KR20060021221A - 유/무기 복합 다공성 필름 및 이를 이용한 전기 화학 소자 - Google Patents

유/무기 복합 다공성 필름 및 이를 이용한 전기 화학 소자 Download PDF

Info

Publication number
KR20060021221A
KR20060021221A KR1020040070096A KR20040070096A KR20060021221A KR 20060021221 A KR20060021221 A KR 20060021221A KR 1020040070096 A KR1020040070096 A KR 1020040070096A KR 20040070096 A KR20040070096 A KR 20040070096A KR 20060021221 A KR20060021221 A KR 20060021221A
Authority
KR
South Korea
Prior art keywords
organic
composite porous
porous film
polymer
inorganic composite
Prior art date
Application number
KR1020040070096A
Other languages
English (en)
Other versions
KR100895196B1 (ko
Inventor
이상영
김석구
석정돈
안순호
용현항
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to KR1020040070096A priority Critical patent/KR100895196B1/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2007523490A priority patent/JP4846717B2/ja
Priority to EP20182470.3A priority patent/EP3745494A1/en
Priority to PCT/KR2005/002674 priority patent/WO2006025662A1/en
Priority to CN200580027284A priority patent/CN100593872C/zh
Priority to EP05780564.0A priority patent/EP1784876B1/en
Priority to EP17207934.5A priority patent/EP3322000A1/en
Priority to TW94128057A priority patent/TWI318018B/zh
Priority to US11/217,918 priority patent/US8409746B2/en
Publication of KR20060021221A publication Critical patent/KR20060021221A/ko
Application granted granted Critical
Publication of KR100895196B1 publication Critical patent/KR100895196B1/ko
Priority to JP2011082992A priority patent/JP2011190447A/ja
Priority to US13/184,275 priority patent/US20110281150A1/en
Priority to US13/184,297 priority patent/US20110281171A1/en
Priority to US13/184,288 priority patent/US20110281172A1/en
Priority to US13/785,260 priority patent/US9490463B2/en
Priority to US13/795,624 priority patent/US20130209861A1/en
Priority to JP2013267854A priority patent/JP5889271B2/ja
Priority to JP2015160116A priority patent/JP6116630B2/ja
Priority to US15/266,838 priority patent/US20170005309A1/en
Priority to US15/890,229 priority patent/US20180166671A1/en
Priority to US16/374,483 priority patent/US20190229316A1/en
Priority to US17/358,433 priority patent/US20210320380A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

본 발명은 a) 리튬 이온 전달 능력을 갖는 무기물 입자 및 b) 상기 무기물 입자 표면의 일부 또는 전부에 형성된 고분자 바인더 코팅층을 포함하는 유/무기 복합 다공성 필름에 있어서, 상기 고분자 바인더 코팅층에 의해 무기물 입자 사이가 연결 및 고정되고, 무기물 입자간의 빈 공간(interstitial volume)으로 인해 마이크로 단위의 기공이 형성된 것을 특징으로 하는 유/무기 복합 다공성 필름 및 이의 제조방법을 제공한다. 또한 본 발명은 상기 유/무기 복합 다공성 필름을 포함하는 전기 화학 소자를 제공한다.
본 발명에 따라 제조된 유/무기 복합 다공성 필름은 필름 중에 존재하는 내열성 마이크로 단위의 기공 구조로 인해 액체 전해액이 들어갈 공간이 증가하여 전해액 함침율이 향상될 뿐만 아니라 무기물 입자의 리튬 이온 전달 능력으로 인해 리튬 이온 전도도가 상승하므로, 이를 분리막으로 이용하는 리튬 이차 전지는 열적 안전성 및 성능 향상을 도모할 수 있다.
무기물, 리튬 이온, 전도도, 고분자, 기공, 필름, 분리막, 겔형 고분자 전해질, 리튬 이차 전지, 전기 화학 소자

