KR20060128898A - 노광 방법 및 장치, 그리고 디바이스 제조 방법 - Google Patents

노광 방법 및 장치, 그리고 디바이스 제조 방법 Download PDF

Info

Publication number
KR20060128898A
KR20060128898A KR1020067012807A KR20067012807A KR20060128898A KR 20060128898 A KR20060128898 A KR 20060128898A KR 1020067012807 A KR1020067012807 A KR 1020067012807A KR 20067012807 A KR20067012807 A KR 20067012807A KR 20060128898 A KR20060128898 A KR 20060128898A
Authority
KR
South Korea
Prior art keywords
light
exposure
optical system
projection optical
correction
Prior art date
Application number
KR1020067012807A
Other languages
English (en)
Other versions
KR101328356B1 (ko
Inventor
기요시 우치카와
Original Assignee
가부시키가이샤 니콘
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가부시키가이샤 니콘 filed Critical 가부시키가이샤 니콘
Publication of KR20060128898A publication Critical patent/KR20060128898A/ko
Application granted granted Critical
Publication of KR101328356B1 publication Critical patent/KR101328356B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • G03F7/70883Environment aspects, e.g. pressure of beam-path gas, temperature of optical system
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70191Optical correction elements, filters or phase plates for controlling intensity, wavelength, polarisation, phase or the like

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Toxicology (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

마스크 및 투영 광학계 중 적어도 일부의 광학 부재를 통과하는 노광빔의 광량 분포가 비회전 대칭이 되는 경우에, 결상 특성 중의 비회전 대칭인 성분을 효율적으로 제어하는 노광 방법 및 장치이다. 노광광 (IL) 으로 레티클 (11) 을 조명하고, 레티클 (11) 의 패턴을 노광 광학계 (14) 를 통해 웨이퍼 (18) 상에 투영하는 투영 노광 장치에 있어서, 투영 광학계 (14) 내의 렌즈 (32) 에 대하여, 노광광 (IL) 과 다르고 렌즈 (32) 에 흡수되기 쉬운 파장역의 보정광 (LBA, LBB) 을, 1/4 파장광 (51A, 51B) 및 도파관 (44A, 44B) 을 통해 국소적으로 조사함으로써, 비회전 대칭인 수차를 제어한다.
투영 광하계, 광학 부재, 보정광, 공간 도파 기구

Description

노광 방법 및 장치, 그리고 디바이스 제조 방법{EXPOSURE METHOD AND SYSTEM, AND DEVICE PRODUCTION METHOD}
기술분야
본 발명은, 예를 들어 반도체 소자 또는 액정 표시 소자 등의 각종 디바이스를 제조하기 위한 리소그래피 공정으로서, 마스크 패턴을 기판 상에 전사하기 위해서 사용되는 노광 기술 및 그 노광 기술을 사용하는 디바이스 제조 기술에 관한 것으로, 더욱 자세히는 결상 특성의 보정 기술을 사용하는 노광 기술에 관한 것이다.
배경기술
반도체 소자 등을 제조할 때, 마스크로서의 레티클 (또는 포토마스크 등) 의 패턴을 투영 광학계를 개재하여 기판으로서의 포토레지스트가 도포된 웨이퍼 (또는 유리 플레이트 등) 상의 각 쇼트 영역에 전사하기 위해서, 스테퍼 등의 투영 노광 장치가 사용되어 있다. 투영 노광 장치에 있어서는, 노광광의 조사량이나 주위의 기압 변화 등에 의해서, 투영 광학계의 결상 특성이 점차 변화된다. 그래서, 결상 특성을 항상 원하는 상태로 유지하기 위해서, 투영 노광 장치에는, 예를 들어 투영 광학계를 구성하는 일부 광학 부재의 위치를 제어함으로써, 그 결상 특성을 보정하는 결상 특성 보정 기구가 구비되어 있다. 종래의 보정 기구에 의해서 보정할 수 있는 결상 특성은, 왜곡 수차나 배율 오차 등의 회전 대칭이 낮은 차수의 성분이다.
이에 대하여 최근에는, 특정한 패턴에 대한 해상도를 높이기 위해서, 이른바 윤대 조명이나 4극 조명 (조명 광학계의 동공면(瞳面) 상의 4개소의 영역을 2차 광원으로 하는 조명법) 으로 이루어지는, 조명 광학계의 동공면 상의 광축을 포함하는 영역을 노광광이 통과하지 않는 조명 조건이 사용될 수 있다. 이 경우, 투영 광학계 중의 동공면 부근의 광학 부재는, 거의 중앙으로부터 벗어난 상태에서 노광광에 조명되게 된다. 또한, 투영 광학계를 대형화하지 않고, 전사할 수 있는 패턴의 면적을 크게 하기 위해서, 최근에는 스캐닝스테퍼 등의 주사 노광형의 투영 노광 장치도 많이 사용되고 있다. 주사 노광형의 경우, 레티클은 주사 방향을 짧은 변 방향으로 하는 직사각형 형상의 조명 영역에서 조명되기 때문에, 투영 광학계 중의 레티클 및 웨이퍼에 가까운 광학 부재는, 주로 비회전 대칭인 영역이 노광광에 조명되게 된다.
전자와 같이 광학 부재가 중앙으로부터 벗어난 노광광으로 계속하여 조사되면, 투영 광학계의 결상 특성 중의 고차의 구면 수차 등의 고차 성분의 변동이 생길 우려가 있다. 그래서, 종래부터 윤대 조명이나 4극 조명을 실시하는 경우에는, 조명 광학계의 동공면 또는 이 공액면의 근방에서 광축을 포함하는 영역에 포토레지스트를 감광시키지 않는 파장역의 수차 보정용의 조명광을 유도하고, 투영 광학계 중의 광학 부재의 광축을 포함하는 영역을 거의 동일한 광량 분포로 조명하도록 한 투영 노광 장치가 제안되어 있다 (예를 들어, 특허 문헌 1 참조). 또한, 후자와 같이 레티클이 직사각형 형상의 조명 영역에서 조명되는 경우에는, 레티클 상의 조명 영역을 짧은 변 방향으로 끼우는 2개의 영역을, 포토레지스트를 감 광시키지 않는 파장역의 수차 보정용의 조명광으로 조명함으로써, 비회전 대칭인 수차 변동을 억제하도록 한 투영 노광 장치가 제안되어 있다 (예를 들어, 특허문헌 2 참조).
특허문헌 1: 일본 공개특허공보 평10-64790호
특허문헌 2: 일본 공개특허공보 평10-50585호
발명의 개시
발명이 해결하고자 하는 과제
상기와 같이, 종래부터 윤대 조명 등을 사용할 때와 같이 소정의 광학 부재가 중앙으로부터 벗어난 노광광으로 조명되는 경우나, 주사 노광시와 같이 레티클 등의 광학 부재가 직사각형 형상의 조명영역에서 조명되는 경우에, 노광광과 함께 수차 보정용의 조명광으로도 레티클을 조명함으로써, 예를 들어 고차의 구면 수차나 비회전 대칭인 수차 성분을 보정하는 것이 실시되고 있었다.
이에 관해서 최근에는, 예를 들어 소정의 라인ㆍ앤드ㆍ스페이스 패턴을 주로 포함하는 레티클 패턴을 전사하는 경우에, 조명 광학계의 동공면 상의 광축을 끼우는 2개의 영역만을 2차 광원으로 하는 다이폴 조명 (2극 조명) 이 사용되는 경우가 있다. 이 다이폴 조명은 4극 조명에 비교하여 광량 분포가 크고 비회전 대칭이 되어 있으므로, 투영 이미지에 비회전 대칭인 수차 성분인 광축 상에서의 비점수차 (이하,「센터 어스」라고 한다) 가 발생한다. 또한, 다이폴 조명에 의해서 센터 어스 이외의 비회전 대칭인 수차 변동도 생긴다.
또한, 주사 노광 방식을 사용하여, 추가로 레티클 상에서 주사 방향에 직교 하는 비주사 방향의 일방의 단부의 패턴만을 노광하는 경우에는, 레티클 상의 직사각형 형상의 조명 영역의 추가로 일방의 단부의 영역만이 노광광으로 조명된다. 이 경우, 투영 광학계의 레티클측 및 웨이퍼측의 광학 부재에 있어서 노광광의 광량 분포가 또한 크게 비회전 대칭이 되기 때문에, 비회전 대칭인 수차 성분이 대부분 발생한다. 마찬가지로, 레티클의 패턴 밀도가 특정한 영역에서 특히 낮은 경우에도, 투영 광학계의 레티클측 및 웨이퍼측의 광학 부재에 있어서 노광광의 광량 분포가 크게 비회전 대칭이 되기 때문에, 비회전 대칭인 수차 성분이 발생한다.
이와 같이 비회전 대칭인 수차 성분이 많이 발생하는 경우에, 종래예와 같이 포토레지스트를 감광시키지 않는 수차 보정용의 조명광을 노광광의 광로와 거의 평행한 광로로 레티클로 조사하더라도, 그 조명광과 노광광의 파장이 다르기 때문에, 그 조명광으로 비회전 대칭인 수차 성분의 발생에 크게 기여하는 광학 부재의 원하는 부분을 정확히 조사하는 것은 곤란하였다. 그 때문에, 비회전 대칭인 수차성분을 충분히 보정하지 못할 우려가 있었다.
또한, 조명 광학계측에서 투영 광학계 중의 원하는 광학 부재에 그 수차보정용의 조명광을 조사하기 위해서는, 그 조명광은 광학 소자에 의한 흡수가 너무 높지 않는 파장역으로 할 필요가 있다. 따라서, 포토레지스트에 대한 감광성도 높아지는 경향이 있기 때문에, 그 조명광의 광강도를 높이는 것이 곤란하고, 이 점으로부터도 비회전 대칭인 수차 성분을 충분히 보정하지 못할 우려가 있었다.
또한, 최근에는, 소σ조명 (조명 광학계의 동공면 상에서 광축을 중심으로 하는 작은 영역을 2차 광원으로 하는 조명법) 과 같이, 반경 방향으로 노광광의 광 량 분포가 크게 변화하는 조명 조건이 사용될 수 있다. 이 경우에도, 예를 들어 고차의 구면 수차 변동과 같이 종래의 결상 특성 보정 기구로서는 보정이 곤란한 결상 특성의 변동이 생길 수 있기 때문에, 여하한 대책이 요구되었다.
본 발명은 이러한 점을 감안하여, 마스크 및 투영 광학계 중의 적어도 일부의 광학 부재를 통과하는 노광빔의 광량 분포가 비회전 대칭이 되거나, 또는 반경 방향으로 크게 변동하는 경우에, 결상 특성 중의 비회전 대칭인 성분, 또는 고차의 성분을 효율적으로 제어할 수 있는 노광 기술을 제공하는 것을 제 1 목적으로 한다.
또한 본 발명은, 그러한 경우에, 결상 특성의 변동을 억제할 수 있는 노광 기술 및 디바이스 제조 기술을 제공하는 것을 제 2 목적으로 한다.
과제를 해결하기 위한 수단
본 발명에 의한 제 1 노광 방법은, 노광빔 (IL) 으로 제 1 물체 (11) 를 조명하고, 그 노광빔에 의해 그 제 1 물체 및 투영 광학계 (14) 를 통해 제 2 물체 (18) 를 노광하는 노광 방법에 있어서, 그 제 1 물체 및 그 투영 광학계의 적어도 일부 (32) 에, 그 노광빔과 다른 파장역의 광빔 (LBA, LBB) 을 공간 도파 기구 (44A, 44B) 를 통해 조사하여, 그 투영 광학계의 결상 특성을 보정하는 것이다.
이러한 본 발명에 의하면, 그 광빔이 예를 들어 다이폴 조명과 같은 비회전 대칭인 조명 조건, 또는 예를 들어 소σ조명과 같은 조명 광학계 동공면 상에서 반경 방향으로 광량 분포가 크게 변화하는 조명 조건으로 그 제 1 물체를 조명하여, 비회전 대칭인 수차 또는 회전대칭인 고차의 수차가 발생하는 것으로 한다. 이 때, 그 제 1 물체 또는 그 투영 광학계 중의 복수의 광학 부재에 있어서, 열흡수에 의해서 수차에 큰 영향을 주는 소정의 부재에, 그 공간 도파 기구를 통해 그 광빔을 부분적으로 조사하고, 그 부재를 가열함으로써, 그 수차를 효율적으로 제어할 수 있다. 일례로서, 그 광빔의 파장역을 가열 대상의 부재에 흡수되기 쉬운 파장역으로서, 그 부재의 측면 상방 또는 측면 하방에서 노광 빔의 광축으로 비스듬히 교차하는 방향으로 그 광빔을 조사함으로써, 그 제 2 물체를 감광시키지 않고, 그 부재만을 효율적으로 가열할 수 있다.
본 발명에 있어서, 그 공간 도파 기구의 일례는, 유리, 세라믹스, 또는 금속으로 이루어지는 중공의 도파관을 포함하는 것이다. 그 도파로는, 전송 효율을 지나치게 저하시키지 않고, 어느 정도의 곡률 반경으로 구부릴수 있기 때문에, 그 도파관을 그 광빔의 사출부에 사용함으로써, 그 제 1 물체 또는 그 투영 광학계 중의 임의의 광학 부재의 원하는 조사 위치에 용이하게 그 광빔에 의해 부분적으로 조사할 수 있다.
다음으로, 본 발명에 의한 제 2 노광 방법은, 노광빔 (IL) 으로 제 1 물체 (11) 를 조명하고, 그 노광빔에 의해 그 제 1 물체 및 투영 광학계 (14) 를 통해 제 2 물체 (18) 를 노광하는 노광 방법에 있어서, 그 제 1 물체 및 그 투영 광학계의 적어도 일부 (32) 에, 그 노광빔과 다른 파장역의 광빔 (LBA, LBB) 을 편광 상태 제어 기구 (51A, 51B) 를 통해 소정의 편광 상태에서 조사하여, 그 투영 광학계의 결상 특성을 보정하는 것이다.
본 발명에 의하면, 열흡수에 의해서 수차에 큰 영향을 주는 소정의 부재에, 그 편광 상태 제어 기구를 통해 그 광빔을 그 부재에 흡수되기 쉬운 편광 상태에서 부분적으로 조사하여, 그 부재를 가열함으로써, 비회전 대칭인 수차 또는 회전대칭인 고차의 수차를 효율적으로 제어할 수 있다.
본 발명에 있어서, 그 편광 상태 제어 기구의 일례는, 위상판을 포함하는 것이다. 위상판을 사용함으로써, 간단한 구성으로 원하는 편광 상태를 얻을 수 있다. 위상판으로서는, 1/4 파장판 또는 1/2 파장판 등을 사용할 수 있다.
본 발명에 의한 제 3 노광 방법은, 노광빔 (IL) 으로 제 1 물체 (11) 를 조명하고, 그 노광빔에 의해 그 제 1 물체 및 투영 광학계 (14) 를 통해 제 2 물체 (18) 를 노광하는 노광 방법에 있어서, 그 제 1 물체 및 그 투영 광학계의 적어도 일부에, 그 노광빔과 다른 파장역의 광빔 (LBA, LBB) 을, 광 가이드 (72A, 72B, 75B) 및 편광 상태 제어 기구 (74A, 74B) 를 통해 소정의 편광 상태에서 조사하여, 그 투영 광학계의 결상 특성을 보정하는 것이다.
본 발명에 의하면, 열 흡수에 의해서 수차에 큰 영향을 주는 소정의 부재에, 그 광 가이드를 통해 그 광빔을 부분적으로 조사하여, 그 부재를 가열함으로써, 비회전 대칭인 수차 또는 회전 대칭인 고차의 수차를 효율적으로 제어할 수 있다. 이 때 광 가이드를 사용함으로써, 원하는 가열 위치까지 용이하게 그 광빔을 이끌 수 있다. 또한, 그 광 가이드 중에 전해지는 과정에서 그 광빔의 편광 상태가 변화하더라도, 그 편광 상태 제어 기구에 의해서 원하는 편광 상태로 설정할 수 있기 때문에, 그 광빔을 그 부재에 흡수되기 쉬운 편광 상태에서 조사할 수 있다.
이 경우, 그 광 가이드의 일례는, 중공 화이버이고, 그 편광 상태 제어 기구 의 일례는 편광판이다.
상기의 본 발명에 있어서, 그 광빔은, 예를 들어 RF 여기 도파로형 CO2 레이저에서 발생되는 것이다. 특히, CO2 레이저의 파장 10.6㎛ 의 광은 광학 부재에 흡수되기 쉽기 때문에, 광학 부재를 부분적이며 효율적으로 가열할 수 있다.
또한, 그 노광빔에 의해서 그 제 1 물체 및 그 투영 광학계의 적어도 일부가 비회전 대칭인 광량 분포로 조명되는 경우, 그 노광빔의 조사에 의해 발생하는 그 투영 광학계의 비회전 대칭인 수차를 보정하도록, 그 광빔을 조사해도 된다. 이에 따라서, 그 비회전 대칭인 수차를 억제할 수 있다.
또한, 그 노광빔의 조사량에 기초하여 비회전 대칭인 수차의 발생량을 계산하고, 이 계산 결과에 따라서 그 제광빔을 조사해도 된다. 이에 따라서, 그 광빔의 조사량을 제어할 수 있다.
또한, 본 발명에 의한 디바이스 제조 방법은, 리소그래피 공정을 포함하는 디바이스 제조 방법으로서, 그 리소그래피 공정으로 본 발명의 노광 방법을 사용하여 패턴 (11) 을 감광체 (18) 에 전사하는 것이다. 본 발명의 적용에 의해서, 다이폴 조명이나 소σ조명을 사용할 때의 결상 특성을 향상할 수 있기 때문에, 디바이스를 고정밀도로 제조할 수 있다.
다음으로, 본 발명에 의한 제 1 노광 장치는, 노광빔에 의해 전사용의 패턴이 형성된 제 1 물체 (11) 를 조명하고, 그 노광빔에 의해 그 제 1 물체 및 투영 광학계 (14) 를 통해 제 2 물체 (18) 를 노광하는 노광 장치에 있어서, 그 제 1 물 체 및 그 투영 광학계의 적어도 일부 (32) 에 그 노광빔과 다른 파장역의 광빔 (LBA, LBB) 을 조사하는 조사 기구를 갖고, 그 조사 기구는 그 광빔을 소정 광로를 따라 유도하는 공간 도파 기구 (44A, 44B) 를 포함하는 것이다.
이러한 본 발명에 의하면, 열흡수에 의해서 수차에 큰 영향을 주는 소정의 부재에, 그 공간 도파 기구를 통해 그 광빔을 부분적으로 조사하여, 그 부재를 가열함으로써, 비회전 대칭인 수차 또는 회전 대칭인 고차의 수차를 효율적으로 제어할 수 있다.
이 경우, 그 공간 도파 기구의 일례는, 유리, 세라믹스, 또는 금속으로 이루어지는 중공의 도파관을 포함하는 것이다. 그 도파관의 내면에, 그 광빔을 반사하기 위해서, 금속막 또는 유전체막의 적어도 일방을 포함하는 반사막을 코팅해도 된다.
또, 본 발명에 의한 제 2 노광 장치는, 노광빔에 의해 전사용의 패턴이 형성된 제 1 물체 (11) 를 조명하고, 그 노광빔에 의해 그 제 1 물체 및 투영 광학계 (14) 를 통해 제 2 물체 (18) 를 노광하는 노광 장치에 있어서, 그 제 1 물체 및 그 투영 광학계의 적어도 일부 (32) 에 그 노광빔과 다른 파장성의 광빔 (LBA, LBB) 을 조사하는 조사 기구를 갖고, 그 조사 기구는 그 광빔의 편광 상태를 소정 상태로 설정하는 편광 상태 제어 기구 (51A, 51B) 를 포함하는 것이다.
이러한 본 발명에 의하면, 열 흡수에 의해서 수차에 큰 영향을 주는 소정의 부재에, 그 편광 상태 제어 기구를 통해 그 광빔을 그 부재에 흡수되기 쉬운 편광 상태에서 조사하여, 그 부재를 가열함으로써, 비회전 대칭인 수차 또는 회전 대칭 인 고차의 수차를 효율적으로 제어할 수 있다.
이 경우, 그 편광 상태 제어 기구의 일례는, 위상판을 포함하는 것이다.
다음으로, 본 발명에 의한 제 3 노광 장치는, 노광빔에 의해 전사용의 패턴이 형성된 제 1 물체 (11) 를 조명하고, 그 노광빔에 의해 그 제 1 물체 및 투영 광학계 (14) 를 통해 제 2 물체 (18) 를 노광하는 노광 장치에 있어서, 그 제 1 물체 및 그 투영 광학계의 적어도 일부 (32) 에 그 노광빔과 다른 파장역의 광빔 (LBA, LBB) 을 조사하는 조사 기구를 갖고, 그 조사 기구는 그 광빔을 발생하는 광원 (411A, 411B, 411) 으로부터의 광빔을 이끄는 광 가이드 (72A, 72B, 75B) 와, 이 광 가이드로부터 사출된 광빔의 편광 상태를 소정 상태로 설정하는 편광 상태 제어 기구 (74A,74B) 를 갖는 것이다.
이러한 본 발명에 의하면, 열흡수에 의해서 수차에 큰 영향을 주는 소정의 부재에, 그 광 가이드 및 편광 상태 제어 기구를 통해 그 광빔을 부분적으로 소정의 편광 상태 (예를 들어, 흡수되기 쉬운 편광 상태) 로 조사하여, 그 부재를 가열함으로써 비회전 대칭인 수차 또는 회전 대칭인 고차의 수차를 효율적으로 제어할 수 있다.
이 경우, 일례로서, 그 광 가이드는 중공 화이버이고, 그 편광 상태 제어 기구는 편광판이다.
상기의 본 발명에 있어서, 그 조사 기구는 그 광빔을 발생하는 광원으로서 RF 여기 도파로형 CO2 레이저를 갖고 있어도 된다. 이 경우, 그 RF 여기 도파로 형 CO2 레이저가 복수이어도 된다. 예를 들어, 가열 대상의 부재의 복수의 조사 위치의 각각에 대응하여 CO2 레이저를 배치함으로써, 각 조사 위치를 단시간에 가열할 수 있다.
또한, 그 조사 기구는 그 광빔을 분할하는 제 1 빔 스플리터 (65) 를 갖고 있어도 된다. 이에 따라서, 하나의 광원으로부터의 그 광빔을, 복수의 조사 영역에 동시에 조사할 수 있다.
또한, 그 조사 기구는 그 광빔을 시간적으로 분할하기 위해서, 가동 미러 (57A, 57B) 또는 셔터의 적어도 일방을 갖고 있어도 된다. 이에 따라서, 하나의 광원으로부터의 그 광빔을, 복수의 조사 영역에 시분할적으로 조사할 수 있다.
또한, 그 광빔을 발생하는 광원 (411A, 411B) 의 발광 지속 시간을 제어하는 광원 제어 장치 (412A, 412B) 를 가질 수 있다. 그 발광 지속 시간의 제어로 조사량을 제어할 수 있다.
또한, 그 광빔의 일부를 분기하는 제 2 빔 스플리터 (50A, 50B) 와, 이 제 2 빔 스플리터로 분기된 광을 수광하는 광전 센서 (53A, 53B) 를 갖고, 이 광전 센서에 의해서 그 광빔의 광량의 정보를 구해도 된다. 이와 같이, 가능한 한 그 광빔의 사출구에 가까운 위치에서 그 광빔의 광량을 계측함으로써, 그 광빔의 조사량을 정확히 제어할 수 있다.
또한, 그 광빔의 광원과 그 제 2 빔 스플리터의 사이에 배치된 적어도 하나의 편광 소자 (51A, 51B) 를 갖고 있어도 된다. 이에 따라서, 그 광빔의 편광 상태를 보다 정확히 제어할 수 있는 경우가 있다.
또한, 그 제 2 빔 스플리터와 그 투영 광학계를 구성하는 광학 부재 (32) 의 사이에 배치되어, 그 광빔의 편광 상태를 소정 상태로 설정하는 1/4 파장판 (51A, 51B) 를 갖고 있어도 된다. 그 광빔을 직선 편광 상태에서 그 1/4 파장판에 통과시킴으로써, 그 광학 부재를 원편광 상태에서 조사할 수 있다.
또한, 그 노광빔에 의해서 그 제 1 물체 및 그 투영 광학계의 적어도 일부가 비회전 대칭인 광량 분포로 조명되는 경우, 그 노광빔의 조명에 의해 발생하는 그 투영 광학계의 비회전 대칭인 수차를 보정하도록, 그 조사 기구는 그 광빔을 조사해도 된다. 이에 따라서, 비회전 대칭인 수차가 보정된다.
또한, 그 투영 광학계의 회전 대칭인 수차를 보정하기 위한 수차 보정 기구 (16) 와, 그 조사 기구 및 그 수차 보정 기구의 동작을 제어하여 그 투영 광학계의 수차를 보정하는 제어 장치 (24) 를 또한 가질 수 있다. 그 수차 보정 기구로서는 보정할 수 없는 수차를 그 조사 기구에 의해서 보정할 수 있다.
