KR101992042B1 - 피검사체 촬상 장치, 피검사체 촬상 방법, 표면 검사 장치 및 표면 검사 방법 - Google Patents

피검사체 촬상 장치, 피검사체 촬상 방법, 표면 검사 장치 및 표면 검사 방법 Download PDF

Info

Publication number
KR101992042B1
KR101992042B1 KR1020177030929A KR20177030929A KR101992042B1 KR 101992042 B1 KR101992042 B1 KR 101992042B1 KR 1020177030929 A KR1020177030929 A KR 1020177030929A KR 20177030929 A KR20177030929 A KR 20177030929A KR 101992042 B1 KR101992042 B1 KR 101992042B1
Authority
KR
South Korea
Prior art keywords
imaging
optical system
light
image pickup
reflected light
Prior art date
Application number
KR1020177030929A
Other languages
English (en)
Other versions
KR20170129949A (ko
Inventor
유스케 곤노
다카미치 고바야시
도시오 아카기
아츠히로 히비
노부히로 후루야
아키히토 나카자키
Original Assignee
닛폰세이테츠 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 닛폰세이테츠 가부시키가이샤 filed Critical 닛폰세이테츠 가부시키가이샤
Publication of KR20170129949A publication Critical patent/KR20170129949A/ko
Application granted granted Critical
Publication of KR101992042B1 publication Critical patent/KR101992042B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/30Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces
    • G01B11/303Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces using photoelectric detection means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/57Measuring gloss
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/8901Optical details; Scanning details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/8914Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles characterised by the material examined
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/892Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles characterised by the flaw, defect or object feature examined
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/8914Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles characterised by the material examined
    • G01N2021/8918Metal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/359Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/892Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles characterised by the flaw, defect or object feature examined
    • G01N21/8922Periodic flaws
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/94Investigating contamination, e.g. dust
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/952Inspecting the exterior surface of cylindrical bodies or wires
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/069Supply of sources
    • G01N2201/0696Pulsed
    • G01N2201/0697Pulsed lasers

Abstract

가시광의 파장 정도의 표면 조도를 갖는 피검사체의 표면에 발생한 표면 조도의 몇배 정도의 요철 결함 등을 고감도로 발견하고, 피검사체의 표면에 존재하는 오염과 요철 흠집의 구별을 정확하게 행함과 함께 장치의 소형화를 도모하는 것.
본 발명에 따른 피검사체 촬상 장치는, 적외 파장 대역에 속하고, 피검사체의 표면에 있어서 소정의 확산 반각을 갖는 광속을 발생시키는 광원과, 광속을 소정의 투사각으로 피검사체의 표면에 투사하는 투사 광학계와, 피검사체의 표면으로부터의 반사광을 촬상하는 촬상부를 구비하고, 촬상부는, 적어도 1개의 볼록 렌즈를 갖고, 반사광을 집광하면서 당해 반사광을 2개의 상이한 방향으로 분기하는 촬상 광학계와, 촬상 광학계를 투과한 각 반사광을 촬상하는 제1 및 제2 촬상 소자를 갖고 있으며, 제1 촬상 소자는 반사광의 광축을 따라서 촬상 광학계의 피검사체의 표면에 공액의 위치보다도 피검사체측에 위치하고, 제2 촬상 소자는 당해 공액의 위치보다도 반사광의 진행 방향측에 위치한다.

Description

피검사체 촬상 장치, 피검사체 촬상 방법, 표면 검사 장치 및 표면 검사 방법
본 발명은 피검사체 촬상 장치, 피검사체 촬상 방법, 표면 검사 장치 및 표면 검사 방법에 관한 것이다.
예를 들어 냉연 강판과 같은 금속판을 제조함에 있어서, 열연 강판 등의 중간 제품을 압연하는 처리가 행하여진다. 이러한 압연 처리에서는, 압연롤을 사용하여 최종 제품이 원하는 두께로 되도록 잡아 늘리는 것이 행하여지는데, 압연롤에 이물이 부착되어 있는 경우에는, 이러한 이물에 기인하여 금속판 표면에 요철 흠집이 발생하는 경우가 있다. 또한, 압연롤이 미소 진동하고 있는 경우에는, 이러한 진동에 의해 금속판 표면에 미세한 가로 줄무늬(채터 마크)가 형성되는 경우도 있다. 더욱이, 제조 라인 등의 오염에 기인하여 금속판 표면에 무해한 오염이 부착되는 경우도 있다.
이 요철 흠집의 요철량은, 1㎛ 정도 내지 그 10배 정도이다. 한편, 도장 전의 제조 프로세스에 있어서의 띠강판의 표면은, 가시광과 동일 정도인 0.5㎛∼1㎛ 정도의 조도를 갖기 때문에, 가시광에 의한 목시 검사에서는 확산 반사 성분이 커서, 요철 결함을 발견하는 것은 곤란하다. 이러한 요철 결함을 검출하기 위해서, 종래에는, 검사원이 금속판에 대하여 호닝을 행한 후에 목시 검사를 행하는 것이 행하여져 왔다. 금속판에 대하여 호닝을 행하면, 오목부에 비하여 볼록부가 더한층 연마됨으로써 볼록부가 경면에 가까워지는 것에 반해, 오목부는 원래의 조면인채로 잔존하기 때문에, 요철 발생부가 명료하게 되어, 목시에 의해 확인하는 것이 가능하게 된다. 그러나, 제조한 금속판의 요철 흠집의 유무의 확인을 목시에 의해 실시하기 위해서는, 시간과 노동력을 갖는다는 문제가 있다.
이러한 문제를 해결하기 위해서, 적외 파장 대역에 속하는 광(적외광)을 이용함으로써, 강판의 표면에 존재하는 미소 결함을 목시에 의하지 않고 검출하는 방법에 관한 검토가 행해지고 있다. 예를 들어, 이하의 특허문헌 1에서는, 적외광을 피검사 대상물에 조사하고, 피검사 대상물로부터의 반사광을 스크린 투영하여 명암을 카메라에 의해 관찰함으로써, 피검사 대상물의 표면에 존재하는 미소 요철성 흠집을 검출하는 방법이 개시되어 있다. 또한, 이하의 특허문헌 2에서는, 적외 레이저광을 발산광으로 한 후에 피검사체에 조사하고, 피검사체로부터의 반사광을 오목 거울로 집광한 다음 카메라에 의해 촬상하는 방법에 대하여 개시되어 있다.
일본 특허 공개 제2010-133967호 공보 일본 특허 공개 제2009-80033호 공보
P.Beckmann, "Scattering by composite rough surfaces", Proceedings of the IEEE, Vol.53, Issue8(1965), 1012-1015.
그러나, 상기 특허문헌 1의 방법에 관하여, 카메라의 명암 패턴과 흠집의 요철은 반드시 일치하는 것은 아니기 때문에, 오염과 요철 흠집의 구별이 어렵다는 문제가 있었다. 또한, 조명에 레이저를 사용한 경우에는, 반사광을 확산면인 스크린에 투영하면 스페클 노이즈가 출현하여, 정확한 검사를 할 수 없다는 문제가 있었다. 또한, 본 방법에서는, 스크린에서 산란되는 광의 일부밖에 카메라에 입사되지 않기 때문에, 명암을 양호하게 관찰하기 위해서는 광원의 파워가 필요하게 된다는 문제가 있었다.
또한, 상기 특허문헌 2의 방법에 관하여, 오목 거울에서는 광축의 각도를 180도로부터 크게 변경하는 것이 곤란해서, 그 결과, 광로가 겹치는 영역이 존재 하게 되어, 장치의 소형화가 곤란하다는 문제가 있었다. 또한, 검사 범위보다도 오목 거울의 크기가 필연적으로 커져서, 이러한 점에서도 장치의 소형화가 곤란하다는 문제가 있었다.
그래서, 본 발명은 상기 문제를 감안하여 이루어진 것이며, 본 발명의 목적으로 하는 점은, 가시광의 파장 정도의 표면 조도를 갖는 피검사체의 표면에 발생한, 표면 조도의 몇배 정도의 요철 결함 등을 고감도로 검출함과 함께, 피검사체의 표면에 존재하는 오염과 요철 흠집의 구별을 정확하게 행하는 것이 가능하고, 또한, 장치의 소형화를 도모하는 것이 가능한, 피검사체 촬상 장치, 피검사체 촬상 방법, 표면 검사 장치 및 표면 검사 방법을 제공하는 데 있다.
상기 과제를 해결하기 위해서, 본 발명의 어느 한 관점에 의하면, 적외 파장 대역에 속하는 광속을 발생시키는 것이며, 피검사체의 표면에 있어서의 상기 광속의 확산 반각이, 촬상해야 할 표면의 최소 기울기의 20배 이하인 광원과, 상기 피검사체의 표면에 대하여 상기 광속을 소정의 투사각으로 투사하는 투사 광학계와, 상기 피검사체의 표면에서 반사된 상기 광속을 촬상하는 촬상부를 구비하고, 상기 촬상부는, 적어도 1개의 볼록 렌즈를 갖고, 상기 피검사체의 표면으로부터의 반사광을 집광하는 것이며, 당해 반사광을 2개의 상이한 방향으로 분기하는 분기 광학 소자를 갖는 촬상 광학계와, 상기 촬상 광학계를 투과한 각각의 상기 반사광을 촬상하는 제1 촬상 소자 및 제2 촬상 소자를 갖고 있으며, 상기 제1 촬상 소자는, 상기 반사광의 광축을 따라, 상기 촬상 광학계의 상기 피검사체의 표면에 공액의 위치보다도 상기 피검사체측에 설치되어 있고, 상기 제2 촬상 소자는, 상기 반사광의 광축을 따라, 상기 촬상 광학계의 상기 공액의 위치보다도 상기 반사광의 진행 방향측에 설치되어 있는 피검사체 촬상 장치가 제공된다.
또한, 상기 과제를 해결하기 위해서, 본 발명의 다른 관점에 의하면, 적외 파장 대역에 속하는 광속을 발생시키는 것이며, 피검사체의 표면에 있어서의 상기 광속의 확산 반각이 촬상해야 할 표면의 최소 기울기의 20배 이하인 광원으로부터 상기 피검사체의 표면에 대하여 투사 광학계를 통하여 상기 광속을 소정의 투사각으로 투사하고, 상기 피검사체의 표면에서 반사된 상기 광속인 반사광을, 적어도 1개의 볼록 렌즈를 갖는 촬상 광학계로 집광함과 함께, 당해 촬상 광학계가 갖는 분기 광학 소자에 의해 상기 반사광을 2개의 상이한 방향으로 분기하고, 상기 반사광의 광축을 따라서 상기 촬상 광학계의 상기 피검사체의 표면에 공액의 위치보다도 상기 피검사체측에 설치되어 있는 제1 촬상 소자에 의해, 당해 제1 촬상 소자에 결상된 상기 반사광을 촬상함과 함께, 상기 반사광의 광축을 따라서 상기 촬상 광학계의 상기 공액의 위치보다도 상기 반사광의 진행 방향측에 설치되어 있는 제2 촬상 소자에 의해, 당해 제2 촬상 소자에 결상된 상기 반사광을 촬상하는 피검사체 촬상 방법이 제공된다.
상기 촬상 광학계는, 상기 분기 광학 소자와 상기 제1 촬상 소자 사이에 설치되고, 상기 반사광을 상기 제1 촬상 소자에 집광하는 제1 집광 광학계와, 상기 분기 광학 소자와 상기 제2 촬상 소자 사이에 설치되고, 상기 반사광을 상기 제2 촬상 소자에 집광하는 제2 집광 광학계를 더 갖고 있어도 된다.
상기 광원에서 발생하는 상기 광속은 평행광이어도 된다.
상기 제1 촬상 소자 및 상기 제2 촬상 소자 각각에 대해서, 상기 공액의 위치로부터의 시프트량 Δ[mm]는, 상기 촬상 광학계의 가로 배율을 β로 하고, 각각의 상기 촬상 소자에 있어서의 화소의 피치를 p[mm]로 하고, 상기 표면에 있어서 촬상하고자 하는 기울기의 최솟값을 T로 했을 때에, 이하의 식 (1)로 표현되는 조건을 만족시키도록 설정되어도 된다.
상기 광원은, 외부 공진기를 갖지 않는 양자 캐스케이드 레이저여도 된다.
상기 피검사체는, 소정의 곡률을 갖는 롤의 표면 상에 위치하고 있고, 상기 투사 광학계 및 상기 촬상 광학계는, 상기 롤의 회전 중심축에 초점이 일치하는 실린드리컬 렌즈를 갖고 있어도 된다.
상기 제1 촬상 소자 및 상기 제2 촬상 소자는, 각각의 촬상 소자 내의 각 화소 위치에 있어서의 상기 공액의 위치로부터의 시프트량이 일정해지도록 광축에 대하여 경사져서 설치되어 있어도 된다.
Figure 112017105874647-pct00001
또한, 상기 과제를 해결하기 위해서, 본 발명의 또 다른 관점에 의하면, 피검사체의 표면에 대하여 소정의 투사각으로 적외 파장 대역에 속하는 광속을 투사하고, 상기 피검사체의 표면으로부터의 반사광을 촬상하는 피검사체 촬상 장치와, 상기 피검사체 촬상 장치에 의해 촬상된 상기 반사광의 촬상 화상에 대하여 화상 처리를 행하고, 상기 피검사체의 표면에 존재하는 표면 결함을 검출하는 연산 처리 장치를 구비하고, 상기 피검사체 촬상 장치는, 적외 파장 대역에 속하는 광속을 발생시키는 것이며, 피검사체의 표면에 있어서의 상기 광속의 확산 반각이, 촬상해야 할 표면의 최소 기울기의 20배 이하인 광원과, 상기 피검사체의 표면에 대하여 상기 광속을 소정의 투사각으로 투사하는 투사 광학계와, 상기 피검사체의 표면에서 반사된 상기 광속을 촬상하는 촬상부를 구비하고, 상기 촬상부는, 적어도 1개의 볼록 렌즈를 갖고, 상기 피검사체의 표면으로부터의 반사광을 집광하는 것이며, 당해 반사광을 2개의 상이한 방향으로 분기하는 분기 광학 소자를 갖는 촬상 광학계와, 상기 촬상 광학계를 투과한 각각의 상기 반사광을 촬상하는 제1 촬상 소자 및 제2 촬상 소자를 갖고 있으며, 상기 제1 촬상 소자는, 상기 반사광의 광축을 따라, 상기 촬상 광학계의 상기 피검사체의 표면에 공액의 위치보다도 상기 피검사체측에 설치되어 있고, 상기 제2 촬상 소자는, 상기 반사광의 광축을 따라, 상기 촬상 광학계의 상기 공액의 위치보다도 상기 반사광의 진행 방향측에 설치되어 있고, 상기 연산 처리 장치는, 상기 제1 촬상 소자에 의해 촬상된 제1 촬상 화상, 및 상기 제2 촬상 소자에 의해 촬상된 제2 촬상 화상의 명암 분포에 기초하여, 상기 제1 촬상 화상과 상기 제2 촬상 화상 사이에서 명암이 역전되어 있는 부분을, 상기 피검사체의 표면에 존재하는 요철로서 검출하는 표면 검사 장치가 제공된다.
또한, 상기 과제를 해결하기 위해서, 본 발명의 또 다른 관점에 의하면, 적외 파장 대역에 속하는 광속을 발생시키는 것이며, 피검사체의 표면에 있어서의 상기 광속의 확산 반각이 촬상해야 할 표면의 최소 기울기의 20배 이하인 광원으로부터 상기 피검사체의 표면에 대하여 투사 광학계를 통하여 상기 광속을 소정의 투사각으로 투사하고, 상기 피검사체의 표면에서 반사된 상기 광속인 반사광을, 적어도 1개의 볼록 렌즈를 갖는 촬상 광학계로 집광함과 함께, 당해 촬상 광학계가 갖는 분기 광학 소자에 의해 상기 반사광을 2개의 상이한 방향으로 분기하고, 상기 반사광의 광축을 따라서 상기 촬상 광학계의 상기 피검사체의 표면에 공액의 위치보다도 상기 피검사체측에 설치되어 있는 제1 촬상 소자에 의해, 당해 제1 촬상 소자에 결상된 상기 반사광을 촬상함과 함께, 상기 반사광의 광축을 따라서 상기 촬상 광학계의 상기 공액의 위치보다도 상기 반사광의 진행 방향측에 설치되어 있는 제2 촬상 소자에 의해, 당해 제2 촬상 소자에 결상된 상기 반사광을 촬상하는 스텝과, 상기 제1 촬상 소자에 의해 촬상된 제1 촬상 화상 및 상기 제2 촬상 소자에 의해 촬상된 제2 촬상 화상의 명암 분포에 기초하여, 상기 제1 촬상 화상과 상기 제2 촬상 화상 사이에서 명암이 역전되어 있는 부분을, 상기 피검사체의 표면에 존재하는 요철로서 검출하는 스텝을 포함하는 표면 검사 방법이 제공된다.
상기 촬상 광학계는, 상기 분기 광학 소자와 상기 제1 촬상 소자 사이에 설치되고, 상기 반사광을 상기 제1 촬상 소자에 집광하는 제1 집광 광학계와, 상기 분기 광학 소자와 상기 제2 촬상 소자 사이에 설치되고, 상기 반사광을 상기 제2 촬상 소자에 집광하는 제2 집광 광학계를 더 갖고 있어도 된다.
상기 광원에서 발생하는 상기 광속은 평행광이어도 된다.
상기 제1 촬상 소자 및 상기 제2 촬상 소자 각각에 대해서, 상기 공액의 위치로부터의 시프트량 Δ[mm]는, 상기 촬상 광학계의 가로 배율을 β로 하고, 각각의 상기 촬상 소자에 있어서의 화소의 피치를 p[mm]로 하고, 상기 표면에 있어서 검출하고자 하는 기울기의 최솟값을 T로 했을 때에, 이하의 식 (1)로 표현되는 조건을 만족시키도록 설정되어도 된다.
상기 광원은, 외부 공진기를 갖지 않는 양자 캐스케이드 레이저여도 된다.
상기 피검사체는, 소정의 곡률을 갖는 롤의 표면 상에 위치하고 있고, 상기 투사 광학계 및 상기 촬상 광학계는, 상기 롤의 회전 중심축에 초점이 일치하는 실린드리컬 렌즈를 갖고 있어도 된다.
상기 제1 촬상 소자 및 상기 제2 촬상 소자는, 각각의 촬상 소자 내의 각 화소 위치에 있어서의 상기 공액의 위치로부터의 시프트량이 일정해지도록 광축에 대하여 경사져서 설치되어 있어도 된다.
Figure 112017105874647-pct00002
이상 설명한 바와 같이 본 발명에 따르면, 피검사체의 표면으로부터의 반사광을 적어도 1개의 볼록 렌즈를 갖는 광학 소자로 집광함과 함께, 피검사체의 표면과 공액의 위치로부터 시프트하여 배치된 2개의 촬상 소자로 반사광을 촬상함으로써, 장치의 소형화를 도모함과 함께, 가시광의 파장 정도의 표면 조도를 갖는 피검사체의 표면에 발생한, 표면 조도의 몇배 정도의 요철 결함 등을 고감도로 검출하는 것이 가능하게 된다. 또한, 2개의 촬상 소자에서 생성된 촬상 화상을 이용함으로써, 금속판의 표면에 존재하는 오염과 요철 흠집의 구별을 정확하게 행하는 것이 가능하게 된다.
도 1은 본 발명의 실시 형태에 따른 표면 검사 장치에 대하여 도시한 설명도이다.
도 2는 동 실시 형태에 따른 피검사체 촬상 장치에 대하여 도시한 설명도이다.
도 3은 동 실시 형태에 따른 피검사체 촬상 장치의 광원에 대하여 설명하기 위한 설명도이다.
도 4a는 동 실시 형태에 따른 피검사체 촬상 장치의 광원에 대하여 설명하기 위한 설명도이다.
도 4b는 동 실시 형태에 따른 피검사체 촬상 장치의 광원에 대하여 설명하기 위한 설명도이다.
도 5a는 동 실시 형태에 따른 피검사체 촬상 장치의 광원에 대하여 설명하기 위한 설명도이다.
도 5b는 동 실시 형태에 따른 피검사체 촬상 장치의 광원에 대하여 설명하기 위한 설명도이다.
도 5c는 동 실시 형태에 따른 피검사체 촬상 장치의 광원에 대하여 설명하기 위한 설명도이다.
도 6은 동 실시 형태에 따른 피검사체 촬상 장치의 광원에 대하여 설명하기 위한 설명도이다.
도 7은 동 실시 형태에 따른 피검사체 촬상 장치의 촬상부의 일례를 도시한 설명도이다.
도 8은 동 실시 형태에 따른 피검사체 촬상 장치의 촬상부의 일례를 도시한 설명도이다.
도 9는 공액 위치에서의 결상의 모습에 대하여 설명하기 위한 설명도이다.
도 10은 동 실시 형태에 따른 피검사체 촬상 장치의 촬상부에 대하여 설명하기 위한 설명도이다.
도 11은 공액 위치로부터의 시프트량의 결정 방법의 일례를 설명하기 위한 설명도이다.
도 12는 동 실시 형태에 따른 피검사체 촬상 장치의 촬상부에 대하여 설명하기 위한 설명도이다.
도 13은 동 실시 형태에 따른 피검사체 촬상 장치의 광속 투사부 및 촬상 광학계의 일례에 대하여 설명하기 위한 설명도이다.
도 14는 동 실시 형태에 따른 연산 처리 장치의 화상 처리부의 구성을 도시한 블록도이다.
도 15는 동 실시 형태에 따른 연산 처리 장치의 하드웨어 구성을 도시한 블록도이다.
도 16은 동 실시 형태에 따른 촬상부의 시뮬레이션 결과에 대하여 도시한 그래프도이다.
도 17은 동 실시 형태에 따른 촬상부의 시뮬레이션 결과에 대하여 도시한 그래프도이다.
도 18a는 동 실시 형태에 따른 촬상부의 시뮬레이션 결과에 대하여 도시한 그래프도이다.
도 18b는 동 실시 형태에 따른 촬상부의 시뮬레이션 결과에 대하여 도시한 그래프도이다.
도 19는 동 실시 형태에 따른 촬상부의 시뮬레이션 결과에 대하여 도시한 그래프도이다.
도 20은 동 실시 형태에 따른 피검사체 촬상 장치에 의한 금속 표면의 촬상 결과를 도시한 설명도이다.
이하에 첨부 도면을 참조하면서, 본 발명의 적합한 실시 형태에 대하여 상세하게 설명한다. 또한, 본 명세서 및 도면에 있어서, 실질적으로 동일한 기능 구성을 갖는 구성 요소에 대해서는, 동일한 번호를 부여함으로써 중복 설명을 생략한다.
<표면 검사 장치의 구성에 대해서>
먼저, 도 1을 참조하면서, 본 발명의 실시 형태에 따른 표면 검사 장치의 구성에 대하여 설명한다. 도 1은, 본 실시 형태에 따른 표면 검사 장치(10)의 구성을 도시한 설명도이다.
본 실시 형태에 따른 표면 검사 장치(10)는 도 1에 예시한 바와 같이, 피검사체 촬상 장치(100)와, 연산 처리 장치(200)를 주로 구비한다.
피검사체 촬상 장치(100)는 피검사체(S)에 대하여 이하에서 상세하게 설명하는 소정의 확산 반각을 갖는 적외 파장 대역에 속하는 광속을 투사함과 함께, 피검사체(S)의 표면으로부터의 광속의 반사광을 촬상하여, 피검사체(S)의 표면을 촬상한 촬상 화상을 생성한다. 피검사체 촬상 장치(100)에 의해 생성된 피검사체(S)의 표면의 촬상 화상은, 연산 처리 장치(200)로 출력된다.
연산 처리 장치(200)는 피검사체 촬상 장치(100)에 의해 생성된 촬상 화상에 대하여 화상 처리를 실시하여, 피검사체(S)의 표면에 존재하는 표면 결함(특히, 요철 흠집)을 검출한다.
또한, 상기 피검사체 촬상 장치(100) 및 연산 처리 장치(200)에 대해서는, 이하에서 다시 상세하게 설명한다.
또한, 본 실시 형태에 따른 피검사체(S)는, 피검사체 촬상 장치(100)로부터 투사된 적외 파장 대역에 속하는 광속을 반사 가능한 금속판이면 된다. 이러한 피검사체(S)에 대해서는, 특별히 한정되는 것은 아니지만, 예를 들어, 합금을 포함하는 각종 강판이나, 소위 비철 금속판 등을 들 수 있다.
<피검사체 촬상 장치의 구성에 대해서>
계속해서, 도 2∼도 13을 참조하면서, 본 실시 형태에 따른 피검사체 촬상 장치(100)의 구성에 대해서 상세하게 설명한다.
도 2는, 본 실시 형태에 따른 피검사체 촬상 장치(100)의 전체 구성을 모식적으로 도시한 설명도이다. 도 3∼도 5c는, 본 실시 형태에 따른 피검사체 촬상 장치의 광원에 대하여 설명하기 위한 설명도이다. 도 6은, 본 실시 형태에 따른 피검사체 촬상 장치의 광원에 대하여 설명하기 위한 설명도이다. 도 7 및 도 8은, 실시 형태에 따른 피검사체 촬상 장치의 촬상부의 일례를 도시한 설명도이다. 도 9는, 공액 위치에서의 결상의 모습에 대하여 설명하기 위한 설명도이다. 도 10은, 본 실시 형태에 따른 피검사체 촬상 장치의 촬상부에 대하여 설명하기 위한 설명도이다. 도 11은, 공액 위치로부터의 시프트량의 결정 방법의 일례를 설명하기 위한 설명도이다. 도 12는, 본 실시 형태에 따른 피검사체 촬상 장치의 촬상부에 대하여 설명하기 위한 설명도이다. 도 13은, 본 실시 형태에 따른 피검사체 촬상 장치의 광속 투사부에 대하여 설명하기 위한 설명도이다.
본 실시 형태에 따른 피검사체 촬상 장치(100)는 도 2에 도시한 바와 같이, 광속 투사부(101)와, 촬상부(103)를 구비한다.
[광속 투사부에 대해서]
광속 투사부(101)는 피검사체(S)의 표면에 대하여 소정의 투사각 θ로 적외 파장 대역의 광속을 투사하기 위한 광학계이다. 이 광속 투사부(101)는 도 2에 도시한 바와 같이, 적외 파장 대역에 속하는 광속(이하, 간단히 「적외광」이라고도 칭한다.)을 출사하는 광원(105)과, 광원(105)으로부터 출사된 적외광을 피검사체(S)에 도광하는 투사 광학계(107)를 구비한다. 여기서, 상기 투사각 θ로, 도 2에 모식적으로 도시한 바와 같이, 광원(105)의 광축과, 피검사체(S)의 표면 법선 방향이 이루는 각을 의미한다.
광원(105)은 피검사체(S)의 표면에 대하여 조사되는 적외광(예를 들어, 파장 8∼12㎛ 정도의 적외광)을 출사하는 것이다. 이러한 광원은, 출사하는 적외광의 광속의 확산 반각이, 소정의 값 이하로 되어 있는 광원이다. 여기서, 광속의 확산 반각 φ란, 도 3에 모식적으로 도시한 바와 같이, 광원(105)으로부터 출사되는 적외 파장 대역에 속하는 광속의 외측 에지를 나타내는 직선과, 광원(105)의 광축이 이루는 각을 의미한다.
이하에서 상세하게 설명한 바와 같이, 본 실시 형태에 따른 피검사체 촬상 장치(100)에서는, 피검사체의 표면에 존재하고 있는 기울기를, 촬상 화상에 있어서의 휘도값의 명암으로서 가시화한다. 또한, 본 실시 형태에 따른 표면 검사 장치(10)는 이러한 촬상 화상에 있어서의 휘도값의 명암에 기초하여, 피검사체의 표면에 존재하고 있는 기울기를 검출한다. 그로 인해, 본 실시 형태에 따른 광원(105)은 피검사체의 표면에 존재하고 있는 기울기를 고정밀도로 반영 가능한 것인 것이 중요하다.
여기서, 광원(105)으로부터 출사되는 광속의 확산 반각이, 피검사체의 표면에 존재하는 기울기보다도 충분히 작은 경우에 대하여 착안한다.
이때, 도 4a의 좌측 도면에 모식적으로 도시한 바와 같이, 피검사체의 표면이 평탄한 경우에는, 이러한 표면에서 반사된 광속의 밝기는, 광속이 서로 동일한 반사각으로 반사되기 때문에, 균일해진다. 한편, 도 4a의 우측 도면에 모식적으로 도시한 바와 같이, 피검사체의 표면에 기울기가 존재한 경우에는, 평탄 부분과 기울기 부분의 반사각이 상이한 결과, 반사광의 광속이 서로 중첩되어, 밝아지는 부분이 발생하게 된다.
계속해서, 광원(105)으로부터 출사되는 광속의 확산 반각이, 피검사체의 표면에 존재하는 기울기보다도 큰 경우에 대하여 착안한다.
이때, 도 4b의 좌측 도면에 모식적으로 도시한 바와 같이, 피검사체의 표면이 평탄하다고 해도, 광속이 서로 중첩되게 된다. 그로 인해, 도 4b의 우측 도면에 모식적으로 도시한 바와 같이, 피검사체의 표면에 기울기가 존재한다고 해도, 평탄할 때부터 광속이 서로 중첩되어 있기 때문에, 밝기의 변화는 적어, 기울기를 고정밀도로 검출하는 것이 곤란해진다.
이상과 같은 지견에 기초하여, 본 실시 형태에 따른 광원(105)으로서, 피검사체의 표면에 있어서의 광속의 확산 반각 φ가, 촬상해야 할 표면의 최소 기울기(환언하면, 요구하는 기울기의 검출 분해능)의 20배 이하인 광원을 이용한다. 여기서, 광속의 확산 반각 φ가, 촬상해야 할 표면의 최소 기울기의 20배를 초과하는 경우에는, 피검사체의 표면에 존재하고 있는 기울기를 반영하는 것이 곤란해지기 때문에, 바람직하지 않다. 또한, 광속의 확산 반각 φ는, 작으면 작을수록 좋고, 광속의 확산 반각 φ는 0도여도 된다. 확산 반각 φ가 0도라는 것은, 광원으로부터 출사하는 광속이 완전한 평행광이 되어 있는 것을 의미한다.
이러한 확산 반각을 갖는 광원(105)은 예를 들어, 도 5a∼도 5c에 모식적으로 도시한 바와 같이, 적열 물체와 같은 표면으로부터 전방향으로 광을 방사하는 적외광 발광체(이하, 간단히 「발광체」라고 한다.)와 볼록 렌즈를 조합함으로써, 실현할 수 있다.
먼저, 도 5a에 도시한 바와 같이, 발광체가, 볼록 렌즈의 초점에 위치하는 경우에 대하여 착안한다. 이 경우, 발광체로부터 출사한 적외광 다발은, 볼록 렌즈를 투과함으로써 평행광이 된다. 여기서, 확산 반각은, 발광체의 크기의 절반의 값에 대응하는 발광체의 높이를 h로 하고, 볼록 렌즈의 초점 거리를 f로 한 경우에, h/f(단위: rad)로 표현되는 값이 된다. 따라서, 볼록 렌즈의 초점 거리 f가 일정하다고 하면, 광원의 높이 h가 작으면 작을수록(환언하면, 발광체가 점광원에 가까워지면 가까워질수록), 확산 반각은 작은 값이 됨을 알 수 있다.
이어서, 도 5b에 도시한 바와 같이, 발광체를, 볼록 렌즈의 초점보다도 뒤에 위치하도록(환언하면, 발광체와 볼록 렌즈의 주면 간의 이격 거리가, 초점 거리 f보다도 커지도록) 배치하는 경우에 대하여 착안한다. 이 경우, 발광체로부터 출사한 적외광 다발은, 볼록 렌즈를 투과함으로써, 집속광이 된다.
또한, 도 5c에 도시한 바와 같이, 발광체를, 볼록 렌즈의 초점보다도 앞쪽에 위치하도록(환언하면, 발광체와 볼록 렌즈의 주면 간의 이격 거리가, 초점 거리 f보다도 작아지도록) 배치하는 경우에 대하여 착안한다. 이 경우, 발광체로부터 출사한 적외광 다발은, 볼록 렌즈를 투과함으로써, 발산광이 된다.
도 5b 및 도 5c에 도시한 경우에 있어서도 마찬가지로, 확산 반각은, 발광체의 높이 h와, 출사면과 볼록 렌즈의 주축 간의 이격 거리를 사용하여 표현되고, 이러한 이격 거리가 동일한 경우에는, 광원의 높이 h가 작으면 작을수록, 확산 반각은 작은 값이 된다.
이와 같이, 발광체와 볼록 렌즈의 위치 관계를 제어함으로써, 광속으로서, 평행광을 선택하거나, 집속광을 선택하거나, 발산광을 선택하거나 하는 것이 가능하게 된다. 본 실시 형태에 따른 피검사체 촬상 장치(100)에서는, 광원(105)으로부터 출사되는 광속으로서, 도 5a에 도시된 바와 같은 평행광, 도 5b에 도시된 바와 같은 집속광, 도 5c에 도시된 바와 같은 발산광 중 어느 것이든 사용하는 것이 가능하다. 여기서, 광원(105)으로부터 출사되는 광속으로서, 평행광을 이용함으로써, 광원(105) 전체의 배치 위치의 제약이 없어지기 때문에, 피검사체 촬상 장치(100)의 광학계 설계가 보다 용이하게 된다. 따라서, 광원(105)으로부터 출사되는 광속으로서는, 도 5a와 같은 평행광을 이용하는 것이 바람직하다.
또한, 도 5a∼도 5c에 도시된 바와 같은 볼록 렌즈는, 후술하는 투사 광학계(107)를 겸할 수 있다. 또한, 도 5a∼도 5c에 도시된 바와 같은 볼록 렌즈는, 후술하는 투사 광학계(107)와는 독립적인 것이어도 된다.
또한, 상기와 같은 발광체와 볼록 렌즈의 조합이 아니라, CO2 레이저와 같은 레이저 소자와 광학계의 조합을 광원(105)으로서 사용하는 것도 가능하다. 이 경우에는, 레이저로부터 출사한 광의 빔 반경과 확산 반각의 곱인 빔 파라미터 프로덕트(Beam Parameter Product: BPP)가 소자 고유의 상수이며, 또한 빔 전파중의 불변량이기 때문에, 전술한 바와 같이 발광체의 높이 h를 사용하는 대신, BPP를 광원(105)으로부터 출사하는 광속의 반경으로 나눔으로써 확산 반각이 구해진다.
광원(105)으로서 레이저 소자와 광학계의 조합을 사용하는 경우, 본 실시 형태에서는, 이러한 광원(105)으로서, 양자 캐스케이드 레이저(보다 상세하게는, 외부 공진기를 갖고 있지 않은 양자 캐스케이드 레이저)를 이용하는 것이 바람직하다. 외부 공진기를 갖고 있지 않은 양자 캐스케이드 레이저는, 파장이 약 10㎛이며, 또한, 스펙트럼 폭이 400nm 정도로 되는 적외광을 출사 가능한 레이저광원이다. 광원(105)으로서, 상기와 같은 양자 캐스케이드 레이저를 사용함으로써 다른 적외광원을 이용하는 경우와 비하여, 피검사체의 표면으로부터의 스페클 노이즈의 발생을 더 효과적으로 억제하는 것이 가능하게 된다. 광원(105)으로서 양자 캐스케이드 레이저를 사용하는 경우에 대해서도, 그 확산 반각은, 소자 고유의 상수인 BPP를 광원(105)으로부터 출사하는 광속의 반경으로 나눔으로써 구해진다.
도 6은, 광원(105)으로서, CO2 레이저광원, 또는, 외부 공진기를 갖고 있지 않은 양자 캐스케이드 레이저광원을 이용하여, 강판의 표면에 존재하는 볼록부를 촬상한 촬상 화상을 나타낸 것이다. 여기서, 사용한 CO2 레이저광원은, 중심 파장이 10.6㎛이며, 스펙트럼 폭이 1nm인 광속을 출사하는 광원이며, 사용한 양자 캐스케이드 레이저광원은, 중심 파장이 10㎛이며, 스펙트럼 폭이 400nm인 광속을 출사하는 광원이다. 또한, 도 6에 도시한 각 촬상 화상을 취득할 때에는, 각 광원으로부터 출사한 광속을 평행광으로 한 뒤에, 강판의 표면에 대하여 조사하고 있다. 도 6에 도시한 양자의 촬상 화상을 비교하면 명백한 바와 같이, 광원(105)으로서 CO2 레이저를 사용한 경우에는, 촬상 화상의 전체에 걸쳐 스페클 노이즈가 발생하고 있어, 화상의 대략 중심에 존재하고 있는 볼록부(검게 비치고 있는 부분)가 선명하지 않게 되어 있다. 한편, 광원(105)으로서 양자 캐스케이드 레이저를 사용한 경우에는, 스페클 노이즈의 발생이 억제되어서, 화상의 대략 중심에 존재하고 있는 볼록부(검게 비치고 있는 부분)가 선명하게 비추어져 있다.
여기서, 광원(105)은 CW(Continuous Wave)광을 출사 가능한 CW 레이저광원이어도 되고, 펄스광을 출사 가능한 펄스 레이저광원이어도 된다. 여기서, 피검사체(S)가 예를 들어 제조 라인 상 등에서 이동하고 있는 경우에, 후술하는 촬상부(103)에 설치된 적외 카메라 중의 촬상 소자의 1프레임 시간 내에, 피검사체(S)가 이동하는 양을 무시할 수 있는 경우에는, 광원(105)으로서 CW 레이저광원을 사용한 경우에도, 이동하고 있는 피검사체(S)를 정지한 상태에서 촬상하는 것이 가능하게 된다. 또한, 광원(105)으로서 펄스 레이저광원을 사용하는 경우에는, 이동하고 있는 피검사체(S)를 정지한 상태에서 촬상하는 것이 가능하게 된다.
또한, 이하에서는, 편의적으로, 광원(105)으로부터 평행 적외광이 출사되는 경우를 예로 들어 설명을 행하는 것으로 하지만, 광원(105)으로부터 집속 적외광이나 발산 적외광이 출사되는 경우에도, 평행 적외광의 경우와 동일한 효과를 향수하는 것이 가능하다.
투사 광학계(107)는 광원(105)으로부터 출사된 적외광을, 피검사체(S)의 표면에 대하여 소정의 투사각 θ로 투사되도록 도광한다. 투사 광학계(107)는 광원(105)으로부터 나온 광속의 확산 반각이 변하지 않도록 광속의 크기를 바꾸지 않고, 광속의 방향만을 바꾸는 것인 것이 바람직하다.
또한, 본 실시 형태에 따른 광속 투사부(101)에는, 투사 광학계(107)로서, 적외광의 전파 방향을 바꾸기 위한 각종 반사 미러가 설치되어 있어도 된다.
또한, 본 실시 형태에 따른 투사 광학계(107)의 재질에 대해서는, 예를 들어, 게르마늄(Ge), 셀렌화아연(ZnSe) 등의 적외광에 대해서도 이용 가능한 재질 중에서 이용하는 적외광의 파장에 따라서 적절히 선택하면 된다.
본 실시 형태에 따른 광속 투사부(101)는 광원(105)의 설치 위치 및 설치 방향을 조정하거나, 투사 광학계(107)로서 설치되는 반사 미러 등을 적절히 조합하거나 함으로써, 소정의 확산 반각을 갖는 적외광을 피검사체(S)의 표면에 대하여 투사각 θ로 투사한다.
여기서, 광속 투사부(101)로부터 출사되는 적외광의 투사각 θ는, 피검사체(S)의 표면을 경면으로 간주할 수 있을 정도로 되도록 설정된다. 이하, 적외광의 투사각 θ의 설정 방법에 대해서 간단히 설명한다.
본 실시 형태에 따른 피검사체 촬상 장치(100)에서는, 투사각 θ를 결정할 때에 상기 비특허문헌 1에 기재되어 있는 경면성 파라미터 g의 식(식 101)을 이용한다. 이하의 식 101로 표현되는 경면성 파라미터 g는, 물체 표면의 경면성의 정도를 나타내는 것이며, 파라미터 g의 값이 작을수록, 착안하고 있는 물체 표면은 경면이라고 생각할 수 있다. 또한, 이하의 식 101에 있어서, 파라미터 σ는, 착안하고 있는 물체 표면의 요철량(즉, 표면 조도)의 표준 편차이며, 파라미터 λ는, 이용하는 광의 파장이다. 또한, 파라미터 θ1은, 착안하고 있는 물체 표면에의 광의 입사각이며, 파라미터 θ2는, 착안하고 있는 물체 표면으로부터의 광의 출사각이다. 여기서, 입사각=출사각=θ로 하면, 하기식 101은 식 101a와 같이 변형되는 것이 가능하다.
Figure 112017105874647-pct00003
Figure 112017105874647-pct00004
여기서, 본 실시 형태에 있어서, 상기 식 101 및 식 101a에 있어서의 파라미터 λ는, 광원(105)으로서 사용하는 적외광원에 따라서 결정되는 값이다. 또한, 파라미터 σ는, 착안하고 있는 피검사체(S)의 제조 실적에 관한 조업 데이터 등으로부터 얻어지는 지견에 의해 결정 가능한 값이다.
식 101 또는 식 101a로 표현되는 경면성 파라미터 g의 값이 1 이상으로 되면, 착안하고 있는 물체 표면에 있어서 확산 반사 성분이 증대하고, 경면 반사 성분이 급격하게 감소한다. 따라서, 본 실시 형태에 따른 피검사체 촬상 장치(100)에서는, 설계 파라미터로서 결정되는 파라미터 λ 및 파라미터 σ의 값에 따라, 상기 식 101 또는 식 101a로 표현되는 경면성 파라미터 g의 값이 1 이하로 되도록, 각도 θ(즉, 적외광의 투사각 θ)를 결정한다.
예를 들어, 파라미터 λ(파장)=10.6㎛이며, 파라미터 σ=1㎛인 경우에는, 각도 θ를 32도 이상으로 함으로써 경면성 파라미터 g를 1 이하로 할 수 있다.
[촬상부에 대해서]
계속해서, 본 실시 형태에 따른 피검사체 촬상 장치(100)가 구비하는 촬상부(103)에 대해서 상세하게 설명한다.
본 실시 형태에 따른 촬상부(103)는 도 2에 도시한 바와 같이, 촬상 광학계(109)와, 2개의 적외 카메라(111, 113)를 구비한다.
촬상 광학계(109)는 피검사체 표면으로부터의 평행 적외광의 반사광을, 후술하는 적외 카메라(111, 113)의 촬상 소자에 도광하는 것이다. 이러한 촬상 광학계(109)로서, 피검사체(S)의 표면으로부터의 반사광을 집광하기 위한 집광 광학 소자나, 집광 광학 소자를 투과한 반사광을, 후술하는 적외 카메라(111, 113) 각각에 분기하기 위한 분기 광학 소자 등이 설치된다.
여기서, 집광 광학 소자는, 전술한 바와 같이 피검사체(S)의 표면으로부터의 반사광을 집광하고, 적외 카메라(111, 113)에 결상시키는 것이며, 적어도 1개의 볼록 렌즈를 구비하고 있다. 또한, 본 실시 형태에 따른 촬상부(103)는 촬상 광학계(109)의 집광 광학 소자로서, 1개의 볼록 렌즈만을 구비하고 있어도 되고, 복수의 볼록 렌즈가 조합된 렌즈군을 구비하고 있어도 되고, 각종 오목 렌즈나 비구면 렌즈 등이 볼록 렌즈와 조합된 렌즈군을 구비하고 있어도 된다.
본 실시 형태에 따른 촬상부(103)는 집광 광학 소자로서 적어도 1개의 볼록 렌즈를 구비함으로써, 광로의 라우팅에 관한 제약이 줄어들고, 그 결과, 광학계의 설계 자유도를 향상시킬 수 있다. 이에 의해, 본 실시 형태에 따른 피검사체 촬상 장치(100)에서는, 장치의 소형화나 설치 스페이스의 축소를 도모할 수 있다.
분기 광학 소자는, 전술한 바와 같이, 집광 광학 소자를 투과한 반사광을 2개의 광로로 분기하기 위한 것이고, 예를 들어 빔 스플리터를 들 수 있다. 이러한 분기 광학 소자에 의해 반사광이 분기되어서, 적외 카메라(111)가 갖는 촬상 소자, 및 적외 카메라(113)가 갖는 촬상 소자 각각에 도광되게 된다.
또한, 본 실시 형태에 따른 촬상부(103)는 상기 분기 광학 소자와 각 적외 카메라의 촬상 소자와의 사이에, 분기 광학 소자를 투과한 반사광을 촬상 소자에 집광하기 위한 집광 광학계의 일례인 집광 광학 소자를 갖고 있어도 된다. 이러한 집광 광학 소자는, 촬상 광학계(109)의 1종으로서 촬상부(103) 내에 설치되어 있어도 되고, 후술하는 적외 카메라의 렌즈로서, 촬상부(103) 내에 설치되어 있어도 된다. 이러한 집광 광학 소자를 설치함으로써, 후술하는 바와 같이 촬상부(103)의 설계 자유도를 향상시키는 것이 가능하게 된다.
또한, 본 실시 형태에 따른 촬상부(103)에는, 촬상 광학계(109)로서, 반사광의 전파 방향을 바꾸기 위한 각종 반사 미러가 설치되어 있어도 된다.
또한, 본 실시 형태에 따른 촬상 광학계(109)의 재질에 대해서는, 예를 들어, 게르마늄(Ge), 셀렌화아연(ZnSe) 등의 적외광에 대해서도 이용 가능한 재질 중에서, 이용할 적외광의 파장에 따라서 적절히 선택하면 된다.
적외 카메라(111, 113)는, 피검사체(S)의 표면에서 반사된 적외광(예를 들어, 평행 적외광)을 당해 카메라 내에 설치된 촬상 소자로 촬상하여, 반사광을 촬상한 촬상 화상을 생성한다. 적외 카메라(111, 113) 내에 설치된 촬상 소자는, 적외광의 촬상에 대응한 것이라면, 예를 들어 HgCdTe나 InSb 등의 반도체 어레이, 또는, 마이크로볼로미터 등의 열적 센서 어레이 등을 이용하는 것이 가능하다. 또한, 이들 센서 이외에도, 적외광의 촬상에 적합한 이미지 센서라면, 임의의 것을 이용 가능하다.
여기서, 본 실시 형태에 따른 촬상부(103)가 구비하는 적외 카메라(111, 113)의 촬상 소자는, 후술하는 바와 같이, 광로 상에서 피검사체(S)의 표면과 공액이 되는 위치로부터 시프트된 장소에 설치되어 있다. 여기서, 공액이란, 피검사체(S)의 표면 상의 1점으로부터 발산한 광이 촬상 광학계(109)에 의해 상 위의 1점에 수렴하는 상태(즉, 결상 상태에 있는 물체와 상의 관계)를 가리키는 것이며, 물체와 상을 대체한 경우에는 광선을 역으로 추적해 가면 결상 관계가 역시 성립되는 것은 명확하다. 즉, 본 실시 형태에서는, 피검사체(S) 상의 1점으로부터 나온 광이, 그 방향에 따라 각 적외 카메라의 촬상 소자면 상의 상이한 위치에 입사한다. 즉 본 실시 형태에서는, 결상 관계를 충족하지 않는 상태로 되도록, 각 적외 카메라(111, 113)의 촬상 소자가 설치되어 있다.
여기서, 도 7 및 도 8을 참조하면서, 본 실시 형태에 따른 촬상부(103)의 구성에 대해서, 구체예를 들면서 상세하게 설명한다.
○ 촬상부의 구체예-1
먼저, 도 7을 참조하면서, 촬상부의 일례에 대하여 구체적으로 설명한다.
도 7에 도시된 예에서는, 촬상부(103)가 구비하는 촬상 광학계(109)로서, 집광 광학 소자의 일례인 볼록 렌즈(121)가 설치되어 있고, 반사광의 광축 상에는, 분기 광학 소자로서, 볼록 렌즈(121)를 투과한 반사광을 2개의 광로로 분기하는 빔 스플리터(BS)가 설치되어 있다. 빔 스플리터(BS)에 의해 2개로 분기된 반사광은, 적외 카메라(111)가 갖는 촬상 소자(123)의 센서면과, 적외 카메라(113)가 갖는 촬상 소자(125)의 센서면에 각각 결상된다.
여기서, 도 7에 있어서의 피검사체의 표면과 볼록 렌즈(121) 간의 이격 거리 L1은, 실제의 검사 현장에 있어서의 워크 디스턴스 등에 따라 적절히 설정하면 된다. 또한, 볼록 렌즈(121)의 초점 거리 f1은, 이용하는 볼록 렌즈의 종류에 따라 결정되는 값이다. 이러한 경우에 있어서, 볼록 렌즈(121)와 각 적외 카메라의 촬상 소자 간의 이격 거리를 L2로 하면, 도 7에 도시된 촬상부(103)의 결상 공식은 이하의 식 111로 표현되는 식이 된다.
Figure 112017105874647-pct00005
여기서, 상기 식 111을 만족시키는 이격 거리 L2의 위치가, 피검사체 표면과 공액의 위치(이하, 간단히 공액 위치라고도 한다.)에 대응한다. 그래서, 도 7에 도시된 촬상부(103)의 일례에서는, 적외 카메라(111)가 갖는 촬상 소자(123)의 센서면은, 볼록 렌즈(121)로부터의 광축 상에서의 이격 거리가 (L2+Δ)로 되도록, 공액 위치로부터 시프트하여 설치된다. 마찬가지로, 적외 카메라(113)가 갖는 촬상 소자(125)의 센서면은, 볼록 렌즈(121)로부터의 광축 상에서의 이격 거리가 (L2-Δ)로 되도록, 공액 위치로부터 시프트하여 설치된다.
○ 촬상부의 구체예-2
계속해서, 도 8을 참조하면서, 촬상부의 다른 일례에 대하여 구체적으로 설명한다.
도 7에 도시된 촬상부에서는, 피검사체 표면과 볼록 렌즈 간의 이격 거리 L1, 및 볼록 렌즈의 초점 거리 f1을 결정하면, 볼록 렌즈와 촬상 소자 간의 이격 거리 L2가 결정되어버려, 그 결과, 촬상 배율(L1/L2)도 결정되어버린다. 이 때문에, 도 7에 도시된 촬상부의 일례는, 광학계의 설계 자유도가 적은 것이라고 할 수 있다.
그래서, 도 8에 도시된 촬상부의 일례에서는, 집광 광학 소자의 일례인 볼록 렌즈(121)와, 촬상 소자(123, 125) 사이(보다 상세하게는, 분기 광학 소자의 일례인 빔 스플리터(BS)와 촬상 소자(123, 125) 사이)에, 집광 광학 소자로서 렌즈(127, 129)가 각각 설치된다. 이에 의해, 도 8에 도시된 촬상부에서는, 이하에서 설명한 바와 같이, 광학계의 설계 자유도를 향상시키는 것이 가능하게 된다.
먼저, 도 8에 도시된 광학계에서는, 사용하는 볼록 렌즈(121)의 초점 거리 f1에 따라서 워크 디스턴스를 설정하고, 초점 거리 f1을 피검사체 표면과 볼록 렌즈 간의 이격 거리로 한다. 그 후, 피검사체의 시야의 크기 D와, 사용하는 촬상 소자의 크기 d에 따라, 집광 광학 소자로서 설치되는 렌즈(127, 129)의 초점 거리 f2를, 이하의 식 121에 기초하여 결정한다. 이때, 촬상 광학계의 촬상 배율은, (f2/f1)로 표현되는 값이 된다.
Figure 112017105874647-pct00006
이때, 집광 광학 소자인 렌즈(127, 129)와 촬상 소자의 센서면 간의 이격 거리를 초점 거리 f2와 동등하게 설정해버리면, 이러한 센서면의 설치 위치는, 피검사체 표면과 공액의 위치가 되어버린다. 그래서, 도 8에 도시된 촬상부(103)의 일례에서는, 적외 카메라(111)가 갖는 촬상 소자(123)의 센서면은, 렌즈(127)로부터의 광축 상에서의 이격 거리가 (f2+Δ)로 되도록, 공액 위치로부터 시프트하여 설치된다. 마찬가지로, 적외 카메라(113)가 갖는 촬상 소자(125)의 센서면은, 렌즈(129)로부터의 광축 상에서의 이격 거리가 (f2-Δ)로 되도록, 공액 위치로부터 시프트하여 설치된다.
여기서, 도 8에 도시한 바와 같이, 집광 광학 소자의 일례인 볼록 렌즈(121)와, 렌즈(127, 129) 간의 이격 거리를 (f1+f2)로 함으로써, 촬상부(103)를 텔레센트릭 광학계로 할 수 있다. 촬상부(103)를 텔레센트릭 광학계로 함으로써, 공액 위치로부터의 시프트량 Δ의 크기가 적외 카메라(111)와 적외 카메라(113)에서 서로 다른 경우에도, 각 카메라의 촬상 소자에서 결상하는 상의 크기를 서로 동일하게 하는 것이 가능하게 된다.
그러나, 본 실시 형태에 따른 촬상부(103)에서는, 광학계를 텔레센트릭 광학계로 하는 것은 필수는 아니며, 피검사체의 표면과, 촬상 소자의 센서면이 공액 배치로부터 상기 시프트량 Δ의 배치로 되어 있으면 된다. 또한, 촬상부(103)를 텔레센트릭 광학계로 하지 않는 경우에는, 적외 카메라(111)와 적외 카메라(113)에서, 촬상되는 상의 크기가 서로 상이한 것이 된다.
이상, 도 7 및 도 8을 참조하면서, 본 실시 형태에 따른 촬상부(103)를 구체적으로 설명하였다.
또한, 도 7 및 도 8에 도시된 구체예에서는, 렌즈(121, 127, 129)가 1매의 볼록 렌즈일 경우에 대하여 도시하고 있지만, 본 실시 형태에 따른 광학 소자의 개수가 도면 중에 도시된 것에 한정되는 것은 아니고, 도면 중에 도시된 각 렌즈는, 복수의 렌즈로 이루어지는 렌즈군이어도 된다.
○ 촬상 소자의 설치 위치에 대하여
이어서, 도 9 및 도 10을 참조하면서, 적외 카메라에 탑재된 촬상 소자를, 피검사체의 표면과 공액의 위치로부터 시프트한 장소에 설치하는 이유에 대하여 설명한다.
도 9에 도시한 바와 같이, 피검사체의 표면에 요철이 존재하고 있는 것으로 한다. 이 경우, 요철 부분에 조사된 적외광(예를 들어, 평행 적외광)은 요철에 의해 광의 방향이 바뀌고, 요철이 존재하지 않는 경우의 광의 진행 방향(도면 중의 실선으로 나타낸 방향)과는 다른 진행 방향(도면 중의 점선으로 나타낸 방향)으로 전파한다. 그 결과, 피검사체 표면의 요철 부분에서 반사된 적외광은, 요철이 존재하지 않는 경우에 볼록 렌즈에 입사하는 광의 위치와는 다른 위치로부터, 볼록 렌즈에 입사한다. 그 결과, 요철 부분에서 반사된 적외광은, 요철이 존재하지 않는 경우의 반사광의 전파 방향과는 상이한 방향으로 전파해 간다.
그러나, 「공액」이라고 하는 용어가 기술적인 의미로부터 명백한 바와 같이, 피검사체의 표면에 공액의 위치에서는, 도면 중에 도시한 바와 같이, 피검사체 표면에 요철이 존재한 경우에도, 동일한 점에서 반사된 적외광은 동일 위치에 결상된다. 따라서, 피검사체 표면의 공액 위치에서는, 광속의 밀도의 변화(즉, 밝기의 변화)가 발생하지 않기 때문에, 요철의 모습을 가시화할 수 없다.
도 10은, 공액 위치 부근의 광속의 모습을 모식적으로 도시한 확대도이다. 도 10에 있어서, 각 화살표는 피검사체의 표면(즉, 검사 대상면)의 개개의 점으로부터의 반사광에 대응하고 있는 것으로 한다. 검사 대상면에 요철이 존재하지 않는 경우에는, 각 점에서 반사된 적외광(예를 들어, 평행 적외광)은 서로 광의 방향이 바뀌지 않고 전파해가기 때문에, 공액 위치인지 여부에 관계없이 광속의 밀도에 조밀은 발생하지 않는다.
한편, 표면에 요철이 존재하는 경우, 공액 위치에서는, 광이 결상되는 점은 요철이 존재하지 않는 경우의 결상점과 일치하고 있기 때문에, 광속의 밀도에 변화는 발생하지 않는다. 그러나, 공액 위치보다도 Δ만큼 물측의 장소, 및 공액 위치보다도 Δ만큼 상측의 장소에서는, 광의 전파 방향의 차이에 따라 광속의 밀도에 변화가 발생하여, 광속의 밀도가 소한 부분과 밀한 부분이 발생한다. 그 결과, 공액 위치 이외의 장소에서는, 주위와 비교하여 어두운 장소(광속이 소한 부분)가 발생하거나, 주위와 비교하여 밝은 장소(광속이 밀한 부분)가 발생하거나 한다.
본 실시 형태에 따른 촬상부(103)에서는, 2개의 적외 카메라에 설치된 2개의 촬상 소자의 한쪽을, 공액 위치보다도 전방측(물측)에 배치하고, 다른 쪽을 공액 위치보다도 더 전방(상측)에 배치한다. 그 결과, 이상 설명한 바와 같은 현상에 의해, 한쪽 촬상 소자에서 얻어진 촬상 화상에서는, 요철 부분에 대응하는 개소가, 주위와 비교하여 어둡게 비치고, 다른 한쪽 촬상 소자에서 얻어진 촬상 화상에서는, 요철 부분에 대응하는 개소가, 주위와 비교하여 밝게 비친다.
검사 대상면에 볼록부가 존재하고 있는지, 오목부가 존재하고 있는지에 따라, 공액 위치보다도 물측이 어두워질지 밝아질지가 변화한다. 따라서, 요철의 상태가 기지인 샘플을 사용하여 사전에 검증을 행함으로써, 오목부가 존재하는 경우의 명암의 조합과, 볼록부가 존재하는 경우의 명암 조합을 파악할 수 있다. 후술하는 연산 처리 장치(200)에서는, 이러한 지견을 이용하여, 피검사체의 표면에 존재하는 요철을 검출할 수 있다.
한편, 검사 대상면에 오염이 존재하고 있는 경우에는, 이상 설명한 바와 같은 공액 위치의 전후에 있어서의 명암의 반전은 발생하지 않는다. 따라서, 각 촬상 소자로부터 얻어진 촬상 화상을 비교하여 명암의 반전이 없는 경우에는, 해당하는 부분은, 요철이 존재하는 것은 아니고, 오염의 유무나 조도의 차이에 따라 반사율이 상이한 부분이 발생하였다고 판단할 수 있다.
계속해서, 도 11을 참조하면서, 공액 위치로부터의 시프트량 Δ의 결정 방법에 대해서, 그 일례를 설명한다.
도 11에 도시한 바와 같이, 요철이 존재하지 않는 정상부와, 표면이 요철에 의해 경사져 있는 경사부가 인접하는 시료를 가정한다. 그 표면 근방에 반사광을 수광하는 가상적인 스크린을 설치한 것으로 하면, 광속의 겹침에 의해 직사각형상의 명부가 가상적인 스크린에 나타난다. 이 직사각형상의 명부에 카메라의 핀트를 맞춰서 관찰했을 때의 센서 상에서의 명부의 사이즈가, 1화소 이상 있으면 된다. 카메라의 핀트를 맞추기 위해서는, 센서를 이동시킬 필요가 있으며, 이 이동량이 필요한 시프트량 Δ의 최솟값과 동등하다.
도 11에 도시한 바와 같이, 가상적인 스크린이 시료로부터 Do[mm]만큼 이격된 위치에 존재하는 것으로 하고, 이러한 가상적인 스크린에 비추어지는 직사각형상의 명부의 크기를 Po[mm]로 한다. 이러한 경우에 있어서, 촬상 광학계(109)의 가로 배율을 β로 하면, 명부는, 센서 상에서 Po×β[mm]의 크기의 상으로 된다. 따라서, 1화소의 크기(화소의 피치)를 p[mm]로 하면, 명부를 센서 상에서 1화소보다 크게 검출하기 위해서는, 이하의 식 131로 표현되는 조건이 필요해진다.
Figure 112017105874647-pct00007
여기서, 물체측에서 광축 방향으로 Do[mm] 이동했을 때의 상측에서의 공액 위치의 이동량은 세로 배율로 표현되고, 그 이동량은, 가로 배율 β의 2승(β2)으로 된다. 따라서, 가상적인 스크린에 핀트를 맞추기 위하여 필요한 공액 위치로부터의 시프트량 Δ[mm]는, 이하의 식 132로 표현되는 값과 같이 된다.
Figure 112017105874647-pct00008
또한, 경사부의 기울기를 T로 나타내는 것으로 하면, 그 크기는, 가상적인 스크린과 시료의 이격 거리 Do와, 직사각형상의 명부의 크기 Po를 이용하여, 이하의 식 133과 같이 나타낼 수 있다.
Figure 112017105874647-pct00009
따라서, 상기 식 131∼식 133으로부터 Po 및 Do를 소거함으로써, 이하의 식 134에 나타낸 바와 같이 시프트량 Δ의 최솟값이 부여되게 된다.
Figure 112017105874647-pct00010
상기 식 134에 나타낸 바와 같이, 공액 위치로부터의 시프트량 Δ의 최솟값은, 촬상하고자 하는(환언하면, 검출하고자 하는) 흠집(요철 흠집)의 기울기와, 촬상 소자의 화소 사이즈(화소의 피치)와, 촬상 광학계의 가로 배율에 기초하여 산출하는 것이 가능하다. 여기서, 광학계의 가로 배율 β는, 촬상부(103)의 설계 파라미터로부터 산출 가능한 값이다. 또한, 촬상하고자 하는 흠집(검출하고자 하는 흠집)의 기울기는, 검사 대상인 금속판의 제조에 관한 과거의 실적 데이터로부터 얻어지는 지견을 이용함으로써, 결정 가능하다.
예를 들어, 도 8에 도시된 촬상부(103)에 있어서, 초점 거리 f1=500mm, 초점 거리 f2=35mm였던 것으로 한다. 이 경우, 촬상부(103)의 가로 배율은, (f2/f1)로부터 35/500=0.07이 된다. 또한, 촬상 소자의 화소 피치 p=38㎛인 것으로 하면, 기울기 T=(1/1000)의 흠집을 촬상(검출)하기 위한 시프트량 Δ는, 상기 식 134로부터, 38×10-3×0.07×1000≒2.6mm가 된다.
또한, 이상과 같이 하여 산출한 값을 이용하여 설정되는 공액 위치로부터의 시프트량 Δ는, 공액 위치보다도 피검사체측에 설치하는 촬상 소자와, 공액 위치보다도 더 적외광의 진행 방향측으로 설치하는 촬상 소자에서, 서로 상이한 값으로 해도 되고, 동일한 값으로 해도 된다.
○ 촬상 소자의 설치 방법에 대하여
이어서, 도 12를 참조하면서, 본 실시 형태에 따른 촬상 광학계에서의 촬상 소자의 설치 방법에 대하여 설명한다.
일반적으로, 반사광을 촬상하기 위한 촬상 소자는, 그 센서면(이하, 촬상 소자면이라고도 한다.)이 광축에 대하여 수직으로 되도록 설치하는 경우가 많다. 한편, 피검사체 표면과 공액인 평면은, 도 12에 도시한 바와 같이, 광축에 대하여 경사져 있는 상태로 된다. 따라서, 촬상 소자면을 광축에 대하여 수직으로 되도록 설치하는 경우에는, 촬상 소자의 시야단에서도 공액 위치로부터 벗어나도록 촬상 소자를 설치하고, 핀트를 결정한다.
또한, 본 실시 형태에 따른 피검사체 촬상 장치(100)와 같이 피검사체의 표면에 대하여 비스듬히 적외광(예를 들어, 평행 적외광)을 입사시키는 때에, 촬상 소자면이 광축에 대하여 수직으로 되어 있는 경우, 촬상 소자면의 장소에 따라, 조금이나마 공액 위치로부터의 시프트량 Δ가 상이하게 되어, 반사광이 보이는 방식에 차이가 발생하게 된다. 그래서, 도 12에 도시한 바와 같이 촬상 소자면을 광축에 대하여 경사지게 하고, 공액 위치로부터의 시프트량 Δ가 시야 중에서 변화하지 않도록 해도 된다. 이렇게 함으로써, 공액 위치로부터의 시프트량 Δ가 시야 중에서 일정하게 되어, 피검사체의 요철에 대한 촬상 소자 상에서의 명암의 감도를 균일화하는 것이 가능하게 된다.
또한, 촬상 소자면이 광축에 대하여 수직으로 되어 있는 경우에도, 촬상 소자의 전방측(피검사체 표면측)에 소위 틸트 렌즈를 설치하고, 아오리 촬영을 행하게 해도 된다. 촬상 소자의 전방측에 틸트 렌즈를 설치함으로써, 촬상 소자면은 광학적으로 광축에 대하여 경사지게 되어, 공액 위치로부터의 시프트량 Δ를 시야 중에서 거의 일정하게 할 수 있다.
이상, 도 3∼도 12를 참조하면서, 본 실시 형태에 따른 촬상부(103)에 대해서 상세하게 설명하였다.
○ 만곡된 상태로 존재하는 피검사체의 촬상 방법에 대하여
각종 금속판은, 그 제조 라인 상에 있어서, 롤 권취부와 같은 만곡부를 통과하여 반송되거나, 롤 권취부에 권취되거나 하는 경우가 있다. 본 실시 형태에 따른 피검사체 촬상 장치(100)는 광속 투사부(101) 및 촬상부(103)가 이하에서 설명하는 광학 소자를 구비함으로써, 평면 상에 적재된 금속판 등의 피검사체뿐만 아니라, 만곡된 상태로 존재하는 피검사체에 대해서도 촬상하는 것이 가능하게 된다.
이하, 도 13을 참조하면서, 만곡된 상태로 존재하는 피검사체의 촬상 방법의 일례를 설명한다. 도 13은, 본 실시 형태에 따른 피검사체 촬상 장치의 투사 광학계(107) 및 촬상 광학계(109)의 일례에 대하여 설명하기 위한 설명도이다.
만곡된 상태로 존재하는 피검사체를 촬상하기 위해서는, 투사 광학계(107)의 일부로서, 평행 적외광을 집광하여 피검사체에 도광하는 도 13에 도시된 바와 같은 볼록 실린드리컬 렌즈를 또한 설치하면 된다. 이러한 볼록 실린드리컬 렌즈는, 도 13 상단에 도시한 바와 같이, 입사한 평행광을 롤의 회전 중심축을 향하여 집광하도록 초점 거리와 설치 위치가 설계되어 있고, 롤 권취부의 축방향으로부터 보면, 롤면 법선 방향에 대하여 평행하게 만곡부에 평행 적외광이 입사된다. 또한, 도 13 하단에 도시한 바와 같이, 상방부터 본 경우에는, 평행 적외광은, 만곡된 상태로 존재하는 피검사체에 대하여 경사 방향으로부터 입사한다. 이 상방으로부터 본 경사 방향의 입사각은, 상기 식 101a에 나타낸 파라미터 g가 1 이하로 되도록 결정한다.
피검사체 표면에서 반사된 광은 발산광으로 되지만, 촬상 광학계(109)의 일부이기도 한 도 13에 도시된 바와 같은 볼록 실린드리컬 렌즈에 들어가 평행광으로 되돌아가고, 나머지의 촬상 광학계를 경유하여 적외 카메라로 촬상된다.
이때, 볼록 실린드리컬 렌즈의 초점 거리는, 롤 회전 중심축이 그 초점이 되도록, 즉 롤 회전축의 위치에서 볼록 실린드리컬 렌즈까지의 거리로 되도록 설정하는 것이 바람직하다.
이러한 실린드리컬 렌즈를 투사 광학계(107) 및 촬상 광학계(109)에 설치함으로써, 만곡된 상태로 존재하는 피검사체일지라도, 양호하게 반사광을 촬상하는 것이 가능하게 된다.
또한, 도 13에 있어서는, 1매의 실린드리컬 렌즈를 사용하는 경우에 대하여 설명했지만, 투사 광학계(107)의 실린드리컬 렌즈와 촬상 광학계(109)의 실린드리컬 렌즈를 분할하고, 각각을 상이한 설치 위치·초점 거리로 하여 설치해도 된다.
이상, 도 3∼도 13을 참조하면서, 본 실시 형태에 따른 피검사체 촬상 장치(100)에 대하여 상세하게 설명하였다.
<연산 처리 장치의 구성에 대해서>
[연산 처리 장치의 전체 구성]
계속해서, 도 1 및 도 14를 참조하면서, 본 실시 형태에 따른 연산 처리 장치(200)의 구성에 대해서 상세하게 설명한다.
이하에서는, 먼저, 다시 도 1로 돌아가서 본 실시 형태에 따른 연산 처리 장치(200)의 전체 구성에 대해서 간단히 설명한다.
도 1에 예시한 바와 같이, 본 실시 형태에 따른 연산 처리 장치(200)는 촬상 제어부(201)와, 화상 처리부(203)와, 표시 제어부(205)와, 기억부(207)를 주로 구비한다.
촬상 제어부(201)는 CPU(Central Processing Unit), ROM(Read Only Memory), RAM(Random Access Memory), 통신 장치 등에 의해 실현된다. 촬상 제어부(201)는 본 실시 형태에 따른 피검사체 촬상 장치(100)에 의한 검사 대상물의 촬상 제어를 실시한다. 보다 상세하게는, 촬상 제어부(201)는 피검사체(S)의 촬상을 개시하는 경우에, 피검사체 촬상 장치(100)에 대하여 적외광의 조사를 개시시키기 위한 제어 신호를 송출한다.
또한, 피검사체 촬상 장치(100)가 피검사체(S)에 대하여 적외광을 조사하기 시작하면, 촬상 제어부(201)는 피검사체 촬상 장치(100)가 구비하는 2개의 적외 카메라(111, 113)에 대하여 반사광의 촬상을 개시하기 위한 트리거 신호를 송출한다.
화상 처리부(203)는 예를 들어, CPU, ROM, RAM, 통신 장치 등에 의해 실현된다. 화상 처리부(203)는 피검사체 촬상 장치(100)(보다 상세하게는, 피검사체 촬상 장치(100)의 적외 카메라(111, 113))로부터 취득한 촬상 데이터를 이용하여 이하에서 설명하는 화상 처리를 행하고, 피검사체(S)인 금속판의 표면에 존재할 가능성이 있는 결함(오염이나 요철 흠집)을 검출하기 위한 표면 검사 처리를 실시한다. 화상 처리부(203)는 피검사체(S)의 표면의 표면 검사 처리를 종료하면, 얻어진 검사 결과에 관한 정보를 표시 제어부(205)로 전송한다.
또한, 이 화상 처리부(203)에 대해서는, 이하에서 다시 상세하게 설명한다.
표시 제어부(205)는 예를 들어, CPU, ROM, RAM, 출력 장치 등에 의해 실현된다. 표시 제어부(205)는 화상 처리부(203)로부터 전송된, 검사 대상물인 피검사체(S)의 표면 검사 결과를, 연산 처리 장치(200)가 구비하는 디스플레이 등의 출력 장치나 연산 처리 장치(200)의 외부에 설치된 출력 장치 등에 표시할 때의 표시 제어를 행한다. 이에 의해, 표면 검사 장치(10)의 이용자는, 피검사체(S)의 표면에 존재하는 각종 결함에 관한 검사 결과를, 그 자리에서 파악하는 것이 가능하게 된다.
기억부(207)는 연산 처리 장치(200)가 구비하는 기억 장치의 일례이다. 기억부(207)에는, 본 실시 형태에 따른 연산 처리 장치(200)가 어떠한 처리를 행할 때에 보존할 필요가 생긴 여러가지 파라미터나 처리의 도중 경과 등, 또는, 각종 데이터베이스나 프로그램 등이 적절히 기록된다. 이 기억부(207)는 촬상 제어부(201), 화상 처리부(203), 표시 제어부(205) 등이, 자유롭게 판독 기입을 행하는 것이 가능하다.
[화상 처리부의 구성]
계속해서, 도 14를 참조하면서, 본 실시 형태에 따른 연산 처리 장치(200)가 구비하는 화상 처리부(203)의 구성에 대하여 설명한다. 도 14는, 본 실시 형태에 따른 연산 처리 장치(200)가 구비하는 화상 처리부의 구성을 도시한 블록도이다.
도 11에 도시한 바와 같이, 본 실시 형태에 따른 화상 처리부(203)는 A/D 변환부(211)와, 결함 검출부(213)를 더 구비한다.
A/D 변환부(211)는 예를 들어, CPU, ROM, RAM 등에 의해 실현된다. A/D 변환부(211)는 피검사체 촬상 장치(100)의 적외 카메라(111, 113)로부터 출력된 촬상 화상을 각각 A/D 변환하고, 디지털 다치 화상 데이터로 한다. 그 후, A/D 변환부(211)는 생성한 각 디지털 다치 화상 데이터를 후술하는 결함 검출부(213)로 출력한다.
또한, A/D 변환부(211)는 생성한 디지털 다치 화상 데이터를, 당해 데이터를 생성한 일시 등에 관한 시각 정보와 관련짓고, 기억부(207) 등에 설치된 화상 메모리에 저장해도 된다.
결함 검출부(213)는 예를 들어, CPU, ROM, RAM 등에 의해 실현된다. 결함 검출부(213)는 피검사체 촬상 장치(100)의 적외 카메라(111, 113)에 의해 촬상된 화상에 대응하는 2종류의 디지털 다치 화상 데이터를 이용하여, 피검사체(S)의 표면에 존재하는 오염이나 요철 흠집 등의 결함 부위를 검출한다.
결함 검출부(213)는 2종류의 디지털 다치 화상 데이터를 구성하는 각 화소에 대하여 주변 화소의 화소값보다도 화소값이 작은 화소(즉, 주변보다도 어두운 화소)와, 주변 화소의 화소값보다도 화소값이 큰 화소(즉, 주변보다도 밝은 화소)를 특정한다. 이러한 개소가, 오염 또는 요철 흠집이 발생되어 있는 개소에 대응한다. 또한, 결함 검출부(213)는 연속하여 발생되어 있는 결함 개소를 결합해 감으로써, 하나하나의 결함 부위를 특정한다.
그리고 나서, 결함 검출부(213)는 각 적외 카메라(111, 113)로부터 얻어진 촬상 화상을 비교하고, 대응하는 각 결함 부위에 대해서, 명암의 조합이 어떻게 되어 있는지를 판단한다. 결함 검출부(213)는 각 적외 카메라(111, 113)로부터 특정한 각 결함 부위에 대해서, 명-명의 조합, 또는, 암-암의 조합으로 되어 있는 경우에는, 이러한 부위를, 오염 등이며 반사율이 상이한 부위라고 판단한다. 또한, 명-암의 조합, 또는, 암-명의 조합으로 되어 있는 부위를, 요철 흠집이 발생되어 있는 부위라고 판단한다. 또한, 결함 검출부(213)는 명-암의 조합, 또는, 암-명의 조합으로 되어 있는 부위에 대해서는, 추가로, 볼록부인지 오목부인지를 특정한다.
결함 검출부(213)는 이상과 같이 하여 피검사체(S)의 표면에 존재하는 결함 부위를 특정하면, 특정한 결함 부위에 관한 정보를, 표시 제어부(205)로 출력한다.
또한, 본 실시 형태에 따른 결함 검출부(213)는 이상 설명한 바와 같은 결함 부위를 특정하는 결함 부위 특정 기능에 추가로, 특정한 결함 부위의 형태 및 화소값에 관한 특징량을 추출하는 특징량 추출 기능과, 추출한 특징량에 기초하여 결함의 종별이나 유해도 등을 판별하는 결함 판별 기능을 갖고 있어도 된다. 이하, 이들 기능에 대해서 간단히 설명한다.
○ 특징량 추출 기능
결함 검출부(213)는 결함 부위 특정 기능에 의해 촬상 화상에 있어서의 결함 부위(요철 부위)를 특정하면, 특정한 결함 부위마다, 결함 부위의 형태 및 화소값에 관한 특징량을 추출한다. 결함 부위의 형태에 관한 특징량으로서, 예를 들어, 결함 부위의 폭, 결함 부위의 길이, 결함 부위의 주위 길이, 결함 부위의 면적, 결함 부위의 외접 직사각형의 면적 등을 들 수 있다. 또한, 결함 부위의 화소값에 관한 특징량으로서는, 결함 부위의 휘도 최댓값, 최솟값, 평균값 등을 들 수 있다.
○ 결함 판별 기능
결함 검출부(213)는 특징량 추출 기능에 의해 각 결함 부위의 특징량을 추출하면, 결함 부위마다, 추출한 특징량에 기초하여 결함의 종별이나 유해도 등을 판별한다. 특징량에 기초하는 결함의 종별이나 유해도 등의 판별 처리는, 예를 들어 로직 테이블을 이용하여 행하여진다.
로직 테이블의 세로 방향의 항목으로서는, 결함의 종별이 기재되어 있고, 로직 테이블의 가로 방향 항목으로서, 특징량의 종류가 기재되어 있다. 또한, 결함의 종별 및 특징량에 의해 규정되는 테이블의 각 셀에는, 대응하는 특징량의 대소에 따른 판별 조건식이 기술되어 있다. 이러한 로직 테이블의 각 행이 1조가 되어, 하나하나의 결함의 종별의 판별 조건이 된다. 판별 처리는, 최상위의 행에 기재된 종별로부터 순서대로 행하여지고, 어느 하나하나의 행에 기재된 판별 조건을 모두 만족시킨 시점에 종료된다.
이러한 로직 테이블은, 과거의 조업 데이터 및 당해 조업 데이터에 기초하는 검정원에 의한 결함의 종별 및 유해도의 특정 결과를 교사 데이터로 한 학습 처리에 의해 구축된 데이터베이스를 이용하여, 공지된 방법에 의해 생성하는 것이 가능하다.
결함 검출부(213)는 이와 같이 하여 검출한 결함 부위마다 결함의 종별 및 유해도를 특정하고, 얻어진 특정 결과를 표시 제어부(205)로 출력해도 된다. 이에 의해, 검사 대상물인 피검사체의 표면에 존재하는 결함에 관한 정보가, 표시부(도시하지 않음.)로 출력되게 된다. 또한, 결함 검출부(213)는 얻어진 특정 결과를, 제조 관리용 프로세스 컴퓨터 등의 외부의 장치로 출력해도 되고, 얻어진 특정 결과를 이용하여, 제품의 결함 장부나 전표를 작성해도 된다. 또한, 결함 검출부(213)는 결함 부위의 특정 결과에 관한 정보를, 당해 정보를 산출한 일시 등에 관한 시각 정보와 관련짓고, 기억부(207) 등에 이력 정보로서 저장해도 된다.
또한, 이상의 설명에서는, 로직 테이블을 이용하여 결함의 종별이나 유해도를 판별하는 경우에 대하여 설명했지만, 결함의 종별이나 유해도를 판별하는 방법은 상기 예에 한정되는 것은 아니다. 예를 들어, 과거의 조업 데이터 및 당해 조업 데이터에 기초하는 검정원에 의한 결함의 종별 및 유해도의 특정 결과를 교사 데이터로 한 학습 처리에 의해, 신경망이나 서포트 벡터 머신(SVM) 등의 판별기를 생성하고, 이러한 판별기를 결함의 종별이나 유해도의 판별에 이용해도 된다.
이상, 본 실시 형태에 따른 연산 처리 장치(200)가 갖는 화상 처리부(203)의 구성에 대하여 설명하였다.
이상, 본 실시 형태에 따른 연산 처리 장치(200)의 기능의 일례를 나타냈다. 상기 각 구성 요소는, 범용적인 부재나 회로를 사용하여 구성되어 있어도 되고, 각 구성 요소의 기능에 특화한 하드웨어에 의해 구성되어 있어도 된다. 또한, 각 구성 요소의 기능을, CPU 등이 모두 행해도 된다. 따라서, 본 실시 형태를 실시하는 그때그때의 기술 레벨에 따라, 적절히, 이용할 구성을 변경하는 것이 가능하다.
또한, 상술한 바와 같이 본 실시 형태에 따른 연산 처리 장치의 각 기능을 실현하기 위한 컴퓨터 프로그램을 제작하고, 퍼스널 컴퓨터 등에 실장하는 것이 가능하다. 또한, 이러한 컴퓨터 프로그램이 저장된, 컴퓨터로 판독 가능한 기록 매체도 제공할 수 있다. 기록 매체는, 예를 들어, 자기 디스크, 광 디스크, 광 자기 디스크, 플래시 메모리 등이다. 또한, 상기 컴퓨터 프로그램은, 기록 매체를 사용하지 않고, 예를 들어 네트워크를 통하여 배신해도 된다.
<하드웨어 구성에 대해서>
이어서, 도 15를 참조하면서, 본 발명의 실시 형태에 따른 연산 처리 장치(200)의 하드웨어 구성에 대해서 상세하게 설명한다. 도 15는, 본 발명의 실시 형태에 따른 연산 처리 장치(200)의 하드웨어 구성을 설명하기 위한 블록도이다.
연산 처리 장치(200)는 주로, CPU(901)와, ROM(903)과, RAM(905)을 구비한다. 또한, 연산 처리 장치(200)는 또한, 버스(907)와, 입력 장치(909)와, 출력 장치(911)와, 스토리지 장치(913)와, 드라이브(915)와, 접속 포트(917)와, 통신 장치(919)를 구비한다.
CPU(901)는, 중심적인 처리 장치 및 제어 장치로서 기능하여, ROM(903), RAM(905), 스토리지 장치(913), 또는, 리무버블 기록 매체(921)에 기록된 각종 프로그램에 따라서, 연산 처리 장치(200) 내의 동작 전반 또는 그 일부를 제어한다. ROM(903)은, CPU(901)가 사용하는 프로그램이나 연산 파라미터 등을 기억한다. RAM(905)은, CPU(901)가 사용하는 프로그램이나, 프로그램의 실행에 있어서 적절히 변화하는 파라미터 등을 1차 기억한다. 이들은 CPU 버스 등의 내부 버스에 의해 구성되는 버스(907)에 의해 서로 접속되어 있다.
버스(907)는 브리지를 통하여, PCI(Peripheral Component Interconnect/Interface) 버스 등의 외부 버스에 접속되어 있다.
입력 장치(909)는 예를 들어, 마우스, 키보드, 터치 패널, 버튼, 스위치 및 레버 등 유저가 조작하는 조작 수단이다. 또한, 입력 장치(909)는 예를 들어, 적외선이나 기타의 전파를 이용한 리모트 컨트롤 수단(소위, 리모컨)이어도 되고, 연산 처리 장치(200)의 조작에 대응한 PDA 등의 외부 접속 기기(923)여도 된다. 또한, 입력 장치(909)는 예를 들어, 상기 조작 수단을 사용하여 유저에 의해 입력된 정보에 기초하여 입력 신호를 생성하고, CPU(901)로 출력하는 입력 제어 회로 등으로 구성되어 있다. 유저는, 이 입력 장치(909)를 조작함으로써, 연산 처리 장치(200)에 대하여 각종 데이터를 입력하거나 처리 동작을 지시하거나 할 수 있다.
출력 장치(911)는 취득한 정보를 유저에 대하여 시각적 또는 청각적으로 통지하는 것이 가능한 장치로 구성된다. 이러한 장치로서, CRT 디스플레이 장치, 액정 디스플레이 장치, 플라즈마 디스플레이 장치, EL 디스플레이 장치 및 램프 등의 표시 장치나, 스피커 및 헤드폰 등의 음성 출력 장치나, 프린터 장치, 휴대 전화, 팩시밀리 등이 있다. 출력 장치(911)는 예를 들어, 연산 처리 장치(200)가 행한 각종 처리에 의해 얻어진 결과를 출력한다. 구체적으로는, 표시 장치는, 연산 처리 장치(200)가 행한 각종 처리에 의해 얻어진 결과를, 텍스트 또는 이미지로 표시한다. 한편, 음성 출력 장치는, 재생된 음성 데이터나 음향 데이터 등으로 이루어지는 오디오 신호를 아날로그 신호로 변환하여 출력한다.
스토리지 장치(913)는 연산 처리 장치(200)의 기억부의 일례로서 구성된 데이터 저장용의 장치이다. 스토리지 장치(913)는 예를 들어, HDD(Hard Disk Drive) 등의 자기 기억 디바이스, 반도체 기억 디바이스, 광 기억 디바이스, 또는, 광 자기 기억 디바이스 등에 의해 구성된다. 이 스토리지 장치(913)는 CPU(901)가 실행하는 프로그램이나 각종 데이터, 및 외부로부터 취득한 각종 데이터 등을 저장한다.
드라이브(915)는 기록 매체용 리더라이터이며, 연산 처리 장치(200)에 내장, 또는 외장된다. 드라이브(915)는 장착되어 있는 자기 디스크, 광 디스크, 광 자기 디스크, 또는, 반도체 메모리 등의 리무버블 기록 매체(921)에 기록되어 있는 정보를 판독하고, RAM(905)으로 출력한다. 또한, 드라이브(915)는 장착되어 있는 자기 디스크, 광 디스크, 광 자기 디스크, 또는, 반도체 메모리 등의 리무버블 기록 매체(921)에 기록을 기입하는 것도 가능하다. 리무버블 기록 매체(921)는 예를 들어, CD 미디어, DVD 미디어, Blu-ray(등록 상표) 미디어 등이다. 또한, 리무버블 기록 매체(921)는 컴팩트 플래시(등록 상표)(CompactFlash: CF), 플래시 메모리, 또는, SD 메모리 카드(Secure Digital memory card) 등이어도 된다. 또한, 리무버블 기록 매체(921)는 예를 들어, 비접촉형 IC칩을 탑재한 IC 카드(Integrated Circuit card) 또는 전자 기기 등이어도 된다.
접속 포트(917)는 기기를 연산 처리 장치(200)에 직접 접속하기 위한 포트이다. 접속 포트(917)의 일례로서, USB(Universal Serial Bus) 포트, IEEE1394 포트, SCSI(Small Computer System Interface) 포트, RS-232C 포트 등이 있다. 이 접속 포트(917)에 외부 접속 기기(923)를 접속함으로써, 연산 처리 장치(200)는 외부 접속 기기(923)로부터 직접 각종 데이터를 취득하거나, 외부 접속 기기(923)에 각종 데이터를 제공하거나 한다.
통신 장치(919)는 예를 들어, 통신망(925)에 접속하기 위한 통신 디바이스 등으로 구성된 통신 인터페이스이다. 통신 장치(919)는 예를 들어, 유선 또는 무선 LAN(Local Area Network), Bluetooth(등록 상표), 또는, WUSB(Wireless USB)용의 통신 카드 등이다. 또한, 통신 장치(919)는 광통신용의 라우터, ADSL(Asymmetric Digital SubscriberLine)용의 라우터, 또는, 각종 통신용의 모뎀 등이어도 된다. 이 통신 장치(919)는 예를 들어, 인터넷이나 다른 통신 기기와의 사이에서, 예를 들어 TCP/IP 등의 소정의 프로토콜에 의거하여 신호 등을 송수신할 수 있다. 또한, 통신 장치(919)에 접속되는 통신망(925)은 유선 또는 무선에 의해 접속된 네트워크 등에 의해 구성되어, 예를 들어, 인터넷, 가정 내 LAN, 적외선 통신, 라디오파 통신 또는 위성 통신 등이어도 된다.
이상, 본 발명의 실시 형태에 따른 연산 처리 장치(200)의 기능을 실현 가능한 하드웨어 구성의 일례를 나타냈다. 상기 각 구성 요소는, 범용적인 부재를 사용하여 구성되어 있어도 되고, 각 구성 요소의 기능에 특화한 하드웨어에 의해 구성되어 있어도 된다. 따라서, 본 실시 형태를 실시하는 그때그때의 기술 레벨에 따라, 적절히, 이용하는 하드웨어 구성을 변경하는 것이 가능하다.
실시예
<실시예 1: 피검사체 촬상 장치의 시뮬레이션 결과>
먼저, 도 16∼도 17을 참조하면서, 광원(105)의 확산 반각에 관한 시뮬레이션 결과에 대해서, 구체적으로 설명한다.
본 실시예에서는, 도 8에 도시된 촬상부에 있어서, 볼록 렌즈(121)의 초점 거리 f1=100mm, 볼록 렌즈(127, 129)의 초점 거리 f2=50mm로 설정하고, 공액 위치로부터의 시프트량 Δ=+20mm, -20mm의 2가지의 경우에 대해서, 광선 추적을 실시하였다.
또한, 광선 추적 시뮬레이션에서는, 입사광의 확산 반각을 0도∼3도까지 변화시키고, 평면인 피검사체 표면의 중앙부에 직경 6mm, 높이 5.1㎛의 구면상의 오목부가 존재하는 것으로 하여 연산을 행하였다. 이때, 초점 거리 500mm에서 직경 6mm의 오목 거울이 평면 중앙부에 매립되어 있는 것으로 하여 모델을 작성하였다. 여기서, 오목부에 대응하는 기울기의 크기를 직선 근사에 의해 산출하면, (5.1/3)×10-3라디안=0.1도이다.
여기서, 상기 시뮬레이션은, 각변 0.75cm의 셀을 20×20=400개 고려하여, 이러한 직사각형 내에 등간격으로 1000×1000개의 광선을 배치하여 각 광선의 추적을 행하고, (f2+Δ)의 위치에 존재하는 촬상 소자의 센서면에서의 파워 밀도를 계측하는 것을 행하였다.
얻어진 시뮬레이션 결과를, 도 16∼도 17에 도시하였다. 도 16은, 공액 위치로부터의 시프트량 Δ=-20mm인 경우의 결과이며, 도 17은, 공액 위치로부터의 시프트량 Δ=+20mm인 경우의 결과이다.
도 16∼도 17은, 촬상 소자의 센서면의 중앙에서 절단한 경우에 있어서의 파워 밀도의 분포를 도시한 것이다. 또한, 촬상 소자의 센서면을, 광축을 따라서 도 8의 지면 속 방향으로 절단한 경우와, 광축을 따라서 도 8의 지면과 평행한 방향으로 절단한 경우에는, 얻어진 결과는 동일하였다. 또한, 셀의 개수는 20×20개와 짝수개인데, 중앙에 위치하는 2개의 셀에서는, 동일한 파워 밀도의 분포가 얻어지고 있다.
또한, 도 16∼도 17의 종축은, 광선의 합계 에너지를 1W로 한 경우의 파워 밀도를 나타내고 있고, 횡축은, 셀 번호(즉, 20개의 셀의 위치)를 나타내고 있다.
도 16∼도 17을 참조하면, 먼저, Δ=-20mm, +20mm의 양쪽에 있어서, 파워 밀도는, 셀 번호 4∼셀 번호 17까지 분포하고 있음을 알 수 있다. 이것은, 도 8에 도시된 촬상부는, 텔레센트릭 광학계로 되어 있기 때문에, 공액 위치로부터의 시프트량 Δ가 변화한 경우에도, 2종류의 촬상 소자의 위치에 있어서 센서면 상의 상의 크기가 동일해져서, 화소의 촬상 분해능이 변하지 않게 할 수 있음을 나타내고 있다.
또한, Δ=-20mm에서는, 셀 번호 9∼셀 번호 12에 있어서의 파워 밀도가, 주위의 셀 번호에서의 파워 밀도보다도 커져 있고, Δ=+20mm에서는, 셀 번호 9∼셀 번호 12에 있어서의 파워 밀도가, 주위의 셀 번호에서의 파워 밀도보다도 작아져 있음을 알 수 있다. 이것은, Δ=-20mm에 있어서의 셀 번호 9∼셀 번호 12에 대응하는 위치가, 주위보다도 밝아져 있고, Δ=+20mm에 있어서의 셀 번호 9∼셀 번호 12에 대응하는 위치가, 주위보다도 어두워져 있는 것을 나타내고 있다.
여기서, 확산 반각의 크기를 0도로부터 크게 해 가면, 도 16의 결과에 있어서, 셀 번호 9∼셀 번호 12에 있어서의 파워 밀도가 서서히 저하되어 감과 함께, 도 17의 결과에 있어서, 셀 번호 9∼셀 번호 12에 있어서의 파워 밀도가 서서히 증가해 가는 것을 알 수 있다.
또한, 도 16에서는, 확산 반각의 크기가 2도를 초과하면(즉, 확산 반각의 크기가, 기울기 0.1도의 20배를 초과하면), 셀 번호 9∼셀 번호 12에 있어서의 파워 밀도가, 주위의 셀의 파워 밀도와 거의 동일값이 되어버림을 알 수 있다. 마찬가지로, 도 17에서는, 확산 반각의 크기가 0도 내지 2도의 범위에서는, 셀 번호 9∼셀 번호 12의 부근이 골이 되고, 이 골의 양측에 2개의 산이 존재하는 형상으로 되어 있지만, 확산 반각의 크기가 2도를 초과하면, 2개의 산이 존재하지 않게 되어, 확산 반각의 크기가 0도 내지 2도의 범위의 형상과는 다른 양상을 보이게 됨을 알 수 있다. 이들 결과는, 확산 반각의 크기가, 기울기의 크기의 20배를 초과하면, 오목부에 기인하는 명암이 불명료하게 되는 것을 나타내고 있다.
<실시예 2: 피검사체 촬상 장치의 시뮬레이션 결과>
이어서, 도 18a 및 도 18b를 참조하면서, 도 7에 도시된 1매의 볼록 렌즈를 갖는 촬상부를 갖는 피검사체 촬상 장치의 시뮬레이션 결과에 대해서, 구체적으로 설명한다.
본 실시예에서는, 도 7에 도시된 촬상부에 있어서, 이격 거리 L1=200mm, 이격 거리 L2=200mm, 볼록 렌즈(121)의 초점 거리 f1=100mm로 설정하고, 공액 위치로부터의 시프트량 Δ=+30mm, 0mm, -30mm의 3가지의 경우에 대해서, 광선 추적을 실시하였다.
또한, 광선 추적 시뮬레이션에서는, 입사광을 확산 반각이 제로인 평행광으로 하고, 평면인 피검사체 표면의 중앙부에 각각, (i) 직경 6mm, 깊이 4.5㎛의 구면상의 오목부가 존재하는 경우, (ii) 직경 6mm, 높이 4.5㎛의 구면상의 볼록부가 존재하는 경우의 2가지의 경우에 대해서, 연산을 행하였다. 이때, 각각 초점 거리 500mm에서 직경 6mm의 오목 거울, 또는 볼록 거울이 평면 중앙부에 매립되어 있는 것으로 하여 모델을 작성하였다.
여기서, 각 시뮬레이션은, 각 변 1.5cm의 셀을 20×20=400개 고려하여, 이러한 직사각형 내에 등간격으로 1000×1000개의 광선을 배치하여 각 광선의 추적을 행하고, (L2+Δ)의 위치에 존재하는 촬상 소자의 센서면에서의 파워 밀도를 계측하는 것을 행하였다.
오목부가 존재하는 경우에 있어서의 시뮬레이션의 결과를 도 18a에 나타내고, 볼록부가 존재하는 경우에 있어서의 시뮬레이션의 결과를 도 18b에 나타낸다. 여기서, 도 18a 및 도 18b는, 촬상 소자의 센서면의 중앙에서 절단한 경우에 있어서의 파워 밀도의 분포를 나타낸 것이다. 또한, 촬상 소자의 센서면을, 광축을 따라서 도 7의 지면 속 방향으로 절단한 경우와, 광축을 따라서 도 7의 지면과 평행한 방향으로 절단한 경우에는, 얻어진 결과는 동일하였다. 또한, 셀의 개수는 20×20개로 짝수개인데, 중앙에 위치하는 2개의 셀에서는, 동일한 파워 밀도의 분포가 얻어지고 있다.
또한, 도 18a 및 도 18b의 종축은, 광선의 합계 에너지를 1W로 한 경우의 파워 밀도를 나타내고 있고, 도 18a 및 도 18b의 횡축은, 셀 번호(즉, 20개의 셀의 위치)를 나타내고 있다.
먼저, 도 18a 및 도 18b에 공통되어 있는 현상으로서, Δ=-30mm에서는, 파워 밀도는 셀 번호 5∼셀 번호 16까지 분포하고 있는 것에 반해, Δ=0mm(즉, 공액 위치)에서는 셀 번호 3∼셀 번호 18까지, Δ=+30mm에서는 셀 번호 1∼셀 번호 20까지 분포하고 있는 것을 들 수 있다. 이것은, 촬상 광학계로서, 1개의 볼록 렌즈만이 존재하고 있는 경우를 고려하고 있기 때문에, 3종류의 촬상 소자의 위치에 있어서 센서면 상의 상의 크기가 상이한 것을 나타내고 있다.
또한, Δ=0mm에 있어서의 파워 밀도의 분포를 보면, 도 18a 및 도 18b의 양쪽에서 파워 밀도가 일정해져 있음을 알 수 있다. 이것은, 공액 위치에서는, 피검사체 표면에 가정한 오목부 또는 볼록부가 명암의 차로서 가시화되어 있지 않은 것을 나타내고 있다.
또한, 오목부가 존재하는 경우의 결과를 도시한 도 18a를 참조하면, Δ=-30mm에서는, 셀 번호 10∼11에 있어서의 파워 밀도가, 주위의 셀 번호에서의 파워 밀도보다도 작아져 있고, Δ=+30mm에서는, 셀 번호 9∼셀 번호 12에 있어서의 파워 밀도가, 주위의 셀 번호에서의 파워 밀도보다도 크게 되어 있음을 알 수 있다. 이것은, Δ=-30mm에 있어서의 셀 번호 10∼11에 대응하는 위치가, 주위보다도 어두워져 있고, Δ=+30mm에 있어서의 셀 번호 9∼셀 번호 12에 대응하는 위치가, 주위보다도 밝아져 있는 것을 나타내고 있다.
이와 같이, 피검사체의 표면에 오목부가 존재하는 경우에는, Δ=-30mm에서는 오목부에 대응하는 부분이 암부로서 관측되고, Δ=+30mm에서는 오목부에 대응하는 부분이 명부로서 관측된다.
한편, 볼록부가 존재하는 경우의 결과를 도시한 도 18b를 참조하면, Δ=-30mm에서는, 셀 번호 10∼셀 번호 11에 있어서의 파워 밀도가, 주위의 셀 번호에서의 파워 밀도보다도 커져 있고, Δ=+30mm에서는, 셀 번호 9∼셀 번호 12에 있어서의 파워 밀도가, 주위의 셀 번호에서의 파워 밀도보다도 작아져 있는 것을 알 수 있다. 이것은, Δ=-30mm에 있어서의 셀 번호 10∼셀 번호 11에 대응하는 위치가, 주위보다도 밝아져 있고, Δ=+30mm에 있어서의 셀 번호 9∼셀 번호 12에 대응하는 위치가, 주위보다도 어두워져 있는 것을 나타내고 있다.
이와 같이, 피검사체의 표면에 볼록부가 존재하는 경우에는, Δ=-30mm에서는 볼록부에 대응하는 부분이 명부로서 관측되고, Δ=+30mm에서는 볼록부에 대응하는 부분이 암부로서 관측된다.
<실시예 3: 피검사체 촬상 장치의 시뮬레이션 결과>
이어서, 도 19를 참조하면서, 도 8에 도시된 2매의 볼록 렌즈를 갖는 촬상부를 갖는 피검사체 촬상 장치의 시뮬레이션 결과에 대해서 구체적으로 설명한다.
본 실시예에서는, 도 8에 도시된 촬상부에 있어서, 볼록 렌즈(121)의 초점 거리 f1=100mm, 볼록 렌즈(127, 129)의 초점 거리 f2=50mm로 설정하고, 공액 위치로부터의 시프트량 Δ=+30mm, 0mm, -20mm의 3가지의 경우에 대해서, 광선 추적을 실시하였다.
또한, 광선 추적 시뮬레이션에서는, 입사광을 확산 반각이 제로인 평행광으로서, 평면인 피검사체 표면의 중앙부에 직경 6mm, 높이 4.5㎛의 구면상의 볼록부가 존재하는 것으로 하여 연산을 행하였다. 이때, 초점 거리 500mm에서 직경 6mm의 볼록 거울이 평면 중앙부에 매립되어 있는 것으로 하여 모델을 작성하였다.
여기서, 상기 시뮬레이션은, 각변 0.75cm의 셀을 20×20=400개 고려하여, 이러한 직사각형 내에 등간격으로 1000×1000개의 광선을 배치하여 각 광선의 추적을 행하고, (f2+Δ)의 위치에 존재하는 촬상 소자의 센서면에서의 파워 밀도를 계측하는 것을 행하였다.
얻어진 시뮬레이션 결과를, 도 19에 나타낸다. 도 19는, 촬상 소자의 센서면의 중앙에서 절단한 경우에 있어서의 파워 밀도의 분포를 나타낸 것이다. 또한, 촬상 소자의 센서면을, 광축을 따라서 도 8의 지면 속 방향으로 절단한 경우와, 광축을 따라서 도 8의 지면과 평행한 방향으로 절단한 경우에는, 얻어진 결과는 동일하였다. 또한, 셀의 개수는 20×20개와 짝수개인데, 중앙에 위치하는 2개의 셀에서는, 동일한 광선의 개수 밀도의 분포가 얻어지고 있다.
또한, 도 19의 종축은, 광선의 합계 에너지를 1W로 했을 때의 파워 밀도를 나타내고 있고, 횡축은, 셀 번호(즉, 20개의 셀의 위치)를 나타내고 있다.
도 19를 참조하면, 먼저, Δ=-20mm, 0mm, +30mm의 모두에 있어서, 파워 밀도는, 셀 번호 3∼셀 번호 18까지 분포하고 있음을 알 수 있다. 이것은, 도 8에 도시된 촬상부는, 텔레센트릭 광학계로 되어 있기 때문에, 공액 위치로부터의 시프트량 Δ가 변화한 경우에도, 3종류의 촬상 소자의 위치에 있어서 센서면 상의 상의 크기가 동일해져서, 화소의 촬상 분해능이 변하지 않게 할 수 있는 것을 나타내고 있다.
또한, Δ=0mm에 있어서의 파워 밀도의 분포를 보면, 셀의 위치에 관계없이 파워 밀도가 일정하게 되어 있음을 알 수 있다. 이것은, 공액 위치에서는, 피검사체 표면에 가정한 볼록부가 명암의 차로서 가시화되어 있지 않은 것을 나타내고 있다.
또한, Δ=-20mm에서는, 셀 번호 9∼셀 번호 12에 있어서의 파워 밀도가, 주위의 셀 번호에서의 파워 밀도보다도 커져 있고, Δ=+30mm에서는, 셀 번호 9∼셀 번호 12에 있어서의 파워 밀도가, 주위의 셀 번호에서의 파워 밀도보다도 작아져 있음을 알 수 있다. 이것은, Δ=-20mm에 있어서의 셀 번호 9∼셀 번호 12에 대응하는 위치가, 주위보다도 밝아져 있고, Δ=+30mm에 있어서의 셀 번호 9∼셀 번호 12에 대응하는 위치가, 주위보다도 어두워져 있는 것을 나타내고 있다. 또한, 공액 위치보다도 피검사체측(즉, Δ의 값이 부인 측)에 촬상 소자를 배치한 경우에는 명부가 발생하고, 공액 위치보다도 더 진행 방향측(즉, Δ의 값이 정인 측)에 촬상 소자를 배치한 경우에는 암부가 발생한다는 거동은, 도 18b에 도시한 시뮬레이션 결과와 동일한 것을 알 수 있다.
<실시예 4: 강판의 촬상 결과>
이어서, 도 8에 도시된 2매의 볼록 렌즈를 갖는 촬상부를 갖는 피검사체 촬상 장치를 이용하여, 실제의 강판을 촬상한 경우의 촬상 화상에 대하여 설명한다.
본 실시예에서는, 중심 파장 10㎛, 스펙트럼 폭 400nm, 확산 반각 0.1밀리 라디안인, 외부 공진기를 갖지 않는 양자 캐스케이드 레이저광원을 광원(105)으로서 사용하고, 광원으로부터 출사한 적외광을 평행 적외광으로 하였다. 또한, 이러한 확산 반각의 크기는, 검출 분해능으로서 정한 표면의 최소 기울기의 20배 이하로 되어 있다. 도 8에 도시된 촬상부에 있어서, 볼록 렌즈(121)의 초점 거리 f1=500mm, 볼록 렌즈(127, 129)의 초점 거리 f2=35mm로 설정한 텔레센트릭 광학계를 사용하고, 공액 위치로부터의 시프트량이 Δ=+3mm 및 Δ=-3mm인 2개의 위치에 촬상 소자를 설치하고, 실제의 강판 촬상을 실시하였다. 또한, 상기 시프트량 Δ=±3mm은, 상기 식 134로 표현되는 관계를 만족시킨 것으로 되어 있다.
또한, 촬상 대상으로 한 강판의 중앙에는, 직경 4mm, 높이 3㎛의 볼록 흠집이 존재하고 있다.
얻어진 결과를 도 20에 도시하였다.
도 20으로부터 명백한 바와 같이, Δ=-3mm 및 Δ=+3mm의 양쪽에 있어서, 중앙 부분에 존재하는 볼록 흠집은, Δ=-3mm의 경우에는 희게 비치고 있고, Δ=+3mm의 경우에는 검게 비치고 있다. 도 20에 도시한 촬상 화상에 있어서, 희게 비치는 부분은, 휘도가 밝은 부분에 대응하고 있고, 검게 비치는 부분은, 휘도가 어두운 부분에 대응하고 있다.
도 19에 도시한 시뮬레이션 결과와 대비하면 명백한 바와 같이, 공액 위치보다도 피검사체측(즉, Δ의 값이 부인 측)에 촬상 소자를 배치한 경우에는 명부가 발생하고, 공액 위치보다도 더 진행 방향측(즉, Δ의 값이 정인 측)에 촬상 소자를 배치한 경우에는 암부가 발생한다는 거동은, 피검사체의 표면에 볼록부가 존재하는 경우의 거동이다. 따라서, 도 20에 도시한 촬상 화상을 이용함으로써, 명암의 조합에 의해, 요철 흠집이 실제로는 볼록 흠집인 것이 판별 가능하게 된다.
이상, 첨부 도면을 참조하면서 본 발명의 적합한 실시 형태에 대하여 상세하게 설명했지만, 본 발명은 이러한 예에 한정되지 않는다. 본 발명이 속하는 기술의 분야에 있어서의 통상의 지식을 가진 자라면, 특허 청구 범위에 기재된 기술적 사상의 범주 내에서, 각종 변경예 또는 수정예에 상도할 수 있는 것은 명확해서, 이들에 대해서도, 당연히 본 발명의 기술적 범위에 속하는 것으로 이해된다.
10: 표면 검사 장치
100: 피검사체 촬상 장치
101: 광속 투사부
103: 촬상부
105: 광원
107: 투사 광학계
109: 촬상 광학계
111, 113: 적외 카메라
121, 127, 129: 볼록 렌즈
123, 125: 촬상 소자
200: 연산 처리 장치
201: 촬상 제어부
203: 화상 처리부
205: 표시 제어부
207: 기억부
211: A/D 변환부
213: 결함 검출부
BS: 빔 스플리터
S: 피검사체

Claims (28)

  1. 적외 파장 대역에 속하는 광속을 발생시키는 것이며, 피검사체의 표면에 있어서의 상기 광속의 확산 반각이, 촬상해야 할 표면의 최소 기울기의 20배 이하인 광원과,
    상기 피검사체의 표면에 대하여 상기 광속을 소정의 투사각으로 투사하는 투사 광학계와,
    상기 피검사체의 표면에서 반사된 상기 광속을 촬상하는 촬상부
    를 구비하고,
    상기 촬상부는,
    적어도 1개의 볼록 렌즈를 갖고, 상기 피검사체의 표면으로부터의 반사광을 집광하는 것이며, 당해 반사광을 2개의 상이한 방향으로 분기하는 분기 광학 소자를 갖는 촬상 광학계와,
    상기 촬상 광학계를 투과한 각각의 상기 반사광을 촬상하는 제1 촬상 소자 및 제2 촬상 소자
    를 갖고 있으며,
    상기 제1 촬상 소자는, 상기 반사광의 광축을 따라, 상기 촬상 광학계의 상기 피검사체의 표면에 공액의 위치보다도 상기 피검사체측에 설치되어 있고,
    상기 제2 촬상 소자는, 상기 반사광의 광축을 따라, 상기 촬상 광학계의 상기 공액의 위치보다도 상기 반사광의 진행 방향측에 설치되어 있고,
    상기 제1 촬상 소자 및 상기 제2 촬상 소자 각각에 대해서, 상기 공액의 위치로부터의 시프트량 Δ[mm]는, 상기 촬상 광학계의 가로 배율을 β로 하고, 각각의 상기 촬상 소자에 있어서의 화소의 피치를 p[mm]로 하고, 상기 표면에 있어서 촬상하고자 하는 기울기의 최솟값을 T로 했을 때에, 이하의 식 (1)로 표현되는 조건을 만족시키도록 설정되는, 피검사체 촬상 장치.
    Figure 112019025078477-pct00011
  2. 제1항에 있어서, 상기 촬상 광학계는,
    상기 분기 광학 소자와 상기 제1 촬상 소자 사이에 설치되고, 상기 반사광을 상기 제1 촬상 소자에 집광하는 제1 집광 광학계와,
    상기 분기 광학 소자와 상기 제2 촬상 소자 사이에 설치되고, 상기 반사광을 상기 제2 촬상 소자에 집광하는 제2 집광 광학계
    를 더 갖는 피검사체 촬상 장치.
  3. 제1항 또는 제2항에 있어서, 상기 광원에서 발생하는 상기 광속은 평행광인, 피검사체 촬상 장치.
  4. 제1항 또는 제2항에 있어서, 상기 광원은, 외부 공진기를 갖지 않는 양자 캐스케이드 레이저인,
    피검사체 촬상 장치.
  5. 제1항 또는 제2항에 있어서, 상기 피검사체는, 소정의 곡률을 갖는 롤의 표면 상에 위치하고 있고,
    상기 투사 광학계 및 상기 촬상 광학계는, 상기 롤의 회전 중심축에 초점이 일치하는 실린드리컬 렌즈를 갖는 피검사체 촬상 장치.
  6. 제1항 또는 제2항에 있어서, 상기 제1 촬상 소자 및 상기 제2 촬상 소자는, 각각의 촬상 소자 내의 각 화소 위치에 있어서의 상기 공액의 위치로부터의 시프트량이 일정해지도록 광축에 대하여 경사져서 설치되는, 피검사체 촬상 장치.
  7. 적외 파장 대역에 속하는 광속을 발생시키는 것이며, 피검사체의 표면에 있어서의 상기 광속의 확산 반각이 촬상해야 할 표면의 최소 기울기의 20배 이하인 광원으로부터 상기 피검사체의 표면에 대하여 투사 광학계를 통하여 상기 광속을 소정의 투사각으로 투사하고,
    상기 피검사체의 표면에서 반사된 상기 광속인 반사광을, 적어도 1개의 볼록 렌즈를 갖는 촬상 광학계로 집광함과 함께, 당해 촬상 광학계가 갖는 분기 광학 소자에 의해 상기 반사광을 2개의 상이한 방향으로 분기하고,
    상기 반사광의 광축을 따라서 상기 촬상 광학계의 상기 피검사체의 표면에 공액의 위치보다도 상기 피검사체측에 설치되어 있는 제1 촬상 소자에 의해, 당해 제1 촬상 소자에 결상된 상기 반사광을 촬상함과 함께, 상기 반사광의 광축을 따라서 상기 촬상 광학계의 상기 공액의 위치보다도 상기 반사광의 진행 방향측에 설치되어 있는 제2 촬상 소자에 의해, 당해 제2 촬상 소자에 결상된 상기 반사광을 촬상하고,
    상기 제1 촬상 소자 및 상기 제2 촬상 소자 각각에 대해서, 상기 공액의 위치로부터의 시프트량 Δ[mm]는, 상기 촬상 광학계의 가로 배율을 β로 하고, 각각의 상기 촬상 소자에 있어서의 화소의 피치를 p[mm]로 하고, 상기 표면에 있어서 촬상하고자 하는 기울기의 최솟값을 T로 했을 때에, 이하의 식 (1)로 표현되는 조건을 만족시키도록 설정되는, 피검사체 촬상 방법.
    Figure 112019025078477-pct00012
  8. 제7항에 있어서, 상기 촬상 광학계는,
    상기 분기 광학 소자와 상기 제1 촬상 소자 사이에 설치되고, 상기 반사광을 상기 제1 촬상 소자에 집광하는 제1 집광 광학계와,
    상기 분기 광학 소자와 상기 제2 촬상 소자 사이에 설치되고, 상기 반사광을 상기 제2 촬상 소자에 집광하는 제2 집광 광학계
    를 더 갖는 피검사체 촬상 방법.
  9. 제7항 또는 제8항에 있어서, 상기 광원에서 발생하는 상기 광속은 평행광인, 피검사체 촬상 방법.
  10. 제7항 또는 제8항에 있어서, 상기 광원은, 외부 공진기를 갖지 않는 양자 캐스케이드 레이저인, 피검사체 촬상 방법.
  11. 제7항 또는 제8항에 있어서, 상기 피검사체는, 소정의 곡률을 갖는 롤의 표면 상에 위치하고 있고,
    상기 투사 광학계 및 상기 촬상 광학계는, 상기 롤의 회전 중심축에 초점이 일치하는 실린드리컬 렌즈를 갖는, 피검사체 촬상 방법.
  12. 제7항 또는 제8항에 있어서, 상기 제1 촬상 소자 및 상기 제2 촬상 소자는, 각각의 촬상 소자 내의 각 화소 위치에 있어서의 상기 공액의 위치로부터의 시프트량이 일정해지도록 광축에 대하여 경사져서 설치되는, 피검사체 촬상 방법.
  13. 피검사체의 표면에 대하여 소정의 투사각으로 적외 파장 대역에 속하는 광속을 투사하고, 상기 피검사체의 표면으로부터의 반사광을 촬상하는 피검사체 촬상 장치와,
    상기 피검사체 촬상 장치에 의해 촬상된 상기 반사광의 촬상 화상에 대하여 화상 처리를 행하고, 상기 피검사체의 표면에 존재하는 표면 결함을 검출하는 연산 처리 장치
    를 구비하고,
    상기 피검사체 촬상 장치는,
    적외 파장 대역에 속하는 광속을 발생시키는 것이며, 피검사체의 표면에 있어서의 상기 광속의 확산 반각이, 촬상해야 할 표면의 최소 기울기의 20배 이하인 광원과,
    상기 피검사체의 표면에 대하여 상기 광속을 소정의 투사각으로 투사하는 투사 광학계와,
    상기 피검사체의 표면에서 반사된 상기 광속을 촬상하는 촬상부
    를 구비하고,
    상기 촬상부는,
    적어도 1개의 볼록 렌즈를 갖고, 상기 피검사체의 표면으로부터의 반사광을 집광하는 것이며, 당해 반사광을 2개의 상이한 방향으로 분기하는 분기 광학 소자를 갖는 촬상 광학계와,
    상기 촬상 광학계를 투과한 각각의 상기 반사광을 촬상하는 제1 촬상 소자 및 제2 촬상 소자
    를 갖고 있으며,
    상기 제1 촬상 소자는, 상기 반사광의 광축을 따라, 상기 촬상 광학계의 상기 피검사체의 표면에 공액의 위치보다도 상기 피검사체측에 설치되어 있고,
    상기 제2 촬상 소자는, 상기 반사광의 광축을 따라, 상기 촬상 광학계의 상기 공액의 위치보다도 상기 반사광의 진행 방향측에 설치되어 있고,
    상기 연산 처리 장치는, 상기 제1 촬상 소자에 의해 촬상된 제1 촬상 화상, 및 상기 제2 촬상 소자에 의해 촬상된 제2 촬상 화상의 명암 분포에 기초하여, 상기 제1 촬상 화상과 상기 제2 촬상 화상 사이에서 명암이 역전되어 있는 부분을, 상기 피검사체의 표면에 존재하는 요철로서 검출하고,
    상기 제1 촬상 소자 및 상기 제2 촬상 소자 각각에 대해서, 상기 공액의 위치로부터의 시프트량 Δ[mm]는, 상기 촬상 광학계의 가로 배율을 β로 하고, 각각의 상기 촬상 소자에 있어서의 화소의 피치를 p[mm]로 하고, 상기 표면에 있어서 검출하고자 하는 기울기의 최솟값을 T로 했을 때에, 이하의 식 (1)로 표현되는 조건을 만족시키도록 설정되는, 표면 검사 장치.
    Figure 112019025078477-pct00013
  14. 제13항에 있어서, 상기 촬상 광학계는,
    상기 분기 광학 소자와 상기 제1 촬상 소자 사이에 설치되고, 상기 반사광을 상기 제1 촬상 소자에 집광하는 제1 집광 광학계와,
    상기 분기 광학 소자와 상기 제2 촬상 소자 사이에 설치되고, 상기 반사광을 상기 제2 촬상 소자에 집광하는 제2 집광 광학계
    를 더 갖는 표면 검사 장치.
  15. 제13항 또는 제14항에 있어서, 상기 광원에서 발생하는 상기 광속은 평행광인, 표면 검사 장치.
  16. 제13항 또는 제14항에 있어서, 상기 광원은, 외부 공진기를 갖지 않는 양자 캐스케이드 레이저인,
    표면 검사 장치.
  17. 제13항 또는 제14항에 있어서, 상기 피검사체는, 소정의 곡률을 갖는 롤의 표면 상에 위치하고 있고,
    상기 투사 광학계 및 상기 촬상 광학계는, 상기 롤의 회전 중심축에 초점이 일치하는 실린드리컬 렌즈를 갖는, 표면 검사 장치.
  18. 제13항 또는 제14항에 있어서, 상기 제1 촬상 소자 및 상기 제2 촬상 소자는, 각각의 촬상 소자 내의 각 화소 위치에 있어서의 상기 공액의 위치로부터의 시프트량이 일정해지도록 광축에 대하여 경사져서 설치되는, 표면 검사 장치.
  19. 적외 파장 대역에 속하는 광속을 발생시키는 것이며, 피검사체의 표면에 있어서의 상기 광속의 확산 반각이 촬상해야 할 표면의 최소 기울기의 20배 이하인 광원으로부터 상기 피검사체의 표면에 대하여 투사 광학계를 통하여 상기 광속을 소정의 투사각으로 투사하고, 상기 피검사체의 표면에서 반사된 상기 광속인 반사광을, 적어도 1개의 볼록 렌즈를 갖는 촬상 광학계로 집광함과 함께, 당해 촬상 광학계가 갖는 분기 광학 소자에 의해 상기 반사광을 2개의 상이한 방향으로 분기하고, 상기 반사광의 광축을 따라서 상기 촬상 광학계의 상기 피검사체의 표면에 공액의 위치보다도 상기 피검사체측에 설치되어 있는 제1 촬상 소자에 의해, 당해 제1 촬상 소자에 결상된 상기 반사광을 촬상함과 함께, 상기 반사광의 광축을 따라서 상기 촬상 광학계의 상기 공액의 위치보다도 상기 반사광의 진행 방향측에 설치되어 있는 제2 촬상 소자에 의해, 당해 제2 촬상 소자에 결상된 상기 반사광을 촬상하는 스텝과,
    상기 제1 촬상 소자에 의해 촬상된 제1 촬상 화상 및 상기 제2 촬상 소자에 의해 촬상된 제2 촬상 화상의 명암 분포에 기초하여, 상기 제1 촬상 화상과 상기 제2 촬상 화상 사이에서 명암이 역전되어 있는 부분을, 상기 피검사체의 표면에 존재하는 요철로서 검출하는 스텝
    을 포함하고,
    상기 제1 촬상 소자 및 상기 제2 촬상 소자 각각에 대해서, 상기 공액의 위치로부터의 시프트량 Δ[mm]는, 상기 촬상 광학계의 가로 배율을 β로 하고, 각각의 상기 촬상 소자에 있어서의 화소의 피치를 p[mm]로 하고, 상기 표면에 있어서 검출하고자 하는 기울기의 최솟값을 T로 했을 때에, 이하의 식 (1)로 표현되는 조건을 만족시키도록 설정되는, 표면 검사 방법.
    Figure 112019025078477-pct00014
  20. 제19항에 있어서, 상기 촬상 광학계는,
    상기 분기 광학 소자와 상기 제1 촬상 소자 사이에 설치되고, 상기 반사광을 상기 제1 촬상 소자에 집광하는 제1 집광 광학계와,
    상기 분기 광학 소자와 상기 제2 촬상 소자 사이에 설치되고, 상기 반사광을 상기 제2 촬상 소자에 집광하는 제2 집광 광학계
    를 더 갖는 표면 검사 방법.
  21. 제19항 또는 제20항에 있어서, 상기 광원에서 발생하는 상기 광속은 평행광인, 표면 검사 방법.
  22. 제19항 또는 제20항에 있어서, 상기 광원은, 외부 공진기를 갖지 않는 양자 캐스케이드 레이저인, 표면 검사 방법.
  23. 제19항 또는 제20항에 있어서, 상기 피검사체는, 소정의 곡률을 갖는 롤의 표면 상에 위치하고 있고,
    상기 투사 광학계 및 상기 촬상 광학계는, 상기 롤의 회전 중심축에 초점이 일치하는 실린드리컬 렌즈를 갖는, 표면 검사 방법.
  24. 제19항 또는 제20항에 있어서, 상기 제1 촬상 소자 및 상기 제2 촬상 소자는, 각각의 촬상 소자 내의 각 화소 위치에 있어서의 상기 공액의 위치로부터의 시프트량이 일정해지도록 광축에 대하여 경사져서 설치되는, 표면 검사 방법.
  25. 삭제
  26. 삭제
  27. 삭제
  28. 삭제
KR1020177030929A 2016-04-12 2016-12-19 피검사체 촬상 장치, 피검사체 촬상 방법, 표면 검사 장치 및 표면 검사 방법 KR101992042B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016079716 2016-04-12
JPJP-P-2016-079716 2016-04-12
PCT/JP2016/087728 WO2017179243A1 (ja) 2016-04-12 2016-12-19 被検査体撮像装置、被検査体撮像方法、表面検査装置及び表面検査方法

Publications (2)

Publication Number Publication Date
KR20170129949A KR20170129949A (ko) 2017-11-27
KR101992042B1 true KR101992042B1 (ko) 2019-06-21

Family

ID=60041657

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020177030929A KR101992042B1 (ko) 2016-04-12 2016-12-19 피검사체 촬상 장치, 피검사체 촬상 방법, 표면 검사 장치 및 표면 검사 방법

Country Status (6)

Country Link
US (1) US10281408B2 (ko)
EP (1) EP3270144B1 (ko)
JP (1) JP6447728B2 (ko)
KR (1) KR101992042B1 (ko)
CN (1) CN107533014A (ko)
WO (1) WO2017179243A1 (ko)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016208264A1 (de) * 2016-05-13 2017-11-16 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Verfahren und Vorrichtung zur Überwachung, insbesondere zur Regelung, eines Schneidprozesses
JP6961394B2 (ja) * 2017-05-31 2021-11-05 株式会社キーエンス 画像検査装置、画像検査方法、画像検査装置の設定方法、画像検査プログラム、画像装置の設定検査プログラム及びコンピュータで読み取り可能な記録媒体並びに記録した機器
JP6568245B2 (ja) * 2018-01-24 2019-08-28 Ckd株式会社 検査装置、ptp包装機、及び、検査装置の較正方法
WO2019194064A1 (ja) * 2018-04-02 2019-10-10 日本電産株式会社 画像処理装置、画像処理方法、外観検査システムおよび外観検査方法
CN110378171A (zh) * 2018-04-13 2019-10-25 致伸科技股份有限公司 指纹识别模块的检测系统
CN112739977B (zh) * 2018-10-05 2023-06-20 株式会社富士 测定装置及元件安装机
CN111289519B (zh) * 2018-12-07 2022-11-04 长春长光华大智造测序设备有限公司 匀光棒端面检测装置
CN109829904B (zh) * 2019-01-29 2022-01-14 京东方科技集团股份有限公司 检测屏幕上灰尘的方法、装置、电子设备、可读存储介质
US11182630B2 (en) 2019-03-29 2021-11-23 Advanced New Technologies Co., Ltd. Using an illumination sequence pattern for biometric authentication
US20200314411A1 (en) * 2019-03-29 2020-10-01 Alibaba Group Holding Limited Synchronizing an illumination sequence of illumination sources with image capture in rolling shutter mode
CN112683921A (zh) * 2019-10-17 2021-04-20 神讯电脑(昆山)有限公司 针对金属表面的影像扫描方法及其影像扫描系统
CN114667445A (zh) * 2020-10-21 2022-06-24 Wit 株式会社 检查系统
JP2022138669A (ja) * 2021-03-10 2022-09-26 富士フイルムビジネスイノベーション株式会社 表面検査装置
CN113790874A (zh) * 2021-08-27 2021-12-14 歌尔光学科技有限公司 镜头的测试系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007327896A (ja) * 2006-06-09 2007-12-20 Canon Inc 検査装置
JP2008157788A (ja) * 2006-12-25 2008-07-10 Nippon Steel Corp 表面検査方法及び表面検査装置
JP2012013614A (ja) * 2010-07-02 2012-01-19 Hitachi Ltd 鏡面検査方法及びその装置
JP2013254764A (ja) 2012-06-05 2013-12-19 Hamamatsu Photonics Kk 量子カスケードレーザ

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2577960B2 (ja) * 1988-06-17 1997-02-05 株式会社ニデック 鏡面体の表面検査装置
JPH10221268A (ja) * 1997-02-05 1998-08-21 Advantest Corp ウェーハの表面状態検出方法および装置
US5953115A (en) * 1997-10-28 1999-09-14 International Business Machines Corporation Method and apparatus for imaging surface topography of a wafer
JP2000298102A (ja) * 1999-02-08 2000-10-24 Nkk Corp 表面検査装置
JP4775492B2 (ja) 1999-02-08 2011-09-21 Jfeスチール株式会社 表面検査装置
JP2001242090A (ja) * 2000-02-28 2001-09-07 Nkk Corp 表面検査装置
JP3824059B2 (ja) 2000-08-03 2006-09-20 Jfeスチール株式会社 表面検査装置及び微小凹凸欠陥の無い鋼板の製造方法
US7038208B2 (en) * 2002-08-31 2006-05-02 The Research Foundation of the City of New York Systems and methods for non-destructively detecting material abnormalities beneath a coated surface
JP4344284B2 (ja) * 2004-06-18 2009-10-14 株式会社堀場製作所 異物検査装置および異物検査方法
FR2887028B1 (fr) * 2005-06-14 2007-12-21 Vai Sias Soc Par Actions Simpl Procede et dispositif optiques de detection de defauts de surface et de structure d'un produit long en defilememnt
US7549789B2 (en) * 2007-06-20 2009-06-23 General Electric Company Method and apparatus for thermographic nondestructive evaluation of an object
JP4903658B2 (ja) 2007-09-26 2012-03-28 新日本製鐵株式会社 表面検査方法及び表面検査装置
US7619740B2 (en) * 2007-10-11 2009-11-17 Honeywell International Inc. Microgloss measurement of paper and board
CN102016554B (zh) * 2008-04-04 2013-01-30 南达技术公司 光学检验系统及方法
WO2010029549A1 (en) * 2008-09-12 2010-03-18 Ceramicam Ltd. Surface scanning device
US8780347B2 (en) * 2010-06-11 2014-07-15 Block Engineering, Llc QCL spectroscopy system and applications therefor
US8526079B2 (en) * 2010-10-26 2013-09-03 Jean-Paul Ciardullo High-speed digital scanner and method
WO2012108306A1 (ja) * 2011-02-10 2012-08-16 株式会社日立ハイテクノロジーズ 異物検出装置及び異物検出方法
EP2647949A1 (fr) * 2012-04-04 2013-10-09 Siemens VAI Metals Technologies GmbH Méthode et dispositif de mesure de planéité d'un produit métallique
JP5959001B2 (ja) * 2012-07-20 2016-08-02 株式会社小森コーポレーション シート状物の検査装置
US20160076942A1 (en) * 2013-09-11 2016-03-17 Sci Instruments, Inc (Dba) Scientific Computing International Imaging spectropolarimeter
JP6328468B2 (ja) * 2014-03-31 2018-05-23 株式会社日立ハイテクノロジーズ 欠陥検査装置および検査方法
GB2526866A (en) * 2014-06-05 2015-12-09 Univ Bristol Apparatus for and method of inspecting surface topography of a moving object
US9404854B2 (en) * 2014-10-22 2016-08-02 The Boeing Company Second and third order simultaneously non-linear optical processes and measurements for surface analysis
US9557263B2 (en) * 2014-10-22 2017-01-31 The Boeing Company Terahertz material evaluation and characterization via material difference frequency generation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007327896A (ja) * 2006-06-09 2007-12-20 Canon Inc 検査装置
JP2008157788A (ja) * 2006-12-25 2008-07-10 Nippon Steel Corp 表面検査方法及び表面検査装置
JP2012013614A (ja) * 2010-07-02 2012-01-19 Hitachi Ltd 鏡面検査方法及びその装置
JP2013254764A (ja) 2012-06-05 2013-12-19 Hamamatsu Photonics Kk 量子カスケードレーザ

Also Published As

Publication number Publication date
JPWO2017179243A1 (ja) 2018-04-19
EP3270144A4 (en) 2019-02-20
EP3270144A1 (en) 2018-01-17
US20180202941A1 (en) 2018-07-19
EP3270144B1 (en) 2021-12-15
KR20170129949A (ko) 2017-11-27
JP6447728B2 (ja) 2019-01-09
US10281408B2 (en) 2019-05-07
CN107533014A (zh) 2018-01-02
WO2017179243A1 (ja) 2017-10-19

Similar Documents

Publication Publication Date Title
KR101992042B1 (ko) 피검사체 촬상 장치, 피검사체 촬상 방법, 표면 검사 장치 및 표면 검사 방법
US7099002B2 (en) Defect detector and method of detecting defect
JP2009513984A (ja) 複合構造に欠陥がないか検査するための装置および方法
JP2017053790A (ja) 欠陥検出装置及び欠陥検出方法
TWI778988B (zh) 用於檢驗透明基板上的缺陷的方法及裝置
US20130242083A1 (en) Retro-reflective imaging
JP2008506111A (ja) リブ付き容器を検査するための装置及び方法
JP2005214980A (ja) ウエハのマクロ検査方法および自動ウエハマクロ検査装置
US20170045448A1 (en) Apparatus of Detecting Transmittance of Trench on Infrared-Transmittable Material and Method Thereof
US6344897B2 (en) Inspection apparatus for foreign matter and pattern defect
JP2009063383A (ja) 検査装置及び検査方法
JP2011208941A (ja) 欠陥検査装置およびその方法
US20090207245A1 (en) Disk inspection apparatus and method
US20230020684A1 (en) Laser based inclusion detection system and methods
JP2008157788A (ja) 表面検査方法及び表面検査装置
US20100246356A1 (en) Disk surface defect inspection method and apparatus
JP5889699B2 (ja) 磁気メディアの光学式検査方法及びその装置
US20020021438A1 (en) Surface inspecting apparatus and method
JP3905741B2 (ja) 光学部材検査方法
JP2004132773A (ja) 青果物の光沢検査装置
JP3917431B2 (ja) 光学部材検査方法
JPH11326236A (ja) 表面層欠陥検出装置
JPH0963547A (ja) 缶開口部の検査方法
JP2024504715A (ja) ガラス検査
JPH0599639A (ja) 平面状物の緩やかな凹凸検査装置

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant