KR102507790B1 - 코일 부품 - Google Patents

코일 부품 Download PDF

Info

Publication number
KR102507790B1
KR102507790B1 KR1020187008374A KR20187008374A KR102507790B1 KR 102507790 B1 KR102507790 B1 KR 102507790B1 KR 1020187008374 A KR1020187008374 A KR 1020187008374A KR 20187008374 A KR20187008374 A KR 20187008374A KR 102507790 B1 KR102507790 B1 KR 102507790B1
Authority
KR
South Korea
Prior art keywords
coil
core
core member
circumferential surface
magnetic
Prior art date
Application number
KR1020187008374A
Other languages
English (en)
Other versions
KR20180048771A (ko
Inventor
유키 아베
타카시 얀베
타쿠야 엔도우
히데히코 오이카와
마사히로 콘도
케이스케 아카키
Original Assignee
가부시키가이샤 토킨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가부시키가이샤 토킨 filed Critical 가부시키가이샤 토킨
Publication of KR20180048771A publication Critical patent/KR20180048771A/ko
Application granted granted Critical
Publication of KR102507790B1 publication Critical patent/KR102507790B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/04Fixed inductances of the signal type  with magnetic core
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/255Magnetic cores made from particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/30Fastening or clamping coils, windings, or parts thereof together; Fastening or mounting coils or windings on core, casing, or other support
    • H01F27/306Fastening or mounting coils or windings on core, casing or other support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/08Cores, Yokes, or armatures made from powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/10Composite arrangements of magnetic circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F37/00Fixed inductances not covered by group H01F17/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/10Composite arrangements of magnetic circuits
    • H01F2003/106Magnetic circuits using combinations of different magnetic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/04Fixed inductances of the signal type  with magnetic core
    • H01F17/045Fixed inductances of the signal type  with magnetic core with core of cylindric geometry and coil wound along its longitudinal axis, i.e. rod or drum core
    • H01F2017/046Fixed inductances of the signal type  with magnetic core with core of cylindric geometry and coil wound along its longitudinal axis, i.e. rod or drum core helical coil made of flat wire, e.g. with smaller extension of wire cross section in the direction of the longitudinal axis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/04Fixed inductances of the signal type  with magnetic core
    • H01F2017/048Fixed inductances of the signal type  with magnetic core with encapsulating core, e.g. made of resin and magnetic powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/10Composite arrangements of magnetic circuits
    • H01F3/14Constrictions; Gaps, e.g. air-gaps

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Dispersion Chemistry (AREA)
  • Coils Of Transformers For General Uses (AREA)
  • Coils Or Transformers For Communication (AREA)

Abstract

코일 부품은, 내주면과, 외주면과, 이들에 연속하는 한 쌍의 단면(端面)을 가지는 코일과, 코일의 주위를 둘러싸는 코어를 가진다. 코일 부품을 상기 코일의 감김 축(捲軸)과 코어 내를 주회(周回)하는 자로를 포함하는 평면으로 절단한 단면(斷面)에 있어서, 상기 코일의 단면의 각각의 주위를 내주면, 외주면 및 단면(端面)을 따른 4개의 직선(31∼34)에 의해 8개의 영역(41∼48)으로 구분하였을 때, 코어로서, 코너(角)에 위치하는 4개의 영역(41, 43, 45, 47)에 각각 제1 코어 부재가 배치되고, 내주면의 내측에 위치하는 영역(42) 및 상기 외주면의 외측에 위치하는 영역(46)에 각각 제2 코어 부재가 배치되고, 또한 상기 단면(端面)의 외측에 위치하는 영역에 각각 제3 코어 부재가 배치된다. 제2 코어 부재 및 제3 코어 부재 중 적어도 일방(一方)은, 영자계(零磁界)에 있어서 제1 코어 부재보다도 낮은 투자율을 가지고 있다. 상기 구성에 의해, 자기저항부로부터의 자속 누설로 인한 교류 동손(copper loss, 銅損)의 증가를 억제한다.

Description

코일 부품
[0001] 본 발명은, 코어와 코어의 내부에 매설된 코일을 구비하는 코일 부품에 관한 것이다.
[0002] 예컨대, 특허 문헌 1에는, 이러한 타입의 리액터(reactor(코일 부품))가 개시되어 있다. 또한, 특허 문헌 2에는, 타입은 다르지만, 비투자율(比透磁率)이 상이한 코어 부재를 조합하여 구성된 리액터용 코어가 개시되어 있다.
[0003] 특허 문헌 1에 개시된 리액터는, 제1 코어부와, 제1 코어부의 외측에 배치되는 코일과, 코일의 외측에 배치되는 제2 코어부와, 코일의 양 단면(端面)을 덮도록, 제1 및 제2 코어부를 서로 연결하는 연결 코어부를 구비하고 있다. 그리고, 제2 코어부는, 제1 코어부에 비해 큰 최대 투자율을 가지고 있다.
[0004] 또한, 특허 문헌 2에 개시된 리액터용 코어는, 코일로 덮이는 한 쌍의 코일 배치부와, 코일로 덮이지 않는 한 쌍의 노출부를 구비하고 있다. 그리고, 노출부는, 코일 배치부보다도 비투자율이 높아지도록 구성되어 있다.
[0005] 1. 일본 특허공개공보 제2011-138939호 2. 일본 특허공개공보 제2012-089899호
[0006] 차재용(車載用) 리액터 등의 코일 부품에서는, 자기 포화를 완화하기 위해 자기회로 중에 자기저항부를 설치할 필요가 있다. 그러나, 자기저항부는 자속 누설의 원인이 되어, 교류 동손(copper loss, 銅損)을 증가시킨다는 문제점이 있다. 그리고, 특허 문헌 1 및 특허 문헌 2에는, 자기저항부로부터의 자속 누설로 인한 교류 동손에 대해 전혀 개시되어 있지 않다.
[0007] 따라서, 본 발명은, 자기저항부로부터의 자속 누설로 인한 교류 동손을 저감시킨 코일 부품을 제공하는 것을 목적으로 한다.
[0008] 본 발명의 제1의 측면은, 제1 코일 부품으로서, 내주면과, 외주면과, 상기 내주면 및 상기 외주면에 연속하는 한 쌍의 단면(端面)을 가지는 코일과, 상기 코일의 주위의 적어도 일부를 둘러싸는 코어를 가지는 코일 부품이며, 상기 코일 부품을 상기 코일의 감김 축(捲軸)과 상기 코어 내를 주회(周回)하는 자로(磁路)를 포함하는 평면으로 절단한 단면(斷面)에 있어서, 상기 코일의 단면(斷面)의 각각의 주위를 상기 내주면, 상기 외주면 및 상기 단면(端面)을 따른 4개의 직선에 의해 8개의 영역으로 구분하였을 때, 상기 코어로서, 코너(角)에 위치하는 4개의 영역에 각각 제1 코어 부재가 배치되고, 상기 내주면의 내측에 위치하는 영역 및 상기 외주면의 외측에 위치하는 영역에 각각 제2 코어 부재가 배치되고, 또한 상기 단면(端面)의 외측에 위치하는 영역에 각각 제3 코어 부재가 배치되어 있으며, 상기 제2 코어 부재 및 상기 제3 코어 부재 중 적어도 일방(一方)은, 영자계(零磁界)에 있어서 상기 제1 코어 부재보다도 낮은 투자율을 가지고 있는 코일 부품을 제공한다.
[0009] 또한, 본 발명의 제2의 측면은, 제2 코일 부품으로서, 제1 코일 부품이며, 상기 제2 코어 부재는, 영자계에 있어서 상기 제1 코어 부재보다도 낮은 투자율을 가지며, 상기 제3 코어 부재는, 적어도 일부가 상기 제2 코어 부재와 동일한 재료로 구성되어 있는 코일 부품을 제공한다.
[0010] 또한, 본 발명의 제3의 측면은, 제3 코일 부품으로서, 제1 코일 부품이며, 상기 제2 코어 부재는, 영자계에 있어서 상기 제1 코어 부재보다도 낮은 투자율을 가지며, 상기 제3 코어 부재는, 상기 제1 코어 부재와 동일한 재료로 구성되어 있는 코일 부품을 제공한다.
[0011] 또한, 본 발명의 제4의 측면은, 제4 코일 부품으로서, 제2 또는 제3 코일 부품이며, 상기 코일의 내주측에 배치된 상기 제2 코어 부재 중에 비자성(非磁性) 갭이 삽입되어 있는 코일 부품을 제공한다.
[0012] 또한, 본 발명의 제5의 측면은, 제5 코일 부품으로서, 제2 내지 제4 코일 부품 중 어느 하나이며, 상기 제3 코어 부재의 적어도 일부가 비자성 갭으로 치환되어 있는 코일 부품을 제공한다.
[0013] 또한, 본 발명의 제6의 측면은, 제6 코일 부품으로서, 제2 내지 제 5 코일 부품 중 어느 하나이며, 상기 코일은, 평각선(平角線)을 나선 형상으로 감은 엣지 와이즈 코일(edgewise coil)인 코일 부품을 제공한다.
[0014] 또한, 본 발명의 제7의 측면은, 제7 코일 부품으로서, 제6 코일 부품이며, 상기 평각선은, 표피 깊이보다도 큰 두께를 가지고 있는 코일 부품을 제공한다.
[0015] 또한, 본 발명의 제8의 측면은, 제8 코일 부품으로서, 제6 또는 제7 코일 부품이며, 상기 코일은, 감김 열(捲列)의 수가 10 이하인 코일 부품을 제공한다.
[0016] 나아가, 본 발명의 제9의 측면은, 제9 코일 부품으로서, 제8 코일 부품이며, 상기 코일은, 감김 열의 수가 2 이하인 코일 부품을 제공한다.
[0017] 나아가, 본 발명의 제10의 측면은, 제10 코일 부품으로서, 제2 내지 제 9 코일 부품 중 어느 하나이며, 상기 제1 코어 부재는, 압분(壓粉) 코어이며, 상기 제2 코어 부재는, 자성체와 수지를 포함하는 혼합물을 경화(硬化)한 것인 코일 부품을 제공한다.
[0018] 또한, 본 발명의 제11의 측면은, 제11 코일 부품으로서, 제1 코일 부품이며, 상기 제3 코어 부재는, 영자계에 있어서 상기 제1 코어 부재보다도 낮은 투자율을 가지며, 상기 제2 코어 부재는, 적어도 일부가 상기 제3 코어 부재와 동일한 재료로 구성되어 있는 코일 부품을 제공한다.
[0019] 또한, 본 발명의 제12의 측면은, 제12 코일 부품으로서, 제1 코일 부품이며, 상기 제3 코어 부재는, 영자계에 있어서 상기 제1 코어 부재보다도 낮은 투자율을 가지며, 상기 제2 코어 부재는, 상기 제1 코어 부재와 동일한 재료로 구성되어 있는 코일 부품을 제공한다.
[0020] 나아가, 본 발명의 제13의 측면은, 제13 코일 부품으로서, 제11 또는 제12 코일 부품이며, 상기 코일은, 평각선을 소용돌이 형상으로 감은 플랫 와이즈 코일(flatwise coil)인 코일 부품을 제공한다.
[0021] 코일 부품을 코일의 감김 축과 코어 내를 주회하는 자로를 포함하는 평면으로 절단한 단면(斷面)에 있어서, 코일의 단면(斷面)의 각각의 주위를 8개의 영역으로 구분하여, 코너에 위치하는 4개의 영역에 각각 제1 코어 부재를 배치한다. 또한, 내주면의 내측에 위치하는 영역 및 외주면 외측의 영역에 각각 제2 코어 부재를 배치하고, 단면(端面)의 외측에 위치하는 영역에 각각 제3 코어 부재를 배치한다. 그리고, 제2 코어 부재 및 제3 코어 부재 중 적어도 일방으로서, 제1 코어 부재보다도 영자계에 있어서의 투자율이 낮은 코어 부재를 이용한다. 상기 구성으로, 코일로의 자속의 누설을 저감하여, 교류 동손을 저감할 수 있다.
[0022] 첨부 도면을 참조하면서 하기의 최선의 실시형태의 설명을 검토함으로써, 본 발명의 목적이 올바르게 이해되고, 또한 그 구성에 대해 보다 완전하게 이해될 것이다.
[0023] 도 1은 각선(角線)을 감은 코일에 있어서 통전(通電)에 의해 생기는 교류 동손의 분포를 자속과 함께 나타낸 도면이다.
도 2는 도 1의 코일을 수직 방향의 외부 자계 중에 두었을 경우에 통전에 의해 생기는 교류 동손의 분포를 자속과 함께 나타낸 도면이다.
도 3은 평각선을 그 단면(斷面)에 있어서의 장변(長邊)이 감김 축과 평행이 되도록 소용돌이 형상으로 감은 코일(플랫 와이즈 코일)에 있어서 통전에 의해 생기는 교류 동손의 분포를 자속과 함께 나타낸 도면이다.
도 4는 도 3의 코일을 수직 방향의 외부 자계 중에 두었을 경우에 통전에 의해 생기는 교류 동손의 분포를 자속과 함께 나타낸 도면이다.
도 5는 평각선을 그 단면에 있어서의 장변이 감김 축에 수직이 되도록 나선 형상으로 감은 코일(엣지 와이즈 코일)에 있어서 통전에 의해 생기는 교류 동손의 분포를 자속과 함께 나타낸 도면이다.
도 6은 도 5의 코일을 수직 방향의 외부 자계 중에 두었을 경우에 통전에 의해 생기는 교류 동손의 분포를 자속과 함께 나타낸 도면이다.
도 7의 (a)는 한 개의 도전선의 주위에 단면(斷面) 형상이 대략 정사각형인 코어를 배치한 경우에 있어서의 통전에 의해 생기는 자계(자속)를 나타낸 도면이고, (b)는 그 부분 확대도이다.
도 8은 한 개의 도전선의 주위에 단면 형상이 대략 정사각형인 한 쌍의 코어를 배치한 경우에 있어서의 통전에 의해 생기는 자계(자속)를 나타낸 도면이다.
도 9는 한 개의 도전선의 주위에 도 8의 코어와는 구성이 상이한 다른 한 쌍의 코어를 배치한 경우에 있어서의 통전에 의해 생기는 자계(자속)를 나타낸 도면이다.
도 10의 (a)는 한 개의 도전선의 주위에 단면 형상이 직사각형인 코어를 배치한 경우에 있어서의 통전에 의해 생기는 자계(자속)를 나타낸 도면이고, (b)는 그 부분 확대도이다.
도 11은 한 개의 도전선의 주위에 단면 형상이 직사각형인 한 쌍의 코어를 배치한 경우에 있어서의 통전에 의해 생기는 자계(자속)를 나타낸 도면이다.
도 12는 한 개의 도전선의 주위에 도 11의 코어와는 구성이 상이한 다른 한 쌍의 코어를 배치한 경우에 있어서의 통전에 의해 생기는 자계(자속)를 나타낸 도면이다.
도 13은 코어에 매설된 엣지 와이즈 코일에 있어서 통전에 의해 생기는 자속 분포를 자속과 함께 나타낸 도면이다. 코어는 일방의 단면(端面)을 제외하고 코일의 주위를 둘러싸는 비교적 낮은 투자율을 가지는 하부 코어와, 일방의 단면을 덮도록 하부 코어 상에 설치된 비교적 높은 투자율을 가지는 상부 코어로 구성되어 있다.
도 14의 (a)는 제1 코일 부품의 대략 좌측 절반의 개략적인 구성을 나타낸 부분 단면도이고, (b)는 (a)의 코일 부품에 포함되는 코일로의 통전에 의해 생기는 자속 분포를 나타낸 도면이고, (c)는 (a)의 코일 부품에 포함되는 코일에 있어서의 교류 동손부 분포를 나타낸 도면이다.
도 15의 (a)는 제2 코일 부품의 대략 좌측 절반의 개략적인 구성을 나타낸 부분 단면도이고, (b)는 (a)의 코일 부품에 포함되는 코일로의 통전에 의해 생기는 자속 분포를 나타낸 도면이고, (c)는 (a)의 코일 부품에 포함되는 코일에 있어서의 교류 동손부 분포를 나타낸 도면이다.
도 16의 (a)는 제3 코일 부품의 대략 좌측 절반의 개략적인 구성을 나타낸 부분 단면도이고, (b)는 (a)의 코일 부품에 포함되는 코일로의 통전에 의해 생기는 자속 분포를 나타낸 도면이고, (c)는 (a)의 코일 부품에 포함되는 코일에 있어서의 교류 동손부 분포를 나타낸 도면이다.
도 17의 (a)는 제4 코일 부품의 대략 좌측 절반의 개략적인 구성을 나타낸 부분 단면도이고, (b)는 (a)의 코일 부품에 포함되는 코일로의 통전에 의해 생기는 자속 분포를 나타낸 도면이고, (c)는 (a)의 코일 부품에 포함되는 코일에 있어서의 교류 동손부 분포를 나타낸 도면이다.
도 18의 (a)는 제5 코일 부품의 대략 좌측 절반의 개략적인 구성을 나타낸 부분 단면도이고, (b)는 (a)의 코일 부품에 포함되는 코일로의 통전에 의해 생기는 자속 분포를 나타낸 도면이고, (c)는 (a)의 코일 부품에 포함되는 코일에 있어서의 교류 동손부 분포를 나타낸 도면이다.
도 19의 (a)는 제6 코일 부품의 대략 좌측 절반의 개략적인 구성을 나타낸 부분 단면도이고, (b)는 (a)의 코일 부품에 포함되는 코일로의 통전에 의해 생기는 자속 분포를 나타낸 도면이고, (c)는 (a)의 코일 부품에 포함되는 코일에 있어서의 교류 동손부 분포를 나타낸 도면이다.
도 20의 (a)는 제7 코일 부품의 대략 좌측 절반의 개략적인 구성을 나타낸 부분 단면도이고, (b)는 (a)의 코일 부품에 포함되는 코일로의 통전에 의해 생기는 자속 분포를 나타낸 도면이고, (c)는 (a)의 코일 부품에 포함되는 코일에 있어서의 교류 동손부 분포를 나타낸 도면이다.
도 21은 코일의 감김 열의 수와 교류 동손과의 관계를 나타낸 그래프이다. 코어로서 압분 코어를 이용한 경우, 주형(注型) 코어를 이용한 경우 및 압분 코어와 주형 코어의 조합(하이브리드)을 이용한 경우를 나타내고 있다.
도 22의 좌측 도면은 코일의 구성과 코일에 흐르는 전류의 방향을 나타낸 도면이고, 우측 도면은 코일로의 통전에 의해 생기는 자계를 나타낸 도면이다.
도 23의 좌측 도면은 코일의 내부에 이론상 발생할 수 있는 와전류의 방향을 나타낸 도면이고, 우측 도면은 코일 내부에 실제로 생기는 와전류에 유래하는 전류의 방향을 나타낸 도면이다.
도 24의 좌측 도면은 코일의 내부에 생기는 와전류에 유래하는 전류의 방향을 나타낸 도면이고, 우측 도면은 중앙부의 전류는 작기 때문에 무시할 수 있음을 나타낸 도면이다.
도 25의 좌측 도면은 코일의 구성과 코일로의 통전에 의해 생기는 자계를 나타낸 도면이고, 우측 도면은 코일의 내부에 생기는 와전류의 방향을 나타낸 도면이다.
도 26은 엣지 와이즈 코일 및 플랫 와이즈 코일의 각각의 권선(捲線)의 두께와 손실계수와의 관계를 나타낸 그래프이다.
도 27은 본 발명의 제1 실시형태에 의한 코일 부품의 구조를 나타낸 단면도이다.
도 28은 도 27의 코일 부품의 구조를 더 설명하기 위한 도면이다.
도 29는 도 27에 나타낸 코일 부품의 제조 공정 중 하나의 공정을 설명하기 위한 도면이다.
