KR101476390B1 - 멀티 하전 입자빔 묘화 방법 및 멀티 하전 입자빔 묘화 장치 - Google Patents

멀티 하전 입자빔 묘화 방법 및 멀티 하전 입자빔 묘화 장치 Download PDF

Info

Publication number
KR101476390B1
KR101476390B1 KR1020130062287A KR20130062287A KR101476390B1 KR 101476390 B1 KR101476390 B1 KR 101476390B1 KR 1020130062287 A KR1020130062287 A KR 1020130062287A KR 20130062287 A KR20130062287 A KR 20130062287A KR 101476390 B1 KR101476390 B1 KR 101476390B1
Authority
KR
South Korea
Prior art keywords
shot
area
positions
deformation
irradiation
Prior art date
Application number
KR1020130062287A
Other languages
English (en)
Other versions
KR20130135772A (ko
Inventor
료이치 요시카와
무네히로 오가사와라
Original Assignee
가부시키가이샤 뉴플레어 테크놀로지
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가부시키가이샤 뉴플레어 테크놀로지 filed Critical 가부시키가이샤 뉴플레어 테크놀로지
Publication of KR20130135772A publication Critical patent/KR20130135772A/ko
Application granted granted Critical
Publication of KR101476390B1 publication Critical patent/KR101476390B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/304Controlling tubes by information coming from the objects or from the beam, e.g. correction signals
    • H01J37/3045Object or beam position registration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/20Masks or mask blanks for imaging by charged particle beam [CPB] radiation, e.g. by electron beam; Preparation thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/28Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • H01J37/3174Particle-beam lithography, e.g. electron beam lithography
    • H01J37/3177Multi-beam, e.g. fly's eye, comb probe
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/21Focus adjustment
    • H01J2237/216Automatic focusing methods

Abstract

본 발명의 일태양의 멀티 하전 입자빔 묘화 방법은, 하전 입자빔에 의한 멀티빔을 이용하여 종횡 미리 설정된 제어 그리드 간격에 기초하여 시료 상에 각 빔을 조사할 경우의, 조사되는 각 빔의 변형분을 포함하는 샷 위치를 연산하고, 각 빔의 변형분을 포함하는 샷 위치를 이용하여, 각각 바로 옆의 종횡 2 × 2의 빔군의 샷 위치끼리로 둘러싸이는 복수의 제1 영역의 각 제1 영역 내의 미리 설정된 조건에 의한 조건 위치를 연산하고, 복수의 제1 영역의 조건 위치를 이용하여, 각각 바로 옆의 복수의 조건 위치군으로 둘러싸이는 복수의 제2 영역에 대하여, 제2 영역마다, 당해 제2 영역과 중첩되는 묘화되기 위한 도형 패턴의 면적 밀도를 연산하고, 각 제2 영역의 면적 밀도에 따라, 각 제2 영역 내를 샷 위치로 하는 빔의 조사 시간을 연산하고, 구한 조사 시간의 각 빔을 조사함으로써 시료에 패턴을 묘화하는 것을 특징으로 한다.

Description

멀티 하전 입자빔 묘화 방법 및 멀티 하전 입자빔 묘화 장치{MULTI-CHARGED PARTICLE BEAM WRITING METHOD AND MULTI-CHARGED PARTICLE BEAM WRITING APPARATUS}
본 발명은, 멀티 하전 입자빔 묘화 방법 및 멀티 하전 입자빔 묘화 장치에 관한 것으로, 예를 들면 멀티빔에 의한 복수의 조사 위치를 고정밀화하는 방법에 관한 것이다.
반도체 디바이스의 미세화의 진전을 담당하는 리소그래피 기술은 반도체 제조 프로세스 중에서도 유일하게 패턴을 생성하는 매우 중요한 프로세스이다. 최근, LSI의 고집적화에 수반하여, 반도체 디바이스에 요구되는 회로 선폭은 해마다 미세화되고 있다. 여기서, 전자선(전자빔) 묘화 기술은 본질적으로 뛰어난 해상성을 가지고 있어, 웨이퍼 등에 전자선을 사용하여 묘화하는 것이 행해지고 있다.
예를 들면, 멀티빔을 사용한 묘화 장치가 있다. 1 개의 전자빔으로 묘화할 경우에 비해, 멀티빔을 이용함으로써 한 번에 많은 빔을 조사할 수 있으므로, 스루풋을 큰 폭으로 향상시킬 수 있다. 이러한 멀티빔 방식의 묘화 장치에서는, 예를 들면 전자총으로부터 방출된 전자빔을 복수의 홀을 가진 마스크에 통과시켜 멀티빔을 형성하고, 각각 블랭킹 제어되고, 차폐되지 않았던 각 빔이 광학계로 축소되고, 편향기로 편향 되어 시료 상의 원하는 위치로 조사된다(예를 들면, 일본특허공개공보 2006-261342호 참조).
이러한 멀티빔 방식의 묘화 장치에서는, 복수의 빔이 한 번에 조사되게 되는데, 이러한 복수의 빔의 조사 위치를 고정밀도로 조정하는 것이 요구된다. 예를 들면, 묘화 되는 패턴에 대해서는, 광학계의 렌즈의 축소율을 조정함으로써 각 빔의 치수를 조정함으로써 치수를 조정하는 것이 상정된다. 그러나, 렌즈 조건을 변경하면, 패턴이 회전하는 것과 같은 현상이나, 필드 변형이 변화하는 것과 같은 현상이 발생한다. 이 때문에, 치수 정밀도가 고정밀도가 되도록 광학계에 필요한 다른 많은 파라미터와 함께 최적화된 상태로 조정하는 것은 어려운 작업이 된다. 회전 조정에 대해서는, 기계적으로 조정할 경우, nm 오더의 정확한 회전 위치 조정이 필요해져, 현실적이지는 않다. 또한 필드 변형에 대해서는, 우선 광학계에는 원리적으로 필드 변형이 존재한다. 이러한 변형을 수정하기 위하여, 제조 정밀도로서, 예를 들면 nm 이하(예를 들면, 0.1 nm)의 정밀도로 조정하기 위해서는 상당히 치밀한 설계가 필요하게 되어, 이것도 또한 현실적이지는 않다. 또한, 광학계의 설계로 가령 고정밀도로 설계할 수 있었다고 하더라도, 다른 설계 파라미터의 설정 범위에 제약이 존재한다. 이 때문에, 필드 변형을 수정하고자 하면, 이러한 다른 조건(예를 들면, 해상 성능, 초점 심도 등)의 최적화를 방해할 가능성도 있다. 또한, 변형을 줄이기 위하여 자장의 균일화를 도모하고자 하면, 예를 들면 거대한 경통이 필요하게 된다. 또한, 변형을 줄이기 위해서는 복잡한 보정 기구가 많이 필요하게 되어, 장치에 과대한 부담을 주게도 된다. 또한 묘화 장치의 제조 후에는 실제의 장치에서의 조정이 필요하지만, 변형을 수정하고자 해도, 묘화 처리의 파라미터가 복잡하게 서로 관계하여, 변형의 수정용의 파라미터가 독립 변수는 되지 않으므로, 최적화가 곤란하거나, 가능하다 하더라도 다대한 시간이 걸리게 된다.
상술한 바와 같이, 멀티빔 방식의 묘화 장치에서는, 복수의 빔이 한 번에 조사되게 되는데, 이러한 복수의 빔의 조사 위치를 고정밀도로 조정하는 것이 요구된다. 멀티빔 방식에서는, 동일한 형성 홀 혹은 상이한 형성 홀을 통과하여 형성된 빔끼리를, 예를 들면 래스터 스캔 방식으로 소정의 샷 간격으로 연결하여, 원하는 도형 형상의 패턴을 형성하게 된다. 광학계의 변형 등에 의해, 원하는 조사 위치로부터 빔이 이탈하면, 고정밀도의 패턴의 묘화가 곤란해진다.
본 발명은, 광학계의 변형 등에 의한 멀티빔의 조사 위치의 이탈에 의한 패턴 형상 혹은 치수의 변동을 억제하는 묘화 장치 및 묘화 방법을 제공한다.
본 발명의 일태양의 멀티 하전 입자빔 묘화 방법은,
하전 입자빔에 의한 멀티빔을 이용하여 종횡 미리 설정된 제어 그리드 간격에 기초하여 시료 상에 각 빔을 조사할 경우의, 조사되는 각 빔의 변형분을 포함하는 샷 위치를 연산하고,
각 빔의 변형분을 포함하는 샷 위치를 이용하여, 각각 바로 옆의 종횡 2 × 2의 빔군의 샷 위치끼리로 둘러싸이는 복수의 제1 영역의 각 제1 영역 내의 미리 설정된 조건에 의한 조건 위치를 연산하고,
복수의 제1 영역의 조건 위치를 이용하여, 각각 바로 옆의 복수의 조건 위치군으로 둘러싸이는 복수의 제2 영역에 대하여, 제2 영역마다, 상기 제2 영역과 중첩되는 묘화되기 위한 도형 패턴의 면적 밀도를 연산하고,
각 제2 영역의 면적 밀도에 따라, 각 제2 영역 내를 샷 위치로 하는 빔의 조사량 혹은 조사 시간을 연산하고,
구한 조사량 혹은 조사 시간의 각 빔을 조사함으로써, 시료에 패턴을 묘화하는 것을 특징으로 한다.
본 발명의 일태양의 멀티 하전 입자빔 묘화 장치는,
시료를 재치(載置)하는 이동 가능한 스테이지와,
하전 입자빔을 방출하는 방출부와,
복수의 개구부를 가지고, 복수의 개구부 전체가 포함되는 개구부 형성 영역에 하전 입자빔의 조사를 받아, 복수의 개구부를 하전 입자빔의 일부가 각각 통과함으로써 멀티빔을 형성하는 애퍼처 부재와,
애퍼처 부재의 복수의 개구부를 통과한 멀티빔 중, 각각 대응하는 빔의 블랭킹 편향을 행하는 복수의 블랭커(blanker)와,
복수의 블랭커에 의해 빔 off의 상태가 되도록 편향된 각 빔을 차폐하는 블랭킹 애퍼처 부재와,
블랭킹 애퍼처 부재를 통과한 각 빔의 시료 상의 각각의 조사 위치에, 블랭킹 애퍼처 부재를 통과한 각 빔을 모아 편향하는 편향기와,
하전 입자빔에 의한 멀티빔을 이용하여 종횡 미리 설정된 제어 그리드 간격에 기초하여 시료 상에 각 빔을 조사할 경우의, 조사되는 각 빔의 변형분을 포함하는 샷 위치를 연산하는 샷 위치 연산부와,
각 빔의 변형분을 포함하는 샷 위치를 이용하여, 각각 바로 옆의 종횡 2 × 2의 빔군의 샷 위치끼리로 둘러싸이는 복수의 제1 영역의 각 제1 영역 내의 미리 설정된 조건에 의한 조건 위치를 연산하는 조건 위치 연산부와,
복수의 제1 영역의 조건 위치를 이용하여, 각각 바로 옆의 복수의 조건 위치군으로 둘러싸이는 복수의 제2 영역에 대하여, 제2 영역마다, 상기 제2 영역과 중첩되는 묘화되기 위한 도형 패턴의 면적 밀도를 연산하는 면적 밀도 연산부와,
각 제2 영역의 면적 밀도에 따라, 각 제2 영역 내를 샷 위치로 하는 빔의 조사 시간을 연산하는 조사 시간 연산부와,
구한 조사 시간의 각 빔이 시료에 조사되도록 상기 복수의 블랭커의 블랭킹 편향 제어를 행하는 편향 제어부
를 구비한 것을 특징으로 한다.
본 발명에 따르면, 패턴 형상 혹은 치수의 변동을 억제가능한 묘화 장치 및 묘화 방법을 제공할 수 있다.
도 1은 실시예 1에서의 묘화 장치의 구성을 도시한 개념도이다.
도 2(a) 및 도 2(b)는 실시예 1에서의 애퍼처 부재의 구성을 도시한 개념도이다.
도 3은 실시예 1에서의 블랭킹 플레이트의 구성을 도시한 개념도이다.
도 4(a) 내지 도 4(c)는 실시예 1에서의 묘화 동작을 설명하기 위한 개념도이다.
도 5는 실시예 1에서의 래스터 스캔의 묘화 동작을 설명하기 위한 개념도이다.
도 6은 실시예 1에서의 래스터 스캔의 묘화 동작의 다른 일례를 설명하기 위한 개념도이다.
도 7은 실시예 1에서의 묘화 방법의 주요부 공정을 나타낸 순서도이다.
도 8은 실시예 1에서의 필드 변형의 일례를 도시한 개념도이다.
도 9는 실시예 1에서의 각 샷 위치의 일례를 도시한 개념도이다.
도 10은 실시예 1에서의 샷 위치 데이터 맵의 일례를 도시한 개념도이다.
도 11은 실시예 1에서의 샷 영역 메쉬의 일례를 도시한 개념도이다.
도 12는 실시예 1에서의 샷 영역 메쉬 데이터의 일례를 나타낸 개념도이다.
도 13은 실시예 1에서의 샷 영역과 도형 패턴의 중첩의 일례를 도시한 개념도이다.
도 14(a)와 도 14(b)는 실시예 1에서의 면적 밀도 맵의 일례를 도시한 도이다.
도 15는 실시예 1에서의 조사 시간 맵의 일례를 도시한 도이다.
도 16은 실시예 1에서의 샷 영역 메쉬의 다른 일례를 도시한 개념도이다.
도 17은 실시예 1에서의 샷 영역 메쉬의 다른 일례를 도시한 개념도이다.
실시예 1.
이하에 실시예에서는, 광학계의 변형 등에 의한 멀티빔의 조사 위치의 이탈에 의한 패턴 형상 혹은 치수의 변동을 억제하는 묘화 장치 및 방법에 대하여 설명한다.
또한 이하에 실시예에서는, 하전 입자빔의 일례로서 전자빔을 이용한 구성에 대하여 설명한다. 단, 하전 입자빔은 전자빔에 한정되지 않고, 이온빔 등의 하전 입자를 이용한 빔이어도 상관없다.
도 1은, 실시예 1에서의 묘화 장치의 구성을 도시한 개념도이다. 도 1에서, 묘화 장치(100)는 묘화부(150)와 제어부(160)를 구비하고 있다. 묘화 장치(100)는 멀티 하전 입자빔 묘화 장치의 일례이다. 묘화부(150)는 전자 경통(102)과 묘화실(103)을 구비하고 있다. 전자 경통(102) 내에는 전자총(201), 조명 렌즈(202), 애퍼처 부재(203), 블랭킹 플레이트(204), 축소 렌즈(205), 제한 애퍼처 부재(206), 대물 렌즈(207), 편향기(208) 및 정전 렌즈(211)가 배치되어 있다. 묘화실(103) 내에는 XY 스테이지(105)가 배치된다. 묘화실(103)에는 Z 센서의 투광기(212) 및 Z 센서의 수광기(214)가 배치되어 있다. 투광기(212) 및 수광기(214)는 묘화실(103) 내 혹은 전자 경통(102) 내에 배치되어 있어도 상관없다. XY 스테이지(105) 상에는, 묘화 시에는 묘화 대상 기판이 되는 마스크 등의 시료(101)가 배치된다. 시료(101)에는 반도체 장치를 제조할 시의 노광용 마스크, 혹은 반도체 장치가 제조되는 반도체 기판(실리콘 웨이퍼) 등이 포함된다. 또한 시료(101)에는, 레지스트가 도포된, 아직 아무것도 묘화되어 있지 않은 마스크 블랭크스가 포함된다. XY 스테이지(105) 상에는, 또한 마크(106)와 위치 측정용의 미러(210)가 배치된다. 마크(106)는 예를 들면 높이 위치가 상이한 복수의 측정면을 가진다.
제어부(160)는 제어 계산기(110), 메모리(112), 편향 제어 회로(130, 132), 디지털 / 아날로그 변환(DAC) 앰프(134, 136), 앰프(138), 스테이지 위치 측정부(139) 및 자기 디스크 장치 등의 기억 장치(140, 142, 144, 146, 148)를 가지고 있다. 제어 계산기(110), 메모리(112), 편향 제어 회로(130, 132), 앰프(138), 스테이지 위치 측정부(139) 및 기억 장치(140, 142, 144, 146, 148)는 도시하지 않은 버스를 개재하여 서로 접속되어 있다. 기억 장치(140)(기억부)에는 묘화 데이터가 외부로부터 입력되고, 저장되어 있다.
제어 계산기(110) 내에는 측정부(10), 샷 위치 연산부(12), 평균 위치 연산부(14), 샷 영역 메쉬 작성부(16), 면적 밀도 연산부(18), 조사 시간 연산부(21), 묘화 데이터 처리부(23) 및 묘화 처리 제어부(25)가 배치된다. 측정부(10), 샷 위치 연산부(12), 평균 위치 연산부(14), 샷 영역 메쉬 작성부(16), 면적 밀도 연산부(18), 조사 시간 연산부(21), 묘화 데이터 처리부(23) 및 묘화 처리 제어부(25)와 같은 각 기능은 상기 회로 등의 하드웨어로 구성되어도 되고, 이들 기능을 실행하는 프로그램 등의 소프트웨어로 구성되어도 된다. 혹은, 하드웨어와 소프트웨어의 조합에 의해 구성되어도 된다. 측정부(10), 샷 위치 연산부(12), 평균 위치 연산부(14), 샷 영역 메쉬 작성부(16), 면적 밀도 연산부(18), 조사 시간 연산부(21), 묘화 데이터 처리부(23) 및 묘화 처리 제어부(25)에 입출력되는 정보 및 연산 중의 정보는 메모리(112)에 그 때마다 저장된다.
여기서 도 1에서는, 실시예 1을 설명함에 있어서 필요한 구성을 기재하고 있다. 묘화 장치(100)에 있어서, 통상, 필요한 그 외의 구성을 구비하고 있어도 상관없다. 예를 들면, 실시예 1에서는 후술하는 바와 같이, 조사 시간 연산부(21)가 각 샷의 조사량의 연산을 포함하여 동시에 조사 시간의 연산을 행하고 있지만, 이에 한정되지 않는다. 예를 들면, 조사량을 연산하는 조사량 연산부와, 연산된 조사량을 이용하여 조사 시간의 연산을 행하는 조사 시간 연산부를 별도로 구비하고 있어도 적합하다.
도 2(a)와 도 2(b)는, 실시예 1에서의 애퍼처 부재의 구성을 도시한 개념도이다. 도 2(a)에서, 애퍼처 부재(203)에는 종(y 방향) m 열 × 횡(x 방향) n 열(m, n ≥ 2)의 홀(개구부)(22)이 소정의 배열 피치로 형성되어 있다. 도 2(a)에서는, 예를 들면 512 × 8 열의 홀(22)이 형성된다. 각 홀(22)은 모두 동일한 치수 형상의 직사각형으로 형성된다. 혹은, 동일한 외경의 원형이어도 상관없다. 여기서는, y 방향의 각 열에 대하여, x 방향으로 A부터 H까지의 8 개의 홀(22)이 각각 형성되는 예가 도시되어 있다. 이들 복수의 홀(22)을 전자빔(200)의 일부가 각각 통과함으로써, 멀티빔(20)이 형성되게 된다. 여기서는, 종횡(x, y 방향)이 모두 2 열 이상의 홀(22)이 배치된 예를 도시했지만, 이에 한정되지 않는다. 예를 들면, 종횡(x, y 방향) 중 어느 일방이 복수열이고 타방은 1 열 뿐이어도 상관없다. 또한 홀(22)의 배열의 방법은, 도 2(a)에 도시한 바와 같이 종횡이 격자 형상으로 배치되는 경우에 한정되지 않는다. 도 2(b)에 도시한 바와 같이, 예를 들면 종 방향(y 방향) 1 단째의 열과 2 단째의 열의 홀끼리가, 횡 방향(x 방향)으로 치수 a만큼 어긋나게 배치되어도 된다. 마찬가지로, 종 방향(y 방향) 2 단째의 열과 3 단째의 열의 홀끼리가, 횡 방향(x 방향)으로 치수 b만큼 어긋나게 배치되어도 된다.
도 3은, 실시예 1에서의 블랭킹 플레이트의 구성을 도시한 개념도이다. 블랭킹 플레이트(204)에는, 애퍼처 부재(203)의 각 홀(22)의 배치 위치에 맞추어 통과홀이 형성되고, 각 통과홀에는 쌍이 되는 2 개의 전극(24, 26)의 조(블랭커)가 각각 배치된다. 각 통과홀을 통과하는 전자빔(20)은 각각 독립적으로 이러한 쌍이 되는 2 개의 전극(24, 26)에 전압이 인가됨으로써, 혹은 어느 일방에 전압이 인가되고, 타방이 접지(그라운드)됨으로써 편향된다. 이러한 편향에 의해 블랭킹 제어된다. 이와 같이, 복수의 블랭커가, 애퍼처 부재(203)의 복수의 홀(22)(개구부)을 통과한 멀티빔 중, 각각 대응하는 빔의 블랭킹 편향을 행한다.
전자총(201)(방출부)으로부터 방출된 전자빔(200)은, 조명 렌즈(202)에 의해 대략 수직으로 애퍼처 부재(203) 전체를 조명한다. 애퍼처 부재(203)에는 직사각형, 예를 들면 장방형 혹은 정방형의 복수의 홀(개구부)이 형성되고, 전자빔(200)은 모든 복수의 홀이 포함되는 영역을 조명한다. 이러한 애퍼처 부재(203)의 복수의 홀을 통과함으로써, 예를 들면 직사각형 형상의 복수의 전자빔(멀티빔)(20a ~ 20e)이 형성된다. 이러한 멀티빔(20a ~ 20e)은 블랭킹 플레이트(204)의 각각 대응하는 블랭커 내를 통과한다. 이러한 블랭커는 각각, 개별적으로 통과하는 전자빔(20)을 편향한다. 그리고, 블랭킹 플레이트(204)를 통과한 멀티빔(20a ~ e)은 축소 렌즈(205)에 의해 축소되고, 제한 애퍼처 부재(206)에 형성된 중심의 홀을 향해 나아간다. 여기서, 블랭킹 플레이트(204)의 블랭커에 의해 편향된 전자빔(20)은, 제한 애퍼처 부재(206)(블랭킹 애퍼처 부재)의 중심의 홀로부터 위치가 이탈하고, 제한 애퍼처 부재(206)에 의해 차폐된다. 한편, 블랭킹 플레이트(204)의 블랭커에 의해 편향되지 않았던 전자빔(20)은, 제한 애퍼처 부재(206)의 중심의 홀을 통과한다. 이러한 블랭커의 on / off에 의해 블랭킹 제어가 행해지고, 빔의 on / off가 제어된다. 이와 같이, 제한 애퍼처 부재(206)는 복수의 블랭커에 의해 빔 off의 상태가 되도록 편향된 각 빔을 차폐한다. 그리고, 빔 on이 되고 나서 빔 off가 될 때까지 형성된, 제한 애퍼처 부재(206)를 통과한 빔에 의해 1 회분의 샷의 멀티빔이 형성된다. 제한 애퍼처 부재(206)를 통과한 멀티빔(20)은 대물 렌즈(207)에 의해 초점이 조정되고, 원하는 축소율의 패턴 이미지가 되어, 편향기(208)에 의해 제한 애퍼처 부재(206)를 통과한 각 빔(멀티빔(20) 전체)이 동일 방향으로 모아져 편향되고, 각 빔의 시료(101) 상의 각각의 조사 위치에 조사된다. 또한, 예를 들면 XY 스테이지(105)가 연속 이동하고 있을 때, 빔의 조사 위치가 XY 스테이지(105)의 이동에 추종하도록 편향기(208)에 의해 제어된다. 한 번에 조사되는 멀티빔(20)은, 이상적으로는 애퍼처 부재(203)의 복수의 홀의 배열 피치에 상술한 원하는 축소율을 곱한 피치로 나란하게 된다. 묘화 장치(100)는, 샷 빔을 연속하여 차례로 조사하는 래스터 스캔 방식으로 묘화 동작을 행하고, 원하는 패턴을 묘화할 시, 불필요한 빔은 블랭킹 제어에 의해 빔 off로 제어된다.
최근의 반도체의 미세화 및 고집적화에 수반하여, 패턴 묘화의 고정밀화가 요구되고 있다. 그 요구에 대응하기 위하여, 예를 들면 제어 그리드(AU)가 10 nm, 빔 사이즈(size)가 20 nm × 20 nm, 빔의 해상성(σ)이 10 nm와 같은 성능이 묘화 장치에 필요하게 된다.
도 4(a)에서 도 4(c)는, 실시예 1에서의 묘화 동작을 설명하기 위한 개념도이다. 도 4(a)에 도시한 바와 같이, 시료(101)의 묘화 영역(30)은, 예를 들면 y 방향을 향해 소정의 폭으로 직사각형(短冊) 형상의 복수의 스트라이프 영역(32)으로 가상 분할된다. 이러한 각 스트라이프 영역(32)은 묘화 단위 영역이 된다. 우선, XY 스테이지(105)를 이동시켜, 제1 번째의 스트라이프 영역(32)의 좌단, 혹은 더 좌측의 위치에 1 회의 멀티빔(20)의 조사로 조사 가능한 조사 영역(34)이 위치하도록 조정하고, 묘화가 개시된다. 제1 번째의 스트라이프 영역(32)을 묘화할 시에는 , XY 스테이지(105)를 예를 들면 - x 방향으로 이동시킴으로써, 상대적으로 x 방향으로 묘화를 진행시킨다. XY 스테이지(105)는 소정의 속도로, 예를 들면 연속 이동시킨다. 제1 번째의 스트라이프 영역(32)의 묘화 종료 후, 스테이지 위치를 - y 방향으로 이동시켜, 제2 번째의 스트라이프 영역(32)의 우단, 혹은 더 우측의 위치에 조사 영역(34)이 상대적으로 y 방향에 위치하도록 조정하고, 이번에는 도 4(b)에 도시한 바와 같이, XY 스테이지(105)를 예를 들면 x 방향으로 이동시킴으로써, - x 방향을 향해 마찬가지로 묘화를 행한다. 제3 번째의 스트라이프 영역(32)에서는 x 방향을 향해 묘화하고, 제4 번째의 스트라이프 영역(32)에서는 - x 방향을 향해 묘화하는 것과 같이, 교호로 방향을 변경하면서 묘화함으로써 묘화 시간을 단축할 수 있다. 단, 이러한 교호로 방향을 변경하면서 묘화하는 경우에 한정되지 않고, 각 스트라이프 영역(32)을 묘화할 시, 동일한 방향을 향해 묘화를 진행시키도록 해도 상관없다. 각 스트라이프(32)를 묘화할 시, x 방향을 향해 XY 스테이지(105)가 이동하는 중, 편향기(208)에 의해 y 방향으로 각 샷이 차례로 이동(스캔)하도록 편향하고, 샷 빔을 연속하여 차례로 조사하는 래스터 스캔 방식으로 묘화한다. 예를 들면, 편향기(208)에 의해 XY 스테이지(105)의 이동 속도에 추종하도록 x 방향으로 편향하면서, y 방향으로 각 샷이 차례로 이동(스캔)하도록 편향한다. 이에 의해 도 4(c)에 도시한 바와 같이, 애퍼처 부재(203)의 하나의 홀(A)을 통과한 빔에 의한 샷 패턴(36)은, 1 회째에 조사된 위치로부터 y 방향으로 차례로 이동하면서 조사되게 된다. 마찬가지로, 애퍼처 부재(203)의 하나의 홀(B)을 통과한 빔(40)에 의한 샷 패턴(36)은, 1 회째에 조사된 위치로부터 y 방향으로 차례로 이동하면서 조사되게 된다. 애퍼처 부재(203)의 각 홀(C부터 H)을 통과한 각 빔에 의한 샷 패턴(36)도, 마찬가지로 각각 1 회째에 조사된 위치로부터 y 방향으로 차례로 이동하면서 조사되게 된다. 이와 같이, 한 번에 조사되는 종횡 2 × 2의 빔으로 둘러싸이는 각 영역 내를 래스터 스캔 방식으로 묘화하게 된다. 종횡 2 × 2의 빔으로 둘러싸이는 각 영역은, 예를 들면 기준이 되는 1 개의 빔 위치를 포함하고, 나머지 3 개의 빔 위치의 내측까지가 포함된다.
도 5는, 실시예 1에서의 래스터 스캔의 묘화 동작을 설명하기 위한 개념도이다. 예를 들면, 애퍼처 부재(203)에 대하여 x 방향으로 8 개의 홀(A ~ H)이 형성되어 있을 경우, 한 번에 조사되는 x 방향으로 이웃하는 샷 패턴(36) 간을 스테이지가 이동하는 동안에, 한 번에 조사되는 종횡 2 × 2의 빔으로 둘러싸이는 각 영역 내를 복수회의 샷의 빔으로 조사한다(도면에는 홀(A)부터 홀(E)까지의 부분만 기재). 예를 들면, 소정의 양자화 치수로 격자 형상으로 배치한 제어 그리드(AU:어드레스 유닛)의 사이즈를 한 번에 조사되는 종횡 2 × 2의 빔으로 둘러싸이는 각 영역 내를 n AU × n AU가 되는 사이즈로 설정하고, 스테이지 이동 중, 이러한 종횡 2 × 2의 빔으로 둘러싸이는 각 영역을 AU(제어 그리드) 간격 이하의 샷 간격으로 n 회의 샷의 빔으로 조사한다. 여기서는, AU의 사이즈를 한 번에 조사되는 이상적인 종횡 2 × 2의 빔으로 둘러싸이는 각 영역 내를 8 AU × 8 AU가 되는 사이즈로 설정하고, 스테이지 이동 중, 이러한 종횡 2 × 2의 빔으로 둘러싸이는 각 영역을 AU 간격으로 샷하고, 8 회의 샷의 빔으로 조사한다. 여기서, 제어 상으로는 AU 간격으로 샷하도록 해도, 실제로는 필드 변형 등에 의해 샷 위치가 이탈하는 경우가 있는데, 이 경우에는 샷 간격이 커짐으로써 발생하는 정밀도 불량을 회피하기 위하여, 미리 샷 간격을 지정된 간격(AU) 이하로 제어하는 것이 바람직하다.
도 5에서 원으로 둘러싸인 숫자 중 '1'은, 애퍼처 부재(203)의 각 홀(A)을 통과한 빔에 의한 샷 위치를 나타낸다. 도 5에서 원으로 둘러싸인 숫자 중 '2'는, 애퍼처 부재(203)의 각 홀(B)을 통과한 빔에 의한 샷 위치를 나타낸다. 도 5에서 원으로 둘러싸인 숫자 중 '3'은, 애퍼처 부재(203)의 각 홀(C)을 통과한 빔에 의한 샷 위치를 나타낸다. 도 5에서 원으로 둘러싸인 숫자 중 '4'는, 애퍼처 부재(203)의 각 홀(D)을 통과한 빔에 의한 샷 위치를 나타낸다. 도 5에서 원으로 둘러싸인 숫자 중 '5'는, 애퍼처 부재(203)의 각 홀(E)을 통과한 빔에 의한 샷 위치를 나타낸다. 또한, 도면에는 기재되지 않은 부분에서 원으로 둘러싸인 숫자 중 '6'은, 애퍼처 부재(203)의 각 홀(F)을 통과한 빔에 의한 샷 위치를, 원으로 둘러싸인 숫자 중 '7'은, 애퍼처 부재(203)의 각 홀(G)을 통과한 빔에 의한 샷 위치를, 원으로 둘러싸인 숫자 중 '8'은, 애퍼처 부재(203)의 각 홀(H)을 통과한 빔에 의한 샷 위치를 각각 나타낸다. 또한 '11'에서 '15'는, 애퍼처 부재(203)의 각 홀(A ~ H)과는 Y 방향으로 1 단 상에 위치하는 다른 각 홀을 나타낸다. 또한 사각으로 둘러싸인 위치는, 애퍼처 부재(203)의 각 홀(A ~ H)의 위치를 나타낸다. 애퍼처 부재(203)의 각 홀(A ~ H)을 통과한 빔에 의한 각 샷 패턴(36)은, 이상적으로는 서로 빔 간 피치만큼 떨어진 위치에 각각 조사된다. 그리고, 빔 간 피치를 AU(제어 그리드) 간격으로 n 회(여기서는 8 회) 샷하면서 빔 간 피치의 n 배(여기서는 8 회)의 길이를 스테이지 이동시키면, 도 5에 도시한 바와 같이, 한 번에 조사되는 종횡 2 × 2의 빔으로 둘러싸이는 각 영역 내는, 애퍼처 부재(203)의 각 홀(A ~ H)을 통과한 빔에 의한 각 샷 패턴(36)에 의해 채워지게 된다. 묘화하고자 하는 패턴의 형상에 따라, 이러한 샷 중 불필요한 샷의 빔을 off로 하면, 나머지 샷 패턴(36)을 연결함으로써 시료(101) 상에 원하는 형상의 패턴을 묘화할 수 있다.
도 5에서는, 스테이지 이동 방향을 + x 방향으로 하고, XY스테이지(105)의 이동 속도에 추종(트래킹)하도록 x 방향으로 편향하면서, x 방향과 직행하는 y 방향으로 빔 전체를 스캔하도록 제어한다. 이 모습을 도 5의 우측에 개념적으로 화살표로 도시하고 있다. 도 5에서는, 스테이지 이동에 추종시키는 x 방향의 편향 동작은 도시하지 않은 편향기(208)와는 다른 편향기로 행한 경우를 화살표로 나타내고 있지만, 편향기(208)로 행해도 된다.
또한, 애퍼처의 개구(홀) 위치의 아래에 스캔 개시의 타이밍을, T = 0을 기준으로 하여 T = 0 ~ 7로 나타내고 있다. 도 5는, T = 0의 시점에서, 각 빔이 스캔을 개시하는 묘화 위치를 모식적으로 나타내고 있다. 이 예에서는, 스테이지의 + x 방향 이동에 추종하면서 y 방향 스캔을 행함으로써, 묘화 위치가 상대적으로 동일한 위치에 유지되면서, y 방향 스캔을 행함으로써 y 방향 1 열째 전체 면을 빔 샷으로 채운다. T = 0에서 0 회째의 y 방향 스캔이 종료되면, 빔 위치는 옆의 빔 위치로 이탈한 곳에 있는데, 상술한 트래킹용의 편향기 혹은 편향기(208)에 의해 빔 위치를 원래의 빔 위치의 1 AU(- x 방향으로) 이탈한 곳이 되도록 편향 제어하고, 여기로부터 1 회째(T = 1)의 스캔을 개시한다. 스테이지 이동 속도는, 1 회의 y 스캔이 종료된 시점에서 빔 위치가 옆의 빔 위치가 되도록 제어된다. 이들 빔 샷의 각각에 어느 정도의 조사량을 부여하는가에 따라 다양한 패턴이 묘화되게 된다. 상술한 바와 같이, 예를 들면 스테이지 이동에 추종시키는 x 방향의 편향 동작은 다른 편향기로 행함으로써, 편향기(208)는 y 방향으로의 스캔 폭만큼의 편향 폭이면 되어, 해상도를 보다 향상시킬 수 있다. 혹은, 1 회의 y 스캔이 종료된 시점에서 빔 위치가 1 AU(- x 방향으로) 이탈한 곳이 되는 것과 같은 스테이지 속도로 제어해도 된다.
도 5에서는, 편향기(208)에 의해 XY 스테이지(105)의 이동 속도에 추종(트래킹)하도록 x 방향(여기서는 - x 방향)으로 편향하면서, y 방향으로 각 샷이 차례로 이동(스캔) 하도록 편향한다. 그리고, y 방향으로 n 샷의 빔을 조사한 후, - x 방향으로 미리 설정된 샷 간격만큼 이탈한 위치로 이동시키고, 마찬가지로 XY 스테이지(105)의 이동 속도에 추종(트래킹)하도록 x 방향으로 편향하면서, y 방향으로 각 샷이 차례로 이동(스캔)하도록 편향한다. 이러한 동작을 n 회 행함으로써, 도 5에 도시한 바와 같이 한 번에 조사되는 종횡 2 × 2의 빔으로 둘러싸이는 각 영역 내는, 애퍼처 부재(203)의 각 홀(A ~ H)을 통과한 어느 한 빔에 의한 각 샷 패턴(36)에 의해 채워지게 된다. 이상과 같이, 스테이지 속도에 맞추어 트래킹 제어함으로써, 소위 스텝 앤드 리피트(step and repeat) 동작과 동일한 묘화 처리를 행할 수 있다.
도 6은, 실시예 1에서의 래스터 스캔의 묘화 동작의 다른 일례를 설명하기 위한 개념도이다. 도 6에서 원으로 둘러싸인 숫자와 애퍼처 부재(203)의 각 홀의 위치와의 관계는 도 5와 동일하다(도 5와 마찬가지로, 홀(A)에서 홀(E)까지의 부분만 기재). 또한 '11'에서 '15'는, 애퍼처 부재(203)의 각 홀(A ~ H)과는 Y 방향으로 1 단 상에 위치하는 다른 각 홀을 나타낸다. 또한 사각으로 둘러싸인 위치는, 애퍼처 부재(203)의 각 홀(A ~ H)의 위치를 나타낸다. 도 6에서는, 도 5의 변형예를 나타낸다. 도 6에서는, 스테이지 이동 방향을 + x 방향으로 하고, XY 스테이지(105)의 이동 속도에 추종(트래킹)하도록 x 방향으로 편향하면서, x 방향과 직행하는 y 방향으로 빔 전체를 스캔 하도록 제어한다. 도 6에서는, 편향기(208)에 의해 스테이지 이동에 추종시키는 x 방향의 편향 동작을 행할 경우를 화살표로 나타내고 있다. 또한, 애퍼처의 개구(홀) 위치의 아래에 스캔 개시의 타이밍을, T = 0을 기준으로 하여 T = - 6 ~ 3으로 나타내고 있다. 0 회째(T = 0)의 y 스캔이 종료되면, 이 도면의 예에서는, 원점 위치(스캔 개시 위치)는 좌측의 홀을 통과한 빔의 0 회째(T = 0)의 스캔 개시 위치의 1 AU(- x 방향으로) 이탈한 위치와 일치한다. 즉, 이와 같이 스테이지 속도를 제어한다. 빔 간을 7 AU분의 간격으로 제어하면 된다. 이에 의해 좌측 홀의 빔의 묘화 위치와 중첩되지 않도록, 1 회째(T = 1)의 스캔 개시 위치를 좌측(- X 방향)으로 1 제어 유닛(1 AU)만큼 이동시켜 y 스캔을 개시할 수 있다. 이러한 처리를 순차적으로 반복한다. 이러한 동작에 의해, 편향기(208)의 x 방향 편향 폭을 y 방향으로의 스캔 폭만큼의 편향 폭과 동일한 폭이면 되고, 보다 해상도를 향상시킬 수 있다.
도 5, 6에서 각 샷의 조사 위치의 일례를 도시한 바와 같이, 스테이지 이동과 조합한 스캔의 방법은 다양하게 선택할 수 있다. y 방향 스캔만으로 묘화하는 방법은 제어가 단순하다는 장점이 있지만, x 방향의 스캔이 없는 만큼 융통성이 부족하다. 한편, xy 양 방향의 스캔을 조합한 방법에는 보다 선택지가 있다고 하는 장점이 있다. 예를 들면 도 5, 6의 예에 도시한 바와 같이, 스캔 방법을 전환하면 빔 간의 샷 수를 변경하여(제어 유닛을 변경하여) 묘화하는 것이 가능해진다. 이들은, 설계의 요구에 맞추어 선택되면 된다.
이상과 같이, 묘화 처리를 행할 시, 설정된 샷 간격의 각 샷 위치에 각 빔이 조사되는 것이 이상적이지만, 실제로는 다양한 요인의 변형에 의해 각 샷의 빔 조사 위치가 원하는 샷 위치로부터 이탈한다. 변형의 요인으로서는, 예를 들면 상술한 바와 같이, 렌즈 조건의 변경 등에 의한 편향 변형(광학 변형), 광학계 부품의 설계 정밀도 또는 설치 위치 정밀도 등에 의해 원리적으로 존재하는 필드 변형(전사 변형) 및 시료(101)의 묘화면의 요철(凹凸)에 의해 빔의 포커스 위치를 다이내믹 조정(Z 위치 보정)했을 시의 이미지의 확대 / 축소 및 회전에 의해 발생하는 변형(Z 보정 변형) 등이 존재한다. 또한, 이들에 한정되지 않고, 그 외의 어떠한 요인에 의한 변형이 존재해도 된다. 이들을 요인으로 하는 변형에 의해 샷 위치가 이탈하고, 원하는 패턴의 위치 이탈 또는 형상 정밀도의 열화가 발생된다.
따라서 실시예 1에서는, 이들 변형에 의한 샷 위치의 위치 이탈량을 미리 구하고, 이러한 변형에 의한 위치 이탈분을 고려한 샷 위치에 기초하여, 각 샷의 빔의 조사량(조사 시간)을 설정한다. 이에 의해, 변형이 발생해도 조사량이 이미 그 만큼 조정되기 때문에, 결과적으로 묘화 후의 패턴을 고정밀도로 형성할 수 있다.
도 7은, 실시예 1에서의 묘화 방법의 주요부 공정을 나타낸 순서도이다. 도 7에서, 실시예 1에서의 묘화 방법은, 변형 측정 / 연산 공정(S102)과 샷 위치 연산 공정(S104)과 평균 위치 연산 공정(S106)과 면적 밀도 연산 공정(S108)과 조사 시간 연산 공정(S110)과 Z 보정 공정(S111)과 묘화 공정(S112)이라 하는 일련의 공정을 실시한다. 여기서는, 묘화 전처리 공정으로서, 예를 들면 변형 측정 공정(S102)과, 샷 위치 연산 공정(S104)과, 평균 위치 연산 공정(S106)을 실시한다. 그리고, 이러한 묘화 전처리 공정의 결과를 이용하여, 묘화 처리 공정으로서, 면적 밀도 연산 공정(S108)과 조사 시간 연산 공정(S110)과 Z 보정 공정(S111)과 묘화 공정(S112)을 실시한다. 단, 이들에 한정되지 않고, 묘화 전처리 공정의 전부 혹은 일부를 묘화 처리 공정 내에서 실시해도 상관없다.
우선, 변형 측정 / 연산 공정(S102)으로서 측정부(10)는, 각 요인에 의한 변형량을 측정한다. 여기서는 예를 들면 상술한 광학 변형, 필드 변형(전사 변형) 및 Z 보정 변형을 측정 / 연산한다. 이들 변형량은 종래 방법으로 측정하면 되고, 예를 들면 묘화 장치(100)를 이용하여 평가 기판을 묘화함으로써 평가 기판의 각 위치에서의 변형량을 측정하고, 변형량 맵을 작성하면 된다. 혹은 평가 기판의 각 위치에서의 변형량을 다항식으로 피팅(fitting)하여 변형량 연산식을 취득하면 된다. 또한, 스테이지 상에 재치된 마크를 빔으로 스캔하여 그 위치를 측정함으로써 변형을 측정할 수 있다.
도 8은, 실시예 1에서의 필드 변형의 일례를 도시한 개념도이다. 도 8에서는, 스트라이프 영역(32) 내의 조사 영역(34)의 필드 변형의 일례를 도시하고 있다. 여기서는 예를 들면, 도 5에 도시한 스캔 방식으로 각 조사 영역(34)을 묘화했을 경우의 필드 변형의 일례를 도시하고 있다. 이러한 경우에는, 예를 들면 조사 영역(34)마다 필드 원점(제어 상의 원점)을 설정하여, 이러한 필드 원점으로부터의 상대 좌표에 의해 변형량을 정의해도 된다. 물론, 시료(101)의 묘화 영역 전체, 혹은 스트라이프 영역 단위를 1 개의 좌표계로서 정의해도 상관없는 것은 말할 필요도 없다.
또한 Z 보정에 대해서는, 우선 상이한 높이를 가지는 마크(106)의 복수의 측정면의 하나에 초점을 맞춘 경우의 정전 렌즈(211)에 인가하는 전압을 측정하고, 그 외의 측정면에 초점을 맞춘 경우의 정전 렌즈(211)에 인가하는 전압을 측정한다. 또한, 각 측정면의 높이 위치에 초점을 맞추었을 시의 이미지의 확대 / 축소 및 회전량을 측정한다. 각 초점 위치에서의 이미지의 확대 / 축소 및 회전량은 각 측정면의 높이 위치에 묘화면을 맞춘 평가 기판에 실제로 묘화하여 측정하면 된다. 그리고, 마크(106)의 복수의 측정면의 높이 위치는 미리 알고 있으므로, 선형 비례에 의해, 시료면에서의 각 높이에서의 정전 렌즈(211)에 인가하는 전압을 연산할 수 있다. 마찬가지로, 각 높이에서의 이미지의 확대 / 축소 및 회전량을 연산할 수 있다. 구체적으로, 시료(101)의 높이 위치에 따른 확대 / 축소 및 회전량을 나타내는 각 계수를 취득할 수 있다.
이어서, 묘화 대상이 되는 시료(101)의 묘화면의 높이 위치 분포를 측정한다. 시료(101)의 묘화면의 높이는, 스트라이프 영역(32)마다, XY 스테이지(105)를 이동시키면서, 투광기(212)로부터 레이저를 시료면의 예를 들면 광축 위치에 조사하고, 그 반사광을 수광기(214)로 수광함으로써, 시료면의 높이를 측정한다. 수광기(214)의 출력은, 앰프(138)로 디지털 데이터로 변환되고, 측정부(10)로 출력된다. 이에 의해, 시료(101)의 높이 분포를 측정할 수 있다. 그리고, 이러한 높이 분포에 취득한 계수를 곱함으로써 각 위치에서의 Z 보정 변형량을 연산하고, Z 보정 변형량 맵을 작성하면 된다. 혹은 평가 기판의 각 위치에서의 Z 보정 변형량을 다항식으로 피팅하여 Z 보정 변형량 연산식을 취득하면 된다.
이상과 같이 하여 얻어진 변형량 맵 혹은 변형량 연산식에 의한 변형량 데이터는 기억 장치(142)에 저장된다. 이러한 변형량 데이터는 변형의 요인별로 작성해도 되고, 각 요인의 변형량을 가산(합성)하여 종합해도 적합하다.
샷 위치 연산 공정(S104)으로서 샷 위치 연산부(12)는, 전자빔에 의한 멀티빔(20)을 이용하여 종횡 미리 설정된 제어 그리드(AU) 간격 이하의 샷 간격으로 시료(101) 상에 각 빔을 조사할 경우의, 조사되는 각 빔의 변형분을 포함하는 샷 위치를 연산한다. 구체적으로, 멀티빔(20)으로 시료(101)의 묘화 영역 전체 면을 묘화할 경우의 각 빔의 샷 위치를 연산한다. 샷 위치 연산부(12)는, 연산할 시 기억 장치(142)로부터 변형량 데이터를 독출하고, 설계 상의 각 샷 위치 좌표(r(x, y))를 이용하여 변형 후의 위치(R(x, y))를 연산한다. 변형량 맵을 이용할 경우에는, 예를 들면 r(x, y)를 주위의 맵값으로 선형 보간하여 변형 후의 위치(R(x, y))를 연산하면 된다. 변형량 연산식을 이용할 경우에는, 예를 들면 r(x, y)를 변형량 연산식에 대입하고, 변형 후의 위치(R(x, y))를 연산하면 된다. 여기서, 각 빔은 10 nm 내지 20 nm와 같은 유한의 크기가 되는데, 그 샷 위치는, 빔의 중심 위치, 또는 특히 강도 분포에 비대칭성이 있는 것과 같은 경우에는 중심 위치로 정의하는 것이 바람직하다.
도 9는, 실시예 1에서의 각 샷 위치의 일례를 도시한 개념도이다. 도 9에서는, 시료(101)의 묘화 영역에서의 일부의 영역에서의 각 빔의 샷 위치(22)를 도시하고 있다. 변형이 존재하지 않으면, 각 빔은 x, y 방향으로 설정된 샷 간격으로 동일하게 배열되게 되지만, 변형이 존재하기 때문에, 도 9에 도시한 바와 같이 각 빔의 샷 위치(22)의 좌표(R)에는 이탈이 발생한다. 그 이탈량에 따라서는, 예를 들면 좌표(R(xn +1, yn +1))의 샷 위치(22)와, 좌표(R(xn, yn +1)의 샷 위치(22) 간과 같이 샷 간격이 AU보다 작아질 경우도 있을 수 있다. 또한, 예를 들면 좌표(R(xn, yn))의 샷 위치(22)와 좌표(R(xn +1, yn))의 샷 위치(22) 간과 같이 샷 간격이 AU보다 커질 경우도 있을 수 있다. 여기서, 샷 간격이 AU보다 커져 정밀도가 악화되는 것이 염려되는데, 그러한 경우에는 미리 샷 간격을 AU보다 작게 해 둠으로써, 정밀도의 악화를 회피할 수 있다. 이상과 같이 하여 연산된 샷 위치 데이터는, 예를 들면 샷 위치 데이터 맵으로서 기억 장치(144)에 저장된다.
도 10은, 실시예 1에서의 샷 위치 데이터 맵의 일례를 도시한 개념도이다. 도 10에 도시한 바와 같이, 샷 위치 데이터 맵은, 예를 들면 변형분을 포함한 각 샷 위치 좌표(R(x, y))가 맵값으로서 정의된다.
평균 위치 연산 공정(S106)으로서 평균 위치 연산부(14)는, 각 빔의 변형분을 포함하는 샷 위치(R)를 이용하여, 각각 바로 옆의 종횡 2 × 2의 빔군의 샷 위치끼리로 둘러싸이는 복수의 영역(제1 영역)의 각 영역(제1 영역) 내의 미리 설정된 조건에 의한 조건 위치를 연산한다. 이러한 조건 위치는, 복수의 영역(제1 영역)의 평균 위치 혹은 중심 위치이면 적합하다. 여기서는, 예를 들면 평균 위치를 연산한다.
도 11은, 실시예 1에서의 샷 영역 메쉬의 일례를 도시한 개념도이다. 예를 들면, 좌표(R(xn, yn))와 좌표(R(xn +1, yn))와 좌표(R(xn, yn +1)와 좌표(R(xn +1, yn +1)로 나타내는 각 샷 위치(22)에 의해 종횡 2 × 2로 둘러싸인 영역의 평균 위치(29)의 좌표(P(xn, yn))를 연산한다. 좌표(P(xn, yn))의 x 좌표값은, 각 샷 위치(22)의 x 좌표값을 가산한 합계를 4로 나눈 값으로 구할 수 있다. 마찬가지로, 좌표(P(xn, yn))의 y 좌표값은, 각 샷 위치(22)의 y 좌표값을 가산한 합계를 4로 나눈 값으로 구할 수 있다. 마찬가지로, 좌표(R(xn, yn))와 좌표(R(xn -1, yn)와 좌표(R(xn -1, yn +1))와 좌표(R(xn, yn +1))로 나타내는 각 샷 위치(22)에 의해 종횡 2 × 2로 둘러싸인 영역의 평균 위치(29)의 좌표(P(xn -1, yn))를 연산한다. 마찬가지로, 좌표(R(xn, yn))와 좌표(R(xn -1, yn))와 좌표(R(xn -1, yn -1))와 좌표(R(xn, yn -1))로 나타내는 각 샷 위치(22)에 의해 종횡 2 × 2로 둘러싸인 영역의 평균 위치(29)의 좌표(P(xn -1, yn -1))를 연산한다. 마찬가지로, 좌표(R(xn, yn))와 좌표(R(xn, yn -1))와 좌표(R(xn +1, yn -1))와 좌표(R(xn +1, yn))로 나타내는 각 샷 위치(22)에 의해 종횡 2 × 2로 둘러싸인 영역의 평균 위치(29)의 좌표(P(xn, yn -1))를 연산한다.
이상에 의해, 좌표(P(xn, yn))와 좌표(P(xn -1, yn))와 좌표(P(xn -1, yn -1))와 좌표(P(xn, yn -1))로 나타내는 각 평균 위치(29)에 의해 종횡 2 × 2로 둘러싸인, 샷 위치 좌표(R(xn, yn))를 둘러싸는 샷 영역(27)(제2 영역)을 정의할 수 있다. 샷 영역(27)은, 변형분을 고려한 샷 위치의 평균값으로 둘러싸이기 때문에, 도 11에 도시한 바와 같이 정방형 혹은 장방형과 같이 90 도의 각도의 도형으로는 되지 않는 경우가 많다. 후술하는 바와 같이, 정방형 혹은 장방형과 같이 90 도의 각도의 도형은 되지 않는 샷 영역(27)을 이용함으로써, 고정밀도의 조사량을 연산할 수 있게 된다.
마찬가지로 하여, 시료(101)의 묘화 영역 전체에 걸쳐, 종횡 2 × 2의 각 샷 위치 좌표(R)로 둘러싸인 영역의 평균 위치(29)를 차례로 연산한다. 이에 의해, 시료(101)의 묘화 영역의 대략 전체 면에 걸쳐, 각 샷 위치 좌표(R)를 둘러싸는 각각의 샷 영역(27)(제2 영역)을 정의할 수 있다. 샷 영역(27)을 구성하는 점은 평균 위치(29)를 사용하고 있기 때문에, 이상과 같이 하여 정의되는 복수의 샷 영역(27)(제2 영역)은, 내부에 간극없이 연결되어 있게 된다. 즉, 복수의 샷 영역(27)과, 시료(101)의 묘화 영역 중 복수의 샷 영역(27) 전체를 둘러싸는 복수의 샷 영역(27)과 중첩되지 않는 부분 영역과의 총합이, 시료(101)의 묘화 영역과 일치하게 된다. 또한, 시료(101)의 묘화 영역의 외주 샷 위치는, 4 개의 샷 위치로 둘러쌀 수 없으므로, 샷 영역(27)을 정의할 수 없게 되지만, 묘화 영역의 외측에 가상적으로 샷 위치를 정의함으로써, 이러한 복수의 샷 영역(27) 전체를 둘러싸는 부분 영역에 대해서도 외주 샷 위치용의 샷 영역(27)을 정의해도 된다.
샷 영역 메쉬 작성부(16)는, 이러한 각 평균 위치(29)의 좌표(P)를 이용하여, 복수의 샷 영역(27)에 의해 시료(101)의 묘화 영역을 분할한 샷 영역 메쉬를 작성한다. 그리고, 샷 영역 메쉬 데이터는 기억 장치(146)에 저장된다.
도 12는, 실시예 1에서의 샷 영역 메쉬 데이터의 일례를 나타낸 개념도이다. 도 12에 나타낸 바와 같이, 샷 영역 메쉬 데이터는, 예를 들면 변형분을 포함하여 변형되는 각 평균 위치(29)의 좌표(P(x, y))가 맵값으로서 정의된다.
면적 밀도 연산 공정(S108)으로서 우선 면적 밀도 연산부(18)는, 기억 장치(140)로부터 묘화 데이터를 독출하고, 복수의 샷 영역(27)에 대하여, 샷 영역(27)마다, 당해 샷 영역(27)과 중첩되는 묘화되기 위한 도형 패턴의 면적(S)을 연산한다. 그리고, 면적 밀도 연산부(18)는 샷 영역(27)마다, 당해 샷 영역(27)과 중첩되는 묘화되기 위한 도형 패턴의 면적(S)을 종횡의 제어 그리드 간격(AU)끼리를 곱한 값(AU2)으로 나눈 면적 밀도를 연산한다.
도 13은, 실시예 1에서의 샷 영역과 도형 패턴의 중첩의 일례를 도시한 개념도이다. 도 13에서는, 좌표(P(xn, yn))와 좌표(P(xn -1, yn))와 좌표(P(xn -1, yn -1))와 좌표(P(xn, yn -1))로 나타내는 각 평균 위치(29)에 의해 종횡 2 × 2로 둘러싸인, 샷 위치 좌표(R(xn, yn))를 둘러싸는 샷 영역(27)에, 도형 패턴(50)의 일부가 중첩되어 있을 경우를 도시하고 있다. 면적 밀도 연산부(18)는, 이러한 중첩되는 부분의 면적(S)을 연산하고, 면적(S)을 AU2로 나눔으로써 당해 샷 영역(27)에서의 면적 밀도를 연산한다. 면적 밀도 연산부(18)는, 마찬가지로 하여 그 외의 샷 영역(27)에서의 면적 밀도를 연산한다. 이상과 같이 하여 얻어진 데이터는, 면적 밀도 맵으로서 기억 장치(148)에 저장된다.
도 14(a)와 도 14(b)는, 실시예 1에서의 면적 밀도 맵의 일례를 도시한 도이다. 각 메쉬는 샷 영역(27)을 나타내고 있다. 가령, 모든 빔의 샷 간격이 정확하게 AU와 일치한 경우의 면적 밀도 맵(54)을 도 14(b)에 도시하고 있다. 도 14(b)의 예에서는, 메쉬 영역(샷 영역)이 도형 패턴(50)으로 완전히 덮일 경우에는, 면적 밀도는 100%가 된다. 그리고, 도형 가장자리에 따른 메쉬 영역(샷 영역)에서는, 좌하단으로부터 시계 방향으로 8%, 20%, 20%, 20%, 20%, 12%, 60%, 60%, 48%, 80%, 80%, 80%, 80%, 32%, 40%, 40%가 된다.
그러나 실제로는, 상술한 변형에 의해 모든 빔의 샷 간격이 정확하게 AU와는 일치하지 않는다. 샷 간격이 AU보다 좁아지는 경우도 있는가 하면, 넓어지는 경우도 있을 수 있다. 한편, 실시예 1에서의 면적 밀도(ρ)의 계산 방법에서는, 상술한 중첩되는 부분의 면적(S)을 당해 샷 영역(27)의 면적으로 나누는 것이 아닌, 중첩되는 부분의 면적(S)을 일부러 기준 면적을 AU2로 하고, 이 기준 면적으로 나누는 것으로 하고 있다. 즉, 면적 밀도를 ρ = S / AU2로 하고 있다. 여기서, 기준 면적은 임의로 설정되어도 상관없지만, 상술한 바와 같이 AU2로 나누는, 즉 기준 면적을 AU2로 하여 이 기준 면적에 대한 면적 비율로 하면, AU의 설정값이 변경된 경우에도, 이상적인 샷 간격에서는 도형에 덮인 부분이 100%가 되므로, 이해하기 쉽고 또한 처리 상에도 좋다.
이러한 처리에 의해, 도형 패턴(50)으로 완전히 덮이는 메쉬 영역(샷 영역)의 면적 밀도는 100%를 초과하는 경우도 있는가 하면, 100% 이하가 되는 경우도 있을 수 있다. 이에 의해, 예를 들면 종래부터 알려져 있는 조사량 보정에 의한 근접 효과 보정을 적용할 수 있다. 근접 효과 보정에서는, 근방의 패턴 묘화에서 발생하는 반사 산란 전자의 영향을 보정하도록 조사량을 증감하여 보정하고, 패턴 정밀도를 얻는 것이다. 상기한 설명과 같이, 샷 영역(제2 영역)을 정의하고, 이 영역과 도형 패턴과의 중첩되는 부분의 면적(S)을 기준 면적으로 나눈다고 하는 처리를 행함으로써, 샷 간격이 AU보다 좁아져도 넓어져도, 그 부분으로부터 발생하는 반사 산란 전자의 양은 정확히 샷 간격이 AU로 조사된 경우와 동일하게 된다고 하는 효과가 있다. 이에 의해, 종래의 조사량 보정의 방법을 그대로 사용할 수 있게 된다.
도 14(a)에서는, 실시예 1의 면적 밀도 맵(52)의 일례를 도시하고 있다. 도 14(a)의 예에서는, 도형 패턴(50)으로 완전히 덮이는 메쉬 영역(샷 영역)의 면적 밀도는, 100%는 아닌 93% ~ 96%가 되어 있다. 또한, 도형 가장자리에 따른 메쉬 영역(샷 영역)에서는, 좌하단으로부터 시계 방향으로 9%, 17%, 19%, 18%, 19%, 8%, 55%, 57%, 44%, 77%, 74%, 76%, 75%, 26%, 38%, 36%가 된다. 여기서 상술한 바와 같이, 면적 밀도는 100%를 초과할 경우도 있다. 100%를 초과할 경우, 실제로 조사되는 빔의 조사량이 설계 상의 최대치를 초과할 경우도 있을 수 있으므로, 최대치가 100%를 초과하지 않도록 억제하고자 할 경우에는, 제어 상의 샷 간격을 AU 이하로 설정하는 것이 바람직하다. 이에 의해, 실제의 샷된 빔이 변형 등에 의해 이탈한 경우라도, 샷 간격이 AU보다 커져 발생하는 정밀도 열화도 회피할 수 있다. 도 14(a)는 이와 같이 100% 이하로 억제한 경우의 예이다.
조사 시간 연산 공정(S110)으로서 조사 시간 연산부(21)는, 각 샷 영역(27)의 면적 밀도에 따라, 각 샷 영역(27) 내를 샷 위치로 하는 빔의 조사 시간(t)을 연산한다. 조사 시간(t)은, 조사량(D)을 빔 전류(I)로 나눈 값으로 당해 샷 영역(27)의 면적 밀도(ρ)를 곱함으로써 구해진다. 즉, t = ρ·D·Sb / I로 구할 수 있다. 여기서, Sb는 빔의 면적이다. 이는 단일의 빔으로, 당해 빔으로 조사되는 영역에 조사량(D)을 부여하는 계산식이다.
빔 사이즈는, 예를 들면 AU × AU 혹은 2 AU × 2 AU 등의 경우가 있을 수 있는데, 임의로 설정되어도 상관없다. 멀티빔 방식에서, 빔 사이즈가 예를 들면 2 AU × 2 AU의 경우에는, 묘화면 상에서 옆의 샷과 중첩되게 되는데, 그 경우의 합성된 조사량은 당해 빔으로 AU × AU의 영역을 조사한 경우와 등가가 된다고 상정된다. 즉, 조사 시간은 빔 사이즈에 관계없이, t = ρ·D·AU2 / I로 구할 수 있다. 여기서, 빔 전류(I)는 빔 사이즈(Sb)에 의존하여 변화하지만, 통상은 빔 사이즈는 고정으로 정의되고, 또한 빔 전류를 측정하여 묘화의 제어를 행한다. 이 때문에, AU2의 항은 묘화 조건(빔 사이즈, AU 값 등)에 따라 실용상 설정되는 변환 계수(k)에 포함하여 취급하면 실용적이다. 즉, t = k'·ρ·D·AU2 / I = k·ρ·D / I로 하면 실용적이다. 여기서, k = k'·AU2가 되는데, k'는 통상은 1의 계수이며, 다른 묘화 조건에 의해 필요한 경우에 이용하는 보정 계수로서 실용상 설정되어 있는 것이다.
또한 조사량(D)은, 근접 효과 등의 치수 변동을 보정하기 위한 조사량 보정 계수(Dp)와 기준 조사량(D0)과 빔마다의 전류 보정 계수(α)와 시간 의존 보정 계수(β)를 이용하여, D=D0·Dp·α·β구할 수 있다. 조사량 보정 계수(Dp)와 기준 조사량(D0)과 빔마다의 전류 보정 계수(α)와 시간 의존 보정 계수(β)와 같은 조사량 보정 파라미터는 미리 계산 등 해두면 된다. 혹은, 묘화 데이터 처리부(23)가, 묘화 데이터를 입력하고, 조사량 보정 계수(Dp)를 연산해도 된다. 따라서, 조사 시간 연산부(21)는 t = k'·ρ·D0·Dp·α·β·AU2 / I = k·ρ·D0·Dp·α·β/ I를 연산하면 된다.
또한 시간 의존 보정 계수(β)는, 묘화 후의 시간 의존으로 레지스트의 감도가 변화하는 것과 같은 경우, 또한 빔 전류의 시간 변동이 있는 것과 같은 경우에 보정 계수를 설정하여 보정하도록 이용할 수 있다. 또한, 면적 밀도는 ρ = S / AU2이므로, 조사 시간의 계산을 t = k'·S·D0·Dp·α·β/ I로 할 수도 있다. 이 식은, 면적 밀도(ρ)가 아닌, 면적(S)을 그대로 사용해도 계산이 가능한 것을 의미하고 있고, 어느 쪽을 사용할지는 설계에 의존하여 결정하면 된다. 또한, 묘화 방법에 따라서는 다중 노광에 의해 중첩 묘화 등을 행하는 경우도 있는데, 그러한 경우에는 그 만큼 조사량이 가산되게 되지만, 어떠한 경우든 상기의 식을 기준으로 하여 묘화 방법에 따라 계산하면 된다.
여기서는, 조사 시간 연산부(21)가 조사량(D)의 계산도 포함하도록 연산하고 있지만, 이에 한정되지 않고, 우선 도시하지 않은 조사량 연산부가, 각 샷 영역(27) 내를 샷 위치로 하는 빔의 조사량(D)을 연산한다. 그리고, 조사량(D)을 연산한 후, 조사 시간 연산부(21)가 각 샷 영역(27)의 면적 밀도에 따라, 조사량(D)를 이용하여 조사 시간(t)을 연산해도 된다.
도 15는, 실시예 1에서의 조사 시간 맵의 일례를 도시한 도이다. 조사 시간 맵(56)에서의 각 메쉬는 샷 영역(27)을 나타내고 있다. 도 15에서는, 도 14(a)에 도시한 면적 밀도 맵(52)의 각 맵값에 기준 조사 시간(T0)을 곱한 값이 나타나 있다. 이 경우, 기준 조사 시간(T0)은 T0 = D0·AU2 / I = k·D0 / I로 정의된다. 이는 기준 조사량을 부여하기 위한 제어 회로 내부의 제어값이며, 기준 조사 시간(T0)을 곱하는 것은, 각 샷의 조사 시간을 제어 회로 내부의 제어값으로 변환하는 것을 의미한다. 도 15는, T0 = 500, Dp·α·β= 1의 경우를 단순한 예로서 도시하고 있다.
Z 보정 공정(S111)으로서, 정전 렌즈(211)에 의해 높이 위치 분포가 나타내는 높이 위치의 변화에 따른 각 빔의 초점 위치의 보정이 묘화 처리의 진행에 수반하여 진행되도록 설정한다. 즉, 정전 렌즈(211)는 높이 위치 분포가 나타내는 높이 위치의 변화에 따른 각 빔의 초점 위치를 보정한다.
묘화 공정(S112)으로서 묘화 처리 제어부(25)는, 상술한 바와 같이 샷 간격이 AU 이하의 치수로 묘화 처리가 진행되도록 묘화 처리를 제어한다. 그리고, 묘화 처리 제어부에 의해 제어된 묘화부(150)는, 이상과 같이 하여 얻어진 샷 영역(27)마다의 빔의 조사 시간(t)의 각 빔을 조사함으로써, 시료에 패턴을 묘화한다. 구체적으로, 대응 샷의 빔이 조사 시간 연산부(21)에 의해 연산된 조사 시간으로 가변 제어한다. 그리고, 조사 시간 연산부(21)는 각 샷의 조사 시간을 편향 제어 회로(130)에 출력하고, 편향 제어 회로(130)는 대응하는 샷을 행할 시, 조사 시간(t)만큼 블랭커가 빔 on하도록 제어용의 디지털 신호를 DAC 앰프(134)에 출력하고, DAC 앰프(134)로 디지털 신호를 아날로그 신호로 변환하고, 증폭시킨 다음, 편향 전압으로서 블랭킹 플레이트(204)의 대응하는 블랭커에 인가한다. 이상과 같이, 샷 위치에 따라 조사량을 가변 제어한다. 한편, 묘화 처리 제어부(25)는 원하는 샷 위치에 각 빔이 편향되도록, 편향 위치 데이터를 편향 제어 회로(132)에 출력한다. 편향 제어 회로(132)는 편향량을 연산하고, 제어용의 디지털 신호를 DAC 앰프(136)에 출력하고, DAC 앰프(136)로 디지털 신호를 아날로그 신호로 변환하고, 증폭시킨 다음, 편향 전압으로서 편향기(208)에 인가한다. 이에 의해, 그 회에 샷되는 멀티빔(20)을 모아 편향한다.
이상과 같이, 실시예 1에 따르면 샷 위치를 설계 위치가 아닌, 변형분을 포함한 샷 위치로 정의하고, 이러한 각 샷 위치(R)로부터 샷 영역(27)을 정의함으로써 변형에 의한 위치 이탈을 보정하는 조사량(D)으로 각 샷의 빔을 조사할 수 있다. 그 결과, 광학계 등의 변형에 의한 멀티빔의 조사 위치의 이탈에 의한 패턴 형상 혹은 치수의 변동을 억제할 수 있다. 그 결과, 멀티빔으로 고정밀도의 패턴을 묘화할 수 있다.
상술한 예에서는, 샷 영역(27)은, 4 개의 평균 위치(29)를 연결한 사각형으로 정의되었지만, 이에 한정되지 않는다.
도 16은, 실시예 1에서의 샷 영역 메쉬의 다른 일례를 도시한 개념도이다. 좌표(R(xn +1, yn))로 나타내는 샷 위치(22)가, 변형에 의해 크게 이탈한 경우 등에는, 좌표(R(xn, yn))와 좌표(R(xn +1, yn))와의 평균 위치(중 간 위치)에 새로운 평균 위치(P')를 구해도 된다. 예를 들면, 샷 위치(22)의 이탈량에 관한 설정값을 미리 결정해 두고, 이탈량이 이 설정값(예를 들면, AU의 10%) 이상 이탈한 경우에는 이러한 새로운 평균 위치(P')를 구한다고 하는 처리를 행하면 적합하다. 도 16의 예에서는, 좌표(P(xn, yn))와 좌표(P(xn -1, yn))와 좌표(P(xn -1, yn -1))와 좌표(P(xn, yn -1))로 나타내는 각 평균 위치(29)와 새로운 평균 위치(P')에 의해 둘러싸인, 샷 위치 좌표(R(xn, yn))를 둘러싸는 샷 영역(27)(제2 영역)이 정의된다. 이에 의해, 국소적으로 샷 위치의 이탈이 클 경우에도, 묘화 정밀도의 향상을 도모할 수 있다.
또한 상술한 예에서는, 샷 영역(27)이 4 개의 평균 위치(29)를 연결한 1 개의 사각형으로 정의되었지만, 이에 한정되지 않는다.
도 17은, 실시예 1에서의 샷 영역 메쉬의 다른 일례를 도시한 개념도이다. 도 17에서는, 좌표(R1)로 나타내는 샷 위치(22)의 조사량(D)을 연산하기 위한 면적 밀도(ρ)를, p1 ~ p4로 둘러싸이는, 4 개의 평균 위치(29)를 연결한 1 개의 사각형(s1)으로 정의하는 것이 아닌, 주위의 사각형(s2 ~ s9)을 포함한 사각형(s1 ~ s9)을 1 개의 샷 영역으로서 정의해도 된다. 이러한 경우, 각 샷 위치(22)용의 샷 영역이 다른 샷 위치(22)용의 샷 영역과 중복되게 되지만, 좌표(R1)로 나타내는 샷 위치(22)의 조사량(D)를 연산하기 위한 면적 밀도(ρ)를 연산할 시, 각 사각형(s1 ~ s9)과 도형 패턴이 중첩되는 부분의 면적(S)을 사각형 수(여기서는 9 개)로 나눈 값으로 하면 된다. 다른 샷 위치(22)용에 면적 밀도(ρ)를 연산할 때도 동일하다. 이에 의해, 묘화 영역 전체에서 보면, 1 개의 사각형(s1)으로 정의할 경우의 면적(S)의 합계와, 복수의 사각형(s1 ~ s9)으로 정의할 경우의 면적(S)의 합계와의 사이에서 동일하게 할 수 있다. 혹은, 좌표(R1)로 나타내는 샷 위치(22)가 포함되는 중심의 사각형(s1)에 대해서는 면적(S)을 1 / 2로 하여 이용하고, 주위의 사각형(s2 ~ s9)에 대해서는 면적(S)을 1 / 16로 하여 이용하는 것과 같은 가중치 부여를 행해도 적합하다.
또한 상기한 실시예에서는, 4 개의 샷 위치의 평균 위치에 의해 샷 영역을 구획하는 좌표점을 연산한다고 했지만, 또한 4 개 이상의 샷 위치의 평균 혹은 중심으로 좌표점을 정의할 수도 있다. 도 17을 참조하여 설명하면, 상기한 실시예에서는, 4 개의 샷 위치(R1, R2, R4, R5)의 평균 위치에 의해 샷 영역을 구획하는 좌표점(p1)을 연산한다고 했지만, 또한 예를 들면 주위의 16 개의 샷 위치(R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12, R13, R14, R15, R16)의 평균, 혹은 상기 16 개의 샷 위치에서 코너 부분의 샷 위치를 제외한 주위의 12 개의 샷 위치(R1, R2, R3, R4, R5, R6, R7, R8, R11, R12, R14, R15)의 평균 위치로 한다고 하는 것과 같이 대상의 샷 위치를 증가시켜, 그 평균 위치에서 p1의 좌표를 정의할 수도 있다. 예를 들면 16 개의 경우에는, 16 개의 X, Y 각 좌표값을 가산하여 16으로 나눔으로써, 좌표점(p1)의 X, Y의 각 좌표가 또한 12 개의 경우에는, 12 개의 X, Y 각 좌표값을 가산하여 12로 나눔으로써, 좌표점(p1)의 X, Y의 각 좌표가 구해진다.
또한, 각 좌표점에 가중치를 부여하여 평균 혹은 중심을 계산함으로써 좌표점(p1)을 정의할 수도 있다. 예를 들면, 대상 위치로부터의 거리에 의존하여, 대상 위치에 가까운 샷 위치(R1, R2, R4, R5)에는 2의 가중치를 부여하고, 그 외의 샷 위치(R3, R6, R7, R8, R9, R10, R11, R12, R13, R14, R15, R16)에는 1의 가중치를 부여하여 평균 혹은 중심을 계산한다. 이 경우, 샷 위치(R1, R2, R4, R5)의 X, Y 각 좌표값은 2 배하여 가산하고, 그 외의 샷 위치의 X, Y 각 좌표값은 1 배로 가산하고, 가산한 결과를 20으로 나누어 좌표점(p1)의 X, Y 각 좌표를 구한다고 하는 연산 처리가 된다.
이와 같이 계산 대상으로 하는 샷 위치를 증가시킴으로써, 보다 넓은 범위의 주변의 샷 위치의 이탈을 반영한 결과로 좌표점을 정의할 수 있게 되어, 국소적으로 샷 위치의 이탈이 큰 것이 존재하는 것과 같은 경우에도, 샷 간에서 평준화된 보정 계산 결과를 얻어지므로 정밀도의 향상이 도모되게 된다.
또한, 일반적으로 계산 대상을 증가시키면 연산 처리에 시간이 걸리게 되는데, 구체적으로 어떠한 연산을 행할지는, 요구 정밀도에 맞추어 설계로 선택되면 된다.
이상, 구체예를 참조하여 실시예에 대하여 설명했다. 그러나 본 발명은, 이들 구체예에 한정되지 않는다.
또한, 장치 구성 또는 제어 방법 등, 본 발명의 설명에 직접 필요하지 않은 부분 등에 대해서는 기재를 생략했지만, 필요한 장치 구성 또는 제어 방법을 적절히 선택하여 이용할 수 있다. 예를 들면, 묘화 장치(100)를 제어하는 제어부 구성에 대해서는 기재를 생략했지만, 필요한 제어부 구성을 적절히 선택하여 이용하는 것은 말할 필요도 없다.
이 외에, 본 발명의 요소를 구비하고, 당업자가 적절히 설계 변경할 수 있는 모든 멀티 하전 입자빔 묘화 장치 및 방법은, 본 발명의 범위에 포함된다.
본 발명의 몇 개의 실시예를 설명했지만, 이들 실시예는 예로서 제시한 것이며, 발명의 범위를 한정하는 것은 의도하고 있지 않다. 이들 신규한 실시예는, 그 외의 다양한 형태로 실시되는 것이 가능하며, 발명의 요지를 일탈하지 않는 범위에서, 다양한 생략, 치환, 변경을 행할 수 있다. 이들 실시예 또는 그 변형은, 발명의 범위 또는 요지에 포함되고, 또한 특허 청구의 범위에 기재된 발명과 그 균등의 범위에 포함된다.

Claims (10)

  1. 하전 입자빔에 의한 멀티빔을 이용하여 종횡으로 배열되는 미리 설정된 제어 그리드(grid) 간격에 기초하여 시료 상에 각 빔을 조사할 경우의, 조사되는 각 빔의 변형분을 포함하는 샷 위치를 연산하고,
    상기 각 빔의 변형분을 포함하는 샷 위치를 이용하여, 각각 바로 옆의 종횡 2 × 2의 빔군의 샷 위치끼리로 둘러싸이는 복수의 제1 영역의 각 제1 영역 내의 미리 설정된 조건에 의한 조건 위치를 연산하고,
    상기 복수의 제1 영역의 조건 위치를 이용하여, 각각 바로 옆의 복수의 조건 위치군으로 둘러싸이는 복수의 제2 영역에 대하여, 제2 영역마다, 상기 제2 영역과 중첩되는 묘화되기 위한 도형 패턴의 면적 밀도를 연산하고,
    각 제2 영역의 면적 밀도에 따라, 각 제2 영역 내를 샷 위치로 하는 빔의 조사량 또는 조사 시간을 연산하고,
    구한 조사량 또는 조사 시간의 각 빔을 조사함으로써, 시료에 패턴을 묘화하는 것을 특징으로 하는 멀티 하전 입자빔 묘화 방법.
  2. 제1항에 있어서,
    상기 복수의 제2 영역은, 내부에 간극없이 연결되어 있는 것을 특징으로 하는 방법.
  3. 제1항에 있어서,
    상기 조건 위치는, 제1 영역을 둘러싸는 복수의 샷 위치의 평균 위치 또는 중심 위치인 것을 특징으로 하는 방법.
  4. 제1항에 있어서,
    상기 각 빔의 변형분은, 초점 위치를 보정하는 것에 기인한 변형분을 포함하고,
    상기 초점 위치의 보정은, 상기 시료의 묘화 영역의 높이 위치 분포를 측정하고, 상기 높이 위치 분포가 나타내는 높이 위치의 변화에 따른 각 빔의 초점 위치를 보정함으로써 수행되는 것을 특징으로 하는 방법.
  5. 제1항에 있어서,
    상기 복수의 제2 영역은, 각각 바로 옆의 종횡 2 × 2의 조건 위치, 및 미리 설정된 조건에서 추가되는 추가 조건 위치가 있을 경우에는, 추가 조건 위치를 더 추가한 조건 위치군으로 둘러싸이는 것을 특징으로 하는 방법.
  6. 시료를 재치하는 이동 가능한 스테이지와,
    하전 입자빔을 방출하는 방출부와,
    복수의 개구부가 형성되고, 상기 복수의 개구부 전체가 포함되는 개구부 형성 영역에 상기 하전 입자빔의 조사를 받아, 상기 복수의 개구부를 상기 하전 입자빔의 일부가 각각 통과함으로써 멀티빔을 형성하는 애퍼처(aperture) 부재와,
    상기 애퍼처 부재의 복수의 개구부를 통과한 멀티빔 중, 각각 대응하는 빔의 블랭킹 편향을 행하는 복수의 블랭커(blanker)와,
    상기 복수의 블랭커에 의해 빔 off의 상태가 되도록 편향된 각 빔을 차폐하는 블랭킹 애퍼처 부재와,
    상기 블랭킹 애퍼처 부재를 통과한 각 빔의 상기 시료 상의 각각의 조사 위치에, 상기 블랭킹 애퍼처 부재를 통과한 각 빔을 모아 편향하는 편향기와,
    하전 입자빔에 의한 멀티빔을 이용하여 종횡으로 배열되는 미리 설정된 제어 그리드 간격에 기초하여 시료 상에 각 빔을 조사할 경우의, 조사되는 각 빔의 변형분을 포함하는 샷 위치를 연산하는 샷 위치 연산부와,
    상기 각 빔의 변형분을 포함하는 샷 위치를 이용하여, 각각 바로 옆의 종횡 2 × 2의 빔군의 샷 위치끼리로 둘러싸이는 복수의 제1 영역의 각 제1 영역 내의 미리 설정된 조건에 의한 조건 위치를 연산하는 조건 위치 연산부와,
    상기 복수의 제1 영역의 조건 위치를 이용하여, 각각 바로 옆의 복수의 조건 위치군으로 둘러싸이는 복수의 제2 영역에 대하여, 제2 영역마다, 상기 제2 영역과 중첩되는 묘화되기 위한 도형 패턴의 면적 밀도를 연산하는 면적 밀도 연산부와,
    각 제2 영역의 면적 밀도에 따라, 각 제2 영역 내를 샷 위치로 하는 빔의 조사 시간을 연산하는 조사 시간 연산부와,
    구한 조사 시간의 각 빔이 시료에 조사되도록 상기 복수의 블랭커의 블랭킹 편향 제어를 행하는 편향 제어부
    를 구비하는 것을 특징으로 하는 멀티 하전 입자빔 묘화 장치.
  7. 제6항에 있어서,
    상기 복수의 제2 영역은, 내부에 간극없이 연결되어 있는 것을 특징으로 하는 장치.
  8. 제6항에 있어서,
    상기 조건 위치는, 제1 영역을 둘러싸는 복수의 샷 위치의 평균 위치 또는 중심 위치인 것을 특징으로 하는 장치.
  9. 제6항에 있어서,
    상기 시료의 묘화 영역의 높이 위치 분포를 측정하는 센서와,
    상기 높이 위치 분포가 나타내는 높이 위치의 변화에 따른 각 빔의 초점 위치를 보정하는 정전 렌즈
    를 더 구비하고,
    상기 각 빔의 변형분은, 상기 초점 위치를 보정하는 것에 기인한 변형분을 포함하는 것을 특징으로 하는 장치.
  10. 제6항에 있어서,
    상기 복수의 제2 영역은, 각각 바로 옆의 종횡 2 × 2의 조건 위치, 및 미리 설정된 조건에서 추가되는 추가 조건 위치가 있을 경우에는, 추가 조건 위치를 더 추가한 조건 위치군으로 둘러싸이는 것을 특징으로 하는 장치.
KR1020130062287A 2012-06-01 2013-05-31 멀티 하전 입자빔 묘화 방법 및 멀티 하전 입자빔 묘화 장치 KR101476390B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPJP-P-2012-126368 2012-06-01
JP2012126368 2012-06-01

Publications (2)

Publication Number Publication Date
KR20130135772A KR20130135772A (ko) 2013-12-11
KR101476390B1 true KR101476390B1 (ko) 2014-12-24

Family

ID=49579740

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130062287A KR101476390B1 (ko) 2012-06-01 2013-05-31 멀티 하전 입자빔 묘화 방법 및 멀티 하전 입자빔 묘화 장치

Country Status (5)

Country Link
US (2) US8729507B2 (ko)
JP (1) JP6147528B2 (ko)
KR (1) KR101476390B1 (ko)
DE (1) DE102013210045B4 (ko)
TW (1) TWI485745B (ko)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5498105B2 (ja) * 2009-09-15 2014-05-21 株式会社ニューフレアテクノロジー 荷電粒子ビーム描画方法及び荷電粒子ビーム描画装置
JP5956797B2 (ja) * 2012-03-22 2016-07-27 株式会社ニューフレアテクノロジー マルチ荷電粒子ビーム描画装置及びマルチ荷電粒子ビーム描画方法
JP6147528B2 (ja) * 2012-06-01 2017-06-14 株式会社ニューフレアテクノロジー マルチ荷電粒子ビーム描画方法及びマルチ荷電粒子ビーム描画装置
JP6080540B2 (ja) 2012-12-26 2017-02-15 株式会社ニューフレアテクノロジー 荷電粒子ビーム描画装置
JP6057700B2 (ja) 2012-12-26 2017-01-11 株式会社ニューフレアテクノロジー マルチ荷電粒子ビーム描画装置
JP2015201576A (ja) * 2014-04-09 2015-11-12 株式会社ニューフレアテクノロジー ショットデータ生成方法およびマルチ荷電粒子ビーム描画方法
JP6653125B2 (ja) * 2014-05-23 2020-02-26 株式会社ニューフレアテクノロジー マルチ荷電粒子ビーム描画方法及びマルチ荷電粒子ビーム描画装置
JP6383228B2 (ja) * 2014-09-19 2018-08-29 株式会社ニューフレアテクノロジー マルチ荷電粒子ビームのビーム位置測定方法及びマルチ荷電粒子ビーム描画装置
JP6456118B2 (ja) * 2014-11-20 2019-01-23 株式会社ニューフレアテクノロジー 荷電粒子ビーム描画装置及び荷電粒子ビーム描画方法
JP2016103571A (ja) 2014-11-28 2016-06-02 株式会社ニューフレアテクノロジー マルチ荷電粒子ビーム描画装置及びマルチ荷電粒子ビーム描画方法
JP6438280B2 (ja) * 2014-11-28 2018-12-12 株式会社ニューフレアテクノロジー マルチ荷電粒子ビーム描画装置及びマルチ荷電粒子ビーム描画方法
US9658538B2 (en) * 2014-12-19 2017-05-23 Taiwan Semiconductor Manufacturing Company, Ltd. System and technique for rasterizing circuit layout data
JP6453072B2 (ja) 2014-12-22 2019-01-16 株式会社ニューフレアテクノロジー マルチ荷電粒子ビーム描画装置及びマルチ荷電粒子ビーム描画方法
JP6442295B2 (ja) * 2015-01-19 2018-12-19 株式会社ニューフレアテクノロジー マルチ荷電粒子ビーム像の回転角測定方法、マルチ荷電粒子ビーム像の回転角調整方法、及びマルチ荷電粒子ビーム描画装置
JP2016225357A (ja) 2015-05-27 2016-12-28 株式会社ニューフレアテクノロジー マルチ荷電粒子ビーム描画装置及びマルチ荷電粒子ビーム描画方法
JP6951673B2 (ja) * 2015-06-23 2021-10-20 大日本印刷株式会社 荷電粒子ビーム描画装置およびその制御方法
WO2017195766A1 (ja) * 2016-05-11 2017-11-16 大日本印刷株式会社 荷電粒子ビーム照射装置
JP6808986B2 (ja) * 2016-06-09 2021-01-06 株式会社ニューフレアテクノロジー マルチ荷電粒子ビーム描画装置及びその調整方法
JP6834429B2 (ja) * 2016-08-03 2021-02-24 株式会社ニューフレアテクノロジー マルチ荷電粒子ビーム描画装置及びその調整方法
JP6934742B2 (ja) 2017-04-19 2021-09-15 株式会社ニューフレアテクノロジー マルチ荷電粒子ビーム描画装置及びマルチ荷電粒子ビーム描画方法
JP6863208B2 (ja) 2017-09-29 2021-04-21 株式会社ニューフレアテクノロジー マルチ荷電粒子ビーム描画装置及びマルチ荷電粒子ビーム描画方法
JP2019102661A (ja) 2017-12-04 2019-06-24 株式会社ニューフレアテクノロジー ビーム偏向形状取得方法及びブランキングアパーチャアレイの配置角度取得方法
JP6847886B2 (ja) 2018-03-20 2021-03-24 株式会社東芝 荷電粒子ビーム偏向デバイス
JP7126367B2 (ja) 2018-03-29 2022-08-26 株式会社ニューフレアテクノロジー 荷電粒子ビーム描画装置及び荷電粒子ビーム描画方法
JP7026554B2 (ja) 2018-03-29 2022-02-28 株式会社ニューフレアテクノロジー マルチ荷電粒子ビーム描画装置及びマルチ荷電粒子ビーム描画方法
JP7180515B2 (ja) * 2019-04-11 2022-11-30 株式会社ニューフレアテクノロジー マルチ荷電粒子ビーム描画装置及びマルチ荷電粒子ビーム描画方法
JP7167842B2 (ja) * 2019-05-08 2022-11-09 株式会社ニューフレアテクノロジー 荷電粒子ビーム描画方法及び荷電粒子ビーム描画装置
JP7238672B2 (ja) * 2019-07-25 2023-03-14 株式会社ニューフレアテクノロジー マルチビーム描画方法及びマルチビーム描画装置
JP6754481B2 (ja) * 2019-08-01 2020-09-09 株式会社ニューフレアテクノロジー マルチ荷電粒子ビーム描画装置及びマルチ荷電粒子ビーム描画方法
CN111223916B (zh) * 2020-01-13 2023-06-16 长江存储科技有限责任公司 半导体器件及其制备方法和三维存储器
JP7458817B2 (ja) * 2020-02-18 2024-04-01 株式会社ニューフレアテクノロジー マルチ荷電粒子ビーム描画装置及びマルチ荷電粒子ビーム描画方法
JP2023042359A (ja) * 2021-09-14 2023-03-27 株式会社ニューフレアテクノロジー マルチ荷電粒子ビーム描画装置及びマルチ荷電粒子ビーム描画方法
US20230317405A1 (en) * 2022-03-30 2023-10-05 Fei Company Methods and systems for aligning a multi-beam system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4251784B2 (ja) * 2001-04-09 2009-04-08 株式会社アドバンテスト 電子ビーム露光装置、照射位置算出方法
KR101006676B1 (ko) * 2007-09-05 2011-01-10 가부시키가이샤 뉴플레어 테크놀로지 하전 입자 빔 묘화 장치 및 하전 입자 빔 묘화 방법
KR20110056243A (ko) * 2009-11-20 2011-05-26 가부시키가이샤 뉴플레어 테크놀로지 하전 입자 빔 묘화 장치 및 그 대전 효과 보정 방법
KR20120130137A (ko) * 2011-05-20 2012-11-29 가부시키가이샤 뉴플레어 테크놀로지 하전 입자빔 묘화 장치 및 하전 입자빔 묘화 방법

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2848648A (en) * 1956-05-09 1958-08-19 Itt Bar graph oscilloscopes
US5393987A (en) 1993-05-28 1995-02-28 Etec Systems, Inc. Dose modulation and pixel deflection for raster scan lithography
JP3529997B2 (ja) * 1997-01-13 2004-05-24 株式会社東芝 荷電粒子ビーム光学素子、荷電粒子ビーム露光装置及びその調整方法
JP4077933B2 (ja) * 1998-06-24 2008-04-23 キヤノン株式会社 マルチ電子ビーム露光方法及び装置、ならびにデバイス製造方法
US6855929B2 (en) * 2000-12-01 2005-02-15 Ebara Corporation Apparatus for inspection with electron beam, method for operating same, and method for manufacturing semiconductor device using former
JP4421836B2 (ja) 2003-03-28 2010-02-24 キヤノン株式会社 露光装置及びデバイス製造方法
JP4157410B2 (ja) * 2003-04-02 2008-10-01 株式会社日立ハイテクノロジーズ 電子線描画装置
US7138629B2 (en) * 2003-04-22 2006-11-21 Ebara Corporation Testing apparatus using charged particles and device manufacturing method using the testing apparatus
US7842926B2 (en) 2003-11-12 2010-11-30 Micronic Laser Systems Ab Method and device for correcting SLM stamp image imperfections
JP4563756B2 (ja) * 2004-09-14 2010-10-13 株式会社日立ハイテクノロジーズ 電子ビーム描画方法および電子ビーム描画装置
JP4761508B2 (ja) 2005-03-16 2011-08-31 キヤノン株式会社 荷電粒子露光装置およびデバイス製造方法
US7919218B2 (en) * 2005-04-15 2011-04-05 Micronic Laser Systems Ab Method for a multiple exposure beams lithography tool
JP4171479B2 (ja) * 2005-06-28 2008-10-22 株式会社日立ハイテクノロジーズ 荷電粒子線応用装置及び荷電粒子線応用方法
JP4679978B2 (ja) * 2005-06-28 2011-05-11 株式会社日立ハイテクノロジーズ 荷電粒子ビーム応用装置
JP5001563B2 (ja) * 2006-03-08 2012-08-15 株式会社ニューフレアテクノロジー 荷電粒子線描画データの作成方法
US7781748B2 (en) * 2006-04-03 2010-08-24 Ims Nanofabrication Ag Particle-beam exposure apparatus with overall-modulation of a patterned beam
JP2008085120A (ja) * 2006-09-28 2008-04-10 Nuflare Technology Inc 荷電粒子ビーム描画装置の位置補正係数算出方法及び荷電粒子ビーム描画装置の位置補正係数更新方法
JP4996978B2 (ja) * 2007-05-28 2012-08-08 株式会社ニューフレアテクノロジー 描画方法
JP5079410B2 (ja) * 2007-07-06 2012-11-21 株式会社ニューフレアテクノロジー 荷電粒子ビーム描画装置及び荷電粒子ビーム描画方法
US7705322B2 (en) * 2007-07-12 2010-04-27 Nuflare Technology, Inc. Charged-particle beam writing method
JP5153348B2 (ja) * 2008-01-09 2013-02-27 株式会社日立ハイテクノロジーズ 荷電粒子ビーム軌道補正器及び荷電粒子ビーム装置
JP5301312B2 (ja) * 2008-03-21 2013-09-25 株式会社ニューフレアテクノロジー 荷電粒子ビーム描画装置の較正用基板及び描画方法
DE102008062450B4 (de) * 2008-12-13 2012-05-03 Vistec Electron Beam Gmbh Anordnung zur Beleuchtung eines Substrats mit mehreren individuell geformten Partikelstrahlen zur hochauflösenden Lithographie von Strukturmustern
JP5616674B2 (ja) * 2010-04-20 2014-10-29 株式会社ニューフレアテクノロジー 荷電粒子ビーム描画装置及び荷電粒子ビーム描画方法
JP5655542B2 (ja) 2010-12-17 2015-01-21 スズキ株式会社 グローブボックスステー
NL2006868C2 (en) * 2011-05-30 2012-12-03 Mapper Lithography Ip Bv Charged particle multi-beamlet apparatus.
JP5859778B2 (ja) 2011-09-01 2016-02-16 株式会社ニューフレアテクノロジー マルチ荷電粒子ビーム描画装置及びマルチ荷電粒子ビーム描画方法
JP5826566B2 (ja) 2011-09-01 2015-12-02 株式会社ニューフレアテクノロジー マルチ荷電粒子ビーム描画装置及びマルチ荷電粒子ビーム描画方法
JP6147528B2 (ja) * 2012-06-01 2017-06-14 株式会社ニューフレアテクノロジー マルチ荷電粒子ビーム描画方法及びマルチ荷電粒子ビーム描画装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4251784B2 (ja) * 2001-04-09 2009-04-08 株式会社アドバンテスト 電子ビーム露光装置、照射位置算出方法
KR101006676B1 (ko) * 2007-09-05 2011-01-10 가부시키가이샤 뉴플레어 테크놀로지 하전 입자 빔 묘화 장치 및 하전 입자 빔 묘화 방법
KR20110056243A (ko) * 2009-11-20 2011-05-26 가부시키가이샤 뉴플레어 테크놀로지 하전 입자 빔 묘화 장치 및 그 대전 효과 보정 방법
KR20120130137A (ko) * 2011-05-20 2012-11-29 가부시키가이샤 뉴플레어 테크놀로지 하전 입자빔 묘화 장치 및 하전 입자빔 묘화 방법

Also Published As

Publication number Publication date
JP6147528B2 (ja) 2017-06-14
TWI485745B (zh) 2015-05-21
US8729507B2 (en) 2014-05-20
JP2014007379A (ja) 2014-01-16
TW201411686A (zh) 2014-03-16
US20130320230A1 (en) 2013-12-05
DE102013210045B4 (de) 2019-11-28
DE102013210045A1 (de) 2013-12-05
USRE47561E1 (en) 2019-08-06
KR20130135772A (ko) 2013-12-11

Similar Documents

Publication Publication Date Title
KR101476390B1 (ko) 멀티 하전 입자빔 묘화 방법 및 멀티 하전 입자빔 묘화 장치
KR101412978B1 (ko) 멀티 하전 입자빔 묘화 장치 및 멀티 하전 입자빔 묘화 방법
KR101340564B1 (ko) 멀티 하전 입자빔 묘화 장치 및 멀티 하전 입자빔 묘화 방법
US9966228B2 (en) Multi charged particle beam apparatus, and shape adjustment method of multi charged particle beam image
KR101432204B1 (ko) 멀티 하전 입자빔 묘화 장치 및 멀티 하전 입자빔 묘화 방법
KR101945959B1 (ko) 멀티 하전 입자빔 묘화 장치 및 그 조정 방법
KR101671236B1 (ko) 멀티 하전 입자빔 묘화 방법 및 멀티 하전 입자빔 묘화 장치
KR20160065042A (ko) 멀티 하전 입자빔 묘화 장치 및 멀티 하전 입자빔 묘화 방법
KR20160034191A (ko) 멀티 하전 입자빔의 빔 위치 측정 방법 및 멀티 하전 입자빔 묘화 장치
KR101698892B1 (ko) 데이터 생성 장치, 에너지빔 묘화 장치, 및 에너지빔 묘화 방법
KR101942069B1 (ko) 멀티 하전 입자빔 묘화 장치 및 멀티 하전 입자빔 묘화 방법
KR20190078514A (ko) 멀티 하전 입자 빔 묘화 방법 및 멀티 하전 입자 빔 묘화 장치
JP2019114731A (ja) マルチ荷電粒子ビーム描画装置及びマルチ荷電粒子ビーム描画方法
JP7238672B2 (ja) マルチビーム描画方法及びマルチビーム描画装置
KR20210012951A (ko) 멀티 빔 묘화 방법 및 멀티 빔 묘화 장치

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20171114

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20181129

Year of fee payment: 5