온도 센서 (19) 에 의해 검출된 필터 (17) 로 유입되는 배기 가스의 온도가 소정 온도보다 낮은지 여부를 판정한다. 긍정 판정이 내려진 경우, 애프터 분사에 의해 높아진 배기 가스의 에너지의 일부가 터빈을 회전시키는데 이용되어 온도가 소정 온도까지 도달하지 않는다고 여겨지기 때문에, 단계 (S106) 이 실행되어, VN 개도 및/또는 W/G 밸브 개도가 증가된다. 반면에, 부정 판정이 내려진 경우, 현시점의 VN 개도 및 W/G 밸브 개도에서, 애프터 분사에 의해 높아진 배기 가스의 에너지가 NOx 촉매의 온도를 높이기 위해 효율적으로 이용된다고 여겨지기 때문에, VN 개도 및/또는 W/G 밸브 개도를 변경하지 않으면서 단계 (S108) 이 실행되어 회수 처리가 계속된다.
단계 (S207) 에서, ECU (26) 는 배기 온도 센서 (19) 에 의해 검출된 필터 (17) 로 유입되는 배기 가스의 온도가 소정 온도 이상인지 여부를 판정한다. 긍정 판정이 내려진 경우, 단계 (S108) 이 실행되어, 회수 처리가 계속된다. 반면에, 부정 판정이 내려진 경우, 애프터 분사에 의해 높아진 배기 가스의 에너지의 일부가 여전히 터빈을 회전시키는데 이용되어, NOx 촉매에 유입되는 배기 가스의 온도가 소정 온도까지 도달하지 않는다고 여겨지기 때문에, 단계 (S106) 이 재차 실행된다.
그러한 경우에서조차도, 터빈을 회전시키는데 사용되는 배기 가스의 에너지량의 과도한 감소에 기인하여 스모크량이 증가되는 상황을 방지할 수 있다. 애프터 분사에 의해 증가된 배기 가스의 에너지를 NOx 촉매의 온도를 상승시키는데 효율적으로 이용하는 것도 가능하다.
본 명세서에서 사용된 "저장" 이라는 용어는 물질 (고체, 액체,기체 분자) 을 흡착, 점착, 흡수, 포획 (trapping), 흡장 (osslusion) 등의 형태로 유지하는 것을 의미한다고 이해되어야 한다.

Claims (9)

  1. 내연 기관용 배기 가스 제어 장치로서,
    내연 기관의 배기 통로에 제공되고 산화 능력이 있는 촉매;
    상기 배기 통로의 상기 촉매의 상류 위치에 제공되고 배기 가스에 의해 회전되는 터빈 및, 상기 터빈의 회전에 따라 회전되고 과급을 실시하는 압축기를 포함하는 과급기;
    상기 터빈을 회전시키는데 사용되는 배기 가스의 에너지량을 조정하는 터빈 회전 에너지량 조정 수단; 및
    상기 내연 기관으로부터 배출되어 상기 촉매로 유입되는 배기 가스의 온도를 상승시키기 위해, 주연료 분사 후에 연료를 분사하는 애프터 분사를 실행하는 애프터 분사 실행 수단을 포함하고,
    상기 애프터 분사 실행 수단에 의해 실행된 상기 애프터 분사로 인해 상기 압축기의 일량이 증가될 경우에, 상기 터빈 회전 에너지량 조정 수단은 증가한 일량을 영 (zero) 으로 감소시키기 위해 상기 터빈의 회전에 사용되는 배기 가스의 에너지량을 감소시키는 것을 특징으로 하는 배기 가스 제어 장치.
  2. 제 1 항에 있어서,
    상기 터빈 회전 에너지량 조정 수단은 상기 과급기에 제공된 가변 노즐의 개도, 웨이스트게이트 밸브의 개도, 또는 상기 과급기에 제공된 가변 노즐의 개도 및 웨이스트게이트 밸브의 개도를 증가시켜 상기 터빈을 회전시키는데 사용되는 배기 가스의 에너지량을 감소시키는 것을 특징으로 하는 배기 가스 제어 장치.
  3. 제 2 항에 있어서,
    상기 애프터 분사 실행 수단은 상기 촉매가 활성화되는 온도에 기초하여 애프터 분사에 의해 분사되는 연료량을 결정하고,
    상기 터빈 회전 에너지량 조정 수단은 애프터 분사에 의해 분사되는 연료량이 증가함에 따라 상기 과급기에 제공된 상기 가변 노즐의 개도, 상기 웨이스트게이트 밸브의 개도, 또는 상기 과급기에 제공된 상기 가변 노즐의 개도 및 상기 웨이스트게이트 밸브의 개도를 증가시키는 것을 특징으로 하는 배기 가스 제어 장치.
  4. 제 1 항 내지 제 3 항 중 어느 한 항에 있어서,
    상기 내연 기관의 흡기 통로를 통해서 유동하는 흡기량을 검출하는 흡기량 검출 수단 및 흡기압을 검출하는 흡기압 검출 수단 중 하나 이상이 상기 내연 기관의 흡기 통로에 추가로 구비되며,
    상기 터빈 회전 에너지량 조정 수단은, 상기 애프터 분사가 실행된 후에 상기 흡기량 검출 수단 또는 상기 흡기압 검출 수단에 의해 검출된 값이 상기 애프터 분사가 실행되기 전에 상기 흡기량 검출 수단 또는 상기 흡기압 검출 수단에 의해 검출된 값보다 큰 경우에, 상기 터빈의 회전에 사용되는 배기 가스의 에너지량을 감소시키는 것을 특징으로 하는 배기 가스 제어 장치.
  5. 내연 기관용 배기 가스 제어 방법으로서,
    내연 기관의 배기 통로에 제공되고 산화 능력이 있는 촉매;
    상기 배기 통로의 상기 촉매의 상류 위치에 제공되고 배기 가스에 의해 회전되는 터빈 및, 상기 터빈의 회전에 따라 회전되고 과급을 실시하는 압축기를 포함하는 과급기;
    상기 터빈을 회전시키는데 사용되는 배기 가스의 에너지량을 조정하는 터빈 회전 에너지량 조정 수단; 및
    상기 내연 기관으로부터 배출되어 상기 촉매로 유입되는 배기 가스의 온도를 상승시키기 위해, 주연료 분사 후에 연료를 분사하는 애프터 분사를 실행하는 애프터 분사 실행 수단을 포함하고,
    상기 애프터 분사 실행 수단에 의해 실행된 애프터 분사로 인해 상기 압축기의 일량이 증가될 경우에, 터빈 회전 에너지량 조정 수단은 증가한 일량을 영으로 감소시키기 위해 상기 터빈의 회전에 사용되는 배기 가스의 에너지량을 감소시키는 것을 특징으로 하는 배기 가스 제어 방법.
  6. 제 5 항에 있어서,
    상기 터빈 회전 에너지량 조정 수단은 상기 과급기에 제공된 가변 노즐의 개도, 웨이스트게이트 밸브의 개도, 또는 상기 과급기에 제공된 가변 노즐의 개도 및 웨이스트게이트 밸브의 개도를 증가시켜 상기 터빈을 회전시키는데 사용되는 배기 가스의 에너지량을 감소시키는 것을 특징으로 하는 배기 가스 제어 방법.
  7. 제 6 항에 있어서,
    상기 애프터 분사 실행 수단은 상기 촉매가 활성화되는 온도에 기초하여 애프터 분사에 의해 분사되는 연료량을 결정하고,
    상기 터빈 회전 에너지량 조정 수단은 애프터 분사에 의해 분사되는 연료량이 증가함에 따라 상기 과급기에 제공된 상기 가변 노즐의 개도, 상기 웨이스트게이트 밸브의 개도, 또는 상기 과급기에 제공된 상기 가변 노즐의 개도 및 상기 웨이스트게이트 밸브의 개도를 증가시키는 것을 특징으로 하는 배기 가스 제어 방법.
  8. 제 5 항 내지 제 7 항 중 어느 한 항에 있어서,
    상기 내연 기관의 흡기 통로를 통해서 유동하는 흡기량을 검출하는 흡기량 검출 수단 및 흡기압을 검출하는 흡기압 검출 수단 중 하나 이상이 상기 내연 기관의 흡기 통로에 추가로 구비되며,
    상기 터빈 회전 에너지량 조정 수단은, 상기 애프터 분사가 실행된 후에 상기 흡기량 검출 수단 또는 상기 흡기압 검출 수단에 의해 검출된 값이 상기 애프터 분사가 실행되기 전에 상기 흡기량 검출 수단 또는 상기 흡기압 검출 수단에 의해 검출된 값보다 큰 경우에, 상기 터빈의 회전에 사용되는 배기 가스의 에너지량을 감소시키는 것을 특징으로 하는 배기 가스 제어 방법.
  9. 내연 기관용 배기 가스 제어 장치로서,
    내연 기관의 배기 통로에 제공되고 산화 능력이 있는 촉매;
    상기 배기 통로의 상기 촉매의 상류 위치에 제공되고 배기 가스에 의해 회전되는 터빈 및, 상기 터빈의 회전에 따라 회전되고 과급을 실시하는 압축기를 포함하는 과급기;
    상기 터빈을 회전시키는데 사용되는 배기 가스의 에너지량을 조정하는 터빈 회전 제어기; 및
    상기 내연 기관으로부터 배출되어 상기 촉매로 유입되는 배기 가스의 온도를 상승시키기 위해, 주연료 분사 후에 연료를 분사하는 애프터 분사를 실행하는 분사 제어기를 포함하고,
    상기 분사 제어기에 의해 실행된 상기 애프터 분사로 인해 상기 압축기의 일량이 증가될 경우에, 상기 터빈 회전 제어기는 증가한 일량을 영으로 감소시키기 위해 상기 터빈의 회전에 사용되는 배기 가스의 에너지량을 감소시키는 것을 특징으로 하는 배기 가스 제어 장치.
KR1020067020782A 2004-04-05 2005-03-31 내연 기관용 배기 가스 제어 장치 및 배기 가스 제어 방법 KR100794946B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004111251A JP4433861B2 (ja) 2004-04-05 2004-04-05 内燃機関の排気浄化装置
JPJP-P-2004-00111251 2004-04-05

Publications (2)

Publication Number Publication Date
KR20070014142A true KR20070014142A (ko) 2007-01-31
KR100794946B1 KR100794946B1 (ko) 2008-01-15

Family

ID=34963716

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020067020782A KR100794946B1 (ko) 2004-04-05 2005-03-31 내연 기관용 배기 가스 제어 장치 및 배기 가스 제어 방법

Country Status (6)

Country Link
US (1) US8596062B2 (ko)
EP (1) EP1733130B1 (ko)
JP (1) JP4433861B2 (ko)
KR (1) KR100794946B1 (ko)
CN (1) CN100441847C (ko)
WO (1) WO2005098222A1 (ko)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4305445B2 (ja) 2005-12-05 2009-07-29 トヨタ自動車株式会社 内燃機関
DE102005060671A1 (de) * 2005-12-19 2007-06-28 Robert Bosch Gmbh Verfahren zum Betrieb einer Brennkraftmaschine
JP4697065B2 (ja) * 2006-06-21 2011-06-08 トヨタ自動車株式会社 内燃機関の排気浄化システム
JP2008075543A (ja) * 2006-09-21 2008-04-03 Hino Motors Ltd エンジンの排ガス浄化装置
JP2009002232A (ja) * 2007-06-21 2009-01-08 Toyota Motor Corp 内燃機関のトルク制御システム
JP4367548B2 (ja) * 2007-11-06 2009-11-18 トヨタ自動車株式会社 火花点火式内燃機関
JP4428442B2 (ja) * 2007-11-08 2010-03-10 トヨタ自動車株式会社 火花点火式内燃機関
US7841322B2 (en) * 2007-11-16 2010-11-30 Dynamic Fuel Systems, Inc. Super cooled air and fuel induction system for internal combustion engines
JP5301857B2 (ja) * 2008-03-03 2013-09-25 ヤンマー株式会社 コモンレール式電子噴射制御系エンジン
JP2010203377A (ja) * 2009-03-05 2010-09-16 Toyota Motor Corp 内燃機関システム制御装置
JP2012163047A (ja) * 2011-02-07 2012-08-30 Nissan Motor Co Ltd ターボ式過給機付き内燃機関の制御装置
GB2492428B (en) * 2011-06-29 2014-05-14 Perkins Engines Co Ltd Method and apparatus for controlling the operation of a turbocharged internal combustion engine
JP5420013B2 (ja) * 2012-04-20 2014-02-19 三菱電機株式会社 内燃機関の制御装置およびその制御方法
JP6040744B2 (ja) * 2012-12-10 2016-12-07 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP5895862B2 (ja) * 2013-01-31 2016-03-30 トヨタ自動車株式会社 内燃機関の制御装置
US9410475B2 (en) * 2014-06-09 2016-08-09 Ford Global Technologies, Llc System and method for determining turbine degradation and mitigating turbine degradation in a variable geometry turbocharger
JP5944037B1 (ja) * 2015-08-21 2016-07-05 三菱電機株式会社 過給機付き内燃機関の制御装置
JP6686964B2 (ja) * 2017-04-27 2020-04-22 トヨタ自動車株式会社 機械式過給システム
DE102018218406A1 (de) * 2018-10-26 2020-04-30 BMTS Technology GmbH & Co. KG Verfahren zum Betreiben eines Brennkraftmaschinensystems
JP7498642B2 (ja) 2020-10-26 2024-06-12 日産自動車株式会社 内燃機関の制御方法

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3539578A1 (de) * 1984-12-08 1986-06-12 Audi AG, 8070 Ingolstadt Fremdgezuendete, mehrzylindrige brennkraftmaschine mit abgasturboaufladung
DE3826600C2 (de) * 1988-08-05 1998-03-19 Joern Martens Abgasturbolader mit Abgasreinigungsvorrichtung
JP2663720B2 (ja) * 1990-12-26 1997-10-15 トヨタ自動車株式会社 ディーゼルエンジンの排気浄化装置
JP3358552B2 (ja) 1998-08-04 2002-12-24 トヨタ自動車株式会社 内燃機関の燃料噴射制御装置
EP0994243B1 (en) * 1998-10-14 2005-01-26 Nissan Motor Co., Ltd. Exhaust gas purifying device
FR2792036B1 (fr) * 1999-04-06 2002-06-07 Peugeot Citroen Automobiles Sa Systeme d'aide a la regeneration d'un filtre a particules integre dans une ligne d'echappement d'un moteur diesel notamment de vehicule automobile
AU2001243410A1 (en) * 2000-03-03 2001-09-17 Honeywell International, Inc. Intelligent electric actuator for control of a turbocharger with an integrated exhaust gas recirculation valve
JP3918402B2 (ja) * 2000-05-18 2007-05-23 日産自動車株式会社 ディーゼルエンジンの制御装置
JP2001329879A (ja) * 2000-05-24 2001-11-30 Nissan Diesel Motor Co Ltd 内燃機関の排気還流装置
US7293407B2 (en) * 2000-06-21 2007-11-13 Daimlerchrysler Ag Method for operating a diesel engine
DE10029504C2 (de) * 2000-06-21 2003-04-30 Daimler Chrysler Ag Verfahren zum Betrieb eines Dieselmotors
JP3593962B2 (ja) 2000-08-24 2004-11-24 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP2002106333A (ja) 2000-09-29 2002-04-10 Mazda Motor Corp エンジンの排気浄化装置
KR100487505B1 (ko) * 2000-10-05 2005-05-03 닛산 지도우샤 가부시키가이샤 터보차저의 제어 장치 및 방법
EP1205647B1 (de) * 2000-11-03 2003-03-05 Ford Global Technologies, Inc., A subsidiary of Ford Motor Company Verfahren zur Regeneration des Partikelfilters eines Dieselmotors
JP3968999B2 (ja) 2001-02-09 2007-08-29 日産自動車株式会社 ディーゼルエンジンの制御装置
JP2002276340A (ja) 2001-03-22 2002-09-25 Isuzu Motors Ltd 排気ガス浄化装置、排気ガス浄化方法
JP2003120353A (ja) 2001-10-12 2003-04-23 Nissan Motor Co Ltd 内燃機関の過給圧制御装置
JP2003166416A (ja) * 2001-11-30 2003-06-13 Nissan Motor Co Ltd 過給機付き内燃機関
US6712053B2 (en) * 2001-12-21 2004-03-30 Denso Corporation Control system for internal combustion engine
JP4161575B2 (ja) 2002-01-16 2008-10-08 三菱ふそうトラック・バス株式会社 内燃機関の排気浄化装置
JP4134581B2 (ja) 2002-03-19 2008-08-20 トヨタ自動車株式会社 内燃機関の排気浄化装置
US6804952B2 (en) * 2003-02-21 2004-10-19 Toyota Jidosha Kabushiki Kaisha Catalyst warm up control for diesel engine
JP4158577B2 (ja) * 2003-04-02 2008-10-01 日産自動車株式会社 エンジンの燃焼制御装置
US6895745B2 (en) * 2003-04-04 2005-05-24 Borgwarner Inc. Secondary combustion for regeneration of catalyst and incineration of deposits in particle trap of vehicle exhaust
JP4111094B2 (ja) * 2003-07-31 2008-07-02 日産自動車株式会社 排気後処理装置付過給エンジンの制御装置および制御方法
JP4103719B2 (ja) * 2003-07-31 2008-06-18 日産自動車株式会社 エンジンの排気浄化装置および微粒子捕集フィルタの微粒子堆積状態判定方法
EP1544432B1 (en) * 2003-12-15 2008-07-09 Nissan Motor Co., Ltd. Regeneration control of diesel particulate filter
US20050223698A1 (en) * 2004-03-31 2005-10-13 Mitsubishi Fuso Truck And Bus Corporation Exhaust gas cleaning device
JP4424040B2 (ja) * 2004-04-05 2010-03-03 株式会社デンソー 内燃機関の排気浄化装置
JP2007187149A (ja) * 2005-12-13 2007-07-26 Nissan Motor Co Ltd エンジンの燃料噴射制御方法及び燃料噴射制御装置
JP4119927B2 (ja) * 2006-06-19 2008-07-16 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP4285528B2 (ja) * 2006-11-06 2009-06-24 トヨタ自動車株式会社 内燃機関の排気再循環システム

Also Published As

Publication number Publication date
US8596062B2 (en) 2013-12-03
CN1942660A (zh) 2007-04-04
EP1733130A1 (en) 2006-12-20
EP1733130B1 (en) 2017-03-01
WO2005098222A1 (en) 2005-10-20
JP2005291175A (ja) 2005-10-20
CN100441847C (zh) 2008-12-10
US20070204602A1 (en) 2007-09-06
KR100794946B1 (ko) 2008-01-15
JP4433861B2 (ja) 2010-03-17

Similar Documents

Publication Publication Date Title
KR100794946B1 (ko) 내연 기관용 배기 가스 제어 장치 및 배기 가스 제어 방법
EP3051105B1 (en) Exhaust gas purification system for internal combustion engine
US6843055B2 (en) Regeneration of diesel particulate filter for diesel engine
EP3133258B1 (en) Control system for internal combustion engine and control method
JP4161575B2 (ja) 内燃機関の排気浄化装置
JP2003254042A (ja) 内燃機関の排気浄化装置
JP2008069648A (ja) パティキュレートフィルタの再生制御装置
JP2008008241A (ja) エンジンの制御装置
EP1536120B1 (en) Exhaust gas control apparatus for internal combustion engine and control method thereof
JP2009264221A (ja) エンジンNOx排出量演算装置
JP2004285947A (ja) 内燃機関の排気浄化装置
JP2008144688A (ja) 内燃機関の制御装置
JP2007064055A (ja) 内燃機関の排気浄化装置
JP2005016393A (ja) 内燃機関の排気浄化システム
JP3911406B2 (ja) 内燃機関の排気浄化装置
JP2003106137A (ja) 内燃機関の排気ガス浄化装置
JPH09209742A (ja) 過給機付き内燃機関の排気制御装置
JP4032773B2 (ja) 内燃機関
JP2007040223A (ja) 排気浄化装置
JP2002364439A (ja) 内燃機関の排気浄化装置
JP2004076684A (ja) 内燃機関の排気浄化装置
JP3991710B2 (ja) 内燃機関の排気浄化装置
JP4052100B2 (ja) 内燃機関の排気浄化装置
JP2003184593A (ja) 内燃機関の燃料噴射量制御装置
JP2005163548A (ja) 内燃機関の制御装置

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121227

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20131218

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20141230

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20151217

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20161219

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20171219

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20181219

Year of fee payment: 12