JP4743183B2 - 燃料噴射制御装置 - Google Patents

燃料噴射制御装置 Download PDF

Info

Publication number
JP4743183B2
JP4743183B2 JP2007201280A JP2007201280A JP4743183B2 JP 4743183 B2 JP4743183 B2 JP 4743183B2 JP 2007201280 A JP2007201280 A JP 2007201280A JP 2007201280 A JP2007201280 A JP 2007201280A JP 4743183 B2 JP4743183 B2 JP 4743183B2
Authority
JP
Japan
Prior art keywords
fuel injection
fuel
injection
timing
injection amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007201280A
Other languages
English (en)
Other versions
JP2009036102A (ja
Inventor
啓 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007201280A priority Critical patent/JP4743183B2/ja
Publication of JP2009036102A publication Critical patent/JP2009036102A/ja
Application granted granted Critical
Publication of JP4743183B2 publication Critical patent/JP4743183B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Description

本発明は、内燃機関の燃焼室内に燃料を噴射可能な燃料噴射弁を制御する燃料噴射制御装置に関するものである。
従来の燃料噴射制御装置として、燃焼室内に燃料を噴射する燃料噴射弁を制御するエンジン制御用コントロールユニットを備えた直噴火花点火式内燃機関の燃焼制御装置が知られている(特許文献1参照)。
この燃焼制御装置では、エンジン制御用コントロールユニットが、エンジンの運転条件に応じて、燃焼室に配設した点火プラグの近傍に噴霧を集中させる成層運転、または燃焼室全体に噴霧を均質に分散させる均質運転となるように制御している。そして、エンジン制御用コントロールユニットは、均質運転時において、1燃焼サイクル中に複数回燃料を噴射する分割噴射を行うよう燃料噴射弁を制御しており、分割噴射は、エンジン回転数およびエンジン負荷に応じて、その噴射間隔および噴射量割合が変更されている。
これにより、均質運転時に、噴射を複数回に分割して噴霧の分散を図ることで、燃料が一部に集中することや、燃焼室壁面に燃料が付着することがない。
特開2002−161790号公報
ところで、燃焼室内を上下移動するピストンが上死点近傍に臨んだ状態で、燃料噴射弁から燃料が噴射されると、噴射した燃料が、ピストンのヘッド面に付着しやすい。この場合、ピストンのヘッド面の温度が高ければ、付着した燃料は、点火時期までに十分に気化するが、一方、ピストンのヘッド面の温度が低ければ、付着した燃料の気化は不十分となる。ここで、ピストンのヘッド面の温度が低くなる原因の一つとして、燃料噴射弁から常に同じ燃料噴射時期で燃料が噴射されることが挙げられる。つまり、燃料は、ピストンのヘッド面の同じ部位に繰り返し付着すると、燃料が付着するヘッド面の温度は、他のヘッド面の温度に比して低くなってしまう。
例えば、エンジンが所定の回転数および所定の負荷で運転する定常運転時において、噴射した燃料がピストンのヘッド面に付着したとしても、ピストンのヘッド面の温度は、付着した燃料を気化するに十分な温度となっているため、ピストンのヘッド面に付着した燃料を、点火時期までに十分に気化することができる。ところが、エンジンが定常運転状態から加速運転状態に移行すると、エンジン負荷が大きくなるため、燃料噴射量が増加する。このとき、燃料がピストンのヘッド面に付着すると、増加した分の燃料により、ピストンのヘッド面の熱が奪われるため、ピストンのヘッド面における温度の上昇が遅れる。これにより、ヘッド面に付着した燃料を早期に気化することができない。
また、エンジンの冷間始動時において、ピストンのヘッド面は十分に温まっていないため、噴射した燃料がピストンのヘッド面に付着すると、付着した燃料を早期に気化することができない。
このように、ピストンのヘッド面に付着した燃料が早期に気化されないと、燃焼が悪化して、大量のPM(Particulate Matter)およびスモークが発生する虞があった。
そこで、本発明は、燃料噴射弁の燃料噴射時期を周期的に変更することで、燃焼室内において良好に燃料の燃焼を行うことができる燃料噴射制御装置を提供することを課題とする。
本発明の燃料噴射制御装置は、内燃機関の燃焼室内に燃料を噴射可能な燃料噴射弁を制御する燃料噴射制御装置において、内燃機関の運転状態に応じて、燃料噴射弁から噴射する燃料の燃料噴射量を設定する噴射量設定手段と、内燃機関の運転状態に応じて、燃焼室内に噴射した燃料が十分に気化可能な気化可能燃料噴射量を設定する気化噴射量設定手段と、噴射量設定手段により設定された燃料噴射量が、気化噴射量設定手段により設定された気化可能燃料噴射量を上回ったか否かを判別する噴射量判別手段と、噴射量判別手段により、燃料噴射量が気化可能燃料噴射量を上回ったと判別された場合、燃料噴射弁から噴射される燃料噴射時期を周期的に変更する噴射時期変更手段とを備えたことを特徴とする。
この場合、気化可能燃料噴射量は、燃焼室の壁面温度に応じて設定された燃料噴射量であることが好ましい。
これらの場合、気化可能燃料噴射量は、内燃機関が所定の回転数および所定の負荷で運転する定常運転において、燃料噴射弁から噴射される定常燃料噴射量であり、噴射量判別手段は、内燃機関が加速運転状態になったか否かを判別する加速判別手段であり、加速判別手段により内燃機関が加速運転状態になったと判別された場合、噴射時期変更手段は、燃料噴射弁から噴射される燃料噴射時期を周期的に変更することが好ましい。
また、この場合、噴射量判別手段は、燃焼室の壁面温度が、予め設定された所定の冷間温度範囲内であるか否かを判別する冷間判別手段であり、冷間判別手段により燃焼室の壁面温度が、冷間温度範囲内である場合、噴射時期変更手段は、燃料噴射弁から噴射される燃料噴射時期を周期的に変更しても良い。
これらの場合、噴射時期変更手段は、燃料噴射時期を少なくとも進角または遅角させて変更することが好ましい。
また、これらの場合、噴射時期変更手段は、燃料噴射時期を燃焼サイクル毎に変更していることが好ましい。
また、これらの場合、燃料噴射弁は、噴射量設定手段により設定された燃料噴射量および噴射時期変更手段により設定された燃料噴射時期に基づいて、燃料噴射動作が制御されると共に、複数回連続して燃料の噴射を行うマルチパイロット噴射を行うことが可能な構成となっており、噴射時期変更手段は、変更される燃料噴射時期が、予め設定された所定の燃料噴射終了時期を超えると予測した場合、少なくともマルチパイロット噴射の最終噴射における燃料噴射時期の変更を禁止することが好ましい。
また、これらの場合、燃料噴射弁は、噴射量設定手段により設定された燃料噴射量および噴射時期変更手段により設定された燃料噴射時期に基づいて、燃料噴射動作が制御されると共に、複数回連続して燃料の噴射を行うマルチパイロット噴射を行うことが可能な構成となっており、噴射時期変更手段は、マルチパイロット噴射の最初の噴射における燃料噴射時期を変更しても良い。
本発明にかかる燃料噴射制御装置は、燃料噴射弁の燃料噴射時期を周期的に変更することで、燃焼室内において良好に燃料を燃焼することができるという効果を奏する。
以下、添付した図面を参照して、本発明にかかる燃料噴射制御装置を適用したエンジンECUについて説明する。なお、この実施例によりこの発明が限定されるものではない。
ここで、図1は、筒内噴射式のガソリンエンジンの概略構成図であり、図2は、標準噴射開始時期および遅角噴射開始時期における燃料噴射弁の駆動波形図である。また、図3−1は、標準噴射開始時期における燃料噴射弁廻りを模式的に表した断面図であり、図3−2は、遅角噴射開始時期における燃料噴射弁廻りを模式的に表した断面図である。さらに、図4は、燃料噴射開始時期を標準噴射開始時期と遅角噴射開始時期との間で変更するフローチャートである。
先ず、図1を参照して、実施例1にかかるエンジンECU2に制御される内燃機関(以下、エンジンという)について説明する。このエンジン1は、筒内噴射式のガソリンエンジンであり、エンジンECU2により制御されている。
エンジン1は、下部からクランクケース10と、クランクケース10の上部に設けられたシリンダブロック11と、ヘッドガスケット(図示省略)を介してシリンダブロック11の上部に設けられたシリンダヘッド12とで外郭が形成されている。シリンダブロック11の上方内部には、上下動可能にピストン13が収容され、また、クランクケース10およびシリンダブロック11の下部により形成された収容部には、クランクシャフト14が収容されている。ピストン13とクランクシャフト14とは、コンロッド15により連結されており、ピストン13の上下動作をクランクシャフト14に伝達している。そして、上記のシリンダブロック11、シリンダヘッド12およびピストン13により、ペントルーフ型の燃焼室16が形成されている。
クランクケース10には、クランク角センサ20が配設されており、クランクシャフト14の回転角度を検知している。クランク角センサ20は、エンジンECU2に接続されており、エンジンECU2は、クランク角センサ20の検出結果に基づいて、後述する点火プラグ44による点火時期や、後述する燃料噴射弁45による燃料噴射時期を制御している。
シリンダブロック11は、その内部にピストン13を収容するためのシリンダボア24が形成されている。そして、ピストン13は、シリンダボア24に嵌合するように円柱状に形成されており、このシリンダボア24内で上死点と下死点との間を上下動可能に支持されている。また、ピストン13のヘッド面には、ピストンキャビティ25が没入形成されている。さらに、シリンダブロック11の内部には、エンジン1を冷却する冷却水の冷却水循環通路となるウォータージャケット26が形成されており、ウォータージャケット26はシリンダボア24の周りを取り囲むように配設されている。そして、シリンダブロック11には、冷却水の水温を検出するエンジン水温検出センサ27が配設され、エンジン水温検出センサ27は、エンジンECU2に接続されている。
シリンダヘッド12は、その内部に燃焼室16に連通する吸気ポート30と、吸気ポート30に対向配置され、燃焼室16に連通する排気ポート31とが形成されている。
また、燃焼室16と吸気ポート30との間の吸気側連通口32には、吸気弁34が配設され、また、燃焼室16と排気ポート31との間の排気側連通口33には、排気弁35が配設されている。
吸気弁34および排気弁35は、ラッパ形状をなす末広がりの円錐状に形成されており、吸気側連通口32および排気側連通口33を開放する開放位置(下降端位置)と、吸気側連通口32および排気側連通口33を閉塞する閉塞位置(上昇端位置)との間で移動自在に構成されている。そして、吸気弁34の基端部には吸気側カムシャフト40が、また、排気弁35の基端部には排気側カムシャフト41が、それぞれ配設されており、各カムシャフト40,41が回転することにより吸気弁34および排気弁35が開閉可能となっている。
また、燃焼室16の頂部には、先端部が突出するように点火プラグ44が配設され、また、シリンダヘッド12の吸気ポート30の下部には、燃焼室16に燃料を噴射する燃料噴射弁45が配設されている。燃料噴射弁45は、設計上、ピストンキャビティ25に向かって燃料が噴射されるような噴射角度となっている(図3参照)。
ここで、エンジン1における一連の燃焼動作について説明する。ピストン13が上死点から下死点へ向けて移動を開始すると共に、各吸気弁34を下降移動させて各吸気側連通口32を開放する。すると、燃焼室16の負圧により空気が各吸気側連通口32を介して燃焼室16内に吸入され、この後、各吸気弁34を上昇移動させて各吸気側連通口32を閉塞する。このとき、燃料噴射弁45から燃料が噴射されることで、吸入された空気と燃料とが混合して混合気となる。ピストン13は、下死点到達後、上死点へ向けて移動する。ピストン13が上死点に移動すると、この移動に伴って混合気は圧縮される。そして、ピストン13が上死点近傍に達すると、点火プラグ44をスパークさせて、混合気に着火させることで燃焼させる。すると、混合気は膨張(爆発)して、ピストン13を上死点から下死点へ向けて移動させる。ピストン13は、下死点到達後、その慣性により、再び上死点へ向けて移動する。このとき、各排気弁35を下降移動させて各排気側連通口33を開放し、ピストン13の上死点への移動に伴って、燃焼後の排気ガスを各排気側連通口33から排出させる。排気ガスの排出後、各排気弁35を上昇移動させて各排気側連通口33を閉塞する。以上の燃焼サイクルを繰り返し行うことで、ピストン13を上下動作させ、この動力をコンロッド15を介してクランクシャフト14に伝達することで、エンジン1は駆動力を得ることができる。
次に、エンジンECU2について説明する。エンジンECU2は、主としてCPU70、ROM71、RAM72、入力ポート73および出力ポート74等により構成され、内部バス75を介して互いに接続されている。CPU70は、各種センサ等から入力された各種検出信号に基づいて演算処理を行うものである。ROM71は、各種プログラムやデータを記憶している。RAM72は、各種プログラムを実行するための作業領域となっている。
エンジンECU2には、上記の点火プラグ44や燃料噴射弁45が制御可能に接続され、また、エンジンECU2には、上記したクランク角センサ20やエンジン水温検出センサ27の他、アクセルペダルのアクセル開度を検出するアクセルポジションセンサ78、図示しないスロットル弁のスロットル開度を検出するスロットルポジションセンサ77や、外部から吸入される吸入空気量を検出するエアフローセンサ79等の各種センサが接続されている。
エンジンECU2のROM71内には、燃料噴射弁45を制御するための燃料噴射制御プログラム80や、エンジン1が加速運転したか否かを判定する加速判定プログラム81等が記憶されており、CPU70が、ROM71内から、各種プログラムを読み出してRAM内に展開し、展開したプログラムを実行することにより、点火プラグ44や燃料噴射弁45を制御することが可能となっている。つまり、請求項で言う燃料噴射制御装置はエンジンECU2であり、CPU70が、ROM71内に記憶された燃料噴射制御プログラム80を実行することにより、燃料噴射弁45を制御することが可能となっている。
また、エンジンECU2が、加速判定プログラム81を実行すると、CPU70は、アクセルポジションセンサ78の検出結果から算出されるアクセル開度の変化率に基づいて、エンジン1が加速運転を行ったか否かを判定する(加速判別手段)。
ここで、燃料噴射制御プログラム80は、エンジン1の運転状態に応じて燃料噴射弁45からの燃料噴射量を設定する噴射量設定プログラム83と、燃料噴射弁45の燃料噴射開始時期および燃料噴射終了時期を含む燃料噴射時期を制御するための噴射時期制御プログラム84とを有している。
エンジンECU2が、噴射量設定プログラム83を実行すると、CPU70は、エンジン1の運転状態、例えば、燃焼室16内に吸入される吸入空気量やエンジン負荷等に応じて、燃料噴射弁45から噴射する燃料の燃料噴射量を設定する(噴射量設定手段および気化噴射量設定手段)。
また、エンジンECU2が、噴射時期制御プログラム84を実行すると、CPU70は、例えば、デフォルト設定された基準となる標準噴射開始時期T1(詳細は後述)に対し、燃料噴射開始時期を遅角させたり、進角させたりして、燃料噴射開始時期を制御することが可能となっている(噴射時期変更手段)。
ところで、エンジン1を、一定のエンジン回転数および一定のエンジン負荷で運転する定常運転状態から加速運転状態に移行させる。すると、エンジン負荷が大きくなるため、定常運転時において燃料噴射弁45から噴射される定常燃料噴射量に比して、燃料噴射弁45から噴射される燃料噴射量は増加する。ここで、定常燃料噴射量は、エンジン1の定常運転状態において、燃焼室16内に噴射した燃料が十分に気化可能な燃料噴射量である。エンジン1を加速運転状態に移行させることにより燃料噴射量が増加すると、ピストン13のヘッド面の温度上昇は遅れるため、ヘッド面の温度を、増加した燃料を気化するに必要な温度とすることができない。これにより、ヘッド面に付着した燃料を早期に気化することができず、燃焼が悪化して、大量のPM(Particulate Matter)およびスモークが発生する虞がある。
この問題を解消するべく、本実施例において、エンジンECU2は、加速判定プログラム81により、エンジン1が加速運転を行っているか否かを判別し、エンジン1が加速運転を行っている場合、燃料噴射弁45から噴射される燃料の燃料噴射開始時期を周期的に変更するように制御している。これにより、ピストン13のヘッド面に付着する燃料の燃料付着位置を変えることができるため、局所的に温度が低い部分を減らすことができる。
以下、図2を参照して、エンジンECU2による燃料噴射弁45の燃料噴射開始時期の変更制御について詳細に説明する。図2は、1サイクル目から4サイクル目までの燃焼サイクルにおける燃料噴射開始時期を表した燃料噴射弁の駆動波形図であり、横軸は時間となっている。エンジンECU2は、エンジン1が加速運転を行うと、噴射時期制御プログラム84に基づいて、燃料噴射弁45の燃料噴射開始時期を、デフォルト設定された標準噴射開始時期T1と標準噴射開始時期T1よりも遅角させた遅角噴射開始時期T2との間で、燃焼サイクル毎に変更している。本実施例では、エンジン1の加速運転後の1サイクル目において、燃料噴射開始時期を標準噴射開始時期T1としており、2サイクル目において、燃料噴射開始時期を遅角噴射開始時期T2、3サイクル目において標準噴射開始時期T1、4サイクル目において、遅角噴射開始時期T2としており、以降、燃料噴射開始時期を交互に変更している。なお、燃料噴射開始時期の変更に伴って、燃料噴射終了時期も相対的に変更させることで、燃料噴射間隔を所定の長さとしている。
図3−1に示すように、標準噴射開始時期T1において、燃料噴射弁45から燃焼室16に燃料が噴射されると、噴射された燃料は、ピストンキャビティ25の中央部25a付近に噴き当てられる。すなわち、標準噴射開始時期は、ピストン13が上死点から下死点へ向けて移動した直後に、燃料噴射弁45から燃料が噴射されるタイミングである。
一方、図3−2に示すように、遅角噴射開始時期T2において、燃料噴射弁45から燃焼室16に燃料が噴射されると、噴射された燃料は、ピストンキャビティ25の奥側(図示右側)湾曲部25b付近に噴き当てられる。すなわち、遅角噴射開始時期T2は、標準噴射開始時期T1よりも遅いタイミングであり、この場合、ピストン13の位置が、標準噴射開始時期T1におけるピストン13の位置よりも、下死点側に移動した位置となっている。
従って、燃料噴射開始時期を、標準噴射開始時期T1と遅角噴射開始時期T2との間で相互に変更することにより、ピストンキャビティ25に付着する燃料の燃料付着位置を、ピストンキャビティ25の中央部25aとピストンキャビティ25の奥側湾曲部25bとの間で相互に変更することができる。
以下、図4のフローチャートを参照して、燃焼サイクル毎に、標準噴射開始時期T1と遅角噴射開始時期T2との間で、燃料噴射開始時期を変更する一連の制御フローについて説明する。なお、エンジンECU2には、燃料噴射開始時期を変更するためのフラグNが、0と1との間で設定変更可能に設けられている。
エンジン1の定常運転時において、エンジンECU2は、燃料噴射弁45からの燃料噴射量を定常燃料噴射量となるように、また、常に標準噴射開始時期T1となるように、燃料噴射弁45の燃料噴射動作を制御している(S1)。このとき、上記したフラグはN=0に設定されている。
この状態において、エンジンECU2は、加速判定プログラム81に基づいて、エンジン1が加速運転となっているか否かを判別している(S2)。アクセルペダルを踏み込んでエンジン1を加速運転させると、エンジンECU2は、加速判定プログラム81に基づいてエンジン1が加速運転していると判定する。具体的には、アクセルポジションセンサ78の検出結果から算出されるアクセル開度の変化率が、予め設定された所定の変化率を上回った場合、エンジンECU2は、エンジン1が加速運転していると判定する。なお、この検出方法に限らず、上記のエアフローセンサ79により検出された吸入空気量に基づいて加速の有無を判別したり、あるいは、図示しない加速度センサの検出結果に基づいて加速の有無を判別しても良い。
エンジン1が加速運転したと判別されると、エンジンECU2は、フラグがN=0であるか否かを判別する(S3)。このとき、N=0であれば、フラグをN=1に設定変更する(S4)。そして、エンジンECU2は、フラグをN=1とした状態で、標準噴射開始時期T1に基づいて、燃料噴射弁45から燃料を噴射する(S5)。そして、再び上記の制御フローを繰り返す。
この後、エンジン1が未だ加速運転を維持した状態であれば、S1において燃料噴射開始時期を標準噴射開始時期T1に設定し、また、S2においてエンジン1が加速運転していると判定され、さらに、S3においてフラグがN=0であるか否かが判別される。このとき、前回の制御フロー時において、フラグがN=1に設定されたため、S3において、N=0でないと判別される。すると、エンジンECU2は、燃料噴射開始時期を遅角噴射開始時期T2に設定し(S6)、この後、フラグをN=0に設定変更する(S7)。そして、S5において遅角噴射開始時期T2に基づいて、燃料噴射弁45から燃料を噴射する。
これにより、エンジン1の加速運転状態において、燃料噴射開始時期は、燃焼サイクル毎に標準噴射開始時期T1と遅角噴射開始時期T2との間で交互に変更される。なお、S2において、エンジン1が加速運転していないと判定されると、S7において、フラグがN=0に設定され、標準噴射開始時期T1に基づいて、燃料が噴射される(S5)。
以上の構成によれば、エンジン1の加速運転状態において、燃料噴射開始時期は、燃焼サイクル毎に標準噴射開始時期T1と遅角噴射開始時期T2との間で交互に変更されるため、ピストンキャビティ25に対する燃料付着位置が、燃料サイクル毎に変化する。つまり、常に同じ燃料付着位置に燃料が付着することを抑制することができる。このため、エンジン1の加速運転により燃料噴射量が増加し、ピストンキャビティ25に燃料が付着しても、付着した燃料によるピストンキャビティ25の局所的な温度低下を招くことがない。これにより、ピストンキャビティ25の温度上昇の遅れを軽減し、付着した燃料を早期に気化させることができるため、燃焼室16内において良好に燃料を燃焼させることができ、PM(Particulate Matter)およびスモークの発生を抑制することができる。
なお、本実施例においては、燃料噴射開始時期を、標準噴射開始時期T1と遅角噴射開始時期T2との間で相互に変更したが、標準噴射開始時期T1と標準噴射開始時期T1から進めた燃料噴射開始時期である進角噴射開始時期との間で相互に変更しても良い。さらに、進角噴射開始時期、標準噴射開始時期T1および遅角噴射開始時期T2の間で相互に変更しても良い。
次に、図5を参照して、実施例2にかかる燃料噴射制御装置(エンジンECU2)について説明する。なお、重複した記載を避けるべく、異なる部分についてのみ説明する。実施例2にかかるエンジンECU2は、燃料噴射弁45を制御して、複数回(本実施例では3回)の燃料噴射を連続して行うマルチパイロット噴射を行うことが可能な構成となっている。そして、エンジンECU2は、エンジン1が加速運転を行うと、噴射時期制御プログラム84に基づいて、マルチパイロット噴射の燃料噴射開始時期を、標準噴射開始時期T1と遅角噴射開始時期T2との間で、燃焼サイクル毎に変更している。
図5は、1サイクル目から4サイクル目までの燃焼サイクルにおける燃料噴射開始時期を表した燃料噴射弁の駆動波形図であり、横軸は時間となっている。エンジン1の加速運転後の1サイクル目において、燃料噴射弁45は、順に第1燃料噴射Q1、第2燃料噴射Q2および第3燃料噴射Q3からなるマルチパイロット噴射を実行しており、第1燃料噴射Q1の燃料噴射開始時期を標準噴射開始時期T1としている。そして、これに伴って第2燃料噴射Q2および第3燃料噴射Q3の燃料噴射開始時期も標準噴射開始時期T1としている。
2サイクル目においては、各燃料噴射Q1,Q2,Q3の燃料噴射開始時期を遅角噴射開始時期T2、3サイクル目においては、各燃料噴射Q1,Q2,Q3の燃料噴射開始時期を標準噴射開始時期T1、4サイクル目においては、各燃料噴射Q1,Q2,Q3の燃料噴射開始時期を遅角噴射開始時期T2としており、以降、燃料噴射開始時期を交互に変更している。この場合も、燃料噴射開始時期の変更に伴って、各燃料噴射Q1,Q2,Q3の燃料噴射終了時期も相対的に変更させることで、総燃料噴射間隔を所定の長さとしている。
以上のように、マルチパイロット噴射においても、各燃料噴射Q1,Q2,Q3の燃料噴射開始時期を、標準噴射開始時期T1と遅角噴射開始時期T2との間で変更することにより、付着した燃料を早期に気化することができるため、燃焼室16内において良好に燃料を燃焼させることができ、PM(Particulate Matter)およびスモークの発生を抑制することができる。
ところで、所定の燃料噴射終了時期T3を超えて燃料噴射弁45から燃料が噴射されると、噴射された燃料が気化するために必要な気化時間を確保することができず、燃料の気化が不十分となり、PMおよびスモークが発生する虞がある。
このため、図6に示すように、エンジン1の加速運転時において、噴射時期制御プログラム84により遅角した第3燃料噴射Q3の遅角噴射終了時期T4が、予め設定された燃料噴射終了時期T3を超えると予測される場合、マルチパイロット噴射の第3燃料噴射(最終噴射)Q3の燃料噴射開始時期を遅角噴射開始時期T2に変更することを禁止する、すなわち、マルチパイロット噴射の第1燃料噴射Q1および第2燃料噴射Q2の燃料噴射開始時期のみを遅角噴射開始時期T2に変更している。
これにより、燃料噴射終了時期T3を超えて、燃料噴射弁45から燃料を噴射することがないため、噴射された燃料を気化させるに十分な気化時間を確保することができ、これにより、PMおよびスモークの発生を軽減することができ、燃焼室16内において良好に燃料を燃焼させることができる。なお、少なくともマルチパイロット噴射の第3燃料噴射Q3の燃料噴射開始時期の遅角を禁止させればよいため、場合によっては、第2燃料噴射Q2の燃料噴射開始時期の遅角を禁止しても良い。
次に、図7を参照して、実施例3にかかる燃料噴射制御装置(エンジンECU2)について説明する。この場合も同様に、重複した記載を避けるべく、異なる部分についてのみ説明する。
図7に示すように、実施例3にかかるエンジンECU2では、マルチパイロット噴射の第1燃料噴射Q1のみを遅角させている。すなわち、燃料噴射弁45から噴射した燃料が、ピストンキャビティ25に付着しやすいのは、燃料噴射弁45とピストン13のヘッド面とが近接しているときに燃料が噴射されるためである。このため、燃料噴射弁45とピストン13のヘッド面との近接時における噴射のみ燃料噴射開始時期を変更させればよい。つまり、マルチパイロット噴射においては、第1燃料噴射Q1が、燃料噴射弁45とピストン13のヘッド面との近接時における噴射である。
これにより、マルチパイロット噴射の第1燃料噴射Q1のみ燃料噴射開始時期を遅角噴射開始時期に変更することができるため、燃料噴射弁45とピストン13のヘッド面との近接時において、燃料付着位置を変更することができる。これにより、付着した燃料を早期に気化させることができるため、PMおよびスモークを発生させることなく、燃焼室16内において良好に燃料を燃焼させることができる。
次に、実施例4にかかる燃料噴射制御装置(エンジンECU2)について、簡単に説明する。この場合も、重複した記載を避けるべく、異なる部分についてのみ説明する。実施例1において、エンジンECU2は、エンジン1が加速運転を行った場合に、燃料噴射弁45の燃料噴射開始時期を変更したが、実施例4にかかるエンジンECU2では、エンジン1の冷間始動時において、燃料噴射弁45の燃料噴射開始時期を変更している。すなわち、エンジン1の冷間始動時には、シリンダブロック11、シリンダヘッド12およびピストン13で形成される燃焼室16の壁面温度が低く燃料噴射量を増量している。このため、噴射した燃料がピストンキャビティ25に付着すると、ピストンキャビティ25は燃料を気化するに十分な温度となっていないため、燃料の気化が不十分となり、PMおよびスモークが発生する虞がある。
実施例4にかかるエンジンECU2は、そのROM71内に予め設定された所定の冷間温度範囲が記憶されている。そして、エンジンECU2は、上記のエンジン水温検出センサ27により検出したエンジン水温が所定の冷間温度範囲内である場合、燃焼サイクル毎に燃料噴射開始時期を標準噴射開始時期T1と遅角噴射開始時期T2との間で相互に変更させている。つまり、図8に示すように、図4におけるS2に代えて、検出したエンジン水温が所定の冷間温度範囲内であるか否かを判別する冷間判別ステップ(S10:冷間判別手段)が設けられている。
以上の構成においても、エンジン1の冷間始動時において、燃料噴射時期は、燃焼サイクル毎に標準噴射開始時期T1と遅角噴射開始時期T2との間で交互に変更することができるため、ピストンキャビティ25に対し、付着する燃料の位置を変えることができる。これにより、付着した燃料を早期に気化させることができるため、PMおよびスモークを発生させることなく、燃焼室16内において良好に燃料を燃焼させることができる。
以上のように、本発明にかかる燃料噴射制御装置は、筒内噴射式のガソリンエンジンに有用であり、特に、ピストンキャビティに燃料が付着する場合に適している。
筒内噴射式のガソリンエンジンの概略構成図である。 標準噴射開始時期および遅角噴射開始時期における燃料噴射弁の駆動波形図である。 標準噴射開始時期における燃料噴射弁廻りを模式的に表した断面図である。 遅角噴射開始時期における燃料噴射弁廻りを模式的に表した断面図である。 燃料噴射開始時期を標準噴射開始時期と遅角噴射開始時期との間で変更するフローチャートである。 実施例2にかかる標準噴射開始時期および遅角噴射開始時期における燃料噴射弁の駆動波形図である。 実施例2において遅角噴射開始時期の一部を禁止した燃料噴射弁の駆動波形図である。 実施例3にかかる標準噴射開始時期および遅角噴射開始時期における燃料噴射弁の駆動波形図である。 実施例4における燃料噴射開始時期を標準噴射開始時期と遅角噴射開始時期との間で変更するフローチャートである。
符号の説明
1 エンジン
2 エンジンECU
13 ピストン
16 燃焼室
27 エンジン水温検出センサ
45 燃料噴射弁
70 CPU
71 ROM
72 RAM
78 アクセルポジションセンサ
80 燃料噴射制御プログラム
81 加速判定プログラム
83 噴射量設定プログラム
84 噴射時期制御プログラム

Claims (7)

  1. 内燃機関の燃焼室内に燃料を噴射可能な燃料噴射弁を制御する燃料噴射制御装置において、
    前記内燃機関の運転状態に応じて、前記燃料噴射弁から噴射する燃料の燃料噴射量を設定する噴射量設定手段と、
    前記内燃機関の運転状態に応じて、前記燃焼室内に噴射した前記燃料が気化可能な気化可能燃料噴射量を設定する気化噴射量設定手段と、
    前記噴射量設定手段により設定された前記燃料噴射量が、前記気化噴射量設定手段により設定された前記気化可能燃料噴射量を上回ったか否かを判別する噴射量判別手段と、
    前記噴射量判別手段により、前記燃料噴射量が前記気化可能燃料噴射量を上回ったと判別された場合、前記燃料噴射弁から噴射される一方の燃料噴射時期と他方の燃料噴射時期との間で、燃焼サイクル毎に交互に変更する噴射時期変更手段とを備えたことを特徴とする燃料噴射制御装置。
  2. 前記気化可能燃料噴射量は、前記燃焼室の壁面温度に応じて設定された燃料噴射量であることを特徴とする請求項1に記載の燃料噴射制御装置。
  3. 前記気化可能燃料噴射量は、前記内燃機関が所定の回転数および所定の負荷で運転する定常運転において、前記燃料噴射弁から噴射される定常燃料噴射量であり、
    前記噴射量判別手段は、前記内燃機関が加速運転状態になったか否かを判別する加速判別手段であり、
    前記加速判別手段により前記内燃機関が加速運転状態になったと判別された場合、前記噴射時期変更手段は、前記燃料噴射弁から噴射される一方の燃料噴射時期と他方の燃料噴射時期との間で、燃焼サイクル毎に交互に変更することを特徴とする請求項1または2に記載の燃料噴射制御装置。
  4. 前記噴射量判別手段は、前記燃焼室の壁面温度が、予め設定された所定の冷間温度範囲内であるか否かを判別する冷間判別手段であり、
    前記冷間判別手段により前記燃焼室の壁面温度が、前記冷間温度範囲内である場合、前記噴射時期変更手段は、前記燃料噴射弁から噴射される一方の燃料噴射時期と他方の燃料噴射時期との間で、燃焼サイクル毎に交互に変更することを特徴とする請求項2に記載の燃料噴射制御装置。
  5. 前記噴射時期変更手段は、前記燃料噴射時期を少なくとも進角または遅角させて変更することを特徴とする請求項1ないし4のいずれか1項に記載の燃料噴射制御装置。
  6. 前記燃料噴射弁は、前記噴射量設定手段により設定された前記燃料噴射量および前記噴射時期変更手段により設定された前記燃料噴射時期に基づいて、燃料噴射動作が制御されると共に、複数回連続して燃料の噴射を行うマルチパイロット噴射を行うことが可能な構成となっており、
    前記噴射時期変更手段は、変更される前記燃料噴射時期が、予め設定された所定の燃料噴射終了時期を超えると予測した場合、少なくとも前記マルチパイロット噴射の最終噴射における燃料噴射時期の変更を禁止することを特徴とする請求項1ないしのいずれか1項に記載の燃料噴射制御装置。
  7. 前記燃料噴射弁は、前記噴射量設定手段により設定された前記燃料噴射量および前記噴射時期変更手段により設定された前記燃料噴射時期に基づいて、燃料噴射動作が制御されると共に、複数回連続して燃料の噴射を行うマルチパイロット噴射を行うことが可能な構成となっており、
    前記噴射時期変更手段は、前記マルチパイロット噴射の最初の噴射における燃料噴射時期を変更することを特徴とする請求項1ないしのいずれか1項に記載の燃料噴射制御装置。
JP2007201280A 2007-08-01 2007-08-01 燃料噴射制御装置 Expired - Fee Related JP4743183B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007201280A JP4743183B2 (ja) 2007-08-01 2007-08-01 燃料噴射制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007201280A JP4743183B2 (ja) 2007-08-01 2007-08-01 燃料噴射制御装置

Publications (2)

Publication Number Publication Date
JP2009036102A JP2009036102A (ja) 2009-02-19
JP4743183B2 true JP4743183B2 (ja) 2011-08-10

Family

ID=40438236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007201280A Expired - Fee Related JP4743183B2 (ja) 2007-08-01 2007-08-01 燃料噴射制御装置

Country Status (1)

Country Link
JP (1) JP4743183B2 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5450548B2 (ja) * 2011-09-21 2014-03-26 日立オートモティブシステムズ株式会社 内燃機関の燃料噴射制御装置
JP6171351B2 (ja) * 2013-01-17 2017-08-02 日産自動車株式会社 エンジンの燃料噴射時期制御装置
MX364575B (es) * 2015-04-14 2019-05-02 Nissan Motor Dispositivo de control de motor y metodo de control de motor.
CA2982886C (en) * 2015-04-16 2018-05-29 Nissan Motor Co., Ltd. Engine controller and engine control method
BR112017026075B1 (pt) * 2015-06-12 2022-12-20 Nissan Motor Co., Ltd Dispositivo de controle de injeção de combustível e método de controle de injeção de combustível
JP6406419B1 (ja) * 2017-12-12 2018-10-17 マツダ株式会社 過給機付エンジン
JP2020139468A (ja) * 2019-02-28 2020-09-03 ダイハツ工業株式会社 内燃機関の制御装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002130015A (ja) * 2000-10-19 2002-05-09 Toyota Motor Corp 筒内噴射式内燃機関の燃料噴射制御装置
JP2004211664A (ja) * 2003-01-08 2004-07-29 Nippon Soken Inc 筒内噴射型エンジンの燃料噴射時期制御装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3075150B2 (ja) * 1995-09-01 2000-08-07 トヨタ自動車株式会社 筒内噴射式火花点火内燃機関の燃料噴射制御装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002130015A (ja) * 2000-10-19 2002-05-09 Toyota Motor Corp 筒内噴射式内燃機関の燃料噴射制御装置
JP2004211664A (ja) * 2003-01-08 2004-07-29 Nippon Soken Inc 筒内噴射型エンジンの燃料噴射時期制御装置

Also Published As

Publication number Publication date
JP2009036102A (ja) 2009-02-19

Similar Documents

Publication Publication Date Title
US7051701B2 (en) Direct fuel injection/spark ignition engine control device
JP6323683B2 (ja) エンジンの制御装置
JP4743183B2 (ja) 燃料噴射制御装置
JP6323684B2 (ja) エンジンの制御装置
JP4277883B2 (ja) 筒内噴射式火花点火内燃機関
JP2018071485A (ja) 内燃機関の制御装置
US20170107922A1 (en) Control system of internal combustion engine
US10100775B2 (en) Direct injection engine
US11359573B2 (en) Control device for internal combustion engine
JP2009102997A (ja) 火花点火内燃機関
JP2009102998A (ja) 火花点火内燃機関
JP4816151B2 (ja) 内燃機関の燃焼制御装置
JP2004232580A (ja) 圧縮比変更期間における内燃機関の制御
JP2007239583A (ja) 内燃機関の燃焼制御装置
JP2009068461A (ja) 燃料噴射制御装置
JP6402753B2 (ja) 直噴エンジンの燃焼室構造
JP6260599B2 (ja) 内燃機関の制御装置
JP7023352B2 (ja) 内燃機関の制御方法及び内燃機関
JP7424196B2 (ja) エンジン装置
JP6866871B2 (ja) エンジンの制御装置及び制御方法
JP4120452B2 (ja) 筒内噴射式内燃機関
JP6296114B2 (ja) エンジンの制御装置
JP2021175890A (ja) エンジン装置
JP2005061271A (ja) 筒内直接噴射式内燃機関
JP2005188347A (ja) 内燃機関の燃料噴射制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110425

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees