KR20040111608A - 전자 디바이스내의 클록 인에이블먼트를 동기화 - Google Patents

전자 디바이스내의 클록 인에이블먼트를 동기화 Download PDF

Info

Publication number
KR20040111608A
KR20040111608A KR10-2004-7018323A KR20047018323A KR20040111608A KR 20040111608 A KR20040111608 A KR 20040111608A KR 20047018323 A KR20047018323 A KR 20047018323A KR 20040111608 A KR20040111608 A KR 20040111608A
Authority
KR
South Korea
Prior art keywords
clock
subprocessor
processor
timing
main processor
Prior art date
Application number
KR10-2004-7018323A
Other languages
English (en)
Other versions
KR100742009B1 (ko
Inventor
존 에스. 키어
보크챠인 고
아터 시. 레이
Original Assignee
모토로라 인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 모토로라 인코포레이티드 filed Critical 모토로라 인코포레이티드
Publication of KR20040111608A publication Critical patent/KR20040111608A/ko
Application granted granted Critical
Publication of KR100742009B1 publication Critical patent/KR100742009B1/ko

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3206Monitoring of events, devices or parameters that trigger a change in power modality
    • G06F1/3209Monitoring remote activity, e.g. over telephone lines or network connections
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/04Generating or distributing clock signals or signals derived directly therefrom
    • G06F1/12Synchronisation of different clock signals provided by a plurality of clock generators
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3234Power saving characterised by the action undertaken
    • G06F1/3237Power saving characterised by the action undertaken by disabling clock generation or distribution
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3234Power saving characterised by the action undertaken
    • G06F1/3287Power saving characterised by the action undertaken by switching off individual functional units in the computer system
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3234Power saving characterised by the action undertaken
    • G06F1/3293Power saving characterised by the action undertaken by switching to a less power-consuming processor, e.g. sub-CPU
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/72Mobile telephones; Cordless telephones, i.e. devices for establishing wireless links to base stations without route selection
    • H04M1/725Cordless telephones
    • H04M1/73Battery saving arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0261Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level
    • H04W52/0287Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level changing the clock frequency of a controller in the equipment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2215/00Reducing interference at the transmission system level
    • H04B2215/064Reduction of clock or synthesizer reference frequency harmonics
    • H04B2215/066Reduction of clock or synthesizer reference frequency harmonics by stopping a clock generator
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Hardware Design (AREA)
  • Computing Systems (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Telephone Function (AREA)
  • Power Sources (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)
  • Electric Clocks (AREA)

Abstract

저 전력 모드를 갖는 전자 디바이스내의 주 및 부 프로세서용 공통 클록의 인에이블먼트를 동기화하는 방법은, 주 프로세서에 의한 통신 행위를 완료하는 제1 단계를 포함한다. 다음 단계는, 부 프로세서로부터의 클록 인에이블 신호를 모니터링 하는 단계를 포함한다. 다음 단계는, 부 프로세서가 모니터링 단계에서 인에이블된 클록을 갖지 않는 경우에, 부 프로세서의 타이밍을 주 프로세서의 주지의 타이밍과 비교하는 단계를 포함한다. 다음 단계는, 부 프로세서에 의한 클록 인에이블먼트를 주 프로세서의 클록 인에이블먼트와 동기화하는데 필요한 타이밍을 산출하는 단계를 포함한다. 다음 단계는, 부 프로세서의 주기적 타이밍과 주 프로세서의 주기적 타이밍을 동기화하기 위해 주 프로세서에 의한 제어하에, 부 프로세서를 전력 상승 및 전력 하강하는 단계를 포함한다.