Description

유/무기 복합 다공성 필름 및 이를 이용한 전기 화학 소자{ORGANIC/INORGANIC COMPOSITE POROUS FILM AND ELECTROCHEMICAL DEVICE PREPARED THEREBY}
도 1은 본 발명에 따라 제조된 유/무기 복합 다공성 필름의 모식도이다.
도 2는 실시예 1에서 제조된 유/무기 복합 다공성 필름(LiTi2(PO4)3 / PVdF-HFP)의 SEM 사진이다.
도 3a는 실시예 1에서 제조된 유/무기 복합 다공성 필름(LiTi2(PO4)3 / PVdF-HFP) 및 상용화된 PP/PE/PP 분리막의 상온 보존시의 사진이며, 도 3b는 상기 유/무기 복합 다공성 필름 및 PP/PE/PP 분리막을 각각 150℃에서 1시간 방치한 후의 사진이다.
도 4a와 도 4b는 상용화된 PP/PE/PP 분리막과 실시예 1 에서 제조된 유/무기 복합 다공성 필름(LiTi2(PO4)3/PVdF-HFP)을 각각 구비한 비교예 1 및 실시예 1의 리튬 이차 전지의 과충전 실험 비교 사진이다.
본 발명은 리튬 이온 전도도 및 전해액 함침율이 향상된 유/무기 복합 다공성 필름 및 이를 포함하는 전기 화학 소자에 관한 것이다.
최근 에너지 저장 기술에 대한 관심이 갈수록 높아지고 있다. 휴대폰, 캠코더, 노트북 및 PC, 나아가서는 전기 자동차의 에너지까지 적용 분야가 확대됨에 따라 전지의 연구와 개발에 대한 노력이 점점 구체화되고 있다. 전기 화학 소자는 이러한 측면에서 가장 주목받는 분야이며, 그 중에서도 충방전이 가능한 이차 전지의 개발은 관심의 촛점이 되고 있다.
이차 전지는 화학 에너지와 전기 에너지의 가역적 상호변환을 이용해 충전과 방전을 반복할 수 있는 화학 전지로서, Ni-MH 이차 전지와 리튬 이차 전지로 구분된다. 리튬 이차 전지에는 리튬 금속 이차 전지, 리튬 이온 이차 전지, 리튬 폴리머 이차 전지 또는 리튬 이온 폴리머 이차 전지 등이 있다.
리튬 이온 전지는 빈 공간이 존재하는 결정 구조의 정극활물질(예, LiCoO2)과 부극활물질(예, graphite)을 각각 전류 집전체(current collector)인 알루미늄 호일 및 구리 호일상에 코팅하여 양 전극을 제조하며, 양 전극 사이에 분리막을 개재시킨 후 전해액을 주입하게 된다. 전지의 충전시에는 정극활물질 결정 내에 삽입된 리튬이 탈리되어 부극의 부극활물질 결정 구조속으로 들어가고, 방전시에는 이와 반대로 부극활물질 속에 있는 리튬이 탈리되어 정극 중의 결정으로 삽입된다. 이와 같이 충방전됨에 따라 리튬 이온이 정극과 부극 간을 상호 이동하며 에너지를 전달하므로, 흔들의자 전지(rocking chair battery)라 부른다. 이와 같은 작동 메커니즘을 가진 리튬 이온 전지는 사용하는 전해질에 따라 LiLB (lithium ion liquid battery), LiPB (lithium ion polymer battery), LPB (lithium polymer battery) 등으로 나눌 수 있다. 즉, LiLB는 액체 전해질을, LiPB는 겔형 고분자 전해질을, LPB는 고체 고분자 전해질을 사용한다.
리튬 이차 전지는 수용액 전해액을 사용하는 Ni-MH의 재래식 전지에 비해서 작동 전압이 높고 에너지 밀도가 크다는 장점이 있기 때문에 현재 많은 회사에서 생산되고 있으나, 그들의 안전성 특성은 각기 다른 양상을 보이고 있다. 전지의 안전성 평가 및 안전성 확보는 가장 중요하게 고려해야 될 사항이므로, 이에 따라 리튬 이차 전지의 안전 규격은 전지 내의 발화 및 발연 등을 엄격히 규제하고 있다.
현재 생산중인 리튬 이온 전지 및 리튬 이온 폴리머 전지는 양극과 음극의 단락을 방지하고자, 폴리올레핀 계열 분리막을 사용하고 있다. 폴리올레핀 계열 분리막은 200℃ 이하에서 용융되는 물성을 가지고 있기 때문에, 내부 및/또는 외부 자극에 의해 전지가 고온으로 상승할 경우 분리막의 수축 혹은 용융 등과 같은 부피 변화가 발생하게 되며, 이로 인해 양 전극의 단락, 전기 에너지의 방출 등으로 폭발 등이 발생할 수 있다. 따라서, 고온에서 열 수축이 일어나지 않는 분리막의 개발이 요구되고 있다.
상기에 언급된 폴리올레핀 계열 분리막의 문제점을 개선하기 위한 노력으로, 일반적인 고분자 전해질의 연구 방향들 중 한가지인, 분리막의 역할을 수행하면서 무기물이 적용된 전해질을 개발하고자 많은 시도들이 있었다. 이들을 크게 2가지로 분류하면, 첫째는 리튬 이온 전달 능력이 있는 무기물 입자를 단독으로 이용하거나 또는 리튬 이온 전달 능력이 있는 무기물 입자 및 고분자 매트릭스를 혼합하여 복 합 고체 고분자 전해질 (solid polymer electrolyte)을 제조하는 것이다(일본 공개번호 제 2003-022707호; Solid State Ionics, vol.158, n.3, p275, 2003; Journal of Power Sources, vol.112, n.1, p209, 2002; Electrochimica Acta, vol.48, n.14, p2003, 2003). 그러나 액체 전해질에 비해 낮은 무기물의 이온 전도도 및 고분자와 혼합시 무기물과 고분자간의 계면 저항 증가 등으로 인해 더 이상의 진전이 없는 것으로 알려졌다.
둘째는 리튬 이온 전달 능력이 없거나 또는 있는 무기물 입자를 고분자 및 액체 전해질로 구성된 겔형 고분자 전해질(gel polymer electrolyte)과 함께 섞어 전해질을 제조하는 것이다. 이 경우 무기물은 고분자 및 액체 전해질에 비해 소량 투입되며, 액체 전해질에 의해 이루어지는 리튬 이온 전달을 도와주는 보조 기능을 지니게 된다.
그러나 상기와 같이 제조된 전해질은 전해질 내 기공이 존재하지 않거나 또는 기공이 존재한다 하더라도 옹스트롬(Å) 단위의 기공 크기 및 낮은 기공도로 인해 분리막으로서의 역할을 충실히 수행하지 못할 뿐만 아니라, 소량 투입으로 인한 리튬 이온 전달 능력이 있는 무기물 입자의 기여도가 미비하였다.
본 발명자는 상기에 언급된 종래 기술의 문제점을 해결하기 위해서, (1) 리튬 이온 전달 능력을 갖는 무기물 입자 및 (2) 바인더 고분자를 구성 성분으로 사용하여 마이크로 단위의 기공이 형성된 유/무기 복합 다공성 필름을 도입하였다.
이에, 본 발명은 상기의 유/무기 복합 다공성 필름 및 이의 제조방법을 제공하 는 것을 목적으로 한다.
또한, 본 발명은 상기 유/무기 복합 다공성 필름을 포함하는 전기 화학 소자를 제공하는 것을 또 다른 목적으로 한다.
본 발명은 a) 리튬 이온 전달 능력을 갖는 무기물 입자 및 b) 상기 무기물 입자 표면의 일부 또는 전부에 형성된 고분자 바인더 코팅층을 포함하는 유/무기 복합 다공성 필름에 있어서, 상기 고분자 바인더 코팅층에 의해 무기물 입자 사이가 연결 및 고정되고, 무기물 입자간의 빈 공간(interstitial volume)으로 인해 마이크로 단위의 기공이 형성된 것을 특징으로 하는 유/무기 복합 다공성 필름 및 이를 포함하는 전기 화학 소자를 제공한다.
또한, 본 발명은 a) 고분자를 용매에 용해시키는 단계; b) 리튬 이온 전달 능력을 갖는 무기물 입자를 상기 단계 a)의 고분자 용액에 첨가 및 혼합하는 단계; 및 c) 상기 단계 b)의 무기물 입자와 고분자의 혼합물을 기재에 코팅 및 건조한 후 기재를 탈착하는 단계를 포함하는 유/무기 복합 다공성 필름의 제조방법을 제공한다.
이하, 본 발명을 상세히 설명한다.
본 발명의 유/무기 복합 다공성 필름은 리튬 이온 전달 능력을 갖는 무기물 입자와 바인더 고분자를 구성 성분으로 하여 내열성을 갖는 마이크로 단위의 기공 구조를 형성함으로써, 분리막으로 사용될 수 있다. 이때 상기 필름은 필름 내 포함된 마이크로 기공으로 인해 전해액 함침율이 향상될 뿐만 아니라 무기물 입자의 리튬 이온 전달 능력으로 인해 리튬 이온 전도도가 상승된다. 게다가 고분자의 성분으로 액체 전해액 함침시 겔화 가능한 고분자를 사용할 경우 전해질로도 동시에 사용할 수 있다는 특징이 있다.
본 발명에 따른 유/무기 복합 다공성 필름을 이루는 주요 성분 중 하나는 리튬 이온 전달 능력을 갖는 무기물 입자가 바람직하다. 이는 전지내 리튬 이온을 용이하게 전달할 수 있기 때문이다. 리튬 이온 전달 능력을 갖는 무기물 입자의 비제한적인 예로는 리튬포스페이트 (Li3PO4), 리튬티타늄포스페이트 (LixTiy (PO4)3, 0 < x < 2, 0 < y < 3) , 리튬알루미늄티타늄포스페이트 (LixAlyTiz(PO4 )3, 0 < x < 2, 0 < y < 1, 0 < z < 3), 14Li2O-9Al2O3-38TiO2-39P2 O5 등과 같은 (LiAlTiP)xOy 계열 glass (0 < x < 4, 0 < y < 13), 리튬란탄티타네이트(LixLayTiO3, 0 < x < 2, 0 < y < 3), Li3.25Ge0.25P0.75S4 등과 같은 리튬게르마니움티오포스페이트(Li xGeyPzSw, 0 < x < 4, 0 < y < 1, 0 < z < 1, 0 < w < 5), Li3N 등과 같은 리튬나이트라이드(Lix Ny, 0 < x < 4, 0 < y < 2), Li3PO4-Li2S-SiS2 등과 같은 SiS2 계열 glass (LixSiySz, 0 < x < 3, 0 < y < 2, 0 < z < 4), LiI-Li2S-P2S5 등과 같은 P2S 5 계열 glass (LixPySz, 0 < x < 3, 0 < y < 3, 0 < z < 7) 또는 이들의 혼합물 등이 있다.
본 발명의 리튬 이온 전달 능력을 갖는 무기물 입자는 최종 유/무기 복합 다공성 필름을 제조하는 주성분으로서, 무기물 입자들간의 빈 공간(interstitial volume)을 가능하게 하여 마이크로 단위의 기공을 형성하는 역할을 수행함과 동시 에 물리적 형태를 유지할 수 있는 일종의 스페이서(spacer) 역할을 겸하게 된다. 또한, 상기 무기물 입자는 무기물 구조 내부에 존재하는 일종의 결함(defect)으로 인해 리튬 이온을 전달 및 이동시킬 수 있기 때문에, 리튬 이온 전도도를 향상시킬 수 있다.
본 발명의 유/무기 복합 다공성 필름은 필름의 구성 성분인 무기물 입자의 크기, 무기물 입자의 함량 및 무기물 입자와 고분자의 조성을 조절함으로써, 마이크로 단위의 기공을 형성할 수 있으며, 또한 기공 크기 및 기공도를 조절할 수 있다.
무기물 입자의 크기는 제한이 없으나, 0.01 내지 10㎛ 범위인 것이 바람직하다. 0.01㎛ 미만일 경우에는 분산성이 저하되어 유/무기 복합 다공성 필름의 구조 및 물성을 조절하기가 어려우며, 10㎛를 초과할 경우에는 동일한 고형분 함량으로 제조되는 유/무기 복합 다공성 필름의 두께가 증가하여 기계적 물성이 저하되며, 또한 지나치게 큰 기공 크기로 인해 전지의 충방전시 내부 단락이 일어날 확률이 높아진다.
상기 리튬 이온 전달 능력을 갖는 무기물 입자의 함량은 유/무기 복합 다공성 필름을 구성하는 혼합물 100 중량% 당 50 내지 99 중량% 범위가 바람직하며, 특히 60 내지 95 중량%가 더욱 바람직하다. 50 중량% 미만일 경우 고분자의 함량이 지나치게 많게 되어 무기물 입자들 사이에 형성된 빈 공간의 감소로 인한 기공 크기 및 기공도가 감소되어 최종 전지 성능 저하가 야기되며, 99 중량% 초과시 고분자 함량이 너무 적기 때문에 무기물 사이의 접착력 약화로 인해 최종 유/무기 복합 다공성 필름의 기계적 물성이 저하된다.
본 발명에 따른 유/무기 복합 다공성 필름을 이루는 무기물 입자는 당업계에서 통상적으로 사용되는 무기물 입자를 포함할 수 있다. 이의 비제한적인 예로는 SiO2, TiO2, Al2O3, ZrO2, SnO2, CeO2, MgO, CaO, ZnO, Y2O3, Pb(Zr,Ti)O3 (PZT), Pb1-xLax Zr1-yTiyO3 (PLZT), PB(Mg3Nb2/3)O3-PbTiO3 (PMN-PT), BaTiO3, hafnia (HfO2), SrTiO3 등이 있다. 상기 무기물은 일반적으로 200℃ 이상의 고온이 되어도 물리적 특성이 변하지 않는 특성을 가지고 있기 때문이다.
본 발명에 따른 유/무기 복합 다공성 필름의 주요 성분 중 다른 하나는 당업계에서 통상적으로 사용되는 고분자이다. 특히, 유리 전이 온도(glass transition temperature, Tg)가 -200 내지 200℃ 범위인 고분자가 바람직하며, 이는 유연성 및 탄성 등과 같은 기계적 물성을 향상시킬 수 있기 때문이다.
상기 고분자는 무기물 입자들과 입자 사이를 연결 및 안정하게 고정시켜주는 바인더 역할을 충실히 수행함으로써, 최종 제조되는 유/무기 복합 다공성 필름의 기계적 물성 저하방지에 기여한다.
전술한 기능 이외에, 본 발명의 고분자는 액체 전해액 함침시 겔화됨으로써 높은 전해액 함침율(degree of swelling)을 나타낼 수 있는 특징을 가질 수 있다. 이에 따라 용해도 지수가 15 내지 45 MPa1/2 인 고분자가 바람직하며, 특히 15 내지 25 MPa1/2 및 30 내지 45 MPa1/2 범위가 더욱 바람직하다. 따라서 폴리올레핀류와 같은 소수성 고분자들보다는 극성기를 많이 가진 친수성 고분자들이 바람직하다. 용해도 지수가 15 MPa1/2 미만 및 45 MPa1/2를 초과할 경우, 통상적인 전지용 액체 전해액에 의해 함침(swelling)되기 어렵게 된다.
상기 유리 전이 온도가 -200 내지 200℃ 범위이며, 용해도 지수가 15 내지 45 MPa1/2인 고분자의 비제한적인 예로는 폴리비닐리덴 풀루오라이드-헥사풀루오로프로필렌 (polyvinylidene fluoride-co-hexafluoropropylene), 폴리비닐리덴 풀루오라이드-트리클로로에틸렌 (polyvinylidene fluoride-co-trichloroethylene), 폴리메틸메타크릴레이트 (polymethylmethacrylate), 폴리아크릴로니트릴 (polyacrylonitrile), 폴리비닐피롤리돈 (polyvinylpyrrolidone), 폴리비닐아세테이트 (polyvinylacetate), 에틸렌 비닐 아세테이트 공중합체 (polyethylene-co-vinyl acetate), 폴리에틸렌옥사이드 (polyethylene oxide), 셀룰로오스 아세테이트 (cellulose acetate), 셀룰로오스 아세테이트 부틸레이트 (cellulose acetate butyrate), 셀룰로오스 아세테이트 프로피오네이트 (cellulose acetate propionate), 시아노에틸풀루란 (cyanoethylpullulan), 시아노에틸폴리비닐알콜 (cyanoethylpolyvinylalcohol), 시아노에틸셀룰로오스 (cyanoethylcellulose), 시아노에틸수크로오스 (cyanoethylsucrose), 풀루란 (pullulan), 카르복실 메틸 셀룰로오스 (carboxyl methyl cellulose), 아크리로니트릴스티렌부타디엔 공중합체 (acrylonitrile-styrene-butadiene copolymer), 폴리이미드(polyimide) 또는 이들의 혼합체 등이 있다. 이외에도 상술한 특성을 포함하는 물질이라면 어느 재료라도 단독 또는 혼합하여 사용할 수 있다. 상기 용해도 지수 15 내지 45 MPa1/2인 고분자 를 사용할 경우, 전술한 무기물 입자의 바인더 역할 이외에 전해액에 녹지 않고 함침(swelling)되어 겔화 가능하므로 리튬 이온 전도도의 향상에 기여한다.
본 발명의 유/무기 복합 다공성 필름은 리튬 이온 전달 능력을 갖는 무기물 입자 및 고분자 이외에, 용매 및 기타 첨가제를 더 포함할 수 있다.
리튬 이온 전달 능력을 갖는 무기물 입자 및 고분자를 포함하는 혼합물을 이용하여 본 발명의 유/무기 복합 다공성 필름을 제조할 경우 크게 3가지의 실시 형태가 이루어질 수 있으나, 이를 제한하는 것은 아니다. 첫째는 리튬 이온 전달 능력을 갖는 무기물 입자 및 고분자의 혼합물을 사용하여 단독으로 유/무기 복합 다공성 필름을 형성하는 것이다. 둘째는 상기 혼합물을 기공을 갖는 다공성 기재상에 코팅함으로써 유/무기 복합 다공성 필름을 형성하는 것으로서, 이때 다공성 기재상에 코팅된 필름은 다공성 기재의 표면 또는 기재 중 기공부 일부가 무기물 입자 및 고분자의 혼합물로 코팅된 활성층을 포함한다. 셋째는 상기 혼합물을 양극 및/또는 음극에 코팅함으로써 유/무기 복합 다공성 필름을 제조할 수 있으며, 이때 제조된 필름은 전극과 일체형이 된다.
본 발명의 유/무기 복합 다공성 필름의 실시 형태 중 상기 리튬 이온 전달 능력을 갖는 무기물 입자와 고분자의 혼합물로 코팅되는 다공성 기재는 기공부를 포함하는 다공성 기재로서, 용융 온도 200℃ 이상인 내열성인 것이 바람직하다. 이는 외부 및/또는 내부의 열 자극에 의해 발생되는 본 발명의 유/무기 복합 다공성 필름의 안전성 저하를 향상시킬 수 있기 때문이다. 상기 기공부를 갖고, 용융 온도 200℃ 이상인 다공성 기재 재료의 비제한적인 예로는 폴리에틸렌테레프탈레이트 (polyethyleneterephthalate), 폴리부틸렌테레프탈레이트 (polybutyleneterephthalate), 폴리에스테르(polyester), 폴리아세탈(polyacetal), 폴리아미드(polyamide), 폴리카보네이트(polycarbonate), 폴리이미드(polyimide), 폴리에테르에테르케톤(polyetheretherketone), 폴리에테르설폰(polyethersulfone), 폴리페닐렌옥사이드(polyphenyleneoxide), 폴리페닐렌설파이드로 (polyphenylenesulfidro), 폴리에틸렌나프탈렌(polyethylenenaphthalene) 또는 이들의 혼합체 등이 있으며, 기타 내열성 엔지니어링 플라스틱을 제한 없이 사용할 수 있다.
상기 다공성 기재의 두께는 크게 제한이 없으나, 1 내지 100㎛ 범위가 바람직하며, 5 내지 50㎛ 범위가 더욱 바람직하다. 1㎛ 미만일 경우에는 기계적 물성을 유지하기가 어렵고, 100㎛를 초과할 경우에는 저항층으로 작용하게 된다.
상기 다공성 기재 중 기공 크기 및 기공도는 특별한 제한이 없으며, 기공도는 5 내지 95%가 바람직하다. 기공 크기(직경)는 0.01 내지 50㎛가 바람직하며, 0.1 내지 20㎛가 더욱 바람직하다. 기공 크기 및 기공도가 각각 0.01㎛ 및 10% 미만일 경우 저항층으로 작용하게 되며, 기공 크기 및 기공도가 50㎛ 및 95%를 초과할 경우에는 기계적 물성을 유지하기가 어렵게 된다.
상기 다공성 기재는 섬유 또는 막(membrane) 형태일 수 있으며, 섬유일 경우에는 다공성 웹(web)을 형성하는 부직포로서, 장섬유로 구성된 스폰본드(Spunbond) 또는 멜트 블로운(Melt blown) 형태인 것이 바람직하다.
스폰본드 공법은 하나의 연속 공정을 거치는 것으로, 열을 받아 용융되어 장섬 유를 형성하게 되며 뜨거운 공기에 의해 연신(stretching)되어 웹을 형성하는 것이다. 멜트 블로운 공법은 섬유를 형성할 수 있는 고분자를 수 백 개의 작은 오리피스(orifice)로 형성된 방사구금을 통해 방사하는 공정으로서, 직경이 10m 이하의 미세 섬유들이 상호 결합하여 거미줄과 같은 구조 형태(spider-web structure)를 가지는 3차원적 섬유이다.
리튬 이온 전달 능력을 갖는 무기물 입자와 고분자의 혼합물만을 단독으로 사용하여 제조된 본 발명의 유/무기 복합 다공성 필름은 지지체이자 스페이서(spacer) 역할을 하는 무기물들 사이의 빈 공간(interstitial volume)으로 인해 마이크로 단위의 기공 구조가 형성된다. 또한 다공성 기재상에 상기 혼합물을 코팅하여 형성된 본 발명의 유/무기 복합 다공성 필름도 기재 자체 내에 기공부가 포함되어 있을 뿐만 아니라, 기재 상에 형성된 활성층 중 무기물 입자간의 공간으로 인해 기재와 활성층 모두 기공 구조를 형성하게 된다. 따라서, 형성된 마이크로 단위의 기공을 통해 전해액이 들어갈 공간이 증가함으로써 전해액 함침율이 향상된다. 또한 무기물 입자의 리튬 이온 전달 능력으로 인해 리튬 이온 전도도가 상승하는 효과를 나타낼 수 있다.
리튬 이온 전달 능력을 갖는 무기물 입자 및 고분자의 혼합물을 단독으로 사용하여 제조되거나 또는 기공부를 갖는 다공성 기재상에 상기 혼합물을 코팅하여 형성된 본 발명의 유/무기 복합 다공성 필름은 0.01 내지 10㎛ 크기의 기공을 포함하는 것이 바람직하다. 또한 상기 필름의 기공도(porosity)는 5 내지 95% 범위가 바람직하다. 추가적으로, 본 발명의 유/무기 복합 다공성 필름의 두께는 1 내지 100 ㎛ 범위인 것이 바람직하며, 특히 2 내지 30㎛ 범위인 것이 더욱 바람직하다. 상기 두께 범위를 조절함으로써 전지 성능 향상을 도모할 수 있다.
본 발명의 유/무기 복합 다공성 필름은 최종 전지의 특성에 따라 기존 폴리올레핀 계열 기공 분리막을 함께 사용하여 전지에 적용될 수 있다.
본 발명에 따라 리튬 이온 전달 능력을 갖는 무기물 입자 표면의 일부 또는 전부를 바인더 고분자로 코팅하는 방법은 당업계에서 알려진 통상적인 코팅 방법을 사용할 수 있다.
이하, 본 발명에 따른 제조 방법의 일 실시 형태를 들면, a) 고분자를 용매에 용해시키는 단계; b) 리튬 이온 전달 능력을 갖는 무기물 입자를 상기 단계 a)의 고분자 용액에 첨가 및 혼합하는 단계; 및 c) 상기 단계 b)의 혼합물을 기재에 코팅 및 건조한 후 기재를 탈착하는 단계를 포함할 수 있다.
1) 우선, 고분자를 적절한 유기 용매에 용해시켜 고분자 용액을 제조한다.
용매로는 사용하고자 하는 고분자와 용해도 지수가 유사하며, 끓는점(boiling point)이 낮은 것이 바람직하다. 이는 혼합이 균일하게 이루어질 수 있으며, 이후 용매를 용이하게 제거할 수 있기 때문이다. 상기 용매의 비제한적인 예로는 아세톤 (acetone), 테트라하이드로퓨란 (tetrahydrofuran), 메틸렌클로라이드 (methylene chloride), 클로로포름 (chloroform), 디메틸포름아미드 (dimethylformamide), N-메틸-2-피롤리돈 (N-methyl-2-pyrrolidone, NMP), 시클로헥산 (cyclohexane), 물 또는 이들의 혼합체 등이 있다.
2) 제조된 고분자 용액에 리튬 이온 전달 능력을 갖는 무기물 입자를 첨가 및 분산시켜 무기물 입자와 고분자의 혼합물을 제조한다.
상기에 있어서, 고분자 용액에 리튬 이온 전달 능력을 갖는 무기물 입자를 첨가한 후, 무기물 입자의 파쇄를 실시하는 것이 바람직하다. 이때 파쇄 시간은 1 내지 20시간이 적절하며, 파쇄된 무기물 입자의 입도는 상기에 언급된 바와 같이 0.01 내지 10㎛가 바람직하다. 파쇄 방법으로는 통상적인 방법을 사용할 수 있으며, 특히 볼밀(ball mill)법이 바람직하다.
리튬 이온 전달 능력을 갖는 무기물 입자 및 고분자로 구성되는 혼합물의 조성은 크게 제약이 없으나, 이에 따라 최종 제조되는 본 발명의 유/무기 복합 다공성 필름의 두께, 기공 크기 및 기공도를 조절할 수 있다.
즉, 고분자(P) 대비 무기물 입자(I)의 비(ratio = I/P)가 증가할수록 본 발명의 유/무기 복합 다공성 필름의 기공도가 증가하게 되며, 이는 동일한 고형분 함량(무기물 입자 중량 + 고분자 중량)에서 유/무기 복합 다공성 필름의 두께가 향상되는 결과를 초래하게 된다. 또한, 무기물 입자들간의 기공 형성 가능성이 증가하여 기공 크기가 증가하게 되는데, 이때 무기물 입자의 크기(입경)가 커질수록 무기물들 사이의 간격(interstitial distance)이 커지므로, 기공 크기가 증가하게 된다.
3) 제조된 리튬 이온 전달 능력을 갖는 무기물 입자와 고분자의 혼합물을 기재(substrate)상에 코팅 및 건조한 후, 상기 기재를 탈착함으로써 본 발명의 유/무기 복합 다공성 필름을 얻게 된다.
이때 기재로는 통상적인 시트나 필름이 바람직하나, 이를 제한하는 것은 아니다.
무기물 입자와 고분자의 혼합물을 코팅하는 공정은 통상적인 코팅 방법을 사용할 수 있다. 특히 딥(Dip) 코팅, 다이(Die) 코팅, 롤(roll) 코팅, 콤마(comma) 코팅 또는 이들의 혼합 방식을 통해 도포하는 것이 바람직하다.
상기 단계 중, 기공을 갖는 다공성 기재 또는 전극상에 상기 혼합물을 코팅하여 유/무기 복합 다공성 필름을 제조할 수 있는데, 이때 무기물 입자와 고분자의 혼합물은 기공을 갖는 다공성 기재의 표면 뿐만 아니라 기재 중 기공부 일부에도 침투하여 코팅된다. 사용되는 다공성 기재는 제조 공정상 탈착 과정을 요하지 않는다.
상기와 같이 제조된 본 발명의 유/무기 복합 다공성 필름은 리튬 이차 전지의 분리막(separator)으로 사용할 수 있다. 이때 필름의 구성 성분 중 고분자 성분으로 액체 전해액 함침시 겔화 가능한 고분자를 사용할 경우, 상기 분리막을 이용하여 전지를 조립한 후 전해액 주입에 의해 전해액과 고분자가 반응하여 겔화되어 겔형 유/무기 복합 전해질을 형성할 수 있다.
본 발명의 겔형 유/무기 복합 전해질은 종래 기술의 겔형 고분자 전해질에 비하여 제조 공정이 용이하며, 마이크로 기공 구조로 인해 주입되는 액체 전해액이 채울 공간이 다수 존재하여 높은 이온 전도도 및 전해액 함침율을 나타내어 전지 성능을 현저하게 향상된다. 특히 무기물의 리튬 이온 전달 능력으로 인해 리튬 이온 전도도가 상승하게 된다. 또한 고분자의 성분으로 친수성 고분자를 사용할 경우, 기존의 소수성 폴리올레핀 계열 분리막에 비해 전지용 전해액에 대한 젖음성(wetting)이 개선될 뿐만 아니라 종래에 사용하기 힘들었던 전지용 극성 전해액에 대한 사용이 가능한 장점이 있다.
또한, 본 발명은 양극, 음극, 상기 양극과 음극 사이에 개재된 본 발명의 유/무기 복합 다공성 필름 및 전해액을 포함하는 전기 화학 소자를 제공한다. 이때, 본 발명의 유/무기 복합 다공성 필름 이외에 기존의 폴리올레핀 계열 분리막을 함께 사용 및 적용할 수 있다.
상기 전기 화학 소자는 전기 화학 반응을 하는 모든 소자를 포함하며, 구체적인 예를 들면, 모든 종류의 1차, 2차 전지, 연료 전지, 태양 전지 또는 캐퍼시터(capacitor) 등이 있다. 상기 전기 화학 소자에 포함된 유/무기 복합 다공성 필름은 본 발명에서와 동일하게 분리막이자 전해질의 역할을 한다.
추가적으로, 본 발명은 a) 리튬을 흡장 및 방출할 수 있는 양극활물질을 포함하는 양극; b) 리튬을 흡장 및 방출할 수 있는 음극활물질을 포함하는 음극; c) 상기의 유/무기 복합 다공성 필름; 및 전해액을 포함하는 리튬 이차 전지를 제공한다.
상기 리튬 이차 전지는 리튬 금속 이차 전지, 리튬 이온 이차 전지, 리튬 폴리머 이차 전지 또는 리튬 이온 폴리머 이차 전지 등을 포함한다.
리튬 이차 전지는 당 기술 분야에 알려져 있는 통상적인 방법으로 제조할 수 있으며, 예를 들면 양극과 음극 사이에 상기의 유/무기 복합 다공성 필름을 넣고 액체 전해액을 투입하여 제조한다.
유/무기 복합 다공성 필름과 함께 적용될 전극으로는 크게 제한이 없으나, 양극 활물질은 리튬 망간 산화물(lithiated magnesium oxide), 리튬 코발트 산화물 (lithiated cobalt oxide), 리튬 니켈 산화물 (lithiated nickel oxide) 또는 이들의 조합에 의해서 형성되는 복합 산화물 등과 같이 리튬 흡착 물질(lithium intercalation material)을 주성분으로 하고, 이것이 양극 전류 집전체, 즉 알루미늄, 니켈 또는 이들의 조합에 의해서 제조되는 호일(foil)과 결착된 형태로 양극이 구성된다.
음극 물질은 리튬 금속, 또는 리튬 합금과 카본(carbon), 석유 코크(petroleum coke), 활성화 카본(activated carbon), 그래파이트(graphite) 또는 기타 카본류 등과 같은 리튬 흡착 물질을 주성분으로 하고, 이것이 음극 전류 집전체, 즉 구리, 금, 니켈 혹은 구리 합금 혹은 이들의 조합에 의해서 제조되는 호일과 결착된 형태로 음극이 구성된다.
본 발명에서 사용될 전해액은 A+B-와 같은 구조의 염으로서, A+는 Li+ , Na+, K+와 같은 알칼리 금속 양이온이나 이들의 조합으로 이루어진 이온을 포함하고, B-는 PF6 -, BF4 -, Cl-, Br-, I-, ClO4 -, ASF6 -, CH3CO2 -, CF3SO3 -, N(CF3SO2)2 -, C(CF 2SO2)3 -와 같은 음이온이나 이들의 조합으로 이루어진 이온을 포함하는 염이 프로필렌 카보네이트(propylene carbonate, PC), 에틸렌 카보네이트(ethylene carbonate, EC), 디에틸카보네이트(diethyl carbonate, DEC), 디메틸카보네이트(dimethyl carbonate, DMC), 디프로필카보네이트(dipropyl carbonate, DPC), 디메틸설프옥사이 드(dimethyl sulfoxide), 아세토니트릴 (acetonitrile), 디메톡시에탄 (dimethoxyethane), 디에톡시에탄 (diethoxyethane), 테트라하이드로퓨란 (tetrahydrofuran), N-메틸-2-피롤리돈 (N-methyl-2-pyrrolidone, NMP), 에틸메틸카보네이트(ethyl methyl carbonate, EMC), 감마 부티로락톤(γ-butyrolactone) 또는 이들의 혼합물로 이루어진 유기 용매에 용해 및 해리된 것이 바람직하다.
전술한 바와 같이, 고분자 성분으로 액체 전해액 함침시 겔화 가능한 고분자를 사용하여 제조된 본 발명의 유/무기 복합 다공성 필름은 상기 필름 및 양극과 음극을 이용하여 전지를 조립하고 여기에 전해액을 주입할 경우 필름 중 고분자가 전해액과 반응하여 겔형 고분자 전해질을 형성할 수 있다.
상기 전해액 주입은 최종 제품의 제조 공정 및 요구 물성에 따라, 전지 제조 공정 중 적절한 단계에서 행해질 수 있다. 즉, 전지 조립 전 또는 전지 조립 최종 단계 등에서 적용될 수 있다.
본 발명의 유/무기 복합 다공성 필름을 전지로 적용하는 공정으로는 일반적인 공정인 권취(winding) 이외에도 분리막과 전극의 적층(lamination, stack) 및 접음(folding) 공정이 가능하다.
본 발명의 유/무기 복합 다공성 필름이 상기 공정 중 적층 공정에 적용될 경우, 전지의 열적 안전성 향상 효과는 현저해진다. 이는 일반적인 권취 공정에 의해 제조된 전지에 비해 적층 및 접음 공정으로 제조된 전지는 분리막의 열 수축이 더욱 심하게 일어나는데 기인한다. 또한, 적층(lamination, stack) 공정은 본 발명의 유/무기 복합 다공성 필름 중 고분자의 우수한 접착력 특성으로 인해 쉽게 조립이 가능한 장점이 있다. 이때 주성분인 무기물 입자 및 고분자의 함량에 의해 접착력 특성이 조절될 수 있다.
본 발명은 하기의 실시예 및 실험예에 의거하여 더욱 상세히 설명된다. 단, 실시예 및 실험예는 본 발명을 예시하기 위한 것이며 이들만으로 한정하는 것은 아니다.
[실시예 1]
1-1. 유/무기 복합 다공성 필름(LiTi 2 (PO 4 ) 3 / PVdF-HFP) 제조
폴리비닐리덴플루오라이드-헥사플루오로프로필렌 공중합체 (PVdF-HFP) 고분자를 테트라하이드로퓨란 (THF)에 약 5 중량% 첨가한 후, 50℃의 온도에서 약 12시간 이상 용해시켜 고분자 용액을 제조하였다. 이 고분자 용액에 입경이 약 400nm인 리튬티타늄포스페이트(LiTi2(PO4)3) 분말을 전체 고형분 20 중량%로 첨가하고 분산시켜 혼합용액(LiTi2(PO4)3 / PVdF-HFP = 80 / 20 (중량비))을 제조하였다. 닥터 블레이드(doctor blade)법을 이용하여 제조된 혼합용액을 테플론 시트(sheet) 기재상에 코팅하였다. 코팅하여 THF를 건조시킨 후 테플론 시트에서 탈착시켜, 필름 두께가 약 20㎛ 정도인 최종 유/무기 복합 다공성 필름을 얻었다(도 1 참조). 기공율 측정 장치(porosimeter)로 측정한 결과, 최종 유/무기 복합 다공성 필름의 기공 크기 및 기공도는 각각 0.5㎛ 및 62% 였다.
1-2. 리튬 이차 전지 제조
양극 제조
양극 활물질로 LiCoO2 94 중량%, 도전제로 카본 블랙(carbon black) 3 중량%, 결합제로 PVdF 3 중량%를 용제인 N-메틸-2 피롤리돈(NMP)에 첨가하여 양극 혼합물 슬러리를 제조하였다. 상기 양극 혼합물 슬러리를 양극 집전체인 두께가 20㎛ 정도의 양극 집전체인 알루미늄(Al) 박막에 도포 및 건조하여 양극을 제조하였다.
음극 제조
음극 활물질로 탄소 분말, 결합제로 PVdF, 도전제로 카본 블랙(carbon black)을 각각 96 중량%, 3 중량% 및 1 중량%로 하여 용제인 NMP에 첨가하여 음극 혼합물 슬러리를 제조하였다. 상기 음극 혼합물 슬러리를 음극 집전체인 두께가 10㎛의 음극 집전체인 구리(Cu) 박막에 도포 및 건조하여 음극을 제조하였다.
전지 제조
상기 양극, 음극 및 상기 실시예 1-1에서 제조된 유/무기 복합 다공성 필름을 스태킹(stacking) 방식을 이용하여 조립하였으며, 조립된 전지에 1M의 리튬헥사플로로포스페이트(LiPF6)이 용해된 에틸렌카보네이트 / 프로필렌카보네이트 / 디에틸카보네이트 (EC/PC/DEC=30:20:50 중량%)계 전해액을 주입하여 리튬 이차 전지를 제조하였다.
[실시예 2]
2-1. 유/무기 복합 다공성 필름(LiTi 2 (PO 4 ) 3 -BaTiO 3 / PVdF-HFP) 제조
LiTi2(PO4)3 분말 대신 BaTiO3 /LiTi2(PO4 )3가 50:50 중량%비로 혼합된 무기물 입자 분말을 사용한 것을 제외하고는, 상기 실시예 1과 동일하게 실시하였다. 기공율 측정 장치로 측정한 결과, 최종 필름 두께는 25㎛였으며, 기공 크기 및 기공도는 각각 0.3㎛ 및 60%였다.
2-2. 리튬 이차 전지 제조
상기 실시예 2-1에서 제조된 유/무기 복합 다공성 필름을 사용한 것을 제외하고는, 상기 실시예 1과 동일한 방법을 수행하여 리튬 이차 전지를 제조하였다.
[비교예 1]
PP/PE/PP 분리막을 사용한 것을 제외하고는, 상기 실시예 1과 동일한 방법을 수행하여 리튬 이차 전지를 제조하였다.
[비교예 2]
2-1. 유/무기 복합 다공성 필름 제조
LiTi2(PO4)3 PVdF-HFP의 조성비를 10:90 중량%비로 사용한 것을 제외하고는, 상기 실시예 1과 동일한 방법을 수행하여 유/무기 복합 다공성 필름을 제조하였다. 제조된 LiTi2(PO4)3/PVdF-HFP를 기공율 측정 장치로 측정한 결과, 유/무기 복합 다공성 필름의 기공 크기는 0.01㎛ 이하였으며, 기공도는 5% 수준이었다.
2-2. 리튬 이차 전지 제조
상기 비교예 2-1에서 제조된 LiTi2(PO4)3/PVdF-HFP 필름을 사용한 것을 제외하고는, 상기 실시예 1과 동일한 방법을 수행하여 리튬 이차 전지를 제조하였다.
[비교예 3]
3-1. 리튬 이온 전달 능력이 없는 유/무기 복합 다공성 필름 제조
BaTiO3 와 PVdF-HFP의 조성비를 10:90 중량%비로 사용한 것을 제외하고는, 상 기 실시예 1과 동일한 방법을 수행하여 유/무기 복합 다공성 필름을 제조하였다. 제조된 BaTiO3/PVdF-HFP를 기공율 측정 장치로 측정한 결과, 유/무기 복합 다공성 필름의 기공 크기는 0.01㎛ 이하였으며, 기공도는 5% 수준이었다.
3-2. 리튬 이차 전지 제조
상기 비교예 3-1에서 제조된 LiTi2(PO4)3/PVdF-HFP를 사용한 것을 제외하고는, 상기 실시예 1과 동일한 방법을 수행하여 리튬 이차 전지를 제조하였다.
실험예 1. 유/무기 복합 다공성 필름의 표면 분석
본 발명에 따라 제조된 유/무기 복합 다공성 필름의 표면을 분석하고자, 하기와 같은 실험을 실시하였다.
시료로는 실시예 1에서 제조된 LiTi2(PO4)3 / PVdF-HFP 필름을 사용하였다.
주사 전자 현미경(Scanning Electron Microscope: SEM)으로 표면을 확인한 결과, 본 발명의 유/무기 복합 다공성 필름의 주요 구성 성분인 리튬 이온 전달 능력을 갖는 무기물 입자에 의해 마이크로 단위의 기공이 형성된 것을 볼 수 있었다. 또한 상기 무기물 입자의 표면상에 고분자가 코팅되어 있음을 확인할 수 있었다(도 2 참조).
실험예 2. 유/무기 복합 다공성 필름의 열 수축 분석
본 발명에 따라 제조된 유/무기 복합 다공성 필름을 기존 분리막과 비교하기 위하여, 하기와 같은 실험을 수행하였다.
시료로는 실시예 1에서 제조된 LiTi2(PO4)3 / PVdF-HFP 필름을 사용하였으며, 대조군으로 PP/PE/PP 분리막을 사용하였다.
상기의 각 시료들을 상온 및 150℃의 온도에서 1시간 방치한 후, 이들을 수집하여 확인한 결과, 상온의 온도에서는 본 발명의 유/무기 복합 다공성 필름과 대조군 모두 양호한 상태를 보여 주었으나(도 3a 참조), 150℃의 온도에서 1시간 경과한 경우에는 서로 다른 양태를 나타내었다. 대조군의 PP/PE/PP 분리막은 고온으로 인해 수축하여 거의 형체만 남은 모습을 보여주었으나, 본 발명의 유/무기 복합 다공성 필름은 열 수축이 전혀 나타나지 않아, 상온에서와 동일하게 양호한 상태를 보여주었다(도 3b 참조).
이로서, 본 발명의 유/무기 복합 다공성 필름은 탁월한 열적 안전성을 가짐을 확인할 수 있었다.
실험예 3. 리튬 이차 전지의 안전성 평가
본 발명에서 제조된 유/무기 복합 다공성 필름을 포함하는 리튬 이차 전지의 안전성을 평가하기 위하여, 하기와 같이 수행하였다.
3-1. 고온 노출(Hot Box) 실험
실시예 1 및 2에서 제조된 리튬 이차 전지를 사용하였으며, 대조군으로 상용화된 PP/PE/PP 분리막을 사용한 비교예 1의 전지와 10:90 중량%비로 이루어진 LiTi2(PO4)3/PVdF-HFP 필름을 분리막으로 사용한 비교예 2의 전지를 사용하였다. 각 전지들을 150℃ 및 160℃의 고온에서 각각 1시간 동안 보존하였으며, 이후 전지의 상태를 하기 표 1에 기재하였다.
실험 결과, 상용화된 PP/PE/PP 분리막을 사용한 비교예 1의 전지는 160℃의 온도에서 1시간 보존시 전지의 폭발 현상이 나타났다. 이는 고온 보존에 의해 폴리올레핀 계열 분리막의 심한 열 수축, 용융 파괴가 진행되어 전지의 양 전극인 양극 및 음극의 내부 단락을 유발시킨 것을 의미하는 것이다. 이에 비해, 본 발명에서 제조된 유/무기 복합 다공성 필름을 포함하는 리튬 이차 전지는 160℃인 고온에서도 발화 및 연소가 발생하지 않고, 안전한 상태를 보여주었다(표 1 참조).
이로서, 본 발명의 유/무기 복합 다공성 필름을 포함하는 리튬 이차 전지는 탁월한 열적 안전성을 가짐을 확인할 수 있었다.
조건 실시예 1 실시예 2 비교예 1 비교예 2
150℃ / 1시간
160℃ / 1시간 X
3-2. 과충전 실험
실시예 1 및 2에서 제조된 리튬 이차 전지를 사용하였으며, 대조군으로 상용화된 PP/PE/PP 분리막을 사용한 비교예 1의 전지와 10:90 중량%비로 이루어진 LiTi2(PO4)3/PVdF-HFP 필름을 분리막으로 사용한 비교예 2의 전지를 사용하였다. 각 전지들을 6V/1A 및 10V/1A의 조건으로 충전하였으며, 이후 전지의 상태를 하기 표 2에 기재하였다.
실험 결과, 상용화된 PP/PE/PP 분리막을 사용한 비교예 1의 전지는 폭발 현상을 나타냈다(도 4a 참조). 이는 전지의 과충전에 의해 폴리올레핀 계열 분리막의 수축에 의한 전극들의 단락 및 이로 인한 전지의 안전성 저하가 발생됨을 나타내는 것이다. 이에 비해, 본 발명에서 제조된 유/무기 복합 다공성 필름을 포함하는 리튬 이차 전지는 과충전시 안전한 상태를 보여주었다(표 2 및 도 4b 참조)
조건 실시예 1 실시예 2 비교예 1 비교예 2
6V / 1A X
10V / 1A X
실험예 4. 리튬 이차 전지의 성능 평가
본 발명에서 제조된 유/무기 복합 다공성 필름을 포함하는 리튬 이차 전지의 충방전 용량을 측정하기 위하여, 하기와 같이 수행하였다.
실시예 1 및 2에서 제조된 리튬 이차 전지를 사용하였으며, 대조군으로 상용화된 PP/PE/PP 분리막을 사용한 비교예 1의 전지, 10:90 중량%비로 이루어진 LiTi2(PO4)3/PVdF-HFP 필름을 분리막으로 사용한 비교예 2의 전지 및 10:90 중량%비로 이루어진 BaTiO3/PVdF-HFP 필름을 분리막으로 사용한 비교예 3의 전지를 사용하였다. 전지 용량이 560mAh인 각 전지들을 0.5C, 1C, 2C의 방전 속도로 사이클링을 하였으며, 이들의 방전 용량을 C-rate 특성별로 도식하여 하기 표 3에 기재하였다.
실험 결과, 리튬 이온 전달 능력을 갖는 무기물 입자와 고분자의 조성비가 10:90 중량비인 유/무기 복합 필름을 분리막으로 사용한 비교예 2의 전지는 본 발명의 유/무기 복합 다공성 필름 및 기존 폴리올레핀 계열 분리막에 비해 방전속도별 용량이 감소됨을 나타냈다. 이는 무기물 입자의 양이 고분자에 비해 상대적으로 작아 무기물 입자간의 빈 공간으로 형성된 기공 크기 및 기공도가 현저히 감소함으로써, 전지의 성능 저하가 초래되는 것을 의미한다. 또한 무기물 입자의 리튬 이온 전달 능력으로 인한 리튬 이온 전도도 향상 효과가 미비함을 나타낸다. 또한, 리튬 전달 능력이 없는 무기물과 고분자의 조성비가 10:90 중량비인 유/무기 복합 필름을 분리막으로 사용한 비교예 3의 전지는 비교예 2의 전지와 마찬가지로 본 발명의 유/무기 복합 다공성 필름 및 기존 폴리올레핀 계열 분리막을 포함한 전지에 비해 방전속도별 용량이 감소됨을 나타냈다. 더욱이 리튬 전달 능력이 없는 관계로 비교예 2의 전지보다 성능 저하가 크게 야기됨을 관찰할 수 있었다. 이에 비해, 본 발명의 유/무기 복합 다공성 필름을 구비한 리튬 이차 전지는 2C의 방전 속도까지 기존 폴리올레핀 계열 분리막과 대등한 고율 방전(C-rate) 특성을 보여주었다(표 3 참조).
방전속도 실시예 1 (mAh) 실시예 2 (mAh) 비교예 1 (mAh) 비교예 2 (mAh) 비교예 3 (mAh)
0.5C 558 557 558 442 425
1C 547 545 546 395 363
2C 494 492 493 285 247
본 발명의 유/무기 복합 다공성 필름은 필름 중에 존재하는 내열성 마이크로 단위의 기공 구조로 인해 액체 전해액이 들어갈 공간이 증가하여 전해액 함침율이 향상될 뿐만 아니라 무기물 입자의 리튬 이온 전달 능력으로 인해 리튬 이온 전도도가 상승하므로, 이를 분리막으로 이용하는 리튬 이차 전지는 열적 안전성 및 성능 향상을 도모할 수 있다

Claims (13)

  1. a) 리튬 이온 전달 능력을 갖는 무기물 입자; 및
    b) 상기 무기물 입자 표면의 일부 또는 전부에 형성된 고분자 바인더 코팅층
    을 포함하는 유/무기 복합 다공성 필름에 있어서, 상기 고분자 바인더 코팅층에 의해 무기물 입자 사이가 연결 및 고정되고, 무기물 입자간의 빈 공간(interstitial volume)으로 인해 마이크로 단위의 기공이 형성된 것을 특징으로 하는 유/무기 복합 다공성 필름.
  2. 제 1항에 있어서, 상기 리튬 이온 전달 능력을 갖는 무기물 입자는 리튬포스페이트 (Li3PO4), 리튬티타늄포스페이트 (LixTiy(PO4) 3, 0 < x < 2, 0 < y < 3), 리튬알루미늄티타늄포스페이트 (LixAlyTiz(PO4)3, 0 < x < 2, 0 < y < 1, 0 < z < 3), (LiAlTiP)xOy 계열 glass(0 < x < 4, 0 < y < 13), 리튬란탄티타네이트 (LixLayTiO3, 0 < x < 2, 0 < y < 3), 리튬게르마니움티오포스페이트 (LixGeyPz Sw, 0 < x < 4, 0 < y < 1, 0 < z < 1, 0 < w < 5), 리튬나이트라이드 (LixNy, 0 < x < 4, 0 < y < 2), SiS2 (LixSiySz, 0 < x < 3, 0 < y < 2, 0 < z < 4) 계열 glass 및 P2S5 (LixPySz, 0 < x < 3, 0 < y < 3, 0 < z < 7) 계열 glass로 이루어진 군으로부터 선택된 1종 이상인 필름
  3. 제 1항에 있어서, 상기 무기물 입자의 크기는 0.01 내지 10㎛ 범위인 필름.
  4. 제 1항에 있어서, 상기 리튬 이온 전달 능력을 갖는 무기물 입자의 함량은 무기물 입자와 고분자의 혼합물 100 중량% 당 50 내지 99 중량%인 필름.
  5. 제 1항에 있어서, 상기 고분자는 유리 전이 온도(Tg)가 -200 내지 200℃ 범위인 필름.
  6. 제 1항에 있어서, 상기 고분자는 액체 전해액 함침시 겔화 가능한 고분자로서, 용해도 지수 15 내지 45MPa1/2 범위인 필름.
  7. 제 5항 또는 제 6항에 있어서, 상기 고분자는 폴리비닐리덴 풀루오라이드-헥사풀루오로프로필렌 (polyvinylidene fluoride-co-hexafluoropropylene), 폴리비닐리덴 풀루오라이드-트리클로로에틸렌 (polyvinylidene fluoride-co-trichloroethylene), 폴리메틸메타클릴레이트 (polymethylmethacrylate), 폴리아크릴로니트릴 (polyacrylonitrile), 폴리비닐피롤리돈 (polyvinylpyrrolidone), 폴리비닐아세테이트 (polyvinylacetate), 에틸렌 비닐 아세테이트 공중합체 (polyethylene-co-vinyl acetate), 폴리에틸렌옥사이드 (polyethylene oxide), 셀 룰로오스 아세테이트 (cellulose acetate), 셀룰로오스 아세테이트 부틸레이트 (cellulose acetate butyrate), 셀룰로오스 아세테이트 프로피오네이트 (cellulose acetate propionate), 시아노에틸풀루란 (cyanoethylpullulan), 시아노에틸폴리비닐알콜 (cyanoethylpolyvinylalcohol), 시아노에틸셀룰로오스 (cyanoethylcellulose), 시아노에틸수크로오스 (cyanoethylsucrose), 풀루란 (pullulan), 카르복실 메틸 셀룰로오스 (carboxyl methyl cellulose), 아크리로니트릴스티렌부타디엔공중합체 (acrylonitrile-styrene-butadiene copolymer) 및 폴리이미드(polyimide)로 이루어진 군으로부터 선택된 1종 이상인 필름.
  8. 제 1항에 있어서, 상기 유/무기 복합 다공성 필름의 기공 크기는 0.01 내지 10㎛ 범위인 필름.
  9. 제 1항에 있어서, 상기 유/무기 복합 다공성 필름의 기공도는 5 내지 95% 범위인 필름.
  10. 제 1항에 있어서, 상기 유/무기 복합 다공성 필름의 두께는 1 내지 100㎛ 범위인 필름.
  11. a) 양극;
    b) 음극;
    c) 상기 양극과 음극 사이에 개재된 제 1항 내지 제 10항 중 어느 한 항의 유/무기 복합 다공성 필름; 및
    d) 전해액
    을 포함하는 전기 화학 소자.
  12. 제 11항에 있어서, 상기 전기 화학 소자는 폴리올레핀 계열 분리막을 추가적으로 포함하는 소자.
  13. a) 고분자를 용매에 용해시키는 단계;
    b) 리튬 이온 전달 능력을 갖는 무기물 입자를 상기 단계 a)의 고분자 용액에 첨가 및 혼합하는 단계; 및
    c) 상기 단계 b)의 무기물 입자와 고분자의 혼합물을 기재에 코팅 및 건조한 후, 기재를 탈착하는 단계
    를 포함하는 제 1항 내지 제 10항 중 어느 한 항의 유/무기 복합 다공성 필름의 제조방법.
KR1020040070096A 2004-02-09 2004-09-02 유/무기 복합 다공성 필름 및 이를 이용한 전기 화학 소자 KR100895196B1 (ko)

Priority Applications (21)

Application Number Priority Date Filing Date Title
KR1020040070096A KR100895196B1 (ko) 2004-09-02 2004-09-02 유/무기 복합 다공성 필름 및 이를 이용한 전기 화학 소자
EP20182470.3A EP3745494A1 (en) 2004-09-02 2005-08-17 Organic/inorganic composite porous film and electrochemical device prepared thereby
PCT/KR2005/002674 WO2006025662A1 (en) 2004-09-02 2005-08-17 Organic/inorganic composite porous film and electrochemical device prepared thereby
CN200580027284A CN100593872C (zh) 2004-09-02 2005-08-17 有机/无机复合多孔薄膜和由其制备的电化学装置
JP2007523490A JP4846717B2 (ja) 2004-09-02 2005-08-17 有無機複合多孔性フィルム及びこれを用いる電気化学素子
EP05780564.0A EP1784876B1 (en) 2004-09-02 2005-08-17 Organic/inorganic composite porous film and electrochemical device prepared thereby
EP17207934.5A EP3322000A1 (en) 2004-09-02 2005-08-17 Organic/inorganic composite porous film and electrochemical device prepared thereby
TW94128057A TWI318018B (en) 2004-09-02 2005-08-17 Organic/inorganic composite porous film and electrochemical device prepared thereby
US11/217,918 US8409746B2 (en) 2004-09-02 2005-09-01 Organic/inorganic composite porous film and electrochemical device prepared thereby
JP2011082992A JP2011190447A (ja) 2004-09-02 2011-04-04 有無機複合多孔性フィルム及びこれを用いる電気化学素子
US13/184,275 US20110281150A1 (en) 2004-02-09 2011-07-15 Organic/inorganic composite porous film and electrochemical device prepared thereby
US13/184,288 US20110281172A1 (en) 2004-02-09 2011-07-15 Organic/inorganic composite porous film and electrochemical device prepared thereby
US13/184,297 US20110281171A1 (en) 2004-02-09 2011-07-15 Organic/inorganic composite porous film and electrochemical device prepared thereby
US13/785,260 US9490463B2 (en) 2004-09-02 2013-03-05 Organic/inorganic composite porous film and electrochemical device prepared thereby
US13/795,624 US20130209861A1 (en) 2004-09-02 2013-03-12 Lithium secondary battery
JP2013267854A JP5889271B2 (ja) 2004-09-02 2013-12-25 有機/無機複合多孔性フィルム及びこれを用いる電気化学素子
JP2015160116A JP6116630B2 (ja) 2004-09-02 2015-08-14 有機無機複合多孔性フィルム及びこれを用いる電気化学素子
US15/266,838 US20170005309A1 (en) 2004-09-02 2016-09-15 Organic/inorganic composite porous film and electrochemical device prepared thereby
US15/890,229 US20180166671A1 (en) 2004-09-02 2018-02-06 Organic/inorganic composite porous film and electrochemical device prepared thereby
US16/374,483 US20190229316A1 (en) 2004-09-02 2019-04-03 Organic/inorganic composite porous film and electrochemical device prepared thereby
US17/358,433 US20210320380A1 (en) 2004-09-02 2021-06-25 Organic/inorganic composite porous film and electrochemical device prepared thereby

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020040070096A KR100895196B1 (ko) 2004-09-02 2004-09-02 유/무기 복합 다공성 필름 및 이를 이용한 전기 화학 소자

Publications (2)

Publication Number Publication Date
KR20060021221A true KR20060021221A (ko) 2006-03-07
KR100895196B1 KR100895196B1 (ko) 2009-04-24

Family

ID=37128176

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020040070096A KR100895196B1 (ko) 2004-02-09 2004-09-02 유/무기 복합 다공성 필름 및 이를 이용한 전기 화학 소자

Country Status (2)

Country Link
KR (1) KR100895196B1 (ko)
CN (1) CN100593872C (ko)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009014388A2 (en) * 2007-07-25 2009-01-29 Lg Chem, Ltd. Electrochemical device and its manufacturing method
WO2010071387A3 (ko) * 2008-12-19 2010-09-30 주식회사 엘지화학 고출력 리튬 이차 전지
KR20140005079A (ko) * 2012-07-03 2014-01-14 한국전자통신연구원 리튬전지 바인더 조성물, 그 제조 방법 및 이를 포함하는 리튬전지
US10734627B2 (en) 2016-04-01 2020-08-04 Lg Chen, Ltd. Separator comprising an adhesion layer for an electrochemical device and an electrode assembly comprising the same
US10777801B2 (en) 2015-08-25 2020-09-15 Lg Chem, Ltd. Complex separator for electrochemical element, comprising bonding layer, and electrochemical element comprising same

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5426551B2 (ja) 2007-08-21 2014-02-26 エー123 システムズ, インコーポレイテッド 電気化学セル用セパレータおよびその製造方法
WO2010024328A1 (ja) 2008-08-29 2010-03-04 日本ゼオン株式会社 多孔膜、二次電池電極及びリチウムイオン二次電池
JP5154349B2 (ja) * 2008-09-09 2013-02-27 日東電工株式会社 電池用セパレータとその製造方法、並びに、リチウムイオン二次電池とその製造方法
KR101408844B1 (ko) * 2010-06-10 2014-06-20 에스케이이노베이션 주식회사 고내열성 유/무기 피복층을 갖는 복합 미세다공막
CN101913862B (zh) * 2010-07-27 2012-07-25 大连海事大学 一种锂离子电池用复合隔膜及应用该隔膜的锂离子电池
CN102064299A (zh) * 2010-12-25 2011-05-18 佛山塑料集团股份有限公司 一种锂离子电池用聚烯烃多层多孔隔膜及其制备方法
CN103765661B (zh) * 2011-09-02 2016-06-22 西奥公司 微球复合电解质
CN103035940B (zh) * 2011-09-30 2016-09-07 深圳市比克电池有限公司 一种锂离子电池及其制备方法
JP5355821B2 (ja) * 2011-10-21 2013-11-27 帝人株式会社 非水系二次電池用セパレータ及び非水系二次電池
CN103137930A (zh) * 2011-11-24 2013-06-05 比亚迪股份有限公司 一种锂离子电池隔膜及其制备方法、含有该隔膜的锂离子电池
DE102012000910A1 (de) 2012-01-19 2013-07-25 Sihl Gmbh Separator umfassend eine poröse Schicht und Verfahren zu seiner Herstellung
CN103247768A (zh) * 2012-02-07 2013-08-14 辉能科技股份有限公司 一种电能供应单元及其陶瓷隔离层
CN104170151B (zh) 2012-05-23 2018-02-02 株式会社Lg 化学 电极组件的制造方法及包括由该方法制造的电极组件的电化学元件
CN102993891B (zh) * 2012-11-22 2015-07-22 上海泛能新材料科技有限公司 一种锂离子电池复合隔膜用涂料及使用该涂料的复合隔膜
CA2893475A1 (en) * 2012-12-05 2014-06-12 Solvay Specialty Polymers Italy S.P.A. Solid composite fluoropolymer layer
CN103000849B (zh) * 2012-12-17 2015-09-16 常州大学 一种高介电性电池隔膜
KR101298340B1 (ko) * 2013-02-12 2013-08-20 삼성토탈 주식회사 유/무기 복합 코팅 다공성 분리막 및 이를 이용한 이차전지소자
HUE060245T2 (hu) * 2013-02-15 2023-02-28 Lg Energy Solution Ltd Eleketródegység
CN104541399B (zh) * 2013-02-15 2017-11-24 株式会社Lg 化学 电极组件及电极组件的制造方法
WO2014126430A1 (ko) 2013-02-15 2014-08-21 주식회사 엘지화학 전극조립체 및 이를 포함하는 폴리머 이차전지 셀
KR101595643B1 (ko) 2013-02-15 2016-02-18 주식회사 엘지화학 전극조립체 및 이를 포함하는 폴리머 이차전지 셀
CN103311486B (zh) * 2013-05-14 2016-06-08 中南大学 一种有机-无机复合隔膜及其制备和应用
CN104662725B (zh) * 2013-05-23 2020-07-03 株式会社Lg 化学 电极组件及用于该电极组件的基本单体
KR101535023B1 (ko) * 2013-11-22 2015-07-08 주식회사 엘지화학 전극 조립체 및 이를 위한 기본 단위체
PL2882028T3 (pl) 2013-05-23 2020-06-01 Lg Chem, Ltd. Sposób wytwarzania zespołu elektrodowego
CN104662724A (zh) * 2013-05-23 2015-05-27 株式会社Lg化学 电极组件的制造方法
CN110690399B (zh) * 2013-05-23 2022-12-06 株式会社Lg新能源 电极组件的制造方法
KR101909318B1 (ko) 2014-09-04 2018-10-17 주식회사 엘지화학 유기-무기 복합 다공성 막, 이를 포함하는 세퍼레이터 및 전극구조체
KR20160108116A (ko) * 2015-03-05 2016-09-19 주식회사 엘지화학 접착력이 강화된 분리막을 포함하는 전지셀
CN106299214A (zh) * 2015-06-05 2017-01-04 东莞市亿顺新材料有限公司 一种锂离子电池及其陶瓷隔膜
JPWO2017099247A1 (ja) 2015-12-11 2018-08-30 富士フイルム株式会社 固体電解質組成物、全固体二次電池用シート、全固体二次電池用電極シート及びその製造方法、並びに、全固体二次電池及びその製造方法
WO2017183633A1 (ja) * 2016-04-20 2017-10-26 日本電気株式会社 二次電池
CN109155441B (zh) * 2016-05-20 2022-11-01 锡安能量公司 用于电极和电化学电池的保护层
PL3367466T3 (pl) 2016-06-08 2021-11-08 Lg Chem, Ltd. Separator i zawierające go urządzenie elektrochemiczne
CN109155384A (zh) * 2016-06-23 2019-01-04 株式会社日立制作所 锂二次电池
US11394084B2 (en) 2016-11-18 2022-07-19 Lg Energy Solution, Ltd. Separator and electrochemical device including the same
CN107275670A (zh) * 2017-07-06 2017-10-20 钟旭航 锂离子动力电池及其制作方法、其隔膜及隔膜的制作方法,以及用于形成隔膜的浆料
CN107732103A (zh) * 2017-09-20 2018-02-23 无锡九宇宝新能源科技有限公司 一种高热稳定性的锂离子电池隔膜及其制备方法
TWI787398B (zh) * 2017-11-21 2022-12-21 日商旭化成股份有限公司 用於電儲存裝置之分離件
JP2019185989A (ja) * 2018-04-09 2019-10-24 株式会社日立製作所 絶縁層、電池セルシート、電池
CN110364662B (zh) * 2018-04-11 2022-07-05 宁德新能源科技有限公司 隔离膜和电化学装置
CN108976938B (zh) * 2018-07-10 2020-11-17 福建师范大学 含有一价离子磷酸盐涂覆层的涂覆膜制备方法
CN108963158B (zh) * 2018-07-10 2021-10-22 福建师范大学 一种含p-o键化合物的聚合物涂覆膜的制备方法
CN109244539A (zh) * 2018-10-23 2019-01-18 溧阳中科海钠科技有限责任公司 有机-无机复合固态电解质材料及其制备方法和应用
CN111081956B (zh) * 2019-12-25 2022-10-21 武汉中兴创新材料技术有限公司 一种陶瓷涂层隔膜及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6432586B1 (en) * 2000-04-10 2002-08-13 Celgard Inc. Separator for a high energy rechargeable lithium battery
KR100399785B1 (ko) * 2001-04-07 2003-09-29 삼성에스디아이 주식회사 겔형 고분자 전해질을 포함하는 권취형 리튬 2차 전지용세퍼레이터 및 그 제조방법

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009014388A2 (en) * 2007-07-25 2009-01-29 Lg Chem, Ltd. Electrochemical device and its manufacturing method
WO2009014388A3 (en) * 2007-07-25 2009-03-19 Lg Chemical Ltd Electrochemical device and its manufacturing method
US9799866B2 (en) 2007-07-25 2017-10-24 Lg Chem, Ltd. Electrochemical device and its manufacturing method
WO2010071387A3 (ko) * 2008-12-19 2010-09-30 주식회사 엘지화학 고출력 리튬 이차 전지
US9099721B2 (en) 2008-12-19 2015-08-04 Lg Chem, Ltd. High-power lithium secondary battery
KR20140005079A (ko) * 2012-07-03 2014-01-14 한국전자통신연구원 리튬전지 바인더 조성물, 그 제조 방법 및 이를 포함하는 리튬전지
US10777801B2 (en) 2015-08-25 2020-09-15 Lg Chem, Ltd. Complex separator for electrochemical element, comprising bonding layer, and electrochemical element comprising same
US10734627B2 (en) 2016-04-01 2020-08-04 Lg Chen, Ltd. Separator comprising an adhesion layer for an electrochemical device and an electrode assembly comprising the same
US11005141B2 (en) 2016-04-01 2021-05-11 Lg Chem, Ltd. Separator comprising an adhesion layer for an electrochemical device and an electrode assembly comprising the same

Also Published As

Publication number Publication date
KR100895196B1 (ko) 2009-04-24
CN101002347A (zh) 2007-07-18
CN100593872C (zh) 2010-03-10

Similar Documents

Publication Publication Date Title
US20210320380A1 (en) Organic/inorganic composite porous film and electrochemical device prepared thereby
KR100895196B1 (ko) 유/무기 복합 다공성 필름 및 이를 이용한 전기 화학 소자
KR100749301B1 (ko) 신규 유/무기 복합 다공성 필름 및 이를 이용한 전기 화학소자
US7704641B2 (en) Organic/inorganic composite porous film and electrochemical device prepared thereby
KR100742959B1 (ko) 유/무기 복합 다공성 필름 및 이를 이용하는 전기 화학소자
KR100739337B1 (ko) 유/무기 복합 다공성 필름 및 이를 이용한 전기 화학 소자
JP6116630B2 (ja) 有機無機複合多孔性フィルム及びこれを用いる電気化学素子
US7638241B2 (en) Organic/inorganic composite separator having morphology gradient, manufacturing method thereof and electrochemical device containing the same
US7662517B2 (en) Organic/inorganic composite microporous membrane and electrochemical device prepared thereby
US20110318141A1 (en) Substrate transfer equipment and high speed substrate processing system using the same
KR100873570B1 (ko) 유/무기 복합 다공성 필름 및 이를 이용한 전기 화학 소자
EP2005502A1 (en) Electrode having porous active coating layer, manufacturing method thereof and electrochemical device containing the same
KR20060041650A (ko) 유/무기 복합 다공성 필름 및 이를 이용한 전기 화학 소자

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130410

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20140318

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20150416

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20160418

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20170328

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20180403

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20190401

Year of fee payment: 11