KR101472337B1 - 피스톤형 압축기 - Google Patents

피스톤형 압축기 Download PDF

Info

Publication number
KR101472337B1
KR101472337B1 KR1020130130036A KR20130130036A KR101472337B1 KR 101472337 B1 KR101472337 B1 KR 101472337B1 KR 1020130130036 A KR1020130130036 A KR 1020130130036A KR 20130130036 A KR20130130036 A KR 20130130036A KR 101472337 B1 KR101472337 B1 KR 101472337B1
Authority
KR
South Korea
Prior art keywords
hole
drive shaft
communication
cylindrical body
diameter
Prior art date
Application number
KR1020130130036A
Other languages
English (en)
Other versions
KR20140057168A (ko
Inventor
타카히사 반
코지 가와무라
요시오 기모토
켄고 사카키바라
Original Assignee
가부시키가이샤 도요다 지도숏키
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가부시키가이샤 도요다 지도숏키 filed Critical 가부시키가이샤 도요다 지도숏키
Publication of KR20140057168A publication Critical patent/KR20140057168A/ko
Application granted granted Critical
Publication of KR101472337B1 publication Critical patent/KR101472337B1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/22Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00 by means of valves
    • F04B49/24Bypassing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/02Stopping, starting, unloading or idling control
    • F04B49/03Stopping, starting, unloading or idling control by means of valves
    • F04B49/035Bypassing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/12Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis
    • F04B1/14Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis having stationary cylinders
    • F04B1/18Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis having stationary cylinders having self-acting distribution members, i.e. actuated by working fluid
    • F04B1/184Cylindrical distribution members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/10Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis having stationary cylinders
    • F04B27/1009Distribution members
    • F04B27/1018Cylindrical distribution members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/10Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis having stationary cylinders
    • F04B27/1009Distribution members
    • F04B27/1027Conical distribution members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/10Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis having stationary cylinders
    • F04B27/1036Component parts, details, e.g. sealings, lubrication
    • F04B27/1081Casings, housings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/12Casings; Cylinders; Cylinder heads; Fluid connections
    • F04B39/123Fluid connections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B7/00Piston machines or pumps characterised by having positively-driven valving
    • F04B7/0003Piston machines or pumps characterised by having positively-driven valving the distribution member forming both the inlet and discharge distributor for one single pumping chamber

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressor (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

피스톤형 압축기는 하우징과, 상기 하우징에 지지되는 구동축과, 상기 구동축 내부에 형성되어 있는 연통 구멍과, 밸브 기구 및, 원통체를 포함한다. 원통체는 연통 구멍 안에 삽입되어 잔류 가스 우회 통로와 연통 구멍을 서로 분리시키며, 원통체의 내부 공간은 연통 구멍에 개방되어 있다. 밸브 기구는 연통 구멍 내에서 원통체의 외부로 구획되는 환형 공간 및 이 환형 공간과 연통로 사이의 연통을 제공하는 복수의 연결 구멍을 포함한다. 잔류 가스 우회 통로는 환형 공간과 복수의 연결 구멍으로 형성된다.

Description

피스톤형 압축기{PISTON-TYPE COMPRESSOR}
본 발명은 피스톤형 압축기, 특히, 실린더 블럭의 실린더 보어 내에서 왕복 운동하도록 되어 있는 피스톤을 포함하는 피스톤형 압축기에 관한 것이다.
피스톤형 압축기로서, 종래, 예컨대 일본 공개 특허 공보 특개평 6-117365 호에 개시되어 있는 형태의 왕복동 압축기(reciprocating compressor)가 알려져 있다. 상기 특허 공보에 개시되어 있는 왕복동 압축기는 축선 주위에 복수의 보어(bore)를 갖는 실린더 블럭과, 상기 실린더 블럭의 축 구멍에 지지되는 구동축 및, 상기 구동축과 상호 작용하는 크랭크실내의 사판(swash plate)과 연결되어 있으며 대응하는 보어 내에서 선형으로 운동하도록 되어 있는 복수의 피스톤을 포함한다. 각각의 보어와 축 구멍 사이에는 연통로(communication passage)가 형성되어 이들 보어와 축 구멍 사이의 연통을 제공한다. 구동축은 회전 밸브와 동기적으로 회전 하도록 연결되어 있다. 상기 회전 밸브는 흡입 행정이 실행되고 있는 각 보어의 연통로와 흡입실 사이의 연통을 순차적으로 제공하기 위한 흡입 통로를 갖고 있다. 회전 밸브는 잔류 가스 우회 통로(bypass passage)를 포함한다. 상기 잔류 가스 우회 통로는 고압 개구부, 저압 개구부 및 연통로를 포함한다. 고압 개구부는 배출이 종료된 보어 및 대응하는 연통로를 통해 연통을 제공한다. 저압 개구부는 배출 종료와 동기적으로 압축 작업이 실질적으로 진행되고 있는 보어 및 대응하는 연통로를 통해 연통을 제공한다. 연통로는 고압 개구부와 저압 개구부를 연결해 준다. 구체적으로, 압축 및 배출 행정이 실행되고 있는 각 보어의 연통로와 마주하는 시일 영역 내에서 회전 밸브의 외주면에는 잔류 가스 우회 통로로서 잔류 가스 우회 홈(bypass groove)이 형성되어 있다.
상기 특허 공보에 개시되어 있는 왕복동 압축기에서, 회전 밸브를 구동축과 동기적으로 회전시킴으로써, 흡입실 내의 냉매 가스가 회전 밸브의 흡입 통로 및 흡입 행정이 실행되고 있는 각 보어의 연통로를 통과하여 각각의 보어 안으로 순차적으로 흡입된다. 그리고 냉매 가스가 각각의 보어 안으로 흡입되는 작동은 원활하고 안정적으로 계속되며 그래서 압력 손실이 상당히 낮아지게 된다.
또한, 회전 밸브를 구동축과 동기적으로 회전시킴으로써, 배출이 종료된 보어 내의 잔류 가스가 고압 개구부를 통해 회수되어 연통로를 통과하여 저압 개구부로 전달된다. 완전히 압축된 냉매 가스는 흡입 압력에서 감압 없이 압축 행정이 실행되고 있는 보어 안으로 전달되므로, 불필요한 재압축(recompression)이 감소될 수 있고 또한 작동이 비교적 충분한 동력 효율로 이루어진다. 또한, 잔류 가스는 보어의 흡입 행정 중에 다시 팽창할 가능성이 적으므로, 흡입실 내의 냉매 가스는 안정적으로 보어 내로 흡입된다.
다른 종래 기술로서 예컨대 일본 공개 특허 공보 특개평 5-71467 호에 개시되어 있는 형태의 피스톤형 압축기가 제안되어 있다. 상기 특허 공보에 개시되어 있는 피스톤형 압축기에서는, 연통홈이 형성되어, 각각의 실린더 보어와 회전 밸브가 수용되어 있는 밸브실 사이의 반경 방향 연통을 제공한다. 밸브실에 수용되어 있는 회전 밸브는 구동축과 동기적으로 회전 하도록 연결되어 있다. 흡입 행정이 실행되고 있는 각 실린더 보어의 연통홈과 흡입실 사이의 연통을 순차적으로 제공하기 위해, 회전 밸브에는 흡입 가스 통로와 흡입 가스 안내 홈이 형성되어 있다. 회전 밸브 내부에는, 배출이 종료된 실린더 보어로부터 잔류 가스를 저압 실린더 보어에 전달하기 위한 가스 방출 구멍이 회전 밸브의 반경 방향으로 관통하도록 형성되어 있다.
상기 특허 공보에 개시되어 있는 피스톤형 압축기에서, 각 피스톤의 왕복 운동과 함께 실린더 블럭과 회전 밸브 사이의 상대 회전으로, 회전 밸브의 가스 방출 구멍이, 압축 가스의 배출이 완료된 실린더 보어의 압축실과 상기 실린더 보어의 배출 완료시 압축 가스의 흡입이 이미 완료된 다른 실린더 보어의 압축실 사이의 연통을 제공하게 된다. 이렇게 해서, 배출이 완료된 실린더 보어의 압축실 내의 고압 잔류가스가 압축 가스의 흡입이 이미 완료된 다른 실린더 보어의 압축실 안으로 방출되며, 그리하여, 배출이 완료된 실린더 보어의 압축실 내의 압력이 감소된다. 따라서, 실린더 보어의 피스톤이 흡입 행정을 시작할 때에도, 압축실 내의 잔류 가스의 재팽창이 상당히 낮아지고 또한 압축실 안으로의 가스 흡입이 신속하게 시작된다.
그러나, 상기 일본 공개 특허 공보 특개평 6-117365 호에 개시되어 있는 왕복동 압축기에서는, 잔류 가스 우회 홈이 회전 밸브의 외주면에 형성되어 있으므로, 냉매 가스가 실린더 블럭과 회전 밸브 사이의 경계를 통해 누출되기 쉽다. 그래서, 냉매 기스의 누출을 더욱 신뢰성있게 방지할 필요가 있었다. 또한, 회전 밸브의 외주면을 따라 제공되어 있는 잔류 가스 우회 홈은 가공하여 형성하기가 어렵다. 이로 인해 생산성이 저하될 수 있다. 또한, 홈의 깊이는 강도등의 다양한 조건을 고려하여 치수 제약을 받게 된다.
상기 일본 공개 특허 공보 특개평 5-71467 호에 개시되어 있는 피스톤형 압축기에서는, 가스 방출 구멍이 회전 밸브의 반경 방향으로 관통하여 연장되도록 형성되므로, 단지 한번의 구멍 가공만 하여 가스 방출 구멍을 형성하는 것이 필요하며, 이는 외주면에 홈을 가공하는 것 보다 용이하다. 그러나, 오일을 회수하기 위한 회수 통로를 형성하기 위해 예컨대 축방향 연통 구멍이 구동축의 중심부에 형성되면, 중공 구동축에 관통형 가스 방출 구멍을 형성하는 것은 어렵다. 구동축에 형성되어 있는 연통 구멍 주위에 가스 방출 구멍을 형성할 수 있더라도, 구멍 가공을 여러 번 해야 하는 것과 같은 복잡성을 내포하여 번거로울 뿐만 아니라, 개량된 구멍 가공 기술이 필요할 수도 있다.
본 발명의 목적은, 복수의 통로가 구동축 내부에 형성될 수 있고 그 통로들 중의 하나가 실린더 보어 내의 고압 잔류 가스를 저압 실린더 보어에 전달하기 위한 잔류 가스 우회 통로로서 작용하는 피스톤형 압축기를 제공하는 것이다.
상기 목적을 달성하기 위한 본 발명의 일 실시 형태에 따르면, 축구멍과, 상기 축 구멍 주위에 제공되어 있는 복수의 실린더 보어를 갖는 하우징과; 상기 축 구멍에 삽입되어 회전가능하게 지지되는 구동축과; 복수의 피스톤과; 복수의 연통로와; 밸브 기구와; 연통 구멍 및; 원통체(cylindrical body)를 포함하는 피스톤형 압축기가 제공된다. 상기 피스톤은 상기 각각의 실린더 보어 안에 삽입된다. 피스톤은 상기 구동축의 회전에 의해 상기 실린더 보어 내에서 왕복 운동하게 된다. 상기 연통로는 상기 실린더 보어와 축 구멍 사이의 연통을 제공한다. 상기 밸브 기구는 상기 축 구멍 내의 구동축과 일체로 작동하고, 상기 연통로와 연통하여 상기 실린더 보어 내의 고압 잔류 가스를 저압 실린더 보어에 안내하는 잔류 가스 우회 통로를 포함한다. 연통 구멍은 상기 구동축의 내부에 형성된다. 원통체는 상기 연통 구멍 내에 삽입되어 상기 잔류 가스 우회 통로와 연통 구멍을 서로 분리시키며, 상기 원통체의 내부 공간은 상기 연통 구멍으로 개방되어 있다. 상기 밸브 기구는, 상기 연통 구멍 내에서 상기 원통체의 외부로 구획되는(defined) 환형 공간 및, 상기 환형 공간과 연통로 사이의 연통을 제공하는 복수의 연결 구멍을 포함한다. 상기 잔류 가스 우회 통로는 상기 환형 공간 및 연결 구멍으로 형성되어 있다.
본 발명의 다른 실시 형태와 이점들은 본 발명의 원리를 예시적으로 도시하는 첨부 도면과 함께 이하의 설명으로부터 명확히 알 수 있을 것이다.
본 발명은 그의 목적 및 이점과 함께, 첨부 도면과 함께 현재 바람직한 실시 형태에 대한 이하의 설명을 참조하여 가장 잘 이해될 수 있을 것이다.
도 1 은 제 1 실시 형태에 따른 피스톤형 압축기의 종단면도이다.
도 2 는 피스톤형 압축기의 주요부를 보여주는 확대 종단면도이다.
도 3 은 제 1 실시 형태에 따른 원통체의 사시도이다.
도 4 는 도 2 에서 화살표 4-4 방향으로 취한 부분도이다.
도 5a 는 제 2 실시 형태에 따른 압축기의 주요부를 보여주는 확대 종단면도이다.
도 5b 는 제 2 실시 형태에 따른 원통체의 사시도이다.
도 6a 는 제 3 실시 형태에 따른 압축기의 주요부를 보여주는 확대 종단면도이다.
도 6b 는 제 3 실시 형태에 따른 원통체의 사시도이다.
도 7a 는 제 4 실시 형태에 따른 압축기의 주요부를 보여주는 확대 종단면도이다.
도 7b 는 제 4 실시 형태에 따른 원통체의 사시도이다.
도 8 은 제 5 실시 형태에 따른 피스톤형 압축기의 종단면도이다.
도 9a 는 제 5 실시 형태에 따른 압축기의 주요부를 보여주는 확대 종단면도이다.
도 9b 는 제 5 실시 형태에 따른 원통체의 사시도이다.
제 1 실시 형태
이하, 제 1 실시 형태에 따른 피스톤형 압축기로서 사판형 가변 용량 압축기를 첨부 도면을 참조하여 설명한다. 이 실시 형태의 사판형 가변 용량 압축기는 (이하, 간단히 "압축기" 라고 함)는 차량에 장착되는 공기 조화용 압축기이다.
도 1 에 나타낸 압축기에서, 전방 하우징 부재(12)는 실린더 블럭(11)의 전방 단부에 결합해 있고, 후방 하우징 부재(13)는 실린더 블럭(11)의 후방 단부에 결합해 있다. 상기 실린더 블럭(11)과, 전방 하우징 부재(12) 및 후방 하우징 부재(13)는 복수의 관통 볼트(14)(이 중 하나만 도 1 에 도시되어 있음)를 사용하여 서로 결합되어 있다. 상기 실린더 블럭(11)에는, 상기 관통 볼트(14)가 삽입되는 볼트 관통 구멍(미도시)이 형성되어 있으며, 전방 하우징 부재(12)에도 볼트 관통 구멍(15)이 형성되어 있다. 후방 하우징 부재(13)에는 볼트 구멍(미도시)들이 형성되어 있으며, 각각의 볼트 구멍은 상기 각각의 관통 볼트(14)의 외부 나사산부가 나사 결합되는 내부 나사산을 갖는다. 상기 실린더 블럭(11)과, 전방 하우징 부재(12) 및 후방 하우징 부재(13)는 압축기의 전체 하우징을 구성하는 요소들이다.
이렇게 상기 실린더 블럭(11)과 결합하는 상기 전방 하우징 부재(12)에는 내부에 제어 압력실(16)이 형성되어 있다. 실린더 블럭(11)에는 축 구멍(17)이 형성되어 있다. 상기 축구멍(17)에는, 구동축(18)이 삽입 통과되어 실린더 블럭(11) 내에 회전가능하게 지지된다. 이 실시 형태에서, 실린더 블럭(11)과 미끄럼 접촉하는 상기 구동축(18)의 외주면에는 윤활제 함유 코팅층이 형성되어 있다. 상기 전방 하우징 부재(12)에는 또한 축 구멍(20)이 형성되어 있고 구동축(18)이 그 축구멍(20)을 삽입 통과하고 있다. 상기 축 구멍(20)에는, 축 시일링 장치(21)가 형성되어 있다. 상기 축 시일링 장치(21)는 주로 고무재로 만들어진 립 시일(lip seal)을 채용한다. 구동축(18)은 상기 제어 압력실(16)로부터 외부로 돌출되어 있어 엔진(미도시)과 같은 외부 구동원으로부터 회전 구동력을 받게 된다.
상기 구동축(18)에는 회전 지지부(22)가 고정되어 있다. 상기 회전 지지부(22)는 레이디얼 베어링(23)을 통해 전방 하우징 부재(12)에 회전가능하게 지지되어 구동축(18)과 일체로 회전될 수 있다. 구동축(18)의 축선(P)을 따르는 하중을 수용하기 위한 스러스트 베어링(24)이 상기 회전 지지부(22)의 보스부(boss portion)와 전방 하우징 부재(12)의 내측 벽면 사이에 형성되어 있다. 전방 하우징 부재(12)에는 오일 통로(25)가 형성되어 있는데, 상기 오일 통로는 제어 압력실(16)의 외주 영역으로부터 전방 하우징 부재(12)와 회전 지지부(22) 사이까지 연장되어 있어 상기 스러스트 베어링(24)과 대면한다. 상기 오일 통로(25)는 상기 축구멍(20)까지 이르른다. 상기 회전 지지부(22)상에는, 사판(26)이 구동축(18)의 축선(P)을 따라 슬라이딩가능하게 또한 그 축선에 대해 경사져 지지된다.
상기 회전 지지부(22)에는 사판(26)을 향해 돌출되어 있는 한 쌍의 아암(27)이 형성되어 있다(이들 아암(27) 중 하나만 도 1 에 도시되어 있고 다른 아암(27)은 도시되어 있지 않음). 사판(26)에는 회전 지지부(22) 쪽으로 돌출되어 있는 한쌍의 돌출부(28)가 형성되어 있다. 이들 돌출부(28)는 회전 지지부(22)의 상기 한쌍의 아암(27) 사이에 형성되어 있는 홈부에 삽입된다. 상기 돌출부(28)는 한쌍의 아암(27) 사이에 개재되어 상기 홈부내에서 움직일 수 있다. 상기 아암(27)들 사이에 있는 상기 홈부의 바닥면에는 캠면(29)이 형성되어 있으며, 상기 돌출부(28)의 말단부는 그 캠면(29)과 미끄럼 접촉한다. 한쌍의 아암(27) 사이에 개재되는 상기 돌출부(28)와 캠면(29) 사이의 연결을 통해 상기 사판(26)이 구동축(18)의 축방향으로 경사질 수 있으며 또한 그 구동축(18)과 일체로 회전할 수 있다. 사판(26)의 경사는 캠면(29)과 돌출부(28) 사이의 미끄럼 안내 관계 및 구동축(18)의 미끄럼 지지 작용에 의해 안내된다. 상기 한쌍의 아암(27)과, 돌출부(28) 및 캠면(29)은 사판(26)과 회전 지지부(22) 사이에 형성되는 변환 기구(conversion machanism; 30)를 구성한다. 이 변환 기구(30)는 구동축(18)으로부터 사판(26)에 토크가 전달가능하게 회전 지지부(22)와 사판(26)을 경사가능하게 연결해 준다.
구동축(18) 상에는 코일 스프링(31)이 설치되어 있다. 상기 코일 스프링(31)은 회전 지지부(22)와 사판(26) 사이에 위치된다. 상기 코일 스프링(31)은 사판(26)을 회전 지지부(22)로부터 분리시키려고 하는 힘을 사판(26)에 가해 준다.
상기 사판(26)의 반경 방향 중심부가 회전 지지부(22) 쪽으로 움직일 때, 상기 사판(26)의 경사각은 구동축(18)의 반경 방향에 대해 증가하게 된다. 사판(26)의 최대 경사각은 회전 지지부(26)와 사판(26) 간의 접촉으로 정해진다. 도 1 은 사판(26)이 최대 경사각에 있는 것을 나타내고 있다.
도 1 에 나타낸 바와 같이, 상기 실린더 블럭(11) 내에 형성되어 있는 복수의 실린더 보어(32) 내에는 피스톤(33)들이 각각 왕복 운동 가능하게 수용되어 있다. 사판(26)의 회전 운동은 한쌍의 슈우(shoe; 35)를 통해 상기 피스톤(33)의 전후 왕복 운동으로 변환되며 이에 따라 피스톤(33)은 대응하는 실린더 보어(32) 내에서 왕복 운동하게 된다.
상기 후방 하우징 부재(13)에는 분할벽(36)이 형성되어 있고 상기 분할벽(36)에 의해, 흡입실(37)과 배출실(38)이 구획된다. 또한, 실린더 블럭(11)과 후방 하우징 부재(13) 사이에는, 밸브판(39)과, 밸브 형성 판 (40, 41) 및 리테이너 형성 판(42)에는 흡입 포트(43)들이 형성되어 있다. 또한, 밸브 판(39) 및 밸브 형성 판(40)에는 배출 포트(44)가 형성되어 있다. 밸브 형성 판(40)에는 흡입 밸브(45)가 형성되어 있고 밸브 형성 판(41)에는 배출 밸브(46)가 형성되어 있다. 리테이너 형성 판(42)에는, 배출 밸브(46)의 개도를 제한하기 위한 리테이너(47)가 형성되어 있다.
상기 밸브 판(39)과, 밸브 형성 판(40, 41) 및 리테이너 형성 판(42)의 중심부를 관통하여 관통 구멍(48)이 형성되어, 상기 축 구멍(17)과 흡입실(37)을 연결해 준다. 도 2 에 나타낸 바와 같이, 각각의 실린더 보어(32)에 있어서 상기 후방 하우징 부재(13)에 인접해 있는 부분과 연통하는 공간(49)이 실린더 블럭(11)의 축구멍(17) 부근에 형성되어 있다. 흡입 밸브(45)의 개도는 상기 공간(49)을 형성하는 실린더 블럭(11)의 끝면(50)에 의해 제한된다.
흡입실(37) 내에 있는 냉매가 상기 흡입 포트(43)와, 흡입 밸브(45)(각 피스톤(33)의 전방 운동(도 1 에서 우측에서 좌측으로 가는 운동)으로 열림)를 통과하여 각각의 실린더 보어(32) 안으로 유입하게 된다. 각각의 실린더 보어(32) 내로 유입된 가스상(gaseous) 냉매는 배출 포트(44)와 배출 밸브(46)(각 피스톤(33)의 후방 운동(도 1 에서 좌측에서 우측으로 가는 운동)으로 열림)를 통과해 배출되어 배출실(38) 안으로 들어가게 된다. 배출 밸브(46)의 개도는 리테이너(47)가 리테이너 형성 판(42)에 접촉함으로써 제한된다.
냉매를 상기 흡입실(37) 내로 들여 보내기 위한 흡입 통로(51)와, 냉매를 배출실(38)로부터 배출시키기 위한 배출 통로(52)가, 외부 냉매 회로(53)를 통해 서로 연결되어 있다. 냉매로 부터 열을 취출하기 위한 열교환기(54)와, 팽창 밸브(55) 및 주변의 열을 냉매에 제공하기 위한 열교환기(56)가 상기 외부 냉매 회로(53)에 형성되어 있다. 상기 팽창 밸브(55)는 열교환기(56)의 출구에서의 냉매 가스 온도 변화에 따라 냉매의 유량을 제어하기 위해 배치된다.
배출실(38) 내로 배출된 냉매 가스는 상기 배출 통로(52)를 통과하여 외부 냉매 회로(53) 내로 유입하게 된다. 상기 외부 냉매 회로(53) 내로 유입된 냉매 가스는 상기 흡입 통로(51)를 통과하여 다시 흡입실(37) 내로 유입하게 된다. 상기 배출실(38)과 제어 압력실(16)은 공급 통로(57)를 통해 서로 연통한다. 상기 공급 통로(57)를 통과해 흐르는 냉매 가스의 유량을 제어하기 위해 용량 제어 밸브(59)가 후방 하우징 부재(13)에 형성되어 있다.
상기 공급 통로(57)를 통과해 흐르는 냉매 가스의 유량이 상기 용량 제어 밸브(59)의 개도의 증가와 더불어 증가하면, 상기 제어 압력실(16) 내의 압력도 증가하게 된다. 이렇게 되면 사판(26)의 경사각이 감소하게 된다. 공급 통로(57)를 통과해 흐르는 냉매 가스의 유량이 상기 용량 제어 밸브(59)의 개도의 감소와 더불어 감소하면, 제어 압력실(16) 내의 압력도 감소하게 된다. 이렇게 되면 사판(26)의 경사각이 증가하게 된다.
한편, 이 실시 형태의 압축기는, 실린더 보어(32) 내에 남아 있는 고압 냉매 가스(이하, "고압 잔류 가스"라고 함)를 저압 실린더 보어(32)에 보내기 위한 잔류 가스 우회 통로를 포함한다. 도 4 에 나타낸 바와 같이, 실린더 블럭(11)은 연통로(60)를 갖고 있다(도 4 에는 연통로(60A ∼ 60E)로 구별되어 있고, 피스톤(33)은 도 4 에서는 생략되어 있음). 상기 연통로(60)에 의해, 각각의 실린더 보어(32) 내에 형성되어 있는 상기 공간(49)과 축 구멍(17)이 서로 연통한다. 따라서 상기 연통로(60)는 실린더 보어(32)와 축 구멍(17)을 연결해 주는 요소인 것이다. 연통로(60)의 수는 실린더 보어(32)의 수와 같으며, 복수의 연통로(60)가 실린더 블럭(11)에 반경 방향으로 배치되어 있다. 도 1 및 2 에 나타낸 바와 같이, 상기 연통로(60)는 구동축(18)의 반경 방향에 대해 축선 쪽으로 경사져 있다. 상기 공간(49)에 인접하는 연통로(60)의 개구는 후방 하우징 부재(13)의 부근에 위치된다. 이와는 대조적으로, 축 구멍(17)에 인접하는 연통로(60)의 개구는 상기 공간(49)에 인접하는 연통로(60)의 개구 보다 제어 압력실(16)에 더 가깝게 위치된다.
다른 한편, 구동축(18)에는, 축선(P)에 중심을 두고 있는 축방향 연통 구멍(61)이 형성되어 있다. 구동축(18) 내부의 그 연통 구멍(61)은 후방 하우징 부재(13)에 인접하는 구동축(18)의 일 단부에서부터 상기 전방 하우징 부재(12) 쪽으로 연장되어 있다. 도 2 에 나타낸 바와 같이, 구동축(18) 내부의 연통 구멍(61)은 대경(large diameter) 구멍부(62) 및 소경(small diameter) 구멍부(63)를 포함한다. 상기 대경 구멍부(62)는 구동축(18)의 후단부(일 단부)에서부터 전단부(다른 단부) 쪽으로 연장되어 있고 큰 내경을 갖는다. 상기 소경 구멍부(63)는 대경 구멍부(62)에서부터 전방 하우징 부재(12) 쪽으로 연장되어 있고 또한 대경 구멍부(62)의 내경 보다 작은 내경을 갖고 있다.
상기 소경 구멍부(63)의 전방 단부는 축 구멍(20) 안에서 구동축(18)의 축방향으로 상기 축 시일링 장치(21)와 회전 지지부(22) 사이에 있다. 도 1 에 나타낸 바와 같이, 소경 구멍부(63)의 전방 단부에서 구동축(18)의 외주까지 반경 방향으로 구멍(64)이 형성되어 있다. 상기 구멍(64)은 축 구멍(20)을 통해 상기 오일로(25)와 연통한다. 따라서, 상기 제어 압력실(16)과 흡입실(37)이 상기 관통 구멍(48)과, 연통 구멍(61) 및 구멍(64)을 통해 서로 연통한다. 제어 압력실(16) 내의 냉매 가스는 관통 구멍(48)과, 연통 구멍(61) 및 구멍(64)을 통과해 흡입실(37) 내로 유입하게 된다. 그래서 관통 구멍(48) 및 구동축(18)의 연통 구멍(61)과 구멍(64)은 오일 유동 통로 뿐만 아니라 블리드(bleed) 통로로서의 역할도 한다. 즉, 상기 관통 구멍(48)과, 연통 구멍(61) 및 구멍(64)은, 상기 용량 제어 밸브(59) 및 공급 통로(57)와 협동하여 상기 제어 압력실(16)내의 압력을 제어하는 요소인 것이다.
도 2 ∼ 4 에 나타낸 바와 같이, 상기 구동축(18)에는 고압 연결 구멍(65)과 저압 연결 구멍(66)이 형성되어 있다. 이들 연결 구멍(65, 66)은 상기 대경 구멍부(62)에서부터 반경 방향으로 구동축(18)의 외주까지 이르른다. 상기 고압 연결 구멍(65)과 저압 연결 구멍(66)은 압축기의 작동 중에 실린더 보어(32)의 연통로(60)와 연통하는 위치에 형성되어 있다.
도 3 에 나타낸 바와 같이, 이 실시 형태에서는, 상기 고압 연결 구멍(65)이 실린더 보어(32)의 연통로(60(60A))와 연통할 때 상기 저압 연결 구멍(66)이 실린더 보어(32)의 연통로(60(60D))와 연통하게 되는 관계가 이루어진다. 연통로(60)에 인접하는 고압 연결 구멍(65)의 개구는 고압 개구부(67)이고, 연통로(60)에 인접하는 저압 연결 구멍(66)의 개구는 저압 개구부(68)이다. 축 구멍(17)에 인접하는 연통로(60)의 개구는 타원형으로 형성되어 있기 때문에, 상기 고압 개구부(67) 및 저압 개구부(68)는 축 구멍(17)에 인접하는 연통로(60)의 상기 개구의 형상과 유사하게 신장된 원형으로 형성되어 있다.
원통체(70)가 구동축(18)의 후단부를 통과해 그 구동축의 연통 구멍(61)으로부터 억지 끼워맞춤(press-fitted) 된다. 이 실시 형태의 상기 원통체(70)는 후방 하우징 부재(13) 쪽으로 향하는 구동축(18)의 움직임(즉, 후방 움직임)을 제한하기 위한 축 스토퍼(stopper)이다. 이 실시 형태의 상기 원통체(70)는 대경 원통형 부분(71) 및 소경 원통형 부분(72)을 포함한다. 상기 대경 원통형 부분(71)은 연통 구멍(61)의 대경 구멍부(62)에 억지 끼워맞춤될 수 있는 외경 치수를 갖다. 상기 소경 원통형 부분(72)은 소경 구멍부(63) 안으로 억지 끼워맞춤될 수 있는 외경 치수를 갖는다. 상기 대경 원통형 부분(71)과 소경 원통형 부분(72) 사이에는 반경 방향 환형 연결부(73)가 형성되어 있다. 상기 대경 원통형 부분(71)의 일 단부에는 반경 방향 환형부(74)가 형성되어 있다. 따라서, 대경 원통형 부분(71)은 대경 구멍부(62)에서 구동축(18)에 끼워맞춤될 수 있다. 또한, 소경 원통형 부분(72)은 소경 구멍부(63)에서 구동축(18)에 끼워맞춤될 수 있다.
상기 대경 원통형 부분(71)에 있어서 억지 끼워맞춤으로 구동축(18)에 고정되는 부분은 원통체(70)의 삽입 방향으로 후미측에 있는 후미 끼워맞춤부(E1)(도 3 에서 햇칭되어(hatched) 있음) 이다. 상기 소경 원통형 부분(72)에 있어서 억지 끼워맞춤으로 구동축(18)에 고정되는 부분은 원통체(70)의 삽입 방향으로 선두측에 있는 선두 끼워맞춤부(E2)(도 3 에서 햇칭되어 있음) 이다. 원통체(70)의 상기 후미 끼워맞춤부(E1) 및 선두 끼워맞춤부(E2)는 원통체(70)를 구동축(18)에 고정시키는 기능과 냉매 가스의 누출을 방지하는 시일링 기능을 제공한다.
상기 원통체(70)가 구동축(18)의 연통 구멍(61) 내로 억지 끼워맞춤되면, 상기 소경 원통형 부분(72)에 있어서 상기 선두 끼워맞춤부를 제외한 부분의 외주측에는 원통체(70)와 동심인 환형 공간(75)이 형성된다. 소경 원통형 부분(72)에 있어서 상기 선두 끼워맞춤부(E2)를 제외한 상기 부분은, 대경 구멍부(62)와 대면하는 부분으로, 즉 상기 환형 공간(75)과 마주하는 공간 대면부(E3)에 해당된다. 소경 구멍부(63)와 연통하는 원통체(70)의 내부 공간은 중심 공간에 해당된다. 또한, 이 실시 형태에서, 상기 후미 끼워맞춤부(E1)는 대경 원통형 부분(71)의 대부분을 차지한다. 상기 환형 공간(75)은 상기 중심 공간 외부의 대략 둘러싸인 공간이 되도록 대경 구멍부(62)의 축방향으로 후미 끼워맞춤부(E1)와 선두 끼워맞춤부(E2) 사이에 형성된다.
상기 환형 공간(75)과 고압 연결 구멍(65)은 서로 연통되어 있다. 환형 공간(75)과 저압 연결 구멍(66)도 서로 연통되어 있다. 즉, 고압 개구부(67) 및 환형 공간(75)은 고압 연결 구멍(65)에 의해 서로 연통된다. 또한, 저압 개구부(68) 및 환형 공간(75)은 저압 연결 구멍(66)에 의해 서로 연통된다. 따라서 고압 연결 구멍(65)과 저압 연결 구멍(66)은 환형 공간(75)과 연통로(60) 사이의 연통을 제공하는 복수의 연결 구멍에 해당된다. 고압 연결 구멍(65) 및 저압 연결 구멍(66)과 함께 상기 환형 공간(75)은, 배출 종료시 실린더 보어(32)내의 잔류 가스를 압축 행정이 실행되고 있는 실린더 보어(32)에 상기 연통로(60)를 통해 안내하기 위한 잔류 가스 우회 통로를 형성한다. 이 실시 형태의 압축기는 그 잔류 가스 우회 통로를 포함하는 밸브 기구를 포함하며, 상기 밸브 기구는 축 구멍(17) 내의 구동축(18)과 일체로 작동하도록 되어 있다. 상기 밸브 기구는 연통 구멍(61)에서 상기 원통체(70)의 외부로 구획되는 상기 환형 공간(75)과, 고압 연결 구멍(65) 및 저압 연결 구멍(66)을 포함한다. 상기 밸브 기구는 구동축(18)의 회전으로 상기 잔류 가스 우회 통로와 연통로(60) 사이의 연통을 제공하거나 차단하도록 되어 있다.
상기 원통체(70)가 구동축(18)에 억지 끼워맞춤되므로, 구동축(18)의 연통 구멍(61)은 원통체(70)의 내부 공간과 연통하는 소경 구멍부(63)와 상기 환형 공간(75)으로 분할되며, 이들 소경 구멍부(63)와 환형 공간(75)은 서로 연통하지 않는다. 즉, 원통체(70)는 잔류 가스 우회 통로와 연통 구멍(61)을 서로 분리시키며, 원통체(70)의 내부 공간은 연통 구멍(61)에 개방되어 있다. 원통체(70)가 연통 구멍(61) 내로 억지 끼워맞춤되어 구동축(18)에 고정된 상태에서, 상기 환형부(74)는 밸브 형성 판(40)과 접촉하게 된다. 원통체(70)는 구동축(18)의 후방 움직임을 제한하며 따라서 축 스토퍼로서 역할한다.
다음, 이 실시 형태의 압축기의 작용에 대해 설명한다. 압축기의 작동 중에, 냉매 가스가 외부 냉매 회로(53)로부터 흡입 통로(51)를 통과해 흡입실(37) 내로 들어가게 된다. 흡입 행정시 상기 흡입 밸브(45)는 열린다. 이때, 흡입 밸브(45)가 열려 있으면 흡입실(37) 내의 냉매 가스가 흡입 포트(43)를 통과해 실린더 보어(32) 내로 들어간다. 상기 흡입 행정에서, 실린더 보어(32) 내의 압력이 감소되고 배출실(38) 내의 압력은 고압으로 되어, 배출 밸브(46)가 휘어짐이 없이 밸브 판(39)에 밀착되어 배출 포트(44)를 폐쇄시킨다. 피스톤(33)이 하사점 위치에서 상사점 위치로 이동하는 다음 압축 행정에서, 실린더 보어(32) 내의 압력이 증가하여 내부의 냉매 가스가 압축된다.
압축 행정에서, 실린더 보어(32) 내의 압력이 증가한다. 배출 행정에서는, 배출 밸브(46)가 휘어져 배출 포트(44)가 열리게 되며, 또한 실린더 보어(32) 내의 냉매 가스가 상기 배출 포트(44)를 통과해 배출실(38) 안으로 배출된다. 동시에, 실린더 보어(32) 내의 압력이 증가되고 흡입실(37) 내의 압력은 저압으로 되어, 흡입 밸브(45)가 밸브 판(39)에 밀착되어 흡입 포트(43)를 폐쇄시킨다. 피스톤(33)이 상사점 위치로 이동하고 또한 냉매 가스가 실린더 보어(32)로부터 배출실(38) 내로 배출되어 그 실린더 보어(32) 내의 압력이 감소되면, 휘어진 배출 밸브(46)에 축적되어 있는 탄성 복원력에 의해 그 배출 밸브(46)는 그의 초기 상태로 복귀하고 상기 리테이너(47)로부터 멀어지게 움직여 배출 포트(44)를 폐쇄시킨다. 그리고, 실린더 보어(32)로부터 배출실(38) 안으로 배출된 냉매 가스는 배출 통로(52)를 통과하여 외부 냉매 회로(53) 내로 전달된다.
한편, 압축기의 작동 중에 구동축(18)이 회전할 때, 상기 사판(26)이 또한 그 구동축(18)과 함께 회전하게 된다. 이 사판(26)의 회전으로, 각각의 피스톤(33)은 대응하는 실린더 보어(32) 내에서 왕복 운동한다. 피스톤(33)이 실린더 보어(32) 내에서 상사점에서 하사점으로 이동함으로써, 흡입 행정이 그 실린더 보어(32)에서 실행된다. 피스톤(33)이 실린더 보어(32) 내에서 하사점에서 상사점 으로 이동함으로써, 압축 및 배출 행정이 그 실린더 보어(32)에서 실행된다.
예컨대 도 4 에 나타낸 상태에서, 실린더 보어(32(32A))는 배출 행정이 완료된 직후의 상태에 있다. 이 상태에서, 실린더 보어(32(32B, 32C))에서는 압축 행정이 실행되고 있다. 실린더 보어(32(32D))는 흡입 행정이 완료된 직후의 상태에 있다. 이 상태에서, 실린더 보어(32(32E))에서는 흡입 행정이 실행되고 있다.
도 4 에 나타낸 상태에서, 상기 밸브 기구는 고압 실린더 보어(32 (32A))와 연통하는 연통로(60(60A))와 구동축(18)의 고압 연결 구멍(65) 사이의 연통을 제공한다. 이때, 구동축(18)의 저압 연결 구멍(66)은 저압 실린더 보어(32 (32D))와 연통하는 연통로(60(60D))와 연통한다. 결과적으로, 실린더 보어(32(32A)) 내의 고압 잔류 가스는 연통로(60(60A))를 통과하여 상기 환형 공간(75) 내로 들어가며 그리고 그 환형 공간(75)으로부터 저압 연결 구멍(66) 및 연통로(60(60D))를 통과하여 실린더 보어(32(32D)) 내로 들어가게 된다. 화살표 R 은 도 4 에서 냉매 가스의 흐름을 나타낸다. 구동축(18)의 축방향으로 고압 개구부(67)(및 저압 개구부(68))와 제어 압력실(16) 사이에 있는 구동축(18)의 외주면은 실린더 블럭(11)과 완전히 미끄럼 접촉하여, 축구멍(17)으로부터의 냉매 가스 누출을 최소화하는 시일링 기능을 제공한다. 구동축(18)의 축방향으로 고압 개구부(67)(및 저압 개구부(68))와 구동축(18)의 후단부 사이에 있는 구동축(18)의 외주면도 실린더 블럭(11)과 미끄럼 접촉하여, 축구멍(17)으로부터의 냉매 가스 누출을 최소화하는 시일링 기능을 제공한다.
고압 실린더 보어(32(32A)) 내에 있는 고압 잔류 가스는 저압 실린더 보어(32(32D)) 내로 들어가므로, 상기 실린더 보어(32(32A)) 내의 압력은 거의 흡입 압력 가까이 까지 감소하게 된다. 고압 잔류 가스가 실린더 보어(32(32A))로부터 들어가는 상기 실린더 보어(32(32D)) 내의 압력은 상기 흡입 압력 보다 약간 높게 증가한다.
그 후, 구동축(18)이 도 4 에서 화살표로 표시된 방향으로 회전하고 상기 밸브 기구가 고압 연결 구멍(65)과 연통로(60(60A)) 사이의 연통 및 저압 연결 구멍(66)과 실린더 보어(32(32D)) 사이의 연통을 제공하지 않는 상태에서, 실린더 보어(32(32A))에서 흡입 행정이 실행되고 있고, 실린더 보어(32(32D))에서는 압축 행정이 실행되고 있다. 구동축(18)이 더 회전하면, 상기 밸브 기구는 고압 연결 구멍(65)과 연통로(60(60E)) 사이의 연통 및 저압 연결 구멍(66)과 실린더 보어(32(32C)) 사이의 연통을 제공하게 된다. 이때, 실린더 보어(32(32E)) 내의 고압 잔류 가스는 연통로(60(60E))를 통과하여 환형 공간(75) 내로 들어가며 그리고 그 환형 공간(75)으로부터 저압 연결 구멍(66) 및 연통로(60(60C))를 통과하여 실린더 보어(32(32C)) 내로 들어가게 된다.
한편, 압축기의 작동 중에, 상기 제어 압력실(16) 내의 오일이 레이디얼 베어링 및 스러스트 베어링(24)과 같은 미끄럼부를 윤활한다. 예컨대, 스러스트 베어링(24)을 윤활한 오일은 오일로(25)를 통과해 흘러 축구멍(20)에 있는 축 시일링 장치(21)를 냉각한다. 또한, 오일은 상기 구멍(64) 및 연통 구멍(61)의 소경 구멍부(63)를 통과해 흐르며 그후 원통체(70)의 내부를 통과해서 상기 관통 구멍(48)을 통과하여 흡입실 안으로 들어가게 된다.
이 실시 형태는 다음과 같은 이점들을 갖는다.
(1) 구동축(18) 내에 형성되는 고압 연결 구멍(65)과, 환형 공간(75) 및 저압 연결 구멍(66)은 고압 실린더 보어(32) 내의 고압 잔류 가스를 저압 실린더 보어(32)에 전달하기 위한 잔류 가스 우회 통로를 형성하며, 상기 밸브 기구는 잔류 가스 우회 통로와 축 구멍(17)에 있는 연통로(60) 사이의 연통을 제공한다. 원통체(70)가 연통 구멍(61) 내에 억지 끼워맞춤되므로, 그 연통 구멍(61)의 공간이 상기 환형 공간(75)을 부분적으로 형성하게 되며, 이 환형 공간은 상기 잔류 가스 우회 통로의 일 부분이다. 또한, 환형 공간(75)의 중심측에 있는 소경 구멍부(63)는 오일 통로 또는 제어 압력실(16) 내의 냉매 가스를 제어하기 위한 통로와 같은, 상기 잔류 가스 우회 통로 외의 다른 통로로서 역할할 수 있다. 또한, 고압 연결 구멍(65) 및 저압 연결 구멍(66)은 간단한 가공으로 형성될 수 있다.
(2) 상기 후미 끼워맞춤부(E1) 및 선두 끼워맞춤부(E2)는 억지 끼워맞춤을 제공하므로, 원통체(70)는 구동축(18) 내에 고정될 수 있다. 원통체(70)가 구동축(18) 내에 고정됨으로써 상기 환형 공간(75)이 형성될 수 있다. 원통체(70)의 후미 끼워맞춤부(E1) 및 선두 끼워맞춤부(E2)는 냉매 가스의 누출을 최소화하기 위한 시일링 기능을 제공할 수 있다.
(3) 상기 연통 구멍(61)은, 구동축(18)의 후단부(제 1 단부)로부터 전단부(제 2 단부) 쪽으로 연장되어 있고 큰 내경을 갖는 대경 구멍부(62) 및, 이 대경 구멍부(62)로부터 상기 제 2 단부 쪽으로 연장되어 있고 대경 구멍부(62)의 내경 보다 작은 내경을 갖는 소경 구멍부(63)를 포함한다. 따라서, 연통 구멍(61)을 가공하여 형성하기 위해 개량된 가공 기술이 요구되지 않으며, 그에 따라 생산성을 개선할 수 있다. 구동축(18)의 소경 구멍부(63) 내로 끼워맞춤될 수 있는 소경 원통형 부분(72) 및 구동축(18)의 대경 구멍부(62) 안으로 끼워맞춤될 수 있는 대경 원통형 부분(71)만 형성하면 되므로, 원통체(70)를 또한 용이하게 제작할 수 있다.
(4) 상기 잔류 가스 우회 통로의 일 부분인 환형 공간(75)은 구동축(18)의 내부에 형성되므로, 구동축(18)과 실린더 블럭(11) 사이의 미끄럼 접촉 영역이 크게 될 수 있으며, 그에 따라 축 구멍(17)으로부터의 냉매 가스 누출이 용이하게 최소화될 수 있는 구조가 얻어진다.
(5) 원통체(70)는 구동축(18)의 축방향 움직임을 제한하기 위한 축 스토퍼로서 역할한다. 축 스토퍼로서 원통체(70)를 사용함으로써, 잔류 가스 우회 통로의 일 부분인 상기 환형 공간(75)이 부품 수의 증가 없이 형성될 수 있다. 결과적으로, 압축기의 생산 비용을 저감할 수 있다.
(6) 상기 대경 구멍부(62)를 축방향으로 연장시켜 환형 공간(75)을 확대시킬 수 있으므로, 그 환형 공간(75)을 설정할 수 있는 자유도가, 구동축(18)의 외주면에 연통 홈을 형성하는 경우 보다 더 높게 된다. 결과적으로, 압축기에 대해 요구되는 조건에 따라 환형 공간(75)을 적절히 형성할 수 있다.
(7) 상기 잔류 가스 우회 통로의 일 부분인 상기 환형 공간(75)에서, 고압 잔류 가스가 두 방향으로 원통체(70)의 소경 원통형 부분(72) 주위를 지날 수 있으며, 그래서 잔류 가스 우회 통로에서 냉매 가스의 압력 손실이 감소될 수 있다. 또한, 구동축(18) 내에 형성되는 상기 환형 공간(75)이 잔류 가스 우회 통로의 일 부분으로서 제공되므로, 환형 공간(75)이 제공될 때에도 구동축(18)은 회전 중에 안정된 균형을 유지할 수 있다.
(8) 실린더 블럭(11)과 미끄럼 접촉하는 구동축(18)의 외주면에는 윤활제 함유 코팅층이 형성된다. 구동축(18)이 베어링에 지지될 때, 그 베어링의 두 개를 포함하는 틈새가 구동축(18)과 실린더 블럭 사이에 형성된다. 그 틈새가 크면, 연통로(60)와 고압 연결 구멍(65) 사이 및 저압 연결 구멍(66)과 연통로(60) 사이에서 냉매 가스가 축 구멍(17)을 지나 누출될 수 있다. 그러므로, 구동축(18)과 실린더 블럭(11) 사이의 틈새가 작게 되도록, 실린더 블럭(11)을 예컨대 단차형으로 가공할 필요가 있다. 따라서 상기 코팅층이 구동축(18)의 외주면에 형성되므로, 그 구동축(18)과 실린더 블럭(11) 사이의 틈새는 구동축(18)을 회전가능하게 지지하면서 작게 될 수 있고 또한 더욱 적절히 제어될 수 있다.
제 2 실시 형태
다음, 제 2 실시 형태에 따른 압축기를 설명하기로 한다. 이 실시 형태의 압축기도 차량에 장착되는 공기 조화용 압축기이다. 그러나, 원통체의 구성은 제 1 실시 형태와는 다르다. 제 1 실시 형태와 공통적인 구성 요소들에 대해서는, 제 1 실시 형태에서의 설명을 원용하여 공통된 도면 부호를 사용키로 한다.
이 실시 형태의 압축기에서, 도 5a 및 5b 에 나타낸 원통체(80)는 억지 끼워맞춤으로 구동축(18)에 고정된다. 이 실시 형태의 원통체(80)는 구동축(18)의 후방 움직임을 제한하기 위한 축 스토퍼이다. 이 실시 형태의 원통체(80)는, 연통 구멍(61)의 대경 구멍부(62) 내로 삽입될 수 있는 외경 치수를 갖는 대경 원통형 부분(81) 및 소경 구멍부(63) 내로 억지 끼워맞춤될 수 있는 외경 치수를 갖는 소경 원통형 부분(82)을 포함한다. 상기 대경 원통형 부분(81)과 소경 원통형 부분(82) 사이에는 반경 방향 환형 연결부(83)가 형성되어 있다. 상기 대경 원통형 부분(81)의 일 단부에는 반경 방향 환형부(84)가 형성되어 있다. 원통체(80)의 내부 구멍(공간)은 소경 원통형 부분(82)의 외경 보다 작은 직경으로 설정되어 있다. 따라서, 대경 원통형 부분(81)은 대경 구멍부(62) 내로 삽입될 수 있고, 소경 원통형 부분(82)은 소경 구멍부(63)에서 구동축(18)에 억지 끼워맞춤될 수 있다. 원통체(80)의 내부 공간은 중심 공간에 해당된다.
대경 원통형 부분(81)의 전체 외주에는 환형 홈(86)이 형성되어 있고, 시일링부로서 시일링 부재(87)가 상기 환형 홈(86)에 끼워져 있다. 이 실시 형태의 시일링 부재(87)는 탄성 고무재로 만들어진 O-링이다. 원통체(80)가 구동축(18)에 고정된 상태에서, 상기 시일링 부재(87)는 냉매 가스가 환형 공간(75)으로부터 대경 구멍부(62)를 통과해 누출되는 것을 방지한다.
원통체(80)의 소경 원통형 부분(82) 내의 선두 끼워맞춤부(E2)는 억지 끼워맞춤으로 구동축(18)에 고정되어, 원통체(80)를 구동축(18)에 고정시키는 기능과 냉매 가스의 누출을 방지하는 시일링 기능을 제공한다. 원통체(80)의 소경 원통형 부분(82) 내의 공간 대면부(E3), 즉 소경 구멍부(63)에 있어서 선두 끼워맞춤부(E2)를 제외한 부분은 대경 구멍부(62)와 대면한다.
이 실시 형태는 제 1 실시 형태에서의 (1) 및 (4) ∼ (8) 과 동일한 이점을 갖는다. 더욱이, 구동축(18)에 억지 끼워맞춤되는 부분으로서 소경 원통형 부분(82) 내의 상기 선두 끼워맞춤부(E2) 만이 제공되고 상기 시일링 부재가 대경 원통형 부분(81)에 제공되므로, 여러 억지 끼워맞춤 부분들 사이에서 억지 끼워맞춤 하중의 변동이 제거될 수 있다. 결과적으로, 원통체(80)는 제 1 실시 형태에서 보다 더 용이하게 제작될 수 있다. 또한, 시일링 부재(87)가 사용되므로, 환형 공간(75)으로부터 냉매 가스가 대경 구멍부(62)를 통과해 누출되는 것이 신뢰성 있게 방지된다.
제 2 실시 형태의 변형예로서, 상기 환형 홈(86)은 원통체(80)의 대경 원통형 부분(81)의 외주면에서 생략될 수 있으나, 대경 원통형 부분(81)의 외주면에 형성되는 얇은 고무 코팅부가 시일링부로서 대신 제공될 수 있다. 이 경우, 원통체(80)의 고무 코팅부는 연통 구멍(61)의 대경 구멍부(62)에서 구동축(18)과 밀착하게 되며, 그리하여, 환형 공간(75)으로부터 냉매 가스가 대경 구멍부(62)를 통과해 누출되는 것이 신뢰성 있게 방지된다. 이러한 고무 코팅부를 형성하는 대신에, 실리콘 고무와 같은 유동성 재료로 만들어진 액체 가스켓이 시일링부로서 사용될 수 있다. 또한, 제 1 실시 형태의 원통체(70)에서 고무 코팅부가 대경 원통형 부분(71)에 형성될 수 있으며 또는 액체 가스켓이 제공될 수 있다.
제 3 실시 형태
다음, 제 3 실시 형태에 따른 압축기를 설명하기로 한다. 이 실시 형태의 압축기도 차량에 장착되는 공기 조화용 압축기이다. 그러나, 주로 원통체의 구성이 이전 실시 형태들과는 다르다. 제 1 실시 형태와 공통적인 구성 요소들에 대해서는, 제 1 실시 형태에서의 설명을 원용하여 공통된 도면 부호를 사용키로 한다다.
이 실시 형태의 압축기에서, 도 6a 및 6b 에 나타낸 원통체(90)는 억지 끼워맞춤으로 구동축(18)에 고정된다. 이 실시 형태의 원통체(90)는 구동축(18)의 후방 움직임을 제한하기 위한 축 스토퍼이다. 이 실시 형태의 원통체(90)는, 연통 구멍(61)의 대경 구멍부(62) 내로 억지 끼워맞춤될 수 있는 외경 치수를 갖는 대경 원통형 부분(91) 및 소경 구멍부(63) 내로 삽입될 수 있는 외경 치수를 갖는 소경 원통형 부분(92)을 포함한다. 상기 대경 원통형 부분(91)과 소경 원통형 부분(92) 사이에는 반경 방향 환형 연결부(93)가 형성되어 있다. 상기 대경 원통형 부분(91)의 일 단부에는 반경 방향 환형부(94)가 형성되어 있다. 대경 원통형 부분(91)은 대경 구멍부(62)에서 구동축(18)에 억지 끼워맞춤될 수 있고, 소경 원통형 부분(92)은 소경 구멍부(63) 안으로 삽입될 수 있다. 원통체(90)의 내부 구멍은 소경 원통형 부분(92)의 외경 보다 작게 설정된 직경을 갖는다. 원통체(90)의 내부 공간은 중심 공간에 해당된다.
이 실시 형태에서, 원통체(90)가 구동축(18)에 고정된 상태에서, 소경 구멍부(63)의 내벽을 형성하는 구동축(18)에는, 소경 구멍부(63)의 전체 외주에서 환형 홈(96)이 형성되어 있고, 또한 시일링부로서 시일링 부재가(97)가 그 환형 홈(96)에 끼워져 있다. 이 실시 형태의 시일링 부재(97)는 탄성 고무재로 만들어진 O-링이다. 원통체(90)가 구동축(18)에 고정된 상태에서, 상기 시일링 부재(97)는 냉매 가스가 환형 공간(75)으로부터 소경 구멍부(63)를 통과해 누출되는 것을 방지한다. 상기 시일링 부재(97)는 도 6b 에 나타낸 원통체(90)의 일 부분(S)과 밀착하게 된다.
이 실시 형태는 제 1 실시 형태의 (1) 및 (4) ∼ (8)과 동일한 이점을 갖는다. 더욱이, 구동축(18) 내로 억지 끼워맞춤되는 부분으로서 대경 원통형 부분(91) 내의 후미 끼워맞춤부(E1) 만이 제공되도록 원통체(90)가 구성되고 또한 소경 원통형 부분(92)에는 환형 홈을 제공할 필요가 없으므로, 원통체(90)는 제 2 실시 형태에서 보다 더욱 용이하게 제작될 수 있다. 또한, 소경 구멍부(63)의 내벽을 형성하는 구동축(18)에 상기 시일링 부재(97)가 끼워지므로, 냉매 가스가 환형 공간(75)으로부터 대경 구멍부(62)를 통과하여 누출되는 것이 신뢰성 있게 방지될 수 있다.
제 4 실시 형태
다음, 제 4 실시 형태에 따른 압축기를 설명하기로 한다. 이 실시 형태의 압축기도 차량에 장착되는 공기 조화용 압축기이다. 그러나, 주로 원통체의 구성이 제 1 실시 형태와는 다르다. 제 1 실시 형태와 공통적인 구성 요소들에 대해서는, 제 1 실시 형태에서의 설명을 원용하여 공통된 도면 부호를 사용키로 한다.
이 실시 형태의 압축기에서, 연통 구멍(61)의 대경 구멍부(62)는 도 7a 및 7b 에 나타낸 바와 같이 제 1 실시 형태의 대경 구멍부(62)에 비해 축방향으로 확대되어 있다. 이 실시 형태의 원통체(100)는 구동축(18)의 후방 움직임을 제한하기 위한 축 스토퍼로서, 연통 구멍(61)의 대경 구멍부(62) 내로 억지 끼워맞춤될 수 있는 외경 치수를 갖는다.
상기 원통체(100)는 그의 전체 외주에 형성되는 환형 오목부(101)를 포함한다. 원통체(100)는, 대경 구멍부(62) 내로 삽입될 수 있는 외경 치수를 가지며 축방향으로 상기 환형 오목부(101)의 뒤에 있는 후방 원통형 부분(102)을 포함한다. 원통체(100)는 또한, 대경 구멍부(62) 내로 억지 끼워맞춤될 수 있고 억지 끼워맞춤의 축방향으로 상기 환형 오목부(101)의 앞에 있는 전방 원통형 부분(103)을 포함한다. 즉, 상기 원통체(100)에는, 상기 환형 오목부(101)를 사이에 두고 동일한 외경을 갖는 후방 원통형 부분(102) 및 전방 원통형 부분(103)이 형성되어 있다. 후방 원통형 부분(102)의 외주면은 후미 끼워맞춤부(E1)를 형성하고, 전방 원통형 부분(103)의 외주면은 대부분 선두 끼워맞춤부(E2)를 형성한다. 반경 방향 환형부(104)가 후방 원통형 부분(102)의 일 단부에 형성되어 있다.
이 실시 형태에서, 원통체(100)는 억지 끼워맞춤으로 구동축(18)에 고정되어, 환형 오목부(101)와 대경 구멍부(62)를 형성하는 구동축(18)의 내벽 사이에 환형 공간(105)을 형성한다. 이 환형 공간(105)은 제 1 실시 형태의 환형 공간(75)에 해당된다.
이 실시 형태는 제 1 실시 형태의 (1) 및 (4) ∼ (8)과 같은 동일한 이점을 갖는다. 더욱이, 원통체(90)의 두 부분, 즉 후방 원통형 부분(102) 및 전방 원통형 부분(103)은 구동축(18) 내로 억지 끼워맞춤되는 부분들로서, 이들 후방 원통형 부분(102)과 전방 원통형 부분(103)은 동일한 직경을 가지며, 그에 따라 원통체(100)를 용이하게 제작할 수 있다.
제 5 실시 형태
다음, 제 5 실시 형태에 따른 압축기를 설명하기로 한다. 이 실시 형태의 압축기도 차량에 장착되는 공기 조화용 압축기이다. 그러나, 주로 원통체의 구성이 제 1 실시 형태와는 다르다. 제 1 실시 형태와의 다른 차이점은, 구동축을 지지하는 레이디얼 베어링이 제공된다는 것이다. 제 1 실시 형태와 공통적인 구성 요소들에 대해서는, 제 1 실시 형태에서의 설명을 원용하여 공통된 도면 부호를 사용키로 한다.
이 실시 형태의 압축기에서, 구동축(18)은 도 8 에 나타낸 바와 같이 레이디얼 베어링(115)을 통해 실린더 블럭(11)에 회전가능하게 지지된다. 도 9a 및 9b 에 나타낸 바와 같이, 연통 구멍(61)은, 그의 후방 단부에서 전방 단부까지 일정하게 제 1 실시 형태의 소경 구멍부(63)와 동일한 직경을 가지면서 형성되어 있다. 도 9a 에 나타낸 바와 같이, 환형 오목부(110)가 연통 구멍(61)을 형성하는 구동축(18)의 내벽에 형성되어 있다. 이 환형 오목부(110)는 연통 구멍(61)으로부터 구동축(18)의 외주면 쪽으로 반경 방향으로 오목하게 되어 있으며, 연통 구멍(61)을 형성하는 구동축(18)의 내벽의 전체 둘레에 형성되어, 고압 연결 구멍(65) 및 저압 연결 구멍(66)과 연통한다.
이 실시 형태의 원통체(111)는 구동축(18)의 후방 움직임을 제한하기 위한 축 스토퍼로서, 일정한 외경 치수를 갖는 원통형 부분(112)을 포함한다. 이 원통형 부분(112)의 외경 치수는 연통 구멍(61) 내로 억지 끼워맞춤될 수 있도록 설정되어 있다. 원통형 부분(112)의 일 단부에는 반경 방향 환형부(113)가 형성되어 있다. 억지 끼워맞춤부로서 후미 끼워맞춤부(E1)가 축방향으로 상기 환형부(113)에 인접하여 원통체(111)의 외주면에 형성되어 있다. 억지 끼워맞춤부로서 선두 끼워맞춤부(E2)가 상기 환형부(113)에 대해 반대쪽 단부에서 원통체(111)의 외주면에 형성되어 있다. 또한, 환형 오목부(110)와 대면하는 공간 대면부(E3)가 상기 후미 끼워맞춤부(E1)와 선두 끼워맞춤부(E2) 사이에서 원통체(111)의 외주면에 형성되어 있다.
원통체(111)가 억지 끼워맞춤으로 구동축(18)에 고정되면, 상기 환형 오목부(110)와 원통형 부분(112)은 환형 공간(114)을 형성하게 된다. 이 환형 공간(114)은 제 1 실시 형태의 환형 공간(75)에 해당된다.
이 실시 형태는 제 1 실시 형태의 (1) 및 (4) ∼ (7)과 동일한 이점을 갖는다. 더욱이, 원통형 부분(112)의 두 부분, 즉 후미 끼워맞춤부(E1) 및 선두 끼워맞춤부(E2)는 구동축(18) 안으로 억지 끼워맞춤되는 부분들로서, 원통형 부분(112)은 일정한 외경 치수를 갖도록 설정되며, 그래서 원통체(111)를 용이하게 제작할 수 있다.
전술한 각각의 실시 형태(변형예를 포함하여)는 단지 일례를 들기 위한 것으로서, 본 발명은 상기 실시 형태들에 한정되지 않으며, 다음과 같이 본 발명의 요지 및 범위내에서 다양하게 변형될 수 있다 .
전술한 각각의 실시 형태에서 축 스토퍼인 상기 원통체(70, 80, 90, 100, 111)는 축 스토퍼로서의 역할에 한정되지 않는다. 구동축의 축방향 움직임을 제한하기 위한 다른 장치가 제공되면, 상기 원통체(70, 80, 90, 100, 111)는 반드시 축 스토퍼로서 역할할 필요는 없다.
전술한 각각의 실시 형태에서 고압 개구부(67) 및 저압 개구부(68)는 신장된 원형으로 형성되지만, 형상은 신장된 원형에 한정되지 않는다. 상기 고압 개구부(67) 및 저압 개구부(68)는 예컨대 원형으로 형성될 수도 있다. 또한, 고압 연결 구멍(65) 및 저압 연결 구멍(66)의 단면은 원형에 한정되지 않고, 계란형이나 타원형으로 형성될 수도 있다.
전술한 각각의 실시 형태에서 사판형 가변 용량 압축기로서 설명된 피스톤형 압축기는 사판형 고정 용량 압축기 또는 요동형 가변 용량 압축기일 수도 있다. 피스톤형 압축기는 또한 차량용 공기 조화용 압축기에 한정되지 않는다.
전술한 각각의 실시 형태에서 압축 행정이 실행되는 실린더 보어(32)와 연통하도록 배치되는 저압 연결 구멍(66)은 흡입 행정이 실행되는 실린더 보어(32)와 연통할 수도 있다.
상기 밸브 기구가 실린더 블럭(11)의 후방 단부에서 돌출된다면, 전술한 각각의 실시 형태들에서 실린더 블럭(11)에 형성되는 연통로(60)는 후방 하우징 부재(13) 또는 다른 부재에도 형성될 수 있다.
전술한 제 2 및 3 실시 형태에서 상기 원통체(70, 80, 90, 100, 111) 또는 구동축(18)에 제공되는 시일링 부재는, 제 2 및 3 실시 형태들을 결합하여 상기 원통체(70, 80, 90, 100, 111)와 구동축(18) 모두에 제공될 수도 있다.
제 5 실시 형태를 제외한 전술한 실시 형태들에서 실린더 블럭(11)과 미끄럼 접촉하는 구동축(18)의 외주면에 형성되는 윤활제 함유 코팅층은 이황화몰리브덴과 같은 고체 윤활체를 함유할 수도 있다. 상기 코팅층은 또한 폴리아미드-이미드 수지 또는 폴리이미드 수지와 같은 바인더 수지, 이산화티타늄과 같은 무기 입자 및 실란 커플링제와 같은 커플링제를 함유할 수 있다.
전술한 제 5 실시 형태에서 실린더 블럭(11)에 구동축(18)을 회전가능하게 지지하는데 사용되는 레이디얼 베어링(23)은 제 1 ∼ 4 실시 형태에서 생략될 수 있다. 이와는 달리, 제 1 ∼ 4 실시 형태에서, 구동축(18)은 레이디얼 베어링(23)을 통해 실린더 블럭(11)에 회전가능하게 지지될 수도 있다.
그러므로, 본 실시예 및 실시 형태들은 예시적인 것이지 제한적인 것으로 생각되어서는 아니 되며, 본 발명은 여기서 주어진 상세 사항들로 한정되지 않으며, 첨부된 청구 범위 및 균등 범위 내에서 변형될 수도 있다.

Claims (7)

  1. 축구멍(17)과, 상기 축 구멍(17) 주위에 제공되어 있는 복수의 실린더 보어(32)를 갖는 하우징(11 ∼ 13)과;
    상기 축 구멍(17)에 삽입되어 회전가능하게 지지되는 구동축(18)과;
    상기 각각의 실린더 보어(32) 안에 삽입되며, 상기 구동축(18)의 회전에 의해 상기 실린더 보어(32) 내에서 왕복 운동하게 되는 복수의 피스톤(33)과;
    상기 실린더 보어(32)와 축 구멍(17) 사이의 연통을 제공하는 복수의 연통로(60) 및;
    상기 축 구멍(17) 내의 구동축(18)과 일체로 작동하고, 상기 연통로(60)와 연통하여 상기 실린더 보어(32) 내의 고압 잔류 가스를 저압 실린더 보어에 안내하는 잔류 가스 우회 통로를 포함하는 밸브 기구를 포함하는 피스톤형 압축기에 있어서,
    상기 피스톤형 압축기는,
    상기 구동축(18)의 내부에 형성되는 연통 구멍(61) 및;
    상기 연통 구멍(61) 내에 삽입되어 상기 잔류 가스 우회 통로와 연통 구멍(61)을 서로 분리시키는 원통체(70; 80; 90; 100; 111)를 더 포함하며,
    상기 원통체(70; 80; 90; 100; 111)의 내부 공간은 상기 연통 구멍(61)에 개방되어 있고,
    상기 밸브 기구는,
    상기 연통 구멍(61) 내에서 상기 원통체(70; 80; 90; 100; 111)의 외부로 구획되는 환형 공간(75; 114) 및,
    상기 환형 공간(75; 114)과 연통로(60) 사이의 연통을 제공하는 복수의 연결 구멍(65, 66)을 포함하고,
    상기 잔류 가스 우회 통로는 상기 환형 공간(75; 114) 및 연결 구멍(65, 66)으로 형성되어 있는 것을 특징으로 하는 피스톤형 압축기.
  2. 제 1 항에 있어서,
    상기 하우징(11 ∼ 13)은 실린더 블럭(11)을 포함하고, 상기 연통로(60)는 그 실린더 블럭(11)에 형성되어 있는 것을 특징으로 하는 피스톤형 압축기.
  3. 제 1 항 또는 제 2 항에 있어서,
    상기 원통체(70; 80; 90; 100; 111)는,
    상기 구동축(18)에 끼워맞춤되어 삽입 방향으로 선두측에 위치되는 선두 끼워맞춤부(E2),
    상기 구동축(18)에 끼워맞춤되어 삽입 방향으로 후미측에 위치되는 후미 끼워맞춤부(E1) 및,
    상기 선두 끼워맞춤부(E2)와 후미 끼워맞춤부(E1) 사이에 위치되어 상기 환형 공간(75; 114)과 대면하는 공간 대면부를 포함하고,
    상기 선두 끼워맞춤부(E2)와 후미 끼워맞춤부(E1) 중의 적어도 하나는 억지 끼워맞춤으로 구동축(18)에 고정되는 것을 특징으로 하는 피스톤형 압축기.
  4. 제 3 항에 있어서,
    상기 연통 구멍(61)은, 상기 구동축(18)의 제 1 단부에서 제 2 단부 쪽으로 연장되어 있고 큰 내경을 갖는 대경 구멍부(62) 및, 상기 대경 구멍부(62)에서 상기 제 2 단부 쪽으로 연장되어 있고 그 대경 구멍부(62)의 내경 보다 작은 작은 내경을 갖는 소경 구멍부(63)를 포함하며,
    상기 원통체(70; 80; 90; 100; 111)는, 상기 소경 구멍부(63)에서 구동축(18)에 끼워맞춤될 수 있는 소경 원통형 부분(72; 82; 92; 101) 및, 상기 대경 구멍부(62)에서 구동축(18)에 끼워맞춤될 수 있는 대경 원통형 부분(71; 81; 91; 102, 103)을 포함하고,
    상기 선두 끼워맞춤부(E2) 및 공간 대면부는 상기 소경 원통형 부분(72;82;92;101)에 제공되며,
    상기 후미 끼워맞춤부(E1)는 상기 대경 원통형 부분(71; 81; 91; 102, 103)에 제공되는 것을 특징으로 하는 피스톤형 압축기.
  5. 제 3 항에 있어서,
    상기 선두 끼워맞춤부(E2) 또는 후미 끼워맞춤부(E1)에 제공되어 구동축(18)과 원통체(70; 80; 90; 100; 111) 사이의 경계를 시일링하는 시일링부(87; 97)를 더 포함하는 것을 특징으로 하는 피스톤형 압축기.
  6. 제 2 항에 있어서,
    상기 실린더 블럭(11)의 끝면에 결합되는 밸브 형성 판(40, 41)을 더 포함하며,
    상기 원통체(70; 80; 90; 100; 111)는, 상기 밸브 형성 판(40, 41)과 접촉하고 이 밸브 형성 판(40, 41) 쪽으로 향하는 구동축(18)의 축방향 움직임을 제한하는 축 스토퍼로서 역할하는 것을 특징으로 하는 피스톤형 압축기.
  7. 제 1 항 또는 제 2 항에 있어서,
    상기 하우징(11 ∼ 13)은 흡입실(37) 및 제어 압력실(16)을 포함하고,
    상기 연통 구멍(61) 및 원통체(70; 80; 90; 100; 111)의 내부 공간은 상기 흡입실(37)과 제어 압력실(16) 사이의 연통을 제공하는 것을 특징으로 하는 피스톤형 압축기.
KR1020130130036A 2012-11-02 2013-10-30 피스톤형 압축기 KR101472337B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPJP-P-2012-243161 2012-11-02
JP2012243161A JP5741554B2 (ja) 2012-11-02 2012-11-02 ピストン型圧縮機

Publications (2)

Publication Number Publication Date
KR20140057168A KR20140057168A (ko) 2014-05-12
KR101472337B1 true KR101472337B1 (ko) 2014-12-12

Family

ID=49513788

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130130036A KR101472337B1 (ko) 2012-11-02 2013-10-30 피스톤형 압축기

Country Status (6)

Country Link
US (1) US9470224B2 (ko)
EP (1) EP2728187B1 (ko)
JP (1) JP5741554B2 (ko)
KR (1) KR101472337B1 (ko)
CN (1) CN103807131B (ko)
BR (1) BR102013027941A2 (ko)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6201575B2 (ja) 2013-09-27 2017-09-27 株式会社豊田自動織機 容量可変型斜板式圧縮機
KR101899032B1 (ko) * 2014-11-11 2018-09-14 이래오토모티브시스템 주식회사 사판식 압축기의 냉매 흡입 구조
CN104405620B (zh) * 2014-11-15 2017-02-08 南通市巨力弹簧吊架有限公司 流体转移装置的缸体
JP6477441B2 (ja) * 2015-11-20 2019-03-06 株式会社豊田自動織機 可変容量型斜板式圧縮機
JP7056615B2 (ja) * 2018-03-30 2022-04-19 株式会社豊田自動織機 ピストン式圧縮機
JP6991107B2 (ja) * 2018-06-29 2022-01-12 サンデン・オートモーティブコンポーネント株式会社 可変容量圧縮機
US11629709B2 (en) * 2020-06-15 2023-04-18 Hanon Systems Vapor injected piston compressor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005155592A (ja) * 2003-10-29 2005-06-16 Toyota Industries Corp ピストン式圧縮機
KR20080028172A (ko) * 2006-09-26 2008-03-31 한라공조주식회사 압축기

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2682290B2 (ja) 1991-09-09 1997-11-26 株式会社豊田自動織機製作所 ピストン型圧縮機
US5478212A (en) * 1992-03-04 1995-12-26 Nippondenso Co., Ltd. Swash plate type compressor
JP3080278B2 (ja) 1992-10-05 2000-08-21 株式会社豊田自動織機製作所 往復動型圧縮機
JP3080279B2 (ja) * 1992-10-05 2000-08-21 株式会社豊田自動織機製作所 往復動型圧縮機
JPH07119631A (ja) * 1993-08-26 1995-05-09 Nippondenso Co Ltd 斜板型可変容量圧縮機
JP4399994B2 (ja) 2000-11-17 2010-01-20 株式会社豊田自動織機 容量可変型圧縮機
JP3985507B2 (ja) * 2001-11-22 2007-10-03 株式会社豊田自動織機 斜板型圧縮機
JP3858814B2 (ja) * 2002-12-05 2006-12-20 株式会社豊田自動織機 回転機械の調整方法
JP3855940B2 (ja) 2003-02-04 2006-12-13 株式会社豊田自動織機 圧縮機における潤滑構造
JP2004239210A (ja) * 2003-02-07 2004-08-26 Toyota Industries Corp ピストン式圧縮機
EP1571336A3 (en) * 2004-03-03 2006-01-04 Kabushiki Kaisha Toyota Jidoshokki Piston compressor
JP2005299478A (ja) * 2004-04-09 2005-10-27 Toyota Industries Corp ピストン式圧縮機
JP2006022786A (ja) 2004-07-09 2006-01-26 Toyota Industries Corp 可変容量型圧縮機
JP2006291751A (ja) * 2005-04-06 2006-10-26 Toyota Industries Corp ピストン式圧縮機
JP2007016762A (ja) * 2005-06-08 2007-01-25 Toyota Industries Corp ピストン式圧縮機
WO2007013406A1 (ja) * 2005-07-25 2007-02-01 Kabushiki Kaisha Toyota Jidoshokki ピストン式圧縮機
JP4531710B2 (ja) 2006-03-16 2010-08-25 サンデン株式会社 圧縮機
JP4730317B2 (ja) 2007-02-02 2011-07-20 株式会社豊田自動織機 両頭ピストン式圧縮機
JP2008196459A (ja) 2007-02-15 2008-08-28 Toyota Industries Corp ピストン式圧縮機
US9169835B2 (en) 2010-03-31 2015-10-27 Valeo Japan Co., Ltd. Piston-type compressor
JP6201575B2 (ja) * 2013-09-27 2017-09-27 株式会社豊田自動織機 容量可変型斜板式圧縮機

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005155592A (ja) * 2003-10-29 2005-06-16 Toyota Industries Corp ピストン式圧縮機
KR20080028172A (ko) * 2006-09-26 2008-03-31 한라공조주식회사 압축기

Also Published As

Publication number Publication date
KR20140057168A (ko) 2014-05-12
EP2728187A2 (en) 2014-05-07
US9470224B2 (en) 2016-10-18
EP2728187A3 (en) 2016-03-02
CN103807131B (zh) 2016-03-23
BR102013027941A2 (pt) 2014-10-21
US20140127061A1 (en) 2014-05-08
CN103807131A (zh) 2014-05-21
JP2014092074A (ja) 2014-05-19
EP2728187B1 (en) 2016-11-23
JP5741554B2 (ja) 2015-07-01

Similar Documents

Publication Publication Date Title
KR101472337B1 (ko) 피스톤형 압축기
US9309874B2 (en) Swash plate type variable displacement compressor
US9759206B2 (en) Swash plate type variable displacement compressor
KR101575462B1 (ko) 양두 피스톤형 사판식 압축기
US9309875B2 (en) Swash plate type variable displacement compressor
KR101541998B1 (ko) 용량 가변형 사판식 압축기
KR20170059419A (ko) 가변 용량형 사판식 압축기
JP2007239722A (ja) 可変容量型往復動圧縮機
KR101645276B1 (ko) 용량 가변형 사판식 압축기
US6862975B2 (en) Apparatus for lubricating piston type compressor
US20150260175A1 (en) Variable displacement swash plate type compressor
KR20160108244A (ko) 용량 가변형 사판식 압축기
US6095761A (en) Swash plate compressor
KR102244423B1 (ko) 피스톤식 압축기
US20160222953A1 (en) Variable displacement swash plate type compressor
US20150275871A1 (en) Variable displacement swash plate type compressor
KR970001133B1 (ko) 피스톤식 압축기에 있어서의 냉매가스 흡입구조
US20040202551A1 (en) Variable displacement compressor
JP2014148894A (ja) ピストン型可変容量圧縮機
JP3111668B2 (ja) ピストン式圧縮機における冷媒ガス吸入構造
JP3114384B2 (ja) ピストン式圧縮機における冷媒ガス吸入構造
US9790936B2 (en) Variable displacement swash plate compressor
JP2016166532A (ja) 容量可変型両頭斜板式圧縮機
JP2005188328A (ja) ピストン式圧縮機
JP2009257204A (ja) 容量可変型斜板式圧縮機

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20171120

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20181119

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20191118

Year of fee payment: 6