KR101853244B1 - 엔진 제어 장치 및 엔진 제어 방법 - Google Patents

엔진 제어 장치 및 엔진 제어 방법 Download PDF

Info

Publication number
KR101853244B1
KR101853244B1 KR1020177030741A KR20177030741A KR101853244B1 KR 101853244 B1 KR101853244 B1 KR 101853244B1 KR 1020177030741 A KR1020177030741 A KR 1020177030741A KR 20177030741 A KR20177030741 A KR 20177030741A KR 101853244 B1 KR101853244 B1 KR 101853244B1
Authority
KR
South Korea
Prior art keywords
piston
valve
valve overlap
overlap period
temperature
Prior art date
Application number
KR1020177030741A
Other languages
English (en)
Other versions
KR20170124607A (ko
Inventor
다케시 츠유키
요시히로 이마오카
다카오 이노우에
Original Assignee
닛산 지도우샤 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 닛산 지도우샤 가부시키가이샤 filed Critical 닛산 지도우샤 가부시키가이샤
Publication of KR20170124607A publication Critical patent/KR20170124607A/ko
Application granted granted Critical
Publication of KR101853244B1 publication Critical patent/KR101853244B1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0261Controlling the valve overlap
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0261Controlling the valve overlap
    • F02D13/0265Negative valve overlap for temporarily storing residual gas in the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/025Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining temperatures inside the cylinder, e.g. combustion temperatures
    • F02D35/026Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining temperatures inside the cylinder, e.g. combustion temperatures using an estimation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/006Controlling exhaust gas recirculation [EGR] using internal EGR
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/024Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus
    • F02D41/0255Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus to accelerate the warming-up of the exhaust gas treating apparatus at engine start
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/047Taking into account fuel evaporation or wall wetting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/062Introducing corrections for particular operating conditions for engine starting or warming up for starting
    • F02D41/064Introducing corrections for particular operating conditions for engine starting or warming up for starting at cold start
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/10Introducing corrections for particular operating conditions for acceleration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3023Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode
    • F02D41/3029Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode further comprising a homogeneous charge spark-ignited mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/01Internal exhaust gas recirculation, i.e. wherein the residual exhaust gases are trapped in the cylinder or pushed back from the intake or the exhaust manifold into the combustion chamber without the use of additional passages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D2013/0292Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation in the start-up phase, e.g. for warming-up cold engine or catalyst
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D2041/389Controlling fuel injection of the high pressure type for injecting directly into the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/021Engine temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/60Input parameters for engine control said parameters being related to the driver demands or status
    • F02D2200/602Pedal position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M2026/001Arrangements; Control features; Details
    • F02M2026/004EGR valve controlled by a temperature signal or an air/fuel ratio (lambda) signal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Ignition Timing (AREA)

Abstract

엔진 제어 장치는, 통 내에 연료를 직접 분사하는 연료 분사 밸브와, 흡기 밸브의 개방 기간과 배기 밸브의 개방 기간의 밸브 오버랩 기간을 조정하는 밸브 오버랩 기간 조정 기구를 구비하는 통 내 직접 연료 분사식 엔진을 제어한다. 엔진 제어 장치는, 운전자의 가속 요구를 검출하는 가속 요구 센서를 구비하고, 가속 요구가 있는 경우이며 통 내에 있어서의 피스톤의 관면 온도가 소정 온도보다 낮은 경우에, 배기 상사점을 사이에 두는 흡기 밸브의 개방 기간과 배기 밸브의 개방 기간의 밸브 오버랩 기간을 확대시킨다.

Description

엔진 제어 장치 및 엔진 제어 방법
본 발명은 통 내 직접 연료 분사식 불꽃 점화 엔진을 제어하는 엔진 제어 장치 및 엔진 제어 방법에 관한 것이다.
엔진의 배기 통로에는, 일반적으로 배기 가스를 정화하기 위한 촉매 장치가 배치되어 있다. 촉매 장치에 담지된 촉매는, 활성화 온도 미만에서는 양호한 촉매 기능을 발휘하지 못하므로, 기관 시동 시에는 촉매를 조기에 활성화 온도까지 승온시키기 위한 난기 운전이 필요해진다. 난기 운전의 방법으로서는, 점화 타이밍을 지각시킴으로써 배기 가스의 온도를 높여, 촉매를 승온시키는 방법이 있다. 또한, 이러한 난기 운전에 있어서, 점화 타이밍을 지각한 상태에서도 양호한 착화성을 확보하기 위하여, 점화 플러그의 근방에 연료 분무를 집중시킨 상태에서 불꽃 점화를 행하는, 소위 성층 연소를 실시하는 경우가 있다.
이러한 난기 운전 중에 있어서, 예를 들어 가속을 행하거나 하여 급속하게 부하가 가해지면, 상기와 같은 성층 연소로부터 균질 스토이키 연소로 전환된다. 이렇게 부하가 변화했을 때의 에미션 저감 방법이 고려되고 있다. JP2009-2184A에는, 터빈보다 상류의 배기 통로와 컴프레서보다 하류의 흡기 통로를 접속하는 HPL 통로를 사용하는 HPLEGR과, 터빈보다 하류의 배기 통로와 컴프레서보다 상류의 흡기 통로를 접속하는 LPL 통로를 사용하는 LPLEGR이 개시되어 있다. 그리고, HPLEGR과 LPLEGR을 전환하는 제어가 개시되어 있다. 또한, JP2009-167887A에는, 외부 EGR을 갖는 내연 기관에 있어서, 피스톤 온도에 기초하여 EGR 밸브 개방도를 제어하는 것이 개시되어 있다.
그러나, 이들 방법은 배기 미립자(PM: Particulate Matter)의 생성량의 억제를 전혀 고려하지 않았다. 따라서, 피스톤 관면의 온도가 낮을 때의 가속 시에 있어서 PM의 배출량(이하, PN: Particulate Number라고도 한다) 증가를 억제하는 것이 어렵다.
그래서 본 발명에서는, 피스톤 관면의 온도가 낮을 때의 가속 시에 있어서 PN의 증가를 억제할 수 있도록 엔진을 제어하는 것을 목적으로 한다.
본 발명의 어느 형태에 의하면, 통 내에 연료를 직접 분사하는 연료 분사 밸브와, 흡기 밸브의 개방 기간과 배기 밸브의 개방 기간의 밸브 오버랩 기간을 조정하는 밸브 오버랩 기간 조정 기구를 구비하는 통 내 직접 연료 분사식 엔진을 제어하는 엔진 제어 장치가 제공된다. 엔진 제어 장치는, 운전자의 가속 요구를 검출하는 가속 요구 센서를 구비하고, 가속 요구가 있는 경우이며 통 내에 있어서의 피스톤의 관면 온도가 소정 온도보다 낮은 경우에, 배기 상사점을 사이에 두는 흡기 밸브의 개방 기간과 배기 밸브의 개방 기간의 밸브 오버랩 기간을 확대시킨다.
도 1은 본 실시 형태를 적용하는 통 내 직접 연료 분사식 불꽃 점화 엔진의 연소실 주변의 개략 구성도이다.
도 2는 PN의 증가를 억제하기 위한 제어 루틴을 나타내는 흐름도이다.
도 3은 제1 실시 형태에 있어서의 불꽃 점화 타이밍의 지각량을 설정하는 테이블이다.
도 4는 제1 실시 형태에 있어서의 불꽃 점화 타이밍을 도시하는 도면이다.
도 5는 액상 연료 추정량에 대하여 점화 타이밍을 선형으로 변화시켰을 때의 도면이다.
도 6은 액상 연료 추정량에 대하여 점화 타이밍을 단계적으로 변화시켰을 때의 도면이다.
도 7은 연료 분사량에 대하여 점화 타이밍을 선형으로 변화시켰을 때의 도면이다.
도 8은 제1 실시 형태에 있어서의 밸브 오버랩 기간의 길이를 설정하는 테이블이다.
도 9는 밸브 오버랩 기간 확대 시에 있어서의 밸브 타이밍 확대량의 설명도이다.
도 10은 제1 실시 형태에 있어서의 밸브 타이밍의 테이블이다.
도 11은 액상 연료 추정량에 대한 밸브 타이밍의 테이블이다.
도 12는 액상 연료 추정량에 대하여 밸브 오버랩 기간을 선형으로 변화시켰을 때의 도면이다.
도 13은 연료 분사량에 대하여 밸브 오버랩 기간을 선형으로 변화시켰을 때의 도면이다.
도 14는 분사 타이밍에 대한 밸브 오버랩 기간의 설명도이다.
도 15는 점화 타이밍 리타드의 효과를 설명하는 제1도이다.
도 16은 점화 타이밍 리타드의 효과를 설명하는 제2도이다.
도 17은 점화 타이밍 리타드의 효과를 설명하는 제3도이다.
도 18은 점화 타이밍 및 밸브 오버랩과 PN 농도의 관계를 도시하는 도면이다.
도 19는 제2 실시 형태에 있어서의 액상 연료 추정량에 대한 밸브 오버랩 보정량의 설명도이다.
도 20은 제2 실시 형태에 있어서의 연료 분사량에 대한 밸브 오버랩 보정량의 설명도이다.
이하, 도면 등을 참조하여, 본 발명의 실시 형태에 대하여 설명한다.
(제1 실시 형태)
도 1은 본 실시 형태를 적용하는 통 내 직접 연료 분사식 불꽃 점화 엔진(이하, 「엔진」이라고도 한다)(1)의, 연소실 주변의 개략 구성도이다. 또한, 도 1은 하나의 기통에 대해서만 도시하고 있지만, 본 실시 형태는 다기통 엔진에도 적용 가능하다.
엔진(1)의 실린더 블록(1B)은 실린더(2)를 구비한다. 실린더(2)에는 피스톤(3)이 왕복 이동 가능하게 수용되어 있다. 피스톤(3)은 커넥팅 로드(12)를 개재시켜 도시하지 않은 크랭크 샤프트와 연결되어 있고, 크랭크 샤프트가 회전함으로써 왕복 이동한다. 또한, 피스톤(3)은 관면(3A)(이하, 피스톤 관면(3A)이라고도 한다)에 후술하는 캐비티(10)를 구비한다.
엔진(1)의 실린더 헤드(1A)는 오목 형상의 연소실(11)을 구비한다. 연소실(11)은, 소위 펜트 루프형으로 구성되어 있고, 흡기측의 경사면에는 한 쌍의 흡기 밸브(6)가, 배기측의 경사면에는 한 쌍의 배기 밸브(7)가 각각 배치되어 있다. 그리고, 이들 한 쌍의 흡기 밸브(6) 및 한 쌍의 배기 밸브(7)에 둘러싸인 연소실(11)의 대략 중심 위치에, 점화 플러그(8)가 실린더(2)의 축선을 따르도록 배치되어 있다.
또한, 실린더 헤드(1A)의, 한 쌍의 흡기 밸브(6) 사이에 끼워진 위치에는, 연료 분사 밸브(9)가 연소실(11)에 면하도록 배치되어 있다. 연료 분사 밸브(9)로부터 분사되는 연료 분무의 지향성에 대해서는 후술한다.
흡기 밸브(6) 및 배기 밸브(7)는, 밸브 오버랩 기간 조정 기구로서의 가변동 밸브 기구(20)에 의해 구동된다. 가변동 밸브 기구(20)는, 흡기 밸브(6) 및 배기 밸브(7)가 모두 밸브 개방한 밸브 오버랩 기간이 생기도록, 흡기 밸브(6) 및 배기 밸브(7)의 밸브 타이밍, 즉 개방 밸브 타이밍 및 폐쇄 밸브 타이밍을 변화시킬 수 있는 것이면 충분하다. 또한, 개방 밸브 타이밍이란 밸브 개방 동작을 개시하는 타이밍, 폐쇄 밸브 타이밍이란 밸브 폐쇄 동작을 종료하는 타이밍이다. 본 실시 형태에서는, 흡기 밸브(6)를 구동하는 캠 샤프트 및 배기 밸브(7)를 구동하는 캠 샤프트의, 크랭크 샤프트에 대한 회전 위상을 변화시키는 공지의 가변동 밸브 기구(20)를 사용한다. 또한, 회전 위상뿐만 아니라 흡기 밸브(6) 및 배기 밸브(7)의 작동각도 변화시킬 수 있는 공지의 가변동 밸브 기구를 사용해도 된다. 또한, 가변동 밸브 기구(20)로서는, 흡기 밸브(6)와 배기 밸브(7)의 개폐 타이밍 모두를 조정할 수 있는 것에 한하지 않고, 어느 한쪽만을 조정할 수 있는 것이어도 된다. 예를 들어, 흡기 밸브(6)의 개폐 타이밍만을 조정할 수 있는 것이라도 흡기 밸브(6)의 개방 기간과 배기 밸브(7)의 개방 기간의 밸브 오버랩 기간을 길게 하거나 짧게 하거나 조정할 수 있으면 다른 기구를 채용해도 된다.
배기 통로(5)의 배기 흐름의 하류측에는, 엔진(1)의 배기 가스를 정화하기 위한 배기 정화 촉매가 개재 장착되어 있다. 배기 정화 촉매는, 예를 들어 3원 촉매이다.
피스톤(3)은, 상술한 바와 같이 피스톤 관면(3A)에 캐비티(10)를 구비한다. 캐비티(10)는, 피스톤 관면(3A)에 있어서 흡기측에 치우친 위치에 설치되어 있다. 그리고, 연료 분사 밸브(9)는, 피스톤(3)이 상사점 근방에 있을 때에 연료 분사하면, 연료 분무가 이 캐비티(10)를 지향하도록 배치되어 있다. 캐비티(10)에 충돌한 연료 분무가, 캐비티(10)의 벽면을 따라 말아올려져서 점화 플러그(8)의 방향을 향하는 형상으로 되어 있다.
또한, 엔진(1)의 연료 분사량, 연료 분사 타이밍 및 점화 타이밍 등은, 컨트롤러(100)에 의해 엔진(1)의 운전 상태에 따라 제어된다. 또한, 연료 분사 타이밍이란, 연료 분사를 개시하는 타이밍이다. 또한, 이들 제어를 실행하기 위하여, 엔진(1)은 크랭크 샤프트 각도 센서, 냉각 수온 센서(32), 흡입 공기량을 검출하는 에어플로우 미터, 액셀러레이터 페달의 답입량을 검출하는 액셀러레이터 개방도 센서(31), 배기 정화 촉매의 온도를 직접적으로나 또는 간접적으로 검출하는 촉매 온도 센서(33) 등의 각종 검출 장치를 구비한다. 액셀러레이터 개방도 센서(31)는, 드라이버의 가속 요구를 검출하는 가속 요구 센서로서 기능하지만, 가속 요구 센서는 이것에 한정되지 않는다. 예를 들어, 손으로 액셀러레이터 조작하는 것도 적용할 수 있어, 가속 요구량을 검출할 수 있으면 조작자의 형태에는 구애되지 않는다.
이어서, 컨트롤러(100)가 실행하는, 엔진(1)의 시동 시에 있어서의 제어에 대하여 설명한다. 본 실시 형태에서는, 1연소 사이클당 필요한 연료량을 2회로 나누어 분사하는, 소위 2단 분사를 행하기로 한다.
배기 정화 촉매는, 활성화 온도보다 저온에서는 충분한 정화 성능을 발휘하지 못한다. 이로 인해, 배기 정화 촉매가 활성화 온도보다 저온인 냉기 시동 시에는, 배기 정화 촉매를 조기에 승온시킬 필요가 있다. 그래서, 컨트롤러(100)는, 냉간 시동 직후의 아이들 상태에서 배기 정화 촉매가 불활성 상태에 있는 경우에, 배기 정화 촉매를 조기에 활성화시키기 위하여 초(超)리타드 성층 연소를 실행한다. 또한, 초리타드 성층 연소 자체는 공지(일본 특허 공개 제2008-25535호 공보 참조)이다.
초리타드 성층 연소에서는, 컨트롤러(100)는 점화 타이밍을 팽창 행정의 전반의, 예를 들어 압축 상사점 후 15 내지 30deg로 설정한다. 또한, 컨트롤러(100)는 1회째의 연료 분사 타이밍을 흡기 행정의 전반에 설정하고, 2회째의 연료 분사 타이밍을 압축 행정의 후반의, 연료 분무가 점화 타이밍까지 점화 플러그(8)의 주변에 도달할 수 있는 타이밍, 예를 들어 압축 상사점 전 50 내지 60deg로 설정한다.
여기서, 1회째의 연료 분사량과 2회째의 연료 분사량에 대하여 설명한다.
상술한 초리타드 성층 연소로 배출되는 배기 가스의 공연비는 스토이키(이론 공연비)이다. 컨트롤러(100)는 일반적인 연료 분사량 설정 방법과 마찬가지로, 1연소 사이클당 흡입 공기량으로 완전 연소시킬 수 있는 연료량(이하, 토탈 연료량이라고도 한다)을 산출한다. 이 토탈 연료량 중 일부, 예를 들어 50 내지 90중량%를 1회째의 분사량으로 하고, 나머지를 2회째의 분사량으로 한다.
상기한 바와 같이 연료 분사량을 설정하면, 1회째의 연료 분사로 분사된 연료 분무는, 캐비티(10)에 충돌하지 않고 실린더(2) 내에 확산되어, 공기와 혼합하여 연소실(11)의 전역에 스토이키보다도 희박한 균질 혼합기를 형성한다. 그리고, 2회째의 연료 분사로 분사된 연료 분무는, 캐비티(10)에 충돌하여, 말아 올려짐으로써 점화 플러그(8)의 근방에 도달하여, 점화 플러그(8)의 주위에 스토이키보다도 농후한 혼합기를 집중적으로 형성한다. 이에 의해 연소실(11) 내의 혼합기는 성층 상태로 된다. 이 상태에서 점화 플러그(8)에 의해 불꽃 점화되면, 실화나 스모크 발생이 억제된 외란에 강한 연소가 행하여진다. 그런데, 상술한 연소는 성층 연소이지만, 점화 타이밍이 압축 상사 전인 일반적인 성층 연소와 구별하기 위하여, 초리타드 성층 연소라고 칭한다.
상기와 같은 초리타드 성층 연소에 의하면, 종래의 균질 스토이키 연소와 비교하여 배기 온도를 상승시킬 수 있을 뿐 아니라, 연소실(11)로부터 배기 통로(5)로의 하이드로카본(HC) 배출량을 저감시킬 수 있다. 즉, 초리타드 성층 연소에 의하면, 종래의 균질 스토이키 연소만, 성층 연소만으로, 혹은 이들에 대하여 다시 추가 연료를 연소 후기 이후(팽창 행정 이후나 배기 행정 중)에 분사하는 연소 형태 등으로 난기를 행하게 하는 경우에 비하여, 시동 개시부터 배기 정화 촉매가 활성화될 때까지 동안에 있어서의 대기 중으로의 HC의 배출을 억제하면서, 배기 정화 촉매의 조기 활성화를 실현할 수 있다. 또한, 여기에서는 초리타드 성층 연소를 2단 연료 분사에 의해 행하기로 하고 있지만 연료 분사의 단수는 이것에 한정되지 않는다.
그런데, 초리타드 성층 연소의 실행 중에 피스톤 관면(3A)에 충돌한 연료의 일부는, 점화 플러그(8)의 방향으로 말아 올려지지 않고, 피스톤 관면(3A)에 부착된다. 피스톤 관면(3A)에 연료가 부착된 경우에도, 부착된 연료가 기화되어 당해 연소 사이클로 연소되면, 피스톤 관면(3A)에 연료가 잔류하는 일은 없다. 그러나, 초리타드 성층 연소를 실행하는 것은 냉기 시동 시이므로, 피스톤 관면(3A)의 온도가 상승할 때까지는, 부착된 연료는 기화되기 어렵다. 또한, 부착된 연료가 당해 연소 사이클의 연소 화염이 전파됨으로써 연소되면, 피스톤 관면(3A)에 연료가 잔류하는 일은 없다. 그러나, 초리타드 성층 연소에서는 팽창 행정에서 연소를 개시하므로, 연소 화염이 피스톤 관면(3A)에 도달하지 않거나 또는 팽창 행정 후반에서 온도 저하한 상태로 피스톤 관면(3A)에 도달하게 되거나 하므로, 부착된 연료를 당해 사이클 중에 완전히 연소시키는 것은 어렵다. 또한, 피스톤 관면(3A)에 잔류되어 있는 액상 연료가 연소 화염에 의해 점화되어 연소되는 현상을 풀 파이어라고 칭한다.
따라서, 냉기 시동하고 나서의 소정 기간은, 피스톤 관면(3A)에 잔류하는 액상 연료는 계속하여 증가한다. 여기에서 말하는 소정 기간이란, 1연소 사이클 중에 피스톤 관면(3A)에 부착되는 양보다도, 피스톤 관면(3A)에 잔류되어 있던 액상 연료가 1연소 사이클 중에 기화되는 양이 더 많아질 때까지의 기간이다.
즉, 소정 기간을 초과하여 초리타드 성층 연소를 계속하면, 피스톤 관면(3A)에 잔류되어 있던 액상 연료는 서서히 감소한다. 그러나, 소정 기간 경과 전에, 피스톤 관면(3A)에 액상 연료가 잔류된 상태에서 초리타드 성층 연소로부터 균질 스토이키 연소로 전환되는 경우가 있다. 예를 들어, 액셀러레이터 페달이 답입되어 가속하는 경우이다. 또한, 여기에서 말하는 균질 스토이키 연소란, 연소실(11) 전체에 이론 공연비의 혼합기를 형성하여, 불꽃 점화하는 연소 형태이다.
초리타드 성층 연소가 행하여지고 있을 때에 액셀러레이터 페달이 답입되어 가속하는 경우, 통상 제어로 제어가 전환된다. 본 실시 형태에 있어서 통상 제어란, 균질 스토이키 연소에 있어서 최적 점화 시기(MBT: minimum advance for best torque, 토크 최대점에 있어서의 점화 시기)에서 불꽃 점화되는 제어이다. 일반적으로 균질 스토이키 연소 시에 있어서의 MBT는, TDC보다도 약간 진각한 점화 타이밍으로 되어 있다. 또한, 이때의 연료 분사는 흡기 행정 분사이다.
피스톤 관면(3A)에 액상 연료가 잔류되어 있는 상태에서 초리타드 성층 연소로부터 균질 스토이키 연소를 MBT에서 행하게 하도록 전환하면, 연소 화염이 고온인 채로 피스톤 관면(3A)에 도달하여 풀 파이어가 발생하여, 잔류되어 있는 액상 연료가 연소된다. 그리고, 금회의 연소 사이클까지 축적된 액상 연료가 연소되면, PN이 증가하는 경향이 있다.
따라서 본 실시 형태에서는, 액상 연료가 연소되는 것에 의한 PN의 증가를 억제하기 위하여, 컨트롤러(100)가 이하에 설명하는 제어를 실행한다.
도 2는 PN의 증가를 억제하기 위한 제어 루틴을 나타내는 흐름도이다. 이 제어 루틴은, 컨트롤러(100)에 의해 실행된다. 또한, 본 루틴은 예를 들어 10밀리 초 정도의 짧은 간격으로 반복 실행된다.
본 루틴은, 피스톤 관면(3A)에 잔류하는 액상 연료에 화염이 접촉하는 것에 의한 PM 발생을 억제하기 위하여, 점화 타이밍을 지각시키는 것이다. 또한, 피스톤 관면(3A)에 잔류하는 액상 연료량(이하, 간단히 「액상 연료량」이라고도 한다)을 저감시키기 위하여, 밸브 오버랩 기간을 확대시키는 것이다. 이하, 흐름도의 스텝에 따라 설명한다.
스텝 S101에서, 컨트롤러(100)는, 초리타드 성층 연소 시부터 계속하여 액셀러레이터 페달이 소정량 A보다도 크게 답입되었는지 여부를 판정한다. 여기서, 소정량 A란, 드라이버에게 가속 의도가 있다고 인정될 정도의 액셀러레이터 페달의 답입량이다. 이 소정량 A는, 미리 설정되어 있다. 또한, 이때, 초리타드 성층 연소 시였는지 여부는, 배기 정화 촉매의 온도에 기초하여 판정할 수 있다. 구체적으로는, 배기 정화 촉매가 활성 온도 미만이면 실행 중, 활성 온도 이상이면 실행 중이 아니라고 판정한다.
그리고, 스텝 S101에 있어서 액셀러레이터 페달이 소정량 A보다도 크게 답입되지 않을 때에는, 컨트롤러(100)는, 촉매 온도가 촉매의 활성화 온도 TC를 초과했는지 여부를 판정한다(S102). 그리고, 촉매 온도가 촉매의 활성화 온도 TC를 초과하지 않은 경우에는, 컨트롤러(100)는, 전술한 초리타드 성층 연소 제어를 계속하여 행한다(S103).
한편, 스텝 S101에 있어서 액셀러레이터 페달이 소정량 A보다도 크게 답입되었을 때 또는 스텝 S102에 있어서 촉매 온도가 촉매의 활성화 온도 TC를 초과한 경우에는, 컨트롤러(100)는 균질 스토이키 연소 제어를 행한다(S104). 균질 스토이키 연소란, 전술한 바와 같이, 연소실(11)의 전체에 이론 공연비의 혼합기를 형성하여, 불꽃 점화하는 연소 형태이다. 또한, 촉매 온도가 활성화 온도 TC를 초과하는 경우에도 스텝 S104로 처리를 진행시키고, 후술하는 스텝 S105에서 피스톤 관면(3A)의 온도에 따른 제어를 행하기로 한 것은, 촉매가 활성되어 있다고 해서 피스톤 관면(3A)의 온도가 승온된 것만은 아니며, 피스톤 관면(3A)의 온도가 낮은 경우에는 PN이 증가하는 경우가 있기 때문이다.
이어서, 스텝 S105에서, 컨트롤러(100)는 피스톤 관면(3A)의 온도(이하, 간단히 「피스톤 관면 온도」라고도 하는 경우가 있다)를 취득한다. 본 실시 형태에 있어서, 피스톤 관면 온도를 냉각 수온 센서(32)의 검출값으로부터 구할 수 있다. 예를 들어, 기존의 냉각 수온 센서(32)에 의해 취득되는 온도와 피스톤 관면 온도의 관계를 미리 구해 둠으로써, 기존의 냉각 수온 센서(32)에 의해 취득되는 온도에 기초하여, 엔진(1)의 제어 시에 피스톤 온도를 취득할 수 있다.
스텝 S106에서, 컨트롤러(100)는 스텝 S105에서 취득한 피스톤 관면 온도가 미리 설정되어 있는 역치 T1 미만인지 여부를 판정한다. 컨트롤러(100)는, 피스톤 관면 온도가 역치 T1 미만인 경우는 스텝 S107의 처리를 실행하고, 역치 T1 이상인 경우는 스텝 S111의 처리를 실행한다.
본 스텝에서 사용하는 역치 T1에는, 초리타드 성층 연소로부터 통상 제어로 전환했다고 해도, PN의 배출 규제값을 만족할 수 있는 값이 미리 설정된다. 역치 T1은, 환언하면, 피스톤 관면(3A)에 부착된 액상 연료가 1사이클 중에 기화나 연소를 할 수 있는 온도와 할 수 없는 온도의 경계의 온도라고도 할 수 있다. 그리고, 1사이클 중에 기화나 연소를 할 수 없는 온도란, 피스톤 관면(3A)에 부착된 액상 연료가 다음 사이클까지 액상으로 넘겨져 버려, 배기 미립자(PM)의 생성의 요인이 되어 버리는 온도라고도 할 수 있다. 또한, 역치 T1을, 가속 시에 피스톤 관면(3A)이 액상 연료로 젖어 있지 않아도 화염이 발생하는 경우도 있음을 알았기 때문에, 그 온도와 화염이 발생하지 않는 온도의 경계의 온도로 해도 된다.
스텝 S107에서, 컨트롤러(100)는, 불꽃 점화 타이밍의 지각량을 후술하는 바와 같이 산출한다. 불꽃 점화 타이밍(이하, 간단히 「점화 타이밍」이라고 하는 경우도 있다)의 지각량은, 예를 들어 도 3에 도시하는 테이블을 미리 작성하여 컨트롤러(100)에 저장해 두고, 이 테이블을 피스톤 관면 온도로 검색함으로써 산출한다.
도 3은 제1 실시 형태에 있어서의 불꽃 점화 타이밍의 지각량을 설정하는 테이블이다. 도 3은 종축이 점화 타이밍의 지각량을 나타내고, 횡축이 피스톤 관면 온도를 나타내고 있다. 점화 타이밍의 지각량은, 피스톤 관면(3A)의 온도 T가 T>역치 T1인 경우에는 제로, 역치 T1≥T인 경우는 RT1이다.
스텝 S108에서, 컨트롤러(100)는 점화 타이밍을 설정한다. 구체적으로는, 통상의 균질 스토이키 연소용의 점화 타이밍과 스텝 S107에서 산출한 점화 타이밍의 지각량 RT1로부터 새로운 점화 타이밍을 산출한다.
도 4는 제1 실시 형태에 있어서의 불꽃 점화 타이밍을 도시하는 도면이다. 도 4에는 상기 스텝 S107 및 S108의 처리를 실행한 경우의 점화 타이밍의 일례가 도시되어 있다. 도 4의 종축이 점화 타이밍을 나타내고, 횡축이 피스톤 관면 온도 T를 나타내고 있다. 피스톤 관면 온도 T가 역치 T1 미만인 경우에는, 점화 타이밍은 통상 제어 시에 있어서의 균질 스토이키 연소 시의 기본 점화 타이밍(MBT)보다도 지각량 RT1만큼 지각하도록 설정된다.
만약 가령, 여기에서 점화 타이밍이 지각되지 않는 경우에는, 점화에 의해 전파되는 화염이 바로 피스톤 관면(3A)에 도달하게 된다. 그렇게 하면, 캐비티(10)에 잔류하는 액상 연료에 화염이 조기에 접촉하여 PN을 증가시켜 버린다. 그러나, 상술한 바와 같이, 점화 타이밍이 지각되면, 점화에 의해 전파되는 화염이 피스톤 관면(3A)에 도달하지 못하거나, 가령 도달했다고 해도 지연되어 도달하게 되기 때문에, 피스톤 관면(3A)에 대한 화염의 접촉 시간을 짧게 할 수 있다. 그리고, 피스톤 관면(3A)에 잔류하는 액상 연료의 연소량을 적게 하여 PN의 증가를 억제할 수 있다. 또한, 점화 타이밍이 지각되면, 팽창 행정에서 저온화되어 화염이 피스톤 관면(3A)에 도달하기 때문에, 가령 풀 파이어가 발생했다고 해도 그 크기를 작게 할 수 있다. 그리고, PN의 증가를 억제할 수 있다.
또한, 피스톤 관면(3A)에 있어서 잔류하는 액상 연료의 추정량(이하, 「액상 연료 추정량」이라고 하는 경우도 있다)에 대한 점화 타이밍의 테이블을 작성해 두고, 스텝 S107 및 스텝 S108에서 점화 타이밍을 지각시킬 때 이 테이블을 참조하여 액상 연료 추정량으로부터 점화 타이밍을 구하도록 해도 된다. 액상 연료 추정량은, 피스톤 관면 온도와 상관 관계가 있다. 피스톤 관면 온도가 높으면 액상 연료는 증발되기 쉽기 때문에, 피스톤 관면(3A)에 있어서의 액상 연료 추정량은 적어진다. 한편, 피스톤 관면 온도가 낮으면 액상 연료는 증발되기 어렵기 때문에, 피스톤 관면(3A)에 있어서의 액상 연료 추정량은 많아진다.
따라서, 액상 연료 추정량이 많을수록, 불꽃 점화 타이밍의 지각량이 커지도록 테이블을 설정해 둔다. 액상 연료 추정량이 많아질수록, 도 3의 점화 타이밍 지각량이 위로 시프트한 테이블이 된다. 액상 연료 추정량이 많을수록, 액상 연료가 화염과 접촉한 경우에 PN은 증가한다. 그러나, 상기한 바와 같이 점화 타이밍의 지각량을 산출함으로써, 피스톤 관면(3A)에 있어서의 액상 연료에 대한 화염의 접촉 시간을 짧게 할 수 있다. 그리고, PN의 증가를 억제할 수 있다.
도 5는 액상 연료 추정량에 대하여 점화 타이밍을 선형으로 변화시켰을 때의 도면이다. 이와 같이, 액상 연료 추정량에 대하여 점화 타이밍을 선형으로 변화시킨 경우에도, 상기와 마찬가지의 작용에 의해 PN의 증가를 억제할 수 있다.
도 6은 액상 연료 추정량에 대하여 점화 타이밍을 단계적으로 변화시켰을 때의 도면이다. 이와 같이, 액상 연료 추정량에 대하여 점화 타이밍을 단계적 변화시킨 경우에도, 상기와 마찬가지의 작용에 의해 PN의 증가를 억제할 수 있다.
또한, 액상 연료량의 추정 시에, 피스톤 관면 온도와 엔진 시동으로부터의 경과 시간에 기초하여 액상 연료량을 추정할 수 있다. 구체적으로는, 먼저 피스톤 관면 온도가 낮을수록 액상 연료가 피스톤 관면(3A)에 잔류되기 쉽다는 특성에 기초하여, 피스톤 관면 온도마다 단위 시간당 잔류량을 정해 두고, 이 값에 엔진 시동으로부터의 경과 시간을 적산함으로써 피스톤 관면(3A)에 부착된 적산량을 산출한다. 이어서, 이 적산량으로부터 후술하는 기화량을 감산하고, 그 결과를 액상 연료의 추정량으로 한다.
상기한 기화량이란, 피스톤 관면(3A)에 부착되어 있던 연료 중 기화된 양이다. 연료는 온도가 높을수록 기화되기 쉬워지므로, 피스톤 관면(3A)의 온도가 높아질수록 기화량은 많아진다.
또한, 피스톤 관면(3A)으로의 연료 분사량에 대한 점화 타이밍의 테이블을 작성해 두고, 스텝 S107 및 스텝 S108에서 점화 타이밍을 지각시킬 때 연료 분사량에 따른 테이블을 선택하도록 해도 된다. 연료 분사량이 많으면, 피스톤 관면(3A)에 있어서의 액상 연료의 잔류량은 많아진다. 한편, 연료 분사량이 적으면, 피스톤 관면(3A)에 있어서의 액상 연료의 잔류량은 적어진다.
따라서, 연료 분사량이 많은 경우의 테이블일수록, 점화 타이밍의 지각량을 크게 설정해 둔다. 연료 분사량이 많아질수록, 도 3의 점화 타이밍의 지각량이 위로 시프트한 테이블이 된다. 연료 분사량이 많을수록 피스톤 관면(3A)에 잔류하는 액상 연료 추정량도 많아지기 때문에, 그것이 화염과 접촉한 경우에 PN이 증가한다. 그러나, 상기한 바와 같이 불꽃 점화 타이밍의 지각량을 산출함으로써, 보다 확실하게 피스톤 관면(3A)에 있어서의 액상 연료에 대한 화염의 접촉 시간을 짧게 할 수 있다. 그리고, PN의 증가를 억제할 수 있다.
도 7은 연료 분사량에 대하여 점화 타이밍을 선형으로 변화시켰을 때의 도면이다. 이와 같이, 연료 분사량에 대하여 점화 타이밍을 선형으로 변화시킨 경우에도, 상기와 마찬가지의 작용에 의해 PN의 증가를 억제할 수 있다.
도 2의 흐름도의 설명으로 되돌아간다.
스텝 S109에서, 컨트롤러(100)는, 피스톤 관면 온도 T에 기초하여 밸브 오버랩 기간을 산출한다. 여기에서 말하는 밸브 오버랩 기간이란, 흡기 밸브(6) 및 배기 밸브(7)가 밸브 개방되어 있는 상태가 계속되는 기간을 크랭크 각도로 나타낸 것이다.
도 8은 제1 실시 형태에 있어서의 밸브 오버랩 기간의 길이를 설정하는 테이블이다. 도 8은 종축이 밸브 오버랩 기간을 나타내고, 횡축이 피스톤 관면 온도 T를 나타내고 있다. 도 8에서는, 밸브 오버랩 기간은, 피스톤 관면 온도 T가 T<T1인 경우에는 V1, T≥T1인 경우에는 기본 오버랩 기간 V0으로 되어 있다. 여기서, V0<V1의 관계가 성립된다.
밸브 오버랩 기간이 길어지면, 소위 내부 EGR 가스량이 증가한다. 내부 EGR 가스는 고온이기 때문에, 이것이 통 내에 흡입됨으로써 흡기 행정부터 점화 타이밍까지의 통 내 온도가 상승한다. 통 내 온도가 상승하면 피스톤 온도도 상승되어, 캐비티에 부착되어 있는 액상 연료의 기화가 촉진된다. 그래서, 도 8의 테이블은, 관면 온도 T가 낮으면, 밸브 오버랩 기간이 길어지도록 설정되어 있다.
스텝 S110에서, 컨트롤러(100)는 스텝 S109에서 산출한 밸브 오버랩 기간을 실현하기 위한 가변동 밸브 기구(20)의 변환각을 설정하고, 밸브 오버랩량을 변경한다. 보다 상세하게는, 흡기 밸브(6) 및 배기 밸브(7)의 밸브 타이밍을 후술하는 방법에 의해 산출하고, 산출 결과에 기초하여 흡기측 및 배기측의 가변동 밸브 기구(20)의 변환각을 변경한다.
도 9는 밸브 오버랩 기간 확대 시에 있어서의 밸브 타이밍 확대량의 설명도이다. 본 실시 형태에서는, 도 9에 도시된 바와 같이, 흡기 밸브(6)의 개방 타이밍의 진각량이 배기 밸브(7)의 폐쇄 타이밍의 지각량보다도 커지도록 설정된다.
이와 같이, 흡기 밸브(6)의 개방 타이밍을 보다 진각시켜 밸브 오버랩 기간을 확대시킴으로써, 배기 행정에 있어서 내부 EGR 가스가 흡기 포트측으로 되돌아오는 양을 많게 할 수 있다. 흡기 포트로 되돌아온 내부 EGR 가스는 다음 흡기 행정에서 통 내로 유입된다. 그리고, 소위 내부 EGR양을 효과적으로 증가시킬 수 있다.
도 10은 제1 실시 형태에 있어서의 밸브 타이밍의 테이블이다. 도 10은 스텝 S109에서 산출한 밸브 오버랩 기간을 실현하기 위한, 흡기 밸브(6)의 개방 타이밍(도면 중의 IVO)과, 배기 밸브(7)의 폐쇄 타이밍(도면 중의 EVC)을 구하기 위한 테이블이다. 도 10은 종축이 밸브 타이밍을 나타내고, 횡축이 밸브 오버랩량을 나타내고 있다. 밸브 오버랩 기간이 기본 밸브 오버랩 기간 V0(도 8)인 경우는 흡기 밸브(6)의 개방 타이밍이 IVO0, 배기 밸브(7)의 폐쇄 타이밍이 EVC0이다. 밸브 오버랩 기간이 V1인 경우에는, 흡기 밸브(6)의 개방 타이밍이 IVO0보다 진각한 IVO1, 배기 밸브(7)의 폐쇄 타이밍이 EVC0보다 지각한 EVC1이다. 이와 같이, 밸브 오버랩 기간이 어느 길이여도, 흡기 밸브(6)의 개방 타이밍과 배기 밸브(7)의 폐쇄 타이밍은, 배기 상사점을 사이에 두도록 설정되어 있다.
이와 같이, 본 실시 형태에 있어서, 초리타드 성층 연소 시에 액셀러레이터 페달이 소정량 A보다도 크게 답입된 경우이며 피스톤 관면 온도 T가 역치 T1 미만인 경우에는, 밸브 오버랩 기간을 확대시키므로, 내부 EGR이 증가한다. 내부 EGR이 증가하면 고온의 EGR 가스에 의해 통 내 온도를 상승시킬 수 있다. 그리고, 피스톤 관면(3A)에 있어서의 액상 연료를 증발시켜, 피스톤 관면(3A)에 고인 액상 연료를 감소시킬 수 있다. 그리고, PN의 증가를 억제할 수 있다.
또한, EGR 가스는, 통 내의 산소 농도를 인하하기 위하여 불꽃 점화 후의 연소 온도를 인하하는 특성을 갖는다. 연소 온도가 낮으면 화학 반응적으로 PM의 발생을 억제할 수 있다. 따라서, 밸브 오버랩 기간을 확대시킴으로써, PN의 증가를 억제할 수 있다.
또한, 피스톤 관면(3A)에 잔류하는 액상 연료 추정량에 대한 밸브 오버랩 기간의 테이블을 작성해 두고, 스텝 S109 및 스텝 S110에서 밸브 오버랩 기간을 확대시킬 때, 이 테이블을 참조하여 밸브 오버랩 기간을 구하도록 해도 된다. 액상 연료 추정량은, 피스톤 관면 온도와 상관 관계가 있다. 피스톤 관면 온도가 높으면 액상 연료는 증발되기 쉽기 때문에, 피스톤 관면(3A)에 있어서의 액상 연료 추정량은 적어진다. 한편, 피스톤 관면 온도가 낮으면 액상 연료는 증발되기 어렵기 때문에, 피스톤 관면(3A)에 있어서의 액상 연료 추정량은 많아진다.
도 11은 액상 연료 추정량에 대한 밸브 타이밍의 테이블이다. 도 11에 도시된 바와 같이, 액상 연료 추정량이 많을수록, 밸브 오버랩 기간이 길어지도록 테이블을 설정해 둔다. 액상 연료 추정량이 많을수록, 액상 연료가 화염과 접촉한 경우에 PN이 증가한다. 그러나, 상기한 바와 같이 밸브 오버랩 기간을 구함으로써, 피스톤 관면(3A)에 잔류하는 액상 연료량을 감소시킬 수 있다. 그리고, PN의 증가를 억제할 수 있다. 또한, 전술한 바와 같이 내부 EGR의 효과를 높일 수 있으므로, 이것에 의해서도 PN의 증가를 억제할 수 있다.
도 12는 액상 연료 추정량에 대하여 밸브 오버랩 기간을 선형으로 변화시켰을 때의 도면이다. 이와 같이, 액상 연료 추정량에 대하여 밸브 오버랩 기간을 선형으로 변화시킨 경우에도, 상기와 마찬가지의 작용에 의해 PN의 증가를 억제할 수 있다.
또한, 연료 분사량에 대한 밸브 오버랩 기간의 테이블을 작성해 두고, 스텝 S109 및 S110에서 밸브 오버랩 기간을 확대시킬 때 이 테이블을 참조하여 밸브 오버랩 기간을 구하도록 해도 된다. 연료 분사량이 많으면, 피스톤 관면(3A)에 있어서의 액상 연료의 잔류량은 많아진다. 한편, 연료 분사량이 적으면, 피스톤 관면(3A)에 있어서의 액상 연료의 잔류량은 적어진다.
따라서, 연료 분사량이 많을수록, 밸브 오버랩 기간이 길게 설정되도록 테이블을 설정해 둔다. 연료 분사량이 많아질수록, 도 8의 밸브 오버랩 기간이 위로 시프트한 테이블이 된다. 연료 분사량이 많을수록 피스톤 관면(3A)에 잔류하는 액상 연료 추정량도 많아지고, 액상 연료가 화염과 접촉한 경우에 PN은 증가한다. 그러나, 상기한 바와 같이 밸브 오버랩 기간을 구함으로써, 피스톤 관면(3A)에 잔류하는 액상 연료량을 감소시킬 수 있다. 그리고, PN의 증가를 억제할 수 있다. 또한, 전술한 바와 같이 내부 EGR의 효과를 높일 수 있으므로, 이것에 의해서도 PN의 증가를 억제할 수 있다.
도 13은 연료 분사량에 대하여 밸브 오버랩 기간을 선형으로 변화시켰을 때의 도면이다. 이와 같이, 연료 분사량에 대하여 밸브 오버랩 기간을 선형으로 변화시킨 경우에도, 상기와 마찬가지의 작용에 의해 PN의 증가를 억제할 수 있다.
도 14는 분사 타이밍에 대한 밸브 오버랩 기간의 설명도이다. 도 14에 도시된 바와 같이 테이블을 사용하여, 분사 타이밍에 기초하여 밸브 오버랩 기간을 구하기로 해도 된다. 도 14는 종축이 밸브 오버랩 기간을 나타내고, 횡축이 연료의 분사 타이밍을 나타내고 있다. 여기서, 연료의 분사 타이밍은 압축 상사점 전이다. 그리고, 횡축에 있어서 우측 방향을 향할수록 압축 상사점보다도 전의 타이밍을 향하게 된다.
도 14의 테이블에 있어서, 분사 타이밍이 상사점에 접근할수록 밸브 오버랩 기간이 길어지도록 되어 있다. 분사 타이밍이 상사점에 가까워지면, 연료가 피스톤 관면(3A)에 부착되기 쉬워진다. 즉, 피스톤 관면(3A)에 액상 연료가 잔존하기 쉬워진다. 그러나, 여기서는, 분사 타이밍이 상사점에 접근할수록 밸브 오버랩 기간이 길어지도록 설정하므로, 피스톤 관면(3A)의 액상 연료의 잔류량을 저감시켜, PN의 증가를 억제할 수 있다.
또한, 도 2의 흐름도에 있어서, 스텝 S109 내지 S110의 처리를, 스텝 S107 내지 S108의 처리보다 먼저 실행해도 된다. 또한, 스텝 S107 내지 S108의 처리 및 스텝 S109 내지 S110의 처리 중 어느 한쪽만을 실행하기로 해도 된다.
스텝 S101 또는 스텝 S106의 판정 결과, 스텝 S111이 실행된 경우에는, 통상 제어가 행하여진다. 통상 제어는, 균질 스토이키 연소를 MBT에서 행하게 하는 운전 제어이다. 다시, 도 3 및 도 4를 참조하면, 관면 온도 T가 역치 T1 이상인 경우에는 점화 타이밍의 지각량은 제로가 되어, 점화 타이밍은 MBT를 실행하기 위해 기본 점화 타이밍이 된다. 또한, 관면 온도 T가 역치 T1 이상인 경우에는, 밸브 오버랩 기간은 V0으로 상대적으로 짧게 설정된다. 그리고, 흡입 공기의 분출량의 증가를 억제하여, 실린더 체적 효율이 높아지도록 설정된다. 예를 들어, 실린더 체적 효율이 가장 높아지도록 설정된다. 이에 의해, 피스톤 관면 온도가 높아진 경우에는 초리타드 성층 연소로부터 균질 스토이키 연소로 전환된 경우에도 가속 요구에 대하여 충분한 가속을 실현한다.
상술한 제어 루틴을 정리하면, 컨트롤러(100)는 균질 스토이키 연소 제어 시에 있어서 피스톤 관면(3A)의 온도 T를 취득한다. 피스톤 관면(3A)의 온도 T가 역치 T1 이상인 경우는, 컨트롤러(100)는 균질 스토이키 연소를 MBT에서 행하는 통상 제어를 행한다. 한편, 피스톤 관면(3A)의 온도 T가 역치 T1 미만인 경우에는, 컨트롤러(100)는, 불꽃 점화 타이밍을 통상 제어 시보다 지각시켜, 밸브 오버랩 기간을 통상 제어 시보다 확대시킨다.
또한, 상술한 실시 형태에 있어서, 피스톤 관면 온도에 대하여 단계적으로 점화 타이밍 및 밸브 오버랩 기간이 변화되었지만, 점화 타이밍 및 밸브 오버랩 기간을 피스톤 관면 온도에 대하여 선형으로 변화되도록 해도 된다.
이어서, 본 실시 형태의 효과에 대하여 설명한다.
본 실시 형태에서는, 배기 통로(5)에 개재 장착되는 배기 정화 촉매를 난기할 필요가 있는 경우에, 컨트롤러(100)는, 압축 행정 중이며, 또한 연료 분무가 피스톤 관면(3A)에 충돌하고, 충돌된 연료 분무가 피스톤 관면(3A)의 형상을 따라 상기 점화 플러그(8)를 향하는 타이밍에 연료를 분사하여, 압축 상사점 이후에 불꽃 점화를 하는 촉매 난기 운전(초리타드 성층 연소)을 실행한다. 그리고, 초리타드 성층 연소로부터 균질 스토이키 연소 제어로 전환된 후에 있어서 피스톤 관면(3A)의 온도가 소정 온도보다도 낮은 경우에, 피스톤 관면(3A)에 점화 후의 화염이 도달할 때까지의 시간이 길어지도록 불꽃 점화 타이밍을 지각시킨다.
연료 분무를 피스톤 관면(3A)에 충돌시키고 있으며, 또한 초리타드 성층 연소를 실행시키고 있을 때에 있어서, 액상 연료가 피스톤 관면(3A)에 고이기 쉽다. 이러한 상황 하에서, 예를 들어 액셀러레이터 페달이 소정량 A보다도 크게 답입되어 가속 상태가 되면, 균질 연소를 MBT에서 행하고자 하기 때문에, 피스톤 관면(3A)에 고인 연료에 화염이 접촉한다. 그리고, 이에 의해 PM이 생성되어 버린다.
그러나, 본 실시 형태에서는, 이러한 상황 하에 있어서, 피스톤 관면(3A)에 점화 후의 화염이 도달할 때까지의 시간이 길어지도록 불꽃 점화 타이밍을 지각시키므로, PM의 발생 시간을 짧게 할 수 있다. 그리고, PN의 증가를 억제할 수 있다.
또한, 본 실시 형태와 같이, 피스톤 관면(3A)에 있어서 잔존하는 액상 연료의 추정량이 많을수록, 불꽃 점화 타이밍을 지각시키기로 해도 된다. 이와 같이 함으로써, 피스톤 관면(3A)에 있어서 잔존하는 액상 연료가 많을수록, 화염과 액상 연료의 접촉을 발생시키기 어렵게 할 수 있다. 그리고, PM의 생성을 억제하여 PN의 증가를 억제할 수 있다.
또한, 본 실시 형태와 같이, 통 내에 있어서의 연료 분사량이 많을수록, 불꽃 점화 타이밍의 지각량을 크게 하기로 해도 된다. 연료 분사량이 많으면 피스톤 관면(3A)에 있어서 잔존하는 액상 연료도 많아진다고 생각된다. 따라서, 연료 분사량이 많을수록, 불꽃 점화 타이밍의 지각량을 크게 함으로써, 화염과 액상 연료의 접촉을 발생시키기 어렵게 할 수 있다.
또한, 본 실시 형태에서는, 초리타드 성층 연소의 실행 중에, 액셀러레이터 페달이 소정량 A보다도 크게 답입된 경우이며 통 내에 있어서의 피스톤 관면(3A)의 온도가 소정 온도보다 낮은 경우에 밸브 오버랩 기간을 확대시킨다.
연료 분무를 피스톤 관면(3A)에 충돌시키고 있으며, 또한 초리타드 성층 연소를 실행시키면, 액상 연료가 피스톤 관면(3A)에 고이기 쉽다. 이러한 상황 하에서, 액셀러레이터 페달이 소정량 A보다도 크게 답입되어 가속 상태가 되면, 균질 연소를 MBT에서 행하는 제어로 전환하므로 PN이 증가되어 버린다.
그러나, 본 실시 형태에서는, 이러한 상황 하에 있어서 밸브 오버랩 기간을 확대시켜 내부 EGR을 증가시킨다. 내부 EGR이 증가하면 고온의 EGR 가스에 의해 연소실 온도를 상승시킬 수 있다. 그리고, 피스톤 관면(3A)에 있어서의 액상 연료를 증발시켜, 피스톤 관면(3A)에 고인 액상 연료를 감소시킬 수 있다. 그리고, PN의 증가를 억제할 수 있다.
또한, EGR 가스는 통 내의 산소 농도를 인하하기 위하여 연소 온도를 인하하는 특성을 갖는다. 연소 온도가 낮으면 화학 반응적으로 PM의 발생을 억제할 수 있다. 따라서, 밸브 오버랩 기간을 확대시킴으로써 PN의 증가를 억제할 수 있다.
또한, 본 실시 형태와 같이, 피스톤 관면(3A)에 잔존하는 액상 연료가 많을수록 밸브 오버랩 기간을 확대시키기로 해도 된다. 밸브 오버랩 기간을 확대시킴으로써 소위 내부 EGR양을 증가시킬 수 있다. 내부 EGR양을 증가시키면, 연소 가스의 온도를 이용하여 피스톤 관면(3A)의 온도를 보다 상승시키고, 액상 연료를 보다 감소시킬 수 있다. 그로 인해, 피스톤 관면(3A)에 잔존하는 액상 연료가 많아졌다고 해도, 밸브 오버랩 기간을 확대시킴으로써, 내부 EGR을 증가시킬 수 있다. 그리고, 피스톤 관면(3A)에 잔류하는 액상 연료를 보다 기화시킬 수 있다.
또한, 통 내에 분사되는 연료 분사량이 많을수록 밸브 오버랩 기간을 확대시키기로 해도 된다. 밸브 오버랩 기간을 확대시킴으로써 내부 EGR양을 증가시킬 수 있다. 내부 EGR양을 증가시키면, 연소 가스의 온도를 이용하여 피스톤 관면(3A)의 온도를 보다 상승시키고, 액상 연료를 보다 감소시킬 수 있다. 그로 인해, 가속 시와 같이 연료 분사량이 많음으로써 피스톤 관면(3A)에 잔존하는 액상 연료가 많아졌다고 해도, 밸브 오버랩 기간을 확대시켜 내부 EGR양을 증가시킬 수 있다. 그리고, 피스톤 관면(3A)에 잔류하는 액상 연료를 보다 기화시킬 수 있다.
또한, 연료 분사 타이밍이, 예를 들어 피스톤 상사점 부근의 경우 등 피스톤 관면(3A)에 액상 연료가 부착되기 쉬운 분사 타이밍인 경우에, 밸브 오버랩 기간을 확대시키기로 해도 된다. 피스톤 관면(3A)에 액상 연료가 부착되기 쉬운 분사 타이밍에 의해 피스톤 관면(3A)에 잔존하는 액상 연료가 많아질 가능성이 있었다고 해도, 밸브 오버랩 기간을 확대시킴으로써 내부 EGR양을 증가시킬 수 있다. 그리고, 피스톤 관면(3A)에 잔류하는 액상 연료를 기화시킬 수 있다.
또한, 본 실시 형태에서는, 밸브 오버랩 기간을 확대시킬 때, 배기 상사점으로부터 배기 밸브(7)를 폐쇄로 할 때까지의 기간보다도, 흡기 밸브(6)를 개방으로 하고 나서 배기 상사점까지의 기간이 길어지도록 밸브 오버랩 기간을 확대시킨다. 이와 같이, 흡기 밸브(6)를 개방으로 하고 나서 배기 상사점까지의 기간이 길어지도록 밸브 오버랩 기간을 확대시킴으로써, 배기 행정에 있어서 내부 EGR 가스가 흡기 포트측으로 되돌아오는 양을 많게 할 수 있다. 흡기 포트로 되돌아온 내부 EGR 가스는 다음 흡기 행정에서 통 내로 유입된다. 그리고, 소위 내부 EGR양을 효과적으로 증가시킬 수 있다.
도 15는 점화 타이밍 리타드의 효과를 설명하는 제1도이다. 도 16은 점화 타이밍 리타드의 효과를 설명하는 제2도이다. 도 17은 점화 타이밍 리타드의 효과를 설명하는 제3도이다. 도 15 내지 도 17에는, 점화 타이밍을 상이하게 했을 때의 연소실 내의 연소 상태가 도시되어 있다. 이들 도면에 있어서, 하얗게 도시되어 있는 것은 연소실 내의 휘염이다. 휘염이 발생하면 PM이 많이 발생한다고 알려져 있다. 즉, 휘염이 발생하는 기간이 길어지면, PM도 많이 발생하게 된다.
도 15 내지 도 17에 있어서, 최상단은 초리타드 성층 연소(FIR) 제어를 행하고 있을 때에 있어서, ATDC(상사점 후) 10(deg)을 점화 타이밍으로 했을 때의 연소실 내의 사진이다. 중간단은 초리타드 성층 연소로부터 균질 연소로 전환한 직후에 있어서, 상사점 후 -5(deg)를 점화 타이밍으로 했을 때의 연소실 내의 사진이다. 즉, 상사점 전 5(deg)를 점화 타이밍으로 했을 때의 연소실 내의 사진이다. 최하단은 초리타드 성층 연소로부터 균질 연소로 전환한 직후에 있어서, -25(deg)를 점화 타이밍으로 했을 때의 연소실 내의 사진이다. 즉, 상사점 전 25(deg)를 점화 타이밍으로 했을 때의 연소실 내의 사진이다.
도 15에는 상사점 후 -30(deg)부터 상사점 후 40(deg)의 사진을 나타내고 있다. 또한, 도 16에는 상사점 후 40(deg)부터 상사점 후 110(deg)의 사진을 나타내고 있다. 도 17에는 상사점 후 110(deg)부터 상사점 후 180(deg)의 사진을 나타내고 있다.
도 15 내지 도 17을 참조하면, 초리타드 성층 연소(최상단)의 경우, 상사점 후 70(deg) 전후부터 상사점 후 140(deg) 전후까지 휘염이 발생하고 있다. 단, 다른 점화 타이밍의 사진과 비교하여, 휘염은 강하지 않음을 읽어낼 수 있다.
또한, 초리타드 성층 연소로부터 균질 연소로 전환한 직후에 있어서, 상사점 후 -25(deg)를 점화 타이밍으로 한 경우(최하단)인 경우, 상사점 후 -10(deg) 전후(즉, 상사점 전 10(deg) 전후)부터 상사점 후 120(deg) 전후까지 휘염이 발생하고 있다. 그리고, 이들 휘염의 강도는 다른 점화 타이밍의 것에 비하여 강함을 읽어낼 수 있다.
이에 반하여, 본 실시 형태와 같이, 초리타드 성층 연소로부터 균질 연소로 전환한 직후에 있어서, 상사점 후 -5(deg)를 점화 타이밍으로 한 경우(중간단), 상사점 후 20(deg) 전후부터 상사점 후 120(deg) 전후까지 휘염이 발생하고 있다. 즉, 이들 휘염 발생 기간은, 상사점 후 -25(deg)를 점화 타이밍으로 한 경우에 비하여 짧게 되어 있다. 또한, 휘염의 강도도, 점화 타이밍을 상사점 후 -25(deg)로 한 경우에 비하여 약하게 되어 있음을 읽어낼 수 있다.
이와 같이, 본 실시 형태와 같이, 점화 타이밍을 지각시킴으로써 화염이 피스톤 관면(3A)에 도달하기 어려워지기 때문에, 휘염의 발생 기간을 짧게 할 수 있다. 그리고, PN의 증가를 억제할 수 있다. 또한, 내부 EGR의 효과에 의해 연소 온도도 저하된다. 이에 의해, PN의 증가를 더 억제할 수 있다.
도 18은 점화 타이밍 및 밸브 오버랩과 PN 농도의 관계를 도시하는 도면이다. 도 18에 있어서, 횡축은 점화 타이밍을 나타내고, 종축은 PN 농도를 나타낸다. 그리고, 도 18에는 밸브 오버랩이 작을 때의 결과와, 밸브 오버랩을 확대시켰을 때의 결과가 도시되어 있다.
이들 결과에 의하면, 밸브 오버랩을 확대시킨 쪽이 PN 농도를 작게 할 수 있음을 알 수 있다. 또한, 점화 타이밍을 지각시키면 그 효과가 더욱 커짐을 알 수 있다.
(제2 실시 형태)
전술한 바와 같이 하여 밸브 오버랩 기간을 구한 후, 밸브 오버랩 기간을 이하와 같이 하여 보정하기로 해도 된다.
도 19는 제2 실시 형태에 있어서의 액상 연료 추정량에 대한 밸브 오버랩 보정량의 설명도이다. 도 20은 제2 실시 형태에 있어서의 연료 분사량에 대한 밸브 오버랩 보정량의 설명도이다.
그리고, 다음과 같은 식을 사용하여, 보정 후 밸브 O/L양을 구한다.
보정 후 밸브 O/L 기간=밸브 O/L 기간×(보정값(액상 연료 추정량)+보정값(연료 분사량)-1)
상기 식에 있어서, 「밸브 O/L 기간」은, 전술한 실시 형태에서 최종적으로 구해진 밸브 오버랩 기간이다. 여기에서는, 이미 구해진 밸브 오버랩 기간을 보정값으로 보정하고, 보정 후 밸브 오버랩 기간을 구한다. 그리고, 보정 후 밸브 오버랩 기간을 사용하여 밸브 오버랩 제어를 행한다.
또한, 상기 식에 있어서, 「보정값(액상 연료 추정량)」은, 도 19에 도시되는 함수이다. 또한, 상기 식에 있어서, 「보정값(연료 분사량)」은, 도 20에 도시되는 함수이다. 즉, 여기에서는, 피스톤 관면(3A)의 온도에 의해 구해진 밸브 오버랩 기간이, 액상 연료 추정량으로부터 구해지는 보정값과, 연료 분사량으로부터 구해지는 보정값을 사용하여 보정된다.
이와 같이 함으로써, 피스톤 관면(3A)의 온도에 의해 구해진 밸브 오버랩 기간을, 액상 연료 추정량과 연료 분사량을 사용하여 보정하여, 보다 적정한 밸브 오버랩 기간을 구할 수 있다.
이상, 본 발명의 실시 형태에 대하여 설명했지만, 상기 실시 형태는 본 발명의 적용예의 일부를 나타낸 것에 지나지 않으며, 본 발명의 기술적 범위를 상기 실시 형태의 구체적 구성에 한정하는 취지가 아니다.
상술한 각 실시 형태는, 각각 단독의 실시 형태로서 설명했지만, 적절히 조합해도 된다.

Claims (8)

  1. 통 내에 연료를 직접 분사하는 연료 분사 밸브와,
    흡기 밸브의 개방 기간과 배기 밸브의 개방 기간의 밸브 오버랩 기간을 조정하는 밸브 오버랩 기간 조정 기구
    를 구비하는 통 내 직접 연료 분사식 엔진을 제어하는 엔진 제어 장치에 있어서,
    운전자의 가속 요구를 검출하는 가속 요구 센서를 구비하고,
    상기 가속 요구가 있는 경우이며, 냉각 수온 센서의 검출값에 기초하여 취득한 상기 통 내에 있어서의 피스톤의 관면 온도가, 상기 피스톤의 관면에 부착된 액상 연료가 다음 사이클까지 액상으로 넘겨지는 온도인 경우에, 배기 상사점을 사이에 두는 상기 흡기 밸브의 개방 기간과 상기 배기 밸브의 개방 기간의 밸브 오버랩 기간을 확대시키는, 엔진 제어 장치.
  2. 제1항에 있어서, 상기 피스톤의 관면에 잔존하는 액상 연료량을 상기 피스톤의 관면 온도에 기초하여 추정하고,
    상기 피스톤의 관면에 잔존하는 액상 연료량이 많을수록 상기 밸브 오버랩 기간을 확대시키는, 엔진 제어 장치.
  3. 제1항에 있어서, 상기 통 내에 분사되는 연료 분사량이 많을수록 상기 밸브 오버랩 기간을 확대시키는, 엔진 제어 장치.
  4. 제1항에 있어서, 상기 가속 요구가 있고, 상기 피스톤의 관면 온도가, 상기 피스톤의 관면에 부착된 액상 연료가 다음 사이클까지 액상으로 넘겨지는 온도인 경우이며, 또한, 상기 연료의 분사 타이밍이, 상기 피스톤의 관면에 액상 연료가 부착되는 분사 타이밍인 경우에, 상기 밸브 오버랩 기간을 확대시키는, 엔진 제어 장치.
  5. 제1항 내지 제4항 중 어느 한 항에 있어서, 상기 밸브 오버랩 기간을 확대시킬 때, 상기 배기 상사점으로부터 상기 배기 밸브를 폐쇄로 할 때까지의 기간보다도, 상기 흡기 밸브를 개방으로 하고 나서 상기 배기 상사점까지의 기간이 길어지도록 상기 밸브 오버랩의 기간을 확대시키는, 엔진 제어 장치.
  6. 제1항 내지 제4항 중 어느 한 항에 있어서, 상기 확대된 밸브 오버랩 기간이, 상기 피스톤의 관면에 잔존하는 액상 연료량 및 상기 통 내에 분사되는 연료 분사량 중 적어도 어느 한쪽에 따라 보정되는, 엔진 제어 장치.
  7. 제1항 내지 제4항 중 어느 한 항에 있어서, 상기 피스톤의 관면 온도가, 상기 피스톤의 관면에 부착된 액상 연료가 다음 사이클까지 액상으로 넘겨지는 온도를 초과하는 경우에, 상기 밸브 오버랩 기간을 실린더 체적 효율이 최대가 되는 밸브 오버랩 기간으로 설정하는, 엔진 제어 장치.
  8. 통 내에 연료를 직접 분사하는 연료 분사 밸브와,
    흡기 밸브의 개방 기간과 배기 밸브의 개방 기간의 밸브 오버랩 기간을 조정하는 밸브 오버랩 기간 조정 기구와,
    운전자의 가속 요구를 검출하는 가속 요구 센서
    를 구비하는 통 내 직접 연료 분사식 엔진을 제어하는 엔진 제어 방법에 있어서,
    상기 가속 요구가 있는 경우이며, 냉각 수온 센서의 검출값에 기초하여 취득한 상기 통 내에 있어서의 피스톤의 관면 온도가, 상기 피스톤의 관면에 부착된 액상 연료가 다음 사이클까지 액상으로 넘겨지는 온도인 경우에, 배기 상사점을 사이에 두는 상기 흡기 밸브의 개방 기간과 상기 배기 밸브의 개방 기간의 밸브 오버랩 기간을 확대시키는, 엔진 제어 방법.
KR1020177030741A 2015-04-16 2015-04-16 엔진 제어 장치 및 엔진 제어 방법 KR101853244B1 (ko)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/061682 WO2016166859A1 (ja) 2015-04-16 2015-04-16 エンジン制御装置及びエンジン制御方法

Publications (2)

Publication Number Publication Date
KR20170124607A KR20170124607A (ko) 2017-11-10
KR101853244B1 true KR101853244B1 (ko) 2018-04-27

Family

ID=57125857

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020177030741A KR101853244B1 (ko) 2015-04-16 2015-04-16 엔진 제어 장치 및 엔진 제어 방법

Country Status (11)

Country Link
US (1) US9945297B2 (ko)
EP (1) EP3284934B1 (ko)
JP (1) JP6521060B2 (ko)
KR (1) KR101853244B1 (ko)
CN (1) CN107532522B (ko)
BR (1) BR112017022098B1 (ko)
CA (1) CA2982886C (ko)
MX (1) MX365764B (ko)
MY (1) MY165602A (ko)
RU (1) RU2659113C1 (ko)
WO (1) WO2016166859A1 (ko)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9435288B2 (en) 2012-12-07 2016-09-06 Ethanol Boosting Systems, Llc Port injection system for reduction of particulates from turbocharged direct injection gasoline engines
US9441570B2 (en) 2012-12-07 2016-09-13 Ethanol Boosting Systems, Llc Gasoline particulate reduction using optimized port and direct injection
KR101894693B1 (ko) * 2015-04-20 2018-09-04 닛산 지도우샤 가부시키가이샤 엔진 제어 장치 및 엔진 제어 방법
WO2018058015A1 (en) * 2016-09-26 2018-03-29 Ethanol Boosting Systems, Llc Gasoline particulate reduction using optimized port fuel injection plus direct injection
JP7272251B2 (ja) * 2019-12-05 2023-05-12 株式会社デンソー 内燃機関の駆動制御装置
DE102020206791A1 (de) * 2020-05-29 2021-12-02 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
JP2023172442A (ja) * 2022-05-24 2023-12-06 マツダ株式会社 エンジンの制御装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005214102A (ja) 2004-01-30 2005-08-11 Denso Corp 筒内噴射式内燃機関の制御装置
JP2012241537A (ja) 2011-05-16 2012-12-10 Mitsubishi Motors Corp 可変バルブタイミング制御装置及び方法
JP2012246797A (ja) 2011-05-25 2012-12-13 Toyota Motor Corp 内燃機関の制御装置

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6230683B1 (en) * 1997-08-22 2001-05-15 Cummins Engine Company, Inc. Premixed charge compression ignition engine with optimal combustion control
JP3414303B2 (ja) * 1998-03-17 2003-06-09 日産自動車株式会社 直噴火花点火式内燃機関の制御装置
JP4019570B2 (ja) * 1999-09-09 2007-12-12 トヨタ自動車株式会社 筒内噴射式内燃機関の燃料噴射制御装置
JP4590746B2 (ja) * 2001-02-01 2010-12-01 日産自動車株式会社 内燃機関の可変動弁装置
JP4075341B2 (ja) * 2001-09-12 2008-04-16 日産自動車株式会社 直噴式火花点火機関の制御装置
JP4394318B2 (ja) * 2001-10-12 2010-01-06 株式会社デンソー 内燃機関のバルブタイミング制御装置
JP4000926B2 (ja) * 2002-06-27 2007-10-31 日産自動車株式会社 直噴火花点火式エンジンの制御装置及び制御方法
US20050183693A1 (en) * 2004-02-25 2005-08-25 Ford Global Technologies Llc Method and apparatus for controlling operation of dual mode hcci engines
JP2006258023A (ja) * 2005-03-18 2006-09-28 Toyota Motor Corp 内燃機関の制御装置
JP2006299816A (ja) 2005-04-15 2006-11-02 Toyota Motor Corp 内燃機関の制御装置
JP2006329144A (ja) * 2005-05-30 2006-12-07 Nissan Motor Co Ltd 内燃機関の可変動弁装置
JP2007154823A (ja) * 2005-12-07 2007-06-21 Toyota Motor Corp 内燃機関の制御装置および車両
JP4882787B2 (ja) * 2007-02-19 2012-02-22 トヨタ自動車株式会社 内燃機関の制御装置
JP4924229B2 (ja) 2007-06-20 2012-04-25 トヨタ自動車株式会社 内燃機関のegrシステム
JP4743183B2 (ja) * 2007-08-01 2011-08-10 トヨタ自動車株式会社 燃料噴射制御装置
JP4924331B2 (ja) * 2007-09-27 2012-04-25 トヨタ自動車株式会社 内燃機関及び吸気温度制御装置
US7992537B2 (en) * 2007-10-04 2011-08-09 Ford Global Technologies, Llc Approach for improved fuel vaporization in a directly injected internal combustion engine
JP2009103093A (ja) * 2007-10-25 2009-05-14 Mitsubishi Fuso Truck & Bus Corp ディーゼルエンジンの制御装置
JP2009167887A (ja) 2008-01-15 2009-07-30 Toyota Motor Corp 内燃機関の制御装置
JP4740286B2 (ja) * 2008-05-30 2011-08-03 日立オートモティブシステムズ株式会社 火花点火式内燃機関の制御装置
JP5303511B2 (ja) * 2010-06-11 2013-10-02 日立オートモティブシステムズ株式会社 筒内燃料噴射式内燃機関の制御装置
JP2012255366A (ja) * 2011-06-08 2012-12-27 Denso Corp 内燃機関の制御装置及び制御方法
US9903322B2 (en) * 2012-03-09 2018-02-27 Nissan Motor Co., Ltd. Control device and control method for internal combustion engine with supercharger
JP5854126B2 (ja) * 2012-03-22 2016-02-09 トヨタ自動車株式会社 内燃機関の制御装置
US8989989B2 (en) * 2012-09-13 2015-03-24 GM Global Technology Operations LLC System and method for controlling fuel injection in an engine based on piston temperature
US9175616B2 (en) * 2012-10-10 2015-11-03 Ford Global Technologies, Llc Approach for controlling exhaust gas recirculation
JP6015565B2 (ja) * 2013-06-06 2016-10-26 トヨタ自動車株式会社 内燃機関
JP6011477B2 (ja) * 2013-06-28 2016-10-19 三菱自動車工業株式会社 エンジンの制御装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005214102A (ja) 2004-01-30 2005-08-11 Denso Corp 筒内噴射式内燃機関の制御装置
JP2012241537A (ja) 2011-05-16 2012-12-10 Mitsubishi Motors Corp 可変バルブタイミング制御装置及び方法
JP2012246797A (ja) 2011-05-25 2012-12-13 Toyota Motor Corp 内燃機関の制御装置

Also Published As

Publication number Publication date
MX2017013007A (es) 2018-02-01
US9945297B2 (en) 2018-04-17
JP6521060B2 (ja) 2019-06-05
BR112017022098B1 (pt) 2022-01-04
EP3284934A4 (en) 2018-07-04
RU2659113C1 (ru) 2018-06-28
MX365764B (es) 2019-06-13
WO2016166859A1 (ja) 2016-10-20
KR20170124607A (ko) 2017-11-10
EP3284934B1 (en) 2019-12-04
CA2982886A1 (en) 2016-10-20
US20180073445A1 (en) 2018-03-15
MY165602A (en) 2018-04-16
CN107532522A (zh) 2018-01-02
BR112017022098A2 (pt) 2018-07-03
CA2982886C (en) 2018-05-29
JPWO2016166859A1 (ja) 2018-02-08
EP3284934A1 (en) 2018-02-21
CN107532522B (zh) 2019-03-15

Similar Documents

Publication Publication Date Title
KR101853244B1 (ko) 엔진 제어 장치 및 엔진 제어 방법
KR101894693B1 (ko) 엔진 제어 장치 및 엔진 제어 방법
KR101817049B1 (ko) 엔진 제어 장치 및 엔진 제어 방법
KR101817050B1 (ko) 엔진 제어 장치 및 엔진 제어 방법
JP5270127B2 (ja) 内燃機関の制御システム

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant