KR100749301B1 - 신규 유/무기 복합 다공성 필름 및 이를 이용한 전기 화학소자 - Google Patents

신규 유/무기 복합 다공성 필름 및 이를 이용한 전기 화학소자 Download PDF

Info

Publication number
KR100749301B1
KR100749301B1 KR1020040052638A KR20040052638A KR100749301B1 KR 100749301 B1 KR100749301 B1 KR 100749301B1 KR 1020040052638 A KR1020040052638 A KR 1020040052638A KR 20040052638 A KR20040052638 A KR 20040052638A KR 100749301 B1 KR100749301 B1 KR 100749301B1
Authority
KR
South Korea
Prior art keywords
organic
film
polymer
inorganic composite
porous film
Prior art date
Application number
KR1020040052638A
Other languages
English (en)
Other versions
KR20060003665A (ko
Inventor
이상영
김석구
석정돈
용현항
안순호
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to KR1020040052638A priority Critical patent/KR100749301B1/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to PL05765818T priority patent/PL1782489T3/pl
Priority to JP2007516403A priority patent/JP2008503049A/ja
Priority to EP20180768.2A priority patent/EP3739668A1/en
Priority to RU2007101386/09A priority patent/RU2336602C1/ru
Priority to BRPI0511309A priority patent/BRPI0511309B1/pt
Priority to EP05765818.9A priority patent/EP1782489B1/en
Priority to HUE05765818A priority patent/HUE052954T2/hu
Priority to TW094122679A priority patent/TWI321860B/zh
Priority to CNB2005800203221A priority patent/CN100502097C/zh
Priority to PCT/KR2005/002133 priority patent/WO2006004366A1/en
Priority to US11/175,881 priority patent/US7704641B2/en
Publication of KR20060003665A publication Critical patent/KR20060003665A/ko
Application granted granted Critical
Publication of KR100749301B1 publication Critical patent/KR100749301B1/ko
Priority to JP2011003263A priority patent/JP2011138780A/ja
Priority to JP2012096824A priority patent/JP6285092B2/ja
Priority to JP2017218635A priority patent/JP2018063948A/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

본 발명은 기공을 갖고, 용융 온도가 200℃ 이상인 다공성 기재; 및 상기 기재의 표면 또는 기재 중 기공부 일부가 5 이상의 유전율 상수를 갖는 무기물 입자 및 용해도 지수(solubility parameter)가 15 내지 45 MPa1/2 인 고분자의 혼합물로 코팅된 활성층을 포함하는 유/무기 복합 다공성 필름 및 이의 제조방법, 이를 포함하는 전기 화학 소자를 제공한다.
본 발명에 따라 제조된 유/무기 복합 다공성 필름은 기공부를 갖고, 용융 온도 200℃ 이상인 다공성 기재와 고유전율 무기물 입자 및 전해액과 반응하여 겔화 가능한 고분자를 함유하는 활성층을 사용함으로써, 탁월한 구조적 및 물리적 안전성을 나타낼 뿐만 아니라 전해액 함침시 리튬 이온 전달이 현저하게 향상되고 전해액 함침율이 우수하므로, 이를 이용한 리튬 이차 전지는 탁월한 전지의 안전성 및 성능 향상을 제공할 수 있다.
다공성 기재, 기공, 무기물, 고분자, 활성층, 필름, 분리막, 겔형 고분자 전해질, 리튬 이차 전지, 전기 화학 소자

