KR102527371B1 - 태양 전지 접합 - Google Patents

태양 전지 접합 Download PDF

Info

Publication number
KR102527371B1
KR102527371B1 KR1020197038608A KR20197038608A KR102527371B1 KR 102527371 B1 KR102527371 B1 KR 102527371B1 KR 1020197038608 A KR1020197038608 A KR 1020197038608A KR 20197038608 A KR20197038608 A KR 20197038608A KR 102527371 B1 KR102527371 B1 KR 102527371B1
Authority
KR
South Korea
Prior art keywords
plate
solar cell
bonding device
closed position
force
Prior art date
Application number
KR1020197038608A
Other languages
English (en)
Other versions
KR20200010512A (ko
Inventor
켄트 라일리 차일드
제시 댐
아서 루딘
고팔 프라부
벤카테산 무랄리
Original Assignee
멀린 솔라 테크놀로지스 인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 멀린 솔라 테크놀로지스 인코포레이티드 filed Critical 멀린 솔라 테크놀로지스 인코포레이티드
Publication of KR20200010512A publication Critical patent/KR20200010512A/ko
Application granted granted Critical
Publication of KR102527371B1 publication Critical patent/KR102527371B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1876Particular processes or apparatus for batch treatment of the devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022433Particular geometry of the grid contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1876Particular processes or apparatus for batch treatment of the devices
    • H01L31/188Apparatus specially adapted for automatic interconnection of solar cells in a module
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

접합 장치는 열원, 제1 플레이트, 제2 플레이트 및 작동 메커니즘을 포함한다. 상기 제1 플레이트는 상기 열원에 결합된다. 상기 제1 및 제2 플레이트들은 열 전도성이고 전체 태양 전지를 커버하도록 구성된다. 상기 작동 메커니즘은 상기 접합 장치를 개방 위치와 폐쇄 위치 사이에서 이동시킨다.. 상기 폐쇄 위치에서, 상기 제1 플레이트 및 상기 제2 플레이트는 상기 태양 전지의 반대면들과 접촉한다. 상기 제2 플레이트는 상기 폐쇄 위치에 있을 때 상기 제2 플레이트가 상기 제1 플레이트보다 더 낮은 온도를 갖도록 열을 소산시키도록 구성된다. 상기 제1 플레이트 및 상기 제2 플레이트는 상기 태양 전지에 힘을 가하며, 상기 접합 장치가 상기 폐쇄 위치에 있거나 상기 폐쇄 위치로 이동할 때 상기 태양 전지의 제1 단부에서의 힘이 상기 태양 전지의 제2 단부에서와 상이하다.

Description

태양 전지 접합
관련 출원
본 출원은 2017년 6월 20일에 출원된 "Solar Cell Bonding"이라는 명칭의 미국 정규 특허 출원 제15/627,890호의 우선권을 주장하며; 이 출원은 2016년 6월 27일에 출원된 "Solar Cell Bonding"이라는 명칭의 미국 가 특허 출원 제62/354,976호의 우선권을 주장하며; 이들 양자는 이에 의해 모든 목적을 위해 참고로 통합된다.
태양 전지는 광자들을 전기 에너지로 변환시키는 디바이스이다. 전지에 의해 생성되는 전기 에너지는 반도체 물질에 결합되는 전기 접촉부들을 통해 수집되고, 모듈 내 다른 몇몇 들과 상호 연결부들을 통해 보내진다. 태양 전지 메탈리제이션(solar cell metallization)은 가장 흔하게 전지상에 은 페이스트를 스크린 인쇄한 다음 스크린 인쇄된 버스 바들에 걸쳐 리본들을 땜납하여 이루어진다. 리본들은 태양광 모듈을 위해 직렬방식으로 여러 개의 태양 전지를 함께 스트링 - 즉, 전기적으로 상호 연결 - 하는 데 사용된다. 리본들은 태빙 리본(tabbing ribbon), 상호 연결 배선들, 광발전 배선들 또는 다른 몇몇 유사한 용어로도 지칭된다.
태양 전지 메탈리제이션의 또 다른 하나의 유형은 미국 특허 제8,916,038호 "Free-Standing Metallic Article for Semiconductors" 및 미국 특허 제8,936,709호 "Adaptable Free-Standing Metallic Article for Semiconductors"에 개시되며, 여기서는 단일 금속 물품이 태양 전지의 광 입사면으로부터 집전할 뿐만 아니라 전지들을 함께 상호 연결하기 위해 사용된다.
상승일로의 인구에 필요한 에너지를 공급하기 위해 재생 가능한 에너지가 계속해서 중요한 영역이 됨에 따라, 태양 전지들의 비용 및 제조 효율을 개선시키고자 하는 요구가 있다.
몇몇 실시 예에서, 접합 장치는 열원, 제1 플레이트, 제2 플레이트 및 작동 메커니즘을 포함한다. 상기 제1 플레이트는 상기 열원에 결합된다. 상기 제1 플레이트 및 상기 제2 플레이트는 각각 열 전도성이고 상기 전체 태양 전지를 커버하도록 구성된다. 상기 작동 메커니즘은 상기 접합 장치를 개방 위치와 폐쇄 위치 사이에서 이동시키도록 구성된다. 상기 개방 위치에서, 상기 제1 플레이트 및 상기 제2 플레이트는 떨어져 있고, 상기 폐쇄 위치에서, 상기 제1 플레이트 및 상기 제2 플레이트는 상기 태양 전지의 반대면들과 접촉한다. 상기 제2 플레이트는 상기 접합 장치가 상기 폐쇄 위치에 있을 때 상기 제2 플레이트가 상기 제1 플레이트보다 더 낮은 온도를 갖도록 열을 소산시키도록 구성된다. 상기 제1 플레이트 및 상기 제2 플레이트는 상기 태양 전지에 힘을 가하도록 구성된다. 상기 접합 장치가 상기 폐쇄 위치에 있거나 상기 폐쇄 위치로 이동할 때 상기 태양 전지의 제1 단부에서의 힘이 상기 태양 전지의 제2 단부에서의 힘과 상이하다.
몇몇 실시 예에서, 접합 장치는 열원, 제1 플레이트, 제2 플레이트 및 작동 메커니즘을 포함한다. 상기 제1 플레이트는 상기 열원에 결합된다. 상기 제1 플레이트 및 상기 제2 플레이트는 각각 열 전도성이고 상기 전체 태양 전지를 커버하도록 구성된다. 상기 작동 메커니즘은 상기 접합 장치를 개방 위치와 폐쇄 위치 사이에서 이동시키도록 구성된다. 상기 개방 위치에서, 상기 제1 플레이트 및 상기 제2 플레이트는 떨어져 있고, 상기 폐쇄 위치에서, 상기 제1 플레이트 및 상기 제2 플레이트는 상기 태양 전지의 반대면들과 접촉한다. 상기 제1 플레이트 및 상기 제2 플레이트는 상기 폐쇄 위치에 있을 때 서로 상이한 온도들로 작동하도록 구성된다. 상기 제1 플레이트 및 상기 제2 플레이트는 상기 태양 전지에 힘을 가하도록 구성된다. 상기 접합 장치가 상기 폐쇄 위치에 있거나 상기 폐쇄 위치로 이동할 때 상기 태양 전지의 제1 단부에서의 힘이 상기 태양 전지의 제2 단부에서의 힘과 상이하다.
몇몇 실시 예에서, 접합 장치는 열원, 제1 플레이트, 제2 플레이트 및 작동 메커니즘을 포함한다. 상기 제1 플레이트는 상기 열원에 결합된다. 상기 제1 플레이트 및 상기 제2 플레이트는 각각 열 전도성이고 상기 전체 태양 전지를 커버하도록 구성된다. 상기 작동 메커니즘은 상기 접합 장치를 개방 위치와 폐쇄 위치 사이에서 이동시키도록 구성된다. 상기 개방 위치에서, 상기 제1 플레이트 및 상기 제2 플레이트는 떨어져 있고, 상기 폐쇄 위치에서, 상기 제1 플레이트 및 상기 제2 플레이트는 상기 태양 전지의 반대면들과 접촉한다. 상기 제2 플레이트는 상기 제1 플레이트가 상기 폐쇄 위치에 있을 때 상기 제2 플레이트가 상기 제1 플레이트보다 더 낮은 온도를 갖도록 열을 소산시키도록 구성된다. 상기 제1 플레이트 및 상기 제2 플레이트는 상기 접합 장치가 상기 폐쇄 위치에 있거나 상기 폐쇄 위치로 이동할 때 상기 태양 전지의 제2 단부에서보다 상기 태양 전지의 제1 단부에서 더 높은 힘을 가하도록 구성된다.
도 1은 리본 메탈리제이션을 이용한 종래 태양 전지의 상면도이다.
도 2는 종래 기술로 알려져 있는, 태양 전지의 메탈리제이션에 이용되는 단일 금속 물품들의 사시도이다.
도 3은 몇몇 실시 예에 따른, 태양 전지 접합 장치의 개략적인 측면도이다.
도 4는 몇몇 실시 예에 따른, 접합 장치의 일 실시 예의 정면 사시도이다.
도 5a 및 도 5b는 각각, 몇몇 실시 예에 따른, 개방 및 폐쇄 위치들에서의 접합 장치의 개략적인 측면도들이다.
도 6a 및 도 6b는 몇몇 실시 예에 따른, 접합 장치들의 추가 실시 예들의 개략적인 측면도들이다.
도 7은 몇몇 실시 예에 따른, 접합 조립체의 플레이트의 일 실시 예의 분해 조립도이다.
도 8은 핀치 롤러 시스템 및 가스 흐름을 포함하는 접합 장치의 다른 실시 예의 사시도이다.
도 9는 몇몇 실시 예에 따른, 도 8의 접합 장치의 가열 플레이트들의 측면 사시도이다.
도 10a 내지 도 10c는 다양한 동작 스테이지에서의 도 8의 접합 장치의 도면들을 도시한다.
도 11a 및 도 11b는 각각, 도 8의 가열 플레이트들의 상세한 상면도 및 사시도이다.
도 12a 내지 도 12c는 몇몇 실시 예에 따른, 정렬 피처들의 사시도들 및 상세도들을 도시한다.
도 13a 내지 도 13c는 몇몇 실시 예에 따른, 추가 정렬 피처들의 사시도들 및 상세도들을 도시한다.
도 14는 본 개시의 접합 장치를 사용하여 태양 전지상에 메탈리제이션 요소들을 접합시키기 위한 방법의 흐름도이다.
태양열 산업에서, 태양 전지들을 전기적으로 연결시키는 종래 방법은 전지들의 전후면 양쪽에 위치한 은 침적 패드들 상에 땜납 코팅된 구리로 이루어진 전도성 금속 리본들 또는 배선들을 땜납하는 것이었다.. 리본들은 태양 전지의 표면으로부터 집전하고 태양열 모듈로부터의 에너지가 이용될 수 있도록 모듈 내 태양 전지들을 위한 도관으로서의 역할을한다. 리본들 또는 배선들을 부착시키는 공정은 매우 복잡하고 비용이 많이 들며 시간 소모가 클 수 있고, 일련의 방식으로; 즉, 먼저 태양 전지의 일측(전측 또는 후측)상에서 그리고 그 다음 타측상에서 이루어진다.
종래 접합 공정은 전지의 위 또는 아래 은 패드들 상에 땜납 코팅된 리본을 도입하고 전면적인 측측 동작으로(예를 들어, 태양 전지에 대하여 세로 방향으로 또는 가로 방향으로) 리본을 땜납함으로써 시작된다. 그 다음 공정이 전지의 이면에 대해 반복된다. 현재 공정들은 열풍 땜납, 리본들에 물리적으로 접하는 개개의 땜납 인두들 또는 집속된 적외선 광을 사용한다. 이러한 모든 방법은 시간 소모가 크고 비용이 많이 들며 손상되기 쉬운 태양 전지상에 본질적으로 조악하다. 조악함은 충돌점 손상 또는 열팽창 불균일성에 기인한다. 이러한 두 가지 이슈로 인해 전지가 균열되고/거나 파손된다. 이러한 이슈들은 전지의 일측과 그 다음 타측을 접합시키는 일련의 공정에서 공정을 두 번 반복해야 하는 것에 기인하여 악화된다. 또한 종래 방법들은 업그레이드에도 비용이 많이 든다. 예를 들어, 산업이 리본들(또는 배선들)을 점점 더 많이 부착하는 쪽으로 이동할 경우, 표준 장비는 리본들의 수를 키우기 위해 비용이 많이 들고 시간 소모가 큰 기계 업그레이드를 해야 할 필요가 있다. 또한 종래 방법들은 변화하는 전지 크기들 또는 절단되는 전지 변동에 유연하지 못하다 전지의 순열이 변경될 때마다 장비가 개조되어야 하며, 이는 제조 불능 시간뿐만 아니라 장비 비용을 초래한다.
본 개시는 동시에 태양 전지의 전후면 양쪽 메탈리제이션 요소들의 단사이클 접합 또는 땜납을 설명한다. 전면 메탈리제이션 요소는 광발전 전지의 광 입사면상에 있다. 메탈리제이션은 예를 들어, 종래 리본들 또는 배선들, 또는 태양 전지로부터 집전하고 전지들을 상호 연결시키는 데 사용되는 다른 몇몇 유형의 금속성 그리드들 또는 물품들일 수 있다. 본 방법들 및 시스템들은 광범위한 메탈리제이션 유형 - 이를테면 크기들, 형상들 및 수량들 - 이 하나의 툴로 다양한 유형의 절단된 전지 형상들에 접합될 수 있게 한다. 그에 따라, 임의의 태양 전지상의 크거나 작은 면적 어레이 일조 접합(gang bonding)이 비용이 많이 드는 툴 업그레이드 또는 불능 시간 없이 이루어질 수 있다.
도 1은 리본 메탈리제이션을 이용한 종래 태양 전지(10)의 상면도이다. 단결정 전지로 도시된 태양 전지(10)는 전지(10)의 표면에 땜납된 세 개의 리본(15)을 갖는다. 전지(10)의 표면는 전지에 의해 발생되는 전류를 위한 도관들로서의 역할을 하는 은 핑거들(17)을 가지며, 이때 핑거들로부터 리본들(15)이 에너지를 모은다. 리본들(15)은 태양열 모듈에 대한 전지들의 어레이에 사용될 때, 전지의 가장자리를 지나 연장되어 전지들이 통상적으로 일련의 연결을 위해 다음 전지의 후면에 상호 연결될 수 있게 한다. 종래 전지(10)의 후면(도시되지 않음)은 통상적으로 리본들이 땜납되는 개별 은 패드들을 갖는다. 대부분 태버-스트링거 동작에서, 리본들(15)은 전지(10)의 전면상에 놓이고 전면에 땜납된 다음, 후속 제조 단계에서, 리본들은 스트링으로 인접한 전지의 후면에 땜납된다.
도 2는 이에 의해 참고로 통합되는 미국 특허 제8,916,038호 및 미국 특허 제8,936,709호에 개시된 것들과 같은 다른 유형의 메탈리제이션을 도시하며, 이때 단일 금속 물품이 태양 전지의 전체 표면에 메탈리제이션을 제공한다. 도 2에서, 전면 금속 물품(20), 반도체 웨이퍼(22) 및 후면 금속 물품(24)이 도시되어 있다. 전면 금속 물품(20)은 웨이퍼(22)의 광 입사면상에 장착될 것이며, 후면 금속 물품(24)은 웨이퍼(22)의 후면에 장착될 것이다. 전면 금속 물품(20)의 상호 연결 요소(26)는 태양열 모듈 내 인접한 전지의 후면 금속 물품(24)에 전기적으로 결합될 것이다.
본 개시에서는, 동시에 태양 전지의 전후면들 양자에 메탈리제이션을 접합시킬 수 있는 장치가 제공된다. 시스템은 태양 전지의 은 부착 패드들에 전후면 메탈리제이션 요소들 양자를 정렬시킨 다음 단일 가열 및 가압 단계에 스택을 함께 - 즉, 전면 메탈리제이션, 웨이퍼 및 후면 메탈리제이션 - 부착시킨다. 가해지는 열은 유도, 방사, 저항, 열풍 또는 다른 열원일 수 있다. 열은 태양 전지의 단지 일측, 이를테면 위에만 또는 동시에 위아래에 가해질 수 있다. 압력은 이를테면 기계 또는 공압 수단에 의해 가해질 수 있다. 시스템은 하나의 가장자리에서 다른 가장자리로, 광발전 전지에 걸쳐 가해지는 제어 프레싱 동작으로 열을 고르게 분산시키도록 구성된다. 이러한 비균일 프레싱 동작은 예를 들어, 비평행 플레이트들, 차이가 나는 스프링력 또는 다양한 밀도의 폼 블록에 의해 이루어질 수 있다. 이는 힘의 차이를 초래한다 - 즉, 광발전 전지의 일단에 타단과 비교하여 상이한 힘의 양이 인가된다.
또한 본 실시 예들은 후면 부착에 충분한 열 및 압력을 가하면서 손상되기 쉬운 후면 은 패드들을 보호하기 위해 요구되는 전면 부착을 위한 보다 높은 열 그리고 후면 부착을 위한 보다 낮은 열을 분리시킨다. 이는 모두 하나의 열, 압력 및 시간 단계로 이루어진다. 하나의 단계로 메탈리제이션들의 전후면 부착을 완료함으로써, 모든 물질에서의 열적 불일치가 제어된다. 이는 태양 전지들의 제조 동안 발생하는 균열의 원인을 제거한다. 또한 본 실시 예들 모든 단계를 하나도 조합함으로써 여러 단계를 통해 전지를 이동시키는 위험을 제거한다. 하나의 대형 열 프레스(전체 전면에 대한 그리고 후면에 대한 프레스들을 포함하는)의 특성에 기인하여, 점원 균열 가능성도 또한 감소된다.
도 3은 몇몇 실시 예에 따른, 태양 전지 접합 장치(100)의 간략화된 개략적인 측면도이다. 장치(100)는 제1 플레이트(110), 제2 플레이트(120) 및 제1 플레이트(110)에 결합되는 열원(130)을 포함한다. 제1 플레이트(110) 및 제2 플레이트(120)는 열 전도 물질로 이루어져 태양 전지 구성요소들에의 열 전달을 가능하게 하여, 접합 물질을 용융 이를테면 구성요소들을 함께 땜납 및 부착시킨다. 제1 및 제2 플레이트들(110 및 120)에 대한 열 전도 물질은 예를 들어, 구리, 알루미늄, 금, 황동, 청동 또는 석영일 수 있다. 이 실시 예에서 레버(140)로 도시된 작동 메커니즘은 화살표(150)로 표시된 바와 같이 장치(100)를 개방 및 폐쇄시키기 위해 사용된다. 장치(100)는 태양 전지 구성요소들이 접합시킬 제1 플레이트(110)와 제2 플레이트(120) 사이에 삽입될 수 있도록 개방 위치에 있는 것으로 도시되어 있다. 접합될 구성요소들이 로딩된 후, 작동 메커니즘(140)이 사용되어 제1 플레이트(110) 및 제2 플레이트(120)를 함께 폐쇄 위치로 이동시키며, 이때 제1 플레이트(110)의 접촉면(111) 및 제2 플레이트(120)의 접촉면(121)이 접촉하고 전지 구성요소들의 반대면들을 가압한다. 몇몇 실시 예에서, 제1 플레이트(110)는 작동 메커니즘(140)에 의해 이동되는한편 제2 플레이트(120)는 움직이지 않는다. 다른 몇몇 실시 예에서는, 제1 플레이트(110) 및 제2 플레이트(120)가 작동 메커니즘(140)에 의해, 또는 별개의 두 작동 메커니즘에 의해 이동될 수 있다.
도 3의 실시 예에서, 제1 플레이트(110) 및 제2 플레이트(120)는 제1 플레이트(110)의 가장자리(112)에서 그리고 제2 플레이트(120)의 가장자리(122)에서 조인트(160)에 의해 함께 힌지 결합된다. 조인트(160)는 플레이트들(110 및 120)을 개방과 폐쇄 위치들 사이에서 이동시킬 때 제1 플레이트(110)를 제2 플레이트(120)에 대하여 평행하지 않은 방식으로 정렬시키는 힌지(162)를 포함한다. 예를 들어, 작동 메커니즘이 접합 장치를 개방 위치에서 폐쇄 위치로 이동시킬 때 제1 플레이트(110) 및 제2 플레이트(120)는 서로 평행하지 않을 수 있으며, 제1 플레이트가 태양 전지의 제1 단부 부근에서 제2 플레이트에 더 가깝다. 다른 몇몇 실시 예에서, 조인트(160)는 제1 및 제2 플레이트들(110 및 120)을 서로 평행하게 정렬시키기 위해 사용될 수 있다. 또한 조인트(160)는 제1 플레이트(110)의 제2 플레이트(120)에 대한 수직 변위를 가능하게 할 수 있는 수직 로드(164)를 포함한다. 몇몇 실시 예에서, 수직 로드(164)는 또한 그것의 길이 방향 축을 중심으로 하는 회전 움직임도 가능하게 할 수 있으며, 이는 장치(100)로부터 태양 전지 구성요소들의 로딩 및 언로딩을 가능하게 할 수 있다. 예를 들어, 도 4는 제1 플레이트(110) 및 제2 플레이트(120)가 개방 위치에서 측 방향으로 회전되고 서로 변위된 일 실시 예에서, 접합 장치(102)의 평면도이다. 태양 전지 구성요소들(200)은 태양 전지(200)가 플레이트들(110 및 120) 사이에서 프레싱될 때 접합의 준비로, 접합 장치(102) 내에 도시되어 있다. 플레이트들(110 및 120)은 수직으로 상승 및 하강되어 개방과 폐쇄 위치 사이에서 이동할 수 있고, 또한 회전 조인트들(이 실시예에서 도시되지 않음)을 포함하여 플레이트들(110 및 120)을 서로 평행하지 않게 비스듬히 놓을 수 있다.
본 개시의 접합 장치들을 개방 위치와 폐쇄 위치 사이에서 이동시키기 위해 링키지들, 기어들, 선형 슬라이드들 및 공압 실린더들과 같은 다른 몇몇 유형의 메커니즘들이 사용될 수 있으나, 이에 제한되지는 않는다. 레버(140) 이외의 작동 메커니즘들은 예를 들어, 전자 제어, 푸시 버튼 및 풀리(pulley)를 포함할 수 있다.
도 3으로 되돌아가, 열원(130)은 임의의 유형의 열원 이를테면 저항 열, 적외선, 열풍 또는 유도 코일들일 수 있다. 열원은 사용되는 땜납의 용융 온도들을 수용하도록, 이를테면 25-500 C 범위 내 작동 온도를 갖는 열원들이 선택될 수 있다. 몇몇 실시 예에서, 열원은 작동 온도에 진입하기 위해 이를테면 1초 미만의 빠른 진입 시간을 가질 수 있다. 열원(130)이 제1 플레이트(110)상에 장착되는 것으로 도시되어 있지만, 몇몇 실시 예에서 열원(130)은 열원의 유형에 적절한 임의의 방식으로 접합 장치(100)로 통합될 수 있다. 예를 들어, 저항 가열을 위한 발열체들이 제1 플레이트(110) 내에 내장될 수 있으며, 제어 패널이 도시된 접합 장치(100) 다른 곳에 위치 - 이를테면 그것에 부착 또는 그것과 떨어져 -된다. 추가 실시 예들에서는, 제2 열원(170)이 제2 플레이트(120)에 결합될 수 있으며, 이때 제2 열원(170)은 열원(130)과 동일한 또는 상이한 유형(예를 들어, 저항, 적외선 등)일 수 있다. 도 3의 실시 예에서, 제2 열원(170)은 제2 플레이트(120) 내에 내장된 것으로 도시되어 있다.
다양한 실시 예에서, 본 접합 장치들은 많은 전지들의 구성 및 전지 설계를 수용하도록 설계될 수 있다. 예를 들어, 제1 플레이트(110) 및 제2 플레이트(120)의 표면적들은 임의의 크기의 전지에 대해, 다양한 수의 리본에 대해 그리고 다수의 전지를한 번에 접합시키기 위해서도 설계될 수 있다. 예를 들어, 플레이트들(110 및 120)은 장치에 의해 접합될 것으로 예상되는 가장 큰 전지를 커버할 길이 및 폭을 가질 수 있어, 동일한 장치에 의해 더 작은 크기들의 전지들이 또한 수용될 수 있다.. 다른 몇몇 실시 예에서는, 메탈리제이션 요소들을 반도체 웨이퍼 상의 은 핑거들/패드들과 정렬시키는 것을 보조하기 위한 고정 장치들이 포함될 수 있다. 그 고정 장치들은 플레이트들(110 및 120)에 일체로될 수도 있고 이동식 인서트들일 수도 있다.
도 5a 및 도 5b는 동작 시 접합 장치(100)의 측면도들이며, 명확성을 위해 장치(100)의 단지 제1 플레이트(110) 및 제2 플레이트(120)만을 도시한다. 태양 전지(200)의 구성요소들이 접합을 위해 장치(100)에 로딩되었으며, 이때 구성요소들은 전면 메탈리제이션 요소(210), 반도체 웨이퍼(220) 및 후면 메탈리제이션 요소(230)를 포함한다. 몇몇 실시 예에서 전면 메탈리제이션 요소(210)는 웨이퍼(220)의 표면 위에 놓이는 전면 메탈리제이션 요소(210)의 주요 부분보다 더 큰 두께(도 5a에서 수직 높이)를 가질 수 있는 상호 연결 요소(215)를 포함한다. 다른 몇몇 실시 예에서, 상호 연결 요소(215)는 없을 수 있다. 전면 메탈리제이션 요소(210) 및 후면 메탈리제이션 요소(230)는 도 1에서와 같은 종래 리본들일 수 있거나 도 2에서와 같은 그리드형 물품들일 수 있다. 그것들 상에 메탈리제이션 요소들(210 및 230)이 땜납으로 사전 코팅되어 있을 수 있거나, 접합 장치(100)로 삽입되기 이전에 이차 공정으로 땜납이 가해질 수 있다.
도 5a에서, 장치(100)는 개방 위치에 있는 것으로 도시되어 있으며, 이때 제1 플레이트(110) 및 제2 플레이트(120)는 태양 전지(200)의 구성요소들이 장치(100)로 로딩될 수 있도록 떨어져 있다. 접합 공정을 개시하기 위해, 제1 플레이트(110)가 폐쇄 위치로 이동되기 이전에, 이를테면 열원(130)으로 가열된다. 제1 플레이트(110)가 화살표(151)로 표시된 바와 같이 태양 전지(200) 쪽으로 이동됨에 따라, 제1 플레이트(110)로부터의 열이 전후면 메탈리제이션 요소들(210 및 230) 상에서 땜납을 용융시킨다. 제1 플레이트(110)는 제2 플레이트(120)쪽으로 연접되며, 이는 각 운동 및 수직 변위 둘 다를 수반할 수 있다. 제1 플레이트(110) 및 제2 플레이트(120)가 함께 비스듬하게 이동되며, 플레이트들(110 및 120)이 폐쇄 위치로 이동됨에 따라 가장자리들(112 및 122)이 플레이트들의 반대 가장자리들(113 및 123)보다 함께 더 가까워지기 때문에, 용융된 땜납이 가장자리들(112 및 122) 사이 보다 얇은 갭 영역에서 가장자리들(113 및 123) 사이 보다 두꺼운 갭 영역으로 흘러, 리플로 길이들을 동등하게 한다. 제1 플레이트(110) 및 제2 플레이트(120)의 서로에 대한 비스듬한 구성은 태양 전지(200)에 힘을 가하게 하며, 접합 장치(100)가 폐쇄 위치로 이동할 때 태양 전지(200)의 제1 단부(202)에 가해지는 힘은 태양 전지(200)의 제2 단부(203)에 가해지는 힘과 상이하다. 이 실시 예에서, 힘은 태양 전지(200)의 제1 단부(202)에서 제2 단부(203)보다 더 높다. 플레이트들이 함께 이동될 때 제1 플레이트(110) 및 제2 플레이트(120)의 비평행 정렬은 또한 상호 연결 요소(215)의 상승된 높이도 수용하여, 다시 땜납이 태양 전지 표면에 걸쳐 흐를 때 땜납이 메탈리제이션의 보다 두꺼운 영역에서 보다 얇은 영역들로 흐를 수 있게 한다.
도 5b에서, 장치(100)는 폐쇄 위치에 있는 것으로 도시되어 있으며, 이때 플레이트들(110 및 120)은 서로 마주보고 있고 태양 전지(200)의 반대면들과 직접 접촉한다. 제1 플레이트(110)의 제1 접촉면(111)이 태양 전지(200)의 전면과 접촉하고, 제2 플레이트(120)의 제2 접촉면(121)이 후면과 접촉한다. 폐쇄 위치에서, 접합 공정을 구현하기 위해 태양 전지(200)에 열이 계속해서 가해진다. 열은 열원(130)으로부터 제1 플레이트(110)를 통해 태양 전지(200)로, 그 다음 제2 플레이트(120)로 흐른다. 가열이 일어나는 동안, 압력이 제1 플레이트(110) 및 제2 플레이트(120)로부터 태양 전지(200)로 가해져 단단한 접합을 촉진하고 열 팽창에 기인한 메탈리제이션 요소들의 리프트-오프를 방지한다.
도 6a 및 도 6b는 접합 장치에 의해 힘의 차이가 만들어질 수 있는 추가 실시 예들의 간략화된 측면도들이다. 명확성을 위해, 도 6a 및 도 6b에는 제1 및 제2 플레이트들(110 및 120)을 함께 결합시키는 열원들 및 작동 메커니즘들을 도시하지 않았다. 도 6a에서, 접합 장치(104)의 제1 플레이트(110)는 편중 구성요소들(180)의 어레이를 포함하며, 이때 편중 구성요소들(180)은 폐쇄 위치에 있을 때 태양 전지(200)와 접촉할 표면적에 걸쳐 위치된다. 도시의 명확성을 위해 편중 구성요소들(180)은 반드시 일정한 비율로 그려진 것은 아니다. 이 실시 예에서 각각의 편중 구성요소(180)는 일단에서 제1 플레이트(110)에 결합되는 편중 요소(181), 및 편중 요소(181)의 타단에 결합되는 캡(182)을 포함한다. 편중 요소(181)는 편중력을 제공하고 예를 들어, 압축 스프링 또는 폼과 같은 압축성 물질일 수 있다. 캡(182) - 몇몇 실시 예에서는 생략될 수 있음 - 은 이를테면 편중 요소(181)의 단부가 균일하지 않거나, 태양 전지와 접촉하기에 충분한 접촉 면적을 제공하지 않을 경우, 태양 전지(200)의 접촉면을 향상시킨다. 예를 들어, 캡(182)은 편평한 단면을 가지며, 단면의 직경이 편중 요소(181)의 직경보다 큰 원통형 피스일 수 있다. 도 6a의 편중 구성요소들(180)은 예시적인 실시 예로서, 스프링이 든 핀들로 도시되어 있다. 열은 제1 플레이트(110)로부터 편향 어레이(180)를 통한 태양 전지(200)로 전달되어, 태양 전지를 향해 있는 편중 구성요소들(180)의 단부들이 제1 플레이트(110)의 접촉면(111)이 되게된다. 편중 요소(181) 및/또는 캡(182)으로 가능한 물질들은 구리, 세라믹 및 석영을 포함하나, 이에 제한되지는 않는다. 캡들(182)에 대한 추가 물질들은 폴리테트라플루오로에틸렌(PTFE), Vespel®, Torlon® 및 폴리에테르 에테르 케톤(PEEK)을 포함하나, 이에 제한되지는 않는다.
편중 구성요소들(180)은 어레이에 걸쳐 편중력이 달라지게 구성됨으로써 태양 전지(200)에 걸쳐 힘의 차이를 일으키도록 구성된다. 태양 전지(200)의 표면에 걸쳐 가해지는 불균일한 힘은 비평행 플레이트들과 관련하여 위에서 설명된 바와 같이, 땜납 리플로를 촉진하는 것을 돕는다. 예를 들어, 표면에 걸쳐 감소되는 힘은 땜납이 보다 높은 힘을 갖는 일단에서 보다 적은 힘을 갖는 타단으로 흐르는 것을 도와, 땜납 두께를 보다 균일하게 할 수 있다. 도 6a의 실시 예에서, 태양 전지(200)의 제1 단부(202) 부근 제1 편중 요소의 제1 편중력(183a)은 화살표들의 크기로 표시된 바와 같이, 태양 전지(200)의 제2 단부(203) 부근 제2 편중 요소의 제2 편중력(183c)보다 더 크다. 중간 편중 요소는 편중력들(183a 및 183c) 사이 값을 갖는 제3 편중력(183b)을 갖는다. 몇몇 실시 예에서, 편중력의 차이는 압력, 예를 들어, 플레이트의 일단에서 타단으로 대략 0.010-0.020 lbs/in2 차, 이를테면 0.015 lbs/in2 차로 표현될 수 있다. 몇몇 실시 예에서, 스프링이 든 핀들은 서로 상이한 스프링력들을 갖는 것에 더하여 또는 그 대신, 표면에 걸쳐 가변 공간을 가질 수 있다. 예를 들어, 하나의 영역에서 핀들 사이 간격이 보다 넓으면 다른 영역에서 함께 더 가깝게 이격되는 핀들보다 태양 전지상에 더 적은 힘을 가하게될 것이다. 어레이(180)에 걸쳐 달라지는 편중력들, 이를테면 제2 편중 요소의 제2 편중력보다 높은 제1 편중력을 갖는 이러한 구성은 플레이트들(110 및 120)이 폐쇄 위치로 이동할 때 서로에 평행하지 않고도 태양 전지(200)에 걸쳐 힘이 달라지게 한다. 그에 따라, 비평행 플레이트들과 같이 접합 장치를 폐쇄 위치로 이동시킬 때보다 접합 장치가 폐쇄 위치에 있을 때 태양 전지에 변화하는 힘이 가해질수 있다. 복수의 편중 구성요소(180)를 갖는 실시 예들에서, 제1 및 제2 플레이트들(110 및 120)은 평행한 방식으로 서로를 향해 이동될 수도 있고, 서로에 대하여 비스듬하게 있을 수 있다. 힘의 성분들이 제1 플레이트(110)로 편입되는 것으로 설명되었지만, 다른 몇몇 실시 예에서 힘의 성분들은 제2 플레이트(120)로 또는 제1 플레이트(110) 및 제2 플레이트(120) 양자로 편입될 수도 있다.
도 6b는 가열 플레이트(110)가 압축성 블록(190)을 포함하여 태양 전지(200)에 걸쳐 힘의 차이를 만드는 다른 접합 시스템(106)의 일 실시 예를 도시한다. 압축성 블록(190)은 예를 들어, 폼 물질 이를테면 세라믹, 석영, PTFE, Vespel, Torlon 및 PEEK일 수 있다. 폼은 불소 중합체와 같은 비점착성 코팅 또는 시트로 커버되어, 태양 전지가 가열 플레이트(110)에 접착하는 것을 방지하도록 도울 수 있다. 압축성 블록(190)은 태양 전지(200)의 제1 단부(202)와 제2 단부(203) 사이에서 연장되는 방향으로, 길이(191)에 걸쳐 밀도 경사를 갖는다. 밀도 경사는 압축성 블록(190)이 태양 전지에 걸쳐 차이가 나는 힘을 가하게 한다. 도 6a에서의 편중 구성요소들(180)의 어레이와 유사하게, 압축성 블록(190)은 태양 전지(200)의 제1 단부(202) 부근에 힘(193a)을, 블록(190)의 중간 영역에 보다 적은 힘(193b)을, 그리고 태양 전지(200)의 제2 단부(203) 부근에 가장 적은 힘(193c)을 갖는다. 편중력의 차이는 블록(190)에 걸친 밀도 경사에 의해 만들어지며, 이때 블록(190)은 힘(193c)에 대응하는 제2 밀도보다 높은 힘(193a)에 대응하는 제1 밀도를 갖는다. 밀도 경사는 계단식 방식으로 또는 연속적인 방식으로 생길 수 있다. 밀도 경사는 플레이트의 일단과 그것이 타단 사이에 예를 들어, 대략 0.010-0.020 lbs/in2, 이를테면 0.015lbs/in2 차의 압력 차이를 일으킬 수 있다.
임의의 상기한 실시 예들에서, 플레이트들(110 및 120)은 기계적으로, 공압으로 또는 유압으로 작동될 수 있는 이에 제한되지는 않지만 클램프들, 외함 프레임 구조 또는 액추에이터들과 같은 다양한 메커니즘을 사용하여 폐쇄 위치에 홀딩될 수 있다.
태양 전지에 압력을 가하는 것에 더하여, 제1 플레이트(110) 및 제2 플레이트(120) 양자는 태양 전지의 표면에 걸쳐 균일하게 열을 가하도록 설계된다. 대략 균일한 온도로 작동하는 것은 열 응력이 태양 전지(200)의 표면에 걸쳐 발달하는 것을 방지한다. 몇몇 실시 예에서, 제1 플레이트는 제2 플레이트의 제2 균일한 온도와 상이한 제1 균일한 온도를 갖는다. 즉, 제1 플레이트 및 제2 플레이트는 폐쇄 위치에 있을 때 서로 상이한 온도들로 작동하도록 구성될 수 있다. 본 개시에서 다양한 실시 예가 제1 플레이트가 제2 플레이트보다 더 높은 온도로 작동하는 것으로 설명될 것이지만, 다른 몇몇 실시 예는 이를테면 태양 전지의 전면 메탈리제이션이 제2(아래) 플레이트를 향해 접합 조립체에 배치될 경우, 제2 플레이트보다 더 낮은 온도로 작동하는 제1 플레이트를 이용할 수 있다.
일부 실시 예에서, 제2 플레이트(120)는 제1 플레이트(110)의 온도보다 낮은 온도에서 작동하도록 구성된다. 예를 들어, 제1 및 제2 플레이트들은 둘 다 발열체들이 플레이트가 접촉하는 태양 전지의 측면상에서 상이한 땜납 온도들을 달성하기 위해 서로 상이한 온도들에서 작동하는 열원들을 가질 수 있다. 다른 예에서는, 제1 플레이트(110)는 열원을 가질 수 있지만, 제2 플레이트(120)는 그렇지 않을 수 있다. 제2 플레이트(120)가 자체 열원을 갖지 않는 실시 예에서, 제2 플레이트는 가열 공정 동안 제2 플레이트(120)가 제1 플레이트(110)(이는 열원(130)에 의해 능동 가열됨)보다 낮은 온도에서 작동하도록 열을 소산시키도록 구성될 수 있다. 이러한 방식으로, 후면 메탈리제이션 요소(230)의 땜납 온도는 전면과 상이한 땜납 요건들을 수용하도록 제어될 수 있다. 태양 전지들의 전면상에는 통상적으로 고품질 은이 사용되는 한편, 후면상에는 저비용 은 혼합체들이 통상적으로 사용된다. 본 발명의 접합 장치는 태양 전지의 전후면들에 동시에 열이 가해질 수 있게 하지만, 각 측면에 적절한 온도들은 상이하다. 또한, 태양 전지에서의 열 응력이 완화되기 때문에, 더 높은 온도, 이를테면 250-350 C의 온도들의 땜납이 사용될 수 있다. 접합 장치에 의해 수용될 수 있는 온도가 광범위함으로 인해, 예를 들어, 다양한 비율의 납-주석, 중합체 또는 주석과 같은 다양한 유형의 땜납이 사용될 수 있다.
도 7은 균일하지만 제1 플레이트(110)보다 낮은 작동 온도를 달성하기 위한 제2 플레이트(120)의 일 실시 예의 분해 조립도를 도시한다. 이 실시 예에서 제2 플레이트(120)는 함께 적층된 3개의 층, 즉 기판(124), 메쉬(125) 및 열 전도성 시트(126)를 포함한다. 열 전도성 시트(126)가 금속과 같은 물질의 고형 시트로서 도 7에 도시되어있다. 제2 플레이트(120)는 열 전도 시트(126)가 태양 전지로 지향되어 배치된다. 시트(126)는 태양 전지의 표면에 걸쳐 균일한 온도를 달성하기 위해 높은 열 전도성을 갖는다. 메쉬(125)는 균일한 온도를 유지하기 위해 열 전도성을 유지하면서, 열을 소산시키기 위해 열 차단을 제공하고 제2 플레이트(120)의 작동 온도를 제1 플레이트(110)에 비해 낮춘다. 기판(124)은 시트(126)에 의해 태양 전지에 제공되는 유효 온도를 제어 및 유지하기 위한 단열 물질이다. 일 실시 예에서, 예를 들어, 기판(124)은 실리콘 고무이고, 메쉬(125)는 구리이며, 시트(126)는 티타늄이다. 메쉬(125)는 스크린 또는 격자형 구성, 또는 임의의 다른 교차 또는 비교차 설계, 이를테며 선형 및/또는 곡선형 요소들일 수 있다.
도 8은 가스 흐름이 가열 시스템에서 사용되고 핀치 롤러 시스템이 작동 메커니즘에서 사용되는 접합 장치의 다른 실시 예의 사시도이다. 접합 장치(300)는 제1 플레이트(310), 제2 플레이트(320) 및 열원(330)을 포함한다. 열원(330)은 예를 들어 램프 조립체일 수 있다. 다른 몇몇 실시 예에서, 열원(330)은 이전에 도 3에 도시된 바와 같이, 제1 플레이트(310) 및/또는 제2 플레이트(320)로 통합될 수 있다. 접합 장치(300)는 또한 구조체의 양 단부에 상하 핀치 롤러(342)를 갖는 프레임 구조로서 구현되는 작동 메커니즘(340)을 포함한다. 제1 및 제2 플레이트들(310, 320)은 그것들의 외측면들 상에 핀치 롤러 가이드들(344)을 가지며, 이 가이드들(344)은 핀치 롤러들(342)이 이동할 수 있는 평행한 홈들이다. 또한 도 8에는 각각 제1 플레이트(310) 및 제2 플레이트(320) 내 O-링 시일들(311 및 321), 그리고 배기 도관들(350) 및 슬라이드 시일들(352)이 도시되어 있으며, 이것들은 모두 아래에서 더 상세히 설명될 것이다.
도 9는 제1 플레이트(310) 및 제2 플레이트(320)가 개방 위치에 있고, 태양 전지(200)가 플레이트들 사이 공간에 로딩된 것을 도시한다. 플레이트들(310, 320)은 스프링이 든 조인트(360)로 함께 결합된다. 조인트(360)는 여기서 클램 쉘 조인트로서 구현된다. 다른 몇몇 실시 예는 예를 들어, 수직 공압 리프트(분리) 또는 다중 조인트 힌지(비균일 분리)를 포함한다.
도 10a 내지 도 10c는 접합 장치(300)의 작동 메커니즘(340)으로 로딩되는 제1 플레이트(310)의 스테이지들을 도시한다. 도 10a는 플레이트들(310, 320)의 왼쪽 가장자리가 먼저 작동 메커니즘(340)에 삽입되어 여전히 개방 위치에 있는 근접 사시도이다. 플레이트들(310, 320)이 화살표(301)로 표시된 바와 같이 장치(300)로 삽입될 때, 핀치 롤러(342a)의 롤러들은 클램 쉘을 정렬시키고 스프링력을 가하여 플레이트 조립체를 폐쇄시키기 위해 롤러 가이드(344)를 가로지른다. 도 10a는 또한 배기구(350)의 통기 슬롯(351)을 도시하며, 이는 도 11a 내지 도 11d와 관련하여 이후에 설명될 것이다. 도 10b에서, 플레이트들은 플레이트(310)의 오른쪽 가장자리가 수평이고 핀치 롤러(342a)에 의해 폐쇄된 것에 의해 보여지는 바와 같이 완전히 삽입되었다. 도 10c는 플레이트들(310 및 320)이 폐쇄 위치에 있고, 핀치 롤러들(342a 및 342b)에 의해 폐쇄 상태로 유지되는 조립체의 전체 사시도를 제공한다(이 도면에는 보이지 않으나, 밑면상에 대응하는 롤러들이 있음). 좌측 핀치 롤러 조립체(342b)는 또한 덮개(즉, 제1 플레이트(310))를 페쇄시켜, 조립체에 더 많은 클램핑력을 부가함에 주목한다.
도 11a 및 도 11b는 제1 및 제2 플레이트들(310 및 320)의 2개의 도면을 도시하며, 일 실시 예에서 가스 흐름이 열원으로서 그리고 땜납 공정을 보조하기 위해 양자에서 이용된다. 도 11a는 플레이트(310 또는 320)의 코너 부분의 상면도 선 표현을 도시하고, 도 11b는 함께 적층된 플레이트들(310 및 320)의 사시도를 도시한다. 도 11a에 도시된 바와 같이, 이 실시 예에서 플레이트들(310 및 320)은 O- 링 시일들(311/321)에서 종결되는 내부 유동 도관들(370)을 갖는다. 유동 도관들(370)은 원통형의 수직으로 교차하는 관들의 네트워크로서 도시되어 있지만, 다른 몇몇 형상 및 레이아웃이 가능하다. 도관들(370)은 플레이트들(310/320)의 내부 표면(태양 전지와 면하는 표면들) 상에, 그것들의 길이를 따라 홀들(375)을 포함한다.
공기와 같은 가스는 가스 공급원으로부터 유입되어, 슬라이드 시일들(352)(도 8) 및 O-링 시일들(311/321)을 통해 도관들(370)로 흐른다. 공기는 힌지 플레이트(310, 320)의 홀(375)을 통해 도관(370)으로부터 강제된다. 그에 따라, 가스원은 제1 플레이트 및 제2 플레이트에 유동 결합되고, 유동관들(370)은 제1 플레이트가 폐쇄 위치에 있을 때 가스원에서 태양 전지로 가스를 전달하도록 구성된다. 이 실시 예에서, 제1 및 제2 플레이트들(310, 320)은 플레이트들의 표면에 걸쳐 실질적으로 균일한 온도를 달성하기 위해, 구리와 같은 열 전도성 물질로 만들어진다. 공기는 슬릿들(376)을 통해 플럭스 증기를 운반하고, 배기구(350)(도 10b)의 통기 슬롯들(351)이 조립체로부터 증기를 배기시킨다. 도관들(370)을 통해 흐르는 공기는 열원(330)에 의해 가열되고 태양 전지상의 땜납 조인트들에 열을 균일하게 인가하는 것을 도울 것이다. 제2(하측) 플레이트(320) 내의 공기는 필요에 따라 하측 플레이트(320)의 냉각에 사용될 수 있으며, 제2 플레이트(320)의 온도는 예를 들어, 도관들(370)을 통한 가스 유량에 의해 제어될 수 있다. 가스는 전체 부착 공정 동안 플레이트들(310 및 320)을 통해 흐르고, 공정이 완료된 후에 접합 장치(100)를 냉각시키는 데 사용될 수도있다.
도 12a 내지 도 12c 및 도 13a 내지 도 13c는 여기에 개시된 접합 장치들과 함께 사용될 수 있는 정렬 고정 장치들의 실시 예들을 도시하며, 삽입 도면들은 근접 단면도들이다. 도 12a는 태양 전지 구성요소들을 위해 형성된 오목 영역들인 정렬 포켓들을 갖는 하측 플레이트(320)를 보여준다. 도 12a의 삽입도는 정렬 포켓들(410 및 420)에 대응하는 계단형 영역들을 도시한다. 포켓(420)은 포켓(410) 주위에 형성된다. 도 12b에서는, 후면 금속화 요소(412)가 포켓(410)에 배치되었고, 도 12c에서는, 반도체 웨이퍼(422)가 후면 금속화 요소(412) 위, 포켓(420)에 배치되었다. 그에 따라, 포켓들(410 및 420)은 후면 금속화 요소(412)를 웨이퍼(422)와 정렬시키며, 이는 태양 전지 구성요소들의 특정 땜납 영역들이 함께 적절하게 접합되는 데 중요하다.
도 13a는 추가의 정렬 고정 장치들을 사용하여, 전면 금속화 요소가 접합 장치에 배치된 것을 도시한다. 도 13b에서는, 전면 금속화 요소를 위한 정렬 피처들로서의 역할을 하는 핀들(430)이 제2 플레이트(320)로 통합된다. 전면 금속화 요소는 핀들(430)이 삽입되는 상호 연결 요소(215)의 개구들로 제조된다. 핀들(430)은 제1 플레이트(310)에 대응하는 간섭 포켓들(440)을 구비하여 접합 장치에서 전면 금속화 요소를 고정시키는 것을 돕는다.
도 12a 내지 도 12c 및 도 13a 내지 도 13c의 정렬 피처들은 접합 장치의 플레이트들 내로 기계 가공되거나, 별도의 구성요소들로서 제조되어 장치 내로 조립될 수 있다. 일부 실시 예에서, 정렬 피처들은 제거 가능할 수 있어, 접합 장치는 상이한 태양 전지 크기들 또는 어레이들에 대해 호환 가능할 수 있게 된다.
도 14는 본 개시의 접합 장치들을 사용하여 태양 전지상에 메탈리제이션 요소들을 접합시키기 위한 흐름도(500)의 일 실시 예이다. 단계(510)에서, 접합 장치가 제공되며, 접합 장치는 제1 및 제2 플레이트들을 갖는다. 제1 및 제2 플레이트들은 전체 태양 전지를 커버할 수 있는 크기를 갖는다. 개방 위치에서, 제1 플레이트 및 제2 플레이트는 떨어져 있고, 폐쇄 위치에서, 제1 플레이트 및 제2 플레이트는 태양 전지의 반대면들과 접촉한다. 단계(520)에서, 태양 전지 구성요소들이 접합 장치에 로딩된다. 태양 전지 구성요소들은 전면 금속화 요소, 반도체 웨이퍼 및 후면 금속화 요소를 포함한다. 금속화 요소들은 통상적인 리본들일 수 있거나, 반도체 웨이퍼의 전체 표면에 걸쳐 금속화를 제공하는 단일 금속 물품들일 수 있다. 금속성 물품은 전지-전지 상호 연결 요소를 포함할 수 있다.
단계(530)에서, 열원은 제1 플레이트에 열을 가한다. 일부 실시 예에서, 제2 플레이트는 또한 자체 열원을 포함할 수 있다. 제1 플레이트가 가열됨에 따라, 제1 플레이트로부터 방사되는 열로 인해 금속화 요소들 상의 땜납이 용융된다. 그 다음, 접합 장치는 단계(540)에서 이를테면 제1 플레이트를 제2 플레이트쪽으로 이동시킴으로써, 개방 위치에서 폐쇄 위치로 이동된다. 폐쇄 위치에서, 전체 태양 전지는 바람직한 시간 기간 동안 전후면 양쪽 금속화에 열과 압력을 가하는 단일 공정으로 함께 접합된다. 제1 플레이트 및 제2 플레이트는 제어 땜납 리플로를 이루도록 태양 전지에 힘을 가하도록 구성되며, 접합 장치가 폐쇄 위치에 있거나 폐쇄 위치로 이동할 때 태양 전지의 제1 단부에서의 힘의 양은 태양 전지의 제2 단부에서의 힘과 상이하다. 일부 실시 예에서, 힘의 양은 태양 전지의 제1 단부에서 태양 전지의 제2 단부로 감소한다. 일부 실시 예에서, 제1 플레이트는 제2 플레이트와 평행하지 않다. 플레이트들의 비평행 정렬은 태양 전지를 가로질러 균일한 땜납 흐름을 촉진시키는 것을 돕는다. 폐쇄 위치에서, 플레이트들은 평행하고 태양 전지와 직접 접촉한다. 다른 몇몇 실시 예에서, 전지를 가로 질러 접합 장치에 의해 가해지는 힘은 다양한 편중력을 갖는 복수의 편중 요소, 또는 밀도 경사를 갖는 압축성 블록에 의해 생성될 수 있다.
제1 플레이트 및 제2 플레이트는 폐쇄 위치에 있을 때 서로 상이한 온도들로 작동하도록 구성된다. 예를 들어, 제2 플레이트는 제1 플레이트가 폐쇄 위치에 있을 때 제2 플레이트가 제1 플레이트보다 더 낮은 온도를 갖도록 열을 소산시키도록 구성될 수 있다. 제1 플레이트 및 제2 플레이트는 태양 전지와 접촉하고 있는 표면들 상에 균일한 온도들을 갖도록 구성된다. 또한, 제1 플레이트 및 제2 플레이트의 온도들은 금속화 요소들에 사용되는 특정 유형들의 땜납을 수용하도록 맞춰질 수 있다. 일부 실시 예에서, 제2 플레이트는 기판과 열 전도성 시트 사이에 위치된 메쉬와 같이, 열을 소산시키기 위해 다층의 물질들을 이용할 수 있다. 일부 실시 예에서, 제1 및/또는 제2 플레이트들은 플레이트들의 온도를 제어하기 위해 공기와 같은 가스 흐름을 사용할 수 있다. 단계(550)에서, 접합된 땜납 전지가 접합 장치에서 제거된다.
하나 이상의 예가 첨부 도면에 도시된 개시된 발명의 실시 예를 상세하게 언급하였다. 각각의 예는 본 기술의 제한으로서가 아니라 본 기술의 설명을 위해 제공되었다. 실제로, 본 명세서는 본 발명의 특정 실시 예와 관련하여 상세하게 설명되었지만, 당업자는 전술한 내용을 이해하면, 변경, 변경 및 변경 그리고 이들 실시 예의 균등물을 용이하게 생각할 수 있음을 이해할 것이다. 예를 들어, 일 실시 예의 일부로서 도시되거나 설명된 특징은 다른 실시 예와 함께 사용되어 또 다른 실시 예를 생성할 수 있다. 따라서, 본 주제는 첨부된 청구범위 및 그 균등물의 범위 내에서 이러한 모든 수정 및 변형을 포함하도록 의도된다. 본 발명의 이들 및 다른 변형 및 변형은 본 발명의 범위를 벗어나지 않고 당업자에 의해 실시될 수 있으며, 이는 첨부된 청구 범위에보다 구체적으로 기재되어있다. 또한, 해당 기술분야의 통상의 기술자들은 상기 설명이 단지 예일 뿐이고 본 발명을 제한하려는 것이 아님을 이해할 것이다.

