JP2019114731A - マルチ荷電粒子ビーム描画装置及びマルチ荷電粒子ビーム描画方法 - Google Patents

マルチ荷電粒子ビーム描画装置及びマルチ荷電粒子ビーム描画方法 Download PDF

Info

Publication number
JP2019114731A
JP2019114731A JP2017248758A JP2017248758A JP2019114731A JP 2019114731 A JP2019114731 A JP 2019114731A JP 2017248758 A JP2017248758 A JP 2017248758A JP 2017248758 A JP2017248758 A JP 2017248758A JP 2019114731 A JP2019114731 A JP 2019114731A
Authority
JP
Japan
Prior art keywords
aperture array
pattern
stage
rotational
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017248758A
Other languages
English (en)
Inventor
英郎 井上
Hideo Inoue
英郎 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nuflare Technology Inc
Original Assignee
Nuflare Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nuflare Technology Inc filed Critical Nuflare Technology Inc
Priority to JP2017248758A priority Critical patent/JP2019114731A/ja
Priority to US16/199,472 priority patent/US10607812B2/en
Publication of JP2019114731A publication Critical patent/JP2019114731A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/302Controlling tubes by external information, e.g. programme control
    • H01J37/3023Programme control
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/045Beam blanking or chopping, i.e. arrangements for momentarily interrupting exposure to the discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/147Arrangements for directing or deflecting the discharge along a desired path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/20Means for supporting or positioning the objects or the material; Means for adjusting diaphragms or lenses associated with the support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • H01J37/3174Particle-beam lithography, e.g. electron beam lithography
    • H01J37/3177Multi-beam, e.g. fly's eye, comb probe
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/02Details
    • H01J2237/024Moving components not otherwise provided for
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/04Means for controlling the discharge
    • H01J2237/043Beam blanking
    • H01J2237/0435Multi-aperture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/04Means for controlling the discharge
    • H01J2237/043Beam blanking
    • H01J2237/0435Multi-aperture
    • H01J2237/0437Semiconductor substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/153Correcting image defects, e.g. stigmators
    • H01J2237/1536Image distortions due to scanning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/20Positioning, supporting, modifying or maintaining the physical state of objects being observed or treated
    • H01J2237/202Movement
    • H01J2237/20214Rotation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/20Positioning, supporting, modifying or maintaining the physical state of objects being observed or treated
    • H01J2237/202Movement
    • H01J2237/20221Translation
    • H01J2237/20228Mechanical X-Y scanning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/304Controlling tubes
    • H01J2237/30433System calibration
    • H01J2237/3045Deflection calibration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/304Controlling tubes
    • H01J2237/30472Controlling the beam
    • H01J2237/30483Scanning
    • H01J2237/30488Raster scan
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/317Processing objects on a microscale
    • H01J2237/3175Lithography
    • H01J2237/31774Multi-beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/317Processing objects on a microscale
    • H01J2237/3175Lithography
    • H01J2237/31793Problems associated with lithography

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electron Beam Exposure (AREA)

Abstract

【課題】マルチビームを形成するマスクの配置角度調整誤差に起因して生じるマルチビーム像の回転誤差をスループットの低下を抑制しながら補正することが可能な装置を提供する。【解決手段】描画装置100は、成形アパーチャアレイ基板の回転調整の残差に起因するマルチビームの試料面上におけるアパーチャアレイ像の回転ずれ量の情報を用いて、アパーチャアレイ像の回転ずれ方向とは逆方向へ図形パターン全体を回転させたパターンデータを生成するデータ回転補正部58と、逆方向へ回転させられた図形パターンのパターンデータに基づいて成形アパーチャアレイ基板と共に回転調整可能なブランキングアパーチャアレイ機構203と、ブランキングアパーチャアレイ機構を通過した、成形アパーチャアレイ基板の回転調整の残差に起因するアパーチャアレイ像の回転ずれが生じるマルチビームを試料上の所望の位置へと偏向する主偏向器208と、を備える。【選択図】図1

Description

本発明は、マルチ荷電粒子ビーム描画装置及びマルチ荷電粒子ビーム描画方法に係り、例えば、マルチビームを形成するアパーチャアレイ機構の回転ずれに伴う描画されるパターンの描画位置を補正する手法に関する。
半導体デバイスの微細化の進展を担うリソグラフィ技術は半導体製造プロセスのなかでも唯一パターンを生成する極めて重要なプロセスである。近年、LSIの高集積化に伴い、半導体デバイスに要求される回路線幅は年々微細化されてきている。ここで、電子線(電子ビーム)描画技術は本質的に優れた解像性を有しており、マスクブランクスへ電子線を使ってマスクパターンを描画することが行われている。
例えば、マルチビームを使った描画装置がある。1本の電子ビームで描画する場合に比べて、マルチビームを用いることで一度に多くのビームを照射できるのでスループットを大幅に向上させることができる。かかるマルチビーム方式の描画装置では、例えば、電子銃から放出された電子ビームを複数の穴を持ったマスクに通してマルチビームを形成し、各々、ブランキング制御され、遮蔽されなかった各ビームが光学系で縮小され、マスク像が縮小されて、偏向器で偏向され試料上の所望の位置へと照射される。
マルチビーム描画装置内において、マルチビームを形成するマスク及び下層のブランキングアレイ装置の配置角度が機械的に調整される。しかしながら、かかる角度誤差をゼロにすることは困難である。残差分はマルチビーム像の回転誤差となり、光学系を使ったビームのキャリブレーションによりマルチビーム像の回転を調整することで補正することも考えられる。しかし、像に生じる伸縮誤差、x,y方向誤差、及び収差等の光学歪等のその他のパラメータも合わせて補正する必要があるため、光学系のみで調整するには、自由度が不足する場合がある。かかる場合、マスク(及びブランキングアレイ装置)の配置角度誤差による像の回転誤差は、描画パターンの補正残差として残ることになる。また、電子ビーム描画では、近接効果等の現象により生じる寸法変動を補正する必要もある。これらの補正成分をドーズ変調によって補正することも想定できるが、補正量が大きくなれば、その分、ドーズ変調幅が大きくなってしまう。マルチビーム描画では、各ビームの照射量を照射時間によって制御している。しかしながら、マルチビームを同時期に照射するため、1ショットあたりのショット時間は、各ビームの最大照射時間によって律速される。描画中のステージを等速連続移動にする場合、ステージ速度は、マルチビームの全ショットにおける最大の照射時間を照射可能とする速度で定義されることになる。よって、最大の照射時間のショットが、ショットサイクルとステージ速度を制約することになる。最大照射時間が大きくなれば、その分、描画装置のスループットは低下することになる。
ここで、マルチビームを形成するマスクの配置角度調整誤差ではないが、マルチビームの一部に特に回転成分を持ったビーム配列が存在する場合に、回転成分を持っていなかったビーム配列の回転限界値を超えないように、マルチビームを一括して偏向走査する偏向方向を選択して補正する点、及び偏向方向の補正による歪に応じて描画データを変更する点が開示されている(例えば、特許文献1参照)。
特開2016−062939号公報(段落番号0033−0034)
そこで、本発明の一態様は、マルチビームを形成するマスクの配置角度調整誤差に起因して生じるマルチビーム像の回転誤差をスループットの低下を抑制しながら補正することが可能な装置及び方法を提供する。
本発明の一態様のマルチ荷電粒子ビーム描画装置は、
描画対象となる図形パターンのパターンデータが定義された描画データを記憶する記憶装置と、
試料を載置する、移動可能なステージと、
荷電粒子ビームを放出する放出源と、
複数の開口部が形成され、複数の開口部を荷電粒子ビームの一部がそれぞれ通過することにより、マルチビームを形成すると共に成形する、回転調整可能な成形アパーチャアレイ基板と、
記憶装置から描画データを読み出し、成形アパーチャアレイ基板の回転調整の残差に起因するマルチビームの試料面上におけるアパーチャアレイ像の回転ずれ量の情報を用いて、アパーチャアレイ像の回転ずれ量分、アパーチャアレイ像の回転ずれ方向とは逆方向へ図形パターン全体を回転させたパターンデータを生成するデータ回転補正部と、
逆方向へ回転させられた図形パターンのパターンデータに基づいて、マルチビームの個別ブランキング制御を行う、成形アパーチャアレイ基板と共に回転調整可能なブランキングアパーチャアレイ機構と、
ブランキングアパーチャアレイ機構を通過した、成形アパーチャアレイ基板の回転調整の残差に起因するアパーチャアレイ像の回転ずれが生じるマルチビームを試料上の所望の位置へと偏向する偏向器と、
を備えたことを特徴とする。
また、図形パターンを試料に描画する場合に、成形アパーチャアレイ基板の回転調整の残差に起因するアパーチャアレイ像の回転ずれ量分、アパーチャアレイ像の回転ずれ方向に描画進行方向の角度を合わせるようにステージを斜め移動させるステージ制御回路をさらに備えると好適である。
本発明の一態様のマルチ荷電粒子ビーム描画方法は、
描画対象となる図形パターンのパターンデータが定義された描画データを記憶する記憶装置から描画データを読み出し、マルチビームを形成する回転調整可能な成形アパーチャアレイ基板の回転調整の残差に起因するマルチビームの試料面上におけるアパーチャアレイ像の回転ずれ量の情報を用いて、アパーチャアレイ像の回転ずれ量分、アパーチャアレイ像の回転ずれ方向とは逆方向へ図形パターン全体を回転させたパターンデータを生成する工程と、
成形アパーチャアレイ基板と共に回転調整可能なブランキングアパーチャアレイ機構を用いて、逆方向へ回転させられた図形パターンのパターンデータに基づいてマルチビームの個別ブランキング制御を行う工程と、
ブランキングアパーチャアレイ機構を通過した、成形アパーチャアレイ基板の回転調整の残差に起因するアパーチャアレイ像の回転ずれが生じるマルチビームを試料上の所望の位置へと偏向することによって、図形パターンを試料に描画する工程と、
を備えたことを特徴とする。
また、図形パターンを試料に描画する場合に、成形アパーチャアレイ基板の回転調整の残差に起因するアパーチャアレイ像の回転ずれ量分、アパーチャアレイ像の回転ずれ方向に描画進行方向の角度を合わせるように試料を載置するステージを斜め移動させると好適である。
本発明の一態様によれば、マルチビームを形成する成形アパーチャアレイ基板の配置角度調整誤差に起因して生じるマルチビーム像の回転誤差をスループットの低下を抑制しながら補正できる。
実施の形態1における描画装置の構成を示す概念図である。 実施の形態1におけるブランキングアパーチャステージ機構の一例を示す断面図である。 実施の形態1における成形アパーチャアレイ基板の構成を示す概念図である。 実施の形態1における成形アパーチャアレイ機構とブランキングアパーチャアレイ機構との各構成を示す断面図である。 実施の形態1におけるブランキングアパーチャアレイ機構のメンブレン領域内の構成の一部を示す上面概念図である。 実施の形態1の個別ブランキング機構の一例を示す図である。 実施の形態1における描画動作の一例を説明するための概念図である。 実施の形態1におけるマルチビームの照射領域と描画対象画素との一例を示す図である。 実施の形態1におけるマルチビームの描画方法の一例を説明するための図である。 実施の形態1における描画方法の要部工程を示すフローチャート図である。 実施の形態1におけるマルチビーム像の回転誤差の測定の仕方の一例を説明するための図である。 実施の形態1におけるマルチビーム像の回転誤差と描画方向との関係を示す図である。 実施の形態1と比較例とにおけるデータ座標系上のパターンと試料面上に形成されるパターンとの一例を示す図である。 実施の形態1におけるチップ領域の各段階での状態を示す図である。
以下、実施の形態では、荷電粒子ビームの一例として、電子ビームを用いた構成について説明する。但し、荷電粒子ビームは、電子ビームに限るものではなく、イオンビーム等の荷電粒子を用いたビームでも構わない。
実施の形態1.
図1は、実施の形態1における描画装置の構成を示す概念図である。図1において、描画装置100は、描画機構150と制御系回路160を備えている。描画装置100は、マルチ荷電粒子ビーム描画装置の一例である。描画機構150は、電子鏡筒102(マルチ電子ビームカラム)と描画室103を備えている。電子鏡筒102内には、電子銃201、照明レンズ202、成形アパーチャアレイ機構203、ブランキングアパーチャアレイ機構204、縮小レンズ205、制限アパーチャ基板206、対物レンズ207、偏向器208、偏向器209、及び検出器211が配置されている。描画室103内には、XYステージ105が配置される。XYステージ105上には、描画時には描画対象基板となるレジストが塗布されたマスクブランクス等の試料101が配置される。試料101には、半導体装置を製造する際の露光用マスク、或いは、半導体装置が製造される半導体基板(シリコンウェハ)等が含まれる。XYステージ105上には、さらに、XYステージ105の位置測定用のミラー210、及びマルチビームの位置を測定するためのマーク106が配置される。
制御系回路160は、制御計算機110、メモリ112、偏向制御回路130、デジタル・アナログ変換(DAC)アンプユニット132,134、アンプ136、ステージ制御回路138、ステージ位置検出器139及び磁気ディスク装置等の記憶装置140,142を有している。制御計算機110、メモリ112、偏向制御回路130、アンプ136、ステージ制御回路138、ステージ位置検出器139及び記憶装置140,142は、図示しないバスを介して互いに接続されている。偏向制御回路130には、DACアンプユニット132,134及びブランキングアパーチャアレイ機構204が接続されている。DACアンプユニット132の出力は、偏向器209に接続される。DACアンプユニット134の出力は、偏向器208に接続される。ステージ位置検出器139は、レーザ光をXYステージ105上のミラー210に照射し、ミラー210からの反射光を受光する。そして、かかる反射光の情報を使ったレーザ干渉の原理を利用してXYステージ105の位置を測定する。検出器211から出力は、アンプ136に接続される。アンプ136は、測定対象となるマーク106をスキャンした結果放出される反射電子を含む2次電子の情報を制御計算機110に出力する。
制御計算機110内には、ラスタライズ部50、照射量演算部52、照射時間データ加工部54、回転ずれ量測定部56、データ回転補正部58、ステージ走行角補正部59、及び描画制御部72が配置されている。ラスタライズ部50、照射量演算部52、照射時間データ加工部54、回転ずれ量測定部56、データ回転補正部58、ステージ走行角補正部59、及び描画制御部72といった各「〜部」は、処理回路を有する。かかる処理回路は、例えば、電気回路、コンピュータ、プロセッサ、回路基板、量子回路、或いは、半導体装置を含む。各「〜部」は、共通する処理回路(同じ処理回路)を用いても良いし、或いは異なる処理回路(別々の処理回路)を用いても良い。ラスタライズ部50、照射量演算部52、照射時間データ加工部54、回転ずれ量測定部56、データ回転補正部58、ステージ走行角補正部59、及び描画制御部72に入出力される情報および演算中の情報はメモリ112にその都度格納される。
また、描画装置100の外部から描画データが入力され、記憶装置140に格納される。描画データには、通常、描画するための複数の図形パターンの情報が定義される。具体的には、図形パターン毎に、図形コード、及び各頂点の座標等が定義される。
ここで、図1では、実施の形態1を説明する上で必要な構成を記載している。描画装置100にとって、通常、必要なその他の構成を備えていても構わない。
図2は、実施の形態1におけるブランキングアパーチャステージ機構の一例を示す断面図である。図2において、ブランキングアパーチャステージ機構212では、固定ステージ66上に回転ステージ64を配置する。回転ステージ64は、回転可能とするために、ボールベアリング68を介して固定ステージ66上に配置される。そして、回転ステージ64上にブランキングアパーチャアレイ機構204を載置する。固定ステージ66は、例えば電子鏡筒102の途中に挟まれるように配置される。固定ステージ65、及び回転ステージ64は、マルチビーム20が通過できるように光軸15を中心に中央部がそれぞれマルチビーム20の通過領域17よりも広く開口されている。ブランキングアパーチャアレイ機構204は、図2に示すように、支持台33上にシリコン等からなる半導体基板31が配置される。
また、ブランキングアパーチャステージ機構212上には、さらに、成形アパーチャステージ機構214が配置される。成形アパーチャステージ機構214では、ブランキングアパーチャステージ機構212の回転ステージ64上に、固定ステージ62を配置する。固定ステージ62は、ブランキングアパーチャステージ機構212の回転ステージ64の回転に合わせて光軸15を中心に回転する。固定ステージ62上には、複数(例えば、3本)の支持柱61が配置され、複数の支持柱61上に成形アパーチャアレイ機構203が配置される。成形アパーチャアレイ機構203は、図2に示すように、支持台333上にシリコン等からなる成形アパーチャアレイ基板331が配置される。よって、成形アパーチャアレイ機構203とブランキングアパーチャアレイ機構204は、回転ステージ64の回転に合わせて一体となって回転する。
図3は、実施の形態1における成形アパーチャアレイ基板の構成を示す概念図である。図3において、成形アパーチャアレイ機構203の成形アパーチャアレイ基板331には、縦(y方向)p列×横(x方向)q列(p,q≧2)の穴(開口部)22が所定の配列ピッチでマトリクス状に形成されている。図3では、例えば、縦横(x,y方向)に512×512列の穴22が形成される。各穴22は、共に同じ寸法形状の矩形で形成される。或いは、同じ直径の円形であっても構わない。これらの複数の穴22を電子ビーム200の一部がそれぞれ通過することで、マルチビーム20が形成されると共に所望の形状に各ビームが成形されることになる。また、穴22の配列の仕方は、図3のように、縦横が格子状に配置される場合に限るものではない。例えば、縦方向(y方向)k段目の列と、k+1段目の列の穴同士が、横方向(x方向)に寸法aだけずれて配置されてもよい。同様に、縦方向(y方向)k+1段目の列と、k+2段目の列の穴同士が、横方向(x方向)に寸法bだけずれて配置されてもよい。
図4は、実施の形態1における成形アパーチャアレイ機構とブランキングアパーチャアレイ機構との各構成を示す断面図である。
図5は、実施の形態1におけるブランキングアパーチャアレイ機構のメンブレン領域内の構成の一部を示す上面概念図である。なお、図4と図5において、制御電極24と対向電極26と制御回路41とパッド43の位置関係は一致させて記載していない。上述したように、成形アパーチャアレイ機構203は、支持台333上にシリコン等からなる成形アパーチャアレイ基板331が配置される。基板331の中央部は、例えば裏面側から薄く削られ、薄い膜厚hのメンブレン領域330(第1の領域)に加工されている。メンブレン領域330を取り囲む周囲は、厚い膜厚Hの外周領域332(第2の領域)となる。メンブレン領域330の上面と外周領域332の上面とは、同じ高さ位置、或いは、実質的に高さ位置になるように形成される。成形アパーチャアレイ基板331は、外周領域332の裏面で支持台333上に保持される。支持台333の中央部は開口しており、メンブレン領域330の位置は、支持台333の開口した領域に位置している。そして、成形アパーチャアレイ基板331のメンブレン領域330には、図3に示したように、複数の穴(開口部)22が所定の配列ピッチでマトリクス状に形成されている。
同様に、ブランキングアパーチャアレイ機構204は、支持台33上にシリコン等からなる半導体基板31が配置される。基板31の中央部は、例えば裏面側から薄く削られ、薄い膜厚hのメンブレン領域330(第1の領域)に加工されている。メンブレン領域330を取り囲む周囲は、厚い膜厚Hの外周領域332(第2の領域)となる。メンブレン領域330の上面と外周領域332の上面とは、同じ高さ位置、或いは、実質的に高さ位置になるように形成される。基板31は、外周領域332の裏面で支持台33上に保持される。支持台33の中央部は開口しており、メンブレン領域330の位置は、支持台33の開口した領域に位置している。
ブランキングアパーチャアレイ機構204の基板31のメンブレン領域330には、図3に示した成形アパーチャアレイ基板331に形成された各穴22に対応する位置にマルチビームのそれぞれのビームの通過用の通過孔25(開口部)が開口される。言い換えれば、基板31のメンブレン領域330には、電子線を用いたマルチビームのそれぞれ対応するビームが通過する複数の通過孔25がアレイ状に形成される。そして、基板31のメンブレン領域330上であって、複数の通過孔25のうち対応する通過孔25を挟んで対向する位置に2つの電極を有する複数の電極対がそれぞれ配置される。具体的には、メンブレン領域330上に、図4及び図5に示すように、各通過孔25の近傍位置に該当する通過孔25を挟んでブランキング偏向用の制御電極24と対向電極26の組(ブランカー:ブランキング偏向器)がそれぞれ配置される。また、基板31内部であってメンブレン領域330上の各通過孔25の近傍には、各通過孔25用の制御電極24に偏向電圧を印加する制御回路41(ロジック回路)が配置される。各ビーム用の対向電極26は、グランド接続される。
また、図5に示すように、各制御回路41は、制御信号用のnビット(例えば10ビット)のパラレル配線が接続される。各制御回路41は、制御信号用のnビットのパラレル配線の他、クロック信号線、読み込み(read)信号、ショット(shot)信号および電源用の配線等が接続される。クロック信号線、読み込み(read)信号、ショット(shot)信号および電源用の配線等はパラレル配線の一部の配線を流用しても構わない。マルチビームを構成するそれぞれのビーム毎に、制御電極24と対向電極26と制御回路41とによる個別ブランキング機構47が構成される。また、図4の例では、制御電極24と対向電極26と制御回路41とが基板31の膜厚が薄いメンブレン領域330に配置される。但し、これに限るものではない。また、メンブレン領域330にアレイ状に形成された複数の制御回路41は、例えば、同じ行或いは同じ列によってグループ化され、グループ内の制御回路41群は、図5に示すように、直列に接続される。そして、グループ毎に配置されたパッド43からの信号がグループ内の制御回路41に伝達される。具体的には、各制御回路41内に、図示しないシフトレジスタが配置され、例えば、p×q本のマルチビームのうち例えば同じ行のビームの制御回路41内のシフトレジスタが直列に接続される。そして、例えば、p×q本のマルチビームの同じ行のビームの制御信号がシリーズで送信され、例えば、p回のクロック信号によって各ビームの制御信号が対応する制御回路41に格納される。
図6は、実施の形態1の個別ブランキング機構の一例を示す図である。図6において、制御回路41内には、アンプ46(スイッチング回路の一例)が配置される。図6の例では、アンプ46の一例として、CMOS(Complementary MOS)インバータ回路が配置される。そして、CMOSインバータ回路は正の電位(Vdd:ブランキング電位:第1の電位)(例えば、5V)(第1の電位)とグランド電位(GND:第2の電位)に接続される。CMOSインバータ回路の出力線(OUT)は制御電極24に接続される。一方、対向電極26は、グランド電位が印加される。そして、ブランキング電位とグランド電位とが切り替え可能に印加される複数の制御電極24が、基板31上であって、複数の通過孔25のそれぞれ対応する通過孔25を挟んで複数の対向電極26のそれぞれ対応する対向電極26と対向する位置に配置される。
CMOSインバータ回路の入力(IN)には、閾値電圧よりも低くなるL(low)電位(例えばグランド電位)と、閾値電圧以上となるH(high)電位(例えば、1.5V)とのいずれかが制御信号として印加される。実施の形態1では、CMOSインバータ回路の入力(IN)にL電位が印加される状態では、CMOSインバータ回路の出力(OUT)は正電位(Vdd)となり、対向電極26のグランド電位との電位差による電界により対応ビーム20を偏向し、制限アパーチャ基板206で遮蔽することでビームOFFになるように制御する。一方、CMOSインバータ回路の入力(IN)にH電位が印加される状態(アクティブ状態)では、CMOSインバータ回路の出力(OUT)はグランド電位となり、対向電極26のグランド電位との電位差が無くなり対応ビーム20を偏向しないので制限アパーチャ基板206を通過することでビームONになるように制御する。
各通過孔を通過する電子ビーム20は、それぞれ独立に対となる2つの制御電極24と対向電極26に印加される電圧によって偏向される。かかる偏向によってブランキング制御される。具体的には、制御電極24と対向電極26の組は、それぞれ対応するスイッチング回路となるCMOSインバータ回路によって切り替えられる電位によってマルチビームの対応ビームをそれぞれ個別にブランキング偏向する。このように、複数のブランカーが、成形アパーチャアレイ基板331の複数の穴22(開口部)を通過したマルチビームのうち、それぞれ対応するビームのブランキング偏向を行う。
図7は、実施の形態1における描画動作の一例を説明するための概念図である。図7に示すように、試料101の描画領域30(チップ領域)は、例えば、y方向に向かって所定の幅で短冊状の複数のストライプ領域32に仮想分割される。まず、XYステージ105を移動させて、第1番目のストライプ領域32の左端、或いはさらに左側の位置に一回のマルチビーム20のショットで照射可能な照射領域34が位置するように調整し、描画が開始される。第1番目のストライプ領域32を描画する際には、XYステージ105を例えば−x方向に移動させることにより、相対的にx方向へと描画を進めていく。XYステージ105は例えば等速で連続移動させる。第1番目のストライプ領域32の描画終了後、ステージ位置を−y方向に移動させて、第2番目のストライプ領域32の右端、或いはさらに右側の位置に照射領域34が相対的にy方向に位置するように調整し、今度は、XYステージ105を例えばx方向に移動させることにより、−x方向に向かって同様に描画を行う。第3番目のストライプ領域32では、x方向に向かって描画し、第4番目のストライプ領域32では、−x方向に向かって描画するといったように、交互に向きを変えながら描画することで描画時間を短縮できる。但し、かかる交互に向きを変えながら描画する場合に限らず、各ストライプ領域32を描画する際、同じ方向に向かって描画を進めるようにしても構わない。1回のショットでは、成形アパーチャアレイ基板331の各穴22を通過することによって形成されたマルチビームによって、最大で成形アパーチャアレイ基板331に形成された複数の穴22と同数の複数のショットパターンが一度に形成される。
図8は、実施の形態1におけるマルチビームの照射領域と描画対象画素との一例を示す図である。図8において、ストライプ領域32には、例えば、試料101面上におけるマルチビーム20のビームサイズピッチで格子状に配列される複数の制御グリッド27(設計グリッド)が設定される。例えば、10nm程度の配列ピッチにすると好適である。かかる複数の制御グリッド27が、マルチビーム20の設計上の照射位置となる。制御グリッド27の配列ピッチはビームサイズに限定されるものではなく、ビームサイズとは関係なく偏向器209の偏向位置として制御可能な任意の大きさで構成されるものでも構わない。そして、各制御グリッド27を中心とした、制御グリッド27の配列ピッチと同サイズでメッシュ状に仮想分割された複数の画素36が設定される。各画素36は、マルチビームの1つのビームあたりの照射単位領域となる。図7の例では、試料101の描画領域が、例えばy方向に、1回のマルチビーム20の照射で照射可能な照射領域34(描画フィールド)のサイズと実質同じ幅サイズで複数のストライプ領域32に分割された場合を示している。照射領域34のx方向サイズは、マルチビーム20のx方向のビーム間ピッチにx方向のビーム数を乗じた値で定義できる。照射領域34のy方向サイズは、マルチビーム20のy方向のビーム間ピッチにy方向のビーム数を乗じた値で定義できる。なお、ストライプ領域32の幅は、これに限るものではない。照射領域34のn倍(nは1以上の整数)のサイズであると好適である。図8の例では、例えば512×512列のマルチビームの図示を8×8列のマルチビームに省略して示している。そして、照射領域34内に、1回のマルチビーム20のショットで照射可能な複数の画素28(ビームの描画位置)が示されている。言い換えれば、隣り合う画素28間のピッチが設計上のマルチビームの各ビーム間のピッチとなる。図8の例では、隣り合う4つの画素28で囲まれると共に、4つの画素28のうちの1つの画素28を含む正方形の領域で1つのサブ照射領域29を構成する。図8の例では、各サブ照射領域29は、4×4画素で構成される場合を示している。
図9は、実施の形態1におけるマルチビームの描画方法の一例を説明するための図である。図9では、図8で示したストライプ領域32を描画するマルチビームのうち、y方向3段目の座標(1,3),(2,3),(3,3),・・・,(512,3)の各ビームで描画するサブ照射領域29の一部を示している。図9の例では、例えば、XYステージ105が8ビームピッチ分の距離を移動する間に4つの画素を描画(露光)する場合を示している。かかる4つの画素を描画(露光)する間、照射領域34がXYステージ105の移動によって試料101との相対位置がずれないように、偏向器208によってマルチビーム20全体を一括偏向することによって、照射領域34をXYステージ105の移動に追従させる。言い換えれば、トラッキング制御が行われる。図9の例では、8ビームピッチ分の距離を移動する間に4つの画素を描画(露光)することで1回のトラッキングサイクルを実施する場合を示している。
具体的には、ステージ位置検出器139が、ミラー210にレーザを照射して、ミラー210から反射光を受光することでXYステージ105の位置を測長する。測長されたXYステージ105の位置は、制御計算機110に出力される。制御計算機110内では、描画制御部72がかかるXYステージ105の位置情報を偏向制御回路130に出力する。偏向制御回路130内では、XYステージ105の移動に合わせて、XYステージ105の移動に追従するようにビーム偏向するための偏向量データ(トラッキング偏向データ)を演算する。デジタル信号であるトラッキング偏向データは、DACアンプユニット134に出力され、DACアンプ134は、デジタル信号をアナログ信号に変換の上、増幅して、トラッキング偏向電圧として偏向器208に印加する。
そして、描画機構150は、当該ショットにおけるマルチビームの各ビームのそれぞれの照射時間のうちの最大描画時間Ttr内のそれぞれの制御グリッド27に対応する描画時間(照射時間、或いは露光時間)、各制御グリッド27にマルチビーム20のうちONビームのそれぞれ対応するビームを照射する。
図9の例では、座標(1,3)のビーム(1)によって、時刻t=0からt=最大描画時間Ttrまでの間に注目サブ照射領域29の例えば最下段右から1番目の画素36の制御グリッド27に1ショット目のビームの照射が行われる。これにより、当該画素は、所望の照射時間のビームの照射を受けたことになる。時刻t=0からt=Ttrまでの間にXYステージ105は例えば2ビームピッチ分だけ−x方向に移動する。その間、トラッキング動作は継続している。
当該ショットのビーム照射開始から当該ショットの最大描画時間Ttrが経過後、偏向器208によってトラッキング制御のためのビーム偏向を継続しながら、トラッキング制御のためのビーム偏向とは別に、偏向器209によってマルチビーム20を一括して偏向することによって各ビームの描画位置(前回の描画位置)を次の各ビームの描画位置(今回の描画位置)にシフトする。図9の例では、時刻t=Ttrになった時点で、注目サブ照射領域29の最下段右から1番目の画素36の制御グリッド27から下から1段目かつ右から1番目の画素36の制御グリッド27へと描画対象制御グリッド27をシフトする。その間にもXYステージ105は定速移動しているのでトラッキング動作は継続している。
そして、トラッキング制御を継続しながら、シフトされた各ビームの描画位置に当該ショットの最大描画時間Ttr内のそれぞれ対応する描画時間、マルチビーム20のうちONビームのそれぞれ対応するビームを照射する。図9の例では、座標(1,3)のビーム(1)によって、時刻t=Ttrからt=2Ttrまでの間に注目サブ照射領域29の例えば下から2段目かつ右から1番目の画素36の制御グリッド27に2ショット目のビームの照射が行われる。時刻t=Ttrからt=2Ttrまでの間にXYステージ105は例えば2ビームピッチ分だけ−x方向に移動する。その間、トラッキング動作は継続している。
図9の例では、時刻t=2Ttrになった時点で、注目サブ照射領域29の下から2段目かつ右から1番目の画素36の制御グリッド27から下から3段目かつ右から1番目の画素36の制御グリッド27へと偏向器209によるマルチビームの一括偏向により描画対象制御グリッド27をシフトする。その間にもXYステージ105は移動しているのでトラッキング動作は継続している。そして、座標(1,3)のビーム(1)によって、時刻t=2Ttrからt=3Ttrまでの間に注目サブ照射領域29の例えば下から3段目かつ右から1番目の画素36の制御グリッド27に3ショット目のビームの照射が行われる。これにより、当該画素36の制御グリッド27は、所望の照射時間のビームの照射を受けたことになる。
時刻t=2Ttrからt=3Ttrまでの間にXYステージ105は例えば2ビームピッチ分だけ−x方向に移動する。その間、トラッキング動作は継続している。時刻t=3Ttrになった時点で、注目サブ照射領域29の下から3段目かつ右から1番目の画素36の制御グリッド27から下から4段目かつ右から1番目の画素36の制御グリッド27へと偏向器209によるマルチビームの一括偏向により描画対象画素をシフトする。その間にもXYステージ105は移動しているのでトラッキング動作は継続している。
そして、座標(1,3)のビーム(1)によって、時刻t=3Ttrからt=4Ttrまでの間に注目サブ照射領域29の例えば下から4段目かつ右から1番目の画素36の制御グリッド27に4ショット目のビームの照射が行われる。これにより、当該画素36の制御グリッド27は、所望の照射時間のビームの照射を受けたことになる。
時刻t=3Ttrからt=4Ttrまでの間にXYステージ105は例えば2ビームピッチ分だけ−x方向に移動する。その間、トラッキング動作は継続している。以上により、注目サブ照射領域29の右から1番目の画素列の描画が終了する。
図9の例では初回位置から3回シフトされた後の各ビームの描画位置にそれぞれ対応するビームを照射した後、DACアンプユニット134は、トラッキング制御用のビーム偏向をリセットすることによって、トラッキング位置をトラッキング制御が開始されたトラッキング開始位置に戻す。言い換えれば、トラッキング位置をステージ移動方向と逆方向に戻す。図9の例では、時刻t=4Ttrになった時点で、注目サブ照射領域29のトランキングを解除して、x方向に8ビームピッチ分ずれた注目サブ照射領域29にビームを振り戻す。なお、図9の例では、座標(1,3)のビーム(1)について説明したが、その他の座標のビームについてもそれぞれの対応するサブ照射領域29に対して同様に描画が行われる。すなわち、座標(n,m)のビームは、t=4Ttrの時点で対応するサブ照射領域29に対して右から1番目の画素列の描画が終了する。例えば、座標(2,3)のビーム(2)は、図9のビーム(1)用の注目サブ照射領域29の−x方向に隣り合うサブ照射領域29に対して右から1番目の画素列の描画が終了する。
なお、各サブ照射領域29の右から1番目の画素列の描画は終了しているので、トラッキングリセットした後に、次回のトラッキングサイクルにおいてまず偏向器209は、各サブ照射領域29の下から1段目かつ右から2番目の画素の制御グリッド27にそれぞれ対応するビームの描画位置を合わせる(シフトする)ように偏向する。
以上のように同じトラッキングサイクル中は偏向器208によって照射領域34を試料101に対して相対位置が同じ位置になるように制御された状態で、偏向器209によって1制御グリッド27(画素36)ずつシフトさせながら各ショットを行う。そして、トラッキングサイクルが1サイクル終了後、照射領域34のトラッキング位置を戻してから、図6の下段に示すように、例えば1制御グリッド(1画素)ずれた位置に1回目のショット位置を合わせ、次のトラッキング制御を行いながら偏向器209によって1制御グリッド(1画素)ずつシフトさせながら各ショットを行う。ストライプ領域32の描画中、かかる動作を繰り返すことで、照射領域34a〜34oといった具合に順次照射領域34の位置が移動していき、当該ストライプ領域の描画を行っていく。
マルチビーム20で試料101を描画する際、上述したように、偏向器208によるトラッキング動作中にXYステージ105の移動に追従しながらショットビームとなるマルチビーム20を偏向器209によるビーム偏向位置の移動によって1制御グリッド(1画素)ずつ順に連続して照射していく。そして、試料101上のどの制御グリッド27(画素36)をマルチビームのどのビームが照射するのかは描画シーケンスによって決まる。そして、マルチビームのx,y方向にそれぞれ隣り合うビーム間のビームピッチを用いて、試料101面上におけるx,y方向にそれぞれ隣り合うビーム間のビームピッチ(x方向)×ビームピッチ(y方向)の領域はn×n画素の領域(サブ照射領域29)で構成される。例えば、1回のトラッキング動作で、XYステージ105が−x方向にビームピッチ(x方向)だけ移動する場合、上述したようにy方向に1つのビームによって照射位置をシフトしながらn制御グリッド(n画素)が描画される。或いは、x方向或いは斜め方向に1つのビームによって照射位置をシフトしながらn制御グリッド(n画素)が描画されてもよい。同じn×n画素の領域内の他のn画素が次回のトラッキング動作で上述したビームとは異なるビームによって同様にn画素が描画される。このようにn回のトラッキング動作でそれぞれ異なるビームによってn画素ずつ描画されることにより、1つのn×n画素の領域内のすべての画素が描画される。マルチビームの照射領域内の他のn×n画素の領域についても同時期に同様の動作が実施され、同様に描画される。
次に描画装置100における描画機構150の動作について説明する。電子銃201(放出源)から放出された電子ビーム200は、照明レンズ202によりほぼ垂直に成形アパーチャアレイ基板331全体を照明する。成形アパーチャアレイ基板331には、矩形の複数の穴(開口部)が形成され、電子ビーム200は、すべての複数の穴が含まれる領域を照明する。複数の穴の位置に照射された電子ビーム200の各一部が、かかる成形アパーチャアレイ基板331の複数の穴をそれぞれ通過することによって、例えば矩形形状の複数の電子ビーム(マルチビーム)20a〜eが形成される。かかるマルチビーム20a〜eは、ブランキングアパーチャアレイ機構204のそれぞれ対応するブランカー(第1の偏向器:個別ブランキング機構)内を通過する。かかるブランカーは、それぞれ、個別に通過する電子ビーム20を偏向する(ブランキング偏向を行う)。
ブランキングアパーチャアレイ機構204を通過したマルチビーム20a〜eは、縮小レンズ205によって、縮小され、制限アパーチャ基板206に形成された中心の穴に向かって進む。ここで、ブランキングアパーチャアレイ機構204のブランカーによって偏向された電子ビーム20aは、制限アパーチャ基板206の中心の穴から位置がはずれ、制限アパーチャ基板206によって遮蔽される。一方、ブランキングアパーチャアレイ機構204のブランカーによって偏向されなかった電子ビーム20b〜20eは、図1に示すように制限アパーチャ基板206の中心の穴を通過する。かかる個別ブランキング機構のON/OFFによって、ブランキング制御が行われ、ビームのON/OFFが制御される。このように、制限アパーチャ基板206は、個別ブランキング機構47によってビームOFFの状態になるように偏向された各ビームを遮蔽する。そして、ビーム毎に、ビームONになってからビームOFFになるまでに形成された、制限アパーチャ基板206を通過したビームにより、1回分のショットのビームが形成される。制限アパーチャ基板206を通過したマルチビーム20は、対物レンズ207により焦点が合わされ、所望の縮小率のパターン像となり、偏向器208,209によって、制限アパーチャ基板206を通過した各ビーム(マルチビーム20全体)が同方向に一括して偏向され、各ビームの試料101上のそれぞれの照射位置に照射される。一度に照射されるマルチビーム20は、理想的には成形アパーチャアレイ基板331の複数の穴22の配列ピッチに上述した所望の縮小率を乗じたピッチで並ぶことになる。
ここで、上述したように、成形アパーチャアレイ機構203で形成されたマルチビームのブランキング偏向制御を個別に行うためには、成形アパーチャアレイ機構203の複数の穴22と、ブランキングアパーチャアレイ機構204の複数の通過孔25とが、マルチビームの各ビームの軌道上に位置するように調整することが重要である。そのため、描画処理の前(装置立ち上げ時)に、まず、成形アパーチャアレイ基板331に形成された各穴22が、ブランキングアパーチャステージ機構212の対応する通過孔25(開口部)の位置に合うように、成形アパーチャアレイ機構203を回転させた位置で、複数の支持柱61上に成形アパーチャアレイ機構203を配置する。或いは、複数の支持柱61上に成形アパーチャアレイ機構203を配置した状態で、成形アパーチャアレイ基板331に形成された各穴22が、ブランキングアパーチャステージ機構212の対応する通過孔25(開口部)の位置に合うように固定ステージ62を回転させて、ブランキングアパーチャステージ機構212の回転ステージ64上に固定ステージ62を配置する。以降は、成形アパーチャアレイ機構203とブランキングアパーチャステージ機構212とは、一体となって、回転ステージ64の回転によって、配置角度が調整される。言い換えれば、成形アパーチャアレイ基板331(成形アパーチャアレイ機構203)は、回転調整可能に配置される。同様に、ブランキングアパーチャアレイ機構204は、成形アパーチャアレイ基板331と共に回転調整可能に配置される。
しかし、回転ステージ64の回転による機械的な配置角度調整では、試料101上におけるマルチビーム像の回転誤差をゼロにすることは困難である。一方、光学系を使ったビームのキャリブレーションによりマルチビーム像に生じる伸縮誤差、x,y方向誤差、及び収差等の光学歪等のパラメータを調整する。上述したように、伸縮誤差、x,y方向誤差、及び収差等の光学歪等のパラメータの他に、さらにマルチビーム像の回転誤差を補正するには、光学系のみの調整では自由度が不足する場合がある。かかる場合、成形アパーチャアレイ機構203とブランキングアパーチャステージ機構212の配置角度誤差による像の回転誤差は、描画パターンの補正残差として残ることになる。上述したように、電子ビーム描画では、近接効果等の現象により生じる寸法変動を補正する必要もある。これらの補正成分をドーズ変調によって補正することも想定できるが、補正量が大きくなれば、その分、ドーズ変調幅が大きくなってしまう。ドーズ変調幅が大きくなってしまうとマルチビームの全ショットにおける最大照射時間が長くなってしまう。上述したように、最大の照射時間のショットが、ショットサイクルとステージ速度を制約するので、最大照射時間が大きくなれば、その分、描画装置のスループットは低下することになる。そこで、実施の形態1では、マルチビーム像の回転誤差に起因する描画位置のずれを、描画データの回転補正とXYステージ105の走行方向補正とによって解消する。以下、具体的に説明する。
図10は、実施の形態1における描画方法の要部工程を示すフローチャート図である。図10において、実施の形態1における描画方法は、像回転ずれ量測定工程(S102)と、ステージ走行角補正工程(S104)と、パターンデータ回転補正工程(S106)と、ラスタライズ工程(S108)と、照射量演算工程(S110)と、照射時間データ加工工程(S112)と、描画工程(S114)と、いう一連の工程を実施する。
像回転ずれ量測定工程(S102)として、回転ずれ量測定部56は、ブランキングアパーチャアレイ機構204の回転調整誤差、言い換えれば、成形アパーチャアレイ基板331の回転調整の残差に起因するマルチビーム20の試料101面上におけるアパーチャアレイ像(マルチビーム像)の回転ずれ量を測定する。具体的には、以下のように動作する。描画制御部72は、まず、p×q本のマルチビーム20により形成されるアパーチャアレイ像の外接矩形13の4角のうち1つの角のビーム群11を選択し、XYステージ105上のマーク106がマルチビーム20の照射領域34内のかかる1つの角に相対する位置にくるようにXYステージ105を移動させる。そして、描画制御部72は、かかる1つの角付近のビーム群11がビームONとなり、残りのビーム群がビームOFFになるように偏向制御回路130に制御信号を出力する。そして、偏向制御回路130による制御のもと、ブランキングアパーチャアレイ機構203は、選択された1つの角のビーム群11がビームONとなり、残りのビーム群がビームOFFになるように各ブランカーを制御する。マルチビーム20が、例えば、512×512本のビームで構成される場合、4角のうち1つの角に近い例えば10×10本のビーム群11をビームONとし、残りをビームOFFとする。そして、かかる1つの角に近い例えば10×10本のビーム群11を例えば主偏向器208で一括して偏向することによって、XYステージ105上のマーク106を走査(スキャン)する。かかる走査(スキャン)により、ステージ表面或いはマーク106から放出される2次電子(反射電子を含んでも構わない)を検出器211で検出する。検出器211で検出された検出データは、アンプ136で増幅されると共にアナログデータからデジタルデータに変換されて、回転ずれ量測定部56に出力される。また、ステージ位置検出器139からXYステージ105の位置情報が回転ずれ量測定部56に出力される。残りの他の3つの角においても同様の動作を行う。
図11は、実施の形態1におけるマルチビーム像の回転誤差の測定の仕方の一例を説明するための図である。回転ずれ量測定部56では、入力された検出データを使って、マルチビーム像の4角のビーム群11のそれぞれの位置を測定する。外接矩形13の4角の位置を測定することによって、外接矩形13の回転誤差θが演算できる。かかる外接矩形13の回転誤差θが試料101面上におけるアパーチャアレイ像(マルチビーム像)の回転ずれ量に相当する。ひいては、マルチビーム20の照射領域34の回転ずれ量に相当する。
ステージ走行角補正工程(S104)として、ステージ走行角補正部59は、各ストライプ領域32を描画する場合におけるXYステージ105の走行角度を補正する。
図12は、実施の形態1におけるマルチビーム像の回転誤差と描画方向との関係を示す図である。図12(a)及び図12(b)では、ブランキングアパーチャアレイ機構204の回転調整誤差、言い換えれば、成形アパーチャアレイ基板331の回転調整の残差に起因するマルチビーム20の試料101面上におけるアパーチャアレイ像(マルチビーム像)に、従来の描画方向(x方向)に対して回転ずれ量θが生じている場合を示している。XYステージ105が、−x方向に移動すると、相対的にマルチビーム20の照射領域34がx方向に進む。その際、試料101面上におけるアパーチャアレイ像(マルチビーム像)に描画方向(x方向)に対して回転ずれ量θが生じている場合、図12(a)に示すように、マルチビーム20の照射領域34’−1,34’−2,34’−3,34’−4の順に、回転ずれ量θが生じたアパーチャアレイ像(マルチビーム像)が試料101面上において隣接する照射領域と照射領域の角部の位置をずらしながらx方向に並ぶことになる。かかる場合、回転ずれ量θの像の回転によってx方向にビーム照射が連続的に続かない部分(A部)が生じてしまう。かかる部分(A部)に位置するビームは、パターン形成に用いることは困難である。そのため、かかる部分(A部)は、描画処理で用いることができず、y方向にストライプ領域32を形成する際、ストライプ領域32の幅d1が狭くなってしまう。
そこで、実施の形態1では、図12(b)に示すように、アパーチャアレイ像(マルチビーム像)の回転ずれ量θに合わせて、描画方向も同様にx方向に対して角度θだけずらす。言い換えれば、ステージ走行角補正部59は、XYステージ105の走行座標系(描画進行座標系)をx,y軸から角度θだけ回転させたx’,y’軸に補正する。これにより、XYステージ105が、−x’方向に移動すると、相対的にマルチビーム20の照射領域34が、従来の描画方向(x方向)に対して角度θずれたx’方向(斜め方向)に進む。よって、回転ずれ量θが生じたアパーチャアレイ像(マルチビーム像)が試料101面上においてx’方向に並ぶことになる。そのため、図12(b)に示すように、マルチビーム20の照射領域34−1,34−2,34−3,34−4の順に、回転ずれ量θが生じたアパーチャアレイ像(マルチビーム像)が試料101面上において隣接する照射領域と照射領域の角部の位置を合わせながらx’方向に並ぶようにできる。かかる構成により、x方向にビーム照射が連続的に続かない部分(A部)が無くなり、y’方向にストライプ領域32を形成する際、ストライプ領域32の幅d2を幅d1よりも広くできる。補正されたXYステージ105の走行座標系(描画進行座標系)の情報は、ステージ制御回路138に出力される。
図13は、実施の形態1と比較例とにおけるデータ座標系上のパターンと試料面上に形成されるパターンとの一例を示す図である。描画装置100に入力され、記憶装置140に格納される描画データは、図13(a)に示すように、データ座標系のx,y軸に合わせて生成されている。しかし、上述したように、ブランキングアパーチャアレイ機構204の回転調整誤差、言い換えれば、成形アパーチャアレイ基板331の回転調整の残差に起因するマルチビーム20の試料101面上におけるアパーチャアレイ像(マルチビーム像)に、x軸に対して回転ずれ量θが生じている。ここで、比較例では、かかる描画データに定義されるパターン(F)をそのまま試料101上に描画する。その結果、図13(b)に示すように、試料101上に描画されるパターン(F)は、回転ずれ量θだけ回転された形状に形成されてしまう。図12(b)において説明したXYステージ105の斜め走行を行った場合でも同様に、パターン(F)は図13(b)に示すように回転ずれ量θだけ回転された形状に形成されてしまう。一方、図13(c)に示すように、データ座標系のx,y軸に対してアパーチャアレイ像の回転ずれ方向とは逆方向へパターンを回転ずれ量θだけ回転させる(−θ回転させる)。そして、かかる−θ回転補正が成されたパターン(F)を試料101上に描画する。その結果、図13(d)に示すように、試料101上に描画されるパターン(F)は、回転ずれ量θが補正された形状に形成できる。12(b)において説明したXYステージ105の斜め走行を行った場合でも同様に、パターン(F)は図13(d)に示すように回転ずれ量θが補正された形状に形成できる。そこで、実施の形態1では、描画前に、描画データに定義されるパターン自体を予め逆方向に回転させておく。
パターンデータ回転補正工程(S106)として、データ回転補正部58は、記憶装置140から描画データを読み出し、成形アパーチャアレイ基板331の回転調整の残差に起因するマルチビーム20の試料101面上におけるアパーチャアレイ像の回転ずれ量θの情報を用いて、アパーチャアレイ像の回転ずれ量θ分、アパーチャアレイ像の回転ずれ方向とは逆方向へ図形パターン全体を回転させたパターンデータを生成する。
図14は、実施の形態1におけるチップ領域の各段階での状態を示す図である。描画処理は、描画対象チップパターン毎に実施される。そのため、記憶装置140には、描画データとして、チップパターンデータが定義される。そこで、データ回転補正部58は、図14(a)に示すように、描画対象となるチップパターン37(図形パターン全体)をアパーチャアレイ像の回転ずれ方向とは逆方向へ回転ずれ量θ分だけ回転させたパターンデータを生成する。例えば、チップパターン37の左下角を支点に回転させると好適である。描画データに定義される各図形パターンのデータには、各頂点座標が定義されるので、かかる各頂点座標を、例えば、チップパターン37の左下角を支点に回転させたデータを生成すればよい。複数のチップパターンを同じ描画条件で描画する場合には、かかる複数のチップパターンをマージ処理して1つのチップパターンにしてから同様の処理を行えばよい。回転補正されたチップパターン37のデータは、一時的に記憶装置142に格納しておけばよい。
そして、描画制御部72は、アパーチャアレイ像の回転ずれ方向とは逆方向へ回転補正されたチップパターン37を、図14(b)に示すように、データ座標系のx,y軸を使って複数のストライプ領域32に分割する。言い換えれば、描画制御部72は、回転補正されたチップパターン37の領域を、回転させていないy軸方向に、1回のマルチビーム20の照射で照射可能な照射領域34(描画フィールド)のサイズと実質同じ幅サイズで複数のストライプ領域32に分割する。上述したように、照射領域34のx方向サイズは、マルチビーム20のx方向のビーム間ピッチにx方向のビーム数を乗じた値で定義できる。照射領域34のy方向サイズは、マルチビーム20のy方向のビーム間ピッチにy方向のビーム数を乗じた値で定義できる。なお、ストライプ領域32の幅は、これに限るものではない。照射領域34のn倍(nは1以上の整数)のサイズであると好適である。
ラスタライズ工程(S108)として、ラスタライズ部50は、回転補正されたチップパターン37のデータを読み出し、画素36毎に、当該画素36内のパターン面積密度ρ’を演算する。かかる処理は、例えば、ストライプ領域32毎に実行する。
照射量演算工程(S110)として、照射量演算部52は、まず、描画領域(ここでは、例えばストライプ領域32)を所定のサイズでメッシュ状に複数の近接メッシュ領域(近接効果補正計算用メッシュ領域)に仮想分割する。近接メッシュ領域のサイズは、近接効果の影響範囲の1/10程度、例えば、1μm程度に設定すると好適である。照射量演算部52は、記憶装置140から描画データを読み出し、近接メッシュ領域毎に、当該近接メッシュ領域内に配置されるパターンのパターン面積密度ρを演算する。
次に、照射量演算部52は、近接メッシュ領域毎に、近接効果を補正するための近接効果補正照射係数Dp(x)(補正照射量)を演算する。未知の近接効果補正照射係数Dp(x)は、後方散乱係数η、しきい値モデルの照射量閾値Dth、パターン面積密度ρ、及び分布関数g(x)を用いた、従来手法と同様の近接効果補正用のしきい値モデルによって定義できる。
次に、照射量演算部52は、画素36毎に、当該画素36に照射するための入射照射量D(x)(ドーズ量)を演算する。入射照射量D(x)は、例えば、予め設定された基準照射量Dbaseに近接効果補正照射係数Dpとパターン面積密度ρ’とを乗じた値として演算すればよい。基準照射量Dbaseは、例えば、Dth/(1/2+η)で定義できる。以上により、描画データに定義される複数の図形パターンのレイアウトに基づいた、近接効果が補正された本来の所望する入射照射量D(x)を得ることができる。
そして、照射量演算部52は、画素36毎の入射照射量D(x)を所定の量子化単位Δで階調化された照射時間tに変換した、画素36毎の照射時間を定義した照射時間データマップ(1)を作成する。作成された照射時間データマップ(1)は、例えば、記憶装置142に格納される。
照射時間データ加工工程(S112)として、照射時間データ加工部54は、照射時間データマップ(1)を読み出し、実施の形態1における描画シーケンスに沿ってショット順に並び替える。そして、ショット順に照射時間tデータを偏向制御回路130に転送する。
描画工程(S114)として、偏向制御回路130は、ブランキングアパーチャアレイ機構204にショット順にブランキング制御信号を出力すると共に、DACアンプユニット132,134にショット順に偏向制御信号を出力する。そして、描画機構150は、ブランキングアパーチャアレイ機構204を通過した、成形アパーチャアレイ基板331の回転調整の残差に起因するアパーチャアレイ像の回転ずれが生じるマルチビーム20を試料101上の所望の位置へと偏向することによって、図形パターンを試料101に描画する。具体的には以下の通りである。ブランキングアパーチャアレイ機構204は、逆方向へ回転させられたチップパターンデータ(図形パターンのパターンデータ)に基づいて、マルチビーム20の個別ブランキング制御を行う。ブランキングアパーチャアレイ機構204を通過した、成形アパーチャアレイ基板331の回転調整の残差に起因するアパーチャアレイ像の回転ずれが生じるマルチビーム20は、主偏向器208及び副偏向器209によって試料101上の所望の位置へと偏向される。また、ステージ制御回路138は、図形パターンを試料101に描画する場合に、成形アパーチャアレイ基板331の回転調整の残差に起因するアパーチャアレイ像の回転ずれ量θ分、アパーチャアレイ像の回転ずれ方向に描画進行方向の角度を合わせるようにXYステージ105を斜め移動させる。具体的には、ステージ制御回路138は、x,y軸からx’,y’軸に補正されたXYステージ105の走行座標系(描画進行座標系)の情報を入力し、図14(c)に示すように、かかるx’,y’軸に補正された走行座標系(描画進行座標系)に沿って、各ストライプ領域32を描画する際、XYステージ105を斜め移動させる。その結果、試料101上に描画されるチップパターン37は、成形アパーチャアレイ基板331の回転調整の残差に起因するアパーチャアレイ像の回転ずれが補正された状態で描画できる。実施の形態1では、描画データ自体を回転補正しているので、回転誤差成分をドーズ変調によって補正する必要がない。よって、回転ずれ補正に伴うドーズ変調幅の増加を回避或いは抑制できる。その結果、回転ずれ補正に伴う最大照射時間の増加を回避或いは抑制できる。
以上のように、実施の形態1によれば、マルチビーム20を形成する成形アパーチャアレイ基板331の配置角度調整誤差に起因して生じるマルチビーム像の回転誤差をスループットの低下を抑制しながら補正できる。
以上、具体例を参照しつつ実施の形態について説明した。しかし、本発明は、これらの具体例に限定されるものではない。
また、上述した例では、各制御回路41の制御用に10ビットの制御信号が入力される場合を示したが、ビット数は、適宜設定すればよい。例えば、2ビット、或いは3ビット〜9ビットの制御信号を用いてもよい。なお、11ビット以上の制御信号を用いてもよい。
また、装置構成や制御手法等、本発明の説明に直接必要しない部分等については記載を省略したが、必要とされる装置構成や制御手法を適宜選択して用いることができる。例えば、描画装置100を制御する制御部構成については、記載を省略したが、必要とされる制御部構成を適宜選択して用いることは言うまでもない。
その他、本発明の要素を具備し、当業者が適宜設計変更しうる全てのマルチ荷電粒子ビーム描画装置及びマルチ荷電粒子ビーム描画方法は、本発明の範囲に包含される。
11 ビーム群
13 外接矩形
15 光軸
17 通過領域
20 マルチビーム
22 穴
24 制御電極
25 通過孔
26 対向電極
27 制御グリッド
28 画素
29 サブ照射領域
30 描画領域
31 基板
32 ストライプ領域
33 支持台
34 照射領域
36 画素
37 チップパターン
41 制御回路
46 アンプ
47 個別ブランキング機構
50 ラスタライズ部
52 照射量演算部
54 照射時間データ加工部
56 回転ずれ量測定部
58 データ回転補正部
59 ステージ走行角補正部
61 支持柱
62 固定ステージ
64 回転ステージ
66 固定ステージ
68 ボールベアリング
72 描画制御部
100 描画装置
101 試料
102 電子鏡筒
103 描画室
105 XYステージ
106 マーク
110 制御計算機
112 メモリ
130 偏向制御回路
132,134 DACアンプユニット
136 アンプ
138 ステージ制御回路
139 ステージ位置検出器
140,142 記憶装置
150 描画機構
160 制御系回路
200 電子ビーム
201 電子銃
202 照明レンズ
203 成形アパーチャアレイ基板
204 ブランキングアパーチャアレイ機構
205 縮小レンズ
206 制限アパーチャ基板
207 対物レンズ
208 主偏向器
209 副偏向器
210 ミラー
211 検出器
212 ブランキングアパーチャステージ機構
214 成形アパーチャステージ機構
330 メンブレン領域
331 成形アパーチャアレイ基板
332 外周領域
333 支持台

Claims (4)

  1. 描画対象となる図形パターンのパターンデータが定義された描画データを記憶する記憶装置と、
    試料を載置する、移動可能なステージと、
    荷電粒子ビームを放出する放出源と、
    複数の開口部が形成され、前記複数の開口部を前記荷電粒子ビームの一部がそれぞれ通過することにより、マルチビームを形成すると共に成形する、回転調整可能な成形アパーチャアレイ基板と、
    前記記憶装置から前記描画データを読み出し、前記成形アパーチャアレイ基板の回転調整の残差に起因する前記マルチビームの前記試料面上におけるアパーチャアレイ像の回転ずれ量の情報を用いて、前記アパーチャアレイ像の回転ずれ量分、前記アパーチャアレイ像の回転ずれ方向とは逆方向へ前記図形パターン全体を回転させたパターンデータを生成するデータ回転補正部と、
    前記逆方向へ回転させられた図形パターンのパターンデータに基づいて、前記マルチビームの個別ブランキング制御を行う、前記成形アパーチャアレイ基板と共に回転調整可能なブランキングアパーチャアレイ機構と、
    前記ブランキングアパーチャアレイ機構を通過した、前記成形アパーチャアレイ基板の回転調整の残差に起因する前記アパーチャアレイ像の回転ずれが生じる前記マルチビームを前記試料上の所望の位置へと偏向する偏向器と、
    を備えたことを特徴とするマルチ荷電粒子ビーム描画装置。
  2. 前記図形パターンを前記試料に描画する場合に、前記成形アパーチャアレイ基板の回転調整の残差に起因する前記アパーチャアレイ像の回転ずれ量分、前記アパーチャアレイ像の回転ずれ方向に描画進行方向の角度を合わせるように前記ステージを斜め移動させるステージ制御回路をさらに備えたことを特徴とする請求項1記載のマルチ荷電粒子ビーム描画装置。
  3. 描画対象となる図形パターンのパターンデータが定義された描画データを記憶する記憶装置から前記描画データを読み出し、マルチビームを形成する回転調整可能な成形アパーチャアレイ基板の回転調整の残差に起因する前記マルチビームの試料面上におけるアパーチャアレイ像の回転ずれ量の情報を用いて、前記アパーチャアレイ像の回転ずれ量分、前記アパーチャアレイ像の回転ずれ方向とは逆方向へ前記図形パターン全体を回転させたパターンデータを生成する工程と、
    前記成形アパーチャアレイ基板と共に回転調整可能なブランキングアパーチャアレイ機構を用いて、前記逆方向へ回転させられた図形パターンのパターンデータに基づいて前記マルチビームの個別ブランキング制御を行う工程と、
    前記ブランキングアパーチャアレイ機構を通過した、前記成形アパーチャアレイ基板の回転調整の残差に起因する前記アパーチャアレイ像の回転ずれが生じる前記マルチビームを前記試料上の所望の位置へと偏向することによって、前記図形パターンを前記試料に描画する工程と、
    を備えたことを特徴とするマルチ荷電粒子ビーム描画方法。
  4. 前記図形パターンを前記試料に描画する場合に、前記成形アパーチャアレイ基板の回転調整の残差に起因する前記アパーチャアレイ像の回転ずれ量分、前記アパーチャアレイ像の回転ずれ方向に描画進行方向の角度を合わせるように前記試料を載置するステージを斜め移動させることを特徴とする請求項3記載のマルチ荷電粒子ビーム描画方法。
JP2017248758A 2017-12-26 2017-12-26 マルチ荷電粒子ビーム描画装置及びマルチ荷電粒子ビーム描画方法 Pending JP2019114731A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017248758A JP2019114731A (ja) 2017-12-26 2017-12-26 マルチ荷電粒子ビーム描画装置及びマルチ荷電粒子ビーム描画方法
US16/199,472 US10607812B2 (en) 2017-12-26 2018-11-26 Multiple charged particle beam writing apparatus, and multiple charged particle beam writing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017248758A JP2019114731A (ja) 2017-12-26 2017-12-26 マルチ荷電粒子ビーム描画装置及びマルチ荷電粒子ビーム描画方法

Publications (1)

Publication Number Publication Date
JP2019114731A true JP2019114731A (ja) 2019-07-11

Family

ID=66951437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017248758A Pending JP2019114731A (ja) 2017-12-26 2017-12-26 マルチ荷電粒子ビーム描画装置及びマルチ荷電粒子ビーム描画方法

Country Status (2)

Country Link
US (1) US10607812B2 (ja)
JP (1) JP2019114731A (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7026554B2 (ja) * 2018-03-29 2022-02-28 株式会社ニューフレアテクノロジー マルチ荷電粒子ビーム描画装置及びマルチ荷電粒子ビーム描画方法
JP7126367B2 (ja) * 2018-03-29 2022-08-26 株式会社ニューフレアテクノロジー 荷電粒子ビーム描画装置及び荷電粒子ビーム描画方法
JP7241570B2 (ja) * 2019-03-06 2023-03-17 株式会社ニューフレアテクノロジー マルチ電子ビーム検査装置及びマルチ電子ビーム検査方法
US11869746B2 (en) * 2019-07-25 2024-01-09 Nuflare Technology, Inc. Multi-beam writing method and multi-beam writing apparatus
US11574794B2 (en) * 2021-03-23 2023-02-07 Fei Company Beam trajectory via combination of image shift and hardware alpha tilt

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU1926501A (en) * 1999-11-23 2001-06-04 Ion Diagnostics, Inc. Electron optics for multi-beam electron beam lithography tool
EP2478548B1 (en) * 2009-09-18 2017-03-29 Mapper Lithography IP B.V. Charged particle optical system with multiple beams
JP2016062939A (ja) 2014-09-16 2016-04-25 キヤノン株式会社 描画装置および描画方法、ならびに物品の製造方法
JP6442295B2 (ja) * 2015-01-19 2018-12-19 株式会社ニューフレアテクノロジー マルチ荷電粒子ビーム像の回転角測定方法、マルチ荷電粒子ビーム像の回転角調整方法、及びマルチ荷電粒子ビーム描画装置
JP6593090B2 (ja) * 2015-10-20 2019-10-23 株式会社ニューフレアテクノロジー 支持ケース及びマルチ荷電粒子ビーム描画装置

Also Published As

Publication number Publication date
US20190198290A1 (en) 2019-06-27
US10607812B2 (en) 2020-03-31

Similar Documents

Publication Publication Date Title
KR101843057B1 (ko) 멀티 하전 입자빔 묘화 장치 및 멀티 하전 입자빔 묘화 방법
JP6147528B2 (ja) マルチ荷電粒子ビーム描画方法及びマルチ荷電粒子ビーム描画装置
JP5859778B2 (ja) マルチ荷電粒子ビーム描画装置及びマルチ荷電粒子ビーム描画方法
US9466461B2 (en) Rotation angle measuring method of multi-charged particle beam image, rotation angle adjustment method of multi-charged particle beam image, and multi-charged particle beam writing apparatus
JP6293435B2 (ja) マルチ荷電粒子ビーム描画装置及びマルチ荷電粒子ビーム描画方法
KR102093808B1 (ko) 멀티 하전 입자 빔 묘화 장치 및 멀티 하전 입자 빔 묘화 방법
US9966228B2 (en) Multi charged particle beam apparatus, and shape adjustment method of multi charged particle beam image
KR102215251B1 (ko) 멀티 하전 입자 빔 묘화 방법 및 멀티 하전 입자 빔 묘화 장치
JP2019114731A (ja) マルチ荷電粒子ビーム描画装置及びマルチ荷電粒子ビーム描画方法
US11037759B2 (en) Multi charged particle beam writing apparatus and multi charged particle beam writing method
KR102303435B1 (ko) 멀티 하전 입자 빔 묘화 장치 및 멀티 하전 입자 빔 묘화 방법
JP2019029575A (ja) マルチ荷電粒子ビーム描画装置及びマルチ荷電粒子ビーム描画方法
JP7002837B2 (ja) マルチ荷電粒子ビーム描画装置及びマルチ荷電粒子ビーム描画方法
KR102410976B1 (ko) 멀티 하전 입자 빔 묘화 장치 및 멀티 하전 입자 빔 묘화 방법
JP6844999B2 (ja) マルチ荷電粒子ビーム描画装置およびマルチ荷電粒子ビーム描画方法
JP7421364B2 (ja) マルチビーム描画方法及びマルチビーム描画装置
JP2018137358A (ja) マルチ荷電粒子ビーム描画方法およびマルチ荷電粒子ビーム描画装置
KR20220045887A (ko) 멀티 하전 입자 빔 묘화 장치 및 멀티 하전 입자 빔 묘화 방법
WO2022030064A1 (ja) マルチ荷電粒子ビーム描画装置及びマルチ荷電粒子ビーム描画方法
JP6754481B2 (ja) マルチ荷電粒子ビーム描画装置及びマルチ荷電粒子ビーム描画方法
US10586682B2 (en) Method of obtaining beam deflection shape and method of obtaining arrangement angle of blanking aperture array plate
JP6845000B2 (ja) マルチ荷電粒子ビーム露光装置およびマルチ荷電粒子ビーム露光方法
JP2023177932A (ja) マルチ荷電粒子ビーム描画装置及びマルチ荷電粒子ビーム描画方法