JP2009111175A - 照明光学装置、露光装置及びデバイスの製造方法 - Google Patents

照明光学装置、露光装置及びデバイスの製造方法 Download PDF

Info

Publication number
JP2009111175A
JP2009111175A JP2007282205A JP2007282205A JP2009111175A JP 2009111175 A JP2009111175 A JP 2009111175A JP 2007282205 A JP2007282205 A JP 2007282205A JP 2007282205 A JP2007282205 A JP 2007282205A JP 2009111175 A JP2009111175 A JP 2009111175A
Authority
JP
Japan
Prior art keywords
exposure light
illumination optical
transmittance
filter
changing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007282205A
Other languages
English (en)
Inventor
Hiroyuki Hirota
弘之 廣田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2007282205A priority Critical patent/JP2009111175A/ja
Publication of JP2009111175A publication Critical patent/JP2009111175A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

【課題】被照射物体の被照射面上で露光光に照射される照射領域内の照度分布を補正できる照明光学装置、露光装置及びデバイスの製造方法を提供する。
【解決手段】照明光学装置において像面と共役な位置Piの近傍には、入射する光の入射角度θに応じて透過率が変化する透過率可変フィルタ24が配設されている。透過率可変フィルタ24の露光光源側には、変更用光学系25が設けられている。変更用光学系25は、露光光ELの光路において露光光源側から順に配置された変更用正レンズ31、変更用負レンズ32及び変更用集光レンズ33を備え、変更用集光レンズ33は、露光光ELの光路に沿った方向に個別に移動可能である。そして、変更用集光レンズ33が移動することにより、透過率可変フィルタ24に入射する露光光ELの入射角度範囲Aが変更される。
【選択図】図2

Description

本発明は、被照射物体を照射するための照明光学装置、該照明光学装置を備える露光装置、及び該露光装置を用いたデバイスの製造方法に関するものである。
一般に、この種の露光装置は、所定のパターンが形成されてなるレチクルなどのマスクを照射するための照明光学装置と、該照明光学装置がマスクを照射することにより形成されたパターン像を感光性材料の塗布されたウエハ、ガラスプレートなどの基板に投影するための投影光学装置とを備えている。このような露光装置を構成する照明光学装置としては、露光光源から出力された露光光を例えば円環状に変形させて面光源を形成し、該面光源からの露光光をマスクの被照射面に導く機能を有するものがある。
この照明光学装置には、露光光源から出力された露光光を所望する形状に変形させるためのマスクブラインドと、該マスクブラインドの開口部分に向けて露光光を重畳的に集光させるためのフライアイレンズ及びコンデンサレンズなどを有する照度分布均一化光学系とが設けられている。この照度分布均一化光学系は、マスクブラインドと光学的にフーリエ変換の関係にある位置に面光源を形成する。すなわち、マスクブラインドは、像面と共役な位置に配置されると共に、照度分布均一化光学系が形成する面光源は、瞳面又は該瞳面と共役な位置に配置されることになる。そして、照明光学装置によって変形された露光光は、照射領域内の照度分布が均一になるようにマスクの被照射面を照射する。
ところで、露光装置を長期間使用した場合、照明光学装置を構成する光学素子の特性の経時変化に伴い、マスクの被照射面上で露光光に照射される照射領域内の照度分布が不均一になってしまうおそれがある。そこで、照度分布を補正する方法として、以下に示す2通りの方法が従来から提案されている。すなわち、第1の方法は、像面と共役な位置又はその近傍に所定の透過率分布を有する補正フィルタを配置し、該補正フィルタを回転させることにより、マスクの被照射面上で露光光に照射される照射領域内の照度分布を補正する方法である。このように補正フィルタを回転させた場合には、該補正フィルタのうち露光光が透過する領域が変更され、像面での照度分布が均一化される結果、マスクの被照射面上での照度分布の均一化が図られていた(例えば特許文献1参照)。
また、第2の方法は、第1の方法で使用した補正フィルタを瞳面に共役な位置又はその近傍に配置し、補正フィルタを回転させる方法である。このような位置で補正フィルタを回転させた場合には、照射領域内の照度分布が均一化された露光光がマスクブラインドに入射することになる。そのため、マスクブラインドを通過した露光光の照射領域内の照度分布が均一化される結果、マスクの被照射面上での照度分布が均一化されるようになっていた(例えば特許文献2参照)。
国際公開第2003/23832号パンフレット 特開2006−140393号公報
ところで、上述したような各方法で使用される補正フィルタのうち、露光光の光軸と交差する方向における一方から他方に向けて次第に照度を増加又は減少させる一次関数的な補正をするための補正フィルタは、比較的容易に製造できる。ところが、露光光の中心から該露光光の光軸と交差する方向に離間するに連れて照度を増加又は減少させる2次関数的な補正に代表される高次関数的な補正をするための補正フィルタは、理論上は製造可能であるものの、その製造が非常に難しい。そのため、所定の透過率分布を有する補正フィルタを使用することなく、マスクの被照射面上で露光光に照射される照射領域内の照度分布を補正する方法が強く望まれていた。
本発明は、このような事情に鑑みてなされたものであり、その目的は、被照射物体の被照射面上で露光光に照射される照射領域内の照度分布を補正できる照明光学装置、露光装置及びデバイスの製造方法を提供することにある。
上記の課題を解決するため、本発明は、実施形態に示す図1〜図9に対応付けした以下の構成を採用している。
本発明の照明光学装置は、光源(12)から出力された光(EL)を被照射物体(R)へ導く照明光学装置(13)において、前記光源(12)から出力される光(EL)の光路中に配置され、入射する光(EL)の入射角度(θ)に応じて透過率が変化する透過率可変フィルタ(24)と、該透過率可変フィルタ(24)の前記光源(12)側に配置され、前記透過率可変フィルタ(24)に入射する光(EL)の入射角度範囲(A,A1,A2)を変更するための変更部(25)とを備えたことを要旨とする。
上記構成によれば、透過率可変フィルタを透過した光の照度分布は、透過率可変フィルタに入射した光の入射角度に対応した照度分布になる。そのため、変更部の駆動によって透過率可変フィルタに入射する光の入射角度範囲を変更させることにより、被照射物体上での光の照度分布が良好に補正される。したがって、被照射物体の被照射面上での光の照度分布を補正できる。
なお、本発明をわかりやすく説明するために実施形態を示す図面の符号に対応づけて説明したが、本発明が実施形態に限定されるものではないことは言うまでもない。
本発明によれば、被照射物体の被照射面上で露光光に照射される照射領域内の照度分布を補正できる。
(第1の実施形態)
以下に、本発明を具体化した第1の実施形態について図1〜図3に基づき説明する。
図1に示すように、本実施形態の露光装置11は、ステップ・アンド・リピート方式のステッパであって、例えば波長193nmのArFエキシマレーザを出力可能な光源からなる露光光源12と、照明光学装置13とを備えている。また、露光装置11は、所定のパターンが形成されてなるレチクルRを所定の走査方向(露光光ELの光軸と略直交する方向であって、例えばZ方向)に移動可能な状態で保持するレチクルステージ14と、投影光学装置15と、表面にレジストなどの感光性材料が塗布されたウエハWを所定の走査方向に移動可能な状態で保持するウエハステージ16とを備えている。また、露光装置11には、装置全体の駆動を制御するための制御装置17が設けられている。
レチクルステージ14は、後述する投影光学装置15の物体面側において、そのレチクルRの載置面が投影光学装置15の光軸方向と略直交するように配置されている。投影光学装置15は、内部が窒素などの不活性ガスで充填された鏡筒18を備え、この鏡筒18内には、図示しない複数のレンズが露光光ELの光路に沿って設けられている。そして、露光装置11による露光時には、制御装置17がレチクルステージ14及びウエハステージ16の駆動を制御することにより、レチクルR及びウエハWが上記走査方向に同期して移動する。この状態でレチクルRが露光光ELによって照射されることにより、ウエハWには、レチクルR上のパターン像が投影光学装置15を通過して所定の縮小倍率に縮小された状態で投影転写されるようになっている。
次に、本実施形態の照明光学装置13について図1に基づき以下説明する。
照明光学装置13は、露光光源12から出力された露光光ELが入射するリレー光学系19を備えている。このリレー光学系19は、露光光ELの光路において露光光源12側から順に配置された負レンズ20及び正レンズ21を備えている。そして、リレー光学系19に入射した露光光ELは、その断面形状が大きくされた状態で露光光源12の反対側(即ち、レチクルR側)に射出される。
リレー光学系19におけるレチクルR側の光路には、複数(図1では5つのみ図示)のレンズエレメント22を二次元的に配列してなるフライアイレンズ23が設けられている。このフライアイレンズ23は、リレー光学系19及びフライアイレンズ23によって形成された面光源がレチクルRの被照射面(即ち、像面)と光学的にフーリエ変換の関係にある瞳面と共役な位置に位置するように配置されている。そして、面光源からは、断面形状が略円形状をなす露光光ELがレチクルR側に射出される。
フライアイレンズ23におけるレチクルR側の光路には、平面視略正方形状の透過率可変フィルタ24が変位不能な状態で設けられている。この透過率可変フィルタ24は、露光光源12から出力された露光光ELが透過可能な基材と、該基材の露光光源12側にコーティングされた誘電体多層膜とを備えた構成とされている。この誘電体多層膜は、互いに屈折率の異なる複数種類(例えば2種類)の誘電体材料からなる膜を交互に積層することにより形成されている。そして、透過率可変フィルタ24の透過率は、入射する露光光ELの入射角度θが大きくなるに連れて小さくなる。なお、露光光ELの入射角度θとは、透過率可変フィルタ24の法線に対する露光光ELの角度のことである。
図1及び図2(a)(b)に示すように、フライアイレンズ23と透過率可変フィルタ24との間には、透過率可変フィルタ24に入射する露光光ELの入射角度範囲Aを変更するための変更用光学系25が設けられている。なお、露光光ELの入射角度範囲Aとは、露光光ELを構成する光線群が分布する角度範囲のことである。
また、透過率可変フィルタ24のレチクルR側には、透過率可変フィルタ24を透過した露光光ELによるレチクルRに対する照射態様を調整するための調整用光学系26が設けられている。さらに、調整用光学系26におけるレチクルR側の光路であって且つレチクルRの被照射面と共役な位置Piには、マスクブラインド27が配設されている。すなわち、透過率可変フィルタ24は、像面と共役な位置Piの近傍に配置されている。そして、マスクブラインド27の開口部28を通過した露光光ELは、コンデンサ光学系29を介してレチクルRを照射するようになっている。
次に、変更用光学系25について図1及び図2に基づき以下説明する。
図2(a)(b)に示すように、変更用光学系25は、露光光ELの光路において露光光源12側から順に配置された変更用正レンズ31、変更用負レンズ32及び変更用集光レンズ33を備え、該変更用集光レンズ33は、露光光ELの光路に沿った方向(図2(a)(b)では左右方向)に移動可能とされている。また、変更用光学系25には、図1に示すように、変更用集光レンズ33を移動させるために駆動する変位機構34が設けられ、該変位機構34は、その駆動が制御装置17によって制御されている。すなわち、制御装置17は、変位機構34の駆動を制御して変更用集光レンズ33を移動させることにより、透過率可変フィルタ24に入射する露光光ELの入射角度範囲Aを変更する。
次に、調整用光学系26について図1及び図2に基づき以下説明する。
調整用光学系26は、図2(a)(b)に示すように、露光光ELの光路において露光光源12側から順に配置された第1調整用正レンズ35、調整用負レンズ36、第2調整用正レンズ37及び第3調整用正レンズ38を備えている。これら各レンズ35〜38は、露光光ELの光路に沿った方向に個別に移動可能とされている。また、調整用光学系26には、図1に示すように、各レンズ35〜38を個別に移動させるために駆動する変位機構39が設けられ、該変位機構39は、その駆動が制御装置17によって制御されている。すなわち、制御装置17は、変位機構39の駆動を制御して各レンズ35〜38を個別に移動させることにより、調整用光学系26からマスクブラインド27に向けて射出される露光光ELの断面形状を相似的に縮小したり拡大したりする。
次に、レチクルRの被照射面上における露光光ELの照射領域内の照度分布を補正する際の作用について、該照度領域内のX方向における両端部の光強度を他の部分に比して相対的に弱くする際の作用を中心に図3(a)(b)(c)に基づき以下説明する。なお、以下の記載では、明細書の説明理解の便宜上、透過率可変フィルタ24には均一な照度分布を有する露光光ELが入射されるものとする。また、透過率可変フィルタ24に入射する露光光ELの入射角度範囲Aは、第1の入射角度範囲A1であるものとする。
さて、照度分布を補正する際、変更用光学系25の変更用集光レンズ33は、透過率可変フィルタ24から離間する方向に移動する(図2(a)(b)参照)。すると、図3(a)に示すように、透過率可変フィルタ24に入射する露光光ELの入射角度範囲Aは、第1の入射角度範囲A1よりも狭い第2の入射角度範囲A2になる。そのため、図3(b)に示すように、補正後における第2の入射角度範囲A2に対応する透過率可変フィルタ24の透過率分布T2は、補正前における第1の入射角度範囲A1に対応する透過率可変フィルタ24の透過率分布T1から変更される。
また、調整用光学系26は、第1調整用正レンズ35に入射した時点の断面形状を相似的に拡大させるべく駆動する。すなわち、調整用光学系26を構成する各レンズ35〜38は、透過率可変フィルタ24に接近する方向に個別に移動する。すると、調整用光学系26から射出された露光光ELは、その断面形状が補正前と略同一形状となってマスクブラインド27に入射する。
その後、マスクブラインド27の開口部28を通過した露光光ELは、コンデンサ光学系29を通過してレチクルRの被照射面を照射する。この際、レチクルRの被照射面上での露光光ELによる照射領域は、図3(c)に示すように、その大きさが補正前と補正後とで略同一となる。また、補正後のレチクルRの被照射面上における露光光ELの照射領域において、補正前の露光光ELの照度分布I1と補正後の露光光ELの照度分布I2とでは、X方向における中心からX方向に離間するに連れて補正前後での光の強度の強度差が徐々に大きくなる。すなわち、本実施形態において、補正後におけるレチクルR上の照度領域のX方向における両端部には、補正前に比して強度の弱い露光光ELが照射される。
したがって、本実施形態では、以下に示す効果を得ることができる。
(1)透過率可変フィルタ24の透過率分布を透過した露光光ELの照度分布I1,I2は、透過率可変フィルタ24に入射した露光光ELの入射角度範囲Aに対応した照度分布になる。そのため、変更用光学系25の駆動によって透過率可変フィルタ24に入射する露光光ELの入射角度範囲Aを変更させることにより、レチクルR上での露光光ELの照度分布I1,I2を良好に補正できる。
(2)本実施形態では、変更用集光レンズ33を光路に沿った方向に移動させることにより、透過率可変フィルタ24に入射する露光光ELの入射角度範囲Aを変更することができる。
(3)また、透過率可変フィルタ24を回転させたり移動させたりすることなく、レチクルRの被照射面上での露光光ELの照度分布を補正できる。
(4)さらに、変更用光学系25の駆動に基づき透過率可変フィルタ24に入射する露光光ELの入射角度範囲Aが変更されても調整用光学系26を駆動させることにより、マスクブラインド27を照射する際の露光光ELの照射断面積を、補正前における露光光ELの照射断面積と略同一にすることができる。したがって、透過率可変フィルタ24に入射する露光光ELの入射角度範囲Aに関係なく、レチクルRの照射領域の大きさを一定の大きさに保つことができる。
(第2の実施形態)
次に、本発明の第2の実施形態を図4〜図5に従って説明する。なお、第2の実施形態は、変更用光学系25及び調整用光学系26の構成が第1の実施形態と異なっている。したがって、以下の説明においては、第1の実施形態と相違する部分について主に説明するものとし、第1の実施形態と同一又は相当する部材構成には同一符号を付して重複説明を省略するものとする。
図4(a)(b)に示すように、本実施形態の変更用光学系25は、露光光ELの光路と直交する方向(本実施形態ではX方向)に移動可能な変更用集光レンズ33Aと、該変更用集光レンズ33Aを移動させるための変位機構34とを備えている。そして、変更用集光レンズ33Aの中心と透過率可変フィルタ24の中心とのX方向における距離(以下、「離間距離」という。)hcが変更された場合、変更用集光レンズ33Aから射出された露光光ELは、その射出方向が離間距離hcの長さに対応して変更される。すなわち、透過率可変フィルタ24に入射する露光光ELの入射角度範囲Aは、図5(a)に示すように、上記離間距離hcの長さに応じて変更される。このように露光光ELの入射角度範囲Aが変更された場合、図5(b)に示すように、補正後における第2の入射角度範囲A2に対応する透過率可変フィルタ24の透過率分布T2は、補正前における第1の入射角度範囲A1に対応する透過率可変フィルタ24の透過率分布T1から変更される。
調整用光学系26は、露光光ELの光路において透過率可変フィルタ24側から順に配置された第1調整用正レンズ35、第2調整用正レンズ37及び調整用反射ミラー45を備え、該調整用反射ミラー45は、変位機構39の駆動に基づき露光光ELの光路に対する傾斜角αを変更すべく回動可能とされている。すなわち、調整用反射ミラー45は、上記離間距離hcの値が大きいほど露光光ELの光路に対する傾斜角αが大きくなるように回動するようになっている。その結果、変更用集光レンズ33AのX方向への移動に基づき透過率可変フィルタ24に入射する露光光ELの入射角度範囲Aが変更されたとしても、調整用反射ミラー45の回動に基づき露光光ELの光路に対する傾斜角αが調整されることにより、調整用光学系26から射出された露光光ELは、マスクブラインド27の開口部28に重畳的に集光される。そのため、レチクルRの被照射面上の所定位置には、変更用集光レンズ33AのX方向における位置に関係なく、露光光ELによる照射領域が形成される。
また、補正前(即ち、離間距離hc=「0(零)」)におけるレチクルRの被照射面上で露光光ELに照射される照射領域内の照度分布I1は、図5(c)に示すように、光の強度がX方向における中心からX方向に離間するに連れて次第に強くなる分布である。一方、補正後(即ち、離間距離hc≠「0(零)」)におけるレチクルRの被照射面上で露光光ELに照射される照射領域内の照度分布I2は、光の強度が反X方向側の端部(図5(c)では左端部)からX方向に離間するに連れて次第に弱くなる分布である。
したがって、本実施形態では、上記第1の実施形態の効果(1)(3)に加えて以下に示す効果を得ることができる。
(5)本実施形態では、変更用集光レンズ33AをX方向に移動させることにより、透過率可変フィルタ24に入射する露光光ELの入射角度範囲Aを変更することができる。
(6)また、変更用光学系25の駆動に基づき透過率可変フィルタ24に入射する露光光ELの入射角度範囲Aが変更されても調整用光学系26を駆動させることにより、露光光ELをマスクブラインド27の開口部28に重畳的に集光させることができる。したがって、透過率可変フィルタ24に入射する露光光ELの入射角度範囲Aが変更されても、レチクルR上の照射領域の位置の移動を規制できる。
(第3の実施形態)
次に、本発明の第3の実施形態を図6に従って説明する。なお、第3の実施形態は、変更用光学系25の構成が第2の実施形態と異なっている。したがって、以下の説明においては、第2の実施形態と相違する部分について主に説明するものとし、第2の実施形態と同一又は相当する部材構成には同一符号を付して重複説明を省略するものとする。
図6に示すように、本実施形態の変更用光学系25は、露光光ELの光路に対する傾斜角βが変更されるように回動可能な変更用集光レンズ33Bと、該変更用集光レンズ33Bを回動させるための変位機構34とを備えている。そして、露光光ELの光路に対する傾斜角βを変更すべく変更用集光レンズ33Bが回動した場合、該変更用集光レンズ33Bから射出された露光光ELは、その射出方向が傾斜角βの大きさに対応して変更される。すなわち、透過率可変フィルタ24に入射する露光光ELの入射角度範囲Aは、上記傾斜角βの大きさに応じて変更される。したがって、本実施形態では、露光光ELの光路に対する傾斜角βを変更すべく変更用集光レンズ33Bを回動させることにより、上記第2の実施形態と同様の作用効果を得ることができる。
なお、上記各実施形態は以下のような別の実施形態に変更してもよい。
・各実施形態において、透過率可変フィルタ24を、像面と共役な位置Piに配置してもよい。この場合、透過率可変フィルタ24をマスクブラインド27に接触させた状態で配置することになる。この際、調整用光学系26を照明光学装置13に設けないことが望ましい。
・第1の実施形態において、透過率可変フィルタ24を、図7に示すように、瞳面と共役な位置近傍(即ち、フライアイレンズ23よりも露光光源12側の位置)にも配置してよい。この場合、変更用光学系25を、露光光源12と透過率可変フィルタ24との間にも配置すると共に、調整用光学系26を、透過率可変フィルタ24とフライアイレンズ23との間にも配置することが望ましい。
同様に、第2及び第2の各実施形態においても、透過率可変フィルタ24を瞳面と共役な位置近傍にも配置してもよい。
また、上述したように透過率可変フィルタ24を瞳面と共役な位置近傍に配置した場合には、像面と共役な位置Pi近傍に透過率可変フィルタ24、変更用光学系25及び調整用光学系26を配置しなくてもよい。このように構成しても、フライアイレンズ23には、照度分布が補正された露光光ELが入射されることになるため、レチクルRの被照射面には、照度分布が均一に補正された露光光ELの照射領域が形成されることになる。したがって、透過率可変フィルタ24を変位させることなく、レチクルRの被照射面上での露光光ELの照度分布を補正できる。
・各実施形態において、透過率可変フィルタ24を、瞳面と共役な位置に配置してもよい。この場合、透過率可変フィルタ24を、フライアイレンズ23に接触させた状態で配置することになる。
・第2の実施形態において、変更用集光レンズ33Bを、X方向に移動させるだけではなく、露光光ELの光路に対する傾斜角βを変更すべく回動させてもよい。このように構成すると、透過率可変フィルタ24に入射する露光光ELの入射角度範囲Aをより高精度に変更できる。そのため、レチクルRの被照射面上での露光光ELの照度領域内の照度分布を、より精密に補正できる。
・第1の実施形態において、変更用集光レンズ33を、露光光ELの光路に沿った方向に移動させるだけではなく、X方向にも移動させるようにしてもよい。さらに、変更用集光レンズ33を、露光光ELの光路に対する傾斜角βを変更すべく回動させるようにしてもよい。これらのように構成すると、透過率可変フィルタ24に入射する露光光ELの入射角度範囲Aを、高精度に変更できる。そのため、レチクルRの被照射面上での露光光ELの照度領域内の照度分布を、より精密に補正できる。
・各実施形態において、変更用光学系25は、レチクルRの被照射面上での露光光ELの照度領域内の照度分布をZ方向に沿って補正するようにしてもよい。例えば、第2の実施形態において変更用集光レンズ33BをY方向に移動させることにより、レチクルRの被照射面上での露光光ELの照度領域内の照度分布をZ方向に沿って補正できる。
また、変更用光学系25は、正レンズや負レンズ以外の他の光学素子(アキシコン対や反射ミラーなど)を含んだ構成であってもよい。
・各実施形態において、透過率可変フィルタ24には、平行な露光光ELを入射させるようにしてもよい。
・各実施形態において、変更用光学系25及び調整用光学系26は、任意の枚数(1枚や5枚)の光学素子(正レンズや負レンズなど)からそれぞれ構成されるものであってもよい。
・各実施形態において、露光装置11は、半導体素子などのマイクロデバイスだけでなく、光露光装置、EUV露光装置、X線露光装置、及び電子線露光装置などで使用されるレチクルまたはマスクを製造するために、マザーレチクルからガラス基板やシリコンウエハなどへ回路パターンを転写する露光装置であってもよい。また、露光装置11は、液晶表示素子(LCD)などを含むディスプレイの製造に用いられてデバイスパターンをガラスプレート上へ転写する露光装置、薄膜磁気ヘッド等の製造に用いられて、デバイスパターンをセラミックウエハ等へ転写する露光装置、及びCCD等の撮像素子の製造に用いられる露光装置などであってもよい。
・また、上記各実施形態の照明光学装置13を、レチクルRとウエハWとが相対移動した状態でレチクルRのパターンをウエハWへ転写し、ウエハWを順次ステップ移動させるスキャニング・ステッパに搭載してもよい。
・各実施形態において、露光光源12は、例えばg線(436nm)、i線(365nm)、KrFエキシマレーザ(248nm)、Fレーザ(157nm)、Krレーザ(146nm)、Arレーザ(126nm)等を供給可能な光源であってもよい。また、露光光源12は、DFB半導体レーザまたはファイバレーザから発振される赤外域、または可視域の単一波長レーザ光を、例えばエルビウム(またはエルビウムとイッテルビウムの双方)がドープされたファイバアンプで増幅し、非線形光学結晶を用いて紫外光に波長変換した高調波を供給可能な光源であってもよい。
次に、本発明の実施形態の露光装置11によるデバイスの製造方法をリソグラフィ工程で使用したマイクロデバイスの製造方法の実施形態について説明する。図8は、マイクロデバイス(ICやLSI等の半導体チップ、液晶パネル、CCD、薄膜磁気ヘッド、マイクロマシン等)の製造例のフローチャートを示す図である。
まず、ステップS101(設計ステップ)において、マイクロデバイスの機能・性能設計(例えば、半導体デバイスの回路設計等)を行い、その機能を実現するためのパターン設計を行う。引き続き、ステップS102(マスク製作ステップ)において、設計した回路パターンを形成したマスク(レチクルRなど)を製作する。一方、ステップS103(基板製造ステップ)において、シリコン、ガラス、セラミックス等の材料を用いて基板(シリコン材料を用いた場合にはウエハWとなる。)を製造する。
次に、ステップS104(基板処理ステップ)において、ステップS101〜ステップS104で用意したマスクと基板を使用して、後述するように、リソグラフィ技術等によって基板上に実際の回路等を形成する。次いで、ステップS105(デバイス組立ステップ)において、ステップS104で処理された基板を用いてデバイス組立を行う。このステップS105には、ダイシング工程、ボンティング工程、及びパッケージング工程(チップ封入)等の工程が必要に応じて含まれる。最後に、ステップS106(検査ステップ)において、ステップS105で作製されたマイクロデバイスの動作確認テスト、耐久性テスト等の検査を行う。こうした工程を経た後にマイクロデバイスが完成し、これが出荷される。
図9は、半導体デバイスの場合におけるステップS104の詳細工程の一例を示す図である。
ステップS111(酸化ステップ)おいては、基板の表面を酸化させる。ステップS112(CVDステップ)においては、基板表面に絶縁膜を形成する。ステップS113(電極形成ステップ)においては、基板上に電極を蒸着によって形成する。ステップS114(イオン打込みステップ)においては、基板にイオンを打ち込む。以上のステップS111〜ステップS114のそれぞれは、基板処理の各段階の前処理工程を構成しており、各段階において必要な処理に応じて選択されて実行される。
基板プロセスの各段階において、上述の前処理工程が終了すると、以下のようにして後処理工程が実行される。この後処理工程では、まず、ステップS115(レジスト形成ステップ)において、基板に感光性材料を塗布する。引き続き、ステップS116(露光ステップ)において、上で説明したリソグラフィシステム(露光装置11)によってマスクの回路パターンを基板に転写する。次に、ステップS117(現像ステップ)において、ステップS116にて露光された基板を現像して、基板の表面に回路パターンからなるマスク層を形成する。さらに続いて、ステップS118(エッチングステップ)において、レジストが残存している部分以外の部分の露出部材をエッチングにより取り去る。そして、ステップS119(レジスト除去ステップ)において、エッチングが済んで不要となった感光性材料を取り除く。すなわち、ステップS118及びステップS119において、マスク層を介して基板の表面を加工する。これらの前処理工程と後処理工程とを繰り返し行うことによって、基板上に多重に回路パターンが形成される。
第1の実施形態における露光装置を示す概略構成図。 (a)は第1の実施形態における照明光学装置の一部を示す概略構成図、(b)はレチクル上の照度分布を補正した際の照明光学装置の一部を示す概略構成図。 (a)は透過率可変フィルタに入射する露光光ELの入射角度範囲が変更された状態を示す模式図、(b)は変化分布フィルタの透過率分布が変化した様子を示すグラフ、(c)はレチクル上での露光光の照度分布を補正前後で比較したグラフ。 (a)は第2の実施形態における照明光学装置の一部を示す概略構成図、(b)はレチクル上の照度分布を補正した際の照明光学装置の一部を示す概略構成図。 (a)は透過率可変フィルタに入射する露光光ELの入射角度範囲が変更された状態を示す模式図、(b)は変化分布フィルタの透過率分布が変化した様子を示すグラフ、(c)はレチクル上での露光光の照度分布を補正前後で比較したグラフ。 第3の実施形態における照明光学装置の一部を示す概略構成図。 別例の照明光学装置の一部を示す概略構成図。 デバイスの製造例のフローチャート。 半導体デバイスの場合の基板処理に関する詳細なフローチャート。
符号の説明
11…露光装置、12…露光光源、13…照明光学装置、14…保持機構としてのレチクルステージ、15…投影光学装置、24…透過率可変フィルタ、25…変更部としての変更用光学系、26…調整部としての調整用光学系、33,33A,33B…変更用光学素子としての変更用集光レンズ、34…変位機構、A…入射角度範囲、EL…露光光、Pi…像面と共役な位置、R…被照射物体としてのレチクル、T1,T2…透過率分布、β…傾斜角、θ…入射角度。

Claims (12)

  1. 光源から出力された光を被照射物体へ導く照明光学装置において、
    前記光源から出力される光の光路中に配置され、入射する光の入射角度に応じて透過率が変化する透過率可変フィルタと、
    該透過率可変フィルタの前記光源側に配置され、前記透過率可変フィルタに入射する光の入射角度範囲を変更するための変更部と
    を備えた照明光学装置。
  2. 前記変更部は、前記光路内で変位可能な状態で配置された変更用光学素子を有している請求項1に記載の照明光学装置。
  3. 前記変更部は、前記変更用光学素子を前記光路内で変位させるための変位機構を有している請求項2に記載の照明光学装置。
  4. 前記透過率可変フィルタの前記被照射物体側に配置され、前記透過率可変フィルタを透過した光の前記被照射物体に対する照射態様を調整するための調整部をさらに備えた請求項1〜請求項3のうち何れか一項に記載の照明光学装置。
  5. 前記変更用光学素子は、前記光路に沿った方向に移動可能である請求項2又は請求項3に記載の照明光学装置。
  6. 前記変更用光学素子は、前記光路と交差する方向に移動可能である請求項2、請求項3及び請求項5のうち何れか一項に記載の照明光学装置。
  7. 前記変更用光学素子は、前記光路に対する傾斜角が変化するように回動可能である請求項2、請求項3、請求項5及び請求項6のうち何れか一項に記載の照明光学装置。
  8. 前記透過率可変フィルタは、誘電体膜がコーティングされたフィルタである請求項1〜請求項7のうち何れか一項に記載の照明光学装置。
  9. 前記透過率可変フィルタは、像面と共役な位置又は該位置の近傍に配置されている請求項1〜請求項8のうち何れか一項に記載の照明光学装置。
  10. 前記透過率可変フィルタは、像面と光学的にフーリエ変換の関係にある位置に形成される瞳面と共役な位置又は該位置近傍に配置されている請求項1〜請求項9のうち何れか一項に記載の照明光学装置。
  11. 請求項1〜請求項10のうち何れか一項に記載の照明光学装置と、
    所定のパターンが形成されてなる被照射物体を保持する保持機構と、
    前記光源から出力された光が前記照明光学装置を介して前記被照射物体を照射することにより形成されたパターン像を感光性材料が塗布された基板上に投影するための投影光学装置と
    を備えた露光装置。
  12. 請求項11に記載の露光装置を用いて、前記所定のパターンに基づくパターン像を前記基板の表面に露光する露光ステップと、
    該露光ステップ後において、前記基板を現像して前記パターン像に対応する形状のマスク層を前記基板の表面に形成する現像ステップと、
    該現像ステップ後において、前記マスク層を介して前記基板の表面を加工する加工ステップと
    を含むデバイスの製造方法。
JP2007282205A 2007-10-30 2007-10-30 照明光学装置、露光装置及びデバイスの製造方法 Pending JP2009111175A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007282205A JP2009111175A (ja) 2007-10-30 2007-10-30 照明光学装置、露光装置及びデバイスの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007282205A JP2009111175A (ja) 2007-10-30 2007-10-30 照明光学装置、露光装置及びデバイスの製造方法

Publications (1)

Publication Number Publication Date
JP2009111175A true JP2009111175A (ja) 2009-05-21

Family

ID=40779342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007282205A Pending JP2009111175A (ja) 2007-10-30 2007-10-30 照明光学装置、露光装置及びデバイスの製造方法

Country Status (1)

Country Link
JP (1) JP2009111175A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010073794A1 (ja) * 2008-12-24 2010-07-01 株式会社 ニコン 照明光学系、露光装置及びデバイスの製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010073794A1 (ja) * 2008-12-24 2010-07-01 株式会社 ニコン 照明光学系、露光装置及びデバイスの製造方法
US8451430B2 (en) 2008-12-24 2013-05-28 Nikon Corporation Illumination optical system, exposure apparatus, and device manufacturing method

Similar Documents

Publication Publication Date Title
JP6525045B2 (ja) 照明光学装置、露光装置及びデバイスの製造方法
TWI387855B (zh) A variable slit device, a lighting device, an exposure device, an exposure method, and an element manufacturing method
JP2003092253A (ja) 照明光学系、露光装置、及びマイクロデバイスの製造方法
JP2007207821A (ja) 可変スリット装置、照明装置、露光装置、露光方法及びデバイスの製造方法
JP4299262B2 (ja) リソグラフィ装置、デバイス製造方法
JP5365641B2 (ja) 照明光学系、露光装置及びデバイスの製造方法
JP2008219010A (ja) デバイス製造方法、コンピュータプログラム、及び、リソグラフィ装置
JP2005093948A (ja) 露光装置及びその調整方法、露光方法、並びにデバイス製造方法
KR101960153B1 (ko) 조명 광학계, 노광 장치 및 디바이스의 제조 방법
EP1041606A1 (en) Exposure apparatus
JP5644416B2 (ja) 光学ユニット、光学系、露光装置、及びデバイスの製造方法
WO2013094733A1 (ja) 計測方法、メンテナンス方法及びその装置
JP2009510792A (ja) リソグラフィ装置及び制御方法
JP5239829B2 (ja) 照明光学系、露光装置及びデバイスの製造方法
JP2006134932A (ja) 可変スリット装置、照明光学装置、露光装置、及び露光方法
JP2009111175A (ja) 照明光学装置、露光装置及びデバイスの製造方法
JP5453804B2 (ja) 照明光学系、露光装置及びデバイスの製造方法
JP2011003714A (ja) 露光方法、マスク、及びデバイス製造方法
JP5239830B2 (ja) 照明光学系、露光装置及びデバイスの製造方法
JP2009099848A (ja) 照明光学装置、露光装置及びデバイスの製造方法
JP5352989B2 (ja) 照明光学装置、露光装置及びデバイスの製造方法
JP2008171947A (ja) 露光方法及び露光装置、並びにデバイス製造方法
JP5532620B2 (ja) 照明光学系、露光装置及びデバイスの製造方法
JP2004319780A (ja) 露光方法及び露光装置並びにデバイス製造方法
JP2022106891A (ja) 露光装置、フラットパネルディスプレイの製造方法、及びデバイス製造方法