Claims (24)

  1. 접합 장치로서,
    열원;
    상기 열원에 결합되는 제1 플레이트로서, 열 전도성이고 태양 전지의 제1 표면 전체를 커버하도록 구성되는, 상기 제1 플레이트;
    제2 플레이트로서, 열 전도성이고 상기 제1 표면에 반대측의 상기 태양 전지의 제2 표면 전체를 커버하도록 구성되는, 상기 제2 플레이트; 및
    상기 접합 장치를 개방 위치와 폐쇄 위치 사이에서 이동시키도록 구성된 작동 메커니즘으로서, 상기 개방 위치에서는 상기 제1 플레이트 및 상기 제2 플레이트가 떨어져 있고, 상기 폐쇄 위치에서는 상기 제1 플레이트 및 상기 제2 플레이트가 상기 태양 전지의 상기 제1 표면 및 상기 제2 표면과 각각 접촉하는, 상기 작동 메커니즘을 포함하며;
    상기 제2 플레이트는 상기 접합 장치가 상기 폐쇄 위치에 있을 때 상기 제2 플레이트가 상기 제1 플레이트보다 더 낮은 온도를 갖도록 열을 소산시키도록 구성되고;
    상기 제1 플레이트 및 상기 제2 플레이트는 상기 태양 전지의 표면에 힘을 가하도록 구성되며, 상기 접합 장치가 상기 폐쇄 위치에 있거나 상기 폐쇄 위치로 이동할 때 상기 태양 전지의 상기 표면의 제1 단부에서의 힘이 상기 태양 전지의 상기 표면의 제2 단부에서의 힘과 상이한, 접합 장치.
  2. 청구항 1에 있어서, 상기 작동 메커니즘이 상기 접합 장치를 상기 개방 위치에서 상기 폐쇄 위치로 이동시킬 때 상기 제1 플레이트 및 상기 제2 플레이트가 서로 평행하지 않는, 접합 장치.
  3. 청구항 1에 있어서, 상기 제1 플레이트 또는 상기 제2 플레이트 중 적어도 하나가 복수의 편중 요소를 포함하며, 상기 복수의 편중 요소에서의 제1 편중 요소는 상기 복수의 편중 요소에서의 제2 편중 요소의 제2 편중력보다 높은 제1 편중력을 갖는, 접합 장치.
  4. 청구항 1에 있어서, 상기 제1 플레이트 또는 상기 제2 플레이트 중 적어도 하나가 압축성 블록의 길이에 걸쳐 밀도 경사를 갖는 상기 압축성 블록을 포함하는, 접합 장치.
  5. 청구항 1에 있어서, 상기 힘은 상기 태양 전지의 상기 표면의 상기 제1 단부에서 상기 제2 단부로 감소되는, 접합 장치.
  6. 청구항 1에 있어서,
    상기 제1 플레이트는 제1 접촉면을 갖고 상기 제2 플레이트는 제2 접촉면을 가지며, 상기 제1 접촉면 및 상기 제2 접촉면은 상기 폐쇄 위치에서 상기 태양 전지의 상기 제1 표면 및 상기 제2 표면과 각각 접촉하고;
    상기 제1 접촉면은 상기 제1 접촉면에 걸쳐 제1 일정 온도로 작동하도록 구성되며;
    상기 제2 접촉면은 상기 제2 접촉면에 걸쳐 제2 일정 온도로 작동하도록 구성되는, 접합 장치.
  7. 청구항 1에 있어서, 상기 제2 플레이트는:
    기판;
    상기 기판에 결합되는 메쉬; 및
    상기 메쉬에 결합되는 열 전도 시트로서, 상기 태양 전지로 지향되는, 상기 열 전도 시트를 포함하는, 접합 장치.
  8. 청구항 1에 있어서, 상기 제1 플레이트 및 상기 제2 플레이트에 유동 결합되는(fluidly coupled) 가스원을 더 포함하며;
    상기 제1 플레이트 및 상기 제2 플레이트는 각각 상기 제1 플레이트가 상기 폐쇄 위치에 있을 때 상기 가스원에서 상기 태양 전지로 가스를 전달하도록 구성된 유동관들을 포함하는, 접합 장치.
  9. 접합 장치로서,
    열원;
    상기 열원에 결합되는 제1 플레이트로서, 열 전도성이고 태양 전지의 제1 표면 전체를 커버하도록 구성되는, 상기 제1 플레이트;
    제2 플레이트로서, 열 전도성이고 상기 제1 표면에 반대측의 상기 태양 전지의 제2 표면 전체를 커버하도록 구성되는, 상기 제2 플레이트; 및
    상기 접합 장치를 개방 위치와 폐쇄 위치 사이에서 이동시키도록 구 성된 작동 메커니즘으로서, 상기 개방 위치에서는 상기 제1 플레이트 및 상기 제2 플레이트가 떨어져 있고, 상기 폐쇄 위치에서는 상기 제1 플레이트 및 상기 제2 플레이트가 상기 태양 전지의 상기 제1 표면 및 상기 제2 표면과 각각 접촉하는, 상기 작동 메커니즘을 포함하며;
    상기 제1 플레이트 및 상기 제2 플레이트는 상기 폐쇄 위치에 있을 때 서로 상이한 온도들로 작동하도록 구성되고;
    상기 제1 플레이트 및 상기 제2 플레이트는 상기 태양 전지의 표면에 힘을 가하도록 구성되며, 상기 접합 장치가 상기 폐쇄 위치에 있거나 상기 폐쇄 위치로 이동할 때 상기 태양 전지의 상기 표면의 제1 단부에서의 힘이 상기 태양 전지의 상기 표면의 제2 단부에서의 힘과 상이한, 접합 장치.
  10. 청구항 9에 있어서, 상기 작동 메커니즘이 상기 접합 장치를 상기 개방 위치에서 상기 폐쇄 위치로 이동시킬 때 상기 제1 플레이트 및 상기 제2 플레이트가 서로 평행하지 않는, 접합 장치.
  11. 청구항 9에 있어서, 상기 제1 플레이트 또는 상기 제2 플레이트 중 적어도 하나가 복수의 편중 요소를 포함하며, 상기 복수의 편중 요소에서의 제1 편중 요소는 상기 복수의 편중 요소에서의 제2 편중 요소의 제2 편중력보다 높은 제1 편중력을 갖는, 접합 장치.
  12. 청구항 9에 있어서, 상기 제1 플레이트 또는 상기 제2 플레이트 중 적어도 하나가 압축성 블록의 길이에 걸쳐 밀도 경사를 갖는 상기 압축성 블록을 포함하는, 접합 장치.
  13. 청구항 9에 있어서, 상기 힘은 상기 태양 전지의 상기 표면의 상기 제1 단부에서 상기 제2 단부로 감소되는, 접합 장치.
  14. 청구항 9에 있어서, 상기 제2 플레이트에 결합되는 제2 열원을 더 포함하는, 접합 장치.
  15. 청구항 9에 있어서,
    상기 제1 플레이트는 제1 접촉면을 갖고 상기 제2 플레이트는 제2 접촉면을 가지며, 상기 제1 접촉면 및 상기 제2 접촉면은 상기 폐쇄 위치에서 상기 태양 전지의 상기 제1 표면 및 상기 제2 표면과 각각 접촉하고;
    상기 제1 접촉면은 상기 제1 접촉면에 걸쳐 제1 일정 온도로 작동하도록 구성되며;
    상기 제2 접촉면은 상기 제2 접촉면에 걸쳐 제2 일정 온도로 작동하도록 구성되는, 접합 장치.
  16. 청구항 9에 있어서, 상기 제2 플레이트는:
    기판;
    상기 기판에 결합되는 메쉬; 및
    상기 메쉬에 결합되는 열 전도 시트로서, 상기 태양 전지로 지향되는, 상기 열 전도 시트를 포함하는, 접합 장치.
  17. 접합 장치로서,
    열원;
    상기 열원에 결합되는 제1 플레이트로서, 열 전도성이고 태양 전지의 제1 표면 전체를 커버하도록 구성되는, 상기 제1 플레이트;
    제2 플레이트로서, 열 전도성이고 상기 제1 표면에 반대측의 상기 태양 전지의 제2 표면 전체를 커버하도록 구성되는, 상기 제2 플레이트; 및
    상기 접합 장치를 개방 위치와 폐쇄 위치 사이에서 이동시키도록 구 성된 작동 메커니즘으로서, 상기 개방 위치에서는 상기 제1 플레이트 및 상기 제2 플레이트가 떨어져 있고, 상기 폐쇄 위치에서는 상기 제1 플레이트 및 상기 제2 플레이트가 상기 태양 전지의 상기 제1 표면 및 상기 제2 표면과 각각 접촉하는, 상기 작동 메커니즘을 포함하며;
    상기 제2 플레이트는 상기 제1 플레이트가 상기 폐쇄 위치에 있을 때 상기 제2 플레이트가 상기 제1 플레이트보다 더 낮은 온도를 갖도록 열을 소산시키도록 구성되고;
    상기 제1 플레이트 및 상기 제2 플레이트는 상기 접합 장치가 상기 폐쇄 위치에 있거나 상기 폐쇄 위치로 이동할 때 상기 태양 전지의 표면의 제2 단부에서보다 상기 태양 전지의 상기 표면의 제1 단부에서 더 높은 힘을 가하도록 구성되는, 접합 장치.
  18. 청구항 17에 있어서, 상기 작동 메커니즘이 상기 접합 장치를 상기 개방 위치에서 상기 폐쇄 위치로 이동시킬 때 상기 제1 플레이트 및 상기 제2 플레이트가 서로 평행하지 않으며, 상기 제1 플레이트는 상기 태양 전지의 상기 표면의 상기 제1 단부 부근에서 상기 제2 플레이트에 더 가까운, 접합 장치.
  19. 청구항 17에 있어서, 상기 제1 플레이트 또는 상기 제2 플레이트 중 적어도 하나가 복수의 편중 요소를 포함하며, 상기 태양 전지의 상기 표면의 상기 제1 단부 부근 상기 복수의 편중 요소에서의 제1 편중 요소가 상기 태양 전지의 상기 표면의 상기 제2 단부 부근 상기 복수의 편중 요소에서의 제2 편중 요소의 제2 편중력보다 높은 제1 편중력을 갖는, 접합 장치.
  20. 청구항 17에 있어서, 상기 제1 플레이트 또는 상기 제2 플레이트 중 적어도 하나가 상기 태양 전지의 상기 표면의 상기 제2 단부 부근 제2 밀도보다 더 높은 상기 태양 전지의 상기 표면의 상기 제1 단부 부근 제1 밀도를 갖는 압축성 블록을 포함하는, 접합 장치.
  21. 청구항 1에 있어서, 상기 접합 장치가 폐쇄 위치로 이동하고 있을 때, 상기 태양 전지의 전면(front side) 상의 땜납 및 상기 태양 전지의 후면(back side) 상의 땜납이 상기 태양 전지의 상기 표면의 상기 제2 단부를 향하여 흐르는, 접합 장치.
  22. 청구항 1에 있어서, 상기 열원은 적외선 열원인, 접합 장치.
  23. 청구항 9에 있어서, 상기 열원은 적외선 열원인, 접합 장치.
  24. 청구항 17에 있어서, 상기 열원은 적외선 열원인, 접합 장치.
KR1020197038608A 2016-06-27 2017-12-20 태양 전지 접합 KR102527371B1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201662354976P 2016-06-27 2016-06-27
US15/627,890 US10411152B2 (en) 2016-06-27 2017-06-20 Solar cell bonding
US15/627,890 2017-06-20
PCT/US2017/067608 WO2018236417A1 (en) 2016-06-27 2017-12-20 BINDING OF SOLAR CELLS

Publications (2)

Publication Number Publication Date
KR20200010512A KR20200010512A (ko) 2020-01-30
KR102527371B1 true KR102527371B1 (ko) 2023-04-28

Family

ID=60677915

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020197038608A KR102527371B1 (ko) 2016-06-27 2017-12-20 태양 전지 접합

Country Status (9)

Country Link
US (1) US10411152B2 (ko)
EP (1) EP3642886B1 (ko)
JP (1) JP7100673B2 (ko)
KR (1) KR102527371B1 (ko)
CN (1) CN110785858B (ko)
PH (1) PH12019550277A1 (ko)
SG (1) SG11201911765QA (ko)
TW (1) TWI760409B (ko)
WO (1) WO2018236417A1 (ko)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009238959A (ja) 2008-03-26 2009-10-15 Sanyo Electric Co Ltd 圧着装置及び太陽電池モジュールの製造方法
JP2012248639A (ja) 2011-05-26 2012-12-13 Hitachi High-Technologies Corp 導電性フィルム貼付ユニット及び太陽電池モジュール組立装置

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4909429A (en) 1987-03-30 1990-03-20 Westinghouse Electric Corp. Method and apparatus for solder deposition
US8138413B2 (en) 2006-04-13 2012-03-20 Daniel Luch Collector grid and interconnect structures for photovoltaic arrays and modules
JP2000323505A (ja) 1999-05-12 2000-11-24 Casio Comput Co Ltd ボンディングヘッド
JP2001051284A (ja) * 1999-08-10 2001-02-23 Matsushita Electric Ind Co Ltd 液晶表示装置製造装置
TW516081B (en) * 2001-01-15 2003-01-01 Lintec Corp Bonding apparatus and bonding method
DE10210521A1 (de) 2002-03-09 2003-09-18 Hans Thoma Verfahren und Vorrichtung zum Herstellen von Solarmodulen
US20040112424A1 (en) * 2002-10-03 2004-06-17 Daido Steel Co., Ltd. Solar cell assembly, and photovoltaic solar electric generator of concentrator type
JP2005088237A (ja) * 2003-09-12 2005-04-07 Riso Kagaku Corp 太陽熱製版装置
JP2006147887A (ja) 2004-11-19 2006-06-08 Nisshinbo Ind Inc 太陽電池用タブリードのハンダ付け方法並びにそのための装置
DE102006006715B4 (de) 2005-02-18 2016-10-20 Komax Holding Ag Vorrichtung und Verfahren zum Ausrichten und Befestigen eines Bandes an einer Solarzelle
US7799182B2 (en) 2006-12-01 2010-09-21 Applied Materials, Inc. Electroplating on roll-to-roll flexible solar cell substrates
DE102006058493B4 (de) 2006-12-12 2012-03-22 Erich Thallner Verfahren und Vorrichtung zum Bonden von Wafern
WO2008121293A2 (en) * 2007-03-29 2008-10-09 Baldwin Daniel F Solar module manufacturing processes
EP2253011B1 (en) * 2008-03-14 2014-04-23 Dow Corning Corporation Method of forming a photovoltaic cell module
NL2001958C (en) * 2008-09-05 2010-03-15 Stichting Energie Method of monolithic photo-voltaic module assembly.
DE102008049220B4 (de) 2008-09-27 2015-11-19 Solarworld Innovations Gmbh Halbleiterbauelement mit Kontakten aus einlegierten Metalldrähten
JP2011096792A (ja) * 2009-10-28 2011-05-12 Hitachi High-Technologies Corp 太陽電池パネルの実装装置
DE102010016476B4 (de) 2010-04-16 2022-09-29 Meyer Burger (Germany) Gmbh Verfahren zum Aufbringen von Kontaktdrähten auf eine Oberfläche einer Photovoltaikzelle, Photovoltaikzelle, Photovoltaikmodul, Anordnung zum Aufbringen von Kontaktdrähten auf eine Oberfläche einer Photovoltaikzelle
DE102010016771B4 (de) 2010-05-04 2017-08-24 Solarworld Innovations Gmbh Verfahren zum Fixieren eines Photovoltaik-Zellenverbinders auf einer Oberfläche einer Photovoltaik-Zelle
JP5604236B2 (ja) 2010-09-07 2014-10-08 デクセリアルズ株式会社 太陽電池モジュールの製造方法、太陽電池セルの接続装置、太陽電池モジュール
US9029689B2 (en) * 2010-12-23 2015-05-12 Sunpower Corporation Method for connecting solar cells
DE102011104159A1 (de) * 2011-06-14 2012-12-20 Institut Für Solarenergieforschung Gmbh Verfahren zum elektrischen verbinden mehrerer solarzellen und photovoltaikmodul
EP2546889B1 (en) * 2011-07-12 2020-06-17 Airbus Defence and Space GmbH Solar cell assembly and method of fabrication of solar cell assembly
JP5485958B2 (ja) * 2011-09-16 2014-05-07 東京エレクトロン株式会社 接合方法、プログラム、コンピュータ記憶媒体、接合装置及び接合システム
US8328077B1 (en) 2011-11-01 2012-12-11 Flextronics Ap, Llc PV cell mass reflow
WO2014096924A1 (en) * 2012-12-21 2014-06-26 Meyer Burger Ag Laminator for solar modules using a tube like pressing member
KR101553801B1 (ko) * 2013-03-29 2015-09-30 도오꾜오까고오교 가부시끼가이샤 첩부 방법
US10121760B2 (en) * 2013-11-01 2018-11-06 Nikon Corporation Wafer bonding system and method
US9282650B2 (en) 2013-12-18 2016-03-08 Intel Corporation Thermal compression bonding process cooling manifold
WO2015118592A1 (ja) * 2014-02-06 2015-08-13 パナソニックIpマネジメント株式会社 太陽電池セルおよび太陽電池セルの製造方法
US9818903B2 (en) * 2014-04-30 2017-11-14 Sunpower Corporation Bonds for solar cell metallization
KR102445060B1 (ko) * 2014-10-17 2022-09-20 본드테크 가부시키가이샤 기판끼리의 접합 방법, 기판 접합 장치
US10319874B2 (en) * 2014-10-27 2019-06-11 Zeus Co., Ltd. Wire setting apparatus of tabbing apparatus and wire setting method using same
WO2016067516A1 (ja) 2014-10-27 2016-05-06 パナソニックIpマネジメント株式会社 太陽電池モジュールの製造方法、及び太陽電池モジュールの製造装置
US9515108B2 (en) 2015-03-11 2016-12-06 Semiconductor Components Industries, Llc Image sensors with contamination barrier structures
US9722103B2 (en) 2015-06-26 2017-08-01 Sunpower Corporation Thermal compression bonding approaches for foil-based metallization of solar cells

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009238959A (ja) 2008-03-26 2009-10-15 Sanyo Electric Co Ltd 圧着装置及び太陽電池モジュールの製造方法
JP2012248639A (ja) 2011-05-26 2012-12-13 Hitachi High-Technologies Corp 導電性フィルム貼付ユニット及び太陽電池モジュール組立装置

Also Published As

Publication number Publication date
WO2018236417A1 (en) 2018-12-27
EP3642886A4 (en) 2020-11-11
EP3642886B1 (en) 2024-05-08
TW201906191A (zh) 2019-02-01
CN110785858B (zh) 2023-07-04
JP2020524411A (ja) 2020-08-13
CN110785858A (zh) 2020-02-11
EP3642886A1 (en) 2020-04-29
SG11201911765QA (en) 2020-01-30
JP7100673B2 (ja) 2022-07-13
TWI760409B (zh) 2022-04-11
US10411152B2 (en) 2019-09-10
US20170373217A1 (en) 2017-12-28
PH12019550277A1 (en) 2021-01-04
KR20200010512A (ko) 2020-01-30

Similar Documents

Publication Publication Date Title
US20090014046A1 (en) Flexible thermoelectric device and manufacturing method thereof
EP1253685B1 (en) Cooling device, semiconductor laser light source device, and semiconductor laser light source unit
JP6533579B2 (ja) 電気構成部品のはんだ付け接続を行うための熱伝達装置
KR102619339B1 (ko) 태양 전지 상호연결부
CN109496366B (zh) 电池到电池互连件
US20070079862A1 (en) Solar battery module production method and solar battery module production apparatus
US20170066075A1 (en) Pressure applying unit
WO2014062559A2 (en) Structures and methods for multi-leg package thermoelectric devices
KR20210107649A (ko) 기판 상의 전자 부품들을 신터링하기 위한 신터링 프레스
WO2015157161A1 (en) Flexible lead frame for multi-leg package assembly
US20070226995A1 (en) System and method for adhering large semiconductor applications to pcb
US11232995B2 (en) Semiconductor device
JP2010114208A (ja) 冷却装置および接合システム
KR102527371B1 (ko) 태양 전지 접합
US4364508A (en) Method of fabricating a solar cell array
KR101976175B1 (ko) 화합물 태양전지 모듈 및 그 제조 방법
US20080079109A1 (en) Thermoelectric device and method for making the same
KR20100125987A (ko) 태양전지 셀의 리본 부착용 가열 장치
US6927086B2 (en) Method and apparatus for laser diode assembly and array
JP2019125663A (ja) 保持装置
KR101358348B1 (ko) 나사 조립식 단자대를 갖는 반도체 가열장치
JP4723109B2 (ja) 太陽電池モジュールの製造方法および太陽電池モジュール製造用治具
KR101935687B1 (ko) 라미네이터
CN112840751A (zh) 用于电路板的传导冷却
KR102219056B1 (ko) 중첩된 태양전지 모듈에 리본을 부착하는 방법

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant