KR101420597B1 - 웨이퍼 얼라인먼트 장치 및 웨이퍼 얼라인먼트 방법 - Google Patents

웨이퍼 얼라인먼트 장치 및 웨이퍼 얼라인먼트 방법 Download PDF

Info

Publication number
KR101420597B1
KR101420597B1 KR1020100012314A KR20100012314A KR101420597B1 KR 101420597 B1 KR101420597 B1 KR 101420597B1 KR 1020100012314 A KR1020100012314 A KR 1020100012314A KR 20100012314 A KR20100012314 A KR 20100012314A KR 101420597 B1 KR101420597 B1 KR 101420597B1
Authority
KR
South Korea
Prior art keywords
wafer
alignment
camera
main camera
thetas
Prior art date
Application number
KR1020100012314A
Other languages
English (en)
Other versions
KR20100105366A (ko
Inventor
카츠오 야스타
히카루 마스타
노리히토 스가
Original Assignee
가부시키가이샤 니혼 마이크로닉스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2010014369A external-priority patent/JP2010245508A/ja
Application filed by 가부시키가이샤 니혼 마이크로닉스 filed Critical 가부시키가이샤 니혼 마이크로닉스
Publication of KR20100105366A publication Critical patent/KR20100105366A/ko
Application granted granted Critical
Publication of KR101420597B1 publication Critical patent/KR101420597B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2855Environmental, reliability or burn-in testing
    • G01R31/286External aspects, e.g. related to chambers, contacting devices or handlers
    • G01R31/2865Holding devices, e.g. chucks; Handlers or transport devices
    • G01R31/2867Handlers or transport devices, e.g. loaders, carriers, trays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • G01R31/2601Apparatus or methods therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2893Handling, conveying or loading, e.g. belts, boats, vacuum fingers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

본 발명의 목적은, 단시간에 정확하게 웨이퍼의 위치를 맞추는 데 있다. 본 발명의 웨이퍼 얼라인먼트 장치는, 1번째 장 웨이퍼의 위치를 바탕으로 2번째 장 이후의 웨이퍼를 보정하는 보정처리와, 미리 정한 2개의 저배율 얼라인먼트 패턴과 기준위치의 오차량으로부터 상기 2번째 장 이후의 웨이퍼에 대한 XYθ방향의 보정을 하는 저배율 보정처리와, 미리 정한 2개의 고배율 얼라인먼트 패턴과 기준위치의 오차량으로부터 상기 2번째 장 이후의 웨이퍼에 대한 XYθ방향의 보정을 하는 고배율 보정처리를 구비하는 제어부를 갖춘다. 본 발명의 웨이퍼 얼라인먼트 방법은, 웨이퍼 얼라인먼트 장치의 처리와 동일한 처리기능에 따라, 복수의 웨이퍼를 연속적으로 교체해 처리할 때 그 웨이퍼의 위치 결정을 한다.

Description

웨이퍼 얼라인먼트 장치 및 웨이퍼 얼라인먼트 방법{Apparatus and Method of Wafer Alignment}
본 발명은, 반도체 웨이퍼를 고정밀도로 위치 결정하기 위한 웨이퍼 얼라인먼트 장치 및 웨이퍼 얼라인먼트 방법에 관한 것이다.
웨이퍼 얼라인먼트 장치는, 웨이퍼 상에 형성한 회로의 검사 등을 위해 그 웨이퍼를 고정밀도로 위치 결정하는 장치이다. 상기 웨이퍼 얼라인먼트 장치의 일례를 도2에 나타낸다. 도면 중 웨이퍼 얼라인먼트 장치(1)는, 워크 테이블(2)과, XYZθ스테이지(3)와, 카메라(4)와, 제어부(5)로 구성되어 있다. 워크 테이블(2)은, 검사대상 웨이퍼(W)를 지지한다. XYZθ스테이지(3)는, 워크 테이블(2)을 XYZ축 방향으로 이동시킴과 동시에 θ축 방향으로 회전시킨다. 카메라(4)는, 워크 테이블(2)에 대향시켜 1개 설치되어 있다. 카메라(4)는 웨이퍼(W)를 그 한쪽 끝에서 다른쪽 끝까지 촬영하기 위한 것이고, XYZθ스테이지(3)는 웨이퍼(W)를 그 끝에서 끝까지 이동시킨다.
제어부(5)는, 카메라(4)로 촬영한 화상정보를 처리해 XYZθ스테이지(3)를 제어하고, 상기 검사대상 웨이퍼(W)의 위치를 맞춘다. 제어부(5)는, 구체적으로는, 화상 처리장치(6)와, 연산장치(7)와, 표시장치(8)와, 모션 컨트롤장치(9)로 구성되어 있다.
화상 처리장치(6)는, 카메라(4)로부터 수신한 화상정보를 처리해 연산장치(7)로 송신한다. 연산장치(7)는, 화상 처리장치(6)로 처리한 화상정보를 기준패턴과 겹쳐서 표시장치(8)에 출력함과 동시에, 오퍼레이터로부터의 조작 지시에 따른 조작 지시신호에 근거해 모션 컨트롤장치(9)를 제어한다. 표시장치(8)는, 화상 처리장치(6)로부터 출력된 정보에 근거해 화상을 표시함과 동시에, 오퍼레이터로부터의 조작 지시에 근거해 조작 지시신호를 연산장치(7)에 출력한다. 모션 컨트롤장치(9)는, 연산장치(7)로부터의 지시신호에 근거해 XYZθ스테이지(3)를 제어하여, 워크 테이블(2)을 XYZ축 각 방향으로 이동시킴과 동시에, θ축 방향으로 회전시킨다.
이 같은 웨이퍼 얼라인먼트 장치(1)에서는, 1대의 카메라(4)로 웨이퍼(W)를 촬영하기 때문에, XYZθ스테이지(3)에 의해, 워크 테이블(2)을 웨이퍼(W)의 끝에서 끝까지 이동시켜야 한다.
구체적으로는, 예를 들어 이하와 같은 순서로 행한다. 즉, 도3(a)에 나타낸 바와 같이, XYZθ스테이지(3)에 의해 워크 테이블(2)을 오른쪽으로 이동시켜 웨이퍼(W)의 좌(左) 사이드 위치 오차량을 측정해 조정하고, 이어서 도3(b)에 나타낸 바와 같이, 워크 테이블(2)을 왼쪽으로 이동시켜 웨이퍼(W)의 우(右) 사이드 위치 오차량을 측정해 조정한다. 보다 상세하게는, 카메라(4)로 웨이퍼(W)의 좌 사이드의 얼라인먼트 패턴, 도3(a)에 나타낸 예에서는 웨이퍼(W) 상에 형성된 특정 칩(C1)의 특정 전극패드(P1)를 촬영하고, 그 전극패드(P1)의 위치와, 미리 정해 둔 기준위치와의 오차량 ΔX1, ΔY1을 측정하고, 그 후, 카메라(4)로 웨이퍼(W)의 우 사이드의 얼라인먼트 패턴, 도3(b)에 나타낸 예에서는 웨이퍼(W) 상에 형성된 특정 다른 칩(C2)의 특정 전극패드(P2)를 촬영하고, 그 전극패드(P2)의 위치와, 미리 정해 둔 기준위치와의 오차량 ΔX2, ΔY2을 측정한다. 이어서, 도4(a)에 나타낸 바와 같이, XYZθ스테이지(3)에 의해 워크 테이블(2)을 다시 오른쪽으로 이동시켜 웨이퍼(W)의 좌 사이드 위치 오차량을 보정하고, 이어서 도4(b)에 나타낸 바와 같이, 워크 테이블(2)을 왼쪽으로 이동시켜 웨이퍼(W)의 우 사이드 위치 오차량을 보정한다. 여기서는, 웨이퍼(W)의 양끝에 설정한 얼라인먼트 패턴을 카메라(4)로 촬영하고, 위치 오차량을 측정 및 보정하기 위해, 워크 테이블(2)을 웨이퍼(W)의 끝에서 끝까지 두번 왕복시키고 있다.
이 경우, 웨이퍼(W)의 직경이 작으면 문제없지만, 웨이퍼 직경이 커짐에 따라 워크 테이블(2)의 이동거리가 길어지고, 그 때문에 웨이퍼(W)의 위치 결정처리에 걸리는 시간이 길어진다.
이를 해소하기 위해, 웨이퍼(W)의 테두리 위치에 대향시켜 4개의 카메라를 설치한 예가 특허문헌 1, 2에 있다. 또한, 2개의 카메라를 각각 XYZ스테이지로 지지한 상태로 웨이퍼(W)의 양끝 위치에 갖춘 예가 특허문헌 3에 있다.
또한, 웨이퍼(W)의 가열시험이나 검사장치 자체의 발열 등에 따라 주위가 가열됨으로써, 2개의 카메라의 간격이 열팽창하여 어긋나는 경우가 있지만, 이 2개의 카메라의 간격이 열팽창에 의해 어긋나는 것을 해소하기 위해, 열팽창한 후의 안정된 상태에서 검사를 하는 예가 특허문헌 4에 있다.
일본특허출원공개제2002-353119호공보 일본특허출원공개제2003-156322호공보 일본특허출원공개평10-256350호공보 일본특허출원공개제2005-129778호공보
위에서 설명한 특허문헌 1, 2에서는, 웨이퍼(W)의 테두리 위치에 대향시켜 설치된 4개의 카메라는 단순히 고정되어 있을 뿐이므로, 각 카메라를 정확한 간격으로 설치하지 않으면, 웨이퍼(W)를 정확하게 위치를 맞출 수 없게 된다. 각 카메라를 정확한 간격으로 설치한 경우라도, 가열시험 등에 의해 열팽창하여 각 카메라 간의 거리가 변화하면, 웨이퍼(W)를 정확하게 위치를 맞출 수 없게 된다.
특허문헌 3에서는, 2개의 카메라를 정확하게 위치 결정하여 열팽창에 의한 어긋남을 방지하기 위하여, 2개의 카메라를 XYZ스테이지로 지지해, 2개의 카메라의 위치를 정확하게 조정하고 있다. 그러나, 이 경우는, XYZ스테이지가 대규모 장치가 되어, 설치 공간 및 비용이 증가해 버린다.
특허문헌 4에서는, 열팽창한 후의 안정된 상태에서 검사를 하기 때문에, 열팽창에 의한 어긋남을 해소할 수 있으나, 웨이퍼(W)의 위치맞춤에 시간이 걸려 버린다.
본 발명은 이 같은 문제점에 비추어 만들어진 것으로, 단시간에 정확하게 웨이퍼의 위치를 맞출 수 있는 웨이퍼 얼라인먼트 장치 및 웨이퍼 얼라인먼트 방법을 제공하는 것을 목적으로 한다.
본 발명에 따른 웨이퍼 얼라인먼트 장치 및 웨이퍼 얼라인먼트 방법은, 이하의 처리기능을 갖추었다. 즉, 1번째 장 웨이퍼의 위치를 바탕으로 2번째 장 이후의 웨이퍼를 보정하는 보정처리와, 미리 정한 2개의 저배율 얼라인먼트 패턴과 기준위치의 오차량으로부터 상기 2번째 장 이후의 웨이퍼에 대한 XYθ방향의 보정을 하는 저배율 보정처리와, 미리 정한 2개의 고배율 얼라인먼트 패턴과 기준위치의 오차량으로부터 상기 2번째 장 이후의 웨이퍼에 대한 XYθ방향의 보정을 하는 고배율 보정처리를 갖추었다.
또한, 상기 저배율 보정처리 및 상기 고배율 보정처리에서, 우선, 한쪽 상기 얼라인먼트 패턴 위에 메인 카메라를 위치시키고, 이어서, 상기 웨이퍼를 이동시켜 상기 한쪽 얼라인먼트 패턴 위에 상기 보조 카메라를 위치시키고, 그 후, 상기 보조 카메라의 기준위치와 상기 한쪽 얼라인먼트 패턴을, 상기 메인 카메라의 기준위치와 다른쪽 얼라인먼트 패턴을, 각각 매칭시켜 오차량을 측정하게 했다.
본 발명에 따르면, 가열시험 등에 의한 카메라 지지부의 열팽창에 의해 각 카메라 간의 거리가 어긋나도, 웨이퍼를 정확하게 위치를 맞출 수 있다. 웨이퍼의 이동을 최소한으로 할 수 있고, 단시간에 정확하게 웨이퍼의 위치를 맞출 수 있다.
도1은 본 발명의 실시형태에 따른 웨이퍼 얼라인먼트 장치가 수용되는 프로버(prober)를 나타낸 개략 구성도이다.
도2는 종래의 웨이퍼 얼라인먼트 장치를 나타낸 개략 구성도이다.
도3은 종래의 웨이퍼 얼라인먼트 장치의 동작을 나타낸 개략 구성도이다.
도4는 종래의 웨이퍼 얼라인먼트 장치의 동작을 나타낸 개략 구성도이다.
도5는 본 발명의 실시형태에 따른 웨이퍼 얼라인먼트 장치를 나타낸 개략 구성도이다.
도6은 본 발명의 실시형태에 따른 웨이퍼 얼라인먼트 방법을 나타낸 플로 차트이다.
도7은 본 발명의 실시형태에 따른 웨이퍼 얼라인먼트 방법에 있어서의 1번째 장 웨이퍼의 얼라인먼트 처리를 나타낸 플로 차트이다.
도8은 본 발명의 실시형태에 따른 웨이퍼 얼라인먼트 방법에 있어서의 2번째 장 이후의 웨이퍼의 얼라인먼트 처리를 나타낸 플로 차트이다.
도9는 본 발명의 실시형태에 따른 웨이퍼 얼라인먼트 방법의 1번째 장 웨이퍼에 대한 저배율 보정처리를 나타낸 플로 차트이다.
도10은 본 발명의 실시형태에 따른 웨이퍼 얼라인먼트 방법의 고배율 보정처리를 나타낸 플로 차트이다.
도11은 본 발명의 실시형태에 따른 웨이퍼 얼라인먼트 방법의 2번째 장 이후의 웨이퍼에 대한 저배율 보정처리를 나타낸 플로 차트이다.
도12는 본 발명의 실시형태에 따른 웨이퍼 얼라인먼트 방법에 있어서의, 얼라인먼트 패턴과 카메라의 관계를 모식적으로 나타낸 도면이다.
도13은 본 발명의 실시형태에 따른 웨이퍼 얼라인먼트 방법에 있어서의 보정처리 순서를 모식적으로 나타낸 도면으로서, 메인 카메라로 한쪽 얼라인먼트 패턴의 위치를 측정하고 있는 도면이다.
도14는 본 발명의 실시형태에 따른 웨이퍼 얼라인먼트 방법에 있어서의 보정처리 순서를 모식적으로 나타낸 도면으로서, 보조 카메라로 한쪽 얼라인먼트 패턴의 위치를 측정하고 있는 도면이다.
도15는 본 발명의 실시형태에 따른 웨이퍼 얼라인먼트 방법에 있어서의 보정처리 순서를 모식적으로 나타낸 도면으로서, 메인 카메라로 또 한쪽 얼라인먼트 패턴의 위치를 측정하고 있는 도면이다.
도16은 본 발명의 실시형태에 따른 웨이퍼 얼라인먼트 방법에 있어서의 보정처리 순서를 모식적으로 나타낸 도면으로서, 보조 카메라로 한쪽 얼라인먼트 패턴의 위치를 측정하고 있는 도면이다.
도17은 본 발명의 실시형태에 따른 웨이퍼 얼라인먼트 방법에 있어서의 보정처리 순서를 모식적으로 나타낸 도면으로서, 메인 카메라로 또 한쪽 얼라인먼트 패턴의 위치를 측정하고 있는 도면이다.
도18은 본 발명의 실시형태에 따른 웨이퍼 얼라인먼트 방법에 있어서의 보정처리 순서를 모식적으로 나타낸 도면으로서, 보조 카메라로 한쪽 얼라인먼트 패턴의 위치를 측정하고 있는 도면이다.
도19는 본 발명의 실시형태에 따른 웨이퍼 얼라인먼트 방법에 있어서의, 웨이퍼 얼라인먼트의 기준위치를 결정하는 순서를 모식적으로 나타낸 도면으로서, 메인 카메라로 워크 테이블의 바깥둘레부의 얼라인먼트 마크의 위치를 맞추고 있는 도면이다.
도20은 본 발명의 실시형태에 따른 웨이퍼 얼라인먼트 방법에 있어서의, 웨이퍼 얼라인먼트의 기준위치를 결정하는 순서를 모식적으로 나타낸 도면으로서, 보조 카메라로 얼라인먼트 마크와 기준위치의 오차량을 구하고 있는 도면이다.
도21은 본 발명의 실시형태에 따른 웨이퍼 얼라인먼트 방법에 있어서의, 웨이퍼 얼라인먼트의 기준위치를 결정하는 순서를 모식적으로 나타낸 도면으로서, 워크 테이블을 XYθ 각 방향으로 이동시켜 이전 오차량의 보정을 하고 있는 도면이다.
이하, 본 발명의 실시형태에 따른 웨이퍼 얼라인먼트 장치 및 웨이퍼 얼라인먼트 방법에 관해, 첨부도면을 참조하면서 설명한다. 또한, 상기 웨이퍼 얼라인먼트 장치는 프로버 등의 반도체 웨이퍼 검사장치 등에 수용되는 장치이다. 웨이퍼 얼라인먼트 장치는, 검사장치인 프로브 카드에 대해, 웨이퍼를 정확하게 위치 결정하는 것이다.
상기 검사장치의 일례로서, 반도체 웨이퍼를 검사하는 프로버를 도1에 근거해 설명한다. 프로버(11)는, 회로가 형성된 반도체 웨이퍼(W)를 위쪽면(13A)에 놓는 워크 테이블(13)과, 워크 테이블(13)을 XYZ축 방향 및 θ회전 방향으로 이동시키는 XYZθ축 구동부(14)와, XYZθ축 구동부(14)를 제어하는 위치제어부(도시되지 않음)와, 침선(針先)이 상기 회로의 전극패드에 접촉하는 프로브침(17)을 갖는 프로브 카드(18)와, 프로브 카드(18)를 고정하는 고정 프레임(19)과, 프로브 카드(18)를 통해 반도체 웨이퍼(W) 상의 회로의 전기적 특성을 측정하는 전기적 특성 측정부(도시되지 않음)를 갖추어 구성되어 있다.
상기 워크 테이블(13)의 위쪽면(13A)은, 평탄면 형태로 형성되어, 평판 형태의 반도체 웨이퍼(W)가 놓인다. 통상, 위쪽면(13A)에는 흡착 홈이 형성되어 있다. 반도체 웨이퍼(W)는, 위쪽면(13A)에 놓인 상태로 흡착 홈에 흡착되어 고정된다. 프로버(11)에는, 반도체 웨이퍼(W)를 뒤에서 설명하는 웨이퍼 얼라인먼트 방법에 따라 정확하게 위치 결정하기 위한 웨이퍼 얼라인먼트 장치(21)가 설치되어 있다.
상기 웨이퍼 얼라인먼트 장치(21)는, 도5에 나타낸 바와 같이, XYZθ축 구동부(14)에 지지된 워크 테이블(13)에 대향시켜 설치된 메인 카메라(24) 및 보조 카메라(25)와, 제어부(26)로 구성되어 있다.
워크 테이블(13)은, 검사대상 웨이퍼(W)를, 프로브 카드(18)에 대향시켜 지지하기 위한 테이블이다. 워크 테이블(13)에는, 웨이퍼(W)를 흡착해 지지하는 흡착기구(도시되지 않음), 가열시험을 위해 웨이퍼(W)를 가열하는 가열장치(도시되지 않음) 등이 설치되어 있다.
XYZθ축 구동부(14)는, 워크 테이블(13)을 지지함과 동시에, 그 워크 테이블(13)을 XYZ축 각 방향으로 이동시키고, 동시에 θ축 방향으로 회전시키기 위한 장치이다. XYZθ축 구동부(14)는, 워크 테이블(13)을 X축 방향으로 이동시켜 X축 방향의 위치를 조정하는 X축 이동기구(28)와, 워크 테이블(13)을 Y축 방향으로 이동시켜 Y축 방향의 위치를 조정하는 Y축 이동기구(29)와, 워크 테이블(13)을 Z축 방향으로 이동시켜 Z축 방향의 위치를 조정하는 Z축 이동기구(30)와, 워크 테이블(13)을 θ축 방향으로 회전시켜 각도를 조정하는 θ축 회전기구(31)로 구성되어 있다.
메인 카메라(24)는, 워크 테이블(13)에 대향시켜 설치되고, 워크 테이블(13)에 지지된 웨이퍼(W)를 촬영하는 카메라이다. 보조 카메라(25)도 마찬가지로, 워크 테이블(13)에 대향시켜 설치되고, 워크 테이블(13)의 지지된 웨이퍼(W)를 촬영하는 카메라이다. 메인 카메라(24)와 보조 카메라(25)는, 장치 본체쪽에, 서로 소정의 거리를 둔 상태로 소정 위치에 고정되어 있다. 메인 카메라(24)와 보조 카메라(25)가 협동해, 웨이퍼(W)를 정확하게 위치 결정한다.
제어부(26)는, 상기 메인 카메라(24) 및 보조 카메라(25)로 촬영한 화상정보를 처리해 XYZθ축 구동부(14)를 제어함으로써 웨이퍼(W)의 위치를 맞추는 장치이다. 제어부(26)는 구체적으로는, 화상 처리장치(33)와, 연산장치(34)와, 표시장치(35)와, 모션 컨트롤장치(36)로 구성되어 있다. 연산장치(34)에는, 뒤에서 설명하는 처리 순서(플로 차트)에 근거해 웨이퍼 얼라인먼트를 하는 처리기능이 격납되어 있다.
화상 처리장치(33)는, 메인 카메라(24) 및 보조 카메라(25)로부터 수신한 화상정보를 처리해 연산장치(34)로 송신하기 위한 장치이다.
연산장치(34)는, 메인 카메라(24) 및 보조 카메라(25)에 의해 수신한 화상정보, 즉 얼라인먼트 패턴의 위치와 기준위치를 비교한다. 즉, 연산장치(34)는, 화상 처리장치(33)로 처리한 화상정보를 기준위치와 겹쳐서 표시장치(35)에 출력함과 동시에 지시신호에 근거해 모션 컨트롤장치(36)를 제어한다. 연산장치(34)에는, 뒤에서 설명하는 플로 차트에서 나타내는 처리기능이 격납되어 있다.
표시장치(35)는, 화상 처리장치(33)에서 출력된 정보에 근거해 화상을 표시함과 동시에, 조작 화면으로부터의 오퍼레이터에 의한 조작 지시에 근거해 조작 지시신호를 연산장치(34)에 출력한다. 모션 컨트롤장치(36)는, 연산장치(34)로부터의 조작 지시신호에 근거해 XYZθ축 구동부(14)를 제어하여, 워크 테이블(13)을 XYZ축 방향으로 이동시키고 θ축 방향으로 회전시킨다.
다음으로, 상기 구성의 웨이퍼 얼라인먼트 장치(21)를 사용한 웨이퍼 얼라인먼트 방법에 관해 설명한다. 제어부(26)의 연산장치(34)에 격납된 처리기능인, 웨이퍼 얼라인먼트 방법은, 도6의 플로 차트에 나타낸 처리 순서로 행해진다.
상기 웨이퍼 얼라인먼트의 처리는, 1번째 장 웨이퍼(W)의 얼라인먼트를 하는 제1 웨이퍼 얼라인먼트 처리(스텝 S1)와, 상기 제1 웨이퍼 얼라인먼트 처리에 따라 얼라인먼트를 한 1번째 장 웨이퍼(W)를 측정하는 제1 웨이퍼 측정처리(스텝 S2)와, 2번째 장 이후의 웨이퍼(W)의 얼라인먼트를 하는 제2 웨이퍼 얼라인먼트 처리(스텝 S3)와, 상기 제2 웨이퍼 측정처리에 따라 얼라인먼트를 한 2번째 장 이후의 웨이퍼 (W)를 측정하는 제2 웨이퍼 측정처리(스텝 S4)와, 모든 웨이퍼(W)의 측정이 종료됐는지 아닌지를 판정하는 판정처리(스텝 S5)로 구성되어 있다.
스텝 S1의 제1 웨이퍼 얼라인먼트 처리는, 도7의 플로 차트에 나타낸 바와 같이, 웨이퍼(W)의 3군데의 에지 위치를 판정해 웨이퍼 중심을 특정하고, 이론중심 좌표와의 오프셋 값을 취득하는 에지 서치(edge search)처리(스텝 S11)와, 미리 정한 2개의 저배율 얼라인먼트 패턴과 기준위치의 오차량에 근거해 XYθ 보정을 하는 저배율 보정처리(스텝 S12)와, 미리 정한 2개의 고배율 얼라인먼트 패턴과 기준위치의 오차량에 근거해 XYθ 보정을 하는 고배율 보정처리(스텝 S13)로 구성되어 있다. 이들 각 스텝의 상세에 관해서는 뒤에서 설명하지만, 스텝 S11의 에지 서치처리에 관해서는, 종래부터 행해지고 있는 방법을 적용하기 때문에, 상세한 설명은 생략한다.
스텝 S3의 제2 웨이퍼 얼라인먼트 처리는, 도8의 플로 차트에 나타낸 바와 같이, 1번째 장 웨이퍼(W) 처리의 에지 서치처리와 동일한 에지 서치처리(스텝 S21)와, 미리 정한 2개의 저배율 얼라인먼트 패턴과 기준위치의 오차량에 근거해 XYθ 보정을 하는 저배율 보정처리(스텝 S22)와, 미리 정한 2개의 고배율 얼라인먼트 패턴과 기준위치의 오차량에 근거해 XYθ 보정을 하는 고배율 보정처리(스텝 S23)로 구성되어 있다.
다음으로, 도9를 참조해 스텝 S12의 저배율 보정처리 순서를 설명한다. 또한, 도9는 1번째 장 웨이퍼의 얼라인먼트에 있어서의 처리 순서를 나타낸 것이다. 우선, 웨이퍼(W)의 3군데의 에지 위치를 판정해 웨이퍼 중심을 특정하고, 이론중심 좌표와의 오프셋 값을 취득하는 에지 서치처리를 한다(스텝 S31).
또한, 상기 스텝 S31의 에지 서치처리는, 도7의 플로 차트에서의 에지 서치처리(스텝 S11)와 동일한 처리 순서로 행한다.
다음으로, 이하의 순서로 웨이퍼(W)의 위치 오차 보정처리를 한다. 우선, 메인 카메라(24)를 저배율(예를 들어 2배 정도)로 전환하고, 웨이퍼(W)를 X축 이동기구(28) 및 Y축 이동기구(29)에 의해 이동시켜, 메인 카메라(24)가 저배율 얼라인먼트 패턴 위에 위치하게 한다(스텝 S32). 이어서, 보조 카메라(25)를 저배율로 전환하고, 웨이퍼(W)를 X축 이동기구(28) 및 Y축 이동기구(29)에 의해 이동시켜, 보조 카메라(25)가 저배율 얼라인먼트 패턴 위에 위치하게 한다(스텝 S33). 여기서, '저배율 얼라인먼트 패턴'으로서는, 예를 들어 웨이퍼(W)에 미리 형성되어 있는 얼라인먼트 마크나, 웨이퍼(W) 상에 형성된 다수의 회로칩에서 선택한 특정 회로칩의 전극패드 중 하나를 이용하는 것으로 한다. 한편, 스텝 S32와 스텝 S33은 번갈아 제어해 병행처리를 해도 되고, 또한 동시처리를 해도 된다. 더 나아가, 스텝 S32의 처리 후에 스텝 S33을 처리해도 된다.
이어서, 메인 카메라(24) 및 보조 카메라(25)의 기준위치와 저배율 얼라인먼트 패턴이 매칭하는지 아닌지 판정한다(스텝 S34). 즉, 제어부(26)의 표시장치(35)에, 메인 카메라(24) 및 보조 카메라(25)의 화상을 동시에 표시하고, 동시에 판단한다. 양자가 매칭하지 않을 경우, 즉 NG이면, 그 NG 횟수가 미리 설정한 횟수를 넘었는지 아닌지를 판정한다(스텝 S35). NG 횟수가 미리 설정한 횟수를 넘지 않았으면, 웨이퍼(W) 상의, 메인 카메라(24) 및 보조 카메라(25) 각각을 사용해 최초로 촬영한 위치의 주변을 서치하여(스텝 S36), 다시 매칭하는지 아닌지 판정한다(스텝 S34). 그리고, 매칭할 때까지, 상기 스텝 S34~스텝 S36을 반복한다. 또한, 스텝 S36의 주변 서치는, 앞서 설명한 스텝 S32나 스텝 S33과 동일한 처리를 하는 것이다.
이때, 스텝 S35에서, NG 횟수가 미리 설정한 횟수를 넘었다고 판정한 경우에는, 웨이퍼(W)에 어떠한 에러가 발생했다고 판단하고, 그 웨이퍼(W)를 회수한다(스텝 S37).
이어서, 스텝 S34에서 양자가 매칭했다고 판정한 경우는, 저배율 얼라인먼트 패턴과 기준위치와의 XYθ 각 방향의 오차량을 연산한다(스텝 S38). 그 후, 연산으로 구한 XYθ 각 방향의 오차량에 근거해, 워크 테이블(13)의 위치, 즉 웨이퍼(W)의 XYθ 각 방향의 오차량을 보정한다(스텝 S39).
다음으로, 스텝 S13의 고배율 보정처리는, 도10의 플로 차트에 상세하게 나타낸 바와 같이, 메인 카메라(24)를 고배율(예를 들어 10배 정도)로 전환하고, 웨이퍼(W)를 X축 이동기구(28) 및 Y축 이동기구(29)에 의해 이동시켜, 메인 카메라(24)가 고배율 얼라인먼트 패턴 위에 위치하게 한다(스텝 S41). 이어서, 보조 카메라(25)를 고배율로 전환하고, 웨이퍼(W)를 X축 이동기구(28) 및 Y축 이동기구(29)에 의해 이동시켜, 보조 카메라(25)가 고배율 얼라인먼트 패턴 위에 위치하게 한다(스텝 S42). 한편, 스텝 S41과 스텝 S42는 번갈아 제어해 병행처리를 해도 되고, 또한 동시처리를 해도 된다. 더 나아가, 스텝 S41의 처리 후에 스텝 S42를 처리해도 된다.
이어서, 메인 카메라(24) 및 보조 카메라(25)의 기준위치와 고배율 얼라인먼트 패턴이 매칭하는지 아닌지 판정한다(스텝 S43). 제어부(26)의 표시장치(35)에, 메인 카메라(24) 및 보조 카메라(25)의 화상을 동시에 표시하고, 동시에 판단한다. 양자가 매칭하지 않을 경우, 즉 NG이면, 그 NG 횟수가 미리 설정한 횟수를 넘었는지 아닌지를 판정한다(스텝 S44). NG 횟수가 미리 설정한 횟수를 넘지 않았으면, 웨이퍼(W) 상의, 메인 카메라(24) 및 보조 카메라(25) 각각을 사용해 최초로 촬영한 위치의 주변을 서치하여(스텝 S45), 다시 매칭하는지 아닌지 판정한다(스텝 S43). 그리고, 양자가 매칭할 때까지, 상기 스텝 S43~스텝 S45를 반복한다. 또한, 스텝 S45의 주변 서치는, 앞서 설명한 스텝 S41이나 스텝 S42와 동일한 처리를 하는 것이다.
이때, 스텝 S44에서, NG 횟수가 미리 설정한 횟수를 넘었다고 판정한 경우에는, 웨이퍼(W)에 어떠한 에러가 발생했다고 판단하고, 그 웨이퍼(W)를 회수한다(스텝 S46).
이어서, 스텝 S43에서 양자가 매칭했다고 판정한 경우는, 고배율 얼라인먼트 패턴과 기준위치와의 XYθ 각 방향의 오차량을 연산한다(스텝 S47). 그 후, 연산으로 구한 XYθ 각 방향의 오차량에 근거해, 워크 테이블(13)의 위치, 즉 웨이퍼(W)의 XYθ 각 방향의 오차량을 보정한다(스텝 S48).
다음으로, 2번째 장 이후의 웨이퍼의 얼라인먼트에 있어서의 저배율 보정처리 순서에 관해, 도11을 참조해 설명한다. 2번째 장 이후의 웨이퍼의 얼라인먼트에 있어서의 저배율 보정처리 순서도, 기본적으로는 앞서 설명한 1번째 장 웨이퍼의 경우와 동일하지만, 여기서는, 우선, 스텝 S51에서 초기설정(초기위치 보정)을 한다. 구체적으로는, 1번째 장 웨이퍼, 혹은 앞서 측정한 웨이퍼의 얼라인먼트를 했을 때의, XYθ 각 방향의 오차 보정량(웨이퍼 중심의 XY방향의 위치 오차 보정량, 웨이퍼(W)의 각도 θ방향의 오차 보정량 및, 2개의 저배율 얼라인먼트 패턴의 XY방향의 오차 보정량)을 사용해, 다음 스텝 S52의 에지 서치 시의 초기위치를 보정한다.
그 후, 스텝 S52 이후의 처리를 한다. 또한, 상기 스텝 S52 이후의 처리는, 앞서 설명한 1번째 장 웨이퍼의 얼라인먼트에 있어서의 저배율 보정처리 순서(스텝 S31~S39)와 동일하기 때문에, 설명은 생략한다.
2번째 장 이후의 웨이퍼의 얼라인먼트에 있어서의 고배율 보정처리 순서도, 기본적으로는 앞서 설명한 1번째 장 웨이퍼의 경우와 동일하지만, 상기 2번째 장 이후의 저배율 보정처리 순서와 마찬가지로, 우선, 초기설정(초기위치 보정)을 한다. 그 이후의 처리는, 앞서 설명한 1번째 장 웨이퍼의 얼라인먼트에 있어서의 고배율 보정처리 순서와 동일하기 때문에, 설명은 생략한다.
다음으로, 도12~도18을 참조해 2번째 장 이후의 웨이퍼(W)의, XYθ 각 방향의 오차량을 보정하는 순서를 설명한다. 여기서는, 얼라인먼트 패턴으로서, 도12에 개략을 나타낸 바와 같이, 웨이퍼(W) 상에 형성되어 있는 다수의 칩 중에서, 직경방향으로 대향하는 2개의 칩 각각에서 전극패드를 하나 선택해, 이를 사용하기로 하고 있다.
우선, 도13에 나타낸 바와 같이 메인 카메라(24)로, 웨이퍼(W) 상에 형성한 2개의 얼라인먼트 패턴 중 한쪽인, 칩(C1) 상의 패드(41)의 위치를 측정한다. 다음으로, 도14에 나타낸 바와 같이, 보조 카메라(25) 쪽의 이론위치에 워크 테이블(13)을 이동시켜, 보조 카메라(25)로 칩(C1) 상의 패드(41)를 측정하고, 앞서 메인 카메라(24)로 측정했을 때의 위치와의 오차량 ΔX1, ΔY1을 구한다. 여기서, 보조 카메라(25) 쪽의 이론위치란, 열팽창에 의한 보조 카메라(25)의 변위 등이 없는 상태에서의, 본래의 보조 카메라(25) 쪽 위치에 대해, 1번째 장 웨이퍼의 얼라인먼트를 했을 때의, XYθ 각 방향의 오차 보정량을 사용해 보정한 위치이다. 또한, 3번째 장 이후의 웨이퍼에 대한 보조 카메라(25) 쪽의 이론위치는, 이전 오차 보정량을 사용해 보정한 위치이다.
다음으로, 도15에 나타낸 바와 같이, 워크 테이블(13)을 메인 카메라(24) 쪽의 이론위치로 이동시켜, 메인 카메라(24)로, 웨이퍼(W) 상에 형성한 2개의 얼라인먼트 패턴 중 또 한쪽인, 칩(C2) 상의 전극패드(42)를 촬영하고, 기준위치와의 오차량 ΔX2, ΔY2를 측정한다. 그 후, 도16에 나타낸 바와 같이, 보조 카메라(25)로 칩(C1) 상의 전극패드(41)를 촬영하고, 기준위치와의 오차량 ΔX3, ΔY3를 구한다. 여기서, 메인 카메라(24) 쪽의 이론위치란, 열팽창에 의한 메인 카메라(24)의 변위 등이 없는 상태에서의, 본래 메인 카메라(24) 쪽의 위치에 대해, 1번째 장 웨이퍼의 얼라인먼트를 했을 때의, XYθ 각 방향의 오차 보정량을 사용해 보정한 위치이다. 또한, 3번째 장 이후의 웨이퍼에 대한 메인 카메라(24) 쪽의 이론위치는, 이전 오차 보정량을 사용해 보정한 위치이다.
나아가, 도17에 나타낸 바와 같이, 다시 메인 카메라(24)를 칩(C1)의 전극패드(42) 상에 위치하도록 워크 테이블(13)을 이동시키고, 이어서, 앞서 설명한 측정으로 구한 오차량을 보정하도록, 구체적으로는 전극패드(41)의 위치가 기준위치와 일치하도록 워크 테이블(13)을 XYθ 각 방향으로 미조정(微調整)한다. 그리고, 도18에 나타낸 바와 같이, 그 다음은 보조 카메라(25)가 칩(C1) 상의 전극패드(41) 상에 위치하도록 워크 테이블(13)을 이동시키고, 이어서 앞서 설명한 측정으로 구한 오차량을 보정하도록, 구체적으로는, 상기 도17의 결과도 고려하여 전극패드(41)의 위치가 기준위치와 일치하도록 워크 테이블(13)을 XYθ 각 방향으로 미조정한다.
다음으로, 본 발명의 실시형태에 따른 웨이퍼 얼라인먼트 장치에 있어서의, 웨이퍼 얼라인먼트의 기준위치를 결정하는 순서에 관해, 도19~도21을 참조하면서 설명한다.
도시된 웨이퍼 얼라인먼트 장치에 있어서는, 워크 테이블(13)의 바깥둘레부에 얼라인먼트 마크(43)가 설치되어 있고, 그 얼라인먼트 마크(43)를 사용해 웨이퍼 얼라인먼트를 하기로 한다.
우선, 도19에 나타낸 바와 같이, 메인 카메라(24)로 얼라인먼트 마크(43)를 촬영하고, 기준위치와 얼라인먼트 마크(43)의 위치를 맞춘다. 다음으로, 도20에 나타낸 바와 같이, 메인 카메라(24)와 보조 카메라(25)의 이론 거리분 워크 테이블(13)을 이동시키고, 보조 카메라(25)로 얼라인먼트 마크(43)를 촬영하고, 기준위치와의 오차량 ΔX, ΔY을 구한다. 그 후, 도21에 나타낸 바와 같이 워크 테이블(13)을 XYθ 각 방향으로 이동시켜 이전 오차량 ΔX, ΔY을 보정한다. 여기서, 이론 거리란, 열팽창에 의한 메인 카메라(24) 및 보조 카메라(25) 간의 거리의 변화 등이 없는 상태에서의, 본래 메인 카메라(24)와 보조 카메라(25)의 거리이다.
이상의 공정에 따라 웨이퍼 얼라인먼트의 기준위치를 결정하고, 그 후, 앞서 설명한 웨이퍼 얼라인먼트 순서에 따라 1번째 장 및 2번째 장 이후의 웨이퍼 얼라인먼트 및 측정을 하기로 한다.
또한, 위에서 설명한 순서에서는 워크 테이블(13)에 설치된 얼라인먼트 마크(43)를 이용하고 있지만, 이밖에, 도7의 스텝 S11의 에지 서치와 동일한 처리를 하여, 워크 테이블(13)의 중심위치 결정을 함으로써, 웨이퍼 얼라인먼트의 기준위치를 결정하기로 해도 된다.
이상과 같이 처리됨으로써, 가열시험 등에 의해 메인 카메라(24) 및 보조 카메라(25)를 지지하는 지지부가 열팽창하여 그 메인 카메라(24) 및 보조 카메라(25) 간의 거리가 변화해도, 메인 카메라(24) 및 보조 카메라(25)의 화상정보에 따라 세밀하게 보정하기 때문에, 상기 열팽창에 의한 메인 카메라(24) 및 보조 카메라(25)의 변위를 흡수해 웨이퍼(W)를 정확하게 위치를 맞출 수 있다.
이때, 메인 카메라(24) 및 보조 카메라(25)는, 단지 고정할 뿐이므로, 설치 공간이 커지지도 않고, 저비용으로 웨이퍼 얼라인먼트 장치를 실현할 수 있다.
더욱이, 본 실시형태의 웨이퍼 얼라인먼트 방법에서는, 워크 테이블(13)을 좌우로 크게 이동시키는 것은 한번뿐이고, 그 후는 약간 이동시킬 뿐이므로, 단시간에 정확하게 웨이퍼의 위치를 맞출 수 있다.
그 결과, 다수의 웨이퍼(W)를 연속적으로 교체해 검사 등을 할 때, 새 웨이퍼(W)의 위치 결정을 단시간에 할 수 있어, 검사 등 작업의 효율화를 도모할 수 있다.
변형예
상기 실시형태에서는, 2번째 장 이후의 웨이퍼(W)의 처리에 있어, 에지 서치처리는, 워크 테이블(13)에 웨이퍼(W)를 공급하는 로더(loader)(도시되지 않음)의 성능에 따라 설치된다. 즉, 웨이퍼(W)를 워크 테이블(13)에 반입하는 로더의 성능이 좋아, 웨이퍼(W)를 워크 테이블(13)에 정확하게 놓을 수 있는 경우는, 에지 서치처리(도9의 스텝 S31 및 도11의 스텝 S52)를 생략해도 된다.
본 발명의 웨이퍼 얼라인먼트 장치 및 웨이퍼 얼라인먼트 방법은, 웨이퍼(W)의 검사공정이나 처리공정에서 사용되는 검사장치나 처리장치로서, 웨이퍼(W)를 정확하게 위치 결정할 필요가 있는 장치 모두에 사용할 수 있다.
본 발명은, 상기 실시예에 한정되지 않고, 그 취지를 벗어나지 않는 한, 각종 변경이 가능하다.
본 발명의 단순한 변형 내지 변경은 이 분야의 통상의 지식을 가진 자에 의해 용이하게 이용될 수 있으며, 이러한 변형이나 변경은 모두 본 발명의 영역에 포함되는 것으로 볼 수 있다.
1, 21: 웨이퍼 얼라인먼트 장치 2, 13: 워크 테이블
3: XYZθ 스테이지 4: 카메라
5, 26: 제어부 6, 33: 화상 처리장치
7, 34: 연산장치 8, 35: 표시장치
9, 36: 모션 컨트롤장치 11: 프로버(prober)
13: 워크 테이블 14: XYZθ축 구동부
17: 프로브침 18: 프로브 카드
19: 고정 프레임 24: 메인 카메라
25: 보조 카메라 28: X축 이동기구
29: Y축 이동기구 30: Z축 이동기구
31: θ축 회전기구 41, 42: 전극패드
43: 얼라인먼트 마크

Claims (4)

  1. 검사대상 웨이퍼를 지지하는 워크 테이블;
    상기 워크 테이블을 지지하여 상기 웨이퍼를 XYZ축 방향으로 이동시킴과 동시에 θ축 방향으로 회전시키는 XYZθ 스테이지;
    상기 워크 테이블에 대향시켜 장치 본체 쪽에 설치되고, 그 워크 테이블에 놓인 상기 웨이퍼를 촬영하는 메인 카메라;
    상기 메인 카메라와 미리 설정한 거리를 둔 상태로 상기 워크 테이블에 대향시켜 장치 본체 쪽에 설치되고, 그 워크 테이블에 놓인 상기 웨이퍼를 촬영하는 보조 카메라; 및
    상기 메인 카메라 및 보조 카메라로 촬영한 화상정보를 처리하여 상기 XYZθ 스테이지를 제어하고, 상기 웨이퍼의 위치를 맞추는 제어부;
    를 갖추고,
    상기 제어부가,
    1번째 장 웨이퍼, 또는 전회 측정한 웨이퍼의 얼라인먼트를 행한 때의, XYθ 각 방향의 오차 보정량을 이용하여 2번째 장 이후의 웨이퍼의 초기위치를 보정처리하고;
    상기 웨이퍼 위에 미리 정한 2개의 저배율 얼라인먼트 패턴의 화상정보로서 저배율로 전환된 상기 메인 카메라 및 보조 카메라의 화상정보와 화상처리 시의 기준위치와의 비교에 의한 XYθ 방향의 오차량으로서, 상기 2개의 저배율 얼라인먼트 패턴 중 한쪽 얼라인먼트 패턴을 상기 메인 카메라 쪽의 이론위치에 위치시키고, 이어서 상기 웨이퍼를 이동시켜 상기 한쪽 얼라인먼트 패턴을 상기 보조 카메라 쪽의 이론위치에 위치시키고, 그 후, 상기 보조 카메라의 기준위치와 상기 한쪽 얼라인먼트 패턴 및 상기 메인 카메라의 기준위치와 다른쪽 얼라인먼트 패턴을 각각 매칭시켜 측정한 열팽창에 의한 오차량에 기초하여 상기 2번째 장 이후의 웨이퍼에 대한 XYθ 방향을 저배율 보정처리하고; 그리고
    상기 웨이퍼 위에 미리 정한 2개의 고배율 얼라인먼트 패턴의 화상정보로서 고배율로 전환된 상기 메인 카메라 및 보조 카메라의 화상정보와 화상처리 시의 기준위치와의 비교에 의한 XYθ 방향의 오차량으로서, 상기 2개의 고배율 얼라인먼트 패턴 중 한쪽 얼라인먼트 패턴을 상기 메인 카메라 쪽의 이론위치에 위치시키고, 이어서 상기 웨이퍼를 이동시켜 상기 한쪽 얼라인먼트 패턴을 상기 보조 카메라 쪽의 이론위치에 위치시키고, 그 후, 상기 보조 카메라의 기준위치와 상기 한쪽 얼라인먼트 패턴 및 상기 메인 카메라의 기준위치와 다른쪽 얼라인먼트 패턴을 각각 매칭시켜 측정한 열팽창에 의한 오차량에 기초하여 상기 2번째 장 이후의 웨이퍼에 대한 XYθ 방향을 고배율 보정처리하는;
    것을 특징으로 하는 웨이퍼 얼라인먼트 장치.
  2. 삭제
  3. 복수의 웨이퍼를 연속적으로 교체해 처리할 때, 그 웨이퍼의 위치 결정을 하는 웨이퍼 얼라인먼트 방법으로서,
    1번째 장 웨이퍼, 또는 전회 측정한 웨이퍼의 얼라인먼트를 행한 때의, XYθ 각 방향의 오차 보정량을 이용하여 2번째 장 이후의 웨이퍼의 초기위치를 보정처리하는 단계;
    상기 웨이퍼 위에 미리 정한 2개의 저배율 얼라인먼트 패턴의 화상정보로서 저배율로 전환된 메인 카메라 및 보조 카메라의 화상정보와 화상처리 시의 기준위치와의 비교에 의한 XYθ 방향의 오차량으로서, 상기 2개의 저배율 얼라인먼트 패턴 중 한쪽 얼라인먼트 패턴을 상기 메인 카메라 쪽의 이론위치에 위치시키고, 이어서 상기 웨이퍼를 이동시켜 상기 한쪽 얼라인먼트 패턴을 상기 보조 카메라 쪽의 이론위치에 위치시키고, 그 후, 상기 보조 카메라의 기준위치와 상기 한쪽 얼라인먼트 패턴 및 상기 메인 카메라의 기준위치와 다른쪽 얼라인먼트 패턴을 각각 매칭시켜 측정한 열팽창에 의한 오차량에 기초하여 상기 2번째 장 이후의 웨이퍼에 대한 XYθ 방향을 저배율 보정처리하는 단계; 및
    상기 웨이퍼 위에 미리 정한 2개의 고배율 얼라인먼트 패턴의 화상정보로서 고배율로 전환된 상기 메인 카메라 및 보조 카메라의 화상정보와 화상처리 시의 기준위치와의 비교에 의한 XYθ 방향의 오차량으로서, 상기 2개의 고배율 얼라인먼트 패턴 중 한쪽 얼라인먼트 패턴을 상기 메인 카메라 쪽의 이론위치에 위치시키고, 이어서 상기 웨이퍼를 이동시켜 상기 한쪽 얼라인먼트 패턴을 상기 보조 카메라 쪽의 이론위치에 위치시키고, 그 후, 상기 보조 카메라의 기준위치와 상기 한쪽 얼라인먼트 패턴 및 상기 메인 카메라의 기준위치와 다른쪽 얼라인먼트 패턴을 각각 매칭시켜 측정한 열팽창에 의한 오차량에 기초하여 상기 2번째 장 이후의 웨이퍼에 대한 XYθ 방향을 고배율 보정처리하는 단계;
    로 이루어지는 것을 특징으로 하는 웨이퍼 얼라인먼트 방법.
  4. 삭제
KR1020100012314A 2009-03-16 2010-02-10 웨이퍼 얼라인먼트 장치 및 웨이퍼 얼라인먼트 방법 KR101420597B1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JPJP-P-2009-063254 2009-03-16
JP2009063254 2009-03-16
JPJP-P-2010-014369 2010-01-26
JP2010014369A JP2010245508A (ja) 2009-03-16 2010-01-26 ウェハアライメント装置及びウェハアライメント方法

Publications (2)

Publication Number Publication Date
KR20100105366A KR20100105366A (ko) 2010-09-29
KR101420597B1 true KR101420597B1 (ko) 2014-07-18

Family

ID=43009483

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100012314A KR101420597B1 (ko) 2009-03-16 2010-02-10 웨이퍼 얼라인먼트 장치 및 웨이퍼 얼라인먼트 방법

Country Status (1)

Country Link
KR (1) KR101420597B1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102553834A (zh) * 2010-12-16 2012-07-11 江阴格朗瑞科技有限公司 双相机组合对准式条带测试分选机
KR101707278B1 (ko) * 2013-02-25 2017-02-15 가부시키가이샤 스크린 홀딩스 패턴 형성 장치 및 패턴 형성 방법 및 얼라이먼트 장치 및 얼라이먼트 방법
CN107295235B (zh) * 2017-08-10 2023-08-15 深圳眼千里科技有限公司 一种双摄像头模组自动核准装置及其自动核准方法
KR102095386B1 (ko) * 2018-11-20 2020-03-31 주식회사 쎄믹스 웨이퍼 프로버의 얼라인먼트 장치

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05198662A (ja) * 1991-08-01 1993-08-06 Tokyo Electron Yamanashi Kk プローブ装置及び同装置におけるアライメント方法
JPH05333100A (ja) * 1992-05-29 1993-12-17 Tokyo Electron Yamanashi Kk プローブ装置
JPH07147304A (ja) * 1993-11-24 1995-06-06 Tokyo Electron Ltd オートセットアップ式プローブ検査方法
JP2004200383A (ja) * 2002-12-18 2004-07-15 Tokyo Seimitsu Co Ltd 位置合わせ方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05198662A (ja) * 1991-08-01 1993-08-06 Tokyo Electron Yamanashi Kk プローブ装置及び同装置におけるアライメント方法
JPH05333100A (ja) * 1992-05-29 1993-12-17 Tokyo Electron Yamanashi Kk プローブ装置
JPH07147304A (ja) * 1993-11-24 1995-06-06 Tokyo Electron Ltd オートセットアップ式プローブ検査方法
JP2004200383A (ja) * 2002-12-18 2004-07-15 Tokyo Seimitsu Co Ltd 位置合わせ方法

Also Published As

Publication number Publication date
KR20100105366A (ko) 2010-09-29

Similar Documents

Publication Publication Date Title
JP2010245508A (ja) ウェハアライメント装置及びウェハアライメント方法
KR100336017B1 (ko) 본딩방법 및 그 장치
JP4542046B2 (ja) 穴開け方法及び穴開け装置
US20050219533A1 (en) Exposure apparatus and aligning method
KR101420597B1 (ko) 웨이퍼 얼라인먼트 장치 및 웨이퍼 얼라인먼트 방법
JPS61196532A (ja) 露光装置
JPH09138256A (ja) 被検査基板のアライメント方法
JP2005101455A (ja) 位置決め装置
KR101183101B1 (ko) 플립칩용 다이 본딩 방법
WO2019013274A1 (ja) 第1物体を第2物体に対して位置決めする装置及び方法
JP2004063877A (ja) ウェハの位置決め修正方法
JP2004146776A (ja) フリップチップ実装装置及びフリップチップ実装方法
JP2008192861A (ja) 半導体検査装置および半導体検査方法
US11862495B2 (en) Monitor wafer measuring method and measuring apparatus
JP4264403B2 (ja) ボンディング装置
JPH0829458B2 (ja) 部品の自動マウント方法
JPH09167786A (ja) 電子部品実装装置の調整方法及び電子部品実装方法
JP2005123293A (ja) プローブ検査方法
JP2003152037A (ja) ウェハ検査方法、検査装置及び検査用赤外線撮像装置
US7782441B2 (en) Alignment method and apparatus of mask pattern
JP2010034331A (ja) 露光装置およびデバイス製造方法
JPH11330109A (ja) 素子実装装置及び素子実装方法
JP2006318965A (ja) 半導体デバイスの検査方法および半導体デバイス検査装置
JP2006114842A (ja) ボンディング装置
US20220157633A1 (en) Wafer bonding apparatus

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
J201 Request for trial against refusal decision
J301 Trial decision

Free format text: TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20121217

Effective date: 20140528

S901 Examination by remand of revocation
GRNO Decision to grant (after opposition)
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170511

Year of fee payment: 6