JP7272251B2 - 内燃機関の駆動制御装置 - Google Patents

内燃機関の駆動制御装置 Download PDF

Info

Publication number
JP7272251B2
JP7272251B2 JP2019220252A JP2019220252A JP7272251B2 JP 7272251 B2 JP7272251 B2 JP 7272251B2 JP 2019220252 A JP2019220252 A JP 2019220252A JP 2019220252 A JP2019220252 A JP 2019220252A JP 7272251 B2 JP7272251 B2 JP 7272251B2
Authority
JP
Japan
Prior art keywords
combustion engine
internal combustion
fuel
injection
intake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019220252A
Other languages
English (en)
Other versions
JP2021088968A (ja
JP2021088968A5 (ja
Inventor
健 鮎川
真一 平岡
大悟 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2019220252A priority Critical patent/JP7272251B2/ja
Priority to PCT/JP2020/045236 priority patent/WO2021112221A1/ja
Priority to DE112020005965.0T priority patent/DE112020005965T5/de
Priority to CN202080083560.1A priority patent/CN114746640A/zh
Publication of JP2021088968A publication Critical patent/JP2021088968A/ja
Publication of JP2021088968A5 publication Critical patent/JP2021088968A5/ja
Priority to US17/829,711 priority patent/US11867132B2/en
Application granted granted Critical
Publication of JP7272251B2 publication Critical patent/JP7272251B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/047Taking into account fuel evaporation or wall wetting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0203Variable control of intake and exhaust valves
    • F02D13/0215Variable control of intake and exhaust valves changing the valve timing only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L13/00Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/062Introducing corrections for particular operating conditions for engine starting or warming up for starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0261Controlling the valve overlap
    • F02D13/0265Negative valve overlap for temporarily storing residual gas in the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/021Engine temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0414Air temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/101Engine speed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Valve Device For Special Equipments (AREA)

Description

本発明は、内燃機関の駆動制御装置に関する。
特許文献1に、内燃機関からの排気中に含まれるエミッションを改善するために、所定の条件下で、1サイクルにおける要求噴射量を、吸気非同期噴射と、吸気同期噴射とに分割し、この順序で実行するマルチ噴射処理を実行する技術が記載されている。なお、吸気同期噴射は、吸気弁の開弁時期に同期して実行する燃料の噴射であり、吸気非同期噴射は、吸気同期噴射よりも進角側のタイミングで実行する燃料の噴射である。
特開2019-44760号公報
特許文献1のマルチ噴射処理においては、吸気同期噴射の割合が大きい場合には、粒子状物質数(PN)等の発生量が低減しにくくなったり、増加したりするという知見に基づいて、吸気同期噴射は補助的に実行される。すなわち、吸気同期噴射における燃料の噴射量は、吸気非同期噴射における噴射量を超えない程度に調整される。
しかしながら、吸気非同期噴射における噴射量を多くすると、内燃機関の燃焼室内の温度が低い場合などに、燃焼室の内壁面等に燃料の液滴が付着する状態(燃料ウェット)が発生し易くなり、エミッションの悪化や、燃費の低下の原因となる。
上記に鑑み、本発明は、内燃機関における燃料ウェットを低減してエミッションを改善する技術を提供することを目的とする。
本発明は、燃料を噴射する燃料噴射弁と、吸気ポートに設けられた吸気弁の開閉を制御する吸気タイミング可変機構と、排気ポートに設けられた排気弁の開閉を制御する排気タイミング可変機構と、を備える内燃機関の駆動制御装置を提供する。この駆動制御装置は、前記内燃機関の始動時に、前記燃料が噴射される噴射場に面する前記内燃機関の壁面に付着する燃料量である燃料ウェット量を低減する要求があった場合に、前記吸気ポート側に吹き戻る対向流により前記燃料ウェット量を低減するように、前記吸気タイミング可変機構と前記排気タイミング可変機構との少なくともいずれか一方を制御するウェット低減制御を実行するバルブタイミング制御部を備える。
本発明の駆動制御装置によれば、内燃機関の始動時に、内燃機関における噴射場の温度が低い等により、噴射場に面する内燃機関の壁面に付着する燃料量である燃料ウェット量を低減する要求があった場合に、ウェット低減制御を実行するバルブタイミング制御部を備える。バルブタイミング制御部は、ウェット低減制御において、吸気ポート側に吹き戻る対向流により燃料ウェット量を低減するように、吸気タイミング可変機構と排気タイミング可変機構との少なくともいずれか一方を制御する。ウェット低減制御によれば、吸気ポート側に吹き戻る対向流を利用することにより、噴射場の温度を上昇させる等の効果を得ることができ、ひいては、燃料ウェット量を低減する効果を得ることができる。その結果、内燃機関における燃料ウェットを低減してエミッションを改善することができる。
実施形態に係る内燃機関の駆動システムの概要図。 排気/吸気タイミングについて説明する図。 雰囲気温度と位相角との関係を示す図。 雰囲気温度と位相角との関係を示す図。 排気/排気タイミングと燃料噴射タイミングとの関係を示す図。 吸気タイミングの進角について説明する図。 燃料ウェット量と燃料の噴射量との関係を示す図。 燃料ウェット量と水温または吸気温との関係を示す図。 燃料ウェット量と内燃機関の回転速度との関係を示す図。 第1実施形態に係る内燃機関の駆動制御処理のフローチャート。 第2実施形態に係る内燃機関の駆動制御処理のフローチャート。
(第1実施形態)
図1に示すように、車両の内燃機関20の駆動システムは、吸気管10と、吸気マニホールド12と、内燃機関20と、排気マニホールド32と、排気管30と、ECU50と、を備えている。
内燃機関20は、ガソリン等の燃料の燃焼によって駆動され、吸気、圧縮、膨張及び排気の各行程を繰り返し実施する4サイクルエンジンである。内燃機関20は、4気筒エンジンであり、各気筒には、それぞれ、ピストンが収容されている。内燃機関20の気筒数に応じて、吸気マニホールド12および排気マニホールド32は、それぞれ4つに分岐している。なお、本実施形態では、内燃機関20として、4気筒のエンジンを例示しているが、気筒数はいくつであってもよい。また、内燃機関20は、ガソリンエンジンに限定されず、ディーゼルエンジンであってもよい。
吸気管10には、上流側から、エアクリーナ11と、スロットルバルブ13とが設置されている。エアクリーナ11の下流側かつスロットルバルブ13の上流側に、吸気量を検出するエアフローセンサ15が設置されている。スロットルバルブ13の下流側に、吸気マニホールド12が接続されている。スロットルバルブ13の下流側かつ吸気マニホールド12の上流側に吸気圧センサ16が設置されている。吸気マニホールド12から内燃機関20の各気筒に空気が供給される。排気管30には、内燃機関20からの排気を浄化する排気浄化触媒層31が設置されている。
内燃機関20は、燃料噴射弁21と、吸気タイミング可変機構22と、可変バルブリフト機構23と、排気タイミング可変機構24と、点火装置28とを備えている。燃料噴射弁21は、内燃機関20の各気筒に燃料を噴射する。吸気タイミング可変機構22は、内燃機関20の吸気弁の開閉タイミングを制御する。可変バルブリフト機構23は、吸気弁のリフト量を制御する。排気タイミング可変機構24は、内燃機関20の排気弁の開閉タイミングを制御する。点火装置28は、点火プラグであり、通電により内燃機関20の燃焼室内の燃料に点火する。
内燃機関20では、図示しないクランク軸(駆動軸)からの動力が吸気側カム軸25と排気側カム軸26とに伝達されるように構成されている。吸気タイミング可変機構22は、吸気側カム軸25に設置され、クランク軸に対する吸気側カム軸25の進角量を調整する。排気タイミング可変機構24は、排気側カム軸26に設置され、クランク軸に対する排気側カム軸26の進角量を調整する。
センサ類40は、イグニッション(IG)センサ41、クランクセンサ42、カムセンサ43、水温センサ44、吸気温センサ45、外気温センサ46、油温センサ47、燃温センサ48等を備えている。センサ類40は、さらに、アクセル操作量(アクセル開度)を検出するアクセルセンサ、車速を検出する車速センサ、ブレーキペダルの操作量を検出するブレーキセンサ、気筒内の筒内圧力を検出する筒内圧力センサ、バッテリの端子間電圧や充放電電流等を検出するバッテリセンサ等を備えていてもよい。センサ類40からの信号は、ECU50に逐次入力される。
IGセンサ41は、内燃機関20のイグニッションのオン/オフを検出する。IGセンサ41により、内燃機関20の始動を検出することができる。
クランクセンサ42は、クランク軸の基準位置に対する回転位置及び内燃機関20の回転速度NEを検出する。クランクセンサ42は、内燃機関20のクランク軸と共に回転するロータの周囲に所定の間隔で形成された複数の歯部を検知する毎に、パルス信号を出力する。ロータの周囲には、歯部が所定数だけ連続して欠落した部分が設けられている。このため、クランクセンサ42からの信号においては、パルス信号の発生間隔が他のパルス信号の発生間隔と比べて所定数倍になる部分(欠け歯信号部)が生じる。
カムセンサ43は、カム軸と共に回転するロータに形成された1つあるいは複数の歯部を検知する毎に、パルス信号を出力するセンサである。カムセンサ43は、吸気側カム軸25および排気側カム軸26の回転に応じてパルス状の検出信号を出力する。クランクセンサ42からの検出信号における欠け歯信号部とカムセンサ43からの検出信号とにより、現在のクランク位置を判断することができるようになっている。
水温センサ44は、内燃機関20を冷却する冷却水温を検出する。吸気温センサ45は、吸気弁から内燃機関20の燃焼室内に送られる吸気の温度を検出する。外気温センサ46は、内燃機関20が搭載された車両の外気温を検出する。油温センサ47は、内燃機関20の潤滑油の温度を検出する。燃温センサ48は、内燃機関20に噴射される燃料の温度を検出する。
ECU50は、周知のCPU、ROM、RAM等よりなるマイクロコンピュータ等を備えてなる電子制御装置であり、本システムに設けられている各種センサの検出結果に基づいて、内燃機関20および内燃機関20に適用される各アクチュエータの駆動制御を実施する駆動制御装置として機能する。より具体的には、ECU50は、スロットルバルブ13の開度制御や、吸気タイミング可変機構22、可変バルブリフト機構23、および排気タイミング可変機構24におけるタイミングやリフト量の制御、燃料噴射弁21による燃料噴射の制御などを実行する。
ECU50は、クランクセンサ42からの検出信号に基づき、クランク軸の単位時間当たりの回転数、つまり、内燃機関20の回転速度NEを算出する。また、ECU50は、クランクセンサ42およびカムセンサ43からの検出信号に基づき、気筒判別を行う。
ECU50は、始動判定部51と、回転速度演算部52と、ウェット算出部53と、負荷演算部54と、噴射制御部55と、VT(バルブタイミング)制御部56とを備えている。
始動判定部51は、IGセンサ41の検出値に基づいて、内燃機関20が始動していることを判定する。内燃機関20の始動時を取得することにより、始動後のサイクル数を取得することができる。
回転速度演算部52は、クランクセンサ42からの検出信号に基づいて、内燃機関20の回転速度NEを算出する。また、回転速度演算部52は、クランクセンサ42およびカムセンサ43からの検出信号に基づき、気筒判別を行う。
ウェット算出部53は、噴射場に面する内燃機関20の壁面に付着する燃料ウェット量を算出する。噴射場とは、内燃機関20において燃料が噴射される場(空間)を意味し、具体的には、燃焼室内、吸気ポート内等を意味する。噴射場に面する内燃機関20の壁面とは、噴射された燃料が到達し得る内燃機関20の各構成の壁面を含み得る概念であり、具体的には、吸気ポートの内壁面、吸気バルブ、燃焼室等の内壁面等を例示できる。ウェット算出部53は、燃料の要求噴射量、内燃機関20の温度情報、内燃機関20の回転回数のうちの少なくともいずれか1つに基づいて、燃料ウェット量を算出するように構成されていることが好ましい。ウェット算出部53は、さらに、算出した燃料ウェット量に基づいて、燃料ウェット量の低減を要求するか否かを判定する。
負荷演算部54は、内燃機関20の負荷を演算する。例えば、吸気温度センサ14と、クランク角センサ29との検知値に基づいて、内燃機関20の運転負荷を演算する。
噴射制御部55は、燃料噴射弁21を制御して内燃機関20への燃料の噴射を制御する。より具体的には、燃料噴射弁21の通電を制御して燃料の噴射時期と噴射期間とを制御する。
噴射制御部55は、対向流発生期間と、燃料の要求噴射量とを取得する。対向流発生期間は、内燃機関20の噴射場で対向流が発生している期間である。要求噴射量とは、燃焼サイクルの1サイクル内で内燃機関20に噴射する燃料の全噴射量である。
噴射制御部55は、要求噴射量を、対向流発生期間内に噴射できない場合に、その余剰量の燃料を吸気弁の閉弁時に噴射する。すなわち、噴射制御部55は、対向流発生期間よりも進角側で実行する吸気閉弁時噴射と、対向流発生期間内に実行する対向流発生時噴射とに分割して噴射する。噴射制御部55は、吸気閉弁時噴射と、対向流発生時噴射とのそれぞれをさらに分割してもよい。
VT制御部56は、吸気タイミング可変機構22および排気タイミング可変機構24を制御して、内燃機関20の燃焼室内に吸気する吸気タイミングと、燃焼室外に排気する排気タイミングとを制御する。
VT制御部56は、内燃機関20の始動時に、ウェット算出部53によって、燃料ウェット量を低減する要求があった場合に、対向流により燃料ウェット量を低減するように、吸気タイミング可変機構22と排気タイミング可変機構24との少なくともいずれか一方を制御するウェット低減制御を実行する。VT制御部56は、ウェット低減制御として、排気弁の閉弁時期を排気上死点よりも進角させる排気閉弁進角制御と、吸気弁の開弁時期を排気上死点よりも進角させる吸気開弁進角制御との少なくともいずれか一方を実行することが好ましい。
VT制御部56は、吸気タイミング可変機構22と排気タイミング可変機構24との少なくともいずれか一方を制御することにより、対向流発生期間を拡張させることにより、燃料を蒸発させるために必要な対向流発生期間(必要対向流発生期間)に対する実際の対向流発生期間の不足を低減して燃料ウェット量を低減させる。
吸気タイミング可変機構22または排気タイミング可変機構24を制御することにより、対向流発生期間が拡張することについて、図2,3を用いて説明する。図2は、バルブタイミングの位相を示しており、「EX」で示す曲線は排気タイミングを示し、「IN」で示す曲線は吸気タイミングを示している。図3は、縦軸に内燃機関20の噴射場の雰囲気温度を示しており、横軸に位相角を示している。図3の縦軸に示す温度Aは、対向流発生温度を示しており、雰囲気温度が対向流発生温度A以上である期間が対向流発生期間に相当する。
例えば、内燃機関20の始動開始から1サイクル目では、ウェット低減制御として、図2(a)に示すように、排気弁の閉弁時期を排気上死点(図2においてTDCで示す)よりも進角させる排気閉弁進角制御を実行することが好ましい。排気閉弁進角制御を実行することにより、図3(a)に示すように、燃焼室内の空気がより圧縮されて後続の吸気開弁時において対向流を効果的に形成することができるため、対向流発生期間を長くすることができる。
また、例えば、内燃機関20の始動開始から2サイクル目以降のサイクルでは、ウェット低減制御として、図2(b)に示すように、吸気弁の開弁時期を内燃機関20の排気上死点よりも進角させる吸気開弁進角制御を実行することが好ましい。吸気開弁進角制御を実行することにより、図3(b)に示すように、対向流発生期間を拡張することができる。
また、例えば、内燃機関20の始動開始から2サイクル目以降のサイクルでは、ウェット低減制御として、図2(c)に示すように、排気閉弁進角制御と、吸気開弁進角制御との双方を実行するように構成されていてもよい。排気閉弁進角制御と吸気開弁進角制御との双方を実行し、それぞれの進角量を制御することにより、排気弁と吸気弁との双方が開弁しているオーバーラップ期間を制御することができる。オーバーラップ期間を制御することにより、内燃機関20の燃焼状態を安定な状態に維持しながら、対向流発生期間を拡張して燃料ウェット量を低減できる。このため、内燃機関20の燃焼状態によっては、図3(c)に示すように、吸気開弁時期のみを進角させる場合と比較して、対向流発生期間をより拡張することができる。
内燃機関20において、点火時期を遅角側に制御する等により、燃焼状態の悪化をさらに改善する必要が生じる場合には、オーバーラップ期間の制御が制限され、十分に長いオーバーラップ期間を確保することができない場合がある。また、吸気タイミング可変機構22や排気タイミング可変機構24として、内燃機関20の始動後速やかに高応答に作動可能な高応答タイミング可変機構が使用されていない場合には、オーバーラップ期間の制御が遅れて十分に長いオーバーラップ期間を確保できない場合がある。例えば、吸気タイミング可変機構22としては高応答タイミング可変機構が用いられる一方で、排気タイミング可変機構24としては応答性の低いタイミング可変機構が用いられる場合がある。
上記のように十分に長いオーバーラップ期間を確保できない場合には、図4に示すように、要求噴射量の燃料の噴射を完了するための噴射期間T1(位相角P1からP3までの期間として表される)が、対向流発生期間(位相角P2からP3までの期間として表される)を超える長期間となることがある。なお、図4においては、縦軸に内燃機関20の噴射場の雰囲気温度を示しており、横軸に位相角を示している。
噴射期間T1が対向流発生期間よりも長い場合には、図4に示すように、噴射期間T1は、対向流発生期間外の噴射期間である超過期間T2を含む。この超過期間T2において噴射した燃料は、内燃機関20の吸気ポート等に燃料ウェットとして付着し得る。しかしながら、超過期間T2の長さが、所定の閾値Xt2以下である場合には、後続の対向流発生期間において、燃料ウェットとして吸気ポート等に一旦付着した燃料が、吸気ポート側に吹き戻る対向流によって吸気ポートから剥離される。すなわち、要求噴射量の燃料の噴射を完了するための噴射期間T1が、対向流発生期間を超える長期間となる場合であっても、その超過期間T2が、所定の閾値Xt2以下の期間であり、対向流発生期間よりも進角側となるように設定できる場合には、燃料ウェット量を増加させることなく燃料の噴射を完了することができる。閾値Xt2は、例えば対向流発生期間の長さに応じて設定することができる。
ECU50は、さらに、噴射制御部55によって、吸気閉弁時噴射を分割噴射とすることにより、燃料ウェット量を低減するように構成されていてもよい。噴射制御部55は、1サイクル内で内燃機関20に噴射する燃料の全噴射量を、対向流発生期間内に噴射できない場合に、吸気閉弁時噴射を複数回に分割して噴射するように燃料噴射弁21を制御する分割噴射制御を実行するように構成されていてもよい。分割噴射を行うことにより、燃料噴射時の貫徹力を低減できるため、燃料ウェット量を低減することができる。
図5に分割噴射制御の一例を示す。図5(a)~(d)は、それぞれ、排気弁、吸気弁、燃料噴射弁の開閉時期を示す図である。
図5(a)の破線は、排気弁の閉弁時期が排気上死点である場合を示しており、実線は、排気閉弁進角制御により排気弁の閉弁時期を排気上死点よりも進角させた場合を示している。図5(b)の破線は、吸気弁の開弁時期が排気上死点である場合を示しており、実線は、吸気開弁進角制御により吸気弁の開弁時期を排気上死点よりも進角させた場合を示している。吸気開弁進角制御のみを実行する場合には、オーバーラップ期間はB2であるが、排気閉弁進角制御と吸気開弁進角制御との双方を実行する場合には、オーバーラップ期間をB1に縮小できる。
図5(c)は、吸気閉弁時噴射を分割噴射しない場合の燃料噴射弁21の開閉状態を示している。図5(c)の破線は、排気閉弁進角制御および吸気開弁進角制御を実行しない場合を示しており、実線は、排気閉弁進角制御および吸気開弁進角制御を実行する場合を示している。排気閉弁進角制御および吸気開弁進角制御を実行することにより、対向流発生期間はTR1からTR2に拡張される。その結果、実線に示すように、吸気閉弁時噴射における噴射期間は短くなり、対向流発生噴射における噴射期間は長くなる。VT制御部56によるウェット低減制御により対向流発生期間が拡張されたことにより、噴射制御部55は、吸気閉弁時噴射において噴射される燃料が減少して対向流発生噴射において噴射される燃料が増加するように燃料噴射弁21を制御するため、燃料ウェット量が低減される。
図5(d)は、図5(c)に対して、さらに、吸気閉弁時噴射を分割噴射する場合の燃料噴射弁21の開閉状態を示している。図5(d)における2つに分割された吸気閉弁時噴射において噴射される燃料の総量は、図5(c)における単一の吸気閉弁時噴射において噴射される燃料の総量と同じである。しかしながら、図5(d)のように、吸気閉弁時噴射を分割すると、噴射される燃料の貫徹力を低減することができるため、燃料ウェット量の低減に寄与できる。
なお、ECU50は、内燃機関20の始動後1サイクル目から毎サイクル必ず噴射制御部55による分割噴射制御またはVT制御部56によるウェット低減制御を実行する必要は無い。例えば、始動後1サイクル目の排気閉弁進角制御のみを実行する一方で、始動後2サイクル目以降の吸気閉弁進角制御は実行しないようにしてもよい。また、始動後1サイクル目の排気閉弁進角制御は実行しない一方で、始動後2サイクル目以降の吸気閉弁進角制御は実行するようにしてもよい。
また、各サイクルで実行する制御は、サイクル開始時から完了時までのいずれにおいて開始または完了されるものであってもよい。2サイクル目の吸気開弁進角制御を実行する場合を例示して説明すると、例えば、図6(a)および(b)に示すように、2サイクル目の開始時J1よりも前に進角制御を開始し、2サイクル目の開始時J1に進角制御が完了しているようにしてもよい。また、図6(a)および(c)に示すように、2サイクル目の開始時J1に進角制御を開始し、2サイクル目の終了時J2は進角制御が完了しているようにしてもよい。
ECU50は、内燃機関20の運転状態等に基づいて、噴射制御部55による分割噴射制御と、VT制御部56によるウェット低減制御とのいずれを優先的に実行するかを判断可能に構成されていてもよい。例えば、内燃機関20の回転速度NEが所定の回転速度閾値NX以上である場合には、噴射制御部55による分割噴射制御を、VT制御部56によるウェット低減制御よりも優先させるように構成されていてもよい。回転速度NEが速い場合には、1燃焼サイクル当たりの時間が短いため、要求噴射量の燃料の噴射を完了するまでに要する位相角が増加する。このため、回転速度閾値NXは、要求噴射量の燃料の噴射を完了するための噴射期間を確保できる回転速度に基づいて設定される。また、例えば、ECU50は、内燃機関20の燃焼状態が所定の安定状態ではない場合に、噴射制御部55による分割噴射制御を、VT制御部56によるウェット低減制御よりも優先させるように構成されていてもよい。なお、所定の安定状態とは、VT制御部56によるウェット低減制御によって内部EGR率が上昇しても、燃焼が不安定状態となるEGR率を超えないような燃焼状態である。
また、ECU50には、図7~図9に示すような燃料ウェット量と各パラメータとの関係を示すテーブルまたは数式が記憶されていてもよい。図7は、燃料ウェット量と1噴射当たりの噴射量との関係を示しており、1噴射当たりの噴射量が多くなるほど燃料ウェット量が多くなる。図8は、燃料ウェット量と内燃機関20の冷却水温または吸気温との関係を示しており、冷却水温または吸気温が高くなるほど燃料ウェット量が少なくなる。図9は、燃料ウェット量と内燃機関20の回転速度NEとの関係を示しており、回転速度NEが高速となるほど、燃料ウェット量が多くなる。ウェット算出部53は、図7~図9に示す燃料ウェット量と各パラメータとの関係を示すテーブルを参照して燃料ウェット量を算出するように構成されていてもよい。
図10に、ECU50が実行する内燃機関20の駆動制御処理のフローチャートを示す。この処理は、所定の周期で繰り返し実行される。まず、ステップS101では、1燃焼サイクルにおいて内燃機関20に噴射する燃料の噴射量である要求噴射量を算出し、ステップS102に進む。
ステップS102では、ウェット低減制御を実行するか否かを判定する。より具体的には、燃料ウェット量を低減する要求があった場合に、ウェット低減制御を実行すると判定する。ウェット低減制御を実行するか否かの判定は、例えば、ウェット算出部53によって算出されるウェット量に基づいて実行される。具体的には、例えば、算出されるウェット量が所定の閾値以上である場合に、ウェット低減制御を実行すると判定する。また、算出されるウェット量が所定の閾値未満である場合に、ウェット低減制御を実行しないと判定する。
また、例えば、吸気温センサ45や外気温センサ46の検出値等のウェット量に影響する各種パラメータに基づいて、ウェット低減制御を実行するか否かを判定してもよい。具体的には、図7~図9に示す関係に基づいて、各種パラメータが、ウェット量が所定の閾値以上となるような状態にある場合に、ウェット低減制御を実行するように判定するものであってもよい。また、例えば、内燃機関20の始動からのサイクル数に基づいて、ウェット低減制御を実行するか否かを判定してもよい。例えば、内燃機関20の始動から所定サイクル目までは、ウェット低減制御を実行すると判定するものであってもよい。
ステップS102において、ウェット低減制御を実行すると判定した場合には、ステップS103に進む。ステップS103~S112の制御は、ウェット低減制御において実行する処理である。ウェット低減制御を実行しないと判定した場合には、ステップS113に進み、ウェット低減制御を行わない通常制御を実行することを決定し、処理を終了する。
ステップS103~S112におけるウェット低減制御において、まず、ステップS103では、内燃機関20の始動開始後の1サイクル目であるか否かを判定する。1サイクル目である場合には、ステップS104に進む。ステップS104では、内燃機関20の排気開弁時期を進角することを決定した後、ステップS108に進む。
2サイクル目以降である場合には、ステップS105に進む。ステップS105では、内燃機関20の吸気開弁時期の進角を決定し、吸気開弁時期の進角量を算出した後、ステップS106に進む。ステップS106では、内燃機関20の燃焼状態が不安定であるか否かを判定する。例えば、図5に示す関係に基づいて、吸気閉弁時期を進角すると内燃機関20における内部EGR率が燃料が不安定となるEGR率を超えて大きくなる場合には、燃焼状態が不安定であると判定する。ステップS106において、燃焼状態が不安定であると判定した場合には、ステップS107に進み、内燃機関20の排気閉弁時期を進角することを決定し、内部EGR率が燃料が不安定となるEGR率を超えないような排気閉弁時期の進角量を算出した後、ステップS108に進む。ステップS106において、燃焼状態が不安定ではないと判定した場合には、ステップS108に進む。
ステップS108では、噴射期間TNが、実際の対向流発生期間TR以上であるか否かを判定する。TN≧TRである場合には、ステップS111に進み、閉弁噴射において分割噴射を行うことを決定し、処理を終了する。TN<TRである場合には、ステップS113に進み、閉弁噴射において分割噴射を行わないことを決定し、処理を終了する。
上記のとおり、第1実施形態によれば、ステップS102において、噴射場に面する内燃機関20の壁面に付着する燃料量である燃料ウェット量を低減する要求があったと判定された場合に、ステップS103~S112に示すウェット低減制御を実行する。ウェット低減制御においては、吸気ポート側に吹き戻る対向流により燃料ウェット量を低減するように、吸気タイミング可変機構22と排気タイミング可変機構24との少なくともいずれか一方を制御する。より具体的には、ステップS104~S107に示すように、排気閉弁時期を進角する制御または吸気開弁時期を進角する制御を実行することにより、対向流発生期間TRを拡張できる。このため、対向流を積極的に利用することにより、噴射場の温度を上昇させる等の効果を得ることができ、ひいては、燃料ウェット量を低減する効果を得ることができる。その結果、内燃機関20における燃料ウェットを低減してエミッションを改善することができる。
また、第1実施形態によれば、ステップS103,S104に示すように、内燃機関20の始動後1サイクル目には、排気閉弁時期を進角する制御を実行して、内燃機関20の燃焼室内の空気を圧縮する。これにより、後続の吸気開弁時において対向流を効果的に形成することができる。
また、ステップS103、S105に示すように、内燃機関20の始動後2サイクル目以降には、吸気開弁時期を進角する制御を実行することにより、対向流発生期間を拡張することができる。さらに、ステップS106,S107に示すように、吸気開弁時期を進角したことにより燃焼状態が不安定となる場合には、排気閉弁時期を進角することにより、内燃機関20における内部EGR率が燃料が不安定となるEGR率を超えて大きくならないようにする。このため、内燃機関20の燃焼状態を安定な状態に維持しながら、燃料ウェット量を低減できる。
また、第1実施形態によれば、ステップS108、S111,S112に示すように、噴射期間TNが実際の対向流発生期間TR以上である場合に、吸気閉弁時に実行する燃料の噴射を分割噴射とすることができる。分割噴射を行うことにより、燃料噴射時の貫徹力を低減できるため、燃料ウェット量を低減することができる。
(第2実施形態)
図11に、第2実施形態においてECU50が実行する内燃機関20の駆動制御処理のフローチャートを示す。この処理は、所定の周期で繰り返し実行される。
ステップS201では、ステップS101と同様に、要求噴射量を算出し、ステップS202に進む。ステップS202では、ステップS102と同様に、ウェット低減制御を実行するか否かを判定する。ウェット低減制御を実行する場合にはステップS203に進む。ウェット低減制御を実行しない場合にはステップS213に進み、ステップS113と同様に、ウェット低減制御を行わない通常制御を実行することを決定し、処理を終了する。
ステップS203では、内燃機関20の回転速度NEが所定の回転速度閾値NX未満であるか否かを判定する。回転速度閾値NXは、要求噴射量に応じて設定される。例えば、回転速度閾値NXは、要求噴射量の燃料の噴射を完了するための噴射期間を確保することが困難となる回転速度の下限値に設定される。NE≧NXである場合には、ステップS204に進み、ステップS111と同様に、閉弁噴射において分割噴射を行うことを決定し、処理を終了する。NE<NXである場合には、ステップS205に進み、ステップS112と同様に、閉弁噴射において分割噴射を行うことを決定した後で、ステップS206に進む。
ステップS206では、ステップS103と同様に、内燃機関20の始動開始後の1サイクル目であるか否かを判定する。1サイクル目である場合には、ステップS207に進み、ステップS104と同様に内燃機関20の排気開弁時期を進角することを決定した後、処理を終了する。ステップS206において、2サイクル目以降であると判定した場合には、ステップS208に進み、内燃機関20の吸気開弁時期の進角および排気閉弁時期の進角を決定して、各進角量を算出した後、処理を終了する。
上記のとおり、第2実施形態によれば、内燃機関20の回転速度NEが速い場合、すなわち、NE≧NXである場合には、1燃焼サイクル当たりの時間が短いため、要求噴射量の燃料の噴射を完了するまでに要する位相角が増加する。ステップS204に示すように、吸気閉弁時における分割噴射による燃料ウェット量の低減を優先的に実行することにより、要求噴射量の燃料の噴射を完了するために十分な噴射期間を確保することができる。
また、内燃機関20の回転速度NEが遅い場合、すなわち、NE<NXである場合には、1燃焼サイクル当たりの時間が長いため、要求噴射量の燃料の噴射を完了するまでに要する位相角は比較的小さくなる。このため、ステップS206~S208に示すように、対向流を効果的に形成する処理や対向流発生期間を拡張する処理を実行して、燃料ウェット量の低減を優先的に実行する。第2実施形態によれば、内燃機関20の運転状態に応じて、より適切な燃料ウェット量を低減するための処理を選択し、優先的に実行することができる。
なお、ステップS203に示す内燃機関20の回転速度NEによる判定に替えて、内燃機関20の燃焼状態による判定を実行してもよい。具体的には、内燃機関20の運転状態が不安定である場合には、ステップS203において肯定判定側に進み、内燃機関20の運転状態が安定である場合には、ステップS203において否定判定側に進むように構成してもよい。例えば、負荷演算部54によって算出される内燃機関20の運転負荷が所定の負荷未満である場合や、点火装置28の点火において点火遅角量が大きい場合には、内燃機関20の燃焼状態が不安定であると判定され、吸気閉弁時における分割噴射による燃料ウェット量の低減を優先的に実行することができる。
ステップS206~S208に示すように、対向流を効果的に形成する処理や対向流発生期間を拡張する処理を実行すると、内燃機関20における内部EGR率が上昇する可能性がある。このため、内部EGR率の上昇により燃料が不安定となるEGR率を超えるような、燃焼状態が不安定であることが懸念される場合には、ステップS204に示すように、吸気閉弁時における分割噴射による燃料ウェット量の低減を優先的に実行する。内部EGR率を上昇させない吸気閉弁時における分割噴射による燃料ウェット量の低減を優先的に実行することにより、内燃機関20の燃焼状態を安定に維持して燃料ウェット量の低減を図ることができる。
上記の各実施形態によれば、下記の効果を得ることができる。
ECU50は、内燃機関20の駆動制御装置として機能する。内燃機関20は、燃料を噴射する燃料噴射弁21と、吸気ポートに設けられた吸気弁の開閉を制御する吸気タイミング可変機構22と、排気ポートに設けられた排気弁の開閉を制御する排気タイミング可変機構24と、を備える。
ECU50は、吸気タイミング可変機構22と排気タイミング可変機構24との少なくともいずれか一方を制御するVT制御部56を備える。VT制御部56は、内燃機関20の始動時に、燃料が噴射される噴射場に面する内燃機関20の壁面に付着する燃料量である燃料ウェット量を低減する要求があった場合に、吸気ポート側に吹き戻る対向流により燃料ウェット量を低減するように、吸気タイミング可変機構22と排気タイミング可変機構24との少なくともいずれか一方を制御するウェット低減制御を実行する。ウェット低減制御によれば、吸気ポート側に吹き戻る対向流を利用することにより、噴射場内の温度を上昇させる等の効果を得ることができ、ひいては、燃料ウェット量を低減する効果を得ることができる。その結果、内燃機関20における燃料ウェットを低減してエミッションを改善することができる。
VT制御部56は、ウェット低減制御として、内燃機関20の始動開始から2サイクル目以降のサイクルで吸気弁の開弁時期を内燃機関20の排気上死点よりも進角させる制御を実行するように構成されていてもよい。この制御により、対向流発生期間を拡張して燃料ウェット量を低減できる。
VT制御部56は、ウェット低減制御として、内燃機関20の始動開始から1サイクル目で排気弁の閉弁時期を内燃機関20の排気上死点よりも進角させる制御を実行するように構成されていてもよい。この制御により、内燃機関20の燃焼室内の空気を圧縮することができ、後続の吸気開弁時において対向流を効果的に形成して燃料ウェット量を低減できる。
VT制御部56は、ウェット低減制御として、内燃機関20の始動開始から1サイクル目で排気弁の閉弁時期を内燃機関20の排気上死点よりも進角させる制御を実行するとともに、内燃機関20の始動開始から2サイクル目以降のサイクルで吸気弁の開弁時期を内燃機関20の排気上死点よりも進角させる制御を実行するように構成されていてもよい。この制御により、内燃機関20の始動直後の1サイクル目から、2サイクル目以降の内燃機関20が始動時にある所定のサイクルまでの間において、対向流発生期間を拡張して燃料ウェット量を低減できる。
VT制御部56は、ウェット低減制御として、内燃機関20の始動開始から2サイクル目以降のサイクルで、排気弁の閉弁時期を内燃機関20の排気上死点よりも進角させる制御を実行するとともに、吸気弁の開弁時期を内燃機関20の排気上死点よりも進角させる制御を実行する制御を実行するように構成されていてもよい。吸気開弁時期を進角したことにより燃焼状態が不安定となる場合には、排気閉弁時期を進角することにより、内燃機関20における内部EGR率が、燃料が不安定となるEGR率を超えて大きくならないようにする。このため、内燃機関20の燃焼状態を安定な状態に維持しながら、燃料ウェット量を低減できる。
ECU50は、さらに、内燃機関20への燃料の噴射を制御する噴射制御部55を備えていてもよい。噴射制御部55は、内燃機関20内の噴射場で対向流が発生している期間である対向流発生期間を取得し、1サイクル内で内燃機関20に噴射する燃料の全噴射量を、対向流発生期間内に噴射できない場合に、吸気弁の閉弁時に燃料を噴射する吸気閉弁時噴射を複数回に分割して噴射するように燃料噴射弁を制御する分割噴射制御を実行するように構成されていてもよい。分割噴射を行うことにより、燃料噴射時の貫徹力を低減できるため、燃料ウェット量を低減することができる。
ECU50は、内燃機関20の回転速度NEが所定の回転速度閾値NX以上である場合に、VT制御部56によるウェット低減制御を、噴射制御部55による分割噴射制御よりも優先させるように構成されていてもよい。1燃焼サイクル当たりの時間が短く、要求噴射量の燃料の噴射を完了するまでに要する位相角が増加する場合に、噴射制御部55による分割噴射制御よりも優先させることにより、要求噴射量の燃料の噴射を完了するために十分な噴射期間を確保することができる。
ECU50は、内燃機関20の燃焼状態が所定の安定状態ではない場合に、噴射制御部55による分割噴射制御を、VT制御部56によるウェット低減制御よりも優先させる。内燃機関20の燃焼状態が安定状態でない場合には、内部EGR率を上昇させない吸気閉弁時における分割噴射による燃料ウェット量の低減を優先的に実行することにより、内燃機関20の燃焼状態を安定に維持して燃料ウェット量の低減を図ることができる。
ECU50は、燃料の要求噴射量、内燃機関20の温度情報、内燃機関20の回転回数のうちの少なくともいずれか1つに基づいて燃料ウェット量を判定するウェット算出部53をさらに備えていてもよい。
本開示に記載の制御部及びその手法は、コンピュータプログラムにより具体化された一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリを構成することによって提供された専用コンピュータにより、実現されてもよい。あるいは、本開示に記載の制御部及びその手法は、一つ以上の専用ハードウエア論理回路によってプロセッサを構成することによって提供された専用コンピュータにより、実現されてもよい。もしくは、本開示に記載の制御部及びその手法は、一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリと一つ以上のハードウエア論理回路によって構成されたプロセッサとの組み合わせにより構成された一つ以上の専用コンピュータにより、実現されてもよい。また、コンピュータプログラムは、コンピュータにより実行されるインストラクションとして、コンピュータ読み取り可能な非遷移有形記録媒体に記憶されていてもよい。
20…内燃機関、21…燃料噴射弁、22…吸気タイミング可変機構、24…排気タイミング可変機構、50…ECU、56…VT制御部

Claims (10)

  1. 燃料を噴射する燃料噴射弁(21)と、吸気ポートに設けられた吸気弁の開閉を制御する吸気タイミング可変機構(22)と、排気ポートに設けられた排気弁の開閉を制御する排気タイミング可変機構(24)と、を備える内燃機関(20)の駆動制御装置(50)であって、
    前記内燃機関の始動時に、前記燃料が噴射される噴射場に面する前記内燃機関の壁面に付着する燃料量である燃料ウェット量を低減する要求があった場合に、前記吸気ポート側に吹き戻る対向流により前記燃料ウェット量を低減するように、前記吸気タイミング可変機構と前記排気タイミング可変機構との少なくともいずれか一方を制御するウェット低減制御を実行するバルブタイミング制御部(56)を備え
    前記バルブタイミング制御部は、前記ウェット低減制御として、前記内燃機関の始動開始から1サイクル目では前記吸気弁の開弁時期を前記内燃機関の排気上死点よりも進角させる制御を実行せず、前記内燃機関の始動開始から2サイクル目以降のサイクルで前記吸気弁の開弁時期を前記内燃機関の排気上死点よりも進角させる制御を実行する駆動制御装置。
  2. 燃料を噴射する燃料噴射弁(21)と、吸気ポートに設けられた吸気弁の開閉を制御する吸気タイミング可変機構(22)と、排気ポートに設けられた排気弁の開閉を制御する排気タイミング可変機構(24)と、を備える内燃機関(20)の駆動制御装置(50)であって、
    前記内燃機関の始動時に、前記燃料が噴射される噴射場に面する前記内燃機関の壁面に付着する燃料量である燃料ウェット量を低減する要求があった場合に、前記吸気ポート側に吹き戻る対向流により前記燃料ウェット量を低減するように、前記吸気タイミング可変機構と前記排気タイミング可変機構との少なくともいずれか一方を制御するウェット低減制御を実行するバルブタイミング制御部(56)を備え、
    前記バルブタイミング制御部は、前記ウェット低減制御として、前記内燃機関の始動開始から1サイクル目で前記排気弁の閉弁時期を前記内燃機関の排気上死点よりも進角させる制御を実行する駆動制御装置。
  3. 燃料を噴射する燃料噴射弁(21)と、吸気ポートに設けられた吸気弁の開閉を制御する吸気タイミング可変機構(22)と、排気ポートに設けられた排気弁の開閉を制御する排気タイミング可変機構(24)と、を備える内燃機関(20)の駆動制御装置(50)であって、
    前記内燃機関の始動時に、前記燃料が噴射される噴射場に面する前記内燃機関の壁面に付着する燃料量である燃料ウェット量を低減する要求があった場合に、前記吸気ポート側に吹き戻る対向流により前記燃料ウェット量を低減するように、前記吸気タイミング可変機構と前記排気タイミング可変機構との少なくともいずれか一方を制御するウェット低減制御を実行するバルブタイミング制御部(56)を備え、
    前記バルブタイミング制御部は、前記ウェット低減制御として、前記内燃機関の始動開始から1サイクル目で前記排気弁の閉弁時期を前記内燃機関の排気上死点よりも進角させる制御を実行するとともに、前記内燃機関の始動開始から2サイクル目以降のサイクルで前記吸気弁の開弁時期を前記内燃機関の排気上死点よりも進角させる制御を実行する駆動制御装置。
  4. 前記バルブタイミング制御部は、前記ウェット低減制御として、前記内燃機関の始動開始から2サイクル目以降のサイクルで前記排気弁の閉弁時期を前記内燃機関の排気上死点よりも進角させる制御を実行する請求項1または3に記載の駆動制御装置。
  5. 前記噴射場で前記対向流が発生している期間である対向流発生期間を取得し、
    1サイクル内で前記内燃機関に噴射する燃料の全噴射量を、前記対向流発生期間内に噴射できない場合に、前記吸気弁の閉弁時に燃料を噴射する吸気閉弁時噴射を複数回に分割して噴射するように前記燃料噴射弁を制御する分割噴射制御を実行する噴射制御部(55)をさらに備える請求項1~のいずれかに記載の駆動制御装置。
  6. 燃料を噴射する燃料噴射弁(21)と、吸気ポートに設けられた吸気弁の開閉を制御する吸気タイミング可変機構(22)と、排気ポートに設けられた排気弁の開閉を制御する排気タイミング可変機構(24)と、を備える内燃機関(20)の駆動制御装置(50)であって、
    前記内燃機関の始動時に、前記燃料が噴射される噴射場に面する前記内燃機関の壁面に付着する燃料量である燃料ウェット量を低減する要求があった場合に、前記吸気ポート側に吹き戻る対向流により前記燃料ウェット量を低減するように、前記吸気タイミング可変機構と前記排気タイミング可変機構との少なくともいずれか一方を制御するウェット低減制御を実行するバルブタイミング制御部(56)を備え、
    前記噴射場で前記対向流が発生している期間である対向流発生期間を取得し、
    1サイクル内で前記内燃機関に噴射する燃料の全噴射量を、前記対向流発生期間内に噴射できない場合に、前記吸気弁の閉弁時に燃料を噴射する吸気閉弁時噴射を複数回に分割して噴射するように前記燃料噴射弁を制御する分割噴射制御を実行する噴射制御部(55)をさらに備える駆動制御装置。
  7. 前記バルブタイミング制御部は、前記ウェット低減制御として、前記内燃機関の始動開始から2サイクル目以降のサイクルで前記吸気弁の開弁時期を前記内燃機関の排気上死点よりも進角させる制御を実行する請求項6に記載の駆動制御装置。
  8. 前記内燃機関の回転速度が所定の回転速度閾値以上である場合に、前記噴射制御部による前記分割噴射制御を、前記バルブタイミング制御部による前記ウェット低減制御よりも優先させる請求項5~7のいずれかに記載の駆動制御装置。
  9. 前記内燃機関の燃焼状態が所定の安定状態ではない場合に、前記噴射制御部による前記分割噴射制御を、前記バルブタイミング制御部による前記ウェット低減制御よりも優先させる請求項5~8のいずれかに記載の駆動制御装置。
  10. 前記燃料の要求噴射量、前記内燃機関の温度情報、前記内燃機関の回転回数のうちの少なくともいずれか1つに基づいて前記燃料ウェット量を算出するウェット算出部(53)をさらに備える請求項1~のいずれかに記載の駆動制御装置。
JP2019220252A 2019-12-05 2019-12-05 内燃機関の駆動制御装置 Active JP7272251B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2019220252A JP7272251B2 (ja) 2019-12-05 2019-12-05 内燃機関の駆動制御装置
PCT/JP2020/045236 WO2021112221A1 (ja) 2019-12-05 2020-12-04 内燃機関の駆動制御装置
DE112020005965.0T DE112020005965T5 (de) 2019-12-05 2020-12-04 Antriebssteuervorrichtung für Maschine mit interner Verbrennung
CN202080083560.1A CN114746640A (zh) 2019-12-05 2020-12-04 内燃机的驱动控制装置
US17/829,711 US11867132B2 (en) 2019-12-05 2022-06-01 Drive control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019220252A JP7272251B2 (ja) 2019-12-05 2019-12-05 内燃機関の駆動制御装置

Publications (3)

Publication Number Publication Date
JP2021088968A JP2021088968A (ja) 2021-06-10
JP2021088968A5 JP2021088968A5 (ja) 2022-02-07
JP7272251B2 true JP7272251B2 (ja) 2023-05-12

Family

ID=76219760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019220252A Active JP7272251B2 (ja) 2019-12-05 2019-12-05 内燃機関の駆動制御装置

Country Status (5)

Country Link
US (1) US11867132B2 (ja)
JP (1) JP7272251B2 (ja)
CN (1) CN114746640A (ja)
DE (1) DE112020005965T5 (ja)
WO (1) WO2021112221A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6305364B1 (en) 1999-04-30 2001-10-23 Ford Global Technologies, Inc. Internal combustion engine and operation thereof
JP2010149533A (ja) 2008-12-23 2010-07-08 Nissan Motor Co Ltd ハイブリッド車両の制御装置
JP2012255366A (ja) 2011-06-08 2012-12-27 Denso Corp 内燃機関の制御装置及び制御方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1130142A (ja) * 1997-05-13 1999-02-02 Denso Corp 内燃機関の燃料噴射制御装置
BR9904839A (pt) * 1998-02-23 2000-07-18 Cummins Engine Co Inc Motor a explosão por compressão de carga pré-misturada com comtrole de combustão ótimo
US6681741B2 (en) * 2000-12-04 2004-01-27 Denso Corporation Control apparatus for internal combustion engine
JP4394318B2 (ja) * 2001-10-12 2010-01-06 株式会社デンソー 内燃機関のバルブタイミング制御装置
JP4049108B2 (ja) * 2004-03-02 2008-02-20 トヨタ自動車株式会社 バルブタイミング制御装置
JP2005351120A (ja) * 2004-06-09 2005-12-22 Denso Corp 内燃機関の制御装置
JP4363459B2 (ja) * 2007-05-21 2009-11-11 トヨタ自動車株式会社 可変バルブタイミング機構の制御装置
JP2013234652A (ja) * 2012-04-13 2013-11-21 Denso Corp エンジン制御装置
JP6416603B2 (ja) * 2014-12-05 2018-10-31 日立オートモティブシステムズ株式会社 内燃機関の制御装置
CA2982886C (en) * 2015-04-16 2018-05-29 Nissan Motor Co., Ltd. Engine controller and engine control method
DE102015224790A1 (de) * 2015-12-10 2017-06-14 Robert Bosch Gmbh Verfahren zum Betreiben einer Brennkraftmaschine
JP6977647B2 (ja) 2017-09-05 2021-12-08 トヨタ自動車株式会社 内燃機関の燃料噴射制御装置
US10961964B2 (en) 2017-09-05 2021-03-30 Toyota Jidosha Kabushiki Kaisha Internal combustion engine control device and control method
JP6930493B2 (ja) 2018-05-17 2021-09-01 トヨタ自動車株式会社 内燃機関の制御装置
US11028798B2 (en) 2017-09-05 2021-06-08 Toyota Jidosha Kabushiki Kaisha Internal-combustion-engine control device and control method
EP3680475A4 (en) 2017-09-05 2020-10-07 Toyota Jidosha Kabushiki Kaisha COMBUSTION ENGINE CONTROL DEVICE AND CONTROL METHOD
JP6930490B2 (ja) 2018-04-27 2021-09-01 トヨタ自動車株式会社 内燃機関の制御装置
US10968854B2 (en) 2018-03-27 2021-04-06 Toyota Jidosha Kabushiki Kaisha Controller and control method for internal combustion engine
JP7027263B2 (ja) 2018-06-15 2022-03-01 株式会社Ihiエアロスペース 2段式熱スイッチ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6305364B1 (en) 1999-04-30 2001-10-23 Ford Global Technologies, Inc. Internal combustion engine and operation thereof
JP2010149533A (ja) 2008-12-23 2010-07-08 Nissan Motor Co Ltd ハイブリッド車両の制御装置
JP2012255366A (ja) 2011-06-08 2012-12-27 Denso Corp 内燃機関の制御装置及び制御方法

Also Published As

Publication number Publication date
US11867132B2 (en) 2024-01-09
JP2021088968A (ja) 2021-06-10
DE112020005965T5 (de) 2022-09-22
US20220290624A1 (en) 2022-09-15
CN114746640A (zh) 2022-07-12
WO2021112221A1 (ja) 2021-06-10

Similar Documents

Publication Publication Date Title
US9133811B2 (en) Method and apparatus for controlling start-up of internal combustion engine
US9708986B2 (en) Method and apparatus for controlling start-up of internal combustion engine
US10961946B2 (en) Engine system and method for suppressing knock
JP2012026340A (ja) 筒内噴射式内燃機関の燃料噴射制御装置
JP2018071485A (ja) 内燃機関の制御装置
JP2020026751A (ja) 内燃機関の制御装置
US8596064B2 (en) Method and system for limiting output of a boosted engine
JP2008267293A (ja) 内燃機関の制御システム
JP2008002435A (ja) エンジンの制御方法及び制御装置
JP5409538B2 (ja) 内燃機関の燃料噴射制御装置
JP7272251B2 (ja) 内燃機関の駆動制御装置
JP5593132B2 (ja) 内燃機関の制御装置
US20210301751A1 (en) Control apparatus for internal combustion engine
JP2006132399A (ja) 過給機付エンジンの制御装置および制御方法
JP6841119B2 (ja) エンジンの制御装置
JP2008008223A (ja) 内燃機関の排気温度抑制装置
JP2016050502A (ja) 内燃機関の制御装置
JP4269124B2 (ja) 内燃機関の燃料噴射制御装置
JP5505655B2 (ja) 内燃機関の燃料噴射制御装置
US11306677B2 (en) Fuel injection control apparatus
JP7068372B2 (ja) 内燃機関の温度取得装置
US11313296B2 (en) Control device for internal combustion engine
JP4697473B2 (ja) 内燃機関の制御装置
JP2010270708A (ja) 内燃機関の制御装置
JP2008202541A (ja) 内燃機関の制御システム

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220128

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230410

R151 Written notification of patent or utility model registration

Ref document number: 7272251

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151