Description

신규 유/무기 복합 다공성 필름 및 이를 이용한 전기 화학 소자{NEW ORGANIC/INORGANIC COMPOSITE POROUS FILM AND ELECTROCHEMICAL DEVICE PREPARED THEREBY}
도 1은 실시예 1에서 제조된 유/무기 복합 다공성 필름의 구조도이다.
도 2a는 실시예 1에서 제조된 유/무기 복합 다공성 필름(PVdF-CTFE/BaTiO3) 및 상용화된 PP/PE/PP 분리막의 상온 보존시의 사진이며, 도 2b는 상기 유/무기 복합 다공성 필름 및 PP/PE/PP 분리막을 각각 150℃에서 1시간 방치한 후의 사진이다.
본 발명은 탁월한 안전성 및 성능 향상을 갖는 유/무기 복합 다공성 필름 및 이를 포함하는 전기 화학 소자에 관한 것이다.
최근 에너지 저장 기술에 대한 관심이 갈수록 높아지고 있다. 휴대폰, 캠코더, 노트북 및 PC, 나아가서는 전기 자동차의 에너지까지 적용 분야가 확대됨에 따라 전지의 연구와 개발에 대한 노력이 점점 구체화되고 있다. 전기 화학 소자는 이러한 측면에서 가장 주목받는 분야이며, 그 중에서도 충방전이 가능한 이차 전지의 개발은 관심의 촛점이 되고 있다.
이차 전지는 화학 에너지와 전기 에너지의 가역적 상호변환을 이용해 충전과 방전을 반복할 수 있는 화학 전지로서, Ni-MH 이차 전지와 리튬 이차 전지로 구분된다. 리튬 이차 전지에는 리튬 금속 이차 전지, 리튬 이온 이차 전지, 리튬 폴리머 이차 전지 또는 리튬 이온 폴리머 이차 전지 등이 있다.
리튬 이온 전지는 빈 공간이 존재하는 결정 구조의 정극활물질(예, LiCoO2)과 부극활물질(예, graphite)을 각각 전류 집전체(current collector)인 알루미늄 호일 및 구리 호일 상에 코팅하여 양 전극을 제조하며, 양 전극 사이에 분리막을 개재시킨 후, 전해액을 주입하게 된다. 전지의 충전시에는 정극활물질 결정 내에 삽입된 리튬이 탈리되어 부극의 부극활물질 결정 구조속으로 들어가고, 방전시에는 이와 반대로 부극활물질 속에 있는 리튬이 탈리되어 정극 중의 결정으로 삽입된다. 이와 같이 충방전됨에 따라 리튬 이온이 정극과 부극 간을 상호 이동하며 에너지를 전달하므로, 흔들의자 전지(rocking chair battery)라 부른다. 이와 같은 작동 메커니즘을 가진 리튬 이온 전지는 사용하는 전해질에 따라 LiLB (lithium ion liquid battery), LiPB (lithium ion polymer battery), LPB (lithium polymer battery) 등으로 나눌 수 있다. 즉, LiLB는 액체 전해질을, LiPB는 겔형 고분자 전해질을, LPB는 고체 고분자 전해질을 사용한다.
리튬 이차 전지는 수용액 전해액을 사용하는 Ni-MH의 재래식 전지에 비해서 작동 전압이 높고 에너지 밀도가 크다는 장점이 있기 때문에 현재 많은 회사에서 생 산되고 있으나, 그들의 안전성 특성은 각기 다른 양상을 보이고 있다. 전지의 안전성 평가 및 안전성 확보는 가장 중요하게 고려해야 될 사항이므로, 이에 따라 리튬 이차 전지의 안전 규격은 전지 내의 발화 및 발연 등을 엄격히 규제하고 있다.
현재 생산중인 리튬 이온 전지 및 리튬 이온 폴리머 전지는 양극과 음극의 단락을 방지하고자, 폴리올레핀 계열 분리막을 사용하고 있다. 폴리올레핀 계열 분리막은 200℃ 이하에서 용융되는 물성을 가지고 있기 때문에, 내부 및/또는 외부 자극에 의해 전지가 고온으로 상승할 경우 분리막의 수축 혹은 용융 등과 같은 부피 변화가 발생하게 되며, 이로 인해 양 전극의 단락, 전기 에너지의 방출 등으로 폭발 등이 발생할 수 있다. 따라서, 고온에서 열 수축이 일어나지 않는 분리막의 개발이 요구되고 있다.
상기에 언급된 폴리올레핀 계열 분리막의 문제점을 개선하기 위한 노력으로, 일반적인 고분자 전해질의 연구 방향들 중 한가지인, 분리막의 역할을 수행하면서 무기물이 적용된 전해질을 개발하고자 많은 시도들이 있었다. 이들을 크게 2가지로 분류하면, 첫째는 무기 입자를 사용하는 것으로, 리튬 이온 전달 능력이 있는 무기물 입자를 단독으로 이용하거나 또는 이와 함께 리튬 이온 전달 능력이 있는 고분자를 혼합하여 복합 전해질을 제조하는 것이다. 그러나 액체 전해질에 비해 낮은 무기물의 이온 전도도 및 고분자와 혼합시 무기물과 고분자간의 계면 저항 증가 등으로 인해 더 이상의 진전이 없는 것으로 알려졌다(일본 공개번호 제 2003-022707호; Solid State Ionics, vol.158, n.3, p275, 2003; Journal of Power Sources, vol.112, n.1, p209, 2002; Electrochimica Acta, vol.48, n.14, p2003, 2003).
둘째는 리튬 이온 전달 능력이 있거나 또는 리튬 이온 전달 능력이 없는 무기물 입자를 고분자 및 액체 전해질로 구성된 겔형 고분자 전해질(gel polymer electrolyte)과 함께 섞어 전해질을 제조하는 것이다. 이 경우 무기물은 고분자 및 액체 전해질에 비해 소량 투입되며, 액체 전해질에 의해 이루어지는 리튬 이온 전달을 도와주는 보조 기능을 지니게 된다.
한편 용액 상태로부터 복합 전해질을 제조할 경우, 무기물의 종류에 따라서 복합 전해질 내부에 기공이 형성되는 구조를 갖기도 하였다(미국 특허 제6,544,689호; 일본 공개번호 제 2002-008724호; 일본 공개번호 제 1993-314995호; WO 02/092638호; WO 00/038263호; Journal of Electrochemical Society, v.147, p1251, 2000; Solid State Ionics, v.159, n.1, p111, 2003; Journal of Power Sources, v.110, n.1, p38, 2002; Electrochimica Acta, v.48, n.3, p227, 2002).
미국 특허 제 6,203,949호 및 미국 특허 제 6,599,664호에서는 졸-겔(sol-gel) 공정을 이용하여 유/무기 복합 전해질을 제조하는 시도들이 있었다. 그러나, 졸-겔 공정의 복잡성 및 겔 형성 이후의 부피 수축 등으로 인한 문제들이 아직 해결되지 않았으며, 아직 실용화와는 다소 거리가 있다.
상기와 같이 무기물 입자를 이용하는 종래 연구들의 공통적인 문제점을 살펴보면, 첫째는 액체 전해질을 사용하지 않을 경우, 무기물들 사이 혹은 무기물과 고분자 사이의 계면 저항이 매우 커져 성능이 저하된다는 것이다. 둘째는 과량의 무기물을 사용시, 전해질이 쉽게 부서지는(brittle) 경향이 발생하게 된다. 이로 인해 취급이 용이하지 않아 전지 조립이 힘들어지는 문제점이 발생하게 된다. 특히, 현 재까지 진행된 대부분의 연구들이 모두 독립 필름(free standing film) 형태로 무기물이 포함된 복합 전해질을 개발하고자 하였으나, 이 경우 부서지는 경향과 같은 불량한 기계적 물성으로 인해 사실상 전지 적용이 힘든 상태이다. 무기물 함량을 감소시켜 기계적 물성을 향상시킨 경우에도 액체 전해질과 미리 혼합한 후 전지 조립을 하게 되면, 액체 전해질에 의해 기계적 물성이 크게 저하되어 전지 조립이 불가능해지며, 전지 조립 후 액체 전해질을 주액하는 경우에는 유/무기 복합막 내에 고분자 함량이 많기 때문에, 전지 내에서의 전해액 분산에 매우 오랜 시간이 걸리며 실제적인 전해액 젖음성 특성도 불량하게 된다.
이외에, 미국 특허 제 6,432,586호는 폴리올레핀 계열 분리막에 실리카 등을 코팅시켜 복합막을 제조하였다. 이는 상기에 기재된 복합 전해질의 쉽게 부서지는 기계적 물성을 개선시키기 위한 것이었으나, 고온 열 수축을 포함한 안전성 향상에 큰 효과를 보여주지 못했다.
본 발명자는 상기에 언급된 종래 기술의 문제점을 해결하기 위해서, (1) 탁월한 열적 안전성을 갖는 기재 및 (2) 리튬 이온 전달 능력 및 전해액 함침율이 우수하며 전해액 함침에 의해 겔화 가능한 활성층으로 구성된 유/무기 복합 다공성 필름을 도입하였다.
이에, 본 발명은 상기의 유/무기 복합 다공성 필름 및 이의 제조방법을 제공하는 것을 목적으로 한다.
또한, 본 발명은 상기 유/무기 복합 다공성 필름을 포함하는 전기 화학 소자를 제공하는 것을 또 다른 목적으로 한다.
본 발명은 a) 기공을 갖고, 용융 온도가 200℃ 이상인 다공성 기재; 및 b) 상기 기재의 표면 또는 기재 중 기공부 일부가 5 이상의 유전율 상수를 갖는 무기물 입자 및 용해도 지수(solubility parameter)가 15 내지 45 MPa1/2 인 고분자의 혼합물로 코팅된 활성층을 포함하는 유/무기 복합 다공성 필름 및 이를 포함하는 전기 화학 소자를 제공한다.
또한, 본 발명은 a) 용해도 지수가 15 내지 45 MPa1/2 인 고분자를 용매에 용해시키는 단계; b) 5 이상의 유전율 상수를 갖는 무기물 입자를 상기 단계 a)의 고분자 용액에 첨가 및 혼합하는 단계; 및 c) 기공을 갖고, 용융 온도가 200℃ 이상인 다공성 기재의 표면 또는 기재 중 기공부 일부를 상기 단계 b)의 혼합물로 코팅 및 건조하는 단계를 포함하는 유/무기 복합 다공성 필름의 제조방법을 제공한다.
이하, 본 발명을 상세히 설명한다.
본 발명의 유/무기 복합 다공성 필름은 기공부를 갖는 다공성 기재를 사용함으로써 분리막으로 사용될 수 있을 뿐만 아니라 고유전율이며, 전해액 함침에 의해 겔화 가능한 고분자를 함유하므로 전해질로도 동시에 사용할 수 있는 특징이 있다.
종래에 사용되던 다공성 기재인 폴리올레핀 계열 분리막은 저조한 열적 안전성을 가짐으로써 내부 및 외부 자극에 의해 전지의 안전성이 크게 저하되는 문제점을 가지고 있었다.
이에 전지의 고온, 과충전 등의 과도한 조건에서 발생할 수 있는 내부 단락을 방지하기 위해서, 본 발명의 유/무기 복합 다공성 필름 중 기재는 용융 온도 200℃ 이상인 것이 바람직하다. 또한, 상기 기재는 기공부를 포함하는 다공성인 것이 바람직하다. 이는 전해액이 채워질 공간이 다수 존재하여 리튬의 전달이 용이해지므로 전지 성능을 향상시킬 수 있기 때문이다. 상기 기공부를 갖고, 용융 온도 200℃ 이상인 다공성 기재 재료의 비제한적인 예로는 폴리에틸렌테레프탈레이트 (polyethyleneterephthalate), 폴리부틸렌테레프탈레이트 (polybutyleneterephthalate), 폴리에스테르(polyester), 폴리아세탈(polyacetal), 폴리아미드(polyamide), 폴리카보네이트(polycarbonate), 폴리이미드(polyimide), 폴리에테르에테르케톤(polyetheretherketone), 폴리에테르설폰(polyethersulfone), 폴리페닐렌옥사이드(polyphenyleneoxide), 폴리페닐렌설파이드로 (polyphenylenesulfidro), 폴리에틸렌나프탈렌(polyethylenenaphthalene) 또는 이들의 혼합체 등이 있으며, 기타 내열성 엔지니어링 플라스틱을 제한 없이 사용할 수 있다.
상기 다공성 기재의 두께는 크게 제한이 없으나, 1 내지 100㎛ 범위가 바람직하며, 5 내지 50㎛ 범위가 더욱 바람직하다. 1㎛ 미만일 경우에는 기계적 물성을 유지하기가 어렵고, 100㎛를 초과할 경우에는 저항층으로 작용하게 된다.
상기 다공성 기재 중 기공 크기 및 기공도는 특별한 제한이 없으며, 기공도는 5 내지 95%가 바람직하다. 기공 크기(직경)는 0.01 내지 50㎛가 바람직하며, 0.1 내지 20㎛가 더욱 바람직하다. 기공 크기 및 기공도가 각각 0.01㎛ 및 5% 미만일 경우 저항층으로 작용하게 되며, 기공 크기 및 기공도가 50㎛ 및 95%를 초과할 경우에는 기계적 물성을 유지하기가 어렵게 된다.
상기 다공성 기재는 섬유 또는 막(membrane) 형태일 수 있으며, 섬유일 경우에는 다공성 웹(web)을 형성하는 부직포로서, 장섬유로 구성된 스폰본드(Spunbond) 또는 멜트 블로운(Melt blown) 형태인 것이 바람직하다.
스폰본드 공법은 하나의 연속 공정을 거치는 것으로, 열을 받아 용융되어 장섬유를 형성하게 되며 뜨거운 공기에 의해 연신(stretching)되어 웹을 형성하는 것이다. 멜트 블로운 공법은 섬유를 형성할 수 있는 고분자를 수 백 개의 작은 오리피스(orifice)로 형성된 방사구금을 통해 방사하는 공정으로서, 직경이 10㎛ 이하의 미세 섬유들이 상호 결합하여 거미줄과 같은 구조 형태(spider-web structure)를 가지는 3차원적 섬유이다.
본 발명의 유/무기 복합 다공성 필름에서, 다공성 기재의 표면 또는 기재 중 기공부 일부를 코팅하여 형성되는 활성층 성분 중 하나는 5 이상의 고유전율 상수를 갖는 무기물 입자가 바람직하며, 특히 10 이상의 고유전율 상수를 가지며, 밀도가 낮은 무기물 입자가 더욱 바람직하다. 이는 전지내 리튬 이온을 용이하게 전달할 수 있기 때문이다. 5 이상의 고유전율 상수를 갖는 무기물 입자의 비제한적인 예로는 Pb(Zr,Ti)O3 (PZT), Pb1-xLaxZr1-yTiyO3 (PLZT), PB(Mg3Nb2/3)O3-PbTiO3 (PMN-PT), BaTiO3, hafnia (HfO2), SrTiO3, TiO2, Al2O 3, ZrO2, SnO2, CeO2, MgO, CaO, ZnO, Y2O3 또는 이들의 혼합체 등이 있다.
상기 무기물 입자의 크기는 제한이 없으나, 1㎚ 내지 10㎛ 범위인 것이 바람직하다. 1㎚ 미만일 경우에는 분산성이 저하되어 활성층의 구조 및 물성을 조절하기가 어려우며, 10㎛를 초과할 경우에는 유/무기 복합 다공성 필름의 기공 크기 및 기공부를 감소시켜 기계적 물성을 저하시킬 수 있다.
종래 기술에서는 상기 다공성 기재 상에 무기물 입자를 단독으로 피복시키거나 또는 무기물 입자의 접착력 향상을 위해 폴리비닐알콜과 같은 유기 결착제를 사용하여 피복하였으나, 전해질의 구조적 안전성이 저하될 뿐만 아니라 상기 유기 결착제가 전해액에 완전히 용해되어 무기물들 사이의 접착력 약화 및 이로 인한 기공 구조의 와해 등이 발생하였다.
이에 본 발명은 전해액에 녹지 않으나, 전해액이 함침(swelling)되어 겔화 가능한 고분자를 사용함으로써, 무기물 입자를 안정하게 고정시킬 뿐만 아니라 구조적 안전성을 향상시키고, 높은 이온 전도도 및 전해액에 대한 함침율 증가에 의해 전지 성능을 향상시킬 수 있다.
그러므로 본 발명의 유/무기 복합 다공성 필름에서, 다공성 기재 표면 또는 기재 중 기공부 일부를 코팅하여 형성되는 활성층 중 다른 성분으로는 용해도 지수가 15 내지 45 MPa1/2 인 고분자가 바람직하다. 특히, 15 내지 25 MPa1/2 및 30 내지 45 MPa1/2 범위가 더욱 바람직하다. 이는 상기 고분자가 전해액 함침에 의해 겔화됨으로써 무기물 입자의 바인더 역할을 충실히 할 뿐만 아니라, 높은 전해액 함침율(degree of swelling)을 나타낼 수 있기 때문이다. 따라서 폴리올레핀류와 같은 소 수성 고분자들보다는 극성기를 많이 가진 친수성 고분자들이 바람직하다. 용해도 지수가 15 MPa1/2 미만 및 45 MPa1/2를 초과할 경우, 통상적인 전지용 액체 전해액에 의해 함침(swelling)되기 어려우며, 상기 범위 중 25 내지 30 MPa1/2 의 범위일 경우에는 통상적인 전지용 액체 전해액과 용해도 지수가 거의 일치하여 겔화를 넘어서 전해액에 용해될 수 있다.
또한, 유리 전이 온도(glass transition temperature, Tg)가 -200 내지 100℃ 범위인 고분자가 바람직하다. 이는 유연성 및 탄성 등과 같은 기계적 물성을 향상시킬 수 있기 때문이다.
상기 유리 전이 온도가 200 내지 100℃ 범위이며, 용해도 지수가 15 내지 45 MPa1/2인 고분자의 비제한적인 예로는 폴리비닐리덴 풀루오라이드-헥사풀루오로프로필렌 (polyvinylidene fluoride-co-hexafluoropropylene), 폴리비닐리덴 풀루오라이드-트리클로로에틸렌 (polyvinylidene fluoride-co-trichloroethylene), 폴리메틸메타크릴레이트 (polymethylmethacrylate), 폴리아크릴로니트릴 (polyacrylonitrile), 폴리비닐피롤리돈 (polyvinylpyrrolidone), 폴리비닐아세테이트 (polyvinylacetate), 에틸렌 비닐 아세테이트 공중합체 (polyethylene-co-vinyl acetate), 폴리에틸렌옥사이드 (polyethylene oxide), 셀룰로오스 아세테이트 (cellulose acetate), 셀룰로오스 아세테이트 부틸레이트 (cellulose acetate butyrate), 셀룰로오스 아세테이트 프로피오네이트 (cellulose acetate propionate), 시아노에틸풀루란 (cyanoethylpullulan), 시아노에틸폴리비닐알콜 (cyanoethylpolyvinylalcohol), 시아노에틸셀룰로오스 (cyanoethylcellulose), 시아노에틸수크로오스 (cyanoethylsucrose), 풀루란 (pullulan), 카르복실 메틸 셀룰로오스 (carboxyl methyl cellulose) 또는 이들의 혼합체 등이 있다. 이외에도 상술한 특성을 포함하는 물질이라면 어느 재료라도 단독 또는 혼합하여 사용할 수 있다.
상기 무기물 입자 대 고분자의 조성비(중량%)는 크게 제한이 없으나, 10:90 내지 99:1가 적절하며, 50:50 내지 99:1이 바람직하다. 10:90의 조성비보다 미만일 경우 활성층 내에 원하는 수준의 기공도가 형성되기 어려워 전지 성능 저하가 생기며, 99:1의 조성비를 초과할 경우에는 무기물 사이의 접착력 약화로 인해 기계적 물성이 저하된다.
본 발명의 활성층은 상기에 기재된 무기물 입자 및 고분자 이외에, 용매 및 기타 첨가제를 더 포함할 수 있다.
종래 기술이 폴리올레핀 계열 다공성 기재에 리튬 이온 전달 능력이 있는 무기물 입자로 코팅한 것에 비해, 본 발명의 유/무기 복합 다공성 필름은 용융 온도 200℃ 이상의 다공성 기재를 사용하여 물리적 안전성을 도모할 뿐만 아니라 고유전율 무기물 입자 및 용해도 지수가 15 내지 45 MPa1/2 인 고분자를 함께 혼합하여 활성층 성분으로 사용함으로써 구조적 안전성을 향상시킬 수 있다.
다공성 기재에 무기물 및 고분자의 혼합물로 이루어진 활성층이 코팅된 후, 상기 유/무기 복합 다공성 필름의 기공 크기는 0.001㎛(1㎚) 내지 10㎛ 범위가 바람 직하며, 기공도(porosity)는 5 내지 95% 범위가 바람직하다. 본 발명의 유/무기 복합 다공성 필름은 기재 자체 내에 기공부가 포함될 뿐만 아니라, 기재 상에 형성된 활성층 중 무기물 입자들 사이의 공간으로 인해 기재와 활성층 모두 다공성 구조를 형성하게 되므로, 이를 통해 전해액이 들어갈 공간이 증가하여 리튬 이온의 확산 및 전도도가 상승하는 효과를 나타낼 수 있다.
상기 유/무기 복합 다공성 필름의 두께는 1 내지 100㎛ 범위인 것이 바람직하며, 특히 2 내지 30㎛ 범위인 것이 더욱 바람직하다. 상기 두께 범위를 조절함으로써 전지 성능 향상을 도모할 수 있다.
본 발명의 유/무기 복합 다공성 필름은 최종 전지의 특성에 따라 기존 폴리올레핀 계열 기공 분리막을 함께 사용하여 전지에 적용될 수 있다.
본 발명에 따라 기공부를 갖고, 용융 온도 200℃ 이상인 다공성 기재의 표면 또는 기재 중 기공부에 고유전율 무기물 입자 및 겔화 가능한 고분자의 혼합물을 코팅하는 방법은 당업계에 알려진 통상적인 코팅 방법을 사용할 수 있다.
이하, 본 발명에 따른 제조 방법의 일 실시 형태를 들면, a) 용해도 지수가 15 내지 45 MPa1/2 인 고분자를 용매에 용해시키는 단계; b) 5 이상의 유전율 상수를 갖는 무기물 입자를 상기 단계 a)의 고분자 용액에 첨가 및 혼합하는 단계; 및 c) 기공을 갖고, 용융 온도가 200℃ 이상인 다공성 기재의 표면 또는 기재 중 기공부 일부를 상기 단계 b)의 혼합물로 코팅 및 건조하는 단계를 포함할 수 있다.
우선, 용해도 지수가 15 내지 45 MPa1/2 인 고분자를 적절한 유기 용매에 용해 시켜 고분자 용액을 제조한다.
용매로는 상기 고분자와 용해도 지수가 유사하며, 끓는점(boiling point)이 낮은 것이 바람직하다. 이는 혼합이 균일하게 이루어질 수 있으며, 이후 용매를 용이하게 제거할 수 있기 때문이다. 상기 용매의 비제한적인 예로는 아세톤 (acetone), 테트라하이드로퓨란 (tetrahydrofuran), 메틸렌클로라이드 (methylene chloride), 클로로포름 (chloroform), 디메틸포름아미드 (dimethylformamide), N-메틸-2-피롤리돈 (N-methyl-2-pyrrolidone, ㎚P), 시클로헥산 (cyclohexane), 물 또는 이들의 혼합체 등이 있다.
제조된 고분자 용액에 고유전율 무기물 입자를 첨가 및 분산시켜 무기물 입자 및 고분자 혼합물을 제조한다.
상기에 있어서, 고분자 용액에 고유전율 무기물 입자를 첨가한 후, 무기물 입자의 파쇄를 실시하는 것이 바람직하다. 이때 파쇄 시간은 1 내지 20시간이 적절하며, 파쇄된 무기물 입자의 입도는 상기에 언급된 바와 같이 1㎚ 내지 10㎛가 바람직하다. 파쇄 방법으로는 통상적인 방법을 사용할 수 있으며, 특히 볼밀(ball mill)법이 바람직하다.
무기물 입자 및 고분자로 구성되는 혼합물의 조성은 크게 제약이 없으나, 이에 따라 최종 제조되는 본 발명의 유/무기 복합 다공성 필름의 두께, 기공 크기 및 기공도를 조절할 수 있다.
즉, 고분자(P) 대비 무기물 입자(I)의 비(ratio = I/P)가 증가할수록 본 발명의 유/무기 복합 다공성 필름의 기공도가 증가하게 되며, 이는 동일한 고형분 함량 (무기물 입자 중량+고분자 중량)에서 유/무기 복합 다공성 필름의 두께가 향상되는 결과를 초래하게 된다. 또한, 무기물 입자들간의 기공 형성 가능성이 증가하여 기공 크기가 증가하게 되는데, 이때 무기물 입자의 크기(입경)가 커질수록 무기물들 사이의 간격(interstitial distance)이 커지므로, 기공 크기가 증가하게 된다.
제조된 무기물 입자 및 고분자의 혼합물을 준비된 다공성 기재 상에 코팅하고, 이후 건조함으로써 완료된다. 이때, 다공성 기재 상에 상기 무기물 입자 및 고분자의 혼합물을 코팅하는 공정은 통상적인 코팅 방법을 사용할 수 있으며, 딥(Dip) 코팅, 다이(Die) 코팅, 롤(roll) 코팅, 콤마(comma) 코팅 또는 이들의 혼합 방식을 통해 도포하는 것이 바람직하다.
상기와 같이 제조된 본 발명의 유/무기 복합 다공성 필름은 리튬 이차 전지의 분리막(separator)으로 이용하여 전지를 조립한 후, 전해액 주입에 의해 전해액과 고분자가 반응하여 겔화되어 겔형 유/무기 복합 전해질을 형성할 수 있다.
본 발명의 겔형 유/무기 복합 전해질은 종래 기술의 겔형 고분자 전해질에 비하여 제조 공정이 용이하며, 다공성 구조로 인해 주입되는 액체 전해액이 채울 공간이 다수 존재하여 높은 이온 전도도 및 전해액 함침율을 나타내어 전지 성능을 현저하게 향상시킬 수 있다. 또한, 기존의 소수성 폴리올레핀 계열 분리막에 비해 친수성인 무기물 및 고분자를 사용함으로써, 전지용 전해액에 대한 젖음성(wetting)이 개선될 뿐만 아니라 종래에 사용하기 힘들었던 전지용 극성 전해액에 대한 사용이 가능한 장점이 있다.
또한, 본 발명은 양극, 음극, 상기 양극과 음극 사이에 개재된 본 발명의 유/ 무기 복합 다공성 필름 및 전해액을 포함하며, 상기 전해액이 유/무기 복합 다공성 필름 내 기공, 고분자 또는 양쪽 모두에 함침되는 것을 특징으로 하는 전기 화학 소자를 제공한다. 이때, 본 발명의 유/무기 복합 다공성 필름 이외에 기존의 폴리올레핀 계열 분리막을 함께 사용 및 적용할 수 있다.
상기 전기 화학 소자는 전기 화학 반응을 하는 모든 소자를 포함하며, 구체적인 예를 들면, 모든 종류의 1차, 2차 전지, 연료 전지, 태양 전지 또는 캐퍼시터(capacitor) 등이 있다. 상기 전기 화학 소자에 포함된 유/무기 복합 다공성 필름은 본 발명에서와 동일하게 분리막이자 전해질의 역할을 한다.
추가적으로, 본 발명은 a) 리튬을 흡장 및 방출할 수 있는 양극활물질을 포함하는 양극; b) 리튬을 흡장 및 방출할 수 있는 음극활물질을 포함하는 음극; c) 상기의 유/무기 복합 다공성 필름; 및 전해액을 포함하는 리튬 이차 전지를 제공한다.
상기 리튬 이차 전지는 리튬 금속 이차 전지, 리튬 이온 이차 전지, 리튬 폴리머 이차 전지 또는 리튬 이온 폴리머 이차 전지 등을 포함한다.
리튬 이차 전지는 당 기술 분야에 알려져 있는 통상적인 방법으로 제조할 수 있으며, 예를 들면 양극과 음극 사이에 상기의 유/무기 복합 다공성 필름을 넣고 액체 전해액을 투입하여 제조한다.
유/무기 복합 다공성 필름과 함께 적용될 전극으로는 크게 제한이 없으나, 양극 활물질은 리튬 망간 산화물(lithiated magnesium oxide), 리튬 코발트 산화물(lithiated cobalt oxide), 리튬 니켈 산화물 (lithiated nickel oxide) 또는 이들 의 조합에 의해서 형성되는 복합 산화물 등과 같이 리튬 흡착 물질(lithium intercalation material)을 주성분으로 하고, 이것이 양극 전류 집전체, 즉 알루미늄, 니켈 또는 이들의 조합에 의해서 제조되는 호일(foil)과 결착된 형태로 양극이 구성된다.
음극 물질은 리튬 금속, 또는 리튬 합금과 카본(carbon), 석유 코크(petroleum coke), 활성화 카본(activated carbon), 그래파이트(graphite) 또는 기타 카본류 등과 같은 리튬 흡착 물질을 주성분으로 하고, 이것이 음극 전류 집전체, 즉 구리, 금, 니켈 혹은 구리 합금 혹은 이들의 조합에 의해서 제조되는 호일과 결착된 형태로 음극이 구성된다.
본 발명에서 사용될 전해액은 A+B-와 같은 구조의 염으로서, A+는 Li+ , Na+, K+와 같은 알칼리 금속 양이온이나 이들의 조합으로 이루어진 이온을 포함하고, B-는 PF6 -, BF4 -, Cl-, Br-, I-, ClO4 -, ASF6 -, CH3CO2 -, CF3SO3 -, N(CF3SO2)2 -, C(CF 2SO2)3 -와 같은 음이온이나 이들의 조합으로 이루어진 이온을 포함하는 염이 프로필렌 카보네이트(propylene carbonate, PC), 에틸렌 카보네이트(ethylene carbonate, EC), 디에틸카보네이트(diethyl carbonate, DEC), 디메틸카보네이트(dimethyl carbonate, DMC), 디프로필카보네이트 (dipropyl carbonate, DPC), 디메틸설프옥사이드 (dimethyl sulfoxide), 아세토니트릴 (acetonitrile), 디메톡시에탄 (dimethoxyethane), 디에톡시에탄 (diethoxyethane), 테트라하이드로퓨란 (tetrahydrofuran), N-메틸-2-피롤리돈 (N-methyl-2-pyrrolidone, ㎚P), 에틸메틸카보네이트(ethyl methyl carbonate, EMC), 감마 부티로락톤(γ-butyrolactone) 또는 이들의 혼합물로 이루어진 유기 용매에 용해 및 해리된 것이 바람직하다.
전술한 바와 같이, 본 발명에 따라 제조된 유/무기 복합 다공성 필름 및 양극과 음극을 이용하여 전지를 조립하고 여기에 전해액을 주입하면, 상기 유/무기 복합 다공성 필름에 코팅된 활성층 중의 고분자가 전해액과 반응하여 겔형 고분자 전해질을 형성할 수 있다.
상기 전해액 주입은 최종 제품의 제조 공정 및 요구 물성에 따라, 전지 제조 공정 중 적절한 단계에서 행해질 수 있다. 즉, 전지 조립 전 또는 전지 조립 최종 단계 등에서 적용될 수 있다.
본 발명의 유/무기 복합 다공성 필름을 전지로 적용하는 공정으로는 일반적인 공정인 권취(winding) 이외에도 분리막과 전극의 적층(lamination) 및 접음(folding) 공정이 가능하다.
상기 공정 중, 특히 적층(lamination) 공정은 본 발명의 유/무기 복합 다공성 필름 중 활성층의 우수한 접착력 특성으로 인해 쉽게 조립이 가능한 장점이 있다. 이때 활성층 성분인 무기물 입자 및 고분자의 함량에 의해 접착력 특성이 조절될 수 있다.
본 발명은 하기의 실시예 및 실험예에 의거하여 더욱 상세히 설명된다. 단, 실시예 및 실험예는 본 발명을 예시하기 위한 것이며 이들만으로 한정하는 것은 아니다.
실시예 1. 유/무기 복합 다공성 필름(PVdF-CTFE/BaTiO 3 ) 제조
폴리비닐리덴플로라이드-클로로트리플로로에틸렌 공중합체 (PVdF-CTFE) 고분자를 아세톤에 약 5 중량% 첨가한 후, 50℃의 온도에서 약 12시간 이상 용해시켜 고분자 용액을 제조하였다. 이 고분자 용액에 BaTiO3 분말을 고형분 20 중량% 농도로 첨가하고 12시간 이상 볼밀(ball mill)법을 이용하여 BaTiO3 분말을 약 300㎚로 파쇄 및 분산하여 슬러리를 제조하였다. 이와 같이 제조된 슬러리를 딥(dip) 코팅법을 이용하여 두께 20㎛ 정도의 폴리에틸렌테레프탈레이트 기공막(기공도 80%)에 코팅하였으며, 코팅 두께는 약 2㎛ 정도로 조절하였다. 기공율 측정 장치(porosimeter)로 측정한 결과, 폴리에틸렌테레프탈레이트 다공성 기재에 함침 및 코팅된 활성층 내의 기공 크기 및 기공도는 각각 0.3㎛ 및 55% 였으며, 이의 구조도는 도 1과 같다.
실시예 2. 유/무기 복합 다공성 필름 제조
BaTiO3 분말 대신 PMNPT 분말을 사용한 것을 제외하고는, 상기 실시예 1과 동일하게 실시하였다. 기공율 측정 장치로 측정한 결과, 기공 크기 및 기공도는 각각 0.4㎛ 및 60%였다(도 1 참조).
실시예 3. 유/무기 복합 다공성 필름 제조
BaTiO3 분말 대신 BaTiO3과 Al2O3의 혼합 분말(중량비=30:70)을 사용한 것을 제외하고는, 상기 실시예 1과 동일하게 실시하였다. 기공율 측정 장치로 측정한 결 과, 기공 크기 및 기공도는 각각 0.2㎛ 및 50%였다(도 1 참조).
실시예 4. 유/무기 복합 다공성 필름(CMC/BaTiO 3 ) 제조
카르복실 메틸 셀룰로오스(Carboxyl Methyl Cellulose: CMC) 고분자를 물에 약 2 중량% 첨가하여 60℃의 온도에서 약 12시간 이상 용해시켜 고분자 용액을 제조한 것을 제외하고는, 상기 실시예 1과 동일하게 실시하였다. 기공율 측정 장치로 측정한 결과, 폴리에틸렌테레프탈레이트 다공성 기재에 함침 및 코팅된 활성층 내의 기공 크기 및 기공도는 각각 0.4㎛ 및 58%였다(도 1 참조).
실시예 5-8. 리튬 이차 전지
양극 제조
양극 활물질로 LiCoO2 92 중량%, 도전재로 카본 블랙(carbon black) 4 중량%, 결합제로 PVdF 4 중량%를 용제인 N-메틸-2 피롤리돈(㎚P)에 첨가하여 양극 혼합물 슬러리를 제조하였다. 상기 양극 혼합물 슬러리를 양극 집전체인 두께가 20㎛ 정도의 알루미늄 박막에 도포 및 건조하여 양극을 제조한 후, 롤 프레스(roll press)를 실시하였다.
음극 제조
음극 활물질로 탄소 분말, 결합제로 폴리비닐리덴플로라이드(PVdF), 도전재로 카본 블랙(carbon black)을 각각 96 중량%, 3 중량% 및 1 중량%로 하여 용제인 NMP에 첨가하여 음극 혼합물 슬러리를 제조하였다. 상기 음극 혼합물 슬러리를 음극 집전체인 두께가 10㎛인 구리 박막에 도포 및 건조하여 음극을 제조한 후, 롤 프레 스(roll press)를 실시하였다.
전지 제조
상기 양극, 음극 및 실시예 1 내지 4에서 제조된 각 유/무기 복합 다공성 필름을 스태킹(stacking) 방식을 이용하여 조립하였으며, 조립된 전지에 1M의 리튬헥사플로로포스페이트(LiPF6)이 용해된 에틸렌카보네이트/에틸메틸카보네이트 (EC/EMC=1:2, 부피비)계 전해액을 주입하여 실시예 5 내지 8의 리튬 이차 전지를 제조하였다.
비교예 1. 리튬 이차 전지
PP/PE/PP 분리막을 사용한 것을 제외하고는, 상기 실시예 5와 동일한 방법을 수행하여 리튬 이차 전지를 제조하였다.
실험예 1. 유무기 복합 다공성 필름의 열 수축 분석
본 발명에 따라 제조된 유/무기 복합 다공성 필름을 기존 분리막과 비교하기 위하여, 하기와 같은 실험을 수행하였다.
시료로는 실시예 1에서 제조된 PVdF-CTFE/BaTiO3을 사용하였으며, 대조군으로 PP/PE/PP 분리막을 사용하였다.
상기의 각 시료들을 상온 및 150℃의 온도에서 1시간 방치한 후, 이들을 수집하여 확인한 결과, 상온의 온도에서는 본 발명의 유/무기 복합 다공성 필름과 대조군 모두 양호한 상태를 보여 주었으나(도 2a 참조), 150℃의 온도에서 1시간 경과한 경우에는 서로 다른 양태를 나타내었다. 대조군의 PP/PE/PP 분리막은 고온으로 인해 수축하여 거의 형체만 남은 모습을 보여주었으나, 본 발명의 유/무기 복합 다공성 필름은 열 수축이 전혀 나타나지 않아, 상온에서와 동일하게 양호한 상태를 보여주었다(도 2b 참조).
이로서, 본 발명의 유/무기 복합 다공성 필름은 탁월한 열적 안전성을 가짐을 확인할 수 있었다.
실험예 2. 리튬 이차 전지의 성능 평가
본 발명에서 제조된 유/무기 복합 다공성 필름을 포함하는 리튬 이차 전지의 충방전 용량을 측정하기 위하여, 하기와 같이 수행하였다.
실시예 5 내지 8에서 제조된 리튬 이차 전지를 사용하였으며, 대조군으로 상용화된 PP/PE/PP 분리막을 사용한 비교예 1의 전지를 사용하였다. 전지 용량이 760mAh인 각 전지들을 0.5C, 1C, 2C의 방전 속도로 사이클링을 하였으며, 이들의 방전 용량을 C-rate 특성별로 도식하여 하기 표 1에 기재하였다.
실험 결과, 본 발명에서 제조된 유/무기 복합 다공성 필름을 포함하는 리튬 이차 전지는 2C의 방전 속도까지 기존 폴리올레핀 계열 분리막에 비해 우수한 고율 방전(C-rate) 특성을 보여주었다(표 1 참조).
방전 속도 실시예 1 실시예 2 실시예 3 실시예 4 비교예 1
0.5C 756 757 758 755 752
1C 745 747 746 742 741
2C 692 694 693 691 690
실험예 3. 리튬 이차 전지의 안전성 평가
본 발명에서 제조된 유/무기 복합 다공성 필름을 포함하는 리튬 이차 전지의 안전성을 평가하기 위하여, 하기와 같이 수행하였다.
실시예 5 내지 8에서 제조된 리튬 이차 전지를 사용하였으며, 대조군으로 상용화된 PP/PE/PP 분리막을 사용한 비교예 1의 전지를 사용하였다. 각 전지들을 160℃의 고온에서 1시간 동안 보존하였으며, 이후 전지의 상태를 하기 표 2에 기재하였다.
실험 결과, 상용화된 PP/PE/PP 분리막을 사용한 비교예 1의 전지는 발화가 발생하였다. 이는 고온 보존에 의해 두 전극인 양극 및 음극의 내부 단락에 의해 전지의 안전성이 저하되는 것을 나타내는 것이다. 이에 비해, 본 발명에서 제조된 유/무기 복합 다공성 필름을 포함하는 리튬 이차 전지는 160℃인 고온에서도 발화 및 연소가 발생하지 않고, 안전한 상태를 보여주었다(표 2 참조).
이로서, 본 발명의 유/무기 복합 다공성 필름을 포함하는 리튬 이차 전지는 탁월한 안전성을 가짐을 확인할 수 있었다.
실시예 1 실시예 2 실시예 3 실시예 4 비교예 1
발화 X X X X O

이상에서 살펴본 바와 같이, 본 발명의 유/무기 복합 다공성 필름은 용융 온도가 200℃ 이상인 내열성 다공성 기재를 사용하여 열 수축 현상이 일어나지 않으므로, 고온 열수축에 의한 전지의 내부 단락 등과 같은 문제점을 해결하여 전지의 안전성을 향상시킬 수 있다.
또한, 상기 다공성 기재의 표면 또는 기재 중 기공부 일부에 고유전율 무기물 입자 및 용해도 지수가 15 내지 45 MPa1/2 인 고분자 혼합물을 코팅하여 다공성 구조를 형성함으로써, 리튬 이온 해리가 향상되고, 전해액 함침율이 우수하여 전지의 성능을 개선시킬 수 있다. 또한, 상기 활성층 중 무기물 및 고분자의 함량 조절에 의한 높은 접착력으로 인해 적층(lamination) 공정이 필요한 전지 조립 공정의 경제성을 높일 수 있다. 추가적으로, 상기 유/무기 복합 다공성 필름을 전해질로 사용하여 독립 형태의 필름으로 제조시 야기될 수 있는 취약한 기계적 물성을 향상시킬 수 있다.

Claims (15)

  1. a) 기공을 갖고, 용융 온도가 200℃ 이상인 다공성 기재; 및
    b) 상기 기재의 표면 또는 기재 중 기공부 일부가 5 이상의 유전율 상수를 갖는 무기물 입자 및 용해도 지수(solubility parameter)가 15 내지 45 MPa1/2 인 고분자의 혼합물로 코팅된 활성층
    을 포함하는 유/무기 복합 다공성 필름.
  2. 제 1항에 있어서, 상기 다공성 기재는 폴리에틸렌테레프탈레이트, 폴리부틸렌테레프탈레이트, 폴리에스테르, 폴리아세탈, 폴리아미드, 폴리카보네이트, 폴리이미드, 폴리에테르에테르케톤, 폴리에테르설폰, 폴리페닐렌옥사이드 및 폴리페닐렌설파이드로 및 폴리에틸렌나프탈렌으로 이루어진 군으로부터 선택된 1종 이상인 필름.
  3. 제 1항에 있어서, 상기 다공성 기재의 기공 크기가 0.01 내지 50㎛ 인 필름.
  4. 제 1항에 있어서, 상기 다공성 기재의 기공도가 5 내지 95% 인 필름.
  5. 제 1항에 있어서, 상기 무기물 입자는 Pb(Zr,Ti)O3 (PZT), Pb1-xLaxZr1-y TiyO3 (PLZT), PB(Mg3Nb2/3)O3-PbTiO3 (PMN-PT), BaTiO3, hafnia (HfO2), SrTiO3, TiO2, Al2O3, ZrO2, SnO2, CeO2, MgO, CaO, ZnO 및 Y2 O3로 이루어진 군으로부터 선택된 1종 이상인 필름.
  6. 제 1항에 있어서, 상기 무기물 입자의 크기가 1㎚ 내지 10㎛ 범위인 필름.
  7. 제 1항에 있어서, 상기 고분자는 폴리비닐리덴 풀루오라이드-헥사풀루오로프로필렌 (polyvinylidene fluoride-co-hexafluoropropylene), 폴리비닐리덴 풀루오라이드-트리클로로에틸렌 (polyvinylidene fluoride-co-trichloroethylene), 폴리메틸메타클릴레이트 (polymethylmethacrylate), 폴리아크릴로니트릴 (polyacrylonitrile), 폴리비닐피롤리돈 (polyvinylpyrrolidone), 폴리비닐아세테이트 (polyvinylacetate), 에틸렌 비닐 아세테이트 공중합체 (polyethylene-co-vinyl acetate), 폴리에틸렌옥사이드 (polyethylene oxide), 셀룰로오스 아세테이트 (cellulose acetate), 셀룰로오스 아세테이트 부틸레이트 (cellulose acetate butyrate), 셀룰로오스 아세테이트 프로피오네이트 (cellulose acetate propionate), 시아노에틸풀루란 (cyanoethylpullulan), 시아노에틸폴리비닐알콜 (cyanoethylpolyvinylalcohol), 시아노에틸셀룰로오스 (cyanoethylcellulose), 시아노에틸수크로오스 (cyanoethylsucrose), 풀루란 (pullulan) 및 카르복실 메틸 셀룰로오스 (carboxyl methyl cellulose)로 이루어진 군으로부터 선택된 1종 이상인 필름.
  8. 제 1항에 있어서, 상기 무기물 입자 및 고분자의 조성비가 10:90 내지 99:1의 중량비인 필름.
  9. 제 1항에 있어서, 상기 유/무기 복합 다공성 필름의 기공 크기가 1㎚ (0.001㎛) 내지 10㎛ 범위인 필름.
  10. 제 1항에 있어서, 상기 유/무기 복합 다공성 필름의 기공도가 5 내지 95% 범위인 필름.
  11. 제 1항에 있어서, 상기 유/무기 복합 다공성 필름의 두께가 1 내지 100㎛ 범위인 필름.
  12. a) 양극;
    b) 음극;
    c) 상기 양극과 음극 사이에 개재된 제 1항 내지 제 11항 중 어느 한 항의 유/무기 복합 다공성 필름; 및
    d) 전해액
    을 포함하는 전기 화학 소자로서, 상기 전해액이 유/무기 복합 다공성 필름 내 기공, 고분자 또는 양쪽 모두에 함침되는 것을 특징으로 하는 전기 화학 소자.
  13. 제 12항에 있어서, 상기 전기 화학 소자는 폴리올레핀 계열 분리막을 추가적으로 포함하는 소자.
  14. 제 12항에 있어서, 상기 전기 화학 소자는 리튬 이온 이차 전지인 소자.
  15. a) 용해도 지수가 15 내지 45 MPa1/2 인 고분자를 용매에 용해시키는 단계;
    b) 5 이상의 유전율 상수를 갖는 무기물 입자를 상기 단계 a)의 고분자 용액에 첨가 및 혼합하는 단계; 및
    c) 기공을 갖고, 용융 온도가 200℃ 이상인 다공성 기재의 표면 또는 기재 중 기공부 일부를 상기 단계 b)의 혼합물로 코팅 및 건조하는 단계
    를 포함하는 제 1항 내지 제 11항 중 어느 한 항의 유/무기 복합 다공성 필름의 제조방법.
KR1020040052638A 2004-07-07 2004-07-07 신규 유/무기 복합 다공성 필름 및 이를 이용한 전기 화학소자 KR100749301B1 (ko)

Priority Applications (15)

Application Number Priority Date Filing Date Title
KR1020040052638A KR100749301B1 (ko) 2004-07-07 2004-07-07 신규 유/무기 복합 다공성 필름 및 이를 이용한 전기 화학소자
PCT/KR2005/002133 WO2006004366A1 (en) 2004-07-07 2005-07-05 New organic/inorganic composite porous film and electrochemical device prepared thereby
EP20180768.2A EP3739668A1 (en) 2004-07-07 2005-07-05 New organic/inorganic composite porous film and electrochemical device prepared thereby
RU2007101386/09A RU2336602C1 (ru) 2004-07-07 2005-07-05 Новая органическо-неорганическая композитная пористая пленка и электрохимическое устройство с ее использованием
BRPI0511309A BRPI0511309B1 (pt) 2004-07-07 2005-07-05 separador poroso composto orgânico/inorgânico e dispositivo eletroquímico
EP05765818.9A EP1782489B1 (en) 2004-07-07 2005-07-05 Organic/inorganic composite porous separator and electrochemical device comprasing the same.
PL05765818T PL1782489T3 (pl) 2004-07-07 2005-07-05 Porowaty separator kompozytowy organiczno/nieorganiczny i urządzenie elektrochemiczne go zawierające
TW094122679A TWI321860B (en) 2004-07-07 2005-07-05 Organic/inorganic composite porous film and electrochemical device using the same
CNB2005800203221A CN100502097C (zh) 2004-07-07 2005-07-05 有机/无机复合多孔性薄膜和使用它的电化学装置
JP2007516403A JP2008503049A (ja) 2004-07-07 2005-07-05 有機無機複合多孔性フィルム及びこれを用いる電気化学素子
HUE05765818A HUE052954T2 (hu) 2004-07-07 2005-07-05 Szerves/szervetlen kompozit porózus szétválasztó, és ezt tartalmazó elektrokémiai készülék
US11/175,881 US7704641B2 (en) 2004-07-07 2005-07-06 Organic/inorganic composite porous film and electrochemical device prepared thereby
JP2011003263A JP2011138780A (ja) 2004-07-07 2011-01-11 有機無機複合多孔性フィルム及びこれを用いる電気化学素子
JP2012096824A JP6285092B2 (ja) 2004-07-07 2012-04-20 有機無機複合多孔性フィルム及びこれを用いる電気化学素子
JP2017218635A JP2018063948A (ja) 2004-07-07 2017-11-13 有機無機複合多孔性フィルム及びこれを用いる電気化学素子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020040052638A KR100749301B1 (ko) 2004-07-07 2004-07-07 신규 유/무기 복합 다공성 필름 및 이를 이용한 전기 화학소자

Publications (2)

Publication Number Publication Date
KR20060003665A KR20060003665A (ko) 2006-01-11
KR100749301B1 true KR100749301B1 (ko) 2007-08-14

Family

ID=37106074

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020040052638A KR100749301B1 (ko) 2004-07-07 2004-07-07 신규 유/무기 복합 다공성 필름 및 이를 이용한 전기 화학소자

Country Status (2)

Country Link
KR (1) KR100749301B1 (ko)
CN (1) CN100502097C (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101623101B1 (ko) 2010-10-07 2016-05-20 주식회사 엘지화학 세퍼레이터의 제조방법, 이로부터 형성된 세퍼레이터 및 이를 구비한 전기화학소자

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100833042B1 (ko) * 2005-02-15 2008-05-27 주식회사 엘지화학 성능 및 안전성이 향상된 전해액 및 이를 포함하는 리튬 이차 전지
KR100873570B1 (ko) * 2006-02-16 2008-12-12 주식회사 엘지화학 유/무기 복합 다공성 필름 및 이를 이용한 전기 화학 소자
KR100791791B1 (ko) * 2006-03-10 2008-01-04 주식회사 엘지화학 다공성 활성층이 코팅된 전극, 그 제조방법 및 이를 구비한전기화학소자
KR100778478B1 (ko) * 2006-05-11 2007-11-28 엘지전자 주식회사 무기 화합물을 전해질로 사용하는 연료 전지용 전해질매트릭스 및 이를 이용하는 연료 전지
KR100727248B1 (ko) 2007-02-05 2007-06-11 주식회사 엘지화학 다공성 활성층이 코팅된 유기/무기 복합 분리막 및 이를구비한 전기화학소자
CN101755362A (zh) * 2007-07-25 2010-06-23 株式会社Lg化学 电化学装置及其制造方法
DE102007042554B4 (de) * 2007-09-07 2017-05-11 Carl Freudenberg Kg Vliesstoff mit Partikelfüllung
CN101809801B (zh) * 2007-09-28 2014-03-26 A123系统公司 具有无机/有机多孔膜的电池
KR101147604B1 (ko) * 2007-10-12 2012-05-23 주식회사 엘지화학 젤리-롤형 전극조립체의 변형을 억제하기 위한 제조방법
KR100976862B1 (ko) * 2007-11-21 2010-08-23 주식회사 엘지화학 향상된 저장성능을 가지는 이차전지 및 이의 제조방법.
KR101002161B1 (ko) 2007-11-29 2010-12-17 주식회사 엘지화학 다공성 코팅층이 형성된 세퍼레이터, 그 제조방법 및 이를 구비한 전기화학소자
JP5588964B2 (ja) * 2008-04-08 2014-09-10 エスケー イノベーション カンパニー リミテッド 高耐熱性多孔性被覆層を有するポリオレフィン系複合微多孔膜
CN102173795B (zh) 2008-05-28 2014-12-10 三菱综合材料株式会社 强电介质薄膜形成用组合物、强电介质薄膜的形成方法及通过该方法形成的强电介质薄膜
JP5154349B2 (ja) * 2008-09-09 2013-02-27 日東電工株式会社 電池用セパレータとその製造方法、並びに、リチウムイオン二次電池とその製造方法
CN101474538B (zh) * 2008-12-11 2011-07-27 上海交通大学 在多孔基板表面涂覆溶胶-凝胶薄膜的方法
CN101771175A (zh) * 2008-12-31 2010-07-07 深圳市海太阳实业有限公司 聚合物锂离子电池
US10439188B2 (en) 2009-08-10 2019-10-08 Lg Chem, Ltd. Lithium secondary battery
CN106848377B (zh) * 2009-08-10 2019-11-08 株式会社Lg 化学 锂二次电池
PL3435442T3 (pl) * 2009-09-29 2023-09-11 Lg Energy Solution, Ltd. Sposób wytwarzania separatora
FR2963026B1 (fr) * 2010-07-23 2013-03-15 Univ Paul Verlaine Metz Paroi de separation d'electrolytes pour le transfert selectif de cations a travers la paroi, procede de fabrication et procede de transfert.
CN103238249B (zh) * 2010-11-30 2016-09-21 株式会社Lg化学 锂二次电池
KR101680187B1 (ko) * 2010-12-22 2016-11-28 주식회사 엘지화학 안전성이 개선된 세퍼레이터, 그 제조방법 및 이를 구비한 전기화학소자
KR101254693B1 (ko) 2011-02-15 2013-04-15 주식회사 엘지화학 세퍼레이터, 그 제조방법 및 이를 구비한 전기화학소자
WO2012111956A2 (ko) * 2011-02-15 2012-08-23 주식회사 엘지화학 세퍼레이터, 그 제조방법 및 이를 구비한 전기화학소자
CN102867930A (zh) * 2011-07-05 2013-01-09 中国科学院大连化学物理研究所 一种液流储能电池用复合膜及其应用
JP5892713B2 (ja) * 2011-08-25 2016-03-23 エルジー・ケム・リミテッド 微小カプセルを備えるセパレータ及びそれを備える電気化学素子
JP2013051180A (ja) * 2011-08-31 2013-03-14 Dexerials Corp 電池用セパレータシート及び電池
EP2779275B1 (en) * 2011-11-11 2017-02-15 LG Chem, Ltd. Separator, and electrochemical device comprising same
KR101344939B1 (ko) * 2011-12-13 2013-12-27 주식회사 코캄 리튬 이차전지용 고내열성 복합체 세퍼레이터 및 이를 포함하는 리튬 이차전지
CN103579633B (zh) * 2012-08-09 2016-02-17 清华大学 正极及锂离子电池
DE102013200848A1 (de) * 2013-01-21 2014-07-24 Robert Bosch Gmbh Sicherheitsverbessertes galvanisches Element
WO2015041472A1 (ko) * 2013-09-17 2015-03-26 주식회사 엘지화학 열 안정성이 우수한 분리막 및 이를 포함하는 이차전지
CN104979516B (zh) * 2014-04-10 2018-08-03 宁德时代新能源科技股份有限公司 电化学装置及电化学装置隔离膜的制备方法
KR102246767B1 (ko) 2014-08-13 2021-04-30 삼성에스디아이 주식회사 리튬이차전지용 세퍼레이터, 이를 채용한 리튬이차전지 및 그 제조방법
KR102324057B1 (ko) * 2015-04-23 2021-11-09 에스케이이노베이션 주식회사 복합분리막 및 그의 제조방법
US10211442B2 (en) * 2015-11-27 2019-02-19 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery insulating porous layer and nonaqueous electrolyte secondary battery laminated separator
EP3389128B1 (en) 2015-12-11 2022-10-05 FUJIFILM Corporation Solid electrolyte composition, sheet for all-solid-state secondary battery, electrode sheet for all-solid-state secondary battery and method for manufacturing same, all-solid-state secondary battery and method for manufacturing same
US10923760B2 (en) 2016-09-22 2021-02-16 Grst International Limited Electrode assemblies
CN109891633B (zh) * 2016-11-18 2022-09-16 株式会社Lg新能源 隔板和包括该隔板的电化学装置
CN106785011B (zh) * 2016-12-23 2019-09-06 国联汽车动力电池研究院有限责任公司 一种用于全固态电池的柔性电解质层及其制备方法
KR102293887B1 (ko) * 2017-07-25 2021-08-25 주식회사 엘지에너지솔루션 불산을 저감하는 물질을 포함하는 전지 분리막
US10673046B2 (en) * 2018-04-13 2020-06-02 GM Global Technology Operations LLC Separator for lithium metal based batteries
CN109004271B (zh) * 2018-08-01 2020-09-15 惠州亿纬锂能股份有限公司 一种复合固态电解质膜及其制备方法和用途
US11569550B2 (en) * 2019-04-05 2023-01-31 EnPower, Inc. Electrode with integrated ceramic separator
EP4037050A4 (en) * 2019-10-18 2022-12-21 LG Energy Solution, Ltd. SEPARATOR FOR ELECTROCHEMICAL DEVICE, ELECTROCHEMICAL DEVICE COMPRISING THE SAME AND METHOD FOR MANUFACTURING SEPARATOR
CN111525063A (zh) * 2020-04-29 2020-08-11 无锡睿勤科技有限公司 一种电池固定装置及终端设备
CN111509186B (zh) * 2020-05-22 2021-02-02 清陶(昆山)能源发展有限公司 一种锂离子固态电池正极及其制备工艺和锂离子固态电池
CN112670673A (zh) * 2020-12-24 2021-04-16 肇庆市华师大光电产业研究院 一种离子传导有机-无机复合修饰隔膜及其制备方法和应用
CN113871795B (zh) * 2021-09-26 2023-11-03 惠州亿纬锂能股份有限公司 一种浸润性隔膜及其制备方法和应用
CN114388885A (zh) * 2021-12-21 2022-04-22 浙江大学 一种不对称复合固态电解质膜及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
한국공개특허공보 10-2002-70882 (2002.09.11)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101623101B1 (ko) 2010-10-07 2016-05-20 주식회사 엘지화학 세퍼레이터의 제조방법, 이로부터 형성된 세퍼레이터 및 이를 구비한 전기화학소자

Also Published As

Publication number Publication date
KR20060003665A (ko) 2006-01-11
CN1969407A (zh) 2007-05-23
CN100502097C (zh) 2009-06-17

Similar Documents

Publication Publication Date Title
KR100749301B1 (ko) 신규 유/무기 복합 다공성 필름 및 이를 이용한 전기 화학소자
US20210320380A1 (en) Organic/inorganic composite porous film and electrochemical device prepared thereby
KR100895196B1 (ko) 유/무기 복합 다공성 필름 및 이를 이용한 전기 화학 소자
US7704641B2 (en) Organic/inorganic composite porous film and electrochemical device prepared thereby
KR100742959B1 (ko) 유/무기 복합 다공성 필름 및 이를 이용하는 전기 화학소자
JP6116630B2 (ja) 有機無機複合多孔性フィルム及びこれを用いる電気化学素子
KR100739337B1 (ko) 유/무기 복합 다공성 필름 및 이를 이용한 전기 화학 소자
US7638241B2 (en) Organic/inorganic composite separator having morphology gradient, manufacturing method thereof and electrochemical device containing the same
US7662517B2 (en) Organic/inorganic composite microporous membrane and electrochemical device prepared thereby
US20110318141A1 (en) Substrate transfer equipment and high speed substrate processing system using the same
KR100873570B1 (ko) 유/무기 복합 다공성 필름 및 이를 이용한 전기 화학 소자
KR20060041650A (ko) 유/무기 복합 다공성 필름 및 이를 이용한 전기 화학 소자

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130730

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20140716

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20150716

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20160803

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20170718

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20190625

Year of fee payment: 13