또한, 본 발명에 의한 디바이스 제조 방법은, 리소그래피 공정을 포함하는 디바이스 제조 방법으로서, 그 리소그래피 공정에서 본 발명의 노광 장치를 사용하여 패턴 (11) 을 감광체 (18) 에 전사하는 것이다.
상기의 본 발명의 설명에 있어서, 각 요소에 부여한 괄호 첨부 부호는, 후술하는 본 발명의 실시형태의 구성에 대응하는 것이지만, 각 부호는 그 요소의 예시에 지나지 않고, 각 요소를 그 실시형태의 구성으로 한정할 의도는 없다.
발명의 효과
본 발명에 의하면, 제 1 물체 (마스크) 및 투영 광학계 중의 적어도 일부의 광학 부재를 통과하는 노광빔의 광량 분포가 비회전 대칭이 되거나, 또는 반경 방향으로 크게 변동하는 경우에, 예를 들어 수차에 영향을 주는 소정의 부분에 노광빔과 다른 광빔을 조사함으로써, 결상 특성 중의 비회전 대칭인 성분, 또는 고차의 성분을 효율적으로 제어할 수 있다. 또한, 공간 도파로 기구 또는 광 가이드 또는 편광 상태 제어 기구를 사용함으로써, 각각 원하는 조사 위치에 용이하게, 또는 흡수되기 쉬운 편광 상태에서 그 광빔을 조사할 수 있다.
또한, 본 발명에 있어서, 투영 광학계의 비회전 대칭인 수차를 보정하도록 그 광빔을 조사하는 경우에는, 투영 광학계의 결상 특성의 변동을 억제할 수 있다.
도면의 간단한 설명
도 1 은 본 발명의 제 1 실시형태의 투영 노광 장치의 개략 구성을 나타내는 일부를 절결한 도면이다.
도 2 는 도 1 중의 결상 특성 보정 기구 (16) 의 구성예를 도시하는 일부를 절결한 도면이다.
도 3 은 (A) 는 X 방향의 L&S 패턴을 나타내는 도면, (B) 는 X 방향의 다이폴 조명시의 투영 광학계의 동공면 상에서의 광량 분포를 나타내는 도면이다.
도 4 는 (A) 는 Y 방향의 L&S 패턴을 나타내는 도면, (B) 는 Y 방향의 다이폴 조명시의 투영 광학계의 동공면 상에서의 광량 분포를 나타내는 도면이다.
도 5 는 X 방향의 다이폴 조명시의 렌즈의 온도 분포를 나타내는 도면이다.
도 6 은 본 발명의 제 1 실시형태의 보정광 조사 기구 (40) 의 구성을 나타 내는 도면이다.
도 7 은 도 6의 도파관 (44A, 44B) 을 따라 투영 광학계 (14) 를 절결한 평면도이다.
도 8 은 본 발명의 제 1 실시형태에 있어서의, X 방향의 다이폴 조명시의 렌즈에 대한 노광광 및 보정광의 조사 영역을 나타내는 평면도이다.
도 9 는 제 1 실시형태의 보정광 조사 기구 (40) 의 변형예를 도시하는 도면이다.
도 10 은 본 발명의 제 2 실시형태의 보정광 조사 기구 (40A) 의 구성을 나타내는 도면이다.
도 11 은 제 2 실시형태의 보정광 조사 기구 (40A) 의 변형예를 도시하는 도면이다.
도 12 는 본 발명의 제 3 실시형태의 보정광 조사 기구 (40B) 의 구성을 나타내는 도면이다.
도 13 은 제 3 실시형태의 보정광 조사 기구 (40B) 의 변형예를 도시하는 도면이다.
도 14 는 도 10 중의 가변 감쇠기 (54A) 의 구성예를 도시하는 도면이다.
(부호의 설명)
1 : 노광 광원
ILS : 조명 광학계
11 : 레티클
14 : 투영 광학계
16 : 결상 특성 보정 기구
18 : 웨이퍼
20 : 웨이퍼 스테이지
24 : 주제어계
25 : 조명계 개구 조리개 부재
32 : 렌즈
40, 40A, 40B : 보정광 조사 기구
412, 412A, 412B : CO2 레이저
43, 43A, 43B : 광검출기
44A, 44B, 44C, 44D : 도파관
45A, 45B, 45C, 45D : 조사 유닛
51A, 51B : 1/4 위상판
53A, 53B : 광검출기
54A, 54B : 가변 감쇠기
57A, 57B : 가변 미러
72A, 72B, 75B : 중공 화이버
74A, 74B : 편광판
발명을 실시하기 위한 최선의 형태
[제 1 실시형태]
이하, 본 발명의 바람직한 제 1 실시형태에 대하여 도 1 ∼도 8 을 참조하여 설명한다.
도 1 은, 본 예의 투영 광학 장치의 개략 구성을 나타내고, 이 도 1 에 있어서, 노광 광원 (1) 으로서는 KrF 엑시머레이저 광원 (파장 247nm) 이 사용되고 있다. 또, 노광 광원으로서는 ArF 엑시머레이저 광원 (파장 193nm), F2 레이저 광원 (파장 157nm), Kr2 레이저 광원 (파장 146nm), Ar2 레이저 광원 (파장 126nm) 등의 자외 레이저 광원, YAG 레이저의 고조파 발생 광원, 고체 레이저 (반도체 레이저 등) 의 고조파 발생 장치, 또는 수은 램프 (i 선 등) 등도 사용할 수 있다.
노광시에 노광 광원 (1) 으로부터 출력된 노광빔으로서의 노광광 (IL) 은, 도시 생략된 빔 정형 광학계 등을 거쳐 단면 형상이 소정 형상으로 정형되어, 옵티컬ㆍ인터그레이터 (유니포마이저 또는 호모지나이저) 로서의 제 1 플라이아이 렌즈 (2) 에 입사되어, 조도 분포가 균일화된다. 그리고, 제 1 플라이아이 렌즈 (2) 로부터 사출된 노광광 (IL) 은, 도시 생략된 릴레이 렌즈 및 진동 미러 (3) 를 거쳐 옵티컬ㆍ인터그레이터로서의 제 2 플라이아이 렌즈 (4) 에 입사되어, 조도 분포가 더욱 균일화된다. 진동 미러 (3) 는, 레이저광인 노광광 (IL) 의 스펙클의 저감, 및 플라이아이 렌즈에 의한 간섭 무늬 저감을 위해 사용된다. 또, 플라이아이 렌즈 (2, 4) 의 대신에, 회절 광학 소자 (DOE: Diffractive Optical Element) 나 내면 반사형 인터그레이터 (로드 렌즈 등) 등을 사용할 수도 있다.
제 2 플라이아이 렌즈 (4) 의 사출측의 초점면 (조명 광학계 (ILS) 의 동공면) 에는, 노광광의 광량 분포 (2차 광원) 를 작은 원형 (소σ조명), 통상의 원형, 복수의 편심 영역 (2극 및 4극 조명), 및 윤대 형상 등 중 어느 하나로 설정하여 조명 조건을 결정하기 위한 조명계 개구 조리개 부재 (25) 가, 구동 모터 (25A) 에 의해서 회전 자유롭게 배치되어 있다. 장치 전체의 동작을 총괄 제어하는 컴퓨터로 이루어지는 주제어계 (24) 가 구동 모터 (25A) 를 통해 조명계 개구 조리개 부재 (25) 의 회전각을 제어함으로써 조명 조건을 설정한다. 도 1 의 상태에서는, 조명계 개구 조리개 부재 (25) 의 복수의 개구 조리개 (σ조리개) 중의, 광축을 중심으로 하여 대칭으로 2개의 원형 개구가 형성된 제 1 다이폴 조명 (2극 조명) 용의 개구 조리개 (26A), 및 이 개구 조리개 (26A) 를 90°회전한 형상의 제 2 다이폴 조명용의 개구 조리개 (26B) 가 나타나 있다. 그리고, 제 2 플라이아이 렌즈 (4) 의 사출측의 초점면에는, 제 1 다이폴 조명용의 개구 조리개 (26A) 가 설치되어 있다.
조명계 개구 조리개 부재 (25) 중의 개구 조리개 (26A) 를 통과한 노광광 (IL) 은, 반사율이 작은 빔 스플리터 (5) 에 입사되고, 빔 스플리터 (5) 에서 반사된 노광광은, 집광 렌즈 (도시 생략) 를 통해 제 1 광전 센서로서의 인터그레이터센서 (6) 에 수광된다. 인터그레이터 센서 (6) 의 검출 신호는, 주제어계 (24) 중의 노광량 제어부 및 결상 특성 연산부에 공급되고, 그 노광량 제어부는 그 검출 신호와 미리 계측되어 있는 빔 스플리터 (5) 로부터 기판으로서의 웨이퍼 (18) 까지의 광학계의 투과율을 사용하여 웨이퍼 (14) 상에서의 노광 에너지를 간접적으로 산출한다. 그 노광량 제어부는, 웨이퍼 (14) 상에서의 적산 노광 에너지가 목표 범위 내에 들도록, 노광 광원 (1) 의 출력을 제어하는 동시에, 필요에 따라 도시 생략된 감광 기구를 사용하여 노광광 (IL) 의 펄스 에너지를 단계적으로 제어한다.
그리고, 빔 스플리터 (5) 를 투과한 노광광 (IL) 은, 도시 생략된 릴레이 렌즈를 거쳐 시야 조리개 (8) 의 개구 상에 입사된다. 시야 조리개 (8) 는, 실제로는 고정 시야 조리개 (고정 블라인드) 및 가동 시야 조리개 (가동 블라인드) 로부터 구성되어 있다. 후자의 가동 시야 조리개는, 마스크로서의 레티클 (11) 의 패턴면 (레티클면) 과 거의 공액인 면에 배치되고, 전자의 고정 시야 조리개는, 그 레티클면과의 공액면에서 약간 디포커스한 면에 배치되어 있다. 고정 시야 조리개는, 레티클 (11) 상의 조명 영역의 형상을 규정하기 위해서 사용된다. 가동 시야 조리개는, 노광 대상의 각 쇼트 영역으로의 주사 노광의 개시시 및 종료시에 불필요한 부분에 노광되지 않도록, 그 조명 영역을 주사 방향으로 닫기 위해서 사용된다. 가동 시야 조리개는, 또한 필요에 따라 조명 영역의 비주사 방향의 중심 및 폭을 규정하기 위해서도 사용된다.
시야 조리개 (8) 의 개구를 통과한 노광광 (IL) 은, 도시 생략된 콘덴서 렌즈, 광로 절곡용의 미러 (9), 및 콘덴서 렌즈 (10) 를 거쳐, 마스크로서의 레티클 (11) 의 패턴면 (하면) 의 조명 영역을 균일한 조도 분포로 조명한다. 시야 조리개 (8; 여기에서는 고정 시야 조리개) 의 개구의 형상은 통상적으로, 일례로서 종횡비가 1:3 내지 1:4 정도의 직사각형이다. 그리고, 그 개구와 거의 공액인 레티클 (11) 상의 조명 영역 형상도 통상적으로는 직사각형이다.
도 1 에 있어서, 노광광 (IL) 을 기초로, 레티클 (11) 의 조명 영역 내의 패턴은, 양측 텔레센트릭한 투영 광학계 (14) 를 통해 투영 배율 β (β 는 1/4, 1/5 등) 로, 기판 (감응 기판) 으로서의 포토레지스트가 도포된 웨이퍼 (18) 상의 하나의 쇼트 영역 상의 노광 영역에 투영된다. 그 노광 영역은, 투영 광학계 (14) 에 관해서 레티클 (11) 상의 조명 영역과 공액인 직사각형의 영역이다. 레티클 (11) 및 웨이퍼 (18) 는 각각 본 발명의 제 1 물체 및 제 2 물체 (감광체) 에 대응하고 있다. 웨이퍼 (18) 는, 예를 들어 반도체 (실리콘 등) 또는 SOI (silicon on insulator) 등의 직경이 200∼300mm 정도인 원판 형상의 기판이다.
노광광 (IL) 의 일부는 웨이퍼 (18) 에서 반사되고, 그 반사광은 투영 광학계(14), 레티클 (11), 콘덴서 렌즈 (10), 미러 (9), 및 시야 조리개 (8) 를 거쳐 빔 스플리터 (5) 로 되돌아가고, 빔 스플리터 (5) 에서 다시 반사된 광이 집광 렌즈 (도시 생략) 를 통해 광전 센서로 이루어지는 반사량 센서 (반사율 모니터; 7) 에서 수광된다. 반사량 센서 (7) 의 검출 신호는 주제어계 (24) 중의 결상 특성 연산부에 공급되고, 결상 특성 연산부는, 인터그레이터 센서 (6) 및 반사량 센서 (7) 의 검출 신호를 사용하여, 레티클 (11) 로부터 투영 광학계 (14) 에 입사되는 노광광 (IL) 의 적산 에너지, 및 웨이퍼 (18) 로 반사되어 투영 광학계 (14) 로 되돌아가는 노광광 (IL) 의 적산 에너지를 산출한다. 또한, 그 결상 특성 연산부에는, 노광 중의 조명 조건 (조명계 개구 조리개의 종류) 의 정보도 공급된다. 또한, 투영 광학계 (14) 의 외부에 기압 및 온도를 계측하기 위한 환경 센서 (23) 가 배치되고, 환경 센서 (23) 의 계측 데이터도 그 결상 특성 연산부에 공급된다. 그 주제어계 (24) 내의 결상 특성 연산부는, 조명 조건, 노광광 (IL) 의 적산 에너지, 및 주위의 기압, 온도 등의 정보를 사용하여, 투영 광학계 (14) 의 결상 특성 중의 회전 대칭인 수차 성분 및 비회전 대칭인 수차 성분의 변동량을 산출한다. 주제어계 (24) 내에는 결상 특성 제어부도 형성되고 있고, 그 수차 성분의 변동량의 산출 결과에 따라, 그 결상 특성 제어부는, 원하는 결상 특성이 항상 얻어지도록 결상 특성의 변동량을 억제한다 (상세한 것은 후술).
노광 광원 (1), 플라이아이 렌즈 (2, 4), 미러 (3, 9) , 조명계 개구 조리개 부재 (25), 시야 조리개 (8), 및 콘덴서 렌즈 (10) 등으로부터 조명 광학계 (ILS) 가 구성되어 있다. 조명 광학계 (ILS) 는 또한 기밀실로서의 도시 생략된 서브 챔버에 덮어져 있다. 노광광 (IL) 에 대한 투과율을 높게 유지하기 위해서, 그 서브 챔버 내 및 투영 광학계 (14) 의 경통 내에는, 불순물을 고도로 제거한 드라이에어 (노광광이 ArF 엑시머레이저인 경우에는 질소 가스, 헬륨 가스 등도 사용된다) 가 공급된다.
또한, 본 예의 투영 광학계 (14) 는 굴절계이고, 투영 광학계 (14) 를 구성하는 복수의 광학 부재는, 광축 (AX) 을 중심으로 하여 회전 대칭인 석영 (노광광이 F2 레이저인 경우에는 형석 등도 사용된다) 으로 이루어지는 복수의 렌즈, 및 석영으로 이루어지는 평판 형상의 수차 보정판 등을 포함하고 있다. 그리고, 투영 광학계 (14) 의 동공면 (PP; 조명 광학계 (ILS) 의 동공면과 공액인 면) 에는 개구 조리개 (15) 가 배치되고, 그 동공면 (PP) 근방에 수차에 영향을 주는 소정의 부재로서의 렌즈 (32) 가 배치되어 있다. 렌즈 (32) 에 노광광 (IL) 과는 다른 파장역의 비회전 대칭의 수차 보정용의 조명광 (광빔) 이 조사된다 (상세한 것은 후술). 또한, 투영 광학계 (14) 에는 회전 대칭의 수차를 보정하기 위한 결상 특성 보정 기구 (16) 가 장착되어 있고, 주제어계 (24) 내의 결상 특성 제어부가, 제어부 (17) 를 통해 결상 특성 보정 기구 (16) 의 동작을 제어한다.
도 2 는, 도 1 중의 결상 특성 보정 기구 (16; 수차 보정 기구) 의 일례를 나타내고, 이 도 2 에 있어서, 투영 광학계 (14) 의 경통 내에서 복수의 광학 부재중에서 선택된 예를 들어 5 장의 렌즈 (L1, L2, L3, L4, L5) 가 각각 3개의 광축 방향으로 독립적으로 신축 자유로운 구동 소자 (27, 28, 29, 30, 31) 를 개재하여유지되어 있다. 렌즈 (L1∼L5) 의 전후에는 고정된 도시 생략된 렌즈나 수차 보정판도 배치되어 있다. 이 경우, 3 개의 구동 소자 (27; 도 2 에서는 2개만이 나타나 있다) 는, 거의 정삼각형의 정점이 되는 위치 관계로 배치되어 있고, 동일하게 다른 3 개씩의 구동 소자 (28∼31) 도 각각 거의 정삼각형의 정점이 되는 위치 관계로 배치되어 있다. 신축 자유로운 구동 소자 (27∼31) 로서는, 예를 들어 피에조 소자와 같은 압전 소자, 자왜(磁歪) 소자, 또는 전동 마이크로미터 등을 사용할 수 있다. 제어부 (17) 가, 주제어계 (24) 내의 결상 특성 제어부에서의 제어 정보에 따라서 3 개씩의 구동 소자 (27∼31) 의 신축량을 독립적으로 제어함으로써, 5장의 렌즈 (L1-L5) 각각의 광축 방향의 위치, 및 광축에 수직 직교하는 2축 주위의 경사각을 독립적으로 제어할 수 있다. 이에 따라서, 투영 광학 계 (14) 의 결상 특성 중의 소정의 회전 대칭인 수차를 보정할 수 있다.
구체적으로, 레티클 또는 웨이퍼에 가까운 위치의 렌즈 L1 또는 L5 의 광축 방향의 위치나 경사각을 제어함으로써, 예를 들어 왜곡 수차 (배율 오차를 포함한다) 등을 보정할 수 있다. 또한, 투영 광학계 (14) 의 동공면에 가까운 위치의 렌즈 (L3) 의 광축 방향의 위치를 제어함으로써, 구면 수차 등을 보정할 수 있다. 또, 도 2 의 구동 대상의 렌즈 (L3) 는, 도 1 의 투영 광학계 (14) 내의 수차 보정용의 조명광이 조사되는 렌즈 (32) 와 동일해도 된다. 이와 같이 투영 광학계 (14) 내의 렌즈 등을 구동하는 기구에 대해서는, 예를 들어 일본 공개특허공보 평4-134813호에도 개시되어 있다. 또한, 투영 광학계 (14) 내의 광학 부재 대신에, 또는 그 광학 부재와 함께, 도 1 의 레티클 (11) 의 광축 방향의 위치를 제어하여, 소정의 회전 대칭인 수차를 보정해도 된다. 또한, 도 1 의 결상 특성 보정 기구 (16) 로서는, 예를 들어 일본 공개특허공보 소60-78454호에 개시되어 있는 바와 같이, 투영 광학계 (14) 내의 소정의 2개의 렌즈 사이의 밀폐된 공간 내의 기체의 압력을 제어하는 기구를 사용해도 된다.
도 1 로 되돌아가, 이하에서는 투영 광학계 (14) 의 광축 (AX) 에 평행하게 Z 축을 취하고, Z 축에 수직한 평면 내에서 주사 노광시의 레티클 (11) 및 웨이퍼 (18) 의 주사 방향 (도 1 의 지면에 수직한 방향) 으로 Y 축을 취하고, 주사 방향에 직교하는 비주사 방향에 X 축을 취하여 설명한다.
먼저, 레티클 (11) 은 레티클 스테이지 (12) 상에 흡착 유지되고, 레티클 스테이지 (12) 는 도시 생략된 레티클 베이스 상에서 Y 방향으로 일정 속도로 이동함 과 함께, 동기 오차를 보정하도록 X 방향, Y 방향, 회전 방향으로 미동하여, 레티클 (11) 의 주사를 실시한다. 레티클 스테이지 (12) 의 X 방향, Y 방향의 위치 및 회전각은, 이 위에 형성된 이동경 (도시 생략) 및 레이저 간섭계 (도시 생략) 에 의해서 계측되고, 이 계측치가 주제어계 (24) 내의 스테이지 제어부에 공급된다. 스테이지 제어부는, 그 계측치 및 각종 제어 정보에 따라서 레티클 스테이지 (12) 의 위치 및 속도를 제어한다. 투영 광학계 (14) 의 상부 측면에는, 레티클 (11) 의 패턴면 (레티클면) 에 비스듬히 투영하고, 그 레티클면으로부터의 반사광을 수광하여 그 슬릿 이미지를 재결상하고, 그 슬릿 이미지의 어긋남 양으로부터 레티클면의 Z 방향으로의 변위를 검출하는 사입사(斜入射) 방식의 오토 포커스 센서 (이하, 「레티클측 AF 센서」라고 한다; 13) 가 배치되어 있다. 레티클측 AF 센서 (13) 에 의한 검출 정보는, 주제어계 (24) 내의 Z 틸트 스테이지 제어부에 공급된다. 또한, 레티클 (11) 의 주변부의 상방에는, 레티클 얼라인먼트용의 레티클 얼라인먼트 현미경 (도시 생략) 이 배치되어 있다.
한편, 웨이퍼 (18) 는, 웨이퍼 홀더 (도시 생략) 를 통해 Z 틸트 스테이지 (19) 상에 흡착 유지되고, Z 틸트 스테이지 (19) 는 웨이퍼 스테이지 (20) 상에 고정되고, 웨이퍼 스테이지 (20) 는 도시 생략된 웨이퍼 베이스 상에서 Y 방향으로 일정 속도로 이동함과 함께, X 방향, Y 방향으로 단계 이동한다. 또한, Z 틸트 스테이지 (19) 는, 웨이퍼 (18) 의 Z 방향의 위치, 및 X 축, Y 축의 주위의 경사각을 제어한다. 웨이퍼 스테이지 (20) 의 X 방향, Y 방향의 위치 및 회전각은, 레이저 간섭계 (도시 생략) 에 의해서 계측되고, 이 계측치가 주제어계 (24) 내의 스테이지 제어부에 공급된다. 그 스테이지 제어부는, 그 계측치 및 각종 제어 정보에 기초하여 웨이퍼 스테이지 (20) 의 위치 및 속도를 제어한다. 투영 광학계 (14) 의 하부 측면에는, 웨이퍼 (18) 의 표면 (웨이퍼면) 에 비스듬히 복수의 슬릿 이미지를 투영하고, 그 웨이퍼면에서 반사된 반사광을 수광하여 그들의 슬릿 이미지를 재결상하고, 그들의 슬릿 이미지의 어긋남 양으로부터 웨이퍼면의 Z 방향으로의 변위 (디포커스량) 및 경사각을 검출하는 사입사 방식의 오토포커스 센서 (이하,「웨이퍼측 AF 센서」라고 한다; 22) 가 배치되어 있다. 웨이퍼측 AF 센서 (22) 에 의한 검출 정보는, 주제어계 (24) 내의 Z 틸트 스테이지 제어부에 공급되고, Z 틸트 스테이지 제어부는, 레티클측 AF 센서 (13) 및 웨이퍼측 AF 센서 (22) 의 검출 정보에 기초하여, 항상 웨이퍼면이 투영 광학계 (14) 의 이미지면에 합초(合焦)되도록, 오토포커스 방식으로 Z 틸트 스테이지 (19) 를 구동한다.
또한, Z 틸트 스테이지 (19) 상의 웨이퍼 (18) 의 가까이에는, 노광광 (IL) 의 노광 영역의 전체를 덮는 수광면을 구비한 광전 센서로 이루어지는 조사량 센서 (21) 가 고정되고, 조사량 센서 (21) 의 검출 신호가 주제어계 (24) 내의 노광량 제어부에 공급된다. 노광 개시 전 또는 정기적으로, 조사량 센서 (21) 의 수광면을 투영 광학계 (14) 의 노광 영역으로 이동한 상태에서 노광광 (IL) 을 조사하여, 조사량 센서 (21) 의 검출 신호를 인터그레이터 센서 (6) 의 검출 신호로 나눔으로써 그 노광량 제어부는 빔 스플리터 (5) 로부터 조사량 센서 (21; 웨이퍼 (18)) 까지의 광학계의 투과율을 산출하여 기억한다.
또한, 웨이퍼 스테이지 (20) 의 상방에는, 웨이퍼 얼라인먼트용의 오프ㆍ액 시스 방식의 얼라인먼트 센서 (도시 생략) 가 배치되어 있고, 상기의 레티클 얼라인먼트 현미경 및 그 얼라인먼트 센서의 검출 결과에 기초하여, 주제어계 (24) 는 레티클 (11) 의 얼라인먼트 및 웨이퍼 (18) 의 얼라인먼트를 실시한다. 노광시에는, 레티클 (11) 상의 조명 영역에 노광광 (IL) 을 조사한 상태에서, 레티클 스테이지 (12) 및 웨이퍼 스테이지 (20) 를 구동하여, 레티클 (11) 과 웨이퍼 (18) 상의 하나의 쇼트 영역을 Y 방향으로 동기 주사하는 동작과, 웨이퍼 스테이지 (20) 를 구동하여 웨이퍼 (18) 를 X 방향, Y 방향으로 단계 이동하는 동작이 반복된다. 이 동작에 의해서, 스텝ㆍ앤드ㆍ스캔 방식으로 웨이퍼 (18) 상의 각 쇼트 영역에 레티클 (11) 의 패턴 이미지가 노광된다.
그런데, 본 예에서는 다이폴 조명을 실시하기 위해서, 도 1 의 조명 광학계 (ILS) 의 동공면에는, X 방향에 대응하는 방향으로 떨어진 2 개의 개구를 가지는 개구 조리개 (26A) 가 배치되어 있다. 이 경우, 레티클 (11) 에 형성되어 있는 주된 전사용의 패턴은, 일례로서 도 3(A) 에 확대하여 나타내는 바와 같이, Y 방향으로 가늘고 긴 라인 패턴을 X 방향 (비주사 방향) 으로 거의 투영 광학계 (14) 의 해상 한계에 가까운 피치로 배열하여 이루어지는 X 방향의 라인ㆍ앤드ㆍ스페이스 패턴 (이하,「L&S 패턴」이라고 한다; 33V) 이다. 이 때, 레티클 (11) 상에는 통상, L&S 패턴 (33V) 보다 큰 배열 피치로 배열 방향이 X 방향 및 Y 방향 (주사 방향) 의 별도의 복수의 L&S 패턴 등도 형성되어 있다.
본 예와 같이, 개구 조리개 (26A) 를 사용하는 X 방향의 다이폴 조명으로서는, 레티클이 없는 것으로 하면, 도 3(B) 에 나타내는 바와 같이, 투영 광학계 (14) 의 동공면 (PP) 에 있어서, 광축 (AX) 을 사이에 두고 X 방향으로 대칭인 2개의 원형 영역 (34) 을 노광광 (IL) 이 조명한다. 또한, 노광광 (IL) 의 광로에 여러 가지의 레티클 패턴이 배치된 경우에도, 통상은 0차 광의 광량이 회절광의 광량에 비교하여 매우 큰 동시에 회절각도 작기 때문에, 노광광 (IL; 결상 광속) 의 대부분은 원형 영역 (34) 또는 그 근방을 통과한다. 또한, 본 예와 같이, 노광광 (IL) 의 광로 중에 도 3(A) 의 레티클 (11) 이 배치되었을 때에는, 해상 한계에 가까운 피치의 L&S 패턴 (33V) 으로부터 ±1차 회절광도 거의 원형 영역 (34) 또는 그 근방을 통과하기 때문에, 그 L&S 패턴 (33V) 의 이미지를 고해상도로 웨이퍼 상에 투영할 수 있다.
이 상태에서는, 도 1 의 투영 광학계 (14) 의 동공면 (PP) 근방의 렌즈 (32) 에 입사되는 노광광 (IL) 의 광량 분포도 거의 도 3(B) 의 광량 분포가 된다. 따라서, 노광을 계속하면, 그 동공면 (PP) 근방의 렌즈 (32) 의 온도 분포는, 도 5 에 나타내는 바와 같이, 광축을 사이에 두고 X 방향으로 형성되는 2 개의 원형 영역 (34A) 에서 가장 높아지고, 그 주변의 영역 (34B) 을 향하여 점차로 낮아지는 분포가 되고, 이 온도 분포에 따라 렌즈 (32) 는 열팽창 (열변형) 함과 함께, 굴절률 분포도 변화된다. 이 결과, 렌즈 (32) 에 있어서 Y 방향으로 열린 광속에 대해서는 굴절력이 증가하여, X 방향으로 열린 광속에 대해서는 굴절력이 저하하기 때문에, 광축 상에서의 비점수차인 센터 어스 (ΔZ) 가 발생한다. 이 센터 어스 (ΔZ) 는, 시간의 경과와 함께 점차로 커져 소정의 값에서 포화된다. 이것은, 렌즈 (32) 의 온도가 포화되는 것에 의한다.
이 상태에서, 레티클 (11) 상에 도 3(A) 의 X 방향의 L&S 패턴 (33V) 외에, Y 방향으로 소정 피치로 배열된 Y 방향의 L&S 패턴이 형성되어 있으면, 가령 그 X 방향의 L&S 패턴 (33V) 의 이미지 면을 웨이퍼면에 맞추면, 그 Y 방향의 L&S 패턴의 이미지에는 디포커스에 의한 흐림이 발생한다.
한편, 도 4(A) 에 확대하여 나타내는 바와 같이, 레티클 (11) 상에 주로 X 방향으로 가늘고 긴 라인 패턴을 Y 방향 (주사 방향) 으로 거의 투영 광학계 (14) 의 해상 한계에 가까운 피치로 배열하여 이루어지는 Y 방향의 L&S 패턴 (33H) 이 형성되어 있는 것으로 한다. 이 경우에는, 도 1 의 조명 광학계 (ILS) 의 동공면에는 개구 조리개 (26A) 를 90°회전시킨 형상의 개구 조리개 (26B) 가 설정된다. 이 개구 조리개 (26B) 를 사용하는 Y 방향의 다이폴 조명에서는, 레티클이 없는 것으로 하면, 도 4(B) 에 나타내는 바와 같이, 투영 광학계 (14) 의 동공면 (PP) 에 있어서, 광축 (AX) 을 사이에 두고 Y 방향으로 대칭인 2개의 원형 영역 (35) 을 노광광 (IL) 이 조명한다. 이 때, 노광광 (IL) 의 광로에 여러 가지 레티클 패턴이 배치되더라도, 통상은 대부분의 노광광 (IL; 결상 광속) 이 원형 영역 (35) 및 그 근방을 통과한다. 그리고, 노광광 (IL) 의 광로 중에 도 4(A) 의 레티클 (11) 이 배치되면, 해상 한계에 가까운 피치의 L&S 패턴 (33H) 에서의 ±1차 회절광도 거의 원형 영역 (35) 또는 그 근방을 통과하기 때문에, 그 L&S 패턴 (33H) 의 이미지는 고해상도로 웨이퍼 상에 투영된다.
이 경우, 도 1 의 투영 광학계 (14) 의 동공면 (PP) 근방의 렌즈 (32) 에 입사되는 노광광 (IL) 의 광량 분포도 거의 도 4(B) 의 광량 분포가 된다. 따라 서, 노광을 계속하면, 그 렌즈 (32) 의 온도 분포는, 거의 도 5 의 분포를 90° 회전한 분포가 되고, 투영 광학계 (14) 에는 도 3(B) 의 다이폴 조명을 사용하는 경우와 역부호로 거의 동일한 크기의 센터 어스가 발생한다. 또, 본 예에서는, 레티클 (11) 이 X 방향 (비주사 방향) 을 길이 방향으로 하는 직사각형의 조명 영역에서 조명되어 있기 때문에, 그 조명 영역에 기인하는 센터 어스도 도 3(B) 의 다이폴 조명을 사용하는 경우와 동일한 부호로 항상 약간 발생하고 있다. 이에 대하여, 도 4(B) 의 다이폴 조명에서 발생하는 센터 어스는, 그 직사각형의 조명 영역에 기인하는 센터 어스와는 부호가 반대가 되고, 전체로서의 센터 어스는 도 3(B) 의 다이폴 조명을 사용하는 경우보다 약간 작아진다.
이들의 센터 어스는, 비회전 대칭인 수차임과 함께, 다이폴 조명에 의해서 다른 비회전 대칭인 수차도 발생하지만, 이들의 비회전 대칭인 수차는, 도 1 의 결상 특성 보정 기구 (16) 에서는 실질적으로 보정할 수 없다. 또한, 다른 비회전 대칭인 조명 조건을 사용한 경우에도, 비회전 대칭인 수차가 발생한다. 또한, 소σ조명을 실시하는 경우와 같이, 조명 광학계의 동공면 (투영 광학계 (14) 의 동공면) 에서의 노광광 (IL) 의 광량 분포가 반경 방향으로 크게 변화하는 경우에는, 결상 특성 보정 기구 (16) 로서는 양호하게 보정할 수 없는 고차의 구면 수차 등의 고차의 회전 대칭인 수차가 발생할 우려도 있다. 그래서, 본 예에서는, 그 비회전 대칭인 수차 또는 고차의 회전대칭인 수차를 보정하기 위해서, 도 1 에 있어서, 투영 광학계 (14) 의 동공면 (PP) 부근의 렌즈 (32) 에 노광광 (IL; 노광빔) 과는 다른 파장역의 수차 보정용의 조명광 (광빔에 대응하고, 이하,「보정광 」이라 한다; LBA, LBB) 을 조사한다. 이하, 그 보정광 (LBA, LBB) 을 렌즈 (32) 에 조사하기 위한 보정 광조사 기구 (40) ; 광빔을 조사하는 조사 기구) 의 구성, 및 그 수차의 보정 동작에 대해서 상세히 설명한다.
[보정광 조사 기구의 설명]
본 예에서는, 보정광 (LBA, LBB) 으로서, 웨이퍼 (18) 에 도포된 포토레지스트를 거의 감광하지 않는 파장역의 광을 사용한다. 일례로서, 보정광 (LBA, LBB) 으로서 탄산 가스 레이저 (CO2 레이저) 로부터 발광되는 예를 들어 파장 10.6㎛ 의 적외광을 사용한다. 이 파장 10.6㎛ 의 적외광은, 석영의 흡수성이 높고, 투영 광학계 (14) 중의 1 장의 렌즈에 의해 거의 모두 (바람직하게는 90% 이상) 흡수되기 때문에, 다른 렌즈에 대하여 영향을 주지 않고 수차를 제어하기 때문에 사용하기 쉽다는 이점이 있다. 구체적으로, 본 예의 렌즈 (32) 에 조사되는 보정광 (LB) 은, 90% 이상이 흡수되도록 설정되어 있다.
또한, 본 예에서는 그 CO2 레이저로서, RF (Radio Frequency) 여기 도파로형 CO2 레이저를 사용한다. RF 여기 도파로형 CO2 레이저는, 라디오 주파수성의 방전 여기를 사용함으로써, 종래의 직류 방전 여기형 CO2 레이저에 비교하여 소형 및 견고화가 가능하고, 사용하기 쉽다는 이점이 있다. 또한, RF 여기 도파로형 CO2 레이저는, 일반적으로는 연속 발진 (CW) 이지만, 이 레이저의 출력 (보정광의 조사량) 의 제어로서는, 발진 시간을 그 중지 시간에 대하여 제어하는 이른바 듀티비 (Duty ratio) 제어를 사용할 수 있다. 또한, 일반적으로 레이저 광원으로부터 사출되는 레이저광의 편광 상태는 직선 편광이고, 본 예의 보정광 (LBA, LBB) 도 그 CO2 레이저로부터 사출된 직후는 직선편광이다. 또, 보정광 (LBA, LBB) 으로서는, 그 외에 YAG 레이저 등의 고체 레이저로부터 사출되는 파장 1㎛ 정도의 근적외광, 또는 반도체 레이저로부터 사출되는 파장 수㎛ 정도의 적외광 등도 사용할 수 있다.
도 1 에 간략화하여 나타난 보정광 조사 기구 (40) 에 있어서, 수차 보정시에, CO2 레이저를 포함하는 광원계 (41) 로부터 사출된 파장 10.6㎛ 의 직선편광의 레이저광으로 이루어지는 보정광 (LB) 은, 반사율이 작은 빔 스플리터 (42) 에 입사되고, 빔 스플리터 (42) 를 투과한 보정광은, 도시 생략된 송광(送光) 광학계를 거쳐 조사 유닛 (45A) 에 입사된다. 광원계 (41) 에 있어서의 발광 타이밍 및 출력은, 주제어계 (6) 내의 보정광 제어부에 의해서 제어된다. 그리고, 조사 유닛 (45A) 을 거친 보정광 (LB) 은 투영 광학계 (14) 의 경통을 관통하도록 배치된 공간 도파 기구로서의 도파관 (44A) 내를 통과하여, 보정광 (LBA) 으로서 비스듬하게 렌즈 (32) 에 조사된다.
한편, 빔 스플리터 (42) 에서 반사된 일부의 보정광은, 광검출기 (43; 광전 센서) 로 수광되고, 광검출기 (43) 의 검출 신호가 광원계 (41) 에 피드백된다. 또한, 본 예에서는 빔 스플리터 (42) 를 끼워 광검출기 (43) 에 대향하도록 반도체레이저 광원 (61; laser diode) 이 배치되고, 반도체 레이저 광원 (61) 으로부터 사출된 파장 670nm 의 가시광의 레이저광 (SL) 도 빔 스플리터 (42) 에 조사된다. 조사된 레이저광 (SL) 의 일부는, 빔 스플리터 (42) 에서 반사되어 보정광 (LB) 과 동축으로 합성된 후, 송광 광학계 (도시 생략), 조사 니트 (45A), 및 도파관 (44A) 을 통해 보정광 (LBA) 과 동시에 렌즈 (32) 에 조사된다. 이 경우, 예를 들어 보정광 조사 기구 (40) 의 조립 조정시나 메인터넌스시 등에, 가시역의 레이저광 (SL) 은 적외역의 보정광 (LBA) 의 광축 등을 조정하기 위한 가이드광으로서 사용된다. 따라서, 통상의 노광시에 렌즈 (32) 에 보정광 (LBA) 을 조사할 때에는, 반도체 레이저 광원 (61) 은 발광을 정지하고 있고, 레이저광 (SL) 은 조사되지 않는다. 이와 같이 레이저광 (SL) 은, 수차 보정시에는 사용되지 않기 때문에, 도 1 이외에서는 도시 생략하고 있다.
또한, 광축 (AX) 을 사이에 두고 도파관 (44A) 과 거의 대칭으로 도파관 (44B) 이 배치되어 있고, 도시 생략된 광원계 및 송광 광학계로부터 공급된 보정광이, 조사 유닛 (45B) 및 도파관 (44B) 을 통해 보정광 (LBB) 으로서 렌즈 (32) 에 조사된다. 또한, 실제로는 광축 (AX) 을 Y 방향으로 사이에 두고 별도의 1 쌍의 도파관이 배치되고, 이들의 도파관으로부터도 렌즈 (32) 에 대하여 각각 보정광이 조사되도록 구성되어 있다 (상세한 것은 후술).
다음으로, 도 6 은 도 1 의 보정광 조사 기구 (40) 의 상세한 구성을 나타내고, 이 도 6 에 있어서, 도 1 의 광원계 (41) 는, RF 여기 도파로형의 CO2 레이저 (411A) 및 레이저 전원 (412A) 으로부터 구성되고, 도 1 의 빔 스플리터 (42) 및 광검출기 (43) 는 각각 빔 스플리터 (42A) 및 광검출기 (43A) 에 대응하고 있다. 도 6 에 있어서, CO2 레이저 (411A) 로부터 사출된 직선 편광의 보정광 (LB) 의 일부는, 빔 스플리터 (42A) 에서 분기되어 광검출기 (43A) 에 수광되고, 이 검출 신호가 레이저 전원 (412A) 에 피드백된다. 빔 스플리터 (42A) 를 투과한 보정광 (LB) 은, 4 장의 미러 (46A, 47A, 48A, 49A) 에서 순서대로 반사되어 조사 유닛 (45A) 에 입사된다. 4 장의 미러 (46A∼49A) 로부터 송광 광학계가 구성되어 있다. 본 예의 송광 광학계는 반사계이기 때문에, 보정광 (LB) 의 편광 상태는 직선 편광이 유지된다.
조사 유닛 (45A) 에 있어서, 입사된 보정광 (LB) 은 반사율이 작은 빔 스플리터 (50A; 제 2 빔 스플리터) 에 입사되고, 빔 스플리터 (50A) 에서 반사되어 분기된 보정광은 광검출기 (53A; 광전 센서) 로 수광되고, 이 검출 신호가 레이저 전원 (412A) 에 피드팩된다. 레이저 전원 (412A) 은, 광검출기 (43A, 53A) 의 검출 신호 및 도 1 의 주제어계 (24) 내의 보정광 제어부에서의 제어 정보에 따라서, CO2 레이저 (411A) 의 발광 타이밍 및 출력(조사량) 을 제어한다. 이 경우, 광검출기 (53A) 에서의 수광량 (검출 신호) 으로부터, 도파관 (44A) 으로부터 사출되는 보정광 (LBA) 의 광량 (예를 들어, 조도) 을 계산하기 위한 환산 계수는 미리 고정밀도로 요구되어, 레이저 전원 (412A) 내의 기억부에 기억되어 있다. 그 보정광 제어부에서는, CO2 레이저 (411A) 의 발광 타이밍 및 렌즈 (32) 상에서의 광량 (또는 조사량) 이 지시된다. 또한, 광검출기 (43A) 로부터의 검출 신호는, CO2 레이저 (411A) 의 발진 상태의 감시, 및 빔 스플리터 (42A) 로부터 빔 스플리터 (50A) 까지의 광학 부품의 이상 검출를 위해 이용된다.
빔 스플리터 (50A) 를 투과한 직선 편광의 보정광 (LB) 은, 편광 상태 제어 기구로서의 위상판에 대응하는 1/4 파장판 (51A) 을 통과하여 원편광으로 변환된 후, 집광 렌즈 (52A) 에 의해서 중공의 도파관 (44A) 의 입사구에 집광된다. 도파관 (44A) 은, 일례로서 유리, 세라믹스, 또는 금속으로 이루어지는 단면 내면이 원형인 세관의 내벽에, 보정광 (LB; CO2 레이저광) 의 파장에서 반사율이 높은 물질을 코팅한 것이다. 도파관 (44A) 의 내경은, 일례로서 0.2 내지 2mm 정도이다. 마찬가지로, 미러 (46A∼49A) 의 반사면에도, 보정광 (LB) 의 파장에서 반사율이 높은 반사막이 코팅되어 있다. 본 예에서는 도 1 을 참조하여 설명한 바와 같이, 보정광 (LB) 에 대한 가이드광으로서 가시역의 레이저광 (SL) 도 사용되고 있다. 그래서, 미러 (46A∼49A) 의 반사면 및 도파관 (44A) 의 내면에는, 보정광 (LB) 및 레이저광 (SL; 가이드광) 의 양방의 파장에서 반사율이 높은 코팅이 실시되고 있다.
중공의 도파관 (44A) 은, 투영 광학계 (14) 의 경통을 뚫고 들어가, 투영 광학계 (14) 의 내부의 렌즈 (32) 의 경사 상방에 이르고 있다. 그리고, 도파관 (44A) 내를 내면 반사에 의해서 전해진 보정광 (LB) 은, 보정광 (LBA) 으로서 렌즈 (32) 의 표면에 비스듬히 직접 입사된다. 이 경우, 1/4 파장판 (51A) 에 의해서, 도파관 (44A) 에 입사되는 보정광 (LB) 은 원편광으로 되어 있기 때문에, 도파 관 (44A) 으로부터 렌즈 (32) 에 조사되는 보정광 (LBA) 도 안정적인 원편광이다. 일반적으로, 렌즈 (32) 등의 광학 렌즈를 구성하는 재료는 유전체이지만, 유전체의 반사율은 입사광의 편광 특성에 의존한다. 그리고, 도파관 (44A) 을 출사한 편광 특성의 안정화된 보정광 (LBA) 은, 안정적으로 렌즈 (32) 에 흡수되어, 렌즈 (32) 를 부분적으로 가열한다. 또, 도파관 (44A) 내에서의 편광 특성이 안정되어 있는 것이면, 1/4 파장판 (51A) 대신에 1/2 파장판도 사용할 수 있다. 이 경우에는, 도파관 (44A) 에서 출사되는 보정광 (LBA) 이, 렌즈 (32) 에 유효하게 흡수되는 편광 상태의 비율이 최대가 되도록, 그 1/2 파장판의 결정 방향을 정하면된다.
도 6 에 있어서, 본 예에서는, 렌즈 (32) 에 보정광 (LBA) 을 도파관 (44A) 으로부터 조사하기 위한 광학계 (CO2 레이저 (411A)∼집광 렌즈(52A)) 와 병렬이고 또한 독립적으로 제어 가능한 상태에서, 렌즈 (32) 의 별도의 영역에 보정광 (LBB) 을 도파관 (44B) 으로부터 조사하기 위한 광학계가 배치되어 있다. 즉, CO2 레이저 (411A), 빔 스플리터 (42A), 레이저 전원 (412A), 광검출기 (43A), 미러 (46A∼49A), 조사 유닛 (45A; 빔 스플리터 (50A), 1/4 파장판 (51A) 및 집광 렌즈 (52A)), 광검출기 (53A), 그리고 도파관 (44A) 과 거의 대칭으로, CO2 레이저 (411B), 빔 스플리터 (42B), 레이저 전원 (412B), 광검출기 (43B), 미러 (46B∼49B; 송광 광학계), 조사 유닛 (45B; 빔 스플리터 (50B), 1/4 파장판 (51B) 및 집광 렌즈 (52B), 광검출기 (53B) 그리고 도파관 (44B) 이 배치되어 있다. 그리 고, CO2 레이저 (411B) 에서 사출된 직선 편광의 보정광 (LB) 은, 도파관 (44B) 을 통해 안정적인 원편광의 보정광 (LBB) 으로서 렌즈 (32) 에 조사된다.
도 7 은, 도 6 의 도파관 (44A, 44B) 의 부분으로 투영 광학계 (14) 를 절결한 평면도이고, 이 도 7 에 있어서, 광축 (AX) 을 사이에 두고 X 방향으로 형성되는 1쌍의 중공의 도파관 (44A 및 44B) 의 사출구가 투영 광학계 (PL) 의 경통을 통하여 배치되어 있다. 또한, 광축 (AX) 을 사이에 두고 Y 방향으로 형성되는, 별도의 1 쌍의 중공의 도파관 (44C 및 44D) 의 사출구가 투영 광학계 (PL) 의 경통을 통해 배치되어 있다. 또한, 도파관 (44C 및 44D) 의 입사구는 각각 조사 유닛 (45A) 과 동일 구성의 조사 유닛 (45C 및 45D) 에 연결되고, 조사 유닛 (45C 및 45D) 에는 각각 도 6 의 CO2 레이저 (411A) 로부터 미러 (48A) 까지의 광학계와 동일한 별도의 1 쌍의 광학계로부터 미러 (49C 및 49D) 를 통해 보정광이 공급된다. 이 경우, 도파관 (44A 및 44B) 으로부터의 보정광 (LBA 및 LBB) 은, 각각 렌즈 (32) 상의 광축 (AX) 을 사이에 두고 X 방향으로 형성되는 2 개의 거의 원형의 영역 (63A 및 63B) 에 조사된다. 그리고, 도파관 (44C 및 44D) 으로부터의 보정광 (LBC 및 LBD) 은, 각각 렌즈 (32) 상의 광축 (AX) 을 사이에 두고 Y 방향으로 형성되는 2개의 거의 원형의 영역 (63C 및 63D) 에 조사된다.
즉, 렌즈 (32) 에 대해서는, 광축 (AX) 을 중심으로 하여 ±X 방향의 2 개소및 ±Y 방향의 2 개소의 합계 4 개소의 영역 (63A∼63D) 에, 선택적으로 원하는 타이밍으로, 그리고 각각 원하는 조사량 (조사 시간) 으로 보정광 (LBA-LBD) 을 조사 할 수 있도록 구성되어 있다. 이 경우, 2개의 조사 유닛 (45A 및 45D) 은 근접하여 배치되고, 조사 유닛 (45A, 45D) 으로부터의 도파관 (44A, 44D) 은, 투영 광학계 (14) 의 경통을 따라 완만하게 휘어져 배치되어 있다. 마찬가지로, 별도의 2 개의 조사 유닛 (45B 및 45C) 도 근접하여 배치되고, 조사 유닛 (45B, 45C) 으로부터의 도파관 (44B, 44C) 도 투영 광학계 (14) 의 경통을 따라 완만하게 휘어져 배치되어 있다. 4 개의 도파관 (44A, 44B, 44C, 44D) 의 곡률 반경 (R) 의 최소치는, 각각 내부를 통과하는 보정광의 투과율이 거의 저하하지 않을 정도의 값 (예를 들어, 30mm 정도) 이상이 되도록 되어 있다. 이에 따라서, 투영 광학계 (14) 의 경통 주위에, 보정광 (LBA∼LBD) 을 조사하기 위한 광학계를 컴팩트하게 배치할 수 있다.
또, 도 6 에 있어서, 1/4 파장판 (51A, 51B) 에 의해서 얻어지는 보정광 (LBA, LBB) 중의 원편광 상태의 비율을 높이기 위해서, 예를 들어 미러 (49A, 49B) 와 1/4 파장판 (51A, 51B) 사이에, 1/4 파장판 (51A, 51B) 에 입사되는 보정광을 보다 완전한 직선편광으로 하기 위한 편광판을 배치해도 된다.
또한, 본 예에서는 4 개의 도파관 (44A∼44D) 에 공급되는 보정광은, 서로 독립된 광학계에서 발생되어 있지만, 공통된 1 개의 레이저 광원으로부터 사출된 레이저광으로부터 분기된 4개의 광을 병렬로 그들 4 개의 도파관 (44A∼44D) 에 공급해도 된다.
또한, 보다 수차 보정을 고정밀도로 실시하기 위해서, 예를 들어 광축 (AX) 을 중심으로서 거의 동등 각도 간격의 8개소 이상의 영역에서, 렌즈 (32) 에 대하 여 선택적으로 보정광을 조사할 수 있도록 구성해도 된다.
[비회전 대칭인 조명 조건 등에서의 보정광의 조사 방법]
다음으로, 비회전 대칭인 조명 조건에서의 보정광의 조사 방법에 대해서, 다이폴 조명의 경우에 발생하는 센터 어스를 보정하는 경우를 예로 들어 설명한다. 본 예에서는, X 방향의 다이폴 조명이 실시되기 때문에, 도 3(B) 에 나타내는 바와 같이, 투영 광학계 (14) 의 동공면 (PP) 상에서 광축 (AX) 을 사이에 두고 X 방향으로 형성되는 2 개의 원형 영역 (34) 에 노광광 (IL) 이 조사된다.
도 8 은, 그 투영 광학계 (14) 의 동공면 (PP) 근방의 렌즈 (32) 를 나타내는 평면도이고, 이 도 8 에 있어서, 렌즈 (32) 상의 광축 (AX) 을 X 방향에 대칭이 되도록 오게 하는 영역 (34A) 및 그 근방의 영역에 노광광 (IL) 이 조사된다. 본 예에서는, 거의 그 영역 (34A) 을 광축 (AX) 주위에 90°회전한 영역인, 렌즈 (32) 상의 1 쌍의 거의 원형의 영역 (63C 및 63D) 에 각각 도 7 의 도파관 (44C 및 44D) 을 통해 보정광 (LBC 및 LBD) 을 조사한다.
노광광 (IL) 의 조사 영역을 90°회전한 영역을 보정광 (LBC, LBD) 으로 조사함으로써, 렌즈 (32) 의 온도 분포는 영역 (34A) 및 영역 (63C, 63D) 에서 높아지고, 그로부터 멀어짐에 따라 점차 낮아지는 분포가 된다. 이 결과, 노광광 (IL) 만을 조명한 경우의 렌즈 (32) 의 변형과 비교하여, 노광광 (IL) 및 보정광 (LBC, LBD) 을 조사한 본 예의 렌즈 (32) 의 변형 상태는, 비주사 방향 및 주사 방향에서 닮은 상태가 되기 때문에, X 방향 및 Y 방향으로 열린 광속에 대한 포커스 위치는 서로가 거의 동일해져, 센터 어스는 거의 발생하지 않게 된다. 그에 따 라서, 투영 광학계 (14) 의 결상 특성이 향상되고, 레티클 (11) 전체의 패턴이 고정밀도로 웨이퍼 (18) 상에 전사된다.
이 경우의, 보정광 (LBC, LBD) 의 조사량 (도즈) 및 조사 타이밍은, 일례로서 다음과 같이 정할 수 있다. 즉, 도 1 의 주제어계 (24) 내의 결상 특성 연산부는, 노광광 (IL) 의 적산 에너지의 정보 및 조명 광학계 (ILS) 중의 개구 조리개 형상으로부터, 도 8 의 렌즈 (32) 상의 영역 (34A) 및 그 근방의 영역을 통과하는 노광광 (IL) 에 의해서, 렌즈 (32) 에 축적되는 열에너지량을 구할 수 있다. 그래서, 가장 간단한 제어로서는, 그 결상 특성 연산부는 그 영역 (34A) 과 함께, 전체로서 회전 대칭의 영역을 구성하는 영역 (63C, 63D) 에서의 보정광 (LBC, LBD) 의 조사량을, 그 노광광 (IL) 에 의한 열에너지와 거의 동일하게 설정하고, 이 정보를 주제어계 (24) 내의 보정광 제어부에 공급한다. 이 보정광 조사부에서는, 예를 들어 보정광 (LBA∼LBD) 의 렌즈 (32) 에 의한 흡수율 정보를 사용하여, 보정광 (LBC, LBD) 의 조사량을 산출하고, 이 조사량 및 조사 타이밍 정보를 보정광 조사 기구 (40) 내의 대응하는 레이저 전원에 공급한다. 레이저 전원에서는, 대응하는 CO2 레이저에 소정의 파워로 발광하게 함과 함께, 그 조사 시간을 조사량/평균 파워로 설정한다. 그 평균 파워란, 조사 시간 중의 평균적인 파워이고, 일례로서 그 평균 파워가 안정되도록 제어된다. 이 제어를, 「평균 파워 관리」라고도 부를 수 있다. 이에 따라서, 보정광 (LBC, LBD) 의 조사량이 적정히 제어된다.
또한, 그 조사 타이밍으로서는, 예를 들어 (1) 노광광 (IL) 의 조사와 동일한 타이밍, (2) 웨이퍼 스테이지 (20) 의 단계 이동시, 또는 (3) 비대칭 수차가 소정의 허용 범위를 초과하는 것으로 판정되는 시점 등을 생각할 수 있다.
또, 보정광을 조사하는 렌즈는, 본 예의 렌즈 (32) 와 같이 조명 광학계 (ILS) 의 동공면과 공액인 투영 광학계 (14) 의 동공면의 근방의 렌즈로 하면, 센터 어스의 보정 효과가 커진다. 이 때, 동공면 근방의 복수의 렌즈에 보정광을 조사해도 된다. 또한, 조사 대상의 광학 부재 상에서, 노광광 및 보정광을 합친 조사 영역이 가능한 한 회전대칭에 가까운 쪽이 효과적이다. 다만, 투영 광학계 (14) 중의 어떤 위치의 광학 부재 (렌즈 등) 에 보정광을 조사하더라도, 그 조사량을 제어함으로써, 거의 원하는 범위로 센터 어스의 보정 효과를 얻을 수 있다. 또한, 본 예와 같이 노광광과 함께 보정광을 조사함으로써, 센터 어스 이외의 비회전 대칭인 수차도 감소한다.
또한, 다이폴 조명과 같은 비회전 대칭인 조명에 의해서 발생하는 비회전 대칭인 수차를 보정하는 경우 외에, 예를 들어 투영 광학계 (14) 의 동공면 상에서 반경 방향으로 광량 분포가 국소적으로 크게 변동하는 조명 조건으로 노광을 실시할 때, 고차의 구면 수차 등의 고차의 회전 대칭인 수차가 발생하는 경우에도, 본 예와 같이 조사함으로써, 그 고차의 회전 대칭인 수차를 감소할 수 있다. 일례로서, 소σ조명을 실시하는 경우에는, 도 7 에 있어서, 렌즈 (32) 상에서 광축 (AX) 으로부터 반경 방향으로 떨어진 4 개의 영역 (63A-63D) 에 보정광 (LBA∼LBD) 을 조사해도 된다. 이에 따라서, 투영 광학계 (14) 의 동공면 근방에 있어서, 반경 방향의 광량 분포의 변동량이 작아지므로, 고차의 구면 수차 등의 발생이 억제되어, 양호한 결상 특성이 유지된다.
또한, 예를 들어 전사하는 패턴에 의해서, 시야 조리개의 설정에 의해서, 예를 들어 도 1 의 레티클 (11) 상의 -X 방향의 단부의 영역에만 노광광 (IL) 이 조사되는 경우에도, 그 조명은 크게 비회전 대칭이 된다. 이러한 경우에 대처하기 위해서는, 투영 광학계 (14) 의 레티클 (11) 측의 광학 부재 또는 레티클 (11) 자체를 보정광의 조사 대상의 소정의 부재로서, 이 소정 부재의 +X 방향의 단부에 보정광을 조사해도 된다. 즉, 보정광 (광빔) 의 조사 대상으로서는, 투영 광학계 (14) 내의 임의의 1 개 또는 복수의 광학 부재뿐만 아니라, 레티클 (11) 자체도 가능하다.
또한, 도 6 에 있어서, 렌즈 (32) 의 주위에 4 개소 또는 8 개소 등의 등각도 간격으로 예를 들어 서미스터 등의 온도 센서를 형성해두고, 이들 온도 센서의 계측치에 따라서 보정광 (LBA∼LBD) 의 조사량을 제어해도 된다.
또한, 보정광이 조사되는 광학 부재, 그리고 광학 부재 상에서의 보정광의 조사 영역의 수, 위치, 형상, 및 사이즈는 그 보정광의 조사에 의해서 조정되는 수차의 종류나 그 수차의 허용치에 따라 정할 수 있다.
[제 1 실시형태의 변형예]
다음으로, 제 1 실시형태의 변형예에 대해서 도 9 를 참조하여 설명한다. 도 9 는 도 6 의 제 1 실시형태의 보정광 조사 기구 (40) 의 변형예를 나타내고, 이 도 6 에 대응하는 부분에 동일 부호를 부여하여 나타내는 도 9 에 있어서, RF 여기 도파로형의 CO2 레이저 (411A) 로부터 사출된 직선 편광의 보정광 (LB) 의 일부는, 빔 스플리터 (42A) 에서 분기되어 광검출기 (43A) 에 수광되고, 이 검출 신호가 레이저 전원 (412A) 에 피드백된다. 빔 스플리터 (42A) 를 투과한 보정광 (LB) 은, 집광 렌즈 (71A) 를 통해 광 가이드로서의 중공 화이버 (72A) 의 일단에 입사되고, 중공 화이버 (72A) 내를 전파한 보정광 (LB) 은 조사 유닛 (45A) 에 입사된다. 중공 화이버 (72A) 는, 세라믹스 또는 금속의 세관으로 이루어지고, 그 내벽에 보정광 (LB) 의 파장에서 반사율이 높은 물질을 코팅한 것이다. 광 전달의 효율을 높이기 위해서, 필요에 따라 중공 화이버 (72A) 의 세관의 내벽에는 유전체막이 형성되는 것이 바람직하다. 또한, 본 예에서는, 도 1 의 반도체 레이저 광원 (61) 으로부터 사출된 파장 670nm 의 가시광의 레이저광 (SL) 도 보정광 (LB) 과 함께 렌즈 (32) 에 조사되기 때문에, 중공 화이버 (72A) 내의 반사막은 보정광 (LB) 및 그 레이저광 (SL; 가이드광) 의 2 개의 파장에서 반사율이 높아지도록 형성되어 있다. 또, 광 가이드로서는, 그 중공 화이버 (72A) 대신에, 통상의 광섬유 등도 사용할 수 있다.
이 변형예의 조사 유닛 (45A) 의 전단부에는, 콜리메터 렌즈 (73A) 및 편광 상태 제어 기구로서의 편광판 (74A) 이 설치되어 있다. 편광판 (74A) 으로서는, 입사되는 광속에 대한 입사각이 브루스터각으로 된 평판이 사용되고, 그 편광판 (74A) 을 투과한 광속의 편광 상태는, 거의 P 편광 성분으로 이루어지는 직선 편광이 된다. 단, 편광판 (74A) 으로는, 그 밖에 소정 방향으로 편광된 직선 편광만을 통과시키는 편광 프리즘 (글랜ㆍ톰슨 프리즘 등) 이나 편광 필터도 사용할 수 있다.
중공 화이버 (72A) 로부터 조사 유닛 (45A) 에 입사된 보정광 (LB) 은, 콜리메터 렌즈 (73A) 에 따라서 거의 평행 광속으로 변환된 후, 편광판 (74A) 을 통과하여 거의 직선 편광의 광이 되어 빔 스플리터 (50A; 제 2 빔 스플리터) 에 입사된다. 집광 렌즈 (71A), 중공 화이버 (72A), 및 편광판 (73A) 으로부터 송광 광학계가 구성되어 있다. 본 예의 송광 광학계는, 중공 화이버 (72A) 내를 전파하는 보정광 (LB) 의 편광 상태가 점차 변화될 우려가 있다. 그래서, 중공 화이버 (72A) 를 통과한 보정광 (LB) 의 편광 상태를 직선 편광으로 하기 위해서, 편광판 (74A) 이 형성되어 있다. 또, 편광판 (74A) 으로부터는, 조사 유닛 (45A) 내를 통과해 가는 편광 성분 이외의 편광 성분은 외부로 사출된다. 이와 같이 외부로 사출되는 광은, 예를 들어 도파관 (44A) 과 동일한 구조의 도파관 (도시 생략) 을 사용하여 노광에 지장이 없는 위치까지 오게하는 것이 바람직하다.
도 9 의 조사 유닛 (45A) 에 있어서, 빔 스플리터 (50A) 에서 반사되어 분기된 보정광은 광검출기 (53A; 광전 센서) 에 수광되고, 이 검출 신호가 레이저 전원 (412A) 에 피드백된다. 빔 스플리터 (50A) 를 투과한 직선 편광의 보정광 (LB) 은, 편광 상태 제어 기구로서의 위상판에 대응하는 1/4 파장판 (51A) 을 통과하여 원편광으로 변환된 후, 집광 렌즈 (52A) 에 의해서 중공의 도파관 (44A) 의 입사구에 집광된다. 그리고, 도파관 (44A) 내를 내면 반사에 의해서 전달된 보정광 (LB) 은, 보정광 (LBA) 으로서 투영 광학계 (14) 내의 렌즈 (32) 의 표면에 비스듬 하게 직접 입사된다. 이 경우, 1/4 파장판 (51A) 에 의해서, 도파관 (44A) 에 입사되는 보정광 (LB) 은 원편광으로 되어 있기 때문에, 도파관 (44A) 으로부터 렌즈 (32) 에 조사되는 보정광 (LBA) 도 거의 안정적인 원편광이다. 그리고, 도파관 (44A) 을 출사한 편광 특성의 안정화된 보정광 (LBA) 은, 안정적으로 렌즈 (32) 에 흡수되고, 렌즈 (32) 를 부분적으로 가열한다.
도 9 에 있어서, 본 예에서는, 렌즈 (32) 에 보정광 (LBA) 을 도파관 (44A) 으로부터 조사하기 위한 광학계 (CO2 레이저 (411A)∼집광 렌즈 (52A)) 와 병렬로, 또한 독립적으로 제어 가능한 상태에서 렌즈 (32) 의 별도 영역에 보정광 (LBB) 을 도파관 (44B) 으로부터 조사하기 위한 광학계가 배치되어 있다. 즉, 후자의 광학계는, CO2 레이저 (411B), 빔 스플리터 (42B), 집광 렌즈 (71B), 중공 화이버 (72B), 조사 유닛 (45B; 콜리메터렌즈 (73B), 편광판 (74B), 빔 스플리터 (50B), 1/4 파장판 (51B), 및 집광 렌즈 (52B)), 광검출기 (53B) 그리고 도파관 (44B) 을 포함하여 구성되어 있다. 그리고, CO2 레이저 (411B) 로부터 사출된 직선 편광의 보정광 (LB) 은, 도파관 (44B) 을 통해 안정적인 원편광의 보정광 (LBB) 으로서 렌즈 (32) 에 조사된다.
이 변형예에 있어서도, 도 7 과 동일하게, 렌즈 (32) 의 Y 방향의 2 개소의 영역에 보정광을 조사하기 위한 광학계도 형성되어 있고, 그 광학계의 구성은 거의 도 9 와 동일하다. 이 이외의 구성은, 도 6의 실시형태와 동일하다. 이 변형예에 있어서도, 보정광 (LBA, LBB) 등을 렌즈 (32) 에 조사함으로써, 센터 어스 의 발생을 억제할 수 있고, 투영 광학계 (14) 의 결상 특성이 향상된다. 이 때, 송광 광학계 중에 중공 화이버 (72A, 72B) 가 사용되고 있기 때문에, 송광 광학계의 구성을 간소화할 수 있음과 함께, 그 배치의 자유도가 높아진다.
[제 2 실시형태]
다음으로, 본 발명의 제 2 실시형태에 대하여 도 10 을 참조하여 설명한다. 본 예는, 보정광의 광원을 공통화한 것으로, 도 10 에 있어서 도 1 및 도 6 에 대응하는 부분에는 동일 부호를 부여하여 그 상세한 설명을 생략한다.
도 10 은, 본 예의 투영 노광 장치의 광빔의 조사 기구로서의 보정광 조사 기구 (40A) 를 나타내고, 이 도 10 에 있어서, CO2 레이저 (411) 및 레이저 광원 (412) 은, 각각 도 6 의 CO2 레이저 (411A) 및 레이저 광원 (412A) 과 동일하다. 그리고, CO2 레이저 (411) 로부터 사출된 직선 편광의 레이저광으로 이루어지는 보정광 (LB) 은, 빔 스플리터 (42) 에서 일부가 분기되고, 분기된 광의 광량은 광검출기 (43) 를 통해 레이저 광원 (412) 에 피드백된다. 또한, 빔 스플리터 (42) 를 투과한 보정광 (LB) 은, 또한 하프 미러 (65; 제 1 빔 스플리터) 에 입사되어 2 분할된다. 하프 미러 (65) 에서 2 분할된 보정광 (LBA 및 LBB) 은 각각 가변 감쇠기 (54A 및 54B) 에 입사된다. 그리고, 전자의 가변 감쇠기 (54A) 를 거친 보정광 (LBA) 은, 미러 (47A, 48A, 49A; 송광 광학계) 를 거친 후, 조사 유닛 (45A) 및 도파관 (44A) 을 통해 투영 광학계 (14) 내의 렌즈 (32) 에 조사된다. 또한, 후자의 가변 감쇠기 (54B) 를 거친 보정광 (LBB) 은, 미러 (47B, 48B, 49B; 송광 광학계) 를 거친 후, 조사 유닛 (45B) 및 도파관 (44B) 을 통해 렌즈 (32) 에 조사된다.
여기에서, 가변 감쇠기 (54A, 54B) 란, 외부 신호에 의해 입사광의 감쇠율을 가변으로 제어할 수 있는 장치의 것을 말한다.
도 14 는, 가변 감쇠기 (54A) 의 구성예를 나타내고, 이 도 14 에 있어서, 보정광 (LBA) 은 비스듬하게 기울어진 2 장의 광투과성의 평면판 (60 및 61) 에 입사된다. 평면판 (60, 61)의 재질로서, 보정광 (LBA) 인 CO2 레이저광의 파장에서 흡수가 적은 재료, 예를 들어 셀렌화 아연 (ZnSe) 등을 사용할 수 있다. 또한, 평면판 (60, 61) 의 표면에는 필요에 따라 반사율 증가막 등을 실시할 수 있다. 2 장의 평면판 (60, 61) 을 입사빔에 대한 입사각이 대칭적으로 되도록 기울이면, 그 경사각에 따라 반사광량이 변화되기 때문에, 평면판 (60, 61) 을 투과하는 보정광 (LBA) 의 광량을 연속적으로 제어할 수 있다. 평면판 (60 및 61) 의 경사 각을 임의의 값으로 설정하기 위해서 각각 회전 구동기 (60a 및 61a) 가 구비되어 있다. 회전 구동기 (60a, 61a) 로서는, 일반적인 스테핑 모터 또는 초음파 모터 등을 사용할 수 있다. 타방의 가변 감쇠기 (54B) 도 동일하게 구성되어 있다.
도 10 으로 되돌아가, 가변 감쇠기 (54A, 54B) 에서의 보정광의 투과율은, 가변 감쇠기의 제어 장치 (55) 에 의해서 제어된다. 이 경우, 조사 유닛 (45A 및 45B) 내에서 분기되어 광검출기 (53A 및 53B) 로부터 검출된 보정광 (LBA 및 LBB) 의 광량이 제어 장치 (55) 에 입력되어 있다. 이 이외의 구성은, 제 1 실시 형태와 동일하다.
본 예에 있어서, 도파관 (44A, 44B) 으로부터 렌즈 (32) 로 조사되는 보정광 (LBA, LBB) 의 조사량은, 개략적으로 이하와 같이 제어된다. 먼저, 도 1 의 주제어계 (24) 내의 보정 광제어부로부터의 보정광 (LBA 및 LBB) 의 각각의 목표 조사량의 지시치가, 레이저 전원 (412) 및 가변 감쇠기 (54A, 54B) 의 제어 장치 (55) 에 부여된다. 이 값으로부터 레이저 전원 (412) 은, CO2 레이저 (411) 에 의한 빔 스플리터 (42) 까지의 보정광 (LB) 의 파워를 소정치로 제어한다. 다음으로, 제어 장치 (55) 는, 광검출기 (53A 및 53B) 에서 검출되는 광량에 기초하여, 보정광 (LBA 및 LBB) 의 파워가 소정치가 되도록 가변 감쇠기 (54A 및 54B) 에서의 감쇠율을 제어한다. 그리고, 보정광 (LBA, LBB) 의 조사 시간이 조사량/평균 파워가 되었을 때에, 제어 장치 (55) 에서는, 예를 들어 가변 감쇠기 (54A 및 54B) 의 감쇠율을 거의 100% 로 하고, 보정광 (LBA, LBB) 의 파워를 거의 0 으로 한다. 또는, 예를 들어 제어 장치 (55) 로부터 레이저 전원 (412) 에 발광 정지 지령을 발하고, CO2 레이저 (411) 의 발광을 정지시킨다. 이 경우에도, 예를 들어 평균 파워 관리가 실시된다. 본 예에 있어서도, 이러한 동작에 의해서 보정광 (LBA 및 LBB) 의 조사량을 원하는 값으로 제어할 수 있다.
본 예에 의하면, 렌즈 (32) 상의 복수 개소에 조사되는 보정광 (LBA, LBB) 의 레이저 광원이 공통화되어 있기 때문에, 제조 비용을 저감할 수 있음과 함께, 보정광 조사 기구 (40A) 를 도 6 의 보정광 조사 기구 (40) 에 비교하여 소형화할 수 있다. 또, 본 예에서는 제어 장치 (55) 는 1 개뿐이지만, 가변 감쇠기 (54A 및 54B) 에 각각 대응시켜 복수의 제어 장치를 형성해도 된다. 또, 본 예에 있어서도, 일련의 CO2 레이저 (411), 빔 스플리터 (42), 광검출기 (43) 및 레이저 전원 (412) 으로 이루어지는 광원 장치는, 렌즈 (32) 에 조사되는 보정광 (LBA, LBB) 의 수에 따라 복수 있어도 되고, 또한 그들은 보정광 제어부에서의 서로 독립된 출력의 지시치에 따라 독립적으로 제어해도 된다.
[제 2 실시형태의 변형예]
다음으로, 제 2 실시형태의 변형예에 대하여 도 11 을 참조하여 설명한다. 도 11 은 도 10 의 제 2 실시형태의 보정광 조사 기구 (40A) 의 변형예를 나타내고, 이 도 9 및 도 10 에 대응하는 부분에 동일 부호를 부여하여 나타내는 도 11 에 있어서, 조사 유닛 (45A 및 45B) 은 각각 도 9 의 조사 유닛 (45A 및 45B) 과 동일하게, 그 전단부에 콜리메터 렌즈 (73A, 73B) 및 편광판 (74A, 74B; 편광 상태 제어 기구) 를 구비하고 있다. 그리고, CO2 레이저 (411) 로부터 사출되어, 빔 스플리터 (42) 를 투과한 직선 편광의 레이저광으로 이루어지는 보정광 (LB) 은, 또한 하프 미러 (65; 제 1빔 스플리터) 에 입사되어 2 분할된다. 하프 미러 (65) 로 2 분할된 보정광 (LBA 및 LBB) 은 각각 가변 감쇠기 (54A 및 54B) 에 입사된다. 그리고, 전자의 가변 감쇠기 (54A) 를 거친 보정광 (LBA) 은, 집광 렌즈 (71A), 중공 화이버 (72A; 광 가이드) 를 거친 후, 조사 유닛 (45A) 및 도파관 (44A) 을 통해 투영 광학계 (14) 내의 렌즈 (32) 에 조사된다. 또한, 후자의 가변 감쇠기 (54B) 를 거친 보정광 (LBB) 은, 집광 렌즈 (71B), 및 중공 화이버 (72A) 와 동일한 구성이지만, 중공 화이버 (72A) 보다 긴 광 가이드로서의 중공 화이버 (75B) 를 거친 후, 조사 유닛 (45B) 및 도파관 (44B) 을 통해 렌즈 (32) 에 조사된다. 이 경우, 집광 렌즈 (71A, 71B), 중공 화이버 (72A, 75B) 및 콜리메터 렌즈 (73A, 73B) 로부터 각각의 송광 광학계가 구성되어 있다. 이외의 구성 및 보정광 (LBA, LBB) 의 조사 동작은 제 2 실시형태와 동일하다.
이 변형예에 있어서도, 렌즈 (32) 상의 복수 개소에 조사되는 보정광 (LBA, LBB) 의 레이저 광원이 공통화되어 있기 때문에, 제조 비용을 저감할 수 있음과 함께, 보정광 조사 기구 (40A) 를 도 6 의 보정광 조사 기구 (40) 에 비교하여 소형화할 수 있다. 또한, 송광 광학계 중에 중공 화이버 (72A, 75B) 가 사용되고 있기 때문에, 송광 광학계의 구성이 간소화됨과 함께, 그 배치의 자유도가 커지고 있다.
[제 3 실시형태]
다음으로, 본 발명의 제 3 실시형태에 대하여 도 12 를 참조하여 설명한다. 본 예는, 보정광의 광원을 공통화하여, 그 전환을 가변 미러 방식으로 실시하는 것이고, 도 12 에 있어서 도 10 에 대응하는 부분에는 동일 부호를 부여하여 그 상세 설명을 생략한다.
도 12 는, 본 예의 투영 노광 장치의 광빔의 조사 기구로서의 보정광 조사 기구 (40B) 를 나타내고, 이 도 12 에 있어서, CO2 레이저 (411) 로부터 사출된 직선 편광의 레이저광으로 이루어지는 보정광 (LB) 은, 빔 스플리터 (42) 로 일부가 분기되어, 분기된 광의 광량은 광검출기 (43) 를 통해 레이저 광원 (412) 에 피드백된다. 도 1 의 주제어계 (24) 내의 보정광 제어부로부터의 보정광의 조사 타이밍의 지시에 따라, 레이저 광원 (412) 은 CO2 레이저 (411) 에 연속적으로 발광시킴과 함께, 빔 스플리터 (42) 까지의 보정광 (LB) 의 출력을 제어한다.
빔 스플리터 (42) 의 사출면에는 전동의 셔터 (56) 가 개폐 자유롭게 배치되어 있고, 셔터 (56) 가 열려 있을 때에는, 빔 스플리터 (42) 를 투과한 보정광 (LB) 은, 제 1 가변 미러 (57B) 에 입사된다. 제 1 가변 미러 (57B) 는, 일방의 단부가 고정되어 있고, 가동부가 위치 C 로 닫히면, 보정광 (LB) 은 거의 90°반사되어 제 2 가변 미러 (57A) 를 향하고, 그 가동부를 위치 D 로 열면, 보정광 (LB) 은 그대로 직진하여 미러 (46A) 에 입사된다. 또한, 제 2 가변 미러 (57A) 도, 일방의 단부가 고정되어 있고, 가동부를 위치 A 로 열면, 가변 미러 (57B) 로부터의 보정광 (LB) 은 그대로 직진하여 미러 (47A) 를 향하고, 그 가동부가 위치 B 로 닫히면, 가변 미러 (57B) 로부터의 보정광 (LB) 은 거의 90°반사되어 빔스토퍼 (58) 에서 차단된다. 즉, 2 개의 가변 미러 (57A, 57B) 의 전환 상태에 의해 보정광 (LB) 은 3 개의 광로로 나눌 수 있다. 2개의 가변 미러 (57A, 57B) 의 전환 동작 및 셔터 (56) 의 개폐 동작은, 가변 미러의 제어 장치 (59) 에 의해서 제어된다.
그리고, 가변 미러 (57B) 의 가동부를 위치 C 로 닫고, 가변 미러 (57A) 의 가동부를 위치 A 로 연 상태로, 보정광 (LB) 은 가변 미러 (57B) 에서 반사되어, 미러 (47A, 48A, 49A; 송광 광학계) 를 거친 후, 조사 유닛 (45A) 및 도파관 (44A) 을 통해 보정광 (LBA) 으로서 투영 광학계 (14) 내의 렌즈 (32) 에 조사된다. 또한, 가변 미러 (57B) 의 가동부를 위치 D 로 연 상태로, 보정광 (LB) 은 가변 미러 (57B) 의 근방을 통과한 후, 미러 (47B, 48B, 49B; 송광 광학계) 를 거친 후, 조사 유닛 (45B) 및 도파관 (44B) 을 통해 보정광 (LBB) 으로서 렌즈 (32) 에 조사된다. 본 예에서는, 조사 유닛 (45A 및 45B) 내에서 분기되고 광검출기 (53A 및 53B) 에서 검출된 보정광의 광량이 각각 제어 장치 (59) 에 입력되어 있다. 이 이외의 구성은, 제 1 및 제 2 실시형태와 동일하다.
본 예에서는, 도파관 (44A, 44B) 으로부터 렌즈 (32) 로 조사되는 보정광 (LBA, LBB) 의 조사량 (도즈), 또는 다른 말로 하면, (파워)×(조사 시간) 을 다음과 같이 어떤 일정한 시간폭으로 제어한다. 즉, 본 예에서는 광검출기 (53A 및53B) 의 검출 신호는 어떤 일정한 시간폭으로 적분되고, 그 적분치 (보정광 (LBA, LBB) 의 조사량에 비례하는 값) 가 제어 신호로서 사용된다. 또, 조사량을 어떤 일정한 시간폭으로 제어하는 것은, 제 1 및 제 2 실시형태에 있어서의 평균 파워 관리와 극한에서는 일치한다.
이 경우, 도 12 에 있어서, 먼저 도 1 의 주제어계 (24) 내의 보정광 제어부로부터 가변 미러의 제어 장치 (59) 에 대하여, 보정광 (LBA, LBB) 의 조사량의 목표치가 지시된다. 이 때 보정광의 발광 타이밍의 지시가 레이저 전원 (412) 에 대하여 이루어지므로, CO2 레이저 (411) 가 발광을 시작한다. 그 후, 제어 장치 (59) 는, 가변 미러 (57A, 57B) 를 동작시켜, 가변 미러 (57A) 의 가동부를 위치 A 로 가변 미러 (57B) 의 가동부를 위치 C 로 이동시킨다. 이 시점에서 셔터 (56) 가 열려 있으면, 렌즈 (32) 에 보정광 (LBA) 이 조사되어, 광검출기 (53A) 의 출력이 제어 장치 (59) 내에서 적분된다. 그 적분치가 미리 주어진 지시치에 일치한 시점에서, 제어 장치 (59) 는 가변 미러 (57B) 의 가동부를 위치 B 로 이동한다. 이에 따라서, 보정광 (LBA, LBB) 은 모두 조사가 정지된다.
다음으로, 보정광 (LBB) 의 조사량을 목표치로 하기 위해서, 제어 장치 (59) 는 가변 미러 (57B) 의 가동부를 위치 D 로 이동시킨다. 이 시점에서 셔터 (56) 가 열려 있으면, 렌즈 (32) 에 보정광 (LBB) 이 조사되어, 광검출기 (53B) 의 출력이 제어 장치 (59) 내에서 적분된다. 그 적분치가 미리 주어진 지시치에 일치한 시점에서, 제어 장치 (59) 는 가변 미러 (57B) 의 가동부를 위치 C 로, 가변 미러 (57A) 의 가동부를 위치 B 로 이동하여, 보정광 (LBA, LBB) 의 조사를 정지한다. 이 동작을 일정 시간 간격으로 반복 실시함으로써, 보정광 (LBA, LBB) 의 조사량은 순서대로 적정치로 제어된다.
본 예에 있어서도, 보정광 (LBA, LBB) 의 복수의 조사 영역에 대하여 CO2 레이저 (411) 가 공통적으로 사용되고 있기 때문에, 보정광 조사 기구 (40B) 가 소형화할 수 있다. 또한, 가변 미러 (57A, 57B) 의 개폐 시간으로 조사량을 제어함으로써, 가변 감쇠기를 사용하는 경우에 비교하여 보정광으로서의 레이저광의 이용 효율을 높일 수 있다.
또, 가변 미러 (57A, 57B) 는 가변 미러의 제어 장치 (59) 의 지시로 움직일 수 있는 미러이면, 어떠한 것이라도 사용할 수 있다. 구체적으로, 가변 미러 (57A, 57B) 로서는, 예를 들어 전압 구동 미러 (갈바노 미러), 또는 공기 압력 구동 미러를 사용할 수 있다.
[제 3 실시형태의 변형예]
다음으로, 제 3 실시형태의 변형예에 대하여 도 13 을 참조하여 설명한다. 도 13 은, 도 12 의 제 3 실시형태의 보정광 조사 기구 (40B) 의 변형예를 나타내고, 이 도 11 및 도 12 에 대응하는 부분에 동일 부호를 부여하여 나타내는 도 13 에 있어서, 조사 유닛 (45A 및 45B) 은 각각 도 11 의 조사 유닛 (45A 및 45B) 과 동일하게, 그 전단부에 콜리메터 렌즈 (73A, 73B) 및 편광판 (74A, 74B; 편광 상태 제어 기구) 을 구비하고 있다. 그리고, CO2 레이저 (411) 로부터 사출되어 빔 스플리터 (42) 를 투과한 직선 편광의 레이저광으로 이루어지는 보정광 (LB) 은 제 1 가변 미러 (57B) 를 향한다.
그리고, 가변 미러 (57B) 의 가동부를 위치 C 로 닫고, 가변 미러 (57A) 의 가동부가 위치 A 로 열린 상태에서, 보정광 (LB) 은 가변 미러 (57B) 에서 반사되어, 집광 렌즈 (71A), 중공 화이버 (72A) 를 거친 후, 조사 유닛 (45A) 및 도파관 (44A) 를 통해 보정광 (LBA) 으로서 투영 광학계 (14) 내의 렌즈 (32) 에 조사된다. 또한, 가변 미러 (57B) 의 가동부가 위치 D 로 열린 상태에서, 보정광 (LB) 은 가변 미러 (57B) 의 근방을 통과한 후, 집광 렌즈 (71B), 중공 화이버 (75B) 를 거친 후, 조사 유닛 (45B) 및 도파관 (44B) 을 통해 보정광 (LBB) 으로서 렌즈 (32) 에 조사된다. 집광 렌즈 (71A, 71B), 중공 화이버 (72A, 75B) 및 콜리메터 렌즈 (73A, 73B) 로부터 각각 송광 광학계가 구성되어 있다. 이외의 구성 및 보정광의 조사 동작은 제 3 실시형태와 동일하다.
이 변형예에 있어서도, 보정광 (LBA, LBB) 의 복수의 조사 영역에 대하여 CO2 레이저 (411) 가 공통적으로 사용되어 있기 때문에, 보정광 조사 기구 (40B) 가 소형화할 수 있다. 또한, 가변 미러 (57A, 57B) 의 개폐 시간으로 조사량을 제어함으로써, 가변 감쇠기를 사용하는 경우와 비교하여 보정광으로서의 레이저광의 이용 효율을 높일 수 있다. 또한, 송광 광학계 중에 중공 화이버 (72A, 75B) 가 사용되고 있기 때문에, 송광 광학계의 구성이 간소화 됨과 함께, 그 배치의 자유도가 커진다.
또, 본 발명은, 주사 노광형의 노광 장치뿐만 아니라, 일괄 노광형의 노광 장치로 노광을 실시하는 경우에도 동일하게 적용할 수 있다. 또한, 본 발명은, 예를 들어 국제공개(WO) 제99/49504호 등에 개시되는 액침형 노광 장치에도 적용할 수 있다.
또한, 상기 기술한 설명에 있어서는, 투영 광학계의 일부의 광학 부재의 렌즈면, 즉 노광광이 입사 (또는 사출) 할 수 있는 영역에 부분적으로 보정광을 조사하는 구성이지만, 그 일부의 광학 부재의 측면에 보정광을 조사하도록 해도 된다. 광학 부재의 측면에 보정광을 조사하는 구성은, 일본 공개특허공보 2001-196305호, 및 그 대응 미국특허 6,504,597호에 개시되어 있고, 본 국제출원에서 지정한 지정국 (또는 선택한 선택국) 의 국내 법령이 허락하는 한, 상기 공보에 있어서의 개시를 원용하여 본 명세서의 기재의 일부로 한다.
또한, 상기의 실시형태의 투영 노광 장치는, 복수의 렌즈로부터 구성되는 조명 광학계, 투영 광학계를 노광 장치 본체에 조합 광학 조정을 하여, 다수의 기계부품으로 이루어지는 레티클 스테이지나 웨이퍼 스테이지를 노광 장치 본체에 부착하여 배선이나 배관을 접속하고, 또한 종합 조정 (전기 조정, 동작 확인 등) 을 함으로써 제조할 수 있다. 또, 그 노광 장치의 제조는 온도 및 클린도 등이 관리된 클린 룸으로 실시하는 것이 바람직하다.
또한, 상기의 실시형태의 투영 노광 장치를 사용하여 반도체 디바이스를 제조하는 경우, 이 반도체 디바이스는 디바이스의 기능ㆍ성능 설계를 하는 단계, 이 단계에 기초하여 레티클을 제조하는 단계, 규소 재료로부터 웨이퍼를 형성하는 단계, 상기의 실시형태의 투영 노광 장치에 의해 얼라인먼트를 실시하여 레티클의 패턴을 웨이퍼에 노광하는 단계, 에칭 등의 회로 패턴을 형성하는 단계, 디바이스 조립 단계 (다이싱 공정, 본딩 공정, 패키지 공정을 포함한다), 및 검사 단계 등을 거쳐 제조된다.
또한, 본 발명의 노광 장치의 용도로서는 반도체 디바이스 제조용의 노광 장치로 한정되지 않고, 예를 들어, 뿔형의 유리 플레이트에 형성되는 액정 표시 소자, 또는 플라즈마 디스플레이 등의 디스플레이 장치용의 노광 장치나, 촬상 소자 (CCD 등), 마이크로 머신, 박막 자기헤드, 및 DNA 칩 등의 각종 디바이스를 제조하기 위한 노광 장치에도 널리 적용할 수 있다. 또한, 본 발명은 각종 디바이스의 마스크 패턴이 형성된 마스크 (포토 마스크, 레티클 등) 를 리소그래피 공정을 사용하여 제조할 때의, 노광 공정 (노광 장치) 에도 적용할 수 있다.
또, 본 발명은 상기 기술한 실시형태에 한정되지 않고, 본 발명의 요지를 일탈하지 않는 범위에서 여러 가지의 구성을 취득하는 것은 물론이다. 또한, 명세서, 특허청구의 범위, 도면, 및 요약을 포함하는 2004년 2월 13일자로 제출한 일본특허출원 제2004-037183호의 개시 내용 전체는, 완전히 그대로 인용하여 본원에 편입되어 있다.
산업상이용가능성
본 발명의 디바이스 제조 방법에 의하면, 예를 들어 다이폴 조명이나 소σ조명 등을 사용하더라도 결상 특성을 항상 양호한 상태로 유지할 수 있기 때문에, 고집적도의 디바이스를 고정밀도로 제조할 수 있다.

Claims (30)

  1. 노광빔에 의해 제 1 물체를 조명하고, 상기 노광빔에 의해 상기 제 1 물체 및 투영 광학계를 통해 제 2 물체를 노광하는 노광 방법으로서,
    상기 제 1 물체 및 상기 투영 광학계의 적어도 일부에, 상기 노광빔과 다른 파장역의 광빔을 공간 도파 기구를 통해 조사하여, 상기 투영 광학계의 결상 특성을 보정하는 것을 특징으로 하는 노광 방법.
  2. 제 1 항에 있어서,
    상기 공간 도파 기구는 유리, 세라믹스, 또는 금속으로 이루어지는 중공의 도파관을 포함하는 것을 특징으로 하는 노광 방법.
  3. 노광빔에 의해 제 1 물체를 조명하고, 상기 노광빔에 의해 상기 제 1 물체 및 투영 광학계를 통해 제 2 물체를 노광하는 노광 방법으로서,
    상기 제 1 물체 및 상기 투영 광학계의 적어도 일부에, 상기 노광빔과 다른 파장역의 광빔을 편광 상태 제어 기구를 통해 소정의 편광 상태에서 조사하여, 상기 투영 광학계의 결상 특성을 보정하는 것을 특징으로 하는 노광 방법.
  4. 제 3 항에 있어서,
    상기 편광 상태 제어 기구는 위상판을 포함하는 것을 특징으로 하는 노광 방 법.
  5. 노광빔에 의해 제 1 물체를 조명하고, 상기 노광빔에 의해 상기 제 1 물체 및 투영 광학계를 통해 제 2 물체를 노광하는 노광 방법으로서,
    상기 제 1 물체 및 상기 투영 광학계의 적어도 일부에, 상기 노광빔과 다른 파장역의 광빔을, 광 가이드 및 편광 상태 제어 기구를 통해 소정의 편광 상태에서 조사하여, 상기 투영 광학계의 결상 특성을 보정하는 것을 특징으로 하는 노광 방법.
  6. 제 5 항에 있어서,
    상기 광 가이드는 중공 화이버인 것을 특징으로 하는 노광 방법.
  7. 제 5 항 또는 제 6 항에 있어서,
    상기 편광 상태 제어 기구는 편광판인 것을 특징으로 하는 노광 방법.
  8. 제 1 항 내지 제 7 항 중 어느 한 항에 있어서,
    상기 광빔은 RF 여기 도파로형 C02 레이저에서 발생되는 것을 특징으로 하는 노광 방법.
  9. 제 1 항 내지 제 8 항 중 어느 한 항에 있어서,
    상기 노광빔에 의해서 상기 제 1 물체 및 상기 투영 광학계의 적어도 일부가 비회전 대칭인 광량 분포로 조명되고,
    상기 노광빔의 조사에 의해 발생하는 상기 투영 광학계의 비회전 대칭인 수차를 보정하도록, 상기 광빔을 조사하는 것을 특징으로 하는 노광 방법.
  10. 제 9 항에 있어서,
    상기 노광빔의 조사량에 기초하여 비회전 대칭인 수차의 발생량을 계산하고,
    그 계산 결과에 기초하여 상기 제광빔을 조사하는 것을 특징으로 하는 노광 방법.
  11. 리소그래피 공정을 포함하는 디바이스 제조 방법으로서,
    상기 리소그래피 공정에서 제 1 항 내지 제 10 항 중 어느 한 항에 기재된 노광 방법을 사용하여 패턴을 감광체에 전사하는 것을 특징으로 하는 디바이스 제조 방법.
  12. 노광빔에 의해 전사용의 패턴이 형성된 제 1 물체를 조명하고, 상기 노광빔에 의해 상기 제 1 물체 및 투영 광학계를 통해 제 2 물체를 노광하는 노광 장치로서,
    상기 제 1 물체 및 상기 투영 광학계의 적어도 일부에 상기 노광빔과 다른 파장역의 광빔을 조사하는 조사 기구를 갖고,
    상기 조사 기구는 상기 광빔을 소정 광로를 따라 유도하는 공간 도파 기구를 포함하는 것을 특징으로 하는 노광 장치.
  13. 제 12 항에 있어서,
    상기 공간 도파 기구는 유리, 세라믹스, 또는 금속으로 이루어지는 중공의 도파관을 포함하는 것을 특징으로 하는 노광 장치.
  14. 노광빔에 의해 전사용의 패턴이 형성된 제 1 물체를 조명하고, 상기 노광빔에 의해 상기 제 1 물체 및 투영 광학계를 통해 제 2 물체를 노광하는 노광 장치로서,
    상기 제 1 물체 및 상기 투영 광학계의 적어도 일부에 상기 노광빔과 다른 파장역의 광빔을 조사하는 조사 기구를 갖고,
    상기 조사 기구는, 상기 광빔의 편광 상태를 소정 상태로 설정하는 편광 상태 제어 기구를 포함하는 것을 특징으로 하는 노광 장치.
  15. 제 14 항에 있어서,
    상기 편광 상태 제어 기구는 위상판을 포함하는 것을 특징으로 하는 노광 장치.
  16. 노광빔에 의해 전사용의 패턴이 형성된 제 1 물체를 조명하고, 상기 노광빔에 의해 상기 제 1 물체 및 투영 광학계를 통해 제 2 물체를 노광하는 노광 장치로서,
    상기 제 1 물체 및 상기 투영 광학계의 적어도 일부에 상기 노광빔과 다른 파장역의 광빔을 조사하는 조사 기구를 갖고,
    상기 조사 기구는 상기 광빔을 발생하는 광원으로부터의 광빔을 이끄는 광 가이드와, 그 광가이드로부터 사출된 광빔의 편광 상태를 소정 상태로 설정하는 편광 상태 제어 기구를 갖는 것을 특징으로 하는 노광 장치.
  17. 제 16 항에 있어서,
    상기 광 가이드는 중공 화이버인 것을 특징으로 하는 노광 장치.
  18. 제 16 항 또는 제 17 항에 있어서,
    상기 편광 상태 제어 기구는 편광판인 것을 특징으로 하는 노광 장치.
  19. 제 12 항 내지 제 18 항 중 어느 한 항에 있어서,
    상기 조사 기구는 상기 광빔을 발생하는 광원으로서 RF 여기 도파로형 CO2 레이저를 갖는 것을 특징으로 하는 노광 장치.
  20. 제 19 항에 있어서,
    상기 RF 여기 도파로형 CO2 레이저가 복수인 것을 특징으로 하는 노광 장치.
  21. 제 12 항 내지 제 20 항 중 어느 한 항에 있어서,
    상기 조사 기구는 상기 광빔을 분할하는 제 1 빔 스플리터를 갖는 것을 특징으로 하는 노광 장치.
  22. 제 12 항 내지 제 21 항 중 어느 한 항에 있어서,
    상기 조사 기구는 상기 광빔을 시간적으로 분할하기 위해서, 가동 미러 또는 셔터의 적어도 일방을 갖는 것을 특징으로 하는 노광 장치.
  23. 제 12 항 내지 제 22 항 중 어느 한 항에 있어서,
    상기 광빔을 발생하는 광원의 발광 지속 시간을 제어하는 광원 제어 장치를 갖는 것을 특징으로 하는 노광 장치.
  24. 제 13 항에 있어서,
    상기 광빔을 반사하기 위해서, 상기 도파관의 내면에 금속막 또는 유전체막의 적어도 일방을 포함하는 반사막이 코팅되어 있는 것을 특징으로 하는 노광 장치.
  25. 제 12 항 내지 제 24 항 중 어느 한 항에 있어서,
    상기 광빔의 일부를 분기하는 제 2 빔 스플리터와, 그 제 2 빔 스플리터로 분기된 광을 수광하는 광전 센서를 갖고,
    그 광전 센서에 의해서 상기 광빔의 광량의 정보를 구하는 것을 특징으로 하는 노광 장치.
  26. 제 25 항에 있어서,
    상기 광빔의 광원과 상기 제 2 빔 스플리터의 사이에 배치된 적어도 하나의 편광 소자를 갖는 것을 특징으로 하는 노광 장치.
  27. 제 25 항 또는 제 26 항에 있어서,
    상기 제 2 빔 스플리터와 상기 투영 광학계를 구성하는 광학 부재 사이에 배치되어, 상기 광빔의 편광 상태를 소정 상태로 설정하는 1/4 파장판을 갖는 것을 특징으로 하는 노광 장치.
  28. 제 12 항 내지 제 27 항 중 어느 한 항에 있어서,
    상기 노광빔에 의해서 상기 제 1 물체 및 상기 투영 광학계의 적어도 일부가 비회전 대칭인 광량 분포로 조명되고,
    상기 노광빔의 조명에 의해 발생하는 상기 투영 광학계의 비회전 대칭인 수 차를 보정하도록, 상기 조사 기구는 상기 광빔을 조사하는 것을 특징으로 하는 노광 장치.
  29. 제 28 항에 있어서,
    상기 투영 광학계의 회전 대칭인 수차를 보정하기 위한 수차 보정 기구와,
    상기 조사 기구 및 상기 수차 보정 기구의 동작을 제어하여 상기 투영 광학계의 수차를 보정하는 제어 장치를 추가로 갖는 것을 특징으로 하는 노광 장치.
  30. 리소그래피 공정을 포함하는 디바이스 제조 방법으로서,
    상기 리소그래피 공정에서 제 12 항 내지 제 29 항 중 어느 한 항에 기재된 노광 장치를 사용하여 패턴을 감광체에 전사하는 것을 특징으로 하는 디바이스 제조 방법.
KR1020067012807A 2004-02-13 2005-02-10 노광 방법 및 장치, 그리고 디바이스 제조 방법 KR101328356B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JPJP-P-2004-00037183 2004-02-13
JP2004037183 2004-02-13
PCT/JP2005/002011 WO2005078774A1 (ja) 2004-02-13 2005-02-10 露光方法及び装置、並びにデバイス製造方法

Publications (2)

Publication Number Publication Date
KR20060128898A true KR20060128898A (ko) 2006-12-14
KR101328356B1 KR101328356B1 (ko) 2013-11-11

Family

ID=34857749

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020067012807A KR101328356B1 (ko) 2004-02-13 2005-02-10 노광 방법 및 장치, 그리고 디바이스 제조 방법

Country Status (5)

Country Link
US (1) US8111378B2 (ko)
EP (1) EP1724816A4 (ko)
JP (1) JP4692753B2 (ko)
KR (1) KR101328356B1 (ko)
WO (1) WO2005078774A1 (ko)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005031792A1 (de) * 2005-07-07 2007-01-11 Carl Zeiss Smt Ag Verfahren zur Entfernung von Kontamination von optischen Elementen, insbesondere von Oberflächen optischer Elemente sowie ein optisches System oder Teilsystem hierfür
US7606592B2 (en) * 2005-09-19 2009-10-20 Becker Charles D Waveguide-based wireless distribution system and method of operation
US7511799B2 (en) * 2006-01-27 2009-03-31 Asml Netherlands B.V. Lithographic projection apparatus and a device manufacturing method
US8593602B2 (en) * 2006-04-27 2013-11-26 Sharp Kabushiki Kaisha Production method for liquid crystal display device and exposure device including exposure of alignment layers
US7785483B2 (en) * 2006-12-22 2010-08-31 Hynix Semiconductor Inc. Exposure mask and method for fabricating semiconductor device using the same
KR101452534B1 (ko) 2007-01-22 2014-10-21 칼 짜이스 에스엠티 게엠베하 광학 시스템의 결상 특성을 향상시키기 위한 방법 및 광학 시스템
DE102008016011A1 (de) 2007-03-27 2008-10-02 Carl Zeiss Smt Ag Korrektur optischer Elemente mittels flach eingestrahltem Korrekturlicht
JP4966724B2 (ja) * 2007-04-20 2012-07-04 キヤノン株式会社 露光装置及びデバイス製造方法
US20090213350A1 (en) * 2008-02-22 2009-08-27 Nikon Corporation Coherence-reduction devices and methods for pulsed lasers
JP2010040849A (ja) * 2008-08-06 2010-02-18 Tokyo Ohka Kogyo Co Ltd レジストパターン形成方法
NL2005449A (en) * 2009-11-16 2012-04-05 Asml Netherlands Bv Lithographic method and apparatus.
DE102011088740A1 (de) * 2011-12-15 2013-01-17 Carl Zeiss Smt Gmbh Optisches System, sowie Verfahren zum Manipulieren des thermischen Zustandes eines optischen Elementes in einer mikrolithographischen Projektionsbelichtungsanlage
DE102012212758A1 (de) * 2012-07-20 2014-01-23 Carl Zeiss Smt Gmbh Systemkorrektur aus langen Zeitskalen
DE102014204171A1 (de) 2014-03-06 2015-09-24 Carl Zeiss Smt Gmbh Optisches Element und optische Anordnung damit
DE102014206765A1 (de) 2014-04-08 2015-10-08 Carl Zeiss Smt Gmbh Spiegelanordnung, Projektionsobjektiv und EUV-Lithographieanlage
DE102015201020A1 (de) * 2015-01-22 2016-07-28 Carl Zeiss Smt Gmbh Projektionsbelichtungsanlage mit Manipulator sowie Verfahren zum Steuern einer Projektionsbelichtungsanlage
DE102015216528A1 (de) * 2015-08-28 2017-03-02 Carl Zeiss Smt Gmbh Beleuchtungssystem für EUV-Projektionsbelichtungsanlage, EUV-Projektionsbelichtungsanlage mit Beleuchtungssystem und Verfahren zum Betreiben einer EUV-Projektionsbelichtungsanlage
CN105388593B (zh) * 2015-12-28 2019-02-05 联想(北京)有限公司 镜头、成像装置以及电子设备
JP7208728B2 (ja) * 2018-07-23 2023-01-19 キヤノン株式会社 露光装置、および物品の製造方法
DE102019112675B9 (de) * 2019-05-15 2022-08-04 Carl Zeiss Smt Gmbh Verfahren und Vorrichtung zur Charakterisierung einer Maske für die Mikrolithographie
JP6951498B2 (ja) * 2019-06-25 2021-10-20 キヤノン株式会社 露光装置、露光方法および物品製造方法
JP7062716B2 (ja) * 2020-03-27 2022-05-06 キヤノン株式会社 半導体装置の製造方法
DE102020213416A1 (de) * 2020-10-23 2021-10-07 Carl Zeiss Smt Gmbh Projektionsbelichtungsanlage mit einer Heizvorrichtung und einem Polarisator
CN112285938B (zh) * 2020-11-10 2023-01-31 北京工业大学 一种奇异空心光束的产生装置及产生方法

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1019403A (en) 1901-08-30 1912-03-05 Noah S Amstutz Illustrative telegraphy.
EP0532236B1 (en) * 1991-09-07 1997-07-16 Canon Kabushiki Kaisha System for stabilizing the shapes of optical elements, exposure apparatus using this system and method of manufacturing semiconductor devices
US5995263A (en) * 1993-11-12 1999-11-30 Nikon Corporation Projection exposure apparatus
JP3368091B2 (ja) * 1994-04-22 2003-01-20 キヤノン株式会社 投影露光装置及びデバイスの製造方法
JPH0845827A (ja) 1994-07-28 1996-02-16 Canon Inc 投影露光装置及びそれを用いた半導体デバイスの製造方法
JP2692660B2 (ja) 1995-10-20 1997-12-17 日本電気株式会社 投影露光装置及び投影露光方法
JPH09232213A (ja) * 1996-02-26 1997-09-05 Nikon Corp 投影露光装置
JP3646757B2 (ja) 1996-08-22 2005-05-11 株式会社ニコン 投影露光方法及び装置
JP3790833B2 (ja) 1996-08-07 2006-06-28 株式会社ニコン 投影露光方法及び装置
EP0823662A2 (en) * 1996-08-07 1998-02-11 Nikon Corporation Projection exposure apparatus
JPH10256150A (ja) * 1997-03-14 1998-09-25 Nikon Corp 走査露光方法及び走査型露光装置
US7274430B2 (en) * 1998-02-20 2007-09-25 Carl Zeiss Smt Ag Optical arrangement and projection exposure system for microlithography with passive thermal compensation
US7112772B2 (en) * 1998-05-29 2006-09-26 Carl Zeiss Smt Ag Catadioptric projection objective with adaptive mirror and projection exposure method
DE19827603A1 (de) * 1998-06-20 1999-12-23 Zeiss Carl Fa Optisches System, insbesondere Projektions-Belichtungsanlage der Mikrolithographie
DE19827602A1 (de) * 1998-06-20 1999-12-23 Zeiss Carl Fa Verfahren zur Korrektur nicht-rotationssymmetrischer Bildfehler
DE19859634A1 (de) * 1998-12-23 2000-06-29 Zeiss Carl Fa Optisches System, insbesondere Projektionsbelichtungsanlage der Mikrolithographie
JP3548464B2 (ja) * 1999-09-01 2004-07-28 キヤノン株式会社 露光方法及び走査型露光装置
DE19956353C1 (de) * 1999-11-24 2001-08-09 Zeiss Carl Optische Anordnung
DE19956354B4 (de) * 1999-11-24 2004-02-19 Carl Zeiss Verfahren zum Ausgleich von nicht rotationssymmetrischen Abbildungsfehlern in einem optischen System
TWI282909B (en) * 1999-12-23 2007-06-21 Asml Netherlands Bv Lithographic apparatus and a method for manufacturing a device
DE19963588C2 (de) * 1999-12-29 2002-01-10 Zeiss Carl Optische Anordnung
DE19963587B4 (de) * 1999-12-29 2007-10-04 Carl Zeiss Smt Ag Projektions-Belichtungsanlage
DE10000191B8 (de) * 2000-01-05 2005-10-06 Carl Zeiss Smt Ag Projektbelichtungsanlage der Mikrolithographie
DE10000193B4 (de) * 2000-01-05 2007-05-03 Carl Zeiss Smt Ag Optisches System
KR20030033067A (ko) * 2000-09-21 2003-04-26 가부시키가이샤 니콘 결상특성의 계측방법 및 노광방법
DE10140208C2 (de) * 2001-08-16 2003-11-06 Zeiss Carl Optische Anordnung
US20050099611A1 (en) * 2002-06-20 2005-05-12 Nikon Corporation Minimizing thermal distortion effects on EUV mirror
JPWO2005022614A1 (ja) * 2003-08-28 2007-11-01 株式会社ニコン 露光方法及び装置、並びにデバイス製造方法
FR2884652B1 (fr) * 2005-04-19 2009-07-10 Femlight Sa Dispositif de generation d'impulsions laser amplifiees par fibres optiques a couches photoniques

Also Published As

Publication number Publication date
US20080246933A1 (en) 2008-10-09
KR101328356B1 (ko) 2013-11-11
US8111378B2 (en) 2012-02-07
WO2005078774A1 (ja) 2005-08-25
EP1724816A1 (en) 2006-11-22
EP1724816A4 (en) 2007-10-24
JP4692753B2 (ja) 2011-06-01
JPWO2005078774A1 (ja) 2007-10-18

Similar Documents

Publication Publication Date Title
KR101328356B1 (ko) 노광 방법 및 장치, 그리고 디바이스 제조 방법
US7817249B2 (en) Exposure method and apparatus, and device producing method using two light beams to correct non-rotationally symmetric aberration
JP5582287B2 (ja) 照明光学装置及び露光装置
JP4322861B2 (ja) パルス変調装置及びリソグラフィ装置
JP2001217191A (ja) リソグラフィ投影装置
KR20100081308A (ko) 마이크로리소그래피 투사 노광 장치
US20100290020A1 (en) Optical apparatus, exposure apparatus, exposure method, and method for producing device
US20020054231A1 (en) Exposure method, exposure apparatus, and process of production of device
WO2006025408A1 (ja) 露光装置及びデバイス製造方法
JP2005093948A (ja) 露光装置及びその調整方法、露光方法、並びにデバイス製造方法
JP3762323B2 (ja) 露光装置
JP4655332B2 (ja) 露光装置、露光装置の調整方法、およびマイクロデバイスの製造方法
KR101960153B1 (ko) 조명 광학계, 노광 장치 및 디바이스의 제조 방법
CN102884480B (zh) 微光刻投射曝光装置的照明系统
JP2003051438A (ja) 反射部材及びその調整方法、露光装置及びその製造方法、並びにマイクロデバイスの製造方法
WO2013094733A1 (ja) 計測方法、メンテナンス方法及びその装置
JP2010067866A (ja) 露光方法及び装置、並びにデバイス製造方法
WO2009150871A1 (ja) 露光装置及びデバイス製造方法
JP2001284236A (ja) 投影露光装置及び露光方法
JP2010147433A (ja) 照明光学系、露光装置及びデバイスの製造方法
JP2014107309A (ja) 伝送光学系、照明光学系、露光装置、およびデバイス製造方法
JP2009111175A (ja) 照明光学装置、露光装置及びデバイスの製造方法
JP2000252183A (ja) マーク検出方法、投影露光装置及び前記方法を用いたデバイスの製造方法

Legal Events

Date Code Title Description
G170 Publication of correction
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20161019

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20171018

Year of fee payment: 5