KR20050103981A - 내 셋팅성 및 피로특성이 우수한 스프링용 강 - Google Patents

내 셋팅성 및 피로특성이 우수한 스프링용 강 Download PDF

Info

Publication number
KR20050103981A
KR20050103981A KR1020057016881A KR20057016881A KR20050103981A KR 20050103981 A KR20050103981 A KR 20050103981A KR 1020057016881 A KR1020057016881 A KR 1020057016881A KR 20057016881 A KR20057016881 A KR 20057016881A KR 20050103981 A KR20050103981 A KR 20050103981A
Authority
KR
South Korea
Prior art keywords
less
spring
steel
content
setting
Prior art date
Application number
KR1020057016881A
Other languages
English (en)
Inventor
스미에 수다
노부히코 이바라키
Original Assignee
가부시키가이샤 고베 세이코쇼
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가부시키가이샤 고베 세이코쇼 filed Critical 가부시키가이샤 고베 세이코쇼
Publication of KR20050103981A publication Critical patent/KR20050103981A/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium

Abstract

본 발명의 스프링용 강은 C: 0.5 ~ 0.8 %(질량%, 이하 모두 같음), Si: 1.2 ~ 2.5 %, Mn: 0.2 ~ 1.5 %, Cr: 1.0 ~ 4.0 %, V : 0.5 % 이하 (0%를 포함), P: 0.02 % 이하 (0% 불포함), S: 0.02 % 이하 (0% 불포함), Al: 0.05 % 이하 (0% 불포함)를 함유하고, 잔부는 Fe 및 불가피 불순물로 이루어지며, 상기 Si 함유량과 Cr 함유량은 다음식 (1)을 만족하는 것에 특징을 갖는다.
0.8 × [Si] + [Cr] ≥ 2.6 …… (1)
식 중, [Si], [Cr]은 각각 Si 함유량(질량%) 및 Cr 함유량(질량%)을 나타낸다.
이 스프링용 강은, 스피링의 내 셋팅성과 피로특성 모두를 향상하는데 유용하다.

Description

내 셋팅성 및 피로특성이 우수한 스프링용 강{Steel for spring being excellent in resistance to setting and fatigue characteristics}
본 발명은 스프링(예컨데, 기계의 복원기구에 사용하는 스프링)을 제조하는데 유용한 내 셋팅성(耐 setting 性) 및 피로특성(疲勞特性)이 우수한 스프링용 강(spring用 鋼)에 관한 것이다.
자동차 엔진의 밸브 스프링(valve spring), 서스펜션(suspension)의 현가 스프링, 클러치 스프링(clutch spring), 브레이크 스프링(brake spring) 등은, 근년 자동차의 경량화와 고출력화에 따라 고응력에 견딜 수 있도록 하는 설계가 요구되고 있다. 즉, 스프링의 부하응력의 증대에 따라, 피로특성(疲勞特性)과 내 셋팅성(setting)이 우수한 스프링이 요구되고 있는 것이다.
내 셋팅성은 스프링 소재를 고강도화(高强度化)하면 향상되는 것으로 알려지고 있다. 예컨데, 고(高)실리콘화 하여 고강도화 하면 내 셋팅성이 향상하기 때문에, 통상 0.8~2.5% 정도의 범위로 사용된다(특허 제 2898472호 공보, 특개 2000-169937호 공보 등). 또한, 스프링 소재를 고강도화 하면 피로한(疲勞限)이라는 점에서, 피로특성의 향상이 기대된다.
그러나, 스프링소재를 고강도화 하면, 결함감수성이 높아지기 쉽고, 이에 따라 피로수명이 저하하게 된다. 또한 코일링(coiling)시 절손이 일어나기 쉽다. 따라서, 내 셋팅성과 피로특성의 양쪽 모두를 향상시키는 것은 곤란하다.
본 발명은, 상술한 사정에 착안하여서 이루어진 것으로, 그 목적은 내 셋팅성과 피로특성을 모두 향상시킬 수 있는 스프링을 제조하는데 필요한 강을 제공하는데 있다.
도 1은 본 발명 실시예 상의 강의 Si·Cr 량과 피로특성과의 관계를 나타내는 그래프
(발명의 개시)
본 발명자등은, 상기 과제를 해결하기 위해 예의 연구를 거듭하는 과정에서, Cr이 갖는 의외의 작용을 알게 되었다. 즉, Cr은 경화능(hardenability)의 향상과 템퍼링 연화저항(tempering 軟化抵抗)의 향상에 유효한 원소이다. Si과 같이, 내 셋팅성 향상과 피로한(疲勞限)의 향상에 유효한 것임은 알려져 있는 것이지만, Cr을 많이 사용한다해서 피로수명이 그만큼 더 향상되는 것이 아니고, 오히려 인성(靭性)과 연성(延性)을 낮추기 때문에, Cr 사용량은 실질적으로 약 1% 정도로 억제하고 있다(상기 특허문헌의 실시예 참조).
그런데, 본 발명자등은 Cr에는 결함감수성(缺陷感受性)을 상승시키지 않고도 피로강도와 내 셋팅성을 향상시킬 수 있는 작용이 있음을 새로이 발견하게 되었다. 보다 상세히 이를 설명하면, 종래 스프링은 강재(선재)를 예컨데 신선(伸線), 오일템퍼(oil temper), 코일링, 숏트피닝(shot peening), 셋팅 등의 순으로 처리하여 제조되나, 특히 숏트피닝은 표면에 압축 잔류응력을 부여하여 피로수명을 높인다는 점에서 중요하다. 그러나, 강재 중의 Cr 함유량을 크게하면, 오일템퍼 처리시 입계가 산화되어 버리고, 이 입계산화층(粒界酸化層)은 숏트피닝시의 압축 잔류응력의 부여량을 작게하여 버리기 때문에 결과적으로 피로수명이 향상되지 않았다.
본 발명자등은 오일템퍼 처리시의 입계산화를 억제할 수 있다면 Cr이 잠재적으로 갖고 있는 결함감수성 저하작용을 유효하게 이용할 수 있고, 결함 존재시의 피로수명 저하를 억제할 수 있음을 연구결과로 알게 된 것이다.
이에 따라, 본 발명자등은 일층 더 연구개발에 박차를 가하였다. 즉, Cr을 소정량 함유하는 강선의 입계산화층을 저감하면 피로수명의 향상이 인정되는 것인만큼 일층 더 개선의 여지가 남아 있었다. 그리하여 강재의 Si·Cr 밸런스(balance)를 적정히 취하면, 피로특성이 한층 더 개선되는 것을 도출해내므로써 본 발명을 완성하였다.
즉, 본 발명에 관한 내 셋팅성 및 피로특성이 우수한 스프링용 강은 C:0.5~0.8 질량%(이하 질량%), Si:1.2~2.5%, Mn:0.2~1.5%, Cr:1.0~4.0%, V:0.5% 이하(0%를 포함), P:0.02% 이하(0% 불포함), S:0.02% 이하(0% 불포함), Al:0.05% 이하(0% 불포함)를 함유하고, 잔부는 Fe 및 불가피 불순물로 이루어진다.
그러면서도 상기 Si 함유량과 Cr 함유량은 다음식(1)을 만족하고 있는 점에 요지를 가진다.
0.8 × [Si] + [Cr] ≥ 2.6 …… (1)
식 중, [Si], [Cr]은 각각 Si 함유량(질량%) 및 Cr 함유량(질량%)을 나타낸다.
한편, 상기 스프링용 강이라 함은 정확히 말해 열간압연 등에 의해 얻어지는 와이어롯드(wire rod)를 의미한다. 본 발명의 스프링용 강은 특히 Mn:0.5% 이상, Cr:1.3% 이상으로 할 것이 권장된다. 상기 스프링용 강은 또한 Ni:0.5% 이하(0% 불포함) 및/또는 Mo:0.4% 이하(0% 불포함)를 함유하여도 좋다.
(발명을 실시하기 위한 최량의 형태)
본 발명의 강은 C, Si, Mn, Cr, V, P, S 및 Al을 소정량 함유하고, 잔부는 Fe 및 기타 불가피 불순물로 이루어진다.
이하, 각 성분의 량과 그 한정이유를 설명한다.
C : 0.5 ~ 0.8 % (질량%, 이하 모두 같음)
C는 고응력이 걸리는 스프링에 충분한 강도를 확보하기 위해 첨가되는 원소이다. 통상 0.5% 정도, 바람직하게는 0.52% 이상, 보다 바람직하게는 0.54% 정도 이상, 특히 0.6% 정도 이상 첨가한다.
그러나 지나치게 많이 첨가하면, 인·연성이 나빠지고, 스프링용 강을 스프링으로 가공할 때 얻어진 스프링의 사용중에, 표면흠과 내부결함을 기점으로 크랙(crack)이 발생하기 쉬워지므로, 통상적으로는 0.8% 정도 이하, 바람직하게는 0.75% 정도 이하, 더욱 바람직하게는 0.7% 정도 이하로 한다.
Si : 1.2 ~ 2.5 %
Si은 제강시의 탈산제로서 필요한 원소이고, 연화저항을 높여 내 셋팅성을 향상시키는 데에도 유용하다. 이러한 효과를 유효히 발휘시키기 위해, 통상적으로는 1.2% 정도 이상, 바람직하게는 1.4% 정도 이상, 더욱 바람직하게는 1.6% 정도 이상 첨가한다. 그러나 너무 지나치게 많으면, 인·연성이 나빠질 뿐 아니라, 흠이 증가하기도 하고, 열처리시 표면의 탈탄(脫炭)이 진행하기 쉬워지며, 또한 입계산화층이 깊어지기 쉬워 피로수명을 단축시키기 쉽다. Si은 통상적으로는 2.5% 정도 이하, 바람직하게는 2.3% 정도 이하, 보다 바람직하게는 2.2% 정도 이하로 한다.
Mn : 0.2 ~ 1.5 %
Mn도 제강시의 탈산에 유효한 원소이다. 또한 경화능을 높여 강도향상에 기여하는 원소이다. 이 효과를 유효히 발휘시키므로, 통상 0.2% 정도 이상, 바람직하게는 0.3% 이상, 보다 바람직하게는 0.4% 이상, 특히 0.5% 정도 이상(그중에서도 가급적 0.6% 정도 이상, 가장 바람직하게는 0.65% 정도 이상) 첨가한다. 그러나, 본 발명 강은 열간압연 후 필요에 따라 파텐팅(patenting) 처리하고, 다음에 신선, 오일템퍼, 코일링 등으로 하여 스프링으로 만들므로, Mn이 너무 많아지면 열간압연시 그리고 파텐팅 처리시 베이나이트(bainite) 등의 과냉조직이 생기기 쉬워져, 신선성이 저하되기 쉬우므로 통상 그 상한치는 1.5% 정도, 바람직하게는 1,2% 정도, 보다 바람직하게는 1% 정도로 한다.
Cr : 1.0 ~ 4.0 %
Cr은 내 셋팅성의 향상작용 및 결함감수성 저하작용을 가지고 있어, 본 발명으로서는 매우 중요한 원소이다. 한편, Cr은 입계산화층을 두껍게 하여 피로수명을 저하시키는 작용도 가지고 있어, 이 점에서 오일템퍼시의 분위기를 제어하여 입계산화층을 얇게 할 수 있으므로, 본 발명에서는 이에 관한 불합리는 해소 가능하다. 따라서, Cr은 많을수록 좋고, 예컨데 1.0% 이상, 바람직하게는 1.03% 이상, 더욱 바람직하게는 1.2% 이상, 특히 1.3% 이상이다. 또한 Cr을 많게하면, 표면경화처리(예컨데 질화처리)한 후의 내 셋팅성을 향상시킬 수 있다. 표면경화처리 후의 내 셋팅성도 향상시킬 경우에는, Cr 량을 1.3% 이상, 바람직하게는 1.4% 이상, 더욱 바람직하게는 1.5% 이상으로 할 것이 권장된다.
한편, Cr이 과잉으로 첨가되면, 신선시 파텐팅 시간이 지나치게 길어지고, 또한 인성과 연성도 저하하기 때문에 4.0% 이하, 바람직하게는 3.5% 이하, 더욱 바람직하게는 3% 이하, 특히 2.6% 이하로 한다.
V : 0.5 % 이하 (0%를 포함한다),
V는 첨가하지 않는 경우(0%)도 있으나, 본 발명 강을 신선한 후에 오일템퍼처리할 때 결정립을 미세화하는 작용이 있고, 인·연성을 향상시키는데 유용하고, 또한 오일템퍼처리시, 코일링(스프링성형) 후의 스트레인 제거 아닐링 등을 행할 때, 2차 석출경화를 일으켜 고강도화에도 기여하므로, 예컨데 0.01% 정도 이상, 바람직하게는 0.05% 정도 이상, 더욱 바람직하게는 0.1% 정도 이상 첨가하는 경우도 있다. 그러나, 과잉으로 첨가하면 오일템퍼처리까지의 단계에서 마르텐사이트 조직(martensite)과 베이나이트 조직(bainite)이 생성되어 버리고, 신선가공성이 저하하기 쉽게 되어버리므로, 첨가하게되는 경우(0% 초과)에는 0.5% 정도 이하, 바람직하게는 0.4% 정도 이하, 더욱 바람직하게는 0.3% 정도 이하로 한다.
P : 0.02 % 이하 (0%를 포함하지 않음)
S : 0.02 % 이하 (0%를 포함하지 않음)
P와 S는 다같이 강의 인성과 연성을 저하시키는 불순물 원소이고, 신선공정에서의 단선(斷線)을 방지하기 위해 극력 억제되어야 한다. P 량과 S 량은 바람직스럽게는 각기 0.015% 이하, 더욱 바람직하게는 0.013% 이하 정도이다. P 량과 S 량의 상한은 각기 다르게 설정하여도 좋다.
Al : 0.05 % 이하 (0%를 포함하지 않음)
Al은 예컨데 다른원소(예를 들면 Si)로 탈산하는 경우와 진공용제(眞空溶製)하는 경우에는 필요로 하지 않으나, Al으로 탈산시에는 유용하다. 그러나, Al은 Al2O3 등의 산화물을 생성하고, 신선시의 단선의 원인이 되며, 또한 파괴기점(破壞起点)이 되어 스프링의 피로특성을 저하시키는 원인이 되므로, 극력 억제하는 것이 바람직스럽다. Al 량은 바람직하게는 0.03% 이하, 더욱 바람직하게는 0.01% 이하, 특히 바람직하게는 0.005% 이하 정도이다.
또한 본 발명에서는 상기 원소 외에 또한 Ni, Mo 등을 단독 또는 조합시켜 첨가해도 좋다. 이하, 이들 선택원소의 량과 첨가이유를 다음과 같이 설명한다.
Ni : 0.5 % 이하 (0%를 포함하지 않음)
Ni은 경화능(hardenability)을 높이고, 저온취화(低溫脆化)를 방지하는데 유용한 원소이다. Ni 량은 바람직하게는 0.05% 정도 이상, 바람직하게는 0.1% 정도 이상, 더욱 바람직하는 0.15% 정도 이상이다. 그러나, 너무 많아지면 열간압연으로 강재를 제조할 때, 베이나이트 조직 또는 마르텐사이트 조직이 생성되고, 인성·연성이 저하하기 쉬워지므로 0.5% 정도 이하, 바람직하게는 0.4% 정도 이하, 더욱 바람직하게는 0.3% 정도 이하로 한다.
Mo : 0.4 % 이하 (0%를 포함하지 않음)
Mo은 연화저항을 향상시킴과 아울러, 석출경화를 발휘하기 때문에 저온 아닐링(annealing)한 후에 내력(耐力)을 상승시킨다는 점에서도 유용하다. Mo 량은 바람직하게는 0.05% 이상, 더욱 바람직하게는 0.1% 이상이다. 그러나 과잉으로 첨가하면, 본 발명 강재를 오일템퍼처리할 때까지의 단계에서 마르텐사이트 조직과 베이나이트 조직이 생성되어, 신선가공성이 나빠지므로 0.4% 이하, 바람직하게는 0.35% 이하, 더욱 바람직하게는 0.30% 이하로 한다.
그리고, 본 발명 강은 각 성분이 상기 범위에서 제한되어 있을 뿐 아니라, Si·Cr 밸런스가 적정히 제어되고, 구체적으로는 다음식 (1), 바람직하게는 다음식 (2)를 만족하도록 Si·Cr 밸런스를 제어한다.
0.8 × [Si] + [Cr] ≥ 2.6 …… (1)
0.8 × [Si] + [Cr] ≥ 3.0 …… (2)
여기, 식 중에서 [Si], [Cr]은 각각 Si 함유량(질량%) 및 Cr 함유량(질량%)를 나타낸다.
Si·Cr 밸런스를 적정하게 제어하므로써, 스프링으로 한 때의 결함감수성을 확실히 개선하고, 피로수명을 한층 더 향상시킬 수가 있다.
본 발명 강은, 예컨데 강편, 주편 또는 이들을 열간압연하므로써 얻어지는 선재로서 얻어진다. 그리고, 본 발명 강은 예컨데 다음과 같이하여 스프링으로 할 수가 있다. 즉, 상기 선재를 신선하고, 칭·템퍼링처리(오일템퍼처리 등)하여 강선으로 한 후, 스프링성형 하므로써 스프링이 얻어진다. 또한 상기 칭·템퍼링처리는 수증기를 포함하는 가스 분위기하에서 행할 것이 권장된다. 수증기를 포함하는 가스 중에서의 칭(quenching), 템퍼링(tempering)처리하면, 강선 표면의 산화피막을 치밀하게 할 수 있고, 입계산화층을 얇게할 수 있으므로 Cr 첨가에 의한 문제를 회피할 수가 있다.
한편, 신선 전에는 통상, 연화아닐링(軟化燒鈍), 표피깍기(皮削), 납 파텐팅(鉛 patenting) 처리 등을 행한다. 또한 스프링 성형후에는 통상, 스트레인제거 아닐링, 더블 쇼트피닝, 저온아닐링, 냉간셋팅 등을 행한다.
본 발명 강에 의하면, Si 및 Cr이 소정량 이상 첨가되어 있고 Si·Cr 밸런스가 적절히 설정되어 있으므로 스프링으로 했을때의 내 셋팅성을 향상시킬 수 있고 피로특성 또한 확실히 향상시킬 수 있다.
이하, 실시예를 들어 본 발명을 보다 구체적으로 설명한다. 본 발명은 하기 실시예에 제한을 받지 않으며, 전후 취지에 적합한 범위에서 적당히 변경하여 실시하는 것도 물론 가능하다. 그리고 그것들은 모두 본 발명의 기술적 범위에 포함된다.
실시예 1~19
하기 표 1에 나타난 화학성분의 강을 용제하고, 열간압연하여 직경 8.0 mm의 강선재를 제작하였다.
상기 강선재를 스프링 용도로 사용했을 때의 특성을 조사하기 위하여, 하기 시험을 행하였다.
[피로특성]
상기 강선재를 연화아닐링, 표피깍기, 납 파텐팅처리(가열온도: 950℃, 납로온도: 620℃), 신선처리를 행한 후 오일템퍼처리(가열온도: 960℃, 칭오일온도: 70℃, 템퍼링온도: 450℃, 템퍼링 후의 냉각조건: 공냉, 로(爐) 분위기: 10체적% H2O + 90체적%N2)를 행하고, 직경 4.0 mm의 오일템퍼선을 제조하였다.
얻어진 오일템퍼선을 스트레인제거 아닐링에 상당하는 400℃×20분으로 템퍼처리하고, 더블숏트피닝, 저온아닐링(220℃×20분)을 행하였다. 이 저온 아닐링 후의 강선을 시마즈세이사쿠쇼 제(製) 타입 4 나카무라식 회전굽힘 피로시험기에 셋트하고, 회전속도: 4000rpm, 샘플길이: 600mm, 공칭응력(公稱應力): 826MPa의 조건하에서 회전굽힘 피로시험을 행하고, 파단(破斷)까지의 수명(회전수)과 파단면 개소를 조사하였다. 또한 파단하지 않은 경우에는 회전수: 2×107회에서 시험을 중지하였다.
[내 셋팅성]
상기 피로특성으로 제조한 오일템퍼선을 스프링성형(코일의 평균경: 28.0mm, 권수(卷數): 6.5, 유효권수: 4.5), 스트레인제거 아닐링(400℃×20분), 좌(座)연마, 더블숏트피닝, 저온아닐링(230℃×20분), 냉간셋팅으로 행하고 스프링(스프링정수: 2.6 kgf/mm)으로 하였다. 또한 숏트피닝 전에 질화처리(온도 450℃×3시간)한 이외에는, 상기와 같은 방법으로 한 스프링도 작성하였다.
질화처리 하지 않은 스프링, 질화처리 한 스프링 양쪽의 잔류전단(剪斷) 변형을 이하와 같이 하여 측정하였다. 즉 1372 MPa의 응력하에서 48시간에 걸쳐 계속하여 스프링을 단단히 조인 후(온도: 120℃), 응력을 제거하고 시험 전후의 셋팅 량을 측정하고 잔류전단(스트레인) 변형을 산출하였다.
또한 JIS G0551에 준거하여 구(舊) 오스테나이트립의 결정립도 번호도 조사하였다. 결과를 표 1 및 도 1에 나타내었다. 또한 도 1에서 ○는 실험예 1~11에 대응하고, △는 실험예 12~13, 15~16 및 19에 대응하며 ×는 실험예 14 및 17~18에 대응한다.
* 잔부는 Fe 및 불가피적 불순물
표 1 및 도 1에서 알 수 있듯이, 실험예 12~14 및 16~17은 Si 및 Cr 중, 적어도 한쪽이 부족하기 때문에 피로수명이 짧다. 실험예 15 및 18~19에 나타나듯이, Si 및 Cr을 소정량 이상 첨가하면 앞선 실험예 12~14 및 16~17에 비해 피로수명의 개선이 확인되지만, 예컨데 실험예 18에서는 산화물계 개재물을 기점으로 한 파괴 (피로한 이하의 파괴)가 생기게 되므로 더욱 피로수명의 향상이 요구된다.
이에 대해 실험예 1~11에 따르면, Si 및 Cr이 소정량 이상 첨가되어 있고, 또한 Si·Cr의 밸런스가 적절히 설정되어 있기 때문에 피로수명이 확실히 현저하게 향상되고, 내 셋팅성도 개선되어 있다. 특히 실험예 1, 3~6, 8 및 10~11에서는 실험예 2, 7, 9보다도 Cr이 많이 첨가되어 있어 질화 후의 내 셋팅성도 개선되어 있다.
본 발명의 강을 이용하면 상술한 바와 같이 하여 스프링으로 만들때, 내 셋팅성과 피로특성 모두를 확실히 향상시시킬 수 있다.

Claims (4)

  1. C : 0.5 ~ 0.8 %(질량%, 이하 모두 같음)
    Si : 1.2 ~ 2.5 %,
    Mn : 0.2 ~ 1.5 %,
    Cr : 1.0 ~ 4.0 %,
    V : 0.5 % 이하 (0%를 포함),
    P : 0.02 % 이하 (0% 불포함),
    S : 0.02 % 이하 (0% 불포함),
    Al : 0.05 % 이하 (0% 불포함)
    를 함유하고, 잔부는 Fe 및 불가피 불순물로 이루어지며,
    상기 Si 함유량과 Cr 함유량은 다음식 (1)을 만족하는 내 셋팅성 및 피로특성이 우수한 스프링용 강.
    0.8 × [Si] + [Cr] ≥ 2.6 …… (1)
    식 중, [Si], [Cr]은 각각 Si 함유량(질량%) 및 Cr 함유량(질량%)을 나타낸다.
  2. 제 1항에 있어서,
    Mn이 0.5% 이상으로 되는 것을 특징으로 하는 스프링용 강.
  3. 제 1항에 있어서,
    Cr이 1.3% 이상으로 되는 것을 특징으로 하는 스프링용 강.
  4. 또한 Ni : 0.5% 이하(0%를 포함하지 않음) 및 Mo : 0.4% 이하(0%를 포함하지 않음) 으로부터 선택되는 적어도 1종을 함유하는 것을 특징으로 하는 스프링용 강.
KR1020057016881A 2003-03-28 2004-03-25 내 셋팅성 및 피로특성이 우수한 스프링용 강 KR20050103981A (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPJP-P-2003-00092599 2003-03-28
JP2003092599 2003-03-28

Publications (1)

Publication Number Publication Date
KR20050103981A true KR20050103981A (ko) 2005-11-01

Family

ID=33127325

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020057016881A KR20050103981A (ko) 2003-03-28 2004-03-25 내 셋팅성 및 피로특성이 우수한 스프링용 강

Country Status (5)

Country Link
US (1) US7615186B2 (ko)
EP (1) EP1612287B1 (ko)
KR (1) KR20050103981A (ko)
CN (1) CN1764733A (ko)
WO (1) WO2004087977A1 (ko)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4486040B2 (ja) 2005-12-20 2010-06-23 株式会社神戸製鋼所 冷間切断性と疲労特性に優れた冷間成形ばね用鋼線とその製造方法
KR101056868B1 (ko) * 2006-06-09 2011-08-12 가부시키가이샤 고베 세이코쇼 피로 특성이 우수한 고청정도 스프링용 강 및 고청정도 스프링
CN101397629B (zh) * 2007-09-26 2010-09-08 南京依维柯汽车有限公司 承受高应力的高强度变截面簧片及其制造方法
US8789817B2 (en) * 2009-09-29 2014-07-29 Chuo Hatsujo Kabushiki Kaisha Spring steel and spring having superior corrosion fatigue strength
JP5711539B2 (ja) 2011-01-06 2015-05-07 中央発條株式会社 腐食疲労強度に優れるばね
JP5624503B2 (ja) * 2011-03-04 2014-11-12 日本発條株式会社 ばねおよびその製造方法
CN103859866A (zh) * 2012-12-17 2014-06-18 施丽卿 床垫用的弹簧
EP2990496B1 (en) * 2013-04-23 2018-10-31 Nippon Steel & Sumitomo Metal Corporation Spring steel having excellent fatigue characteristics and process for manufacturing same
CN103537674A (zh) * 2013-10-11 2014-01-29 芜湖市鸿坤汽车零部件有限公司 一种粉末冶金弹簧钢材料及其制备方法
JP6452454B2 (ja) * 2014-02-28 2019-01-16 株式会社神戸製鋼所 高強度ばね用圧延材および高強度ばね用ワイヤ
CN110760748B (zh) * 2018-07-27 2021-05-14 宝山钢铁股份有限公司 一种疲劳寿命优良的弹簧钢及其制造方法
CN111118398A (zh) * 2020-01-19 2020-05-08 石家庄钢铁有限责任公司 一种高淬透性高强度低温韧性弹簧钢及其生产方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2650225B2 (ja) 1986-01-30 1997-09-03 大同特殊鋼株式会社 ばね用鋼
JPS63153240A (ja) 1986-12-17 1988-06-25 Kobe Steel Ltd 耐へたり性に優れたばね用鋼
AU633737B2 (en) * 1990-06-19 1993-02-04 Nisshin Steel Company, Ltd. Method of making steel for springs
CA2057190C (en) 1991-02-22 1996-04-16 Tsuyoshi Abe High strength spring steel
JPH06228734A (ja) 1993-02-02 1994-08-16 Nisshin Steel Co Ltd クラッチダイヤフラムスプリング用鋼の製造方法
JP2932943B2 (ja) * 1993-11-04 1999-08-09 株式会社神戸製鋼所 高耐食性高強度ばね用鋼材
JPH08170152A (ja) 1994-12-16 1996-07-02 Kobe Steel Ltd 疲労特性の優れたばね
JP3754788B2 (ja) 1997-03-12 2006-03-15 中央発條株式会社 耐遅れ破壊性に優れたコイルばね及びその製造方法
JPH10251760A (ja) 1997-03-12 1998-09-22 Suzuki Kinzoku Kogyo Kk ばね成形加工性に優れた高強度オイルテンパー線および その製造方法
JP3595901B2 (ja) 1998-10-01 2004-12-02 鈴木金属工業株式会社 高強度ばね用鋼線およびその製造方法
JP2000326036A (ja) 1999-05-17 2000-11-28 Togo Seisakusho Corp 冷間成形コイルばねの製造方法
US7074282B2 (en) * 2000-12-20 2006-07-11 Kabushiki Kaisha Kobe Seiko Sho Steel wire rod for hard drawn spring, drawn wire rod for hard drawn spring and hard drawn spring, and method for producing hard drawn spring
JP2002212665A (ja) * 2001-01-11 2002-07-31 Kobe Steel Ltd 高強度高靭性鋼
KR20040083545A (ko) 2002-04-02 2004-10-02 가부시키가이샤 고베 세이코쇼 피로강도 및 내 새그성이 우수한 경인발스프링용 강선 및경인발스프링

Also Published As

Publication number Publication date
EP1612287A1 (en) 2006-01-04
EP1612287A4 (en) 2007-11-21
CN1764733A (zh) 2006-04-26
US7615186B2 (en) 2009-11-10
WO2004087977A1 (ja) 2004-10-14
US20070163680A1 (en) 2007-07-19
EP1612287B1 (en) 2016-06-01

Similar Documents

Publication Publication Date Title
US8382918B2 (en) Steel wire material for spring and its producing method
KR100711370B1 (ko) 가공성이 우수한 고강도 스프링용 강선 및 고강도 스프링
JP5693126B2 (ja) コイルばね及びその製造方法
JPH0971843A (ja) 高靱性ばね用オイルテンパー線およびその製造方法
WO2004092434A1 (ja) 転動疲労寿命に優れた鋼材及びその製造方法
JP5541418B2 (ja) ばね鋼およびばね
KR20050103981A (ko) 내 셋팅성 및 피로특성이 우수한 스프링용 강
JP4097151B2 (ja) 加工性に優れた高強度ばね用鋼線および高強度ばね
JPH11246941A (ja) 高強度弁ばね及びその製造方法
JPH06240408A (ja) ばね用鋼線及びその製造方法
KR101789944B1 (ko) 코일 스프링 및 그 제조 방법
WO2016158562A1 (ja) 疲労特性に優れた熱処理鋼線
JP4133515B2 (ja) 耐へたり性及び耐割れ性に優れたばね用鋼線
JP3975110B2 (ja) 鋼線およびその製造方法ならびにばね
JP4062612B2 (ja) 疲労強度および耐へたり性に優れた硬引きばね用鋼線並びに硬引きばね
JP2004315967A (ja) 耐へたり性及び疲労特性に優れたばね用鋼
JP3872364B2 (ja) 冷間成形コイルばね用オイルテンパー線の製造方法
JP4041330B2 (ja) 疲労強度に優れた硬引きばね用鋼線および硬引きばね
JPH11246943A (ja) 高強度弁ばね及びその製造方法
JP2001049337A (ja) 疲労強度に優れた高強度ばねの製造方法
JPH08170152A (ja) 疲労特性の優れたばね
JPS63303036A (ja) 高強度鋼線
JPH10158779A (ja) 冷間鍛造用鋼
JP2003293085A (ja) 疲労強度に優れた硬引きばね
JPH11246914A (ja) 高強度弁ばね及びその製造方法

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
J201 Request for trial against refusal decision
AMND Amendment
E801 Decision on dismissal of amendment
B601 Maintenance of original decision after re-examination before a trial
J301 Trial decision

Free format text: TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20070322

Effective date: 20080129