Description

전자 디바이스내의 클록 인에이블먼트를 동기화{SYNCHRONIZING CLOCK ENABLEMENT IN AN ELECTRONIC DEVICE}
휴대용 통신 디바이스와 같은 배터리 동작 디바이스에서, 배터리 방전이 더 길게 지속되도록 디바이스를 저 전력 모드에 두어 전류 드레인을 감소시키는 방법이 이용될 수 있다. 광 대역 코드 분할 다중 접속(W-CDMA) 셀룰러 통신 시스템에서, 대부분의 하드웨어가 셧다운(shutdown)되고, 고속 클록이 턴오프되는 저 전력 또는 "휴면(sleep)" 모드로 진입하는 것을 포함하는 하나의 기술이 있다. 클록 소스는 동작하는데 상당한 전력을 요하며, 회로는 구동 클록 속도가 증가함에 따라 더 많은 전류를 소비하게 된다. WCDMA 디바이스를 제외한 다수의 마이크로프로세서-기반 제품은 유사한 상태를 갖는데, 이들은 어떤 하드웨어 부분 및 클록이 파워오프(power off)되는 상태에 진입하게 되고, 시스템이 다시 동작하기 이전에 파워온되고 안정화되어야한다. 예컨대, 블루투스(BluetoothTM)와 같은 무선 로컬 영역네트워크에서, 프로세서들은 저 전력 모드 명령에 따라 그 자신의 일부를 턴오프할 수 있다. 통신 기능의 측면에서, 휴지(idle) 모드는 셀룰러 무선 전화기와 같은 배터리-동작 이동 무선(radio) 디바이스에 대해 정의될 수 있다. 이러한 모드에서, 무선 전화기가 휴지 모드(즉, 호출에 관여되지 않은 경우)인 경우, 무선 전화기는 지속적으로 제어 채널을 모니터링하지 않고, 통상적으로 저 전력, 휴지 상태로 있게 된다. 이러한 휴지 상태에서, 무선 전화기는, 제어 또는 페이징 채널상에 표시된 바와 같은, 착신(incoming) 호출이 존재하는지를 확인하거나, 사용자 입력과 같은 다른 조건을 처리하기 위해 소정의 시간 슬롯 동안에만 웨이크업한다. 저 전력 또는 휴지 모드 동작의 목적은 무선 디바이스의 온 타임(on time)을 최소로 줄이고, 휴면 기간동안 가능한한 많이 무선 디바이스를 전력 하강시켜, 배터리 수명을 보존하는 것이다.
셀룰러 전화기는 전형적으로, 정보를 모니터링하거나, 어떤 다른 물리적 층(layer)(층 1) 이벤트를 수행하기 위해 깊은(deep) 휴면 모드로부터 주기적으로 웨이크업해야 하는 동작 모드에 있게 된다. 또한, 휴면 모드로 이어지는 절차 및 휴면 모드로부터 벗어나는 절차가 있게 된다. 이러한 절차들은, 우선 하드웨어를 기동(warm-up)하고 클록 소스가 안정화되도록 하기 위해 휴면 모드로 진입 또는 벗어날 때 어떤 지연을 포함하게 된다. 이러한 지연 시간 동안 및 웨이크업 주기에 부가하여, 전화기의 전류 드레인은 휴면 모드 동안을 지나 증가하게 된다. 따라서, 클록을 위한 전체 온-타임을 감소시키는 것이 바람직할 뿐 아니라, 깊은 휴면 모드로 진입 및 벗어나는 것을 회피하고, 연관된 부가적인 고 전류 드레인 지연 시간을회피하는 것이 바람직하다.
오늘날의 통신 디바이스는 WCDMA등을 통한 광역 네트워크 접속 뿐 아니라, 무선 로컬 영역 네트워킹(WLAN)도 포함하게 된다. 이것은 보통 WLAN 접속에 제공되는 별개의 프로세서 또는 심지어 하나의 완전한 디바이스를 기존의 통신 디바이스에 결합하는 것을 포함한다. 이러한 결합에 의한 하나의 결과는 셀룰러 프로세서 및 WLAN 프로세서가 사용자 인터페이스, 배터리, 및 특히 클록 오실레이터를 포함하는 디바이스의 하드웨어 대부분을 공유할 수 있게 된다는 것이다. 클록 오실레이터는 다음에 클록 신호를 양자 모두의 프로세서에 제공할 수 있다. 프로세서 중 하나는, 셀룰러 통신을 위한 층 1 행위(activity) 또는 로컬 행위를 위해 휴면 모드로부터 웨이크업에 클록을 보낼수 있다. 이러한 행위들은 각자 서로 동기화되지 않는다. 따라서, 클록은 요구되는 시간에 임의의 특정 통신을 수행하기 위해서는 독립적으로 웨이크업되어야 한다. 결과적으로, 클록 오실레이터는, 셀룰러 층 1 통신 행위를 위한 휴면 모드에 진입 및 벗어나기 위해 요구되는 시간으로부터 비동기적으로 다수회 휴면 모드로 진입 및 벗어나게 된다.
따라서, 2개의 통신 시스템에서 동작가능한 통신 디바이스에서 클록 휴면 모드를 제어하기 위한 방법이 필요하게 된다. 또한, 휴면 모드에 진입 및 벗어나는 빈도를 감소시키고, 휴면 모드가 가능한 오래 유지되야할 필요성이 있다.
본 발명은 일반적으로 휴대용 무선 전화기와 같은 전자 디바이스에 관한 것이다. 특히, 본 발명은 전류 드레인(drain)이 감소하도록 통신 디바이스를 동작시키는 것에 관한 것이다.
도 1은 본 발명에 따른 클록 인에이블먼트에 대한 단순화된 개략도.
도 2는 종래의 클록 활성화에 대한 타이밍도.
도 3은 본 발명에 따른 동기화된 클록 인에이블먼트에 대한 타이밍도.
도 4는 본 발명에 따른 동기화된 클록 인에이블먼트에 대한 방법을 개략적으로 나타낸 순서도.
도 5는 본 발명에 따른 동기화된 클록 인에이블먼트에 대한 양호한 방법을 개략적으로 나타낸 순서도.
신규한 것으로 여겨지는 본 발명의 특징은 부가된 특허청구범위에서 특별하게 개시된다. 그 목적 및 장점과 함께 본 발명은 첨부 도면과 결부된 다음의 상세한 설명을 참조하면 더 잘 이해될 수 있고, 몇몇 도면에서 동일한 참조 번호는 동일한 구성요소를 나타내게 된다.
본 발명은 전자 디바이스의 저 전력 모드를 제어하는 방법에 관한 것이다. 특히, 본 발명은 프로세서 행위들을 서로 결합하여, 각각의 행위에 대해 한번씩 수차례 웨이크업 하는 대신에 클록 오실레이터의 하나의 웨이크업 주기동안 수행되도록 하는 것이다. 따라서, 통신 디바이스에서 전류 드레인은, 하나의 웨이크업 주기동안 행위들을 함께 처리하고, 광역 네트워크 또는 로컬 영역 네트워크 통신 행위등을 스캔(scan for)하기 위해, 클록 동작을 동기화함으로써 낮아진다.
본 발명은 주로 셀룰러 무선 전화기와 같은 배터리 전원 통신 디바이스에서 이용됨을 알 수 있다. 전형적으로, 이는 무선 전화기 또는 셀룰러 전화기와 같은 통신 디바이스를 포함하는 하나 이상의 이동국과 무선 통신을 위해 구성된 복수의 기지국을 갖는 무선 전화 시스템을 포함한다. 통신 디바이스는 마이크로프로세서에 의해 동작가능하고, 복수의 기지국(층 1 이벤트)과 통신하기 위해 신호를 수신 및 송신하도록 구성된다. 무선 전화 시스템은, 광대역 코드 분한 다중 접속(WCDMA), 코드 분할 다중 접속(CDMA), 시 분할 다중 접속(TDMA), GSM 및 다른 무선 전화 시스템을 포함하는 몇몇 기술 표준에 따라 동작할 수 있다. 통신 디바이스는 부 프로세서 또는 블루투스(BluetoothTM) 또는 IEEE 802.11 시스템과 같은 로컬 영역 통신 시스템과 통신하기 위해 신호를 수신 및 송신하도록 구성된 마이크로프로세서에 의해서도 동작할 수 있다.
도 1은 전술한 임의의 무선 전화 통신 시스템상에서 동작가능한, 본 발명에 따른, 전자 디바이스(10)의 블록도를 도시한다. 예컨대, 전자 디바이스는 전형적인 셀룰러 시스템 및 무선 로컬 영역 네트워크와 같은 무선 광역 네트워크상에서 동작가능하다. 그러나, 본 발명은 2개의 광역 네트워크 또는 2개의 로컬 영역 네트워크에서도 적용가능하다. 양호한 실시예에서, 본 발명은 주 프로세서(20) 및 블루투스 부 프로세서(21)를 갖는 WCDMA 무선 전화에 적용된다. 제공된 네트워크 통신 각각은 클록(22), 사용자 인터페이스(26) 및 배터리(18)의 사용을 공유한다. 배터리(18)는 동작 전력을 디바이스(10)의 콤포넌트에 제공한다. 사용자 인터페이스(26)는 프로세서(20, 21)에 결합되고, 통신 디바이스(10)의 동작의 사용자 제어를 허용한다. 사용자 인터페이스(26)는 전형적으로 디스플레이, 키패드, 마이크로폰, 이어피스(earpiece), 스피커등을 포함한다.
프로세서(20, 21) 중 하나는 클록 인에이블 제어 라인(30, 31)을 통해 클록(22)을 인에이블할 수 있다. 실제로, 클록의 인에이블먼트는 논리적 OR 함수로 제공되고, 클록 인에이블 제어 라인(30, 31) 중 하나는 클록(22)을 인에이블할 수 있다. 클록(22)은 본 기술 분야에 알려진 바와 같이 고 및 저 분해능 오실레이터 및 타이머를 포함할 수 있다. 주 프로세서(20)은 또한 신호 라인(32)을 통해 부 프로세서(21)로부터 제어 라인(31)상의 클록 인에이블먼트 신호를 모니터링할 수 있다. 또한, 주 프로세서는 전원 제어 라인(24)을 통해 부 프로세서 및 그 연관된 디바이스의 전력 공급을 지시할 수 있다. 또한, 부 프로세서(21)는 인터럽트 라인(23)을 통해 주 프로세서 동작과의 제한된 제어를 가질 수 있고, 주 프로세서는 그 우선적인 태스크(task)에 따른 요청을 서비스하게 된다. 전자 디바이스(10)의 주요 동작 시스템은 안테나(12), 아날로그 전단부(14), 모듈레이터/디모듈레이터(모뎀)(16), 주 프로세서(20), 클록(22), 및 사용자 인터페이스(26)을 포함한다. 안테나(12)는 기지국 또는 WCDMA와 같은 무선 전화 시스템내의 기지국들로부터 RF 신호를 수신한다. 수신된 RF 신호는 안테나(12)에 의해 전기 신호로 변환되고, 아날로그 전단부(14)에 제공된다. 아날로그 전단부(14)는, 배터리 전력을 보존하기 위해 휴면 모드에는 전력이 하강될 수 있는 수신기 및 송신기와 같은 회로를 포함한다. 아날로그 전단부(14)는 신호를 필터링 및/또는 증폭한다. 이러한 아날로그 기저 대역 신호는 다음에 모뎀(16)에 제공되고, 이것은 신호를 디지털 데이터의 기저 대역 스트림으로 변환하고, 이들은 프로세서(20)에 의해 처리되어 신호내에 포함된 정보를 스피커, 디스플레이등과 같은 사용자 인터페이스(26)를 통해 사용자에게 제공한다. 이러한 시퀀스는 기본적으로 통신 디바이스로부터 기지국 또는 기지국들로 신호의전송에 대해서는 전환(reversed)된다.
유사하게, 전자 디바이스(10)의 WLAN과 같은 부 동작 시스템은 안테나(13), 아날로그 전단부(15), 모듈레이터/디모듈레이터(모뎀)(17), 부 프로세서(21), 클록(22), 및 사용자 인터페이스(26)를 포함한다. 안테나(13)는 예컨대, 로컬 영역 네트워크내의 로컬 외부 트랜시버로부터 신호를 수신한다. 수신된 신호는 안테나(13)에 의해 전기 신호로 변환되고, 아날로그 전단부(15)에 제공된다. 안테나 및 아날로그 전단부는, 선택적 수신기 디바이스, 소닉(sonic) 디바이스 및 다른 유사 트랜시버 디바이스와 같은 다른 수신기 구조로 대체될 수 있음을 알 수 있다. 아날로그 전단부(15)는 수신기 및 송신기와 같은 회로를 포함하는 부분을 포함하고, 이것은 배터리 전력을 보존하기 위해 휴면 모드에 전력 하강될 수 있다. 아날로그 전단부(15)는 신호를 필터링 및/또는 증폭한다. 이러한 아날로그 기저 대역 신호는 다음에 모뎀(17)에 제공되고, 이것은 신호를 디지털 데이터의 기저 대역 스트림으로 변환하고, 이들은 부 프로세서(21)에 의해 처리되어 신호내에 포함된 정보를 스피커, 디스플레이등과 같은 사용자 인터페이스(26)를 통해 사용자에게 제공한다. 이러한 시퀀스는 기본적으로 통신 디바이스로부터 로컬 영역 네트워크로 신호의 전송에 대해서는 전환된다. 선택적으로, 안테나(12, 13), 전단부(14, 15), 및 모듈레이터/디모듈레이터(16, 17) 각각은 다중-대역 무선 전화내에서 나타나는 것과 같은 단일의 공유 유닛일 수 있다.
프로세서(20, 21)는 통신 디바이스(10)의 기능을 제어한다. 프로세서(20, 21)는 기억된 프로그램 명령에 응답하여 동작하는 운영 시스템을 동작시키고, 이러한 명령 및 다른 데이터를 기억하기 위한 메모리를 포함할 수 있다. 각각의 프로세서(20, 21)는 클록(22)으로부터 클록 신호를 수신하기 위한 각각의 클록 입력(28, 29)를 갖는다. 프로세서들은 사용자 인터페이스사용자 인터페이스(26)로부터, 외부 신호들로부터, 또는 각각(23, 24)으로부터 내부적으로 생성되는 인터럽트 신호에 응답할 수 있다.
고정된 간격(interval)에서, 통신 디바이스(10)의 주 프로세서(20)는 호출을 대기하여야한다. 전형적인 WCDMA 시스템에서, 이것은 페이징 채널의 프레임의 매 0.625ms 슬롯(10ms 프레임마다 16 슬롯)에 있게 된다. 이러한 소정의 간격을 지나, 통신 디바이스는 소정의 시간 슬롯 동안 무선 전화 시스템을 모니터링하고, 호출이 없으면 잔여 시간동안 휴면 모드에 있을 수 있다. 클록(22)로부터의 타이밍 제어하에, 프로세서(20)는 휴면모드로 진입 및 벗어나는데 필요한 통신 디바이스(10)내의 이벤트(event)를 조정한다. 이러한 이벤트는 시스템 시간을 추적하고, 클록 오실레이터를 재가동하고, 아날로그 전단부(14)의 RF 부에 전력(34)을 인에이블링하고, 모뎀(16)의 클록킹을 하는 것을 포함한다. 예컨대, 클록 신호(33)가 모뎀(16)으로부터 제거되면, 모뎀(16)은 저 전력 모드로 들어가고, 모든 내부 상태는 동결(frozen)된다. 프로세서(20)는 알 수 있는 바와 같이, 통신 디바이스(10)의 다른 엘리먼트에 결합된다. 이러한 접속은 도면을 불필요하게 복잡하게 하지 않도록 도 1에는 도시하지 않았다.
통신 디바이스(10)의 부 프로세서(21)는 통신을 대기하여야 한다. 에컨대,블루투스(BluetoothTM) 시스템에서는, 페이지를 스캔(scanning)하는 것은 소정의 간격동안 호핑 주파수를 이용하여 트래픽 채널상에서 수행된다. 그러나 이러한 시스템에서, 간격들간의 시간 길이는 0초 및 2.56초(추천되는 최대 1.28초)사이에서 조정가능하다. 게다가, 이러한 시스템이 저 전력 모드로 들어가는 시간은 임의적이다. 이러한 조정가능한 간격을 지나, 통신 디바이스는 주기적으로 조정된 시간 간격에서 로컬 영역 네트워크상에서 페이지를 스캔하고, 잔여 시간동안 휴면 모드에 있을 수 있게 된다. 클록(22)으로부터의 타이밍 제어하에, 프로세서(21)는 휴면모드로 진입 및 벗어나는데 필요한 통신 디바이스(10)내의 이벤트를 조정한다. 이러한 이벤트는 시스템 시간을 추적하고, 클록 오실레이터를 재가동하고, 아날로그 전단부(15)의 일부에 전력을 인에이블링하고, 모뎀(17)의 클록킹을 하는 것을 포함하는데, 이는 전술한 주 프로세서(20)에서와 유사하다.
클록(22)은 통신 디바이스(10)의 타이밍을 제어한다. 특히, 클록(22)은 통신 디바이스(10)의 로컬 타이밍의 동기화를 제어하고, 이용되는 통신 시스템의 시스템 타이밍도 제어한다. 클록(22)은 기준 클록 신호를 생성하기 위한 기준 오실레이터를 포함한다. 이러한 오실레이터는 미세한 분해능의 클록인데, 이는 매우 정확하고, 예컨대 15.36MHz 클록 신호와같은 미세한 분해능의 클록 신호를 생성한다. 클록(22)은 오실레이터에 전력을 공급하기 위한 제어 신호(30, 31)에 응답한다. 제어 신호(30, 31) 중 하나에 응답하여, 오실레이터는 선택적으로 인에이블되거나 디스에이블된다. 인에이블될 때, 오실레이터는 전력 상승된다. 디스에이블될 때, 오실레이터는 저 전력 또는 휴면 모드에 들어간다.
양호하게는 휴면 모드일 때, 클록(22)은, 종래 기술에 알려진 바와 같이, 조잡한(coarse) 분해능의 클록 신호를 이용하여, 프로세서(20, 21)에 의해 결정되는 휴면 지속기간의 종료시까지 시스템 타이밍을 시뮬레이팅한다. 프로세서(20, 21)는, 휴면 모드로부터 통신 디바이스(10)의 그 각각의 부분을 재활성화하기 위한 타이밍을 별개로 결정할 수 있다. 재활성화 시간은, 오실레이터를 재가동하기 위한오실레이터 시간을 인에이블하고, 연관된 아날로그 전단부의 RF부를 재활성화하기 위한 기동시간을 포함하는 일정한 지연 시간을 포함한다. 보통, 무선 전화의 디바이스의 전력 상승시간은 이러한 디바이스의 전력 하강 시간, 즉, 휴면 모드로 진입하는 시간보다 더 많이 소요된다.
다음 통신 행위 이전에 프로세서 중 하나에 의해 휴면 모드로 들어가는데 충분한 시간이 없으면(즉, 콤포넌트를 전력 하강시키고, 콤포넌트를 전력 상승시키는데 시간이 충분하지 않은 경우), 클록은 전력 상승된 채로 유지된다. 이러한 전력 상승 및 하강 시간은 전형적으로 알려져 있고, 프로세서들은 휴면 모드로 진입하기 위해 통신 행위 간에 충분한 시간이 있는지 여부를 산출할 수 있다. 휴면 모드에 대해 충분한 시간이 있으면, 프로세서는 다음 스케쥴된 통신 행위에 대한 웨이크업 시간을 타이머를 설정하기 위해 클록이 기입한다. 임의의 특정 통신 행위를 완료하는 시간은 프로세서에 의해 알려져 있지 않음을 알아야 한다. 따라서, 임의의 특정 통신 행위에 대해 소정의 기동(웨이크업) 시간만이 스케쥴될 수 있다.
실제로, 프로세서 중 하나는 마스터 또는 슬레이브 유닛으로 동작할 수 있다. 본 발명은 프로세서 중 적어도 하나가 기동(웨이크업) 이벤트의 스케쥴링에 있어서 유연성을 가질 때마다 실시가능하다. WCDMA, GSM등과 같은 광역 통신 시스템의 경우에, 이러한 유연성은 유닛이 서비스 중지이고, 그것이 등록할 수 있는 베이스(base)를 스캔할 때만 가능하다. 블루투스의 경우에, 이러한 유연성은 유닛이 서비스 중지이거나, 그것이 마스터로서 다른 디바이스에 접속될 때 가능하다. 프로세서 양자 모두가 통신에 접속되면(즉, 블루투스는 타이밍 제어가 없는 슬레이브이고, WCDMA는 대기중이거나 호출중인 경우), 클록은 필요에 따라 동작하고, 본 발명은 효과가 없다.
도 2는 각각의 프로세서가 단순히 필요에 따라 클록을 인에이블하는 클록 인에이블먼트 타이밍의 일례를 도시한다. 프로세서는 이러한 모드에서 개별적으로 동작한다. 2개의 통신 시스템의 슬롯간의 슬롯 및 시간은 동일하지 않고, 정렬되지 않음을 알아야 한다. 실제로, 그들간의 관계는 임의적(비동기)이다. 무선 전화 통신 시스템내의 층(1) 통신 이벤트는 고정 시간에서 주기적 간격, 예컨대 프레임내의 각각의 슬롯의 시작점에서 기동되어야 한다. 각각의 이벤트의 지속기간은 기지국에 의해 결정된다. 따라서, 주 프로세서는 통신의 지속 기간 및 종료 시간을 알지 못한다. 부 프로세서의 로컬 영역 통신 행위는 쿼시-고정(quasi-fixed) 시간에서 발생하는데, 즉, 슬롯(저 전력)시간은 조정가능하다. 예컨대, 블루투스 시스템에서, 부 프로세서가 마스트로서 능동적 링크에 있게 될때, 슬롯 시간은 링크되는데 필요한 데이터에 의존하게 되는데, 즉, 디바이스가 접속되고, 기능하는데 필요한 송신 주파수에 의존하게 된다. 저 전력 모드에서, 마스터는, 헤드셋 링크에 대해서와 같이, 2.56초 이상인 휴면 시간을 지시할 수 있고, 휴면 시간이 임의로 설정되는 곳에서, 초과분의 긴 시간은 헤드셋상에서 사용자 개시 호출간의 지연을 증가시키게 되지만, 양자 모두의 디바이스가 동기화되는한, 이것은 불루트스 사영을 위반하지 않게 된다. 알 수 있는 바와 같이, 이러한 구성에서의 시간 스케일은 예컨대, 블루투스(BluetoothTM) 슬롯보다 WCDMA 슬롯에 더 근접하게 된다. 각각의 능동적 통신의 종료 시간(즉, 저 전력 모드로 들어가는 시간)은 주 또는 부 프로세서에 알려져 있지 않다.
실제로, 무선 전화와 같은 전자 디바이스가 아직 어웨이크(awake)되지 않았으면, 통신 행위를 수행하는 것은 휴면 모드 시간을 남기고, 전력 상승 기간동안 램핑업(ramping up)하고, 통신 행위를 수행하기 위해 전체 전류 웨이크업 기간에 들어가는 것을 포함한다. 통신이 완료된 이후에, 무선 전화는 다음에, 전류가 최소가 되는 휴면 모드에 재 진입하기 전에, 클록에 따라 특정 통신에 포함되는 디바이스의 일부에 전력 하강을 램프(ramp)할 수 있게 된다. 통상적으로, 램프된 전력 상승 및 전력 하강 기간은 실제의 어웨이크 또는 휴면 부분에 비해 짧고, 따라서, 도면에는 도시되지 않는다. 휴면 모드는 주 프로세서에 대해 고정 주기 통신 이벤트사이 간에서 타이밍되고, 이것은 제한되기 때문에 변경될 수 없다(즉, 외부 디바이스 또는 무선 통신 시스템과 동기화됨).
전자 디바이스의 관련된 콤포넌트가 휴면 모드로 들어가기 바로 직전에, 관련된 프로세서에 대한 휴면 프로그램 코드는 시간 값(k-값)을 클록에 기입하여, 다음 통신 행위를 위한 웨이크업 시점을 알려서, 타이머가 클록 및 필요한 콤포넌트를 전력 상승시키는 때를 알게 된다. 일단 통신 행위가 완료되면, 관련된 프로세서는, 클록 인에이블 신호를 디스에이블링하여 클록이 휴면 모드로 재위치할 수 있도록 요청할 수 있다. 그러나, 클록 디스에이블먼트는, 그 자신의 클록 인에이블먼트 신호를 제공하는 다른 프로세서에 의해 수행되는 동시적인 통신 행위가 없는 경우에만 발생하게 된다. 클록 인에이블먼트 신호는 전원 핀에 직접 또는 OR 게이트 또는 다른 유사한 디바이스를 통해 프로세서 중 하나에 의해 제공되는 인터페이스 명령을 통해 제공될 수 있다. 양호하게는, 휴면 프로그램 코드는, 마지막 통신 행위의 전력 하강 시간이 다음 통신 행위의 전력 상승 시간과 오버랩하는지를 확인 검사한다. 전력 하강 및 전력 상승 시간은 전형적으로 알려져 있다. 오버랩의 경우에, 클록은 휴면 상태로 허용되지 않고, 다음 통신 행위까지 어웨이크된 채로 유지된다.
도 2를 참조하면, 모드(50)는 저 전력 또는 휴면 모드에서 주 프로세서(및 그 관련된 전자 디바이스의 지원 전자 장치)에 따라 시작한다. 그러나, 부 프로세서는 그 통신 슬롯의 하나의 시작점(도시됨)에 있을 수 있고, 활성화되며(페이지를 스캔) 및 클록이 이러한 시간동안 인에이블되도록 반드시 명령한다. 주 프로세서(51)의 통신 슬롯의 층(1)의 시작점에서, 클록(및 관련된 전자 디바이스의 지원 전자 장치)은 인에이블된다. 이러한 경우에, 부 프로세서는 통신을 완료하고, 그 클록 인에이블 신호를 디스에이블하지만, 주 프로세서는 클록을 인에이블하여 전력 상승 상태로 되게 한다. 보통, 주 프로세서는, 임의의 유입 호출이 있는지를 확인하기 위해 짧은 기간동안 페이징 채널을 모니터링하기 위해 그 자신만을 전력 상승시킨다. 도시된 예에서, 호출은 발견되고, 통신은 연장된 기간(52)에 대해 개시되고, 기지국에 의해 명령될 때까지 종료(53)하지 않는다. 포인트(53)에서, 통신은 종료하고, 주 프로세서는 클록을 디스에이블한다. 어느 프로세서도 인에이블 신호를 클록에 송신하지 않기 때문에, 클록은 전력 하강되어, 휴면 모드로 들어간다. 주 및 부 프로세서는 전술한 바와 같이 다음 스케쥴 슬롯 시작점에서 웨이크업되도록 프로그램된다. 도면의 나머지를 통해, 각각의 프로세서는 그 각각의 타이밍 간격의 시작점에서 통신 행위를 모니터링하도록 웨이크업하지만, 어떤 링크도 형성되지 않아, 유닛은 짧은 기간내에 전력 하강된다. 이것은 클록을 지속적으로 활성화시키는 평범한 해결책에 대한 개선책임에도 불구하고, 클록은 그 시간의 약 절반동안 전력 상승되는 충분히 다른 시간에 인에이블됨을 알 수 있다.
도 3은 능동적 호출 모니터링 기간과 클록 휴면 시간을 최대화하기 위한 주 및 부 프로세서의 저 전력 기간을 동기화하여 배터리 전류 드레인을 감소시키는 것을 포함한다. 물론, 프로세서 중 하나가 활성화되고 통신에 링크되면, 클록은 그 모든 통신 행위 동안 전력 상승되어야 한다. 그러나, 호출 모니터링의 짧은 상승 시간이 2개의 프로세서간에서 동기화될 때, 배터리 전력은 보존될 수 있다. 이것은 통신 시스템의 하나 또는 다른 페이지 모니터링 간격이 예컨대, 블루투스 통신 시스템등에서 조정될 수 있는 경우에만 달성될 수 있다.
전술한 바와 같이, 주 프로세서 층(1)은, WCDMA 시스템에서와 같이, 기지국에 의해 결정되는 지속 기간에 따라, 고정 시간 슬롯(57)로 모니터링하게 된다.따라서, 동일한 주 프로세서 행위는 모니터링 모드에 도시된다. 그러나, 예컨대, 블루투스 시스템에서와 같은 로컬 영역 네트워크 모니터링은 적은 범위(0초 내지 2.56초)내에 페이지 스캔 시간의 시작을 조정할 수 있다. 일단 설정되면, 활성화 채널 모니터링은 페이지를 스캔하기 위한 고정 간격에서 웨이크업하는 것을 포함한다. 전과 같이, 블루투스 시스템이 능동적 모니터링을 떠나서 저 전력 모드로 들어가는 시간은 임의적이다. 예컨대, 이것은 전력 상승후에 발생하거나, 능동적 접속의 종료점에서 발생한다. 오실레이터 웨이크업 기간간의 시간 길이를 조정함으로써, 본 발명은 클록 오실레이터(관련된 통신 콤포넌트)에 의한 배터리 드레인을 최적화할 수 있게 된다.
부 프로세서가 저 전력 모드로 들어가면, 클록 신호를 디스에이블하게 된다. 주 프로세서는 또한 이러한 라인(도 1의 라인(32)를 지남)에 대한 가시성(visibility)을 갖는다. 일단 주 프로세서가 통신 행위(53)를 완료하면, 주 부 프로세서로부터의 클록 인에이블 신호를 모니터링할 수 있고, 부 프로세서가 그 자체의 통신 행위를 위해 클록(54)을 인에이블하는 때를 알게 된다. 주 프로세서는 부 프로세서의 타이밍을 측정하고, 이것은 주 프로세서의 주지의 웨이크업 타이밍과 비교한다. 주 프로세서는 다음에 부 프로세서의 페이지 스캔 행위와 주 프로세서의 페이지 스캔 행위를 동기화하는데 필요한 타이밍 조정을 산출한다. 즉, 주 프로세서는, 프로세서들의 클록 인에이블먼트 신호가 제시간에 오버랩하도록 부 프로세서내에서 프로세서 양자 모두에 대한 필수 클록 인에이블먼트 시간을 산출한다. 이 값들은 시작 시간 및 웨이크업간의 길이에 따라 선택되고; 무선 통신 시스템(예컨대, WCDMA) 및 그 동작 모드(예컨대 호출, 다양한 능동적 지속기간등을 갖는 스탠바이등) 및 클록 이용을 최상으로 동기화하는법을 결정하기 위한 부 프로세서 시스템 필수 구성에 의존하게 된다. 일단 값이 산출되면, 부 프로세서는 저 전력 모드에서 나오게 되고, 부 프로세서의 주기적 타이밍(56)을 리셋 및 동기화(55)하기 위해, 즉시 저 전력 모드로 돌아가게된다. 이러한 방식에서, 클록 이용은 도시된 바와 같이 절반 시간 보다 적게 됨에 따라 최적화된다.
이러한 초기 동기화(55)이후에, 부 프로세서는, 예컨대, 부 프로세서 시스템의 주 프로세서 시스템 중 하나에서 능동적 통신이 있게 되면, 어느 정도 변하지 않는 한 클록을 독립적으로 인에이블한다. 확실히, 주 프로세서는 언제 통신을 하고, 아직 동기화 상태에 있는지를 확인하기 위해 부 프로세서로부터의 클록 인에이블 제어 라인을 모니터링할 수 있다. 동기화가 방해되면, 다음에 반복되어야 한다. 유사하게, 주 프로세서가 서비스 중지이면, 부 프로세서는 마스터로서 언제 동기화할지를 알린다(도 1의 인터럽트 라인(23)을 통함). 프로세서는 동일한 시간 주기에 정확하게 활성화될 필요는 없지만, 각각의 다른 활성화 기간의 정수배에는 활성화되어야 한다. 예컨대, WCDMA 시스템은 불루투스 페이지 스캔 중 각각의 하나 간에 복수의 페이징 채널 모니터링 기간을 가질 수 있다. 그러나, 블루투스 프로세서 페이지 스캔이 주기적으로 WCDMA 행위의 하나와 정렬되면, 본 발명은 이점을 제공한다.
본 발명은 또한 도 4에 도시된 바와 같은 전자 디바이스내의 2개의 프로세서에 대한 클록 인에이블먼트를 동기화하기 위한 방법(100)을 포함한다. 이 방법은주로 휴면 모드를 갖는 마이크로프로세서 기반 통신 디바이스에 적용될 수 있지만, 휴면 모드를 갖는 다른 전자 디바이스에도 적용될 수 있다. 상기 디바이스에는 페이지를 주기적으로 모니터링하고, 잔여 시간에는 전력 하강되도록 구성되는 2개의 프로세서가 제공된다. 이들 프로세서의 하나 또는 모두는 예컨대 부 프로세서에 대해 조정가능한 페이지 모니터링 간격을 갖는다.
따라서, 동작시에, 본 방법은 주 프로세서에 의해 통신 행위를 완료하는 제1 단계(102)를 포함한다. 다음 단계(104)는 부 프로세서로부터 클록 인에이블 신호를 모니터링하는 단계를 포함한다. 부 프로세서가 저 전력 모드로 들어가면, 클록 신호는 디스에이블되고, 이것은 주 프로세서에 의해 감지된다. 양호하게는, 주 프로세서는 그 타이밍을 더 잘 측정하기 위해 부 프로세서가 하나의 통신 사이클을 지날때까지 대기할 수 있다. 부 프로세서가 예상되는 시간에 클록 인에이블 신호를 갖지 않으면(즉, 부 프로세서가 주 프로세서와 동기화되지 않는 신호), 다음 단계(106)는 부 프로세서의 클록 인에이블 신호를 주 프로세서의 주지의 클록 인에이블 신호와 비교하는 단계를 포함한다. 이것은 부 프로세서 행위의 시작 타이밍 및 중지 타이밍 또는 지속기간을 포함할 수 있다. 선택적으로, 이러한 특성들은 주 프로세서에 저장되어, 시작 또는 중지 타이밍만이 필요하게 된다.
다음 단계(108)는, 부 프로세서에 의한 클록 인에이블먼트와 주 프로세서의 클록 인에이블먼트 동기화하여 그들의 클록 인에이블먼트 신호들이 제시간에 오버랩하는데 필요한 타이밍을 산출하는 단계를 포함한다. 양호하게는, 이것은 다른 프로세서의 더 긴 클록 인에이블먼트 기간내에 전체적으로 포함된, 프로세서 중 하나의 더 짧은 클록 인에이블먼트 기간을 포함하여, 클록 인에이블먼트의 완전한 오버랩을 제공하는 것을 포함한다. 즉, 부 프로세서는 주 프로세서의 최소 웨이크업 시간 주기 보다 큰 최소 웨이크업 시간 주기를 갖는다. 양호하게는, 이것은 부 프로세서의 웨이크업 시간 주기내에 전체로 주 프로세서의 웨이크업 시간 주기를 포함하게 되는 것이다. 대안적으로, 부 프로세서는 주 프로세서의 최소 웨이크업 시간 주기보다 적은 최소 웨이크업 시간 주기를 갖고, 주 프로세서의 웨이크업 시간 주기내에 전체로 부 프로세서의 웨이크업 시간 주기를 포함하게 된다. 다음 단계(110)는 부 프로세서의 주기적 타이밍을 주 프로세서의 주기적 타이밍과 동기화하는 단계를 포함한다. 양호하게는, 이것은, 주 프로세서와 정렬하기 위해 부 프로세서의 동기화를 리셋하도록 주 프로세서에 의한 제어하에 부 프로세서를 전력 상승 및 전력 하강하는 단계를 포함한다.
양호하게는, 본 방법은 프로세서들 중 하나에 의해 능동적 통신이 이루어질 때를 검출하고 상기 단계들이 반복되는 단계를 더 포함한다. 능동적 통신은, 호출을 위한 주기적 제어 채널 모니터링보다 긴 지속 기간의 주 프로세서에 의한 통신으로서 정의되거나, 부 프로세서가 능동적 링크를 실현하였는지 여부에 따라 정의된다. 주 프로세서 및 부 프로세서의 역할은 동일한 디바이스내에서 바뀔 수 있다.
전자 디바이스내의 2개의 프로세서에 대한 클록 인에이블먼트를 동기화하기 위한 양호한 방법이 도 5에 도시된다. 본 방법은 주로 WCDMA와 같은 주 통신 시스템 및 블루투스와 같은 부차적인 비동기 통신 시스템에 적용된다. 다시, 잔여 시간에는 전력 하강되고, 주기적으로 페이지를 모니터링하도록 구성된 2개의 프로세서가 제공된다. 프로세서중 하나는 마스터 또는 슬레이브 유닛으로 동작할 수 있다. 또한, 블루투스는 그것이 0 과 2.56초 간에 웨이크업되어야 하는 측면에서 언제나 제한됨에도 불구하고, 프로세서 모두가 서비스 중지이면, 그들은 최소로 제한된다. 이러한 시나리오에서, 프로세서 모두는, 그 웨이크업 기간이 가장 짧거나 정수배의 측면에서 가장 잘 부합하는 것의 프로세서 타이밍에 동기화하게 된다. 예컨대, 시스템을 탐색하기 위해 이용되는 WCDMA 알고리즘은 블루투스 온-타임(on-time)에 정합하기 위해 조정될 수 있다. 이러한 알고리즘(즉, 전화기가 활성화 시스템을 얼마나 자주 탐색하는지에 관함)은 WCDMA 표준에 따라 특정되지 않는다.
실제로, 주 통신 트랜시버는 대기(camped) 모드 이거나 서비스 중지 모드일 수 있다. 대기 모든는 주 통신 시스템이 통신 시스템에 접속(등록(registered))되고, 시스템은 웨이크업 타이밍(클록 인에이블먼트)의 제어를 하는 것을 의미한다. 서비스 중지(out of service) 모드는 주(또는 대응하는 부) 프로세서가 통신 시스템에 접속되지 않고, 프로세서가 얼마나 자주 시스템을 탐색하는지에 관한 제어(즉, 웨이크업 타이밍 및 클록 인에이블먼트 제어)를 하게 되는 것을 의미한다. 부 통신 트랜시버는 마스터 모드, 슬레이브 모드 또는 서비스 중지 모드일 수 있다. 마스터 모드는 부(블루투스)프로세서가 마스터 유닛으로 작용하고, 통신 시스템의 동작 파라미터에 따라 클록 인에이블먼트를 슬레이브하는 경우를 의미한다. 슬레이브 모드는 부 프로세서가 슬레이브로서 마스터 유닛(주 프로세서)에 접속되고, 클록 인에이블먼트 타이밍에 대한 제어를 갖지 않는 경우를 의미한다. 본 발명은전술한 바와 같이 이러한 다양한 동작 조건을 제공한다.
도 5를 참조하면, 다시 양호한 방법은 주 프로세서에 의한 통신 행위를 완료하는 제1 단계(200)를 포함한다. 다음 단계(202)는 부(블루투스) 프로세서가 서비스 중지이거나 활성화되었는지 여부를 판정하는 단계를 포함한다. 부 프로세서가 서비스 중지(접속 안됨)인 경우에, 주 프로세서는 다음에 그 자신뿐 아니라 부 프로세서에 대한 타이밍 제어를 제공한다. 이것은 단계(204)에서 결정되고, 주 프로세서가 대기중(즉, 타이밍이 주 통신 시스템에 의해 설정됨)이면, 주 프로세서는 서비스 중지 중인 부 프로세서의 타이밍을 제어하여 그 자신과 동기화시킬 수 있다(206). 주 프로세서도 역시 서비스 중지이면 , 다음에 주 프로세서는 서비스 중지인 부 프로세서 뿐만 아니라 그 자신의 타이밍도 제어할 수 있다(208). 대안적으로, 부 프로세서는 이 단계에서 2개의 프로세서 모두의 타이밍을 제어할 수 있다.
단계(202)로 다시 진행할 때, 부 프로세서가 오히려 활성이면, 부 프로세서가 마스터 또는 슬레이브인지를 판정한다(210). 부 프로세서가 마스터 모드이면, 주 프로세서가 대기중 또는 서비스 중지되는지를 판정한다(212). 대기중이 된다면, 주 프로세서는 부 프로세서의 타이밍을 제어하여(216) 주 프로세서와 동기되도록 한다. 주 프로세서가 대기중(즉, 서비스 중지)된다면, 부 프로세서는 주 프로세서의 타이밍을 제어하여(214) 부 프로세서와 동기되게 한다(즉, 주 프로세서가 페이지에 대해 폴링되는 타이밍을 조절한다.).
단계(210)으로 다시 진행할 때, 부 프로세서가 오히려 슬레이브 모드인 경우, 주 프로세서가 대기중 또는 서비스 중지되는지를 판정한다(218). 대기중이 된다면, 주 프로세서 타이밍은 시스템에 의해 미리 설정되고, 부 프로세서는 주 프로세서에 슬레이브되며, 프로세스는 반복될 수 있다. 그러나, 주 프로세서가 대기중(즉, 서비스 중지)되지 않으면, 부 프로세서는 주 프로세서의 타이밍을 제어하여(220) 부 프로세서와 동기되게 한다(즉, 주 프로세서가 페이지에 대해 폴링되는 타이밍을 조절한다.). 상술한 각 경우에, 주 프로세서에 의해 통신 행위의 완료후(200) 프로세서들을 재동기화하는 방법이 시도될 것이다.
요약하면, 본 발명은 동시에 일어나는 통신 행위들의 그룹핑을 제공하여 클록의 반복적인 전력 하강 및 상승을 회피하고, 전체 클록 온 타임을 짧게하여 전류 드레인을 보존한다. 전체 결과는, 다수의 통신 행위 웨이크업 주기가 층 1 통신 이벤트 웨이크업 주기와 조합될 수 있는 단일 웨이크업 주기에 함께 그룹핑될 수 있다는 것이다. 이는, 클록 오실레이터, 또는 전원, RF 전단부등과 같은 모든 시스템에 의해 공유되는 다른 회로에 대한 낮은 전체 온 타임을 초래하며, 연속해서 전류 소비를 낮추게 된다.
본 발명은 배터리 수명을 개선하고 소프트웨어 아키텍쳐를 간략화하기 위해 모든 무선장치/무선 전화 제품 및 PC 및 PDA와 같은 휴대용 컴퓨팅 디바이스에서 구현될 수 있다. 특히, 본 발명은 클록 오실레이터에 전력을 유지하는 전류 드레인 비용이 큰 낮은 전력 모드를 이용하는 모든 배터리 구동 제품에서 이점이 있는 것으로 알려져 있다.
본 발명이 비록 상술되었지만, 본 발명은 전술한 특정 실시예에 제한되는 것은 아니다. 본 기술 분야의 전문가에게는 본 발명의 개념을 벗어남이 없이 전술한특정 실시예로부터 수많은 이용 및 수정이 행해질 수 있음을 이해할 것이다.

Claims (10)

  1. 저 전력 모드를 갖는 전자 디바이스내의 주 및 부 프로세서용 공통(common) 클록의 인에이블먼트(enablement)를 동기화하는 방법에 있어서,
    상기 프로세서들 중 하나에 의해 통신 행위를 완료하는 단계;
    상기 프로세서로들로부터 클록 인에이블 신호를 모니터링하는 단계;
    상기 프로세서 중 하나의 클록-인에이블드(enabled) 타이밍과 상기 다른 하나의 프로세서의 주지의(known) 클록-인에이블드 타이밍을 비교하는 단계;
    상기 프로세서들의 클록 인에이블먼트를 동기화하는데 필요한 타이밍을 산출하는 단계; 및
    상기 프로세서들의 주기적 타이밍을 동기화하는 단계를 포함하는 방법.
  2. 제1항에 있어서,
    상기 부 프로세서는 가변 전력 상승(power up) 시간을 갖고, 상기 주 프로세서는 고정 주기 전력 상승 시간을 가지며,
    상기 동기화 단계는, 상기 프로세서들의 타이밍을 동기화하기 위해 상기 주 프로세서의 제어하에 상기 부 프로세서를 전력 상승 및 전력 하강(power down) 하는 단계를 포함하는 방법.
  3. 제2항에 있어서,
    상기 부 프로세서는 로컬 영역 네트워크(local area network) 통신 시스템에서 동작가능하고,
    상기 모니터링 단계는, 상기 부 프로세서로부터의 클록 인에이블 신호를 모니터링하는 단계를 포함하고,
    상기 비교 단계는, 상기 다른 하나의 프로세서가 상기 주 프로세서가 되는 단계를 포함하는 방법.
  4. 제1항에 있어서,
    상기 주 프로세서는 로컬 영역 네트워크 통신 시스템에서 동작 가능한 방법.
  5. 제2항에 있어서,
    상기 부 프로세서는, 상기 주 프로세서의 최소 웨이크 업(wake up) 시간 주기보다 큰 최소 웨이크 업 시간 주기를 갖는 방법.
  6. 제1항에 있어서,
    상기 부 프로세서는 상기 주 프로세서의 최소 웨이크 업 시간 주기보다 적은 최소 웨이크 업 시간 주기를 갖는 방법.
  7. 제1항에 있어서,
    상기 프로세서들 중 하나에 의해 능동적(active) 통신이 이루어지는 때를 검출하는 단계를 더 포함하고,
    상기 단계들은 반복되는 방법.
  8. 제1항에 있어서,
    상기 모니터링 단계 이후에, 상기 부 프로세서의 타이밍을 측정하기 위해 상기 부 프로세서가 하나의 통신 사이클을 지날때까지 대기하는 단계를 더 포함하는 방법.
  9. 제1항에 있어서,
    상기 산출 단계는, 상기 주 및 부 프로세서의 클록 인에이블먼트 신호가 제시간에(in time) 오버랩(overlap) 되도록 하는 타이밍을 산출하는 단계를 포함하는 방법.
  10. 제1항에 있어서,
    상기 주 프로세서가 서비스 중지이면,
    다음에, 상기 부 프로세서 그 자체가 서비스 중지되지 않는 한, 상기 부 프로세서는 상기 부 프로세서의 타이밍을 제어하는 방법.
KR1020047018323A 2002-05-13 2003-04-29 전자 디바이스내의 클록 인에이블먼트를 동기화 KR100742009B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10/144,613 US6691071B2 (en) 2002-05-13 2002-05-13 Synchronizing clock enablement in an electronic device
US10/144,613 2002-05-13
PCT/US2003/013442 WO2003098363A1 (en) 2002-05-13 2003-04-29 Synchronizing clock enablement in an electronic device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020077006807A Division KR20070040851A (ko) 2002-05-13 2003-04-29 전자 디바이스내의 클록 인에이블먼트를 동기화

Publications (2)

Publication Number Publication Date
KR20040111608A true KR20040111608A (ko) 2004-12-31
KR100742009B1 KR100742009B1 (ko) 2007-07-23

Family

ID=29400379

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020077006807A KR20070040851A (ko) 2002-05-13 2003-04-29 전자 디바이스내의 클록 인에이블먼트를 동기화
KR1020047018323A KR100742009B1 (ko) 2002-05-13 2003-04-29 전자 디바이스내의 클록 인에이블먼트를 동기화

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR1020077006807A KR20070040851A (ko) 2002-05-13 2003-04-29 전자 디바이스내의 클록 인에이블먼트를 동기화

Country Status (9)

Country Link
US (1) US6691071B2 (ko)
EP (1) EP1509822B1 (ko)
JP (1) JP2005525764A (ko)
KR (2) KR20070040851A (ko)
CN (1) CN100507806C (ko)
AU (1) AU2003234307A1 (ko)
BR (1) BRPI0309906B1 (ko)
RU (1) RU2281544C2 (ko)
WO (1) WO2003098363A1 (ko)

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3819242B2 (ja) * 2001-02-09 2006-09-06 株式会社日立製作所 断続信号を扱う無線通信装置
JP4837844B2 (ja) * 2001-07-19 2011-12-14 富士通株式会社 シミュレーションシステム、方法、プログラム及び記録媒体
DE10234933A1 (de) * 2002-07-31 2004-03-18 Advanced Micro Devices, Inc., Sunnyvale Pufferung von Non-Posted-Lesebefehlen und Antworten
JP2004180115A (ja) * 2002-11-28 2004-06-24 Nec Infrontia Corp 無線lanシステム
JP3989399B2 (ja) * 2003-05-01 2007-10-10 ローム株式会社 半導体集積回路装置
EP1549094A1 (en) * 2003-12-02 2005-06-29 Siemens Aktiengesellschaft Dynamic paging frequency adaptation in a Bluetooth network
KR20070001977A (ko) * 2004-02-27 2007-01-04 어드밴스드 마이크로 디바이시즈, 인코포레이티드 Wlan 통신 시스템들을 위한 깊은 수면 모드
DE102004009695A1 (de) 2004-02-27 2005-09-29 Advanced Micro Devices, Inc., Sunnyvale Effizienter Stromsparmodus für WLAN-Kommunikationssysteme
FI20040418A (fi) * 2004-03-18 2005-09-19 Nokia Corp Digitaalijärjestelmän kellokontrolli
US7558227B2 (en) * 2004-03-26 2009-07-07 Hewlett-Packard Development Company, L.P. System and method for monitoring for wake events in a wireless local area network
US20060146769A1 (en) * 2004-12-31 2006-07-06 Patel Anil N Method of operating a WLAN mobile station
WO2006080084A1 (ja) 2005-01-28 2006-08-03 Fujitsu Limited 移動機
US7463872B2 (en) * 2005-02-24 2008-12-09 Research In Motion Limited Methods and apparatus for controlling a gain state of a wireless receiver operating in an idle mode
US8509859B2 (en) * 2005-03-11 2013-08-13 Qualcomm Incorporated Apparatus and methods for control of sleep modes in a transceiver
US7464689B2 (en) * 2005-10-12 2008-12-16 Gm Global Technology Operations, Inc. Method and apparatus for controlling fuel injection into an engine
US20090164821A1 (en) * 2005-10-28 2009-06-25 Nxp B.V. Method and a system for controlling a sleep mode of a device in a wireless communications network or in a mobile point-to-point connection
WO2007136785A2 (en) * 2006-05-17 2007-11-29 Ati Technologies, Inc. Fast transition from low-speed mode to high-speed mode in high-speed interfaces
US20080025279A1 (en) * 2006-07-31 2008-01-31 Motorola, Inc. Synchronization of multi-system wakeup
EP2052270B1 (en) * 2006-08-08 2010-03-24 Freescale Semiconductor, Inc. Real time clock monitoring method and system
US8462693B2 (en) 2007-02-20 2013-06-11 Research In Motion Limited System and method for enabling wireless data transfer
US8570935B2 (en) * 2007-02-20 2013-10-29 Blackberry Limited System and method for enabling wireless data transfer
US20090259865A1 (en) * 2008-04-11 2009-10-15 Qualcomm Incorporated Power Management Using At Least One Of A Special Purpose Processor And Motion Sensing
US8463139B2 (en) * 2008-06-19 2013-06-11 Telefonaktiebolaget L M Ericsson (Publ) Transmitter disabling device
KR20110077014A (ko) * 2008-10-24 2011-07-06 삼성전자주식회사 다수의 전자장치들 간의 속성들을 동기화하는 방법 및 시스템
US8831666B2 (en) * 2009-06-30 2014-09-09 Intel Corporation Link power savings with state retention
JP5721713B2 (ja) * 2009-07-23 2015-05-20 ノキア コーポレイション BluetoothLowEnergyデバイスとして動作する時の低消費電力化のための方法および装置
JP4644747B1 (ja) 2009-11-02 2011-03-02 パナソニック株式会社 情報処理装置、制御方法および制御プログラム
KR101636496B1 (ko) * 2012-12-13 2016-07-05 후지 덴키 가부시키가이샤 신호 동기 시스템, 노드 동기 시스템, 신호 동기 방법, 및 노드 동기 방법
CN103901942B (zh) * 2012-12-28 2017-07-04 联芯科技有限公司 用于终端的时钟精度的校准方法和装置
US20140281639A1 (en) 2013-03-15 2014-09-18 Mahesh Wagh Device power management state transition latency advertisement for faster boot time
US9904575B2 (en) 2013-05-15 2018-02-27 Apple Inc. System and method for selective timer rate limiting
US9713090B2 (en) * 2014-03-24 2017-07-18 Silicon Laboratories Inc. Low-power communication apparatus and associated methods
JP6215816B2 (ja) * 2014-12-09 2017-10-18 京セラ株式会社 通信端末
US9958933B2 (en) * 2015-06-04 2018-05-01 Apple Inc. Opportunistic waking of an application processor
CN107450710B (zh) * 2017-07-31 2021-02-26 Oppo广东移动通信有限公司 应用周期同步管理方法、装置、存储介质及电子设备
CN110581743B (zh) * 2018-06-11 2021-01-22 京东方科技集团股份有限公司 电子设备、时间同步系统及时间同步方法
CN113472467A (zh) * 2020-03-30 2021-10-01 中国电信股份有限公司 时钟同步方法、装置及系统

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5373536A (en) * 1991-05-06 1994-12-13 Motorola, Inc. Method of synchronizing to a signal
US5343239A (en) * 1991-11-20 1994-08-30 Zing Systems, L.P. Transaction based interactive television system
US5301122A (en) * 1992-02-12 1994-04-05 Measuring And Monitoring, Inc. Measuring and monitoring system
JP2513393B2 (ja) * 1992-09-07 1996-07-03 三浦工業株式会社 水位検出用電極棒のクリ―ニング装置
US5510740A (en) * 1993-04-21 1996-04-23 Intel Corporation Method for synchronizing clocks upon reset
US5592173A (en) 1994-07-18 1997-01-07 Trimble Navigation, Ltd GPS receiver having a low power standby mode
DE19536587C2 (de) * 1995-09-29 1999-07-29 Siemens Ag Verfahren zum Synchronisieren von Basisstationen eines drahtlosen Mehrzellen-Telekommunikationssystems sowie Basisstation eines drahtlosen Mehrzellen-Telekommunikationssystems
US5694392A (en) * 1995-10-30 1997-12-02 Vlsi Technology, Inc. Timing system for mobile cellular radio receivers
JP2000506649A (ja) * 1996-03-14 2000-05-30 ロックウェル・セミコンダクター・システムズ・インコーポレイテッド 電源制御装置を用いる、電力を管理するための方法および装置
KR100233710B1 (ko) * 1996-09-25 1999-12-01 윤종용 구내 무선전화시스템의 동기화 관련정보 일치방법
US6243372B1 (en) * 1996-11-14 2001-06-05 Omnipoint Corporation Methods and apparatus for synchronization in a wireless network
US6269412B1 (en) * 1997-05-13 2001-07-31 Micron Technology, Inc. Apparatus for recording information system events
US5950120A (en) * 1997-06-17 1999-09-07 Lsi Logic Corporation Apparatus and method for shutdown of wireless communications mobile station with multiple clocks
JP4001686B2 (ja) * 1997-11-19 2007-10-31 株式会社日立国際電気 受信機及び間欠フレーム同期方法及び携帯端末
US6088602A (en) * 1998-03-27 2000-07-11 Lsi Logic Corporation High resolution frequency calibrator for sleep mode clock in wireless communications mobile station
US6308279B1 (en) * 1998-05-22 2001-10-23 Intel Corporation Method and apparatus for power mode transition in a multi-thread processor
JP4267092B2 (ja) * 1998-07-07 2009-05-27 富士通株式会社 時刻同期方法
US6212398B1 (en) * 1998-12-03 2001-04-03 Ericsson Inc. Wireless telephone that rapidly reacquires a timing reference from a wireless network after a sleep mode
SE520241C2 (sv) * 1998-12-30 2003-06-17 Ericsson Telefon Ab L M Anordning och förfarande för klockstyrning i en processor, i syfte att reducera effektförbrukningen
US6138245A (en) * 1999-02-05 2000-10-24 Neopoint, Inc. System and method for automatic device synchronization
US6542754B1 (en) * 1999-05-12 2003-04-01 Cisco Systems, Inc. Synchronizing clock signals in wireless networks
US6553336B1 (en) * 1999-06-25 2003-04-22 Telemonitor, Inc. Smart remote monitoring system and method
US6405027B1 (en) * 1999-12-08 2002-06-11 Philips Electronics N.A. Corporation Group call for a wireless mobile communication device using bluetooth

Also Published As

Publication number Publication date
BR0309906A (pt) 2005-02-09
KR20070040851A (ko) 2007-04-17
AU2003234307A1 (en) 2003-12-02
CN1653397A (zh) 2005-08-10
US6691071B2 (en) 2004-02-10
US20030212531A1 (en) 2003-11-13
CN100507806C (zh) 2009-07-01
KR100742009B1 (ko) 2007-07-23
WO2003098363A1 (en) 2003-11-27
RU2281544C2 (ru) 2006-08-10
EP1509822B1 (en) 2012-12-19
EP1509822A4 (en) 2010-07-28
BRPI0309906B1 (pt) 2021-02-02
RU2004136298A (ru) 2005-05-27
JP2005525764A (ja) 2005-08-25
EP1509822A1 (en) 2005-03-02

Similar Documents

Publication Publication Date Title
KR100742009B1 (ko) 전자 디바이스내의 클록 인에이블먼트를 동기화
JP4236577B2 (ja) 電力保存特性を持つデュアルモードブルートゥース/無線デバイス
JP4541451B2 (ja) 無線通信ユニットにおいてタイミング信号を発生するための方法および装置
EP0726687B1 (en) Radio telephone
US9185671B2 (en) Method for reducing power consumption in bluetooth and CDMA modes of operation
EP1727379B1 (en) Method and apparatus for reducing standby power consumption of a handheld communication system
US6311081B1 (en) Low power operation in a radiotelephone
US20030153368A1 (en) Event coordination in an electronic device to reduce current drain
JP2001358647A (ja) 無線移動局において待機時間を増す方法、システム、無線電話装置
KR100350474B1 (ko) 디지털 무선 통신 단말 시스템에서 대기시 적응적 전력소모 감소 방법
US7496774B2 (en) Method and system for generating clocks for standby mode operation in a mobile communication device
JP3438061B2 (ja) 携帯端末
GB2410652A (en) Timing control circuit and related method

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E902 Notification of reason for refusal
E601 Decision to refuse application
J201 Request for trial against refusal decision
A107 Divisional application of patent
AMND Amendment
B701 Decision to grant
GRNT Written decision to grant
G170 Re-publication after modification of scope of protection [patent]
FPAY Annual fee payment

Payment date: 20130628

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20140627

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20150706

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20160706

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20170710

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20180710

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20190709

Year of fee payment: 13