도 30은 도 29의 공정에 이어지는 하나의 공정을 설명하기 위한 도면이다.
도 31은 도 30의 공정에 이어지는 하나의 공정을 설명하기 위한 도면이다.
도 32는 도 31의 공정에 이어지는 하나의 공정을 설명하기 위한 도면이다.
도 33은 본 발명의 제2 실시형태에 의한 코일 부품에 이용되는 갭재의 하나의 배치예를 나타낸 사시도이다.
도 34는 도 33의 갭재의 배치예를 나타낸 정면도이다.
도 35는 본 발명의 제2 실시형태에 의한 코일 부품에 이용되는 갭재의 다른 배치예를 나타낸 사시도이다.
도 36은 도 35의 갭재의 배치예를 나타낸 정면도이다.
도 37은 본 발명의 제3 실시형태에 의한 코일 부품의 구조를 설명하기 위한 도면이다.
도 38은 본 발명의 제4 실시형태에 의한 코일 부품의 구조를 설명하기 위한 도면이다.
도 39는 본 발명의 제5 실시형태에 의한 코일 부품의 구조를 설명하기 위한 도면이다.
도 40은 본 발명의 제6 실시형태에 의한 코일 부품의 구조를 설명하기 위한 도면이다.
[0024] 본 발명에 대해서는 다양한 변형이나 여러 가지의 형태로 실현하는 것이 가능한데, 이하에서는, 그 일례로서, 도면에 나타낸 바와 같은 특정한 실시형태에 대해 상세히 설명한다. 도면 및 실시형태는, 본 발명을 여기에 개시된 특정한 형태로 한정하는 것이 아니며, 첨부의 청구범위에 명시되어 있는 범위 내에 있어서 이루어지는 모든 변형예, 균등물, 대체예를 그 대상에 포함하는 것으로 한다.
[0025] 본 발명의 이해를 위해, 우선, 발명자가 검토한 사항에 대해 설명한다. 코일에 교류 동손을 일으키게 하는 주된 원인으로서, 표피 효과와 근접 효과가 알려져 있다. 여기서, 표피 효과는, 코일에 흐르는 전류의 주파수가 높아질수록 커진다. 나아가 인접하는 도체와의 작용에 의한 근접 효과도 문제가 된다. 따라서, 발명자는, 교류 동손의 저감에 대해 검토하였다.
[0026] 리액터와 같은 코일 부품은, 코일과 코어를 가진다. 그리고, 코어는, 코일에 근접 효과를 일으키게 하는 원인이 될 수 있다. 코어로서 비교적 높은 투자율을 가지는 것을 이용하면, 코어로부터 코일로의 자속의 누설을 줄일 수 있어, 코어에 기인하는 근접 효과를 억제할 수 있다. 그러나, 코일 부품으로서, 원하는 인덕턴스 특성이나 자기 포화 특성을 얻고자 하는 경우에는, 자기회로 중에 자기저항부를 설치할 필요가 있다. 그리고, 자기저항부는, 코어로부터 코일로의 자속 누설에 의한 교류 저항 손실 증가의 원인이 된다. 또한, 자기저항부로서, 비자성체 갭이나 비교적 낮은 투자율을 가지는 코어 부재가 있다. 비자성체 갭에 의한 자속의 누설은, 갭 주위에 집중하여 발생한다.
[0027] 자기저항부로부터의 누설 자속의 코일에 대한 영향을 알기 위해, 발명자는, 우선, 코일에 대한 외부 자계의 영향에 대해 검토하였다. 코일의 권선(捲線)으로서, 각선(角線)(도 1 및 도 2) 또는 평각선(平角線)(도 3 내지 도 6)을 이용하여 시뮬레이션을 행하였다. 또한, 평각선에 대해서는, 그 단면(斷面)의 장변이 감김 축과 평행이 되도록 소용돌이 형상으로 감은 플랫 와이즈(도 3 및 도 4)와, 단면의 장변이 감김 축에 수직이 되도록 나선 형상으로 감은 엣지 와이즈(도 5 및 도 6)의 2 종류의 감는(捲回) 방식을 채용하였다. 또한, 도 1 내지 도 6에 있어서, 감김 축은 모두 상하 방향으로 연장되며, 코일의 좌측에 위치하고 있다. 즉, 도 1 내지 도 6은, 코일을 그 감김 축을 포함하는 평면으로 절단한 경우에 보여지는 2개의 코일 단면 중 일방(一方)과 그 주변을 나타내고 있다.
[0028] 도 1을 참조하면, 각선을 3층×3열로 감은 코일(111)에서는, 통전에 의해 동심원 형상의 자속(112)으로 나타내어지는 자계가 발생하고 있다. 이 상태에서, 교류 동손이 큰 영역(113)은, 주로, 각 각선의 자계 중심으로부터 먼 측에 형성된다. 한편, 상기 코일(111)을, 도 2에 자속(122)으로 나타내어지는 감김 축 방향을 따른 교류의 외부 자계(수직 자계) 중에 두면, 각선이 형성하는 각 열(列)(상하 방향)의 양측에 교류 동손이 큰 영역(123)이 나타난다. 게다가, 도 2의 영역(123)은, 도 1의 영역(113)과, 그 분포가 상이하다. 참고로, 본 명세서에서는, 코일의 감김 축에 직교하는 방향으로 나란한 도전선의 줄을 「층」이라 부르고, 코일의 감김 축에 평행한 방향으로 나란한 도전선의 줄을 「열(또는 감김 열)」이라 부른다. 또한, 본 명세서에서는, 감김 축을 따른 방향의 자계를, 편의상 「수직 자계」라고 부르지만, 감김 축은 임의의 방향을 향해도 되며, 「수직」은, 중력 방향을 의미하지 않는다.
[0029] 또한, 도 3을 참조하면, 평각선을 9열로 감은 코일(131)에서도, 통전에 의해 동심원 형상의 자속(132)으로 나타내어지는 자계가 발생하고 있다. 이 상태에서, 교류 동손이 큰 영역(133)은, 코일(131)의 중앙부에 위치하는 평각선에서는, 그 단면(斷面)의 단변(短邊)을 따라 나타난다. 또한, 코일(131)의 좌우 양측부(외주측 및 내주측)에 위치하는 평각선에서는, 그 단면의 단변뿐만 아니라 장변을 따라 교류 동손이 큰 영역(133)이 나타나 있다. 그리고, 상기 코일(131)을 감김 축 방향을 따른 교류의 외부 자계(수직 자계) 중에 두면, 도 4에 나타낸 바와 같이, 외부 자계를 나타내는 자속(142)은, 코일 내를 통과하도록 구부러지며, 교류 동손이 큰 영역(143)은, 코일(131)의 중앙부에 위치하는 평각선도 포함하는 모든 평각선에 있어서, 그 단면의 단변 및 장변을 따라 퍼져 있다.
[0030] 도 5를 참조하면, 평각선을 9층으로 감은 코일(151)에서도, 통전에 의해 동심원 형상의 자속(152)으로 나타내어지는 자계가 발생하고 있다. 또한, 이 상태에서는, 코일(131)과 마찬가지로, 교류 동손이 큰 영역(153)이 나타나 있다. 즉, 코일(151)의 중앙부에서는, 교류 동손이 큰 영역(153)은, 평각선의 단면의 단변을 따라 나타난다. 또한, 코일(151)의 상하 양측부에서는, 교류 동손이 큰 영역(153)은, 각 평각선의 단변을 따라 나타나는 동시에, 장변을 따라 나타난다. 그런데, 상기 코일(151)을 감김 축 방향을 따른 외부 자계(수직 자계) 중에 두면, 도 6에 나타낸 바와 같이, 외부 자계의 자속(162)은 코일(151)을 피하도록 구부러지며, 교류 동손이 큰 영역(163)은, 각 평각선의 단면의 단변을 따른 영역으로 축소되어, 장변을 따른 영역에서는 보이지 않게 된다.
[0031] 도 1 내지 도 6으로부터 이하의 내용이 이해된다. 즉, 자속은, 권선(도체)을 관통하기 어렵고, 권선의 표면 또는 권선 간의 경계를 통과하기 쉽다. 또한, 권선 간의 경계에서는, 경계가 연장되어 있는 방향에 따라 자속의 통과 용이성이 상이하다. 자세하게는, 자계의 방향이 권선 간의 경계의 연장되는 방향에 평행(도 4)이면 자속은 권선 간의 경계를 통과하기 쉽고, 자계의 방향이 권선 간의 경계의 연장되는 방향에 수직(도 6)이면 자속은 권선 간의 경계를 통과하기 어렵다.
[0032] 이상으로부터, 코일의 주위에 있어서의 자계의 방향을 제어함으로써 코일로의 자속의 진입(누설)을 억제 또는 저지하며, 그에 따라 코어에 기인하는 교류 저항 손실을 억제할 수 있는 것으로 추측된다.
[0033] 다음으로, 발명자는, 코일 주위의 자계의 방향을 제어하기 위해, 코일 주위에 코어를 배치한 경우의 자계의 변화에 대해 검토하였다. 우선, 도전선이 한 개인 경우에 대해, 도전선에 전류를 흘렸을 때 형성되는 자계 중에 코어를 배치한 경우의 자속의 변화에 대해 검토하였다.
[0034] 도전선이 한 개인 경우, 도전선에 전류를 흘림으로써 형성되는 자계는, 도전선의 길이 방향에 수직인 단면(斷面)을 포함하는 평면에 있어서, 도전선을 중심으로 하는 동심원 형상이 된다. 그 자계 중에 코어를 배치하면, 자속은 투자율이 높은 코어 내를 통과하려고 하여 자속 분포에 변화가 생긴다. 도 7의 (a) 및 도 7의 (b)에 나타낸 바와 같이, 도전선(171)이 형성하는 자계 중에, 단면이 대략 정사각형인 코어(172)를 배치하였다고 하자. 그 경우, 자속(173)은 투자율이 높은 곳, 즉 코어(172) 내를 통과하려고 한다. 그러나, 코어(172)의 좌우 방향(도전선(171)과 코어(172)의 중심을 연결하는 직선에 수직인 방향)의 길이가 비교적 짧기 때문에, 자속(173)은 대략 동심원 형상인 채이며, 도전선(171) 주위의 자속 분포를 크게 변화시킬 수 없다. 도 8에 나타낸 바와 같이, 도전선(171)을 사이에 두고 서로 대향하도록 한 쌍의 코어(172)를 도전선(171)의 상하에 설치한 경우도 마찬가지이다. 또한, 도 9에 나타낸 바와 같이, 비교적 짧은 2개의 코어 부재의 사이에 보다 투자율이 낮은 다른 코어 부재를 끼운 한 쌍의 코어(174)를, 도전선(171)을 사이에 두고 서로 대향시켜 배치한 경우도 마찬가지이다. 단, 이 경우에 있어서는, 코어(174)의 도면의 좌우 방향의 길이가 비교적 짧은 것, 및 코어(174) 상호간의 간격이 비교적 넓은 것도 관계되어 있을 것으로 생각된다.
[0035] 한편, 도 10의 (a) 및 도 10의 (b)에 나타낸 바와 같이, 도전선(201)이 형성하는 자계 중에, 단면(斷面)이 직사각형인 코어(202)를 배치하면, 보다 많은 자속(203)이 코어(202)를 통과한다. 환언하자면, 자계 중에, 도면의 좌우 방향으로 비교적 긴 코어(202)를 배치하면, 자속 분포가 비교적 크게 변화한다. 그 결과, 도전선(201)의 좌우 양측에는, 수직에 가까운 자계가 형성된다. 도 11에 나타낸 바와 같이, 도전선(201)을 사이에 두고 서로 대향되도록 한 쌍의 코어(202)를 도전선(201)의 상하에 설치하면, 도전선(201)의 좌우 양측의 자계를 더한층 수직 자계에 가까워지도록 할 수 있다. 또한, 도 12에 나타낸 바와 같이, 비교적 긴 2개의 코어 부재의 사이에 비교적 짧은(얇은) 갭재를 사이에 둔 한 쌍의 코어(204)를, 도전선(201)을 사이에 두도록 대향 배치한 경우도 마찬가지이다.
[0036] 이상의 설명으로부터, 도전선(코일) 근처에 코어를 적절히 배치하면, 도전선(코일) 주위의 자계의 방향을 제어할 수 있음을 이해할 수 있다. 발명자의 검토에 의하면, 한 쌍의 코어(상하 코어)를 전류 중심에 대해 상하에 그리고 대칭으로 배치하는 경우, 상하 코어의 도전선(코일)이 형성하는 자장 방향에 있어서의 반(反)자계계수가 0.3 이하가 되도록 함으로써, 이론상은, 도전선(코일)의 좌우 양측에 수직에 가까운 자계를 형성할 수 있다. 이것은, 대체로, 도전선(코일)을 사이에 두고 대향 배치되는 한 쌍의 코어(상하 코어)를 두 변(二邊)으로 하는 사각형을 상정한 경우에, 그 사각형이 상하 코어를 장변으로 하는 직사각형이 되는 경우이다.
[0037] 다음으로, 단일의 도전선 대신에 코일(엣지 와이즈 코일)을 이용하여, 코일 주위에 배치된 코어의 영향을 검토하였다. 도 13에 있어서, 코일(231)은, 일방(상측)의 단면을 노출시키도록, 비교적 투자율이 낮은(μL=8) 하부 코어(232)에 매립되어 있다. 또한, 하부 코어(232) 상에는, 코일(231)의 상측 단면을 덮도록, 비교적 투자율이 높은(μH=90) 상부 코어(233)가 배치되어 있다. 코일(231)의 감김 축은 도면의 우측에 위치하며, 상하 방향으로 연장되어 있다. 즉, 도 13은, 코일(231)을 감김 축을 포함하는 평면으로 절단한 경우에 보여지는 2개의 코일 단면(斷面) 중 일방을 나타내고 있다. 도 13에 나타낸 구성은, 코일(231)의 일방(상측)의 단면(端面)측에 비교적 높은 투자율을 가지며 또한 도면의 좌우 방향으로 긴 상부 코어(233)를 배치한 상태(도 10 참조)에 해당한다. 이 구성에 있어서, 코일(231)의 내주면의 내측 및 외주면의 외측에는, 대략 수직인 자계가 형성되어 있다. 그 결과, 코일(231)에 있어서, 교류 동손이 많은 영역(234)은, 내주면측 및 외주면측(각 턴(turn)의 단변측)에 치우쳐 있다. 즉, 코일(231)의 자속 누설이 저감되어, 교류 저항 손실이 억제되어 있다. 단, 엣지 와이즈 코일(231)의 타방(하측)의 단면(端面) 근처에서는, 각 평각선의 장변을 따라 교류 동손이 많은 영역(235)이 나타나 있다. 이것은, 도 13에 파선(236∼238)으로 나타낸 바와 같이, 자속이 통과하는 경로가 다르기 때문이라고 추측된다. 즉, 엣지 와이즈 코일(231)의 상측 단면(端面)측에서는, 코일(231)로 새는 자속이 거의 없는 데 반해, 하측 단면(端面) 근처에서는 코일(231)로의 자속 누설이 존재하기 때문이라고 생각된다. 그러나, 이러한 자속의 누설은, 엣지 와이즈 코일(231)의 하측에, 상부 코어(233)와 마찬가지로 비교적 높은 투자율을 가지는 다른 코어를 배치함으로써 억제할 수 있을 것으로 예상된다.
[0038] 이상과 같이, 코일(231)의 경우도 단일의 도전선(도 10 참조)의 경우와 마찬가지로, 그 좌우 양측(내주면의 내측 및 외주면의 외측)에 거의 수직인(감김 축을 따른 방향의) 자계(수직 자계)를 형성할 수 있다. 이에 따라, 코어로부터 코일로 유입하는 자속에 기인하는 교류 저항 손실을 억제할 수 있다.
[0039] 다음으로, 코일의 상하에 비교적 높은 투자율을 가지는 한 쌍의 코어를 배치한 코일 부품의 자속 분포 및 교류 동손에 대해 검토하였다. 구체적으로는, 코일의 권선 형상 및 감는 방식을 달리 한 5 종류의 코일 부품(제3 내지 제7 모델)과, 비교를 위한 2개의 코일 부품(제1 및 제2 모델)에 대해 시뮬레이션을 행하였다. 시뮬레이션에 있어서, 비교적 투자율이 높은 코어로서 압분 코어를, 비교적 투자율이 낮은 코어로서 주형 코어를 상정하였다. 참고로, 압분 코어는 연자성 합금 분말을 압축 성형한 것이고, 주형 코어는 연자성 합금 분말 및 바인더(수지) 등을 포함하는 슬러리를 경화시킨 것이다.
[0040] 도 14의 (a)를 참조하면, 제1 모델은, 엣지 와이즈 코일(241)과, 그 주위에 배치된 압분 코어(242)와, 엣지 와이즈 코일(241)의 내주측에 있어서 자로 중에 삽입된 3개의 갭(243)을 가지고 있다. 또한, 코일(241)의 감김 축은 도면의 우측에 위치하며, 상하 방향으로 연장되어 있다. 즉, 도 14의 (a)는, 코일 부품을 감김 축을 포함하는 평면으로 절단하였을 때 보여지는 2개의 코일 단면(斷面) 중 일방과 그 주위를 나타내고 있다. 상기 코일 부품에서는, 도 14의 (b)에 나타낸 바와 같이, 코일(241)과 갭(243)의 경계 주변의 영역(244), 즉 코일(241)의 내주측에 있어서 자속의 집중이 발생되어 있다. 환언하자면, 엣지 와이즈 코일(241)과 갭(243)의 경계 주변에 있어서, 압분 코어(242)로부터 엣지 와이즈 코일(241)로 많은 자속이 새고 있다. 이 때문에, 도 14의 (c)에 나타낸 바와 같이, 코일(241)에 있어서의 교류 동손이 큰 영역(245)은, 코일(241)의 내주측에 치우쳐 있다. 상기 구성에서는, 교류 동손이 큰 영역(245)이 내주측에 치우쳐 있으며, 시뮬레이션에 의한 교류 동손은 172W로 큰 값이었다.
[0041] 도 15의 (a)를 참조하면, 제2 모델은, 엣지 와이즈 코일(251)과, 그 주위에 배치된 주형 코어(252)를 가지고 있다. 이 코일 부품에서는, 도 15의 (b)에 나타낸 바와 같이, 코일(251)의 상하 양측에 있어서, 각 평각선의 장변을 따른 영역(253)에 자속의 집중을 볼 수 있다. 그 결과, 이 구성에서는, 도 15의 (c)에 나타낸 바와 같이, 코일(251)의 상하 중앙부에서는, 교류 동손이 큰 영역(254)이 내주측 및 외주측에 치우쳐 있지만, 상하 양측에서는, 각 평각선의 단면의 장변을 따라 교류 동손이 큰 영역(255)이 퍼져 있다. 그리고, 시뮬레이션에 의한 교류 동손은 230W였다.
[0042] 도 16의 (a)를 참조하면, 제3 모델은, 엣지 와이즈 코일(261)과, 그 내주측 및 외주측에 각각 배치된 주형 코어(262, 263)와, 엣지 와이즈 코일(261)의 단면(端面)을 덮으며, 또한 2개의 주형 코어(262, 263)를 연결하는 한 쌍의 압분 코어(264)를 가지고 있다. 이 코일 부품에서는, 도 16의 (b)에 나타낸 바와 같이, 평각선의 단변을 따른 영역(265)에 있어서 자속의 집중이 발생되어 있다. 이 구성에서는, 도 16의 (c)에 나타낸 바와 같이, 교류 동손이 큰 영역(266)은, 코일(261)의 내주측 및 외주측에 치우쳐 있고, 시뮬레이션에 의한 교류 동손도 48.2W라는 가장 작은 값이었다.
[0043] 도 17의 (a)를 참조하면, 제4 모델은, 도 16의 (a)와 유사한 구성을 가지고 있다. 이 코일 부품이 도 16의 (a)의 코일 부품과 상이한 점은, 엣지 와이즈 코일(271)의 감김 열의 수가 2열인 점이다. 감김 열의 수를 2열로 늘리더라도, 도 16의 (b)와 도 17의 (b)의 비교로부터 이해되는 바와 같이, 그 자속 분포는 감김 열의 수가 1열인 경우와 크게 달라지지 않는다. 즉, 코일(271)의 내주측 및 외주측의 영역(275)에 있어서 자속의 집중이 발생되어 있다. 또한, 도 17의 (c)에 나타낸 바와 같이, 교류 동손이 큰 영역(276)에 대해서도, 코일(271)의 내주측 및 외주측에 치우쳐 있고, 시뮬레이션에 의한 교류 동손도 49.5W라는 작은 값이었다.
[0044] 도 18의 (a)를 참조하면, 제5 모델은, 각선을 3층 3열로 감아 형성된 코일(281)과, 그 내주측 및 외주측에 각각 배치된 주형 코어(262, 263)와, 코일(281)의 단면(端面)을 덮으며, 또한 2개의 주형 코어(262, 263)를 연결하는 한 쌍의 압분 코어(264)를 가지고 있다. 이 코일 부품에서는, 도 18의 (b)에 나타낸 바와 같이, 코일(281)의 내주측 및 외주측의 영역(282)에 자속의 집중이 발생됨과 동시에, 코일(281)의 내부에 있어서 감김 열의 경계를 따른 영역(283)에도 자속의 집중이 발생되어 있다. 이 구성에서는, 도 18의 (c)에 나타낸 바와 같이, 교류 동손이 큰 영역(284)은 코일(281)의 내주측 및 외주측뿐만 아니라 내부에도 존재한다. 그리고, 시뮬레이션에 의한 교류 동손은, 71.8W였다.
[0045] 도 19의 (a)를 참조하면, 제6 모델은, 평각선을 2층 5열로 감아 형성된 코일(291)과, 그 내주측 및 외주측에 각각 배치된 주형 코어(262, 263)와, 코일(291)의 단면(端面)을 덮으며, 또한 2개의 주형 코어(262, 263)를 연결하는 한 쌍의 압분 코어(264)를 가지고 있다. 이 코일 부품에서도, 도 19의 (b)에 나타낸 바와 같이, 코일(291)의 내주측 및 외주측의 영역(292)에 자속의 집중이 발생하며, 또한 코일(291)의 내부에 있어서도 감김 열의 경계를 따른 영역(293)에 자속의 집중이 발생되어 있다. 도 18의 (b)와의 비교로부터 이해되는 바와 같이, 감김 열의 수의 증가에 수반하여 자속의 집중이 생기는 영역(293)의 수도 증가되어 있다. 마찬가지로, 교류 동손이 큰 영역(294)의 수도, 도 19의 (c)에 나타낸 바와 같이 증가되어 있다. 시뮬레이션에 의한 교류 동손은, 90.9W였다.
[0046] 도 20의 (a)를 참조하면, 제7 모델은, 플랫 와이즈 코일(301)과, 그 내주측 및 외주측에 각각 배치된 주형 코어(262, 263)와, 코일(301)의 단면(端面)을 덮으며, 또한 2개의 주형 코어(262, 263)를 연결하는 한 쌍의 압분 코어(264)를 가지고 있다. 이 코일 부품에서도, 도 20의 (b)에 나타낸 바와 같이, 코일(301)의 내주측 및 외주측의 영역(302)에 자속의 집중이 발생됨과 동시에, 코일(301)의 내부에 있어서 감김 열의 경계를 따른 영역(303)에 자속의 집중이 발생되어 있다. 자속의 집중이 발생되는 영역(303)의 수는, 도 19의 (b)의 경우보다 더 증가되어 있다. 또한, 도 20의 (c)에 나타낸 바와 같이, 교류 동손이 큰 영역(304)도, 도 19의 (c)의 경우에 비해 증가하였다. 또한, 시뮬레이션에 의한 교류 동손도, 144.1W로 증가하였다.
[0047] 도 14 내지 도 20으로부터 이해되는 바와 같이, 코일의 상하에 한 쌍의 압분 코어를 배치한 제3 내지 제7 모델(도 16 내지 도 20)에서는, 코어 전체를 압분 코어로 하고 갭과 조합한 제1 모델(도 14) 및 코어 전체를 주형 코어로 한 제2 모델(도 15)에 비해, 교류 동손을 저감할 수 있다. 이것은, 상술한 바와 같이, 코일의 내주측 및 외주측에 수직에 가까운 자계가 형성된 결과, 코일로의 누설 자속이 감소되었기 때문이라고 추측된다.
[0048] 또한, 도 16 내지 도 20 및 도 21로부터 이해되는 바와 같이, 코일의 감김 열의 수가 증가하면 교류 동손이 증가한다. 이것은, 다음과 같은 이유에 의한 것으로 생각된다.
[0049] 도 16의 구성과 동일한 구성을 가지는 코일 부품의 코일(엣지 와이즈 코일, 1열×4층)에 대해, 도 22의 좌측 도면에 나타낸 바와 같이 지면(紙面) 안쪽 방향의 전류를 흘리면, 동 도면의 우측 도면에 화살표로 나타낸 바와 같은 우측으로 회전하는 자계가 발생한다. 이 자계를 제거하도록, 코일의 권선(평각선)에는, 도 23의 좌측 도면에 나타낸 바와 같이 복수의 와전류가 발생한다. 그러나, 이러한 와전류는 각 평각선의 내부에 있어서 서로 제거한다. 그 결과, 동 도면의 우측 도면에 나타낸 바와 같이, 평각선의 단면에 있어서의 길이방향 단부의 와전류만이 남게 될 것으로 생각된다.
[0050] 평각선은 절연막으로 피복되어 있기 때문에, 와전류의 제거는, 평각선 단위(각 턴)로 발생한다. 환언하자면, 인접하는 평각선끼리의 사이에서는, 와전류의 제거는 발생하지 않는다. 따라서, 감김 열의 수가 증가하면, 잔류하는 와전류도 증가한다. 예컨대, 감김 열의 수가 2열인 경우, 도 24의 좌측 도면과 같이 코일의 양측부(내주측 및 외주측)뿐만 아니라 중앙부에도 와전류가 남는다. 그러나, 와전류의 크기는 자계의 강도에 따라 커지며, 코일의 외측에 비해 코일의 중심측이 작다. 이 때문에, 감김 열의 수가 2열인 경우에는, 도 24의 우측 도면과 같이, 양측부의 와전류가 남는다고 간주할 수 있을 것으로 생각된다.
[0051] 그러나, 감김 열의 수가 증가하면, 일본 특허공개공보 제2013-26589호에 기재된 근접 효과에 의해, 각 열에 와전류가 남는다. 예컨대, 도 25의 좌측 도면에 나타낸 바와 같이 감김 열의 수가 4열인 경우에는, 동 도면의 우측 도면과 같이 각 열의 단부에 와전류가 남는다. 전술한 바와 같이, 코일의 외측일수록 와전류는 커서, 중심부를 제외하고는 무시할 수 없다. 게다가, 중앙부 이외에서는, 인접하는 감김 열 간의 경계에 발생하는 와전류의 방향은 서로 반대(逆) 방향이다. 이 때문에, 와전류를 보다 유도하기 쉬운 상태로 되어 있어, 교류 동손이 증가할 것으로 생각된다.
[0052] 이와 같이, 감김 열의 수가 증가하면 교류 동손은 증가한다. 그럼에도, 도 21로부터 이해되는 바와 같이, 코일의 상하에 한 쌍의 압분 코어를 배치한 제3 내지 제7 모델(「하이브리드」, 도 16 내지 도 20)은, 코어를 모두 압분 코어로 하고 갭을 설치한 경우(「압분 3Gap」(제1 모델(도 14) 및 그와 동일한 구성을 가지는 코일 부품))나 코어를 모두 주형 코어로 한 경우(「주형 μ11(영자장(零磁場)에 있어서의 투자율(μ)=11인 주형 코어)」, 제2 모델(도 15) 및 그와 동일한 구성을 가지는 코일 부품)에 비해 교류 동손을 대폭적으로 저감할 수 있다. 이것은, 감김 열의 수를 10으로 한 경우에서도 말할 수 있는 것이다.
[0053] 또한, 제3 내지 제7 모델에서는, 코일의 상하에 배치되는 코어로서 압분 자심을 상정하였지만, 코일의 단면(端面)을 덮는 부분에 대해서는, 적어도 그 일부를 주형 코어나 비자성 갭으로 치환하더라도, 교류 동손의 대폭적인 증가는 보이지 않았다. 따라서, 적어도 코일의 코너에 대응하는 영역에 비교적 높은 투자율을 가지는 코어를 배치하면, 교류 동손의 저감이 예상된다. 환언하자면, 코일 부품을 코일의 감김 축과 코어 내를 주회하는 자로를 포함하는 평면으로 절단한 단면(斷面)에 있어서, 코일의 단면(斷面)의 각각의 주위를 내주면, 외주면 및 단면(端面)을 따른 4개의 직선에 의해 8개의 영역으로 구분하였을 때, 코너에 위치하는 4개의 영역에 비교적 높은 투자율을 가지는 코어를 배치하면 된다. 이때, 내주면의 내측 및 외주면의 외측의 영역에는, 비교적 낮은 투자율을 가지는 코어를 배치한다. 비교적 높은 투자율(μH)이, 예컨대 100인 경우, 비교적 낮은 투자율(μL)은 그 10분의 1 정도, 예컨대 10으로 하면 양호한 결과를 얻을 수 있다.
[0054] 상술한 발명자에 의한 검토에서는, 코일의 감김 축에 평행한 자계(수직 자계)에 주목하였다. 그러나, 코일의 감김 축에 직교하는 방향(직경 방향)의 자계에 주목한 경우에도, 동일한 결과를 기대할 수 있다. 즉, 코일의 내주측 및 외주측에 비교적 높은 투자율을 가지는 코어를 배치하면, 코일 단면(端面)의 외측의 자계를 제어할 수 있으며, 그에 따라, 코일의 교류 동손의 저감을 기대할 수 있다. 또한 상술한, 코일 부품의 단면(斷面)에 있어서, 코너에 위치하는 4개의 영역에 비교적 높은 투자율을 가지는 코어를 배치하는 구성에서는, 수직 자계뿐만 아니라, 직경 방향의 자계에 대해서도 제어할 수 있다. 직경 방향의 자계에 주목한 경우에는, 수직 자계에 주목한 경우와는 다른 코일을 이용하는 것이 바람직하다. 즉, 이 경우, 코일로서, 단면(端面)에 노출되는 도전선끼리의 경계의 수가 적은 것(예컨대, 플랫 와이즈 코일)을 이용하는 것이 바람직하다.
[0055] 다음으로, 권선(소선)의 두께의 영향에 대해 검토하였다. 도 26을 참조하면, 권선(소선)의 두께가 증가함에 따라, 코일의 교류 동손이 증가하는 것을 이해할 수 있다. 권선(도체)의 두께가 표피 깊이와 동일하거나 그보다 얇은 경우는, 엣지 와이즈 코일(「엣지」)과 플랫 와이즈 코일(「플랫」) 간에 손실계수(Rac/L/N)에 큰 차이는 없다. 그러나, 권선의 두께가 표피 깊이보다 두꺼워지면, 플랫 와이즈 코일의 손실계수는 급격히 증가한다. 이에 반해, 엣지 와이즈 코일의 손실계수는, 소선의 두께 증가에 수반하여 일차함수적으로 증가한다. 이와 같이, 엣지 와이즈 코일에서는, 권선의 두께가 증가하더라도, 플랫 와이즈 코일의 경우와 같이 급격한 교류 동손의 증가는 없다. 따라서, 엣지 와이즈 코일의 사용은, 권선의 두께가 큰 경우에 유리하다.
[0056] 상기 검토의 결과, 발명자는, 본 발명을 생각해 내기에 이르렀다. 참고로, 본 발명은, 코어로부터 코일에 유입되는 자속을 억제함으로써 교류 동손을 저감하는 것을 목표로 한 것이지만, 그것이 전부가 아닐 가능성이 있다.
[0057] (제1 실시형태)
다음으로, 본 발명의 제1 실시형태에 대해 상세히 설명한다. 도 27에 나타낸 바와 같이, 본 발명의 제1 실시형태에 의한 코일 부품(10)은, 코일(11)과, 코일(11)의 내주측에 배치되는 내주측 코어(12)와, 코일(11)의 외주측에 배치되는 외주측 코어(13)와, 한 쌍의 단면측 코어(14, 15)와, 이들을 수용하는 케이스(16)를 구비하고 있다. 도 27에 있어서, 코일(11)의 감김 축은, 도면의 좌우 방향 중앙에 위치하며, 도면의 상하 방향을 따라 연장되어 있다. 참고로, 도 27은, 코일 부품(10)의 사용 상태를 나타낸 것이 아니며, 사용시에 있어서, 코일(11)의 감김 축은 임의의 방향을 향해도 된다. 후술하는 다른 실시형태에 있어서도 마찬가지이다.
[0058] 코일(11)은, 감김 축 방향을 따라 권선(도전선)을 겹치듯이 감겨진 엣지 와이즈 코일이다. 즉, 코일(11)은, 대략 직사각형의 단면 형상을 가지며, 주위가 절연체(도시 생략)로 피복된 도전선(평각선)(도시 생략)을 나선 형상으로 감아 형성된다. 자세하게는, 본 실시형태의 코일(11)은, 도전선을 직선 형상의 감김 축을 가지도록 나선 형상이면서 사각 형상으로 감아 형성된다. 따라서, 본 실시형태의 코일(11)은, 감김 축과 직교하는 면 내에 있어서, 대략 사각형의 형상을 가지고 있다. 코일(11)은, 도전선을 감아 형성한 권회체(捲回體)의 주위를 덮는 절연체를 더 가지고 있어도 된다. 어느 쪽이든, 코일(11)은, 내주면과 외주면 및 이들에 연속하는 한 쌍의 단면(端面)을 가지고 있다.
[0059] 내주측 코어(12)는, 코일(11)의 내주면에 접하도록, 코일(11)의 내주면의 내측에 배치된다. 또한, 외주측 코어(13)는, 코일(11)의 외주면에 접하도록, 코일(11)의 외주면의 외측에 배치된다. 이들 내주측 코어(12)와 외주측 코어(13)는, 동일한 재료를 이용하여 동시에 형성된다. 구체적으로는, 내주측 코어(12) 및 외주측 코어(13)는, 연자성 금속 분말, 열경화성 바인더 성분, 용매 등으로 이루어진 슬러리(20)(도 31 참조)를 열경화시켜 형성된다. 또한, 내주측 코어(12)와 외주측 코어(13)는, 비교적 낮은 영자계에 있어서의 투자율(저μ)을 가진다. 구체적으로는, 내주측 코어(12)와 외주측 코어(13)의 투자율은, 3∼15이고, 바람직하게는 7∼12이며, 특히 10 정도가 바람직하다. 참고로, 이하의 설명에 있어서, 슬러리(20)를 경화시켜 형성한 코어를, 주형(注型) 코어라고 부르는 경우가 있다.
[0060] 한 쌍의 단면측 코어(14, 15)는, 코일(11)의 한 쌍의 단면(端面)을 덮으며, 내주측 코어(12)와 외주측 코어(13)를 기계적 및 자기적으로 연결한다. 그 결과, 내주측 코어(12), 외주측 코어(13) 및 단면측 코어(14, 15)는, 폐자로를 형성한다. 한 쌍의 단면측 코어(14, 15)의 각각은, 철합금 분말 등의 포화 자속 밀도가 높은 연자성 금속 분말을, 높은 압력에 의해 압축 성형하여 형성된 압분 코어이다. 이들 단면측 코어(14, 15)의 각각은, 실질적으로 균일한 두께와, 한 쌍의 평평한 주(主)표면을 가지는 판 형상(板狀)의 형상을 가지고 있다. 또한, 단면측 코어(14, 15)는, 내주측 코어(12)와 외주측 코어(13)에 비해, 영자계에 있어서 높은 투자율(고μ)을 가진다. 구체적으로는, 단면측 코어(14, 15)의 투자율은 50 이상이며, 바람직하게는 50∼150이며, 특히 90 정도가 바람직하다.
[0061] 자세히 설명하자면, 코일(11)의 감김 축과 직교하는 면 내에 있어서, 단면측 코어(14, 15)는, 각각, 코일(11)의 외주면보다 큰 사이즈를 가지고 있으며, 또한, 코일(11)의 외주면보다 외측으로 돌출되어 있다. 환언하자면, 본 실시형태의 단면측 코어(14, 15)는, 코너를 둥글게 한 사각 형상을 가지고 있으며, 그 가장자리부는 코일(11)의 외주면을 초과하여 플랜지 형상으로 돌출되어 있다. 그 때문에, 만일 단면측 코어(14, 15)와 코일(11)을 코일(11)의 감김 축 방향을 따라 보았을 경우, 코일(11)은, 단면측 코어(14, 15)에 숨어 보이지 않는다. 단, 본 발명은, 이러한 구성에 한정되지 않는다. 즉, 단면측 코어(14, 15)는, 코일(11)의 전체 둘레(全周)에 걸쳐 외주측으로 돌출되어 있지 않아도 된다. 예컨대, 코일(11)이 평면 시점으로 볼 때(平面視)(도 27의 상방으로부터 보았을 때) 대략 사각형인 경우, 단면측 코어(14, 15)는, 코일(11)의 서로 대향하는 2세트의 변(邊) 중 일방의 세트의 변으로부터 외주측(도 27의 좌우 방향)으로 돌출되고, 타방의 세트의 변으로부터 외주측(도 27의 표리(表裏) 방향)으로 돌출되어 있지 않은 것이어도 된다. 구체적으로는, EE(또는 EI) 코어라 불리는 것 같은 형상이어도 된다. 이 경우, 타방의 세트의 변에 상당하는 코일의 단면(端面) 부분은, 단면측 코어(14, 15)에 의해 일부 또는 전부가 덮여 있어도 되고, 외주측 코어(13)에 의해 일부 또는 전부가 덮여 있어도 되고, 혹은, 일부 또는 전부가 외부에 노출되어 있어도 된다. 또한, 타방의 세트의 변에 상당하는 코일의 외주면의 외측에는, 외주측 코어(제2 코어 부재)(13)가 배치되어 있지 않아도 되고, 코일의 외주면이 케이스에 직접 접촉되어 있어도 된다.
[0062] 코어(12, 13, 14 및 15)의 구성은, 다른 측면에서 보자면 다음과 같이 말할 수 있다. 즉, 도 28에 나타낸 바와 같이, 코일 부품을 코일(11)의 감김 축과 코어(12, 13, 14, 15) 내를 주회하는 자로를 포함하는 평면으로 절단한 단면(斷面)에 있어서, 코일(11)의 주위(코일 부품의 단면(斷面)에 보여지는 2개의 코일 단면의 각각의 주위)를 내주면, 외주면 및 단면(端面)을 따른 4개의 직선(31∼34)에 의해 8개의 영역(41∼48)으로 구분하였을 때, 코너에 위치하는 4개의 영역(41, 43, 45, 47)에 각각 압분 코어(제1 코어 부재, 고μ재)가 배치되고, 내주면의 내측에 위치하는 영역(42) 및 외주면의 외측에 위치하는 영역(46)에 각각 주형 코어(제2 코어 부재, 저μ)가 배치되고, 단면의 외측에 위치하는 영역(44, 48)에 각각 압분 코어(제3 코어 부재, 고μ)가 배치되어 있다.
[0063] 다시, 도 27을 참조하면, 케이스(16)는, 예컨대 알루미늄 등의 금속으로 이루어진다. 도시된 케이스(16)는, 코일(11)의 감김 축의 연장 방향에 있어서 개구부(16A) 및 바닥부(底部)(16B)를 가지는 동시에, 개구부(16A)와 바닥부(16B)를 연결하는 측면부(16S)를 가지고 있다. 보다 구체적으로는, 바닥부(16B)는 코너를 둥글게 한 사각 형상을 가지고 있으며, 측면부(16S)는 대략 사각통(四角筒) 형상을 가지고 있다. 내주측 코어(12), 외주측 코어(13), 단면측 코어(14, 15) 및 코일(11)은, 케이스(16) 내에 배치되어 있다. 케이스(16) 내에 있어서, 내주측 코어(12) 및 외주측 코어(13)는, 코일(11)과 단면측 코어(14, 15)에 대해 밀착되어 있다. 바닥부(16B)보다 개구부(16A)에 가까운 쪽의 단면측 코어(15)는, 측면부(16S)로부터 떨어져 위치하고 있다. 즉, 코일(11)의 감김 축과 직교하는 평면 내에 있어서, 단면측 코어(15)는, 측면부(16S)보다 작다. 이러한 단면측 코어(15)와 측면부(16S)의 사이에는, 외주측 코어(13)의 일부가 부분적으로 들어가 있다. 마찬가지로, 개구부(16A)보다 바닥부(16B)에 가까운 쪽의 단면측 코어(14)는, 측면부(16S)로부터 떨어져 위치하고 있다. 즉, 코일(11)의 감김 축과 직교하는 평면 내에 있어서, 단면측 코어(14)는, 측면부(16S)보다 작다. 이러한 단면측 코어(14)와 측면부(16S)의 사이에는, 외주측 코어(13)의 일부가 들어가 있다.
[0064] 다음으로, 도 29 내지 도 32를 참조하여, 도 27의 코일 부품(10)의 제조 방법에 대해 설명한다.
[0065] 우선, 도 29에 나타낸 바와 같이, 케이스(16)를 준비하고, 케이스(16)의 바닥부(16B)에 일방의 단면측 코어(14)를 올려놓는다. 본 실시형태의 단면측 코어(14)는, 케이스(16)의 측면부(16S)보다 작은 사이즈를 가지고 있기 때문에, 측면부(16S)와 단면측 코어(14) 사이에는 틈새가 생겨 있다. 이러한 설계로 되어 있기 때문에, 단면측 코어(14)의 사이즈에 편차가 있다고 하더라도, 단면측 코어(14)와 케이스(16) 간의 위치적 관계가 문제가 될 일은 없다.
[0066] 다음으로, 도 30에 나타낸 바와 같이, 일방의 단면측 코어(14)의 일면(一面) 상에 코일(11)을 올려놓는다.
[0067] 다음으로, 도 31에 나타낸 바와 같이, 내주측 코어(12) 및 외주측 코어(13)의 원료인 슬러리(20)를, 개구부(16A)를 통해 코일(11)이 완전히 잠길 때까지 케이스(16) 내에 흘려 넣는다. 즉, 본 실시형태에 있어서, 흘려 넣은 슬러리(20)의 상면(액면)은 코일(11)의 상단(11U)보다 상방에 위치해 있다. 코일(11)의 상단(11U)보다 상방에 위치하는 슬러리(20)는, 내주측 코어(12) 및 외주측 코어(13)의 주부(主部)를 형성하는 것이 아니라, 여분의 것이다. 마찬가지로, 일방의 단면측 코어(14)와 측면부(16S)의 사이로 들어간 슬러리(20)도 여분의 것이다. 그러나, 후술하는 바와 같이, 이 여분의 슬러리(20)의 존재에 의해, 내주측 코어(12) 및 외주측 코어(13)와 단면측 코어(15)와의 밀착도를 높일 수 있다.
[0068] 본 실시형태에 있어서는, 개구부(16A)가 코일(11)의 감김 축 방향에 있어서 열려 있기 때문에, 코일의 내측 및 외측의 스페이스를 육안으로 확인(視認)할 수 있어, 슬러리(20)를 코일(11)의 내측으로도 외측으로도 흘려 넣을 수 있다. 환언하자면, 본 실시형태에 있어서는, 개구부(16A)가 코일(11)의 감김 축 방향에 있어서 열려 있기 때문에, 내주측 코어(12)와 외주측 코어(13)의 쌍방(雙方)을 주형 코어로 할 수 있다.
[0069] 다음으로, 도 32에 나타낸 바와 같이, 타방의 단면측 코어(15)를 코일(11) 상에 올려놓는다. 이때, 타방의 단면측 코어(15)는, 한 쌍의 단면측 코어(14, 15)가 서로 정면으로 마주보도록 배치된다. 상술한 바와 같이, 본 실시형태의 단면측 코어(15)는, 케이스(16)의 측면부(16S)보다 작은 사이즈를 가지고 있기 때문에, 측면부(16S)와 단면측 코어(14)의 사이에는 틈새가 형성된다.
[0070] 타방의 단면측 코어(15)를 케이스(16)의 바닥부(16B)를 향해 꽉 누르면, 여분의 슬러리(20)가 단면측 코어(15)와 케이스(16)의 측면부(16S)와의 사이로 들어간다. 여분의 슬러리(20)는, 나아가, 타방의 단면측 코어(15)의 상면으로까지 도달하여, 그 적어도 일부를 덮어도 된다. 이 상태에서, 가열하여 슬러리(20)를 경화시킨다. 이에 의해, 슬러리(20)를, 주형 코어인 내주측 코어(12) 및 외주측 코어(13)로 변화시킨다. 이로부터 이해되는 바와 같이, 단면측 코어(14, 15)의 각각과 케이스(16)의 측면부(16S)와의 사이로 들어간 슬러리(20)는, 외주측 코어(13)의 일부가 된다. 본 실시형태에 있어서는, 상술한 바와 같이 하여, 내주측 코어(12) 및 외주측 코어(13)를 단면측 코어(14, 15)와 코일(11)에 밀착시킨 코일 부품(10)을 얻을 수 있다.
[0071] 이상과 같이 본 실시형태에서는, 코일(11)로서 엣지 와이즈 코일을 이용하는 동시에, 그 내주측 및 외주측에 주형 코어인 내주측 코어(12) 및 외주측 코어(13)를 각각 배치하고, 내주측 코어(12)와 외주측 코어(13)를 압분 코어인 한 쌍의 단면측 코어(14, 15)로 연결한다. 이에 의해, 코일(11)에 발생하는 교류 동손을 저감할 수 있다. 또한, 내주측 코어(12) 및 외주측 코어(13)의 쌍방에 주형 코어를 이용함으로써, 코일 부품(10)에 직류 중첩 전류를 통전시키지 않는 영자계에서의 인덕턴스를 억제하여, 직류 중첩 특성을 개선할 수 있다.
[0072] 또한, 본 실시형태에서는, 코어의 일부(구체적으로는, 내주측 코어(12) 및 외주측 코어(13))를, 슬러리(20)를 이용하여 형성한다. 이에 의해, 코일(11)과 그 주위의 코어(내주측 코어(12), 외주측 코어(13) 및 단면측 코어(14, 15))와의 사이의 틈새를 없앨 수 있다. 그 결과, 조립 부착 정밀도에 의존하는 코일 부품(10)의 특성의 편차를 저감시키거나 또는 없앨 수 있는 동시에 코일(11)의 백래시(backlash)를 억제할 수 있어, 코일 부품(10)의 사용시에 있어서의 소음을 저감할 수 있다. 또한, 본 실시형태에서는, 고체인 압분 코어의 수를 줄일 수 있으며, 그에 따라 조립 부착 공정을 간략화할 수 있다. 더욱이, 본 실시형태에서는, 비교적 투자율이 높은 압분 코어의 수를 줄이고, 비교적 투자율이 낮은 주형 코어를 이용함으로써, 비용을 삭감할 수 있다.
[0073] 상술한 실시형태에서, 코일(11)은, 감김 축과 직교하는 면 내에 있어서 코너를 둥글게 한 사각 형상을 가지고 있었으나, 본 발명은, 이에 한정되는 것은 아니다. 코일(11)은, 코일의 감김 축과 직교하는 면 내에 있어서, 원형 또는 타원형, 혹은 경기용 트랙 형상의 외형을 가지는 것이어도 된다.
[0074] 또한, 상기 실시형태에서는, 내주측 코어(12) 및 외주측 코어(13)로서 주형 코어를 이용하고, 단면측 코어(14, 15)로서 압분 코어를 이용하고 있다. 그러나, 내주측 코어(12) 및 외주측 코어(13)로서 압분 코어를 이용해도 되고, 단면측 코어(14, 15)로서 주형 코어를 이용해도 된다. 혹은, 이들 코어는, 성형한 자성체 분말에 수지를 침투시키고, 이후 수지를 경화시켜 형성하도록 해도 된다. 箏 쪽이든, 단면측 코어(14, 15)의 영자계에서의 투자율이, 내주측 코어(12) 및 외주측 코어(13)의 영자계에서의 투자율보다 높아지도록, 내주측 코어(12), 외주측 코어(13) 및 단면측 코어(14, 15)가 형성되어 있으면 된다.
[0075] (제2 실시형태)
상술한 제1 실시형태의 코일 부품(10)의 구성에 더하여, 도 33 및 도 34 혹은 도 35 및 도 36에 나타낸 바와 같이, 코일(11)의 내주측 공간(50) 내에 비자성 갭재(51)를 배치한다. 즉, 4매의 직사각형의 판 형상인 갭재(51)를 2매씩 상하 2단(段)으로 배치한다. 각 단의 갭재(51)는, 장변끼리 서로 평행이 되도록 배치된다. 갭재(51)는, 조립 부착을 용이하게 하기 위해, 지지재(52)에 의해 서로 고정되어 있다. 또한, 조립 부착을 용이하게 하는 동시에 교류 동손의 발생을 억제하기 위해, 갭재(51)는, 코일(11)의 내주면과의 사이에 소정의 간격을 두도록 배치되어 있어도 된다. 나아가, 제조시에 있어서 슬러리(20)를 용이하게 흘려 넣도록 하는 동시에 직류 중첩 특성을 개선하기 위해(영자계에서의 인덕턴스를 저감시키기 위해), 좌우로 서로 이웃하는 갭재(51)는, 서로 간격을 두고 배치되어 있어도 된다. 나아가, 슬러리(20)를 흘려 넣을 때 발생할 수 있는 기포가 배출되기 쉽도록, 각 갭재(51)는, 코일(11)의 감김 축에 직교하는 평면에 대해 기울기를 가지도록 배치되어 있다. 참고로, 갭재(51)의 형상, 개수 및 배치는 본 실시형태에 한정되지 않는다. 갭재(51)의 형상, 개수 및 배치는, 원하는 특성에 따라 조정할 수 있다.
[0076] (제3 실시형태)
제1 실시형태에 의한 코일 부품(10)의 단면측 코어(14, 15)의 일부를, 주형 코어(저μ)로 치환한다. 구체적으로는, 단면측 코어(14, 15)의 코일(11)의 단면(端面)을 덮는 부분의 적어도 일부를 주형 코어로 치환한다. 환언하자면, 도 37에 나타낸 바와 같이, 코일 부품을 코일의 감김 축과 코어 내를 주회하는 자로를 포함하는 평면으로 절단한 단면(斷面)에 있어서, 코일(11)의 주위(코일 부품의 단면에 보여지는 2개의 코일 단면의 각각의 주위)를 내주면, 외주면 및 단면(端面)을 따른 4개의 직선(31∼34)에 의해 8개의 영역(41∼48)으로 구분하였을 때, 코너에 위치하는 4개의 영역(41, 43, 45, 47)에 각각 압분 코어(제1 코어 부재, 고μ)를 배치한다. 또한, 코일(11)의 내주면의 내측에 위치하는 영역(42) 및 외주면의 외측에 위치하는 영역(46)에 각각 주형 코어(제2 코어 부재, 저μ)를 배치한다. 나아가, 단면의 외측에 위치하는 영역(44, 48)의 각각의 적어도 일부에 주형 코어(제3 코어 부재, 저μ)를 배치한다. 영역(44, 48)에 있어서의 나머지의 부분에는, 압분 코어를 배치한다. 영역(44, 48)의 각각에 있어서, 통상, 주형 코어는 한 쌍의 압분 코어에 끼워지도록 배치된다. 영역(44, 48)에 배치되는 압분 코어는, 인접하는 영역(41, 43, 45, 47) 중 어느 것에 배치되어 있는 압분 코어와 일체로 형성되어도 된다.
[0077] 이 구성에 있어서도, 코일(11) 내를 통과하는 일 없이 일방의 단면측 코어로부터 타방의 단면측 코어로 향하고자 하는 자속이 발생하기 때문에, 코일(11)로의 자속 누설은 적어, 교류 동손의 저감 효과를 얻을 수 있다. 또한, 이 구성은, 응력을 저감하는 효과도 있다. 나아가, 제1 실시형태에 비해, 영자계에 있어서의 인덕턴스는 낮아지기 때문에, 용도에 맞추어 인덕턴스를 조정할 수 있다. 또한, 본 실시형태에 있어서도, 얻고자 하는 특성에 따라, 제2 실시형태에서 설명한 갭재(51)를 코일(11)의 내주측에 배치하도록 해도 된다.
[0078] (제4 실시형태)
제1 실시형태에 의한 코일 부품(10)의 단면측 코어(14, 15)의 일부를, 비자성 갭재로 치환한다. 구체적으로는, 코일(11)의 단면(端面)을 덮는 부분의 적어도 일부를 비자성 갭재로 치환한다. 환언하자면, 도 38에 나타낸 바와 같이, 코일 부품을 코일(11)의 감김 축과 코어 내를 주회하는 자로를 포함하는 평면으로 절단한 단면(斷面)에 있어서, 코일(11)의 주위(코일 부품의 단면에 보여지는 2개의 코일 단면의 각각의 주위)를 내주면, 외주면 및 단면(端面)을 따른 4개의 직선(31∼34)에 의해 8개의 영역(41∼48)으로 구분하였을 때, 코너에 위치하는 4개의 영역(41, 43, 45, 47)에 각각 압분 코어(제1 코어 부재, 고μ)를 배치한다. 또한, 코일(11)의 내주면의 내측에 위치하는 영역(42) 및 외주면의 외측에 위치하는 영역(46)에 각각 주형 코어(제2 코어 부재, 저μ)를 배치한다. 나아가, 코일(11)의 단면의 외측에 위치하는 영역(44, 48)의 각각에 대해 적어도 일부에 비자성 갭재를 배치한다. 참고로, 도면에서는, 코일(11)의 단면(端面) 전체가 비자성 갭으로 덮여 있는 것처럼 보이지만, 실제로는, 코일(11)의 단면의 대부분은, 압분 코어(제3 코어 부재, 고μ)로 덮여 있으며, 비자성 갭재에 의해 덮이는 영역은 작다. 이 구성에서는, 엣지 와이즈 코일을 이용함으로써, 비자성 갭재로부터 코일(11)로의 누설 자속을 억제할 수 있다. 코일(11)의 단면은, 평각선의 단면(斷面)에 있어서의 장변측이기 때문이다. 참고로, 본 실시형태에 있어서도, 제3 실시형태와 마찬가지로, 제2 실시형태에서 설명한 갭재(51)를 코일(11)의 내주측에 배치하도록 해도 된다.
[0079] (제5 실시형태)
상술한 제1 내지 제4 실시형태에서는, 코일(11)의 감김 축을 따른 방향의 자계에 주목하였으나, 본 실시형태에서는, 코일(11)의 감김 축에 수직인 방향(직경 방향)의 자계에 주목한다. 그리고, 본 실시형태에서는, 코일(11)의 내주측 및 외주측에, 각각 단면(端面)보다 외측으로 돌출되는 압분 코어를 각각 배치한다. 또한, 코일(11)로서 플랫 와이즈 코일을 이용한다. 환언하자면, 도 39에 나타낸 바와 같이, 코일 부품을 코일의 감김 축과 코어 내를 주회하는 자로를 포함하는 평면으로 절단한 단면에 있어서, 코일(11)의 주위(코일 부품의 단면에 보여지는 2개의 코일 단면의 각각의 주위)를 내주면, 외주면 및 단면을 따른 4개의 직선(31∼34)에 의해 8개의 영역(41∼48)으로 구분하였을 때, 코너에 위치하는 4개의 영역(41, 43, 45, 47)에 각각 압분 코어(제1 코어 부재, 고μ)를 배치한다. 또한, 코일(11)의 내주면의 내측에 위치하는 영역(42) 및 외주면의 외측에 위치하는 영역(46)의 각각에도 압분 코어(제2 코어 부재, 고μ)를 배치한다. 나아가, 단면의 외측에 위치하는 영역(44, 48)에 각각 주형 코어(제3 코어 부재, 저μ)를 배치한다. 영역(42)에 배치되는 압분 코어는, 인접하는 영역(41 및 43)에 각각 배치되어 있는 압분 코어와 일체로 형성되어도 된다. 마찬가지로, 영역(46)에 배치되는 압분 코어는, 인접하는 영역(45 및 47)에 각각 배치되어 있는 압분 코어와 일체로 형성되어도 된다. 본 실시형태에 있어서도, 코일(11)로의 자속 누설은 적어, 교류 동손의 저감 효과를 얻을 수 있다.
[0080] (제6 실시형태)
제5 실시형태에 의한 코일 부품의 내주측 코어(12)와 외주측 코어(13)를 주형 코어로 치환한다. 즉, 도 40에 나타낸 바와 같이, 코일 부품을 코일의 감김 축과 코어 내를 주회하는 자로를 포함하는 평면으로 절단한 단면에 있어서, 코일(11)의 주위(코일 부품의 단면에 보여지는 2개의 코일 단면의 각각의 주위)를 내주면, 외주면 및 단면을 따른 4개의 직선(31∼34)에 의해 8개의 영역(41∼48)으로 구분하였을 때, 코너에 위치하는 4개의 영역(41, 43, 45, 47)에 각각 압분 코어(제1 코어 부재, 고μ)를 배치한다. 또한, 코일(11)의 내주면의 내측에 위치하는 영역(42) 및 외주면의 외측에 위치하는 영역(46)의 각각의 적어도 일부에 주형 코어(제2 코어 부재, 저μ)를 배치한다. 나아가, 단면의 외측에 위치하는 영역(44, 48)에 각각 주형 코어(제3 코어 부재, 저μ)를 배치한다. 영역(42, 46)에 있어서의 나머지의 부분에는, 압분 코어를 배치한다. 영역(42, 46)의 각각에 있어서, 통상, 주형 코어는 한 쌍의 압분 코어에 끼워지도록 배치된다. 영역(42, 46)에 배치되는 압분 코어는, 인접하는 영역(41, 43, 45, 47) 중 어느 것에 배치되어 있는 압분 코어와 일체로 형성되어도 된다. 본 실시형태에 있어서도, 코일(11)로의 자속 누설은 적어, 교류 동손의 저감 효과를 얻을 수 있다.
[0081] 이상, 본 발명에 대해 몇 가지의 실시형태에 근거하여 설명하였으나, 본 발명은 상기의 실시형태에 한정되는 일 없이, 다양한 변경이나, 변형이 가능하다. 예컨대, 상기 실시형태에서는, 코일(11)로서 평각선을 감은 엣지 와이즈 코일 또는 플랫 와이즈 코일을 이용하였지만, 코일(11)은, 각선(角線)이나 환선(丸線)을 감은 코일이어도 된다. 또한, 코일의 감김 열의 수 및 층의 수는 각각 2 이상이어도 된다. 단, 단면측 코어(14, 15)로서 압분 코어를 이용하는 경우, 코일의 감김 열의 수는 10 이하가 바람직하고, 2 이하가 특히 바람직하다. 마찬가지로, 코일의 내주면 내측 및 외주면 외측에, 각각 단면(端面)의 외측으로 돌출되는 압분 코어를 이용한 경우, 코일의 층수는 10 이하가 바람직하고, 2 이하가 특히 바람직하다. 또한, 상기 실시형태에서는, 코일 주위의 영역을 내주면, 외주면 및 단면을 따른 직선으로 8 분할하였지만, 다소의 차이가 있어도 된다. 예컨대, 도 28에 있어서, 코너에 위치하는 4개의 영역은, 각각 주형 코어(저μ)측(상하 방향)으로 돌출되어도 된다. 이 경우, 돌출량은, 압분 코어의 상하 방향의 두께의 10% 이내가 바람직하다. 돌출량이 많아지면, 코일의 코너(角) 부분에 있어서 자속의 누설(코일과 쇄교(鎖交, interlinkage)하지 않는 자로의 형성)이 생기기 쉬워지기 때문이다. 참고로, 돌출 부분은, 조립 부착시의 위치 맞춤 등에 이용할 수 있다. 또한, 본 발명의 코일 부품은, 리액터, 특히 차재용(車載用) 리액터에 적합하지만, 다른 코일 부품에도 적용할 수 있다.
[0082] 본 발명은 2015년 8월 24일에 일본 특허청에 제출된 일본 특허출원 제2015-164925호에 근거하고 있으며, 그 내용은 참조에 의해 본 명세서의 일부를 이룬다.
[0083] 본 발명의 최선의 실시형태에 대해 설명하였으나, 당업자에게는 분명한 바와 같이, 본 발명의 정신을 일탈하지 않는 범위에서 실시형태를 변형하는 것이 가능하며, 그러한 실시형태는 본 발명의 범위에 속하는 것이다.
[0084] 10 : 코일 부품
11 : 코일
12 : 내주측 코어
13 : 외주측 코어
14, 15 : 단면측 코어
16 : 케이스
16A : 개구부
16B : 바닥부
16S : 측면부
20 : 슬러리
31 : 내주면을 따른 직선
32 : 외주면을 따른 직선
33, 34 : 단면을 따른 직선
41∼48 : 영역
50 : 내주측 공간
51 : 비자성 갭재
52 : 지지재
111, 131, 151 : 코일
112, 122, 132, 142, 152, 162 : 자속
113, 123, 133, 143, 153, 163 : 교류 동손이 큰 영역
171, 201 : 도전선
172, 174, 202, 204 : 코어
173, 203 : 자속
231 : 엣지 와이즈 코일
232 : 하부 코어
233 : 상부 코어
234, 235 : 교류 동손이 많은 영역
241, 251, 261, 271 : 엣지 와이즈 코일
242, 264 : 압분 코어
243 : 갭
244, 253, 265, 282, 283, 292, 293, 302, 303 : 영역
245, 254, 255, 266, 276, 284, 294 : 교류 동손이 큰 영역
252, 262, 263 : 주형 코어
281, 291 : 코일
301 : 플랫 와이즈 코일

Claims (13)

  1. 내주면과, 외주면과, 상기 내주면 및 상기 외주면에 연속하는 한 쌍의 단면(端面)을 가지는 코일과, 상기 코일의 주위의 적어도 일부를 둘러싸는 코어와, 상기 코일 및 상기 코어를 수용하는 케이스를 가지는 코일 부품으로서,
    상기 코일 부품을 상기 코일의 감김 축(捲軸)과 상기 코어 내를 주회(周回)하는 자로(磁路)를 포함하는 평면으로 절단한 단면(斷面)에 있어서, 상기 코일의 단면(斷面)의 각각의 주위를 상기 내주면, 상기 외주면 및 상기 단면(端面)을 따른 4개의 직선에 의해 8개의 영역으로 구분하였을 때, 상기 코어로서, 코너(角)에 위치하는 4개의 영역에 각각 제1 코어 부재가 배치되고, 상기 내주면의 내측에 위치하는 영역 및 상기 외주면의 외측에 위치하는 영역에 각각 제2 코어 부재가 배치되고, 또한 상기 단면(端面)의 외측에 위치하는 영역에 각각 제3 코어 부재가 배치되어 있으며,
    상기 제2 코어 부재 및 상기 제3 코어 부재 중 적어도 일방(一方)은, 영자계(零磁界)에 있어서 상기 제1 코어 부재보다도 낮은 투자율을 가지고 있으며,
    상기 케이스는 측면부를 가지고 있으며,
    상기 내주면보다도 상기 외주면의 가까이에 위치하는 상기 제1 코어 부재와 상기 측면부 사이에, 영자계에 있어서 상기 제1 코어 부재보다도 낮은 투자율을 가지는 다른 코어 부재가 배치되어 있으며,
    상기 다른 코어 부재는, 상기 내주면보다도 상기 외주면의 가까이에 위치하는 상기 제1 코어 부재와 밀착되어 있는 코일 부품.
  2. 제1항에 있어서,
    상기 제2 코어 부재는, 영자계에 있어서 상기 제1 코어 부재보다도 낮은 투자율을 가지며, 상기 제3 코어 부재는, 적어도 일부가 상기 제2 코어 부재와 동일한 재료로 구성되어 있는 코일 부품.
  3. 제1항에 있어서,
    상기 제2 코어 부재는, 영자계에 있어서 상기 제1 코어 부재보다도 낮은 투자율을 가지며, 상기 제3 코어 부재는, 상기 제1 코어 부재와 동일한 재료로 구성되어 있는 코일 부품.
  4. 제3항에 있어서,
    상기 코일의 내주측에 배치된 상기 제2 코어 부재 중에 비자성 갭이 삽입되어 있는 코일 부품.
  5. 제3항에 있어서,
    상기 제3 코어 부재의 적어도 일부가 비자성 갭으로 치환되어 있는 코일 부품.
  6. 제3항에 있어서,
    상기 코일은, 평각선(平角線)을 나선 형상으로 감은 엣지 와이즈 코일(edgewise coil)인 코일 부품.
  7. 제6항에 있어서,
    상기 평각선은, 표피 깊이보다도 큰 두께를 가지고 있는 코일 부품.
  8. 제6항에 있어서,
    상기 코일은, 감김 열(捲列)의 수가 10 이하인 코일 부품.
  9. 제8항에 있어서,
    상기 코일은, 감김 열의 수가 2 이하인 코일 부품.
  10. 제3항에 있어서,
    상기 제1 코어 부재는, 압분(壓粉) 코어이며,
    상기 제2 코어 부재는, 자성체와 수지를 포함하는 혼합물을 경화(硬化)한 것인 코일 부품.
  11. 제1항에 있어서,
    상기 제3 코어 부재는, 영자계에 있어서 상기 제1 코어 부재보다도 낮은 투자율을 가지며, 상기 제2 코어 부재는, 적어도 일부가 상기 제3 코어 부재와 동일한 재료로 구성되어 있는 코일 부품.
  12. 제1항에 있어서,
    상기 제3 코어 부재는, 영자계에 있어서 상기 제1 코어 부재보다도 낮은 투자율을 가지며, 상기 제2 코어 부재는, 상기 제1 코어 부재와 동일한 재료로 구성되어 있는 코일 부품.
  13. 제12항에 있어서,
    상기 코일은, 평각선을 소용돌이 형상으로 감은 플랫 와이즈 코일(flatwise coil)인 코일 부품.
KR1020187008374A 2015-08-24 2016-08-05 코일 부품 KR102507790B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JPJP-P-2015-164925 2015-08-24
JP2015164925A JP6552332B2 (ja) 2015-08-24 2015-08-24 コイル部品
PCT/JP2016/073162 WO2017033711A1 (ja) 2015-08-24 2016-08-05 コイル部品

Publications (2)

Publication Number Publication Date
KR20180048771A KR20180048771A (ko) 2018-05-10
KR102507790B1 true KR102507790B1 (ko) 2023-03-07

Family

ID=58100073

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020187008374A KR102507790B1 (ko) 2015-08-24 2016-08-05 코일 부품

Country Status (5)

Country Link
US (1) US10811179B2 (ko)
JP (1) JP6552332B2 (ko)
KR (1) KR102507790B1 (ko)
CN (1) CN107924748B (ko)
WO (1) WO2017033711A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7189657B2 (ja) * 2017-03-24 2022-12-14 株式会社トーキン コイル部品
JP6893182B2 (ja) * 2018-01-17 2021-06-23 株式会社トーキン リアクトル及び昇圧回路
WO2022024535A1 (ja) * 2020-07-31 2022-02-03 株式会社村田製作所 リアクトルおよびリアクトルの製造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001185421A (ja) * 1998-12-28 2001-07-06 Matsushita Electric Ind Co Ltd 磁性素子およびその製造方法
US20120218066A1 (en) 2010-06-17 2012-08-30 Sumitomo Electric Industries, Ltd. Reactor

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6392525B1 (en) * 1998-12-28 2002-05-21 Matsushita Electric Industrial Co., Ltd. Magnetic element and method of manufacturing the same
JP4684461B2 (ja) * 2000-04-28 2011-05-18 パナソニック株式会社 磁性素子の製造方法
JP4851062B2 (ja) * 2003-12-10 2012-01-11 スミダコーポレーション株式会社 インダクタンス素子の製造方法
US8988177B1 (en) 2008-12-15 2015-03-24 Marvell International Ltd. Magnetic core having flux paths with substantially equivalent reluctance
JP5140065B2 (ja) 2009-12-28 2013-02-06 株式会社神戸製鋼所 リアクトル
JP4737477B1 (ja) * 2010-02-25 2011-08-03 住友電気工業株式会社 リアクトルの製造方法
KR101380033B1 (ko) 2010-06-22 2014-04-01 코오롱인더스트리 주식회사 전도성 분산액 및 전도성 적층체
KR20120089899A (ko) 2010-12-20 2012-08-16 콘티넨탈 오토모티브 시스템 주식회사 자동 변속기의 댐퍼 클러치 제어 방법
JP6032551B2 (ja) 2012-02-08 2016-11-30 住友電気工業株式会社 リアクトル、コンバータ、及び電力変換装置
JP5408272B2 (ja) 2012-02-08 2014-02-05 住友電気工業株式会社 リアクトル用コア、リアクトル、及びコンバータ
CN202839232U (zh) 2012-09-18 2013-03-27 艾默生网络能源有限公司 一种磁芯及磁性元件
JP2015159144A (ja) * 2014-02-21 2015-09-03 ミツミ電機株式会社 インダクタ
JP6562701B2 (ja) * 2015-04-17 2019-08-21 株式会社トーキン コイル部品

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001185421A (ja) * 1998-12-28 2001-07-06 Matsushita Electric Ind Co Ltd 磁性素子およびその製造方法
US20120218066A1 (en) 2010-06-17 2012-08-30 Sumitomo Electric Industries, Ltd. Reactor

Also Published As

Publication number Publication date
CN107924748B (zh) 2019-10-01
WO2017033711A1 (ja) 2017-03-02
JP2017045765A (ja) 2017-03-02
CN107924748A (zh) 2018-04-17
KR20180048771A (ko) 2018-05-10
US20190019607A1 (en) 2019-01-17
JP6552332B2 (ja) 2019-07-31
US10811179B2 (en) 2020-10-20

Similar Documents

Publication Publication Date Title
JP4535083B2 (ja) コイル部品
JP5365745B1 (ja) リアクトルの製造方法
US20120206232A1 (en) Reactor
US10410778B2 (en) Magnetic circuit component
KR102507790B1 (ko) 코일 부품
US10096420B2 (en) Reactor
JP2010238798A (ja) 樹脂モールドコア及びリアクトル
WO2018193854A1 (ja) リアクトル
JP2014082358A (ja) コイル部品
JP6635316B2 (ja) リアクトル
JPWO2016031993A1 (ja) リアクトル
EP2750146A1 (en) Superconducting coil and superconducting device
JP6562701B2 (ja) コイル部品
JP5562262B2 (ja) リアクトル
JP6075678B2 (ja) 複合磁心、リアクトルおよび電源装置
JP2017045765A5 (ko)
JP5900741B2 (ja) 複合磁心、リアクトルおよび電源装置
JP2017143220A (ja) コイル部品
JP5531773B2 (ja) 回転電機
JP2009148141A (ja) 磁性体部品
JP7247847B2 (ja) リアクトルの製造方法およびリアクトル製造用の金型
US20230360836A1 (en) Transformer
US20230318385A1 (en) Coil wire rod, manufacturing method for coil wire rod, stator, and electric motor
JP2011138940A (ja) リアクトル
JP6762688B2 (ja) コイル部品

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant