KR101409039B1 - 오디오 신호를 반향하기 위한 반향기 및 방법 - Google Patents

오디오 신호를 반향하기 위한 반향기 및 방법 Download PDF

Info

Publication number
KR101409039B1
KR101409039B1 KR1020127013104A KR20127013104A KR101409039B1 KR 101409039 B1 KR101409039 B1 KR 101409039B1 KR 1020127013104 A KR1020127013104 A KR 1020127013104A KR 20127013104 A KR20127013104 A KR 20127013104A KR 101409039 B1 KR101409039 B1 KR 101409039B1
Authority
KR
South Korea
Prior art keywords
delay
delay line
loop
output
frequency subband
Prior art date
Application number
KR1020127013104A
Other languages
English (en)
Other versions
KR20120074316A (ko
Inventor
주하 빌카모
번하드 노이게바우어
잔 프로그스티스
Original Assignee
프라운호퍼 게젤샤프트 쭈르 푀르데룽 데어 안겐반텐 포르슝 에. 베.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 프라운호퍼 게젤샤프트 쭈르 푀르데룽 데어 안겐반텐 포르슝 에. 베. filed Critical 프라운호퍼 게젤샤프트 쭈르 푀르데룽 데어 안겐반텐 포르슝 에. 베.
Publication of KR20120074316A publication Critical patent/KR20120074316A/ko
Application granted granted Critical
Publication of KR101409039B1 publication Critical patent/KR101409039B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K15/00Acoustics not otherwise provided for
    • G10K15/08Arrangements for producing a reverberation or echo sound
    • G10K15/12Arrangements for producing a reverberation or echo sound using electronic time-delay networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03012Arrangements for removing intersymbol interference operating in the time domain
    • H04L25/03019Arrangements for removing intersymbol interference operating in the time domain adaptive, i.e. capable of adjustment during data reception
    • H04L25/03038Arrangements for removing intersymbol interference operating in the time domain adaptive, i.e. capable of adjustment during data reception with a non-recursive structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S7/00Indicating arrangements; Control arrangements, e.g. balance control
    • H04S7/30Control circuits for electronic adaptation of the sound field
    • H04S7/305Electronic adaptation of stereophonic audio signals to reverberation of the listening space

Abstract

오디오 신호(5)를 반향하기 위한 반향기(10)는 반향된 주파수 서브밴드 신호들(27)을 획득하기 위해 다른 루프 지연들(23)에 의해 오디오 신호(5)를 나타내는 적어도 두 개의 다른 주파수 서브밴드 신호들(17)을 지연하기 위한 피드백 지연 루프 프로세서(20)를 포함한다.

Description

오디오 신호를 반향하기 위한 반향기 및 방법{REVERBERATOR AND METHOD FOR REVERBERATING AN AUDIO SIGNAL}
본 발명의 실시 예들은 오디오 신호를 반향하기 위한 반향기 및 방법에 관한 것이다. 본 발명의 추가적인 실시 예들은 임의의 반향 시간들에 대한 제어를 하는 효율적인 주파수 변환 도메인 반향기에 관한 것이다.
반향기들은 오디오 신호들에 실내 효과(room effect)를 생성하는 데 사용된다. 신호에 실내 효과, 즉 초기 반사들 및 반향을 부가할 필요가 있는 다수의 오디오 신호 처리 응용들이 있다. 이들 두 개 중에서, 초기 반사들은 신호 자체 이후에 매우 단시간에만 나타나고, 이에 따라 더욱 쉽게 모형화될 수 있다. 한편, 반향은 장시간 간격에 걸쳐 이어지고, 드라이 소스 사운드(dry source sound)의 오프셋 이후에 몇 초까지 자주 잘 들린다. 이 장시간 기간으로 인하여, 중간 계산 비용을 낮출 필요가 있으면서 실내 효과를 필요로 하는 시스템들에서 반향기의 설계가 주된 초점이 된다.
반향기의 설계 목표는 어느 정도의 실제 또는 가상의 공간에 지각적인 유사성을 최대화하거나, 청취자의 선호도를 최대화하기 위해 일부 다른 지각적인 특성을 최대화하는 반향을 생성하는 것일 수 있다. 특히 시간 도메인 신호들에 대한 반향을 위한 몇몇 알고리즘들이 존재하며, 설계 목표는 거의 언제나, 계산의 부하가 최소화되면서 원하는 품질이 최대로 도달하는 균형을 찾는 것이다.
역사적으로, 반향 설계(reverb design)는 시간 도메인 신호들에 거의 완전히 집중되어 있다. 그러나 현대 오디오 처리 설계에서는 MPEG 서라운드(MPEG surround) 및 관련된 기술들에 사용되는 직교 미러 필터 뱅크(quadrature mirror filterbank: QMF) 도메인, 지각적인 오디오 코덱들에 사용되는 변경된 이산 코사인 변환(modified discrete cosine transform: MDCT) 도메인, 및 매우 광범위한 응용들에 사용되는 단시간 푸리에 변환(short time Fourier transform: STFT) 도메인과 같은 단시간 주파수 변환 도메인에서 처리하는 것이 매우 일반적이다. 이들 방법들은 차이가 있지만, 공통적인 요소는 도 16에 예시된 것처럼 시간 도메인 신호가 시간-주파수 타일들(tiles)로 분할되는 것이다. 변환 및 역변환 동작은 일반적으로 손실이 없으며, 이에 따라, 사운드 콘텐츠에 관한 정보는 두 표현들(representations)에 충분히 내포되어 있다. 시간-주파수 표현은 사람의 청각 시스템이 사운드를 처리하는 방식과 거의 유사하기 때문에 오디오의 지각적인 처리에 특히 사용된다.
최신 기술에 따르면, 반향을 생성하는데 몇몇 현존하는 해법들이 존재한다. 2006년 Vickers 등의 121번째 AES 컨벤션(2006년 10월) 및 미국 제 2008/0085008 Al호, "Frequency Domain Artificial Reverberation using Spectral Magnitude Decay"에는 주파수 도메인에서 기능을 하는 공지된 반향 알고리즘이 개시되어 있다. 또한, 2002년, Igor Nicolic의 112번째 AES 컨벤션(2002년), "Improvements of Artificial Reverberation by Use of Subband Feedback Delay Networks"에는 주파수 밴드들에서 반향의 생성을 제안하고 있다.
반향의 임펄스 응답을 감쇄하면서 무한히 반복하는 것은 Rubak & Johansen, 104번째 AES 컨벤션(1998년) 및 106번째 AES 컨벤션(1999년), "Artificial Reverberation Based on a Pseudo-Random Impulse Response" 파트들(I 및 II) 및 Karjalainen & Jarvelainen, 30번째 AES 콘퍼런스(2007년 3월), "Reverberation Modeling Using Velvet Noise"에서 발견할 수 있다. 그러나 상기 언급한 참조 문헌들은 시간-도메인 반향 알고리즘들에 관한 것이다.
Lee 등, 127번째 AES 컨벤션(2009년 10월), "The Switch Convolution Reverberator"에는 모바일 디바이스들에 적합한 낮은 메모리와 낮은 계산 비용의 인위적인 반향기가 제시되어 있다. 반향기는 짧은 노이즈 시퀀스로 콘볼루션(convolution)을 구동하는 등화 콤 필터(equalized comb filter)로 구성되어 있다. 반향기의 등화 및 감쇠율(decay rate)은 낮은 순서의 IIR 필터들에 의해 제어되고, 에코 밀도는 노이즈 시퀀스의 밀도가 되며, 여기서, 노이즈 시퀀스는 정기적으로 업데이트 또는 “스위치(switched)”된다. 더욱이, 신호 작성 팩터(signal crest factor)에 민감한 리키 적분기(leaky integrator)를 포함하는 노이즈 시퀀스를 업데이트 하기 위한 몇몇 구조들과 멀티-밴드 아키텍처들이 기재되어 있다.
현존하는 해법들의 근본적인 문제는 현재 가장 진보된 효율적인 반향 알고리즘들이 시간 도메인에서 기능을 한다는 점이다. 그러나 주파수 도메인에서 작동하는 많은 응용들은 반향 유닛을 필요로 한다. 따라서, 시간 도메인 알고리즘들을 신호에 적용하기 위하여, 응용은 시간 도메인에서 반향 알고리즘을 적용하기 이전에 먼저 신호를 역변환해야 한다. 그러나 이는 응용에 따라 비현실적일 수 있다.
공지된 시간 도메인 반향기의 다른 단점은 사람의 공간 인식에 특히 중요한 특정한 주파수 의존 반향 시간들의 세트를 정하기 위해 반향을 설계하는 면에서 유연성이 없을 수 있다는 점이다.
따라서, 본 발명의 목적은 개선된 품질과 효율적인 구현을 허용하는 오디오 신호를 반향하기 위한 개념을 제공하는 것이다.
상기 목적은 청구항 1에 따른 디바이스, 청구항 15에 따른 방법 및 청구항 16에 따른 컴퓨터 프로그램에 의해 성취된다.
본 발명의 실시예에 따라, 오디오 신호를 반향하기 위한 반향기는 피드백 지연 루프 프로세서를 포함한다. 피드백 지연 루프 프로세서는 반향된 주파수 서브밴드 신호들을 획득하기 위해 다른 루프 지연들에 의해 오디오 신호를 나타내는 적어도 두 개의 다른 주파수 서브밴드 신호들을 지연하도록 구성된다.
실시예들에 있어서, 주파수-도메인 신호 표현은 실수 또는 복소 도메인 내에 있을 수 있다. 따라서, 반향기 내에서 실행될 수 있는 모든 동작들(예를 들어, 지연, 합산 또는 곱셈)은 실수 또는 복소 동작들이 될 수 있다.
본 발명의 근본적인 기본 사상은 오디오 신호를 나타내는 적어도 두 개의 다른 주파수 서브밴드 신호들이 다른 루프 지연들에 의해 지연될 때 상기 언급한 개선된 품질/효율적인 구현이 성취될 수 있다는 점이다. 이러한 수단에 의해, 피드백 처리의 예측된 반복성은 피하거나 적어도 감소시킬 수 있으며, 이에 의해 예측된 품질을 더욱 양호하게 유지할 수 있다.
본 발명의 추가적인 실시예에 따라, 피드백 지연 루프 프로세서는 각각의 주파수 서브밴드 신호에 대한 필터 임펄스 응답을 갖는 필터를 포함하고, 여기서, 필터 임펄스 응답은 필터 임펄스 응답 샘플들의 제 1 블록 및 필터 임펄스 응답 샘플들의 제 2 블록을 포함한다. 여기서, 제 2 블록은 임펄스 응답 샘플 간격에 관하여 제 1 블록과 유사하게 될 수 있다. 또한, 제 2 블록의 제 1 임펄스 응답 샘플은 주파수 서브밴드 신호에 대한 루프 지연에 의해 제 1 블록의 제 1 임펄스 응답 샘플로부터 지연될 수 있다. 이렇게 하여, 주파수 서브밴드 신호들에 대한 필터들의 필터 임펄스 응답들의 제 1 블록들 및 제 2 블록들은 다른 루프 지연들에 의해 지연될 것이다.
본 발명의 추가적인 실시예에 따라, 피드백 지연 루프 프로세서는 각각의 주파수 서브밴드 신호에 대한 가변적인 필터 탭 밀도를 갖는 스파스 필터(sparse filter)를 포함한다. 필터 탭 밀도를 적절하게 변경함으로써, 스파스 필터의 필터 임펄스 응답은 미리 결정된 에너지 엔빌로프(envelope)를 근사치로 계산할 것이다. 따라서, 주파수 의존 방식으로 스파스 필터들의 임펄스 응답들의 에너지 엔빌로프들을 제어할 수 있다.
본 발명의 추가적인 실시예에 따라, 피드백 지연 루프 프로세서는 감쇠율(attenuation factor)에 의해 적어도 두 개의 주파수 서브밴드 신호들의 각각의 주파수 서브밴드 신호를 감쇠하도록 구성된다. 여기서, 감쇠율은 주파수 서브밴드 신호에 대한 미리 결정된 반향 시간 및 루프 지연에 의존할 수 있다. 이는 원하는 반향 시간에 따른 에너지 감쇠가 성취될 수 있도록 피드백 지연 루프 처리의 이득을 서브밴드-방식(subband-wise)으로 조정하는 것을 허용한다.
본 발명은 개선된 효율을 갖는 반향 구조를 제공하며, 이에 의해, 저전력 프로세서들에 저비용 구현을 제공한다.
도 1a는 오디오 신호를 반향하기 위한 반향기의 실시예의 블록 다이어그램을 도시한다.
도 1b는 본 발명의 실시예에 따른 적어도 두 개의 다른 주파수 서브밴드 신호들에 대한 다른 루프 지연들의 예시적인 설계를 도시한다.
도 1c는 각각의 주파수 서브밴드 신호를 처리하기 위한 싱글 서브밴드 반향 유닛의 실시예의 블록 다이어그램을 도시한다.
도 1d는 도 1c에 따른 싱글 서브밴드 반향 유닛의 실시예의 임펄스 응답의 도식적인 그림을 도시한다.
도 2a는 피드백 루프 내의 감쇠기를 갖는 싱글 서브밴드 반향 유닛의 추가적인 실시예의 블록 다이어그램을 도시한다.
도 2b는 도 2a에 따른 싱글 서브밴드 반향 유닛의 실시예의 임펄스 응답의 도식적인 그림을 도시한다.
도 3은 지수적으로 감쇄하는 노이즈 필터(exponentially decaying noise filter)를 갖는 싱글 서브밴드 반향 유닛의 추가적인 실시예의 블록 다이어그램을 도시한다.
도 4는 도 3에 따른 싱글 서브밴드 반향 유닛의 실시예에 이용된 지수적으로 감쇄하는 노이즈를 나타내는 예시적인 필터 응답 함수의 그래프를 도시한다.
도 5는 도 3에 따른 싱글 서브밴드 반향 유닛의 실시예의 예시적인 임펄스 응답의 그래프를 도시한다.
도 6은 스파스 지연 라인 출력들(sparse delay line outputs)을 갖는 싱글 서브밴드 반향 유닛의 추가적인 실시예의 블록 다이어그램을 도시한다.
도 7은 도 6에 따른 싱글 서브밴드 반향 유닛의 실시예에 이용된 감쇄하는 밀도(decaying density)를 갖는 단위 임펄스들(unity impulses)을 나타내는 예시적인 필터 응답 함수의 그래프를 도시한다.
도 8은 도 6에 따른 싱글 서브밴드 반향 유닛의 실시예의 예시적인 임펄스 응답의 그래프를 도시한다.
도 9는 스파스 지연 라인 출력들을 갖는 싱글 서브밴드 반향 유닛 및 비적 위상 동작들(multiplication-free phase operations)의 추가적인 실시예의 블록 다이어그램을 도시한다.
도 10은 도 9에 따른 싱글 서브밴드 반향 유닛의 실시예에 이용된 예시적인 비적 위상 동작들의 표를 도시한다.
도 11a는 본 발명의 실시예에 따라 위상 변경 유닛의 블록 다이어그램을 도시한다.
도 11b는 본 발명의 추가적인 실시예에 따라 위상 변경 유닛의 블록 다이어그램을 도시한다.
도 11c는 본 발명의 추가적인 실시예에 따라 위상 변경 유닛의 블록 다이어그램을 도시한다.
도 11d는 본 발명의 추가적인 실시예에 따라 위상 변경 유닛의 블록 다이어그램을 도시한다.
도 12는 직렬로 연결된 지연 라인 유닛들, 중간 곱셈기들, 지연 라인 입력들 및 지연 라인 출력들을 갖는 싱글 서브밴드 반향 유닛의 추가적인 실시예의 블록 다이어그램을 도시한다.
도 13은 주파수 도메인에서 동작하는 오디오 신호를 반향하기 위한 반향기의 실시예의 개념적 구조를 도시한다.
도 14는 스펙트럼 컨버터, 몇몇 다른 싱글 서브밴드 반향 유닛들 및 출력 프로세서를 이용하여 오디오 신호를 반향하기 위한 반향기의 실시예의 블록 다이어그램을 도시한다.
도 15는 직교 채널 특정 출력 벡터들을 이용하여 오디오 신호를 반향하기 위한 반향기의 추가적인 실시예의 블록 다이어그램을 도시한다.
도 16은 본 발명의 실시예에 따라 연속적인 단시간 시간-주파수 변환 표현(continuous short-time time-frequency transform representation)의 도식적인 그림을 도시한다.
다음, 본 발명이 실시예들은 첨부된 도면들을 참조하여 설명한다.
도 1a는 오디오 신호를 반향하기 위한 반향기(10)의 실시예의 블록 다이어그램을 도시한다. 도 1a에 도시된 것처럼, 반향기(10)는 반향된 주파수 서브밴드 신호들(27)을 획득하기 위해 다른 루프 지연들(23)에 의해 오디오 신호(5)를 나타내는 적어도 두 개의 다른 주파수 서브밴드 신호들(17)을 지연하기 위한 피드백 지연 루프 프로세서(20)를 포함한다. 또한, 반향기(10)는 반향된 오디오 신호(41)를 획득하기 위해 반향된 주파수 서브밴드 신호들(27)을 처리하기 위한 출력 프로세서(30)를 포함한다.
도 1a를 참조하면, 반향기(10)는 원래의 오디오 신호(5)로부터 적어도 두 개의 다른 주파수 서브밴드 신호들(17)을 생성하기 위하여 직교 미러 필터 뱅크(QMF)와 같은 필터 뱅크(12)를 더 포함할 수 있다. 또한, 피드백 지연 루프 프로세서(20)는 제 1 반향된 주파수 서브밴드 신호(25-1)를 획득하기 위해 제 1 지연에 의해 적어도 두 개의 다른 주파수 서브밴드 신호들(17)의 제 1 주파수 서브밴드 신호(15-1)를 지연하기 위한 제 1 루프 지연 유닛(22-1)과, 제 2 반향된 주파수 서브밴드 신호(25-2)를 획득하기 위해 제 2 다른 지연에 의해 적어도 두 개의 다른 주파수 서브밴드 신호들(17)의 제 2 주파수 서브밴드 신호(15-2)를 지연하기 위한 제 2 루프 지연 유닛(22-2)을 포함할 수 있다. 제 1 및 제 2 반향된 주파수 서브밴드 신호들(25-1, 25-2)은 반향된 주파수 서브밴드 신호들(27)을 구성할 수 있다. 도 1a의 실시예에 있어서, 반향기(10)의 출력 프로세서(30)는 믹스된 신호들(37)을 획득하기 위해 적어도 두 개의 주파수 서브밴드 신호들(17)과 이에 상응하는 반향된 주파수 서브밴드 신호들(27)을 믹스하고, 반향된 오디오 신호(41)를 최종적으로 획득하기 위해 믹스된 신호들(37)을 결합하도록 구성될 수 있다. 도 1a에 도시된 것처럼, 출력 프로세서(30)는 제 1 및 제 2 어떤 처리 장치들(32-1, 32-2)과 이에 상응하는 가산 유닛들(34-1, 34-2)을 포함할 수 있다. 제 1 어떤 처리 장치(32-1)는 제 1 처리된 신호(33-1)를 획득하기 위해 제 1 반향된 주파수 서브밴드 신호(25-1)에 어떤 처리를 실행하도록 구성될 수 있고, 제 2 어떤 처리 장치(32-2)는 제 2 처리된 신호(33-2)를 획득하기 위해 제 2 반향된 주파수 서브밴드 신호(25-2)에 어떤 처리를 실행하도록 구성될 수 있다. 여기서, 제 1 및 제 2 어떤 처리 장치들(32-1, 32-2)에 의해 실행되는 어떤 처리 동작들은, 예를 들어, 미리 결정된 곱셈(multiplication) 또는 이득율들(gain factors)이 반향된 주파수 서브밴드 신호들(27)의 제 1 및 제 2 반향된 주파수 서브밴드 신호들(25-1, 25-2)에 적용되도록 될 수 있다. 제 1 가산 유닛(34-1)은 제 1 가산된 신호(35-1)를 획득하기 위해 적어도 두 개의 다른 주파수 서브밴드 신호들(17)의 제 1 주파수 서브밴드 신호(15-1) 또는 처리된 버전(processed version)과 어떤 처리 장치(32-1)의 제 1 처리된 신호(33-1)를 가산하도록 구성될 수 있고, 제 2 가산 유닛(34-2)은 제 2 가산된 신호(35-2)를 획득하기 위해 적어도 두 개의 다른 주파수 서브밴드 신호들(17)의 제 2 주파수 서브밴드 신호(15-2) 또는 처리된 버전과 어떤 처리 장치(32-2)의 제 2 처리된 신호(33-2)를 가산하도록 구성될 수 있다. 여기서, 제 1 및 제 2 가산된 신호들(35-1, 35-2)은 적어도 두 개의 믹스된 신호들(37)을 구성할 수 있다.
도 1a에 도시된 것처럼, 출력 프로세서(30)는 적어도 두 개의 다른 주파수 서브밴드 신호들(17)의 제 1 및 제 2 주파수 서브밴드 신호(15-1, 15-2)를 처리하기 위한 적어도 두 개의 선택적인 어떤 처리 장치들(44-1, 44-2)을 더 포함할 수 있다. 제 1 선택적인 어떤 처리 장치(44-1)는 제 1 선택적으로 처리된 신호(45-1)를 획득하기 위해 제 1 주파수 서브밴드 신호(15-1)에 어떤 선택적인 처리를 실행하고, 제 1 선택적으로 처리된 신호(45-1)를 이에 상응하는 가산 유닛(34-1)에 공급하도록 구성될 수 있으며, 제 2 선택적인 어떤 처리 장치(44-2)는 제 2 선택적으로 처리된 신호(45-2)를 획득하기 위해 제 2 주파수 서브밴드 신호(15-2)에 어떤 선택적인 처리를 실행하고, 제 2 선택적으로 처리된 신호(45-2)를 이에 상응하는 가산 유닛(34-2)에 공급하도록 구성될 수 있다. 따라서, 제 1 및 제 2 선택적인 어떤 처리 장치(44-1, 44-2)는 적어도 두 개의 다른 주파수 서브밴드 신호들(17)의 제 1 및 제 2 주파수 서브밴드 신호들(15-1, 15-2)에 대한 필터 뱅크(12)와 가산 유닛들(34-1, 34-2) 사이에 평행한 (직접음)(direct sound) 경로들에 기본적으로 각각 삽입될 수 있다. 예를 들어, 바이노럴 처리(binaural processing)에 있어서, 제 1 및 제 2 선택적인 어떤 처리 장치들(44-1, 44-2)은 제 1 및 제 2 선택적으로 처리된 신호들(45-1, 45-2)을 획득하기 위해 적어도 두 개의 다른 주파수 서브밴드 신호들(17)의 제 1 및 제 2 주파수 서브밴드 신호(15-1, 15-2)에 머리 전달 함수들(head related transfer functions)(HRTFs)을 적용하도록 구성될 수 있다.
여기서, 제 1 가산 유닛(34-1)은 제 1 가산된 신호(35-1)를 획득하기 위해 어떤 처리 장치(32-1)의 제 1 처리된 신호(33-1) 및 선택적인 어떤 처리 장치(44-1)의 제 1 선택적으로 처리된 신호(45-1)를 가산하도록 구성될 수 있고, 제 2 가산 유닛(34-2)은 제 2 가산된 신호(35-2)를 획득하기 위해 어떤 처리 장치(32-2)의 제 2 처리된 신호(33-2) 및 선택적인 어떤 처리 장치(44-2)의 제 2 선택적으로 처리된 신호(45-2)를 가산하도록 구성될 수 있다. 여기서, 제 1 및 제 2 가산된 신호들(35-1, 35-2)은 적어도 두 개의 믹스된 신호들(37)을 구성할 수 있다.
또한, 도 1a에는 출력 프로세서(30)가 반향된 오디오 신호(41)를 획득하기 위해 믹스된 신호들(37)을 결합하기 위한 결합기(38)를 또한 포함하는 것을 도시하고 있다. 출력 프로세서(30)의 결합기(38)는 적어도 두 개의 추가적인 어떤 처리 장치들(36-1, 36-2) 및 합산 장치(39)를 포함할 수 있다. 제 1 추가적인 어떤 처리 장치(36-1)는 제 1 추가적인 처리된 신호(37-1)를 획득하기 위해 적어도 두 개의 믹스된 신호들(37)의 제 1 믹스된 신호(35-1)를 더 처리하도록 구성될 수 있고, 제 2 추가적인 어떤 처리 장치(36-2)는 제 2 추가적인 처리된 신호(37-2)를 획득하기 위해 적어도 두 개의 믹스된 신호들(37)의 제 2 믹스된 신호(35-2)를 더 처리하도록 구성될 수 있다. 제 1 및 제 2 어떤 처리 장치들(32-1, 32-2)과 유사하게, 제 1 및 제 2 추가적인 어떤 처리 장치들(36-1, 36-2)은 믹스된 신호들(37)에 미리 결정된 곱셈 또는 이득율들을 적용함으로써 추가적인 어떤 처리 동작들을 실행할 수 있다. 출력 프로세서(30) 내의 결합기(38)의 합산 장치(39)는 반향기(10)의 출력에서 반향된 오디오 신호(41)를 획득하기 위해 제 1 및 제 2 추가적인 처리된 신호들(37-1, 37-2)을 합산 또는 결합하도록 그 뒤에 구성될 수 있다. 반향기(10)로 실행되는 것과 같은 처리에 의해, 결합되거나 큰 대역폭을 갖는 결합되어 반향된 주파수 서브밴드 신호들을 나타내는 반향된 오디오 신호가 얻어질 수 있다. 기본적으로, 도 1a의 실시예는 QMF 도메인에서처럼 서브밴드 도메인 내의 오디오 신호를 반향하기 위한 반향기를 나타낸다.
도 1b는 본 발명의 실시예에 따른 적어도 두 개의 다른 주파수 서브밴드 신호들에 대한 다른 루프 지연들의 예시적인 설계(50)를 도시한다. 도 1a 및 도 1b를 참조하면, 반향기(10)는 낮은 주파수 밴드를 나타내는 적어도 두 개의 주파수 서브밴드 신호들(53)의 제 2 주파수 서브밴드 신호(51-2)에 대한 루프 지연(56-2)이 높은 주파수 밴드를 나타내는 적어도 두 개의 주파수 서브밴드 신호들(53)의 제 1 주파수 서브밴드 신호(51-1)에 대한 루프 지연(56-1)보다 크도록 구성될 수 있는 피드백 지연 루프 프로세서(54)를 포함할 수 있다. 특히, 피드백 지연 루프 프로세서(54)는 적어도 두 개의 루프 지연 유닛들(57)을 포함할 수 있고, 여기서, 제 1 루프 지연 유닛은 제 1 반향된 주파수 서브밴드 신호(55-1)를 획득하기 위해 제 1 루프 지연(56-1)에 의해 높은 주파수 밴드를 나타내는 제 1 주파수 서브밴드 신호(51-1)를 지연하도록 구성될 수 있고, 제 2 루프 지연 유닛은 제 2 반향된 주파수 서브밴드 신호(55-2)를 획득하기 위해 제 2 큰 루프 지연(56-2)에 의해 낮은 주파수 밴드를 나타내는 제 2 주파수 서브밴드 신호(51-2)를 지연하도록 구성될 수 있다. 제 1 및 제 2 반향된 주파수 서브밴드 신호들(55-1, 55-2)은 반향된 주파수 서브밴드 신호들(57)을 구성할 수 있다. 여기서, 도 1b의 피드백 지연 루프 프로세서(54), 주파수 서브밴드 신호들(53) 및 반향된 주파수 서브밴드 신호들(57)은 도 1A의 피드백 지연 루프 프로세서(20), 적어도 두 개의 다른 주파수 서브밴드 신호들(17) 및 반향된 주파수 서브밴드 신호들(27)에 각각 상응할 수 있다. 도 1b의 설계에 있어서, 반향기(10)는 반향된 오디오 신호(61)를 획득하기 위해 반향된 주파수 서브밴드 신호들(57)을 처리하도록 구성될 수 있는 출력 프로세서(60)를 포함할 수 있다. 여기서, 도 1b에 도시된 출력 프로세서(60)는 도 1a에 도시된 출력 프로세서(30)에 상응할 수 있지만, 출력 프로세서(60)에 의해 출력된 반향된 오디오 신호(61)는 도 1a의 출력 프로세서(30)에 의해 출력된 반향된 오디오 신호(41)에 상응할 수 있다. 따라서, 도 1b에 따른 다른 루프 지연들의 설계에 의해, 증가하는 주파수 밴드들을 나타내는 적어도 두 개의 주파수 서브밴드 신호들의 연속된 주파수 서브밴드 신호들의 루프 지연들은 평균적으로 감소시킬 수 있으므로, 반향의 개선된 지각의 품질을 얻을 수 있다.
실시예들에 있어서, 연속적인 주파수 서브밴드 신호들에 대한 루프 지연들은, 예를 들어, 선형으로 감소시킬 수 있거나 랜덤하게 설정될 수 있다. 적어도 두 개의 다른 주파수 서브밴드 신호들에 대한 다른 루프 지연들을 설정함으로써, 반향의 반복 효과는 효과적으로 피할 수 있거나 적어도 감소될 수 있다.
도 1c는 각각의 주파수 서브밴드 신호를 처리하기 위한 싱글 서브밴드 반향 유닛(100)의 실시예의 블록 다이어그램을 도시한다. 싱글 서브밴드 반향 유닛(100)은 지연 라인(110), 피드백 루프(120) 및 결합기(130)를 포함한다. 도 1c에 도시된 것처럼, 지연 라인(110)은 다른 지연들을 나타내는 복수의 지연 라인 출력들 또는 지연 라인 탭들(115)을 가진다. 지연 라인(110)은 지연량(N)을 제공하도록 구성된다. 여기서, z-N으로 표시된 지연 라인(110)은 각각의 주파수 서브밴드 신호(101)에 대한 지연 라인 입력(105)을 가진다. 피드백 루프(120)는 지연 라인(110)에 연결되며, 각각의 주파수 서브밴드 신호(101) 또는 지연된 버전을 처리하고, 처리된 신호 또는 각각의 주파수 서브밴드 신호(101) 또는 각각의 주파수 서브밴드 신호의 지연된 버전을 지연 라인 입력(105)에 제공하도록 구성된다. 지연 라인(110)과 함께 피드백 루프(120)는 피드백 루프(120) 내에서 순환하는 신호의 각각의 왕복(roundtrip)을 위한 신호에 각각의 지연량(N)을 도입하는 피드백 지연 루프를 기본적으로 나타낸다. 결합기(130)는 반향된 주파수 서브밴드 신호(135)를 획득하기 위해 복수의 지연 라인 출력들 또는 지연 라인 탭들(115)에 의해 출력된 신호들을 결합하도록 구성된다. 특히, 결합기(130)는 복수의 지연 라인 출력들(115)에 의해 출력되는 신호들을 함께 가산하거나, 상기 신호들에 이득 및/또는 감쇠율들을 먼저 곱한 후에 신호들을 가산하거나, 또는, 복수의 지연 라인 출력들(115)에 의해 출력된 선택된 신호들을 선형으로 결합하는데 사용될 수 있다. 도 1c의 실시예의 싱글 서브밴드 반향 유닛(100)은 지연량(N)보다 큰 반향 시간에 대응하는 반향을 갖는 반향된 주파수 서브밴드 신호(135)를 생성하도록 허용한다.
도 1d는 도 1c에 따른 싱글 서브밴드 반향 유닛(100)의 실시예의 임펄스 응답(150)의 도식적인 그림을 도시한다. 도 1d에 도시된 것처럼, 임펄스 응답(150)은 지연량(N)만큼 분리된 균등하게 이격된 펄스들의 시퀀스(P0, P1, P2, P3, ...)를 포함한다. 균등하게 이격된 펄스들(P0, P1, P2, P3, ...)은 지연량(N)에 상응하는 반복 간격(160)을 정의한다. 더욱이, 복수의 지연 라인 출력들(115)에 의해 출력된 지연된 펄스(155)는 균등하게 이격된 펄스들(P0, P1, P2, P3, ...)의 반복 간격(160) 내에서 분배된다. 도 1d에서 알 수 있듯이, 싱글 서브밴드 반향 유닛(100)의 임펄스 응답(150)의 균등하게 이격된 펄스들(P0, P1, P2, P3, ...)은 동일한 진폭을 각각 가진다. 도 1c 및 도 1d를 참조하면, 반향된 주파수 서브밴드 신호(135)의 반향은 지연량(N)보다 큰 시간 구간(165)에 상응할 수 있다.
도 2a는 피드백 루프 내에서 감쇠기(210)를 갖는 싱글 서브밴드 반향 유닛(200)의 추가적인 실시예의 블록 다이어그램을 도시한다. 도 2a의 디바이스(200)는 도 1c의 장치(100)와 동일한 블록들을 기본적으로 포함한다. 그러므로 유사한 구현들 및/또는 기능들을 갖는 동일한 블록들은 동일한 참조 번호로 표시된다. 그러나 도 2a의 실시예에서 싱글 서브밴드 반향 유닛(200)의 피드백 루프(220)는 지연된 신호(205)를 감쇠하기 위한 감쇠기(210)를 포함한다. 여기서, 지연된 신호(205)는 감쇠된 신호(215) 또는 주파수 서브밴드 신호(101)를 지연 라인 입력(105)에 각각 공급하기 위해 지연량(N)을 제공하는 지연 라인(110)으로부터 수신된다. 도 2a에 도시된 것처럼, 감쇠기(210)는 감쇠율(b)을 지연된 신호(205)에 적용하도록 구성되며, 여기서, 감쇠율(b)은 제공된 지연량(N) 및 반향 시간(T60)에 의존한다. 피드백 루프(220) 내에서 감쇠기(210)에 의해 감쇠의 결과로서, 피드백 루프(220)의 임펄스 응답은 균등하게 이격된 감쇠 펄스들(P0, P1, P2, P3, ...)의 시퀀스에 의해 특징 되며, 여기서, 균등하게 이격된 감쇠 펄스들(P0, P1, P2, P3, ...)의 반복 간격(160)은 지연량(N)에 의해 다시 정의된다.
도 2b는 도 2a에 따른 싱글 서브밴드 반향 유닛(200)의 실시예의 임펄스 응답(250)의 도식적인 그림을 도시한다. 도 2a의 실시예를 참조하면, 반향된 주파수 서브밴드 신호(135)의 반향은 균등하게 이격된 감쇠 펄스들(P0, P1, P2, P3, ...)의 시퀀스를 포함하는 임펄스 응답(250)에 상응하며, 여기서, 복수의 지연 라인 출력들(115)에 의해 출력된 지연된 펄스들(255)은 균등하게 이격된 감쇠 펄스들(P0, P1, P2, P3, ...)의 반복 간격(160) 내에서 분배된다.
도 3은 지수적으로 감쇄하는 노이즈 필터를 갖는 싱글 서브밴드 반향 유닛(300)의 추가적인 실시예의 블록 다이어그램을 도시한다. 도 3의 실시예의 싱글 서브밴드 반향 유닛(300)은 도 2a의 실시예의 싱글 서브밴드 반향 유닛(200)에 기본적으로 상응한다. 도 3에 도시된 것처럼, 도 1c 및 도 2a의 지연 라인(110)에 상응할 수 있는 지연 라인(310)은 지연 라인 입력(105)에 공급되는 감쇠된 신호(215) 또는 주파수 서브밴드 신호(101)를 연속으로 각각 지연하기 위한 복수의 직렬 연결된 지연 라인 유닛들
Figure 112012040550595-pct00001
을 포함한다. 여기서, 지연 라인(310)의 각각의 지연 라인 유닛(312)은 연속으로 지연된 신호에 대한 각각의 지연 라인 출력(314)을 가진다. 싱글 서브밴드 반향 유닛(100; 200)의 결합기(130)에 상응할 수 있는 싱글 서브밴드 반향 유닛(300)의 결합기(330)는 상응하는 지연 라인 출력에 각각 연결된 복수의 곱셈기들(350)을 포함한다. 특히, 복수의 곱셈기들(350)은 곱셈기 출력 신호들(355)을 얻기 위해 필터 응답 함수 h(n), n=l, 2, ..., N, 의 상응하는 필터 계수를 갖는 복수의 지연 라인 출력들(115)에 의해 출력된 각각 연속으로 지연된 신호를 곱셈하도록 구성된다.
실시예들에 있어서, 각각의 지연 라인 유닛(각각의 기본 지연 슬롯)은
Figure 112012040550595-pct00002
로 표시될 수 있으며, 여기서, Di (i = 1 , 2, . .. , N)는 각각의 지연 라인 유닛에 의해 도입된 부분적인 지연량이다. 특히, Dl , D2, ... ,DN
Figure 112012040550595-pct00003
과 동일한
Figure 112012040550595-pct00004
가 될 수 있거나, 다른 값들을 가질 수 있다. 이러한 일반화는 명시적으로 표시되지 않은 다른 특징들을 또한 나타낸다. 여기서, 부분적인 지연량(Di)은 하나의 샘플(타임 슬롯)에 의한 지연에 상응할 수 있으며, 이에 의해, 복수의 지연 라인 출력들에 의해 출력된 지연된 펄스들은 서로 밀접하게 인접하여 이격될 수 있다. 특히, 지연 라인은 복수의 직렬 연결된 지연 라인 유닛들
Figure 112012040550595-pct00005
을 구성하는 지연 라인에 의해 제공된 지연량(N)에 상응하는 다수의 각각의 지연 라인 유닛들을 포함할 수 있다. 추가적인 실시예들에 따라, 지연 라인에 의해 제공된 지연량(N)은 부분적인 지연량(Di)이 하나 이상의 샘플에 의한 지연에 상응하여 증가될 때 또한 획득될 수도 있으며, 동시에, 다수의 각각의 지연 라인 유닛들은 감소된다. 이 경우, 복수의 지연 라인 출력들에 의해 출력된 지연된 펄스들은 낮은 해상도(coarser resolution)에 상응하는 서로 더 이격될 것이다.
도 3에 도시된 것처럼, 결합기(330)는 반향된 주파수 서브밴드 신호(135)를 획득하기 위해 곱셈기 출력 신호들(355)을 함께 가산하기 위한 가산기(360)를 포함할 수 있다. 도 3에 도시된 실시예에 따라, 결합기(330)는 필터 응답 함수 h(n)가 감쇠 진폭 특성들을 갖도록 설정될 수 있으며, 여기서, 필터 응답 함수 h(n)의 길이(N)는 지연량(N)과 동일하다. 더욱이, 도 3의 실시예에 있어서, 싱글 서브밴드 반향 유닛(300)의 피드백 루프(120)는 지연 라인(310)의 마지막 지연 라인 유닛 출력(315)으로부터, 처리 방향으로, 도 2a의 지연된 신호(205)에 상응할 수 있는 지연된 신호를 수신하도록 구성된다. 여기서, 처리 방향은 피드백 루프(120) 및 지연 라인(310) 내에서 화살표들의 지시 방향으로 표시된다.
도 4는 도 3에 따른 싱글 서브밴드 반향 유닛(300)의 실시예에 의해 이용된 지수적으로 감쇄하는 노이즈를 나타내는 예시적인 필터 응답 함수(400)의 그래프를 도시한다. 특히, 싱글 서브밴드 반향 유닛(300)의 결합기(330)는 hDNF(n)=
Figure 112012040550595-pct00006
, n=l, 2, ... ,N에 기초하여 필터 응답 함수(400)를 제공하도록 구성될 수 있고, 여기서, noise(n)는 노이즈 함수이고, 필터 응답 함수 hDNF(n)의 감쇠 진폭 특성은 지수적으로 감쇄하는 엔빌로프 (an)에 기초한다. 예시적인 필터 응답 함수 hDNF(n) (400)의 노이즈 함수 noise(n) 및 엔빌로프(an)는 도 4에서 명확하게 볼 수 있다. 더욱이, 필터 응답 함수 hDNF(n)(400)는 0과 N 사이의 범위에 바람직하게 도시되는데, 여기서, 이러한 범위는 도 3에 도시된 것과 같은 지연 라인(310)에 의해 제공된 지연량(N)과 대략 동일하게 될 수 있는 필터 응답 함수 hDNF(n)의 길이(405)에 상응한다. 구체적으로, 싱글 서브밴드 반향 유닛(300)의 결합기(330)는 엔빌로프(an)가 타임 슬롯당 감쇠에 의존하도록 설정될 수 있고, 여기서, 타임 슬롯당 감쇠는 반향 시간에 상응하는 미리 정의된 파라미터(T60)에 기초한다. 이러한 조치에 의해, 필터 응답 함수 hDNF(n)는 상응하는 지수적으로 감쇄하는 에너지 곡선을 나타내도록 조정될 수 있다.
도 3에 도시된 싱글 서브밴드 반향 유닛(300)은 피드백 루프(120) 내에 배치되는 도 2A에 도시된 감쇠기(210)에 상응할 수 있는 감쇠기(340)를 포함할 수도 있다. 싱글 서브밴드 반향 유닛(300)의 감쇠기(340)는 피드백 루프(120) 내의 신호의 각각의 왕복을 위한 지연된 신호에 감쇠율을 적용함으로써 마지막 지연 라인 유닛 출력(315)으로부터 수신된 지연된 신호를 감쇠하기 위해 사용될 수 있다. 특히, 싱글 서브밴드 반향 유닛(300)의 감쇠기(340)는 b=aN과 동일하게 되는 감쇠율을 지연된 신호에 적용하도록 구성되는데, 여기서, a는 타임 슬롯당 감쇠이고, N은 지연량이다. 여기서, 피드백 루프(120)의 각각의 왕복에 대한 감쇠는 감쇠율(b=aN)로 마지막 지연 라인 출력(315)으로부터 지연된 신호를 곱셈하여 실행된다.
도 5는 도 3에 따른 싱글 서브밴드 반향 유닛(300)의 실시예의 예시적인 임펄스 응답(500)의 그래프를 도시한다. 도 5에 도시된 것처럼, 싱글 서브밴드 반향 유닛(300)의 임펄스 응답(500)은 엔빌로프 함수(an)로 지수적으로 감쇄하는 노이즈(510)에 의해 특징지어지는데, 여기서, 타임 슬롯당 감쇠는 미리 정의된 파라미터(T60)에 따라 설정될 수 있다.
구체적으로, 피드백 루프의 감쇠율(예를 들어, 피드백 루프 내의 감쇠기에 의해 적용될 감쇠율(b))은 다음 수식으로 특정 주파수 밴드 내의 반향 시간으로부터 계산될 수 있고,
Figure 112012040550595-pct00007
여기서, b는 피드백 루프에서 발생하는 감쇠율이며,
Figure 112012040550595-pct00008
이고, 여기서, a는 타임 슬롯당 감쇠이고, N은 특정 주파수 밴드에서 지연 라인 길이(예를 들어, 지연 라인에 의해 제공되는 지연량)이고, P는 주파수 변환의 다운샘플링 팩터(downsampling factor)이며, T60은 반향 시간이고, fs는 샘플 레이트(sample rate)이다. 이 수식은 주어진 반향 시간(T60)에 상응하는 감쇠율을 기본적으로 제공한다.
밴드-방식(bandwise) 지수적으로 감쇄하는 가우스 노이즈(Gaussian noise)는 일반적으로 실수 확산 반향의 양호한 근사치로 고려된다. 이는 정확히 타임 슬롯당 팩터에 의해 감쇠하는 엔빌로프에 의해 가우스 노이즈를 변경함으로써 반향 필터로서 생성된 것이다. 그러므로 반향 유한 임펄스 응답(reverb FIR) 필터는 다음 함수,
Figure 112012040550595-pct00009
에 의해 설계되거나, 예를 들어, 다음 함수에 의해 복소 도메인에서 각각 설계될 수 있으며,
Figure 112012040550595-pct00010
이고, 여기서, white(n)은 화이트 노이즈(white noise)를 생성하는 과정이고, n은 타임 슬롯 인덱스이며, rand (n)는 0에서 1까지의 동일한 분배로부터 랜덤 변수들을 생성하는 과정이다. 특히, 도 3 실시예에서 이용되는 도 4에 도시된 필터 응답 함수 hDNF(n)는 상기 과정으로 생성될 수 있다. 도 4는 그와 같은 반향 필터의 실수 부분(real part)을 그 변경 엔빌로프와 함께 바람직하게 도시한다.
도 6은 스파스(sparse) 지연 라인 출력들을 갖는 싱글 서브밴드 반향 유닛(600)의 추가적인 실시예의 블록 다이어그램을 도시한다. 도 6의 싱글 서브밴드 반향 유닛(600)은 도 2a의 싱글 서브밴드 반향 유닛(200)과 동일한 블록을 기본적으로 포함한다. 그러므로 유사한 구현들 및/또는 기능들을 갖는 동일한 블록들은 동일한 참조 번호로 표시된다. 그러나, 싱글 서브밴드 반향 유닛(200)의 지연 라인(110)에 상응할 수 있는 싱글 서브밴드 반향 유닛(600)의 지연 라인(610)은 지연 라인 입력(105)에 제공되는 감쇠된 신호(215) 또는 주파수 서브밴드 신호(101)를 연속으로 지연하기 위한 복수의 직렬 연결된 지연 라인 유닛들(z-D)을 포함한다. 도 6의 실시예에 있어서, 지연 라인(610)은 도 2A의 복수의 지연 라인 출력들(115)에 상응할 수 있는 적어도 3개의 지연 라인 출력들(615)을 포함하는데, 여기서, 지연 라인 출력들(615)은 제 1 지연 라인 출력(617-1)과 제 2 지연 라인 출력(617-2) 사이의 지연이 제 2 지연 라인 출력(617-2)과 제 3 지연 라인 출력(617-3) 사이의 지연과 다르게 되도록 구성될 수 있다. 싱글 서브밴드 반향 유닛(600)의 피드백 루프(120)는 지연 라인(610)의 마지막 지연 라인 유닛 출력(613)으로부터, 처리 방향으로 지연된 신호를 수신하도록 구성된다.
더욱이, 싱글 서브밴드 반향 유닛(600)의 피드백 루프(120)는 지연된 신호를 감쇠하기 위한 감쇠기(640)를 포함하고, 여기서, 지연된 신호는 감쇠된 신호(215) 또는 오디오 신호(101)를 지연 라인 입력(105)에 각각 공급하기 위한 지연량(N)을 제공하는 지연 라인(610)의 마지막 지연 라인 출력(613)으로부터 수신된다. 특히, 감쇠기(640)는 지연된 신호에 b=aN과 같게 되는 감쇠율을 적용하도록 구성될 수 있고, 여기서, a는 타임 슬롯당 감쇠이고, N은 지연량이다. 또한, 복수의 지연 라인 출력들(615)은 연속적인 지연 쌍들 사이의 차이가 평균적으로 증가되도록 특별히 구성될 수 있다. 여기서, 도 1c의 결합기(130)에 상응할 수 있는 결합기(630)는 반향된 주파수 서브밴드 신호(135)를 획득하기 위해 적어도 3개의 지연 라인 출력들(615)을 결합하도록 구성된다.
도 6의 실시예에 있어서, 각각의 별개의 지연 라인 유닛(612)은 연속으로 지연된 신호에 부분적인 지연량(D)을 도입하도록 구성될 수 있다. 여기서, 별개의 지연 라인 유닛들의 수와 연속으로 지연된 신호에 도입되는 부분적인 지연량(D)은 이전에 상응하여 기재된 것과 같이 설정될 수 있다.
도 6의 실시예에 따라, 적어도 3개의 지연 라인 출력들(615)에 의해 출력된 지연된 펄스들은 피드백 루프(120)의 응답으로 정의된 반복 간격 내의 감쇄하는 밀도 특성들을 갖고 불균일하게 분배될 것이다. 스파스 지연 라인 출력들을 갖는 싱글 서브밴드 반향 유닛(600)의 임펄스 응답은 스파스 필터 응답 함수에 기본적으로 상응한다.
도 7은 도 6에 따른 싱글 서브밴드 반향 유닛(600)의 실시예에 이용된 감쇄하는 밀도를 갖는 단위 임펄스들(705)을 나타내는 예시적인 필터 응답 함수(700)의 그래프를 도시한다. 도 7에서 알 수 있듯이, 예시적인 단위 임펄스들(705)은 타임/샘플 축(701)의 원점(702)에 가까운 영역(710) 내에 보다 조밀하게 분배되면서, 예시적인 단위 임펄스들(705)은 프레임의 경계(703)까지 많은 타임들/샘플들(720)에 대해 점점 더욱 드문드문 분포되며, 여기서, 프레임은 0과 N사이의 타임들/샘플들로 정의되고, 타임/샘플(N)은 지연 라인(610)에 의해 제공된 지연량(N)에 상응한다.
예를 들어, 필터 응답 함수 hSF(n)(700)는 hSF(n)=sparse(n), n=l, 2, ... ,N에 기초할 수 있으며, 여기서, 도 6에 도시된 것처럼 복수의 지연 라인 출력들(615)은 연속된 타임 슬롯들에 대해 감소하는 밀도로 단위 임펄스들(750)을 드문드문 분배하는 스파스 함수 "sparse(n)"에 기초하여 구성될 수 있다. 필터 응답 함수 hSF(n)(700)는 지수적으로 감쇄하는 에너지 곡선(715)을 나타내도록 특별히 설정될 수 있다. 기본적으로, 도 7은 FIR 필터의 스파스 탭 위치들을 표시한다. 곡선(715)은 모형화된 평균 에너지 감쇄(ESF)를 나타낸다. 여기서, 도면은 위상 변조들을 포함하지 않는다.
도 8은 도 6에 따른 싱글 서브밴드 반향 유닛(600)의 실시예의 예시적인 임펄스 응답(800)의 그래프를 도시한다. 도 8에 있어서, 싱글 서브밴드 반향 유닛(600)의 복수의 지연 라인 출력들(615)에 의해 출력된 신호들(즉, 지연된 펄스들)은 명확하게 볼 수 있다. 지연 라인 입력(105)의 연속적인 공급을 위해, 지연된 펄스들은 타임/샘플 0과 N 사이의 제 1 반복 간격(810), 타임/샘플 N과 2N 사이의 제 2 반복 간격(820) 및 타임/샘플 2N과 3N 사이의 제 3 반복 간격(830) 내에서 드문드문 또는 비균일적으로 분배된다. 여기서, 반복 간격들(810, 820, 830)은 도 1d 및 도 2b에 도시된 반복 간격(160)에 상응할 수 있다. 도 1d 및 도 2b에 도시된 시간 구간(165)에 상응할 수 있는 도 8에 도시된 임펄스 응답(800)의 전체 간격(865)은 지연량(N)의 대략 3배에 상응한다. 특히, 싱글 서브밴드 반향 유닛(600)의 임펄스 응답(800)은 반복 간격들(810, 820, 830) 내에서 연속적인 타임 슬롯들에 대한 감쇄하는 밀도를 각각 갖는 연속으로 지연된 스파스 펄스들을 포함하며, 여기서, 감쇄하는 밀도는 도 7에 도시된 것처럼 단위 임펄스들의 특성 분포에 상응한다.
또한, 도 8에서 볼 수 있는 것처럼, 제 1, 제 2 및 제 3 반복 간격(810, 820, 830) 내에서 각각 연속으로 지연된 스파스 펄스들(815, 825, 835)의 진폭/레벨들은 서로 다르며, 특히, 서로에 대해서 감쇠된다. 여기서, 감쇠는 싱글 서브밴드 반향 유닛(600)의 감쇠기(640)에 의해 적용될 수 있는 각각의 감쇠율(b=aN)로 제어될 수 있다. 도 6의 실시예에 있어서, 감쇠율(b=aN)은, 예를 들어 연속으로 지연된 스파스 펄스들(815, 825, 835)의 진폭/레벨들이 제 1에서 제 2 내지 제 3 반복 간격(810, 820, 830)으로부터 각각 크게 강하하도록 제어될 수 있다.
도 6 및 도 8을 참조하면, 연속으로 지연된 스파스 펄스들(815, 825 835)의 진폭/레벨들에 대한 감쇠하는 밀도들 및 감쇄는 지연 라인(610) 및 감쇠기(640)로 특별히 제어될 수 있으므로, 싱글 서브밴드 반향 유닛(600) (도 8)의 임펄스 응답(800)과 싱글 서브밴드 반향 유닛(300)(도 5)의 임펄스 응답(500)은 동일한 에너지 감쇄 레이트를 기본적으로 갖게 된다. 특히, 싱글 서브밴드 반향 유닛(600)은 싱글 서브밴드 반향 유닛(300)에 비해 훨씬 적은 계산 노력으로 실현될 수 있다.
이는 싱글 서브밴드 반향 유닛(300)에 의해 제공된 반향 알고리즘이 개념적으로 상대적으로 간단해도 계산 비용 면에서 고가의 비용이 들기 때문이다. 그러므로 싱글 서브밴드 반향 유닛(600) 내에서 제공되는 것과 같은 계산적으로 효율적인 FIR구조가 유리하다. 도 6의 실시예는 사람의 청력이 감쇄하는 확산 반향(decaying diffuse reverb)의 미세 구조에 둔감하지만, 에너지 감쇄 레이트에 민감하다는 논거에 특히 기초한다. 이러한 이유로, 동일한 평균 전체 에너지 감쇄를 생성하기 위해 도 7의 임펄스 응답(700)과 같은 감쇄하는 밀도를 갖는 단위 임펄스들로 도 4의 임펄스 응답(400)의 감쇄하는 진폭(an)을 대체할 수 있다.
싱글 서브밴드 반향 유닛(300)과 싱글 서브밴드 반향 유닛(600)으로 각각 획득되는 싱글 주파수 밴드의 전체 응답들(500; 800)의 가시적인 차이는 도 5 및 도 8에서 명확하게 알 수 있다. 특히, 도 5 및 도 8에 있어서, 싱글 서브밴드 반향 유닛들(300; 600)로 실행되는 하나의 주파수 밴드에서 반향 알고리즘의 응답의 절대값들이 도시되어 있고, 여기서, 짧으면서 장기적인 평균 에너지 감쇠는 두 응답들이 동일하다. 여기서, 위상 변조들은 도면들에 포함되지 않는다. 비록 효과가 도 8에서 더 볼 수 있지만, 두 응답들(500; 800)은 N 샘플들의 간격들에서 반복한다.
도 9는 스파스 지연 라인 출력들을 갖는 싱글 서브밴드 반향 유닛(900) 및 비적 위상 동작들의 추가적인 실시예의 블록 다이어그램을 도시한다. 도 9의 싱글 서브밴드 반향 유닛(900)은 도 6의 싱글 서브밴드 반향 유닛(600)과 동일한 블록들을 기본적으로 포함한다. 그러므로 유사한 구현들 및/또는 기능들을 갖는 동일한 블록들은 동일한 참조 번호로 표시된다. 그러나 싱글 서브밴드 반향 유닛(600)의 결합기(630)에 상응할 수 있는 싱글 서브밴드 반향 유닛(900)의 결합기(930)는 ‘θ’-블록들에 의해 표시되는 복수의 위상 변경 유닛들(950)을 포함한다. 여기서, 각각의 위상 변경 유닛(‘θ’-블록)은 도 6에 된 것처럼 싱글 서브밴드 반향 유닛(600)의 적어도 3개의 지연 라인 출력들(615)에 상응할 수 있는 복수의 지연 라인 출력들(탭들)(915)의 각각의 지연 라인 출력(탭)에 연결된다. 도 9의 실시예에 있어서, 복수의 위상 변경 유닛들(950)은 특히 지연 라인 탭 출력 신호들의 위상들을 변경하도록 구성되며, 여기서, 제 1 지연 라인 탭 출력(917-1)에 대한 위상 변경은 제 2 지연 라인 탭 출력(917-2)에 대한 위상 변경과 다르게 될 수 있다. 복수의 지연 라인 탭 출력들(915)에 다른 위상 변경들을 적용함으로써, 전체 위상 변화는 결합기(930)의 출력에서 반향된 주파수 서브밴드 신호(135)에 도입될 것이다.
그러므로 비록 감쇄하는 밀도로 단위 임펄스들을 발생하기 위한 곱셈기들 없이 스파스 지연 라인 출력들만으로 합리적인 결과를 미리 생성하지만, 반향 알고리즘의 품질은 응답에 위상 변화를 가산함으로써 많이 증가될 수 있다. 특히, 가산된 위상 변화의 결과로서 싱글 서브밴드 반향 유닛(900)으로 얻어진 임펄스 응답은 싱글 서브밴드 반향 유닛(600)으로 얻어진 임펄스 응답과 비교할 때 기본적으로 높은 품질로 특징지어질 것이다. 그러나 임의의 위상 변경들을 적용하는 것은 싱글 서브밴드 반향 유닛(300)의 반향 알고리즘과 비교할 때 싱글 서브밴드 반향 유닛(600)에 의해 제공되는 반향 알고리즘으로 획득된 미리 성취된 계산 이익을 제거하거나 적어도 감소시킬 것이다. 이는, 그러나, 위상 변경들을 k가 정수(k = 0, 1, 2, 3...)인 k · π/2로 제한함으로써 효과적으로 피할 수 있다. 그래서, θ-블록에 의해 실행되는 위상 동작은 도 10의 테이블에 도시된 것과 같은 출력의 실수 부분 및 허수 부분에 입력 신호의 실수 부분 및 허수 부분의 간단한 공급으로 줄일 수 있다.
도 10은 도 9에 따른 싱글 서브밴드 반향 유닛(900)의 실시예에 이용된 예시적인 비적 위상 동작들의 테이블(1000)을 도시한다. 특히, 테이블(1000)의 제 1 칼럼(1010)은 k ·2π의 주기성을 각각 갖는 k=0(1012), k=1(1014), k=2(1016) 및 k=3(1018)인 각각에 대한 k ·π/2 비적 위상 동작들을 나타낸다. 더욱이, 테이블(1000)의 제 2 및 제 3 칼럼(1020, 1030)은 상응하는 비적 위상 동작들(라인들(1012, 1014, 1016, 1018))에 대한 입력 신호의 실수 부분('실수 입력’) 및 허수 부분(‘허수 입력')에 직접 관련된 출력의 실수 부분('실수 부분 출력’) 및 허수 부분('허수 부분 출력’)을 나타낸다.
도 11a 내지 도 11d는 도 9에 도시된 싱글 서브밴드 반향 유닛(900)에 의해 이용된 복수의 위상 변경 유닛들(950)의 하나의 위상 변경 유닛에 상응할 수 있는 위상 변경 유닛(1110; 1120; 1130; 1140)의 다른 실시예들의 블록 다이어그램들을 도시한다. 특히, 복수의 위상 변경 유닛들(950)은 지연 라인 탭 출력 신호들에서 동작되도록 구성될 수 있으며, 여기서, 복수의 위상 변경 유닛들(950)의 각각의 위상 변경 유닛(1110; 1120; 1130; 1140)은 각각의 지연 라인 탭 출력 신호의 실수 부분에 대한 제 1 위상 변경 유닛 입력(1112-1; 1122-1; 1132-1; 1142-1) 또는 각각의 지연 라인 탭 출력 신호의 허수 부분에 대한 제 2 위상 변경 유닛 입력(1112-2; 1122-2; 1132-2; 1142-2)과, 위상 변경된 출력 신호의 실수 부분에 대한 제 1 위상 변경 유닛 출력(1114-1; 1124-1; 1134-1; 1144-1) 또는 위상 변경된 출력 신호의 허수 부분에 대한 제 2 위상 변경 유닛 출력(1114-2; 1124-2; 1134-2; 1144-2)을 포함할 수 있다.
도 11a에 있어서, 제 1 위상 변경 유닛 입력(1112-1)은 제 1 위상 변경 유닛 출력(1114-1)에 직접 연결되고, 제 2 위상 변경 유닛 입력(1112-2)은 제 2 위상 변경 유닛 출력(1114-2)에 직접 연결된다.
도 11b에 있어서, 제 2 위상 변경 유닛 입력(1122-2)은 제 1 위상 변경 유닛 출력(1124-1)에 직접 연결되고, 제 1 위상 변경 입력(1122-1)은 제 2 위상 변경 유닛 출력(1124-2)에 연결되는 상관된 부호 인버터(1125)에 연결된다. 따라서, 도 11b의 실시예에 따라, 위상 변경된 출력 신호의 실수 부분은 각각의 지연 라인 탭 출력 신호의 허수 부분에 기초할 것이며, 위상 변경된 출력 신호의 허수 부분은 각각의 지연 라인 탭 출력 신호의 부호-인버트된 실수 부분에 기초할 것이다.
도 11c에 있어서, 제 1 위상 변경 유닛 입력(1132-1)은 제 1 위상 변경 유닛 출력(1134-1)에 연결되는 상관된 부호 인버터(1135-1)에 연결되고, 제 2 위상 변경 유닛 입력(1132-2)은 제 2 위상 변경 유닛 출력(1134-2)에 연결되는 상관된 부호 인버터(1135-2)에 연결된다. 따라서, 도 11c의 실시예에 따라, 위상 변경된 출력 신호의 실수 부분은 각각의 지연 라인 탭 출력 신호의 부호-인버트된 실수 부분에 기초할 것이며, 위상 변경된 출력 신호의 허수 부분은 각각의 지연 라인 탭 출력 신호의 부호-인버트된 허수 부분에 기초할 것이다.
도 11d에 있어서, 제 1 위상 변경 유닛 입력(1142-1)은 제 2 위상 변경 유닛 출력(1144-2)에 직접 연결되고, 제 2 위상 변경 유닛 입력(1142-2)은 제 1 위상 변경 유닛 출력(1144-1)에 연결되는 상관된 부호 인버터(1145)에 연결된다. 따라서, 도 11d의 실시예에 따라, 위상 변경된 출력 신호의 허수 부분은 각각의 지연 라인 탭 출력 신호의 실수 부분에 기초할 것이며, 위상 변경된 출력 신호의 실수 부분은 각각의 지연 라인 탭 출력 신호의 부호-인버트된 허수 부분에 기초할 것이다.
다른 위상 변경 유닛들(1110; 1120; 1130; 1140)에 의해 실행되는 가능한 위상 동작들(위상 변경들)은 비적(multiplication-free)으로서 지칭될 수 있으며, 그 이유는 출력(즉, 위상 변경된 출력 신호)이 신호에 대한 (복소) 위상 곱셈기의 적용을 필요로 하지 않고 상술한 것처럼 입력 신호(즉, 지연 라인 출력 신호)로부터 직접 파생될 수 있기 때문이다. 따라서, 위상 변경 유닛들(1110; 1120; 1130; 1140)은 계산적으로 효율적인 위상 변경 유닛들을 나타낸다.
도 12는 직렬로 접속된 지연 라인 유닛들(z-D), 중간 곱셈기들(1260), 지연 라인 (탭) 입력들(1209) 및 지연 라인 (탭) 출력들(1211)을 갖는 싱글 서브밴드 반향 유닛(1200)의 추가적인 실시예의 블록 다이어그램을 도시한다. 도 12에 도시된 것처럼, 싱글 서브밴드 반향 유닛(1200)의 지연 라인(1210)은 다른 지연 라인 입력들에 각각 공급되는 주파수 서브밴드 신호(1201)에 의해 표시되는 감쇠된 신호 또는 오디오 신호를 연속으로 지연하기 위한 복수의 직렬 연결된 지연 라인 유닛들(z-D)을 포함하며, 여기서, 지연 라인(1210)의 각각의 지연 라인 유닛은 연속적으로 지연된 신호에 대한 각각의 지연 라인 출력을 가진다. 더욱이, 싱글 서브밴드 반향 유닛(1200)은 제 1 지연 라인 유닛(1205)의 지연 라인 출력(1207) 및 제 2 연속된 지연 라인 유닛(1215)의 상응하는 지연 라인 입력(1213)과 각각 연결된 복수의 중간 곱셈기들(1260)을 포함한다. 특히, 도 12에 도시된 지연 라인(1210)의 복수의 직렬 접속된 지연 라인 유닛들(z-D)은 도 9에 도시된 지연 라인(610)의 복수의 직렬 접속된 지연 라인 유닛들(z-D)에 상응할 수 있다.
도 12의 실시예에 있어서, 특히, 복수의 중간 곱셈기들(1260)은 중간 곱셈기 출력 신호들을 획득하기 위해 중간 감쇠율들로 복수의 직렬로 연결된 지연 라인 유닛들(z-D)로부터 출력된 연속으로 지연된 신호들을 곱셈하고, 도 1c의 결합기(130)에 상응할 수 있는 결합기(1230)와 지연 라인(1210) 내에서 연속된 지연 라인 유닛들의 대응하는 지연 라인 입력들에 중간 곱셈기 출력 신호들을 공급하도록 조정된다. 여기서, 중간 곱셈기들(1260)은 예를 들어, 실수 곱셈기들로서 구성될 수 있다. 도 1c의 피드백 루프(120)에 상응할 수 있는 피드백 루프(1220)는 복수의 중간 곱셈기들(1260)의 마지막 중간 곱셈기 출력(1265)으로부터 지연된 신호를 수신하도록 구성될 수 있으며, 여기서, 마지막 중간 곱셈기 출력(1265)으로부터 지연된 신호는 다수의 중간 곱셈기들(1260)에 기초한 유효한 감쇠율 및 별개로 적용된 중간 감쇠율들에 상응하는 감쇠를 갖게 된다. 특히, 복수의 중간 곱셈기들(1260)은 도 9에 도시된 싱글 서브밴드 반향 유닛(900)에서처럼 피드백 루프(120)에 의해 적용된 감쇠율(b=aN)에 상응하는 유효한 감쇠율을 제공하도록 구성될 수 있다. 또한, 싱글 서브밴드 반향 유닛(1200)은 도 9에 도시된 위상 변경 유닛들(950)에 상응할 수 있는 복수의 위상 변경 유닛들(1250)을 포함할 수 있다.
도 12의 실시예를 참조하면, 복수의 직렬 연결된 지연 라인 유닛들(z-D)의 각각의 지연 라인 유닛에 의해 도입된 부분적인 지연량(D)은 하나의 샘플 또는 타임 슬롯에 의해 특정 지연에 상응할 수 있다. 도 12의 실시예에 있어서, 지연 라인 출력들(1211)에 상응하는 복수의 지연 라인 출력 탭들은 완전히 채워지지 않을 수 있다. 이는 복수의 직렬 연결된 지연 유닛들의 일부 출력 탭들만이 결합기(1230)에 연결될 수 있음을 의미한다. 또한, 복수의 중간 곱셈기들(1260)도 완전히 채워지지 않을 수도 있다.
도 12의 실시예에 따라, 복수의 직렬로 연결된 직렬로 연결된 지연 라인 유닛들 (z-D)의 적어도 두 개의 지연 라인 유닛들(1215, 1218)은 주파수 서브밴드 신호(1201)에 의해 나란히 나타나는 오디오 신호를 수신하기 위한 상응하는 지연 라인 입력들(1213, 1217)을 가질 수 있다. 여기서, 도 12에 도시된 주파수 서브밴드 신호(1201)는 도 1c에 도시된 주파수 서브밴드 신호(101)에 상응할 수 있다.
도 12의 실시예에 있어서, 오디오 신호는 예를 들어, 'L' (좌), 'R' (우) 및 'C (중앙)으로 표시되는 몇몇 입력 오디오 채널들(Ch1, Ch2, Ch3, ... )로 구성될 수 있다. 더욱이, 몇몇 입력 오디오 채널들의 각각의 입력 오디오 채널은 복수의 다른 주파수 서브밴드 신호들(1203)의 주파수 서브밴드 신호(1201)를 포함한다.
도 12에 도시된 것처럼, 몇몇 입력 오디오 채널들(Ch1, Ch2, Ch3, ...(예를 들어, L, R, C))은 복수의 직렬로 연결된 지연 라인 유닛들 (z-D)의 상응하는 지연 라인 입력들에 공급되기 이전에 미리 연결된 위상 변경 유닛들에 의해 다르게 처리될 수 있다. 여기서, 복수의 미리 연결된 위상 변경 유닛들(1240)은 다른 입력 오디오 채널들(Ch1, Ch2, Ch3, ...)에서와 다른 비적 위상 동작들을 적용하도록 구성될 수 있다.
따라서, 실시예들에 있어서, 싱글 서브밴드 반향 유닛(1200)은 다른 미리 처리된 신호들을 다르게 획득하기 위해 몇몇 입력 오디오 채널들(L, R, C)의 각각의 주파수 서브밴드 신호를 미리 처리하도록 구성될 수 있다. 특히, 몇몇 입력 오디오 채널들(L, C, R)의 각각의 주파수 서브밴드 신호는 복수의 직렬로 연결된 지연 라인 유닛들(z-D)의 상응하는 지연 라인 입력들에 미리 처리된 신호들을 제공하기 이전에 몇몇 입력 오디오 채널들(L, C, R)에 다른 위상 변경들을 적용하기 위한 다른 위상 변경 유닛들(1240)을 사용하여 미리 처리될 수 있다.
구체적으로, 도 12에서 볼 수 있듯이, 싱글 서브밴드 반향 유닛(1200)은 복수의 직렬로 연결된 지연 라인 유닛들 (z-D)의 상응하는 지연 라인 입력에 각각 연결된 복수의 연결된 위상 변경 유닛들(θ-블록들)(1240)을 더 포함할 수 있으며, 이에 의해, 위상 변경들은 다른 지연 라인 입력들에 병렬로 주입될 수 있는 주파수 서브밴드 신호(1201)에 적용될 것이다. 여기서, 위상 변경 유닛들(1240, 1250)은 도 11에서 설명한 것처럼 고성능 위상 변경 유닛들에 상응할 수 있다는 것을 주목한다.
추가적인 실시예에 따라, 오디오 신호의 몇몇 채널들(L, R, C)에 미리 처리된 신호들은 상응하는 지연 라인 입력들(1213, 1217)에 동일한 것을 주입하기 이전에 가산될 수 있다. 이와 같은 가산 동작은 L, C, R-채널들에서 동작되는 ‘+’ 부호들(1242)에 의해 도 12에 예시적으로 표시되어 있다.
추가적인 실시예들에 따라, 지연 라인(1210)은 오디오 신호(1201)를 수신하기 위한 지연 라인 입력들(129)의 수와 지연 라인 출력들(1211)의 수의 합이 지연 라인(1210)의 각각의 기본 지연 슬롯들의 수보다 적게 되도록 구성될 수 있다.
도 12에 도시된 결합기(1230)의 출력에서, 복수의 다른 반향된 주파수 서브밴드 신호들의 반향된 주파수 서브밴드 신호(1235)는 획득될 수 있으며, 여기서, 반향된 주파수 서브밴드 신호(1235)는 이전의 실시예들의 반향된 주파수 서브밴드 신호(135)에 상응할 수 있다.
즉, 오디오 신호의 오디오 채널들(L, R, C)은 예시적인 싱글 서브밴드 반향 유닛(1200)이 작동되는 복수의 다른 주파수 서브밴드 신호들로 스펙트럼으로 분해될 수 있다. 따라서, 도 12는 기본적으로 지연 라인 입력들(입력 탭들), 지연 라인 출력들(출력 탭들) 및 중간 감쇠율들을 갖는 주파수-대역 싱글 서브밴드 반향 유닛의 특정 구조에 관한 것이다. 여기서, 위상 변경 유닛들은 또한 제로 곱셈기들이 될 수 있다.
실시예들에 있어서, 주파수-대역 싱글 서브밴드 반향 유닛으로 실현되는 주파수 도메인 반향 알고리즘은 여러 채널로부터 지연 라인의 임의의 포인트로 입력 신호들의 임의의 주입에 기초할 수 있다. 또한, 지연 라인의 픽업들(pickups)로부터 여러 출력 채널들을 생성하도록 또한 이용될 수 있다. 추가적인 실시예에 따라, 반향 구조 내의 고성능 위상 변경 유닛들 및 실수 곱셈기들은 시변 또는 불변 복소 곱셈기들로 대체될 수 있다. 더욱이, 지연 라인 유닛들, 중간 곱셈기들 (이득들), 픽업 지점들(points), 및 엔트리 지점들의 순서는 상호 교환될 수 있다. 특히, 채널-특정 인젝션 벡터들(channel-specific injection vectors)이 직교 되도록 구성될 때, 싱글 서브밴드 반향 유닛은 입력 신호들의 간섭(coherent) 및 비-간섭(incoherent) 부분들을 동일하게 처리하도록 인에이블 될 것이다. 출력 가중 벡터들(output weighting vectors)이 직교 되도록 구성될 때, 비-간섭 출력 채널들이 생성될 수 있다. 여기서, 출력 가중 벡터들은 상응하는 지연 라인 유닛 이후에 각각 배치되는 복수의 중간 곱셈기들에 의해 출력된 감쇠(가중)된 신호들에 상응할 수 있다. 인젝션 벡터들이 출력 가중 벡터에 직교 되도록 구성된 경우에, 임펄스 응답 반복들의 시작에서 에너지 피크들이 방지될 수 있다.
추가적인 실시예에 따라, 하나의 루프 내의 에너지 감쇄(in-one-loop energy decay)는 지연 라인 유닛들 사이의 이득들을 조정 및/또는 출력 픽업들의 밀도를 감소하여 제어될 수 있다. 그러나 적용된 방법과 관계없이, 목표는 주어진 반향 시간에 따라 에너지 감쇠율(energy decay rate)를 얻는 것이다.
즉, 반향 구조는 위상 변경과 함께 지연 라인에 입력 신호를 부가할 수 있는 가능성을 활용할 수 있다. 여기서, 입력 신호를 지연 라인에 병렬로 부가하는 것이 도움이 될 수 있으며, 그 이유는 시스템의 임펄스 응답이 지연 라인 입력들(입력 탭들)의 수에 대응하는 팩터에 의해 조밀(denses)하기 때문이다. 이는 특히 지연 라인 출력들(출력 탭들)의 감소를 허용하고, 적은 메모리 과잉 및 첨가로 동등한 임펄스 응답 밀도를 갖도록 허용한다. 최적으로, 각각의 주파수 밴드에서 지연 길이는 출력 탭들의 수에 입력 탭들의 수를 곱한 것과 동일한 범위에 있게 되도록 조정될 수 있다. 추가적인 실시예들에 따라, 입력 및 출력 탭 위치들은 균일한 분배를 이용하여 랜덤하게 분배될 수 있다. 또한, 전체 지연 길이와 입력 및 출력 탭 위치들 모두는 각각의 주파수 밴드에서 다르게 될 수 있다. 다른 접근 방법은 반향 시간에 따라 에너지 감쇄를 제공하기 위해 지연 라인 유닛들 사이에서 실수 곱셈기들을 이용하는 것이다.
도 12의 실시예에서는 많은 연산 오버헤드를 갖기 때문에, 특정 및 유효한 반향 구조들의 수로 감소될 수 있다. 이들 중 하나는, 예를 들어, 도 9의 실시예에서 설명한 스파스 필터 구조이다.
상기 다른 실시예들(도 1c; 도 2a; 도 3; 도 6; 도 9; 도 12)은 적어도 두 개의 다른 주파수 서브밴드 신호들의 싱글 또는 별개의 주파수 서브밴드 신호에 작동되는 싱글 서브밴드 반향 유닛들에 관한 것이며, 다음에는, 적어도 두 개의 다른 주파수 서브밴드 신호들을 달리 처리하도록 구성되는 반향기들의 다른 실시예들에 대해 설명한다.
도 13은 주파수 도메인에서 동작하는 반향기(1300)의 실시예의 개념적 구조를 도시한다. 특히, 도 13의 반향기(1300)는 주파수 밴드들에서 반향 알고리즘을 실행하는데 사용될 수 있다. 특히, 도 13에 도시된 반향기(1300)는 도 1a에 도시된 반향기(10)에 상응할 수 있다. 여기서, 도 13의 반향기(1300)는 상술한 복수의 싱글 서브밴드 반향 유닛들을 포함할 수 있다는 것을 주목해야 하며, 여기서, 복수의 싱글 서브밴드 반향 유닛들의 각각의 싱글 서브밴드 반향 유닛은 복수의 주파수 서브밴드 신호들의 각각의 주파수 서브밴드 신호에 작동될 수 있으며, 복수의 싱글 서브밴드 반향 유닛들은 복수의 반향된 주파수 서브밴드 신호들(1335)을 획득하기 위해 주파수 서브밴드 신호들을 달리 처리하도록 구성될 수 있다.
도 13의 실시예를 참조하면, 반향기(1300)는 도 1a에 도시된 피드백 지연 루프 프로세서(20)에 상응할 수 있는 피드백 지연 루프 프로세서(1320)를 포함한다. 선택적으로, 도 13에 도시된 반향기(1300)는 도 1a에 도시된 반향기(10)의 필터 뱅크(12)에 상응할 수 있는 제 1 스펙트럼 컨버터(1310)와, 도 1a에 도시된 반향기(10)의 출력 프로세서(30)에 상응할 수 있는 제 2 스펙트럼 컨버터(1340)를 또한 포함할 수 있다. 여기서, 제 1 및 제 2 스펙트럼 컨버터들(1310, 1340)은 "시간-주파수 변환(선택적)" 및 "역 시간-주파수 변환(선택적)"으로 각각 나타낸다. 제 1 스펙트럼 컨버터(1310)는 복수의 다른 주파수 서브밴드 신호들(1315)을 갖는 스펙트럼 표현으로 오디오 신호(1301)를 변환하도록 구성될 수 있다. 여기서, 도 13의 실시예에서 오디오 신호(1301) 및 복수의 다른 주파수 서브밴드 신호들(1315)은 도 1A의 실시예에서 오디오 신호(5) 및 적어도 두 개의 다른 주파수 서브밴드 신호들(17)에 상응할 수 있다. 도 13에 도시된 것처럼, 피드백 지연 루프 프로세서(1320)는, 복수의 다른 주파수 서브밴드 신호들(1315)의 각각의 주파수 서브밴드 신호(1317)에 대한 복수의 지연 라인 탭들을 갖는 확산 필터(1330) 및 피드백 루프(1350)를 포함할 수 있다. 도 13에서 볼 수 있듯이, 피드백 루프(1350)는 피드백 신호(1353)를 획득하기 위해 주파수 서브밴드 신호에 대한 루프 지연을 결정하는 지연 요소(1352)를 포함한다. 특히, 피드백 루프(1350)는 주파수 서브밴드 신호(1317) 및 피드백 신호(1353)를 가산하기 위한 가산기(1354)를 포함할 수 있다. 도 13에서 볼 수 있듯이, 가산기(1354)는 확산 필터(1330)에 연결된다. 도 13의 실시예에 특정된 피드백 루프들의 지연 요소들은 적어도 두 개의 다른 주파수 서브밴드 신호들(1315 신호들)에 대해 다르게 될 수 있다.
추가적인 실시예들에 따라, 반향기(1300)의 피드백 지연 루프 프로세서(1320)는 적어도 두 개의 주파수 서브밴드 신호들의 각각의 주파수 서브밴드 신호(1317)에 대한 피드백 루프(1350)를 포함할 수 있으며, 여기서, 주파수 서브밴드 신호(1317)에 대한 피드백 루프(1350)는 지연 요소(1352) 및 추가적으로 감쇠기(1356)를 포함할 수 있다. 여기서, 지연 요소들 및 감쇠기들은 적어도 두 개의 다른 주파수 서브밴드 신호들에 대해 다르게 될 수 있다.
반향기(1300)의 제 2 스펙트럼 컨버터(1340)는 결합된 대역폭을 갖는 반향된 오디오 신호(1341)를 획득하기 위해 복수의 반향된 주파수 서브밴드 신호들(1335)을 결합하는데 선택적으로 사용될 수 있다. 도 13의 반향기(1300)로 획득한 반향된 오디오 신호(1341)는 도 1a의 반향기(10)의 반향된 오디오 신호(41)에 상응될 수 있다.
즉, 반향기(1300)의 싱글 서브밴드 반향 유닛 또는 주파수 도메인 반향 구조는 시간-주파수 변환 및 역 시간-주파수 변환을 각각 실행하기 위한 2개의 (선택적) 스펙트럼 컨버터들(1310, 1340) 내에 포함된 (단시간) 확산 필터(1330) 및 (감쇄하는) 임펄스 트레인 발생기(피드백 루프(1350))를 포함할 수 있다. 변환 동작(블록들(1310, 1340))은 선택적이며, 본 응용에서 오디오 신호가 주파수 변환 도메인에서 이미 있을 수 있기 때문에 단지 예시 목적으로 도시되어 있다. 변환 도메인에 있어서, 처리가 선형이기 때문에, 처리 블록들의 순서는 서로 교환될 수 있다. 포함된 모든 팩터들은 다른 주파수 밴드들에서 다르게 될 수 있다. 여기서, 다른 주파수 밴드들은 시간-주파수 변환 컨버터(1310)의 출력 및 역 시간-주파수 변환 컨버터(1340)의 입력 각각에서 점선들로 도시되어 있다.
상술한 것처럼, 반향 구조(반향기(1300))는 복수의 다른 1-입력-1출력 반향 유닛들을 포함하며, 이에 의해 많은 입력들 및 출력들 또는 다른 주파수 서브밴드 신호들에 대해 작동한다. 개념상, 많은 출력들을 생성하는 것은 상호 비-간섭성(incoherent)인 많은 확산 필터들을 포함하여 성취될 수 있다. 도 13에 있어서, 감쇄하는 임펄스 트레인 발생기(1350)(피드백 루프)는 특정 밴드에서 반향의 반복 간격을 정의하는 무한 지수적으로 감쇄하는 스파스 동일 간격 응답을 생성하도록 구성될 수 있다. FIR (유한 임펄스 응답) 또는 IIR (무한 임펄스 응답) 필터 구조가 될 수 있는 확산 필터(1330)는 응답에 대한 단시간 확산 특성을 생성하도록 또한 사용될 수 있다. 이러한 구조는 확산 필터(1330)로 하여금 단시간으로 허용하여 계산이 효율적으로 이루어진다. 피드백 루프는 전체 응답을 무한히 감쇠시킬 수 있으며, 확산 필터는 동일한 팩터에 따라 단시간 엔빌로프를 바람직하게 감쇠시킬 수 있다.
확산 필터의 지연 라인 길이에 대한 특별한 제약은 없다. 실시예들에 있어서, 설계 목표는 반복하는 구조의 부정적인 인식 효과를 최소화하면서 확산 필터의 최소 메모리 사용 및 계산 비용을 허용하도록 가능한 짧은 지연 라인의 길이를 형성하는 것이다.
확산 필터는 많은 방식으로 설계될 수 있다. 예를 들어, 화이트 노이즈(도 3의 설계 방법)를 감쇄시킴으로써 단시간 확산 필터의 형태로 “이상적인 반향” 확산 필터로서, 또는 비적 위상 동작들(도 9의 설계 방법)로 감쇄하는 밀도 및 단일 이득들을 갖는 스파스 필터에 의해 고성능 확산 필터로서 설계될 수 있다. 여기서, 도 9의 확산 필터 설계 방법은 중요한 계산을 절약하면서 도 3의 방법과 일상적인 청취 지각적으로 동일하다. 따라서, 도 9의 방법은 도 3 보다 선호될 수 있다. 특히, 도 6, 도 9 및 도 12의 실시예들에서처럼 스파스 필터-기반 구현은 반향 알고리즘의 보다 실질적인 구현을 나타낸다.
실시예들에 이어서, 반향 구조는 피드백 지연 루프 및 확산 필터 (예를 들어, FIR 스파스 필터)에 의해 공유되는 공통 지연 라인을 기본적으로 사용한다. 또한, 다른 형태들의 확산 필터들은 유사하게 만들어질 수 있다.
도 3, 도 6, 도 9, 및 도 12의 실시예들을 참조하면, 복수의 직렬로 연결된 지연 라인 유닛들을 포함하는 지연 라인은 적어도 15, 바람직하게 적어도 20, 그리고, 200 보다 적게, 바람직하게 100개의 별개의 지연 라인 유닛들(지연 라인 슬롯들)보다 적게 구성될 수 있다.
추가적인 실시예들에 따라, 도 13에 도시된 확산 필터(1330) 또는 도 1c에 도시된 지연 라인(110)은 전형적으로 복소 값을 갖는 (complex-valued) 디바이스들이다.
도 14는 스펙트럼 컨버터, 몇몇 다른 싱글 서브밴드 반향 유닛들을 포함하는 피드백 지연 루프 프로세서 및 출력 프로세서를 이용하여 오디오 신호를 반향하기 위한 반향기(1400)의 실시예의 블록 다이어그램을 도시한다. 도 14에 도시되 것처럼, 반향기(1400)는 스펙트럼 컨버터(1410), 피드백 지연 루프 프로세서(1420) 및 출력 프로세서(1430)를 포함한다. 여기서, 도 14에 도시된 반향기(1400)의 스펙트럼 컨버터(1410), 피드백 지연 루프 프로세서(1420) 및 출력 프로세서(1430)는 도 1a에 도시된 반향기(10)의 필터 뱅크(12), 피드백 지연 루프 프로세서(20) 및 출력 프로세서(30)에 상응할 수 있다. 스펙트럼 컨버터(1410)는 도 1a의 오디오 신호(5)에 상응할 수 있는 오디오 신호(1401)를 도 1a의 적어도 두 개의 다른 주파수 서브밴드 신호들(17)에 상응할 수 있는 복수의 다른 주파수 서브밴드 신호들(1415)로 변환하도록 구성될 수 있다. 도 14의 실시예에 있어서, 피드백 지연 루프 프로세서(1420)는 반향된 주파수 서브밴드 신호들(1425)을 획득하기 위해 다른 주파수 서브밴드 신호들(1415)을 처리하도록 구성되는 복수의 싱글 서브밴드 반향 유닛들(1421)을 포함할 수 있다. 특히, 피드백 지연 루프 프로세서(1420)의 제 1 싱글 서브밴드 반향 유닛(1422)은, 제 1 반향된 주파수 서브밴드 신호(1427-1)를 획득하기 위해, 복수의 다른 주파수 서브밴드 신호들(1415)의 제 1 주파수 서브밴드 신호(1417-1)에 대한 제 1 전체 지연량((N1)을 제공하도록 구성될 수 있으며, 피드백 지연 루프 프로세서(1420)의 제 2 싱글 서브밴드 반향 유닛(1424)은, 제 2 반향된 주파수 서브밴드 신호(1427-2)를 획득하기 위해, 복수의 다른 주파수 서브밴드 신호들(1415)의 제 2 주파수 서브밴드 신호(1417-2)에 대한 제 2 다른 전체 지연량(N2)을 제공하도록 구성될 수 있다. 출력 프로세서(1430)는 상술한 것처럼, 반향된 오디오 신호(1435)를 획득하기 위해 반향된 주파수 서브밴드 신호들(1425)을 처리하도록 구성될 수 있다. 여기서, 출력 프로세서(1430)의 출력에서 획득한 반향된 주파수 서브밴드 신호들(1425) 및 반향된 오디오 신호(1435)는 도 1a에 도시된 출력 프로세서(30)의 출력에서 반향된 주파수 서브밴드 신호들(27) 및 반향된 오디오 신호(41)에 각각 상응할 수 있다.
스펙트럼 컨버터(1410)는 예를 들어, QMF 분석 필터 뱅크로서 또는, 단시간 푸리에 변환(STFT)을 실행하도록 구성될 수 있으며, 출력 프로세서(1430)는 예를 들어, QMF 합성 필터 뱅크로서 또는, 단시간 역-푸리에 변환(ISTFT)을 실행하도록 구성될 수 있다.
실시예들에 있어서, 주파수-도메인 신호 표현은 실수 또는 복소 도메인 내에 있을 수 있다. 따라서, 반향기 내에서 실행되는 모든 동작들(예를 들어, 지연, 합산 또는 곱셈)은 실수 또는 복소 동작들이 될 수 있다.
추가적인 실시예들에 따라, 스펙트럼 컨버터(1410) 또는 필터 뱅크(12)는 또한 실수(real-valued) 디바이스로서 구현될 수도 있다. 실수 필터 뱅크와 같은 가능한 응용들은 예를 들어, 오디오 코딩에서 변경된 이산 코사인 변환들(MDCT) 또는 MPEG 서라운드(Surround)에서 저전력 모드들이 될 수 있으며, 여기서, QMF 밴드들의 하위 부분은 복소가 될 수 있으며, 상위 밴드들은 단지 실수(real-valued)가 될 수 있다. 이러한 경우들에 있어서, 서브밴드들의 적어도 부분이 단지 실수가 되고, 상기와 같이 반향을 적용하기에 도움이 되는 환경이 있을 수 있다. 이들 경우에 있어서, 신호는 실수가 되고, 가능한 위상 변경들(예를 들어, 도 11a 내지 도 11d에 설명된 것과 같은 효과적인 위상 변경들)은 곱셈기들의 1 또는 -1로 실수 신호의 곱셈에 상응하는 단지 1 및 -1이 각각 된다.
복수의 주파수 서브밴드 신호들(1415)에 대한 다른 전체 지연량들((N1≠N2)을 사용함으로써, 임펄스 응답의 반복성은 다른 결과로 초래된 다른 주파수 서브밴드 신호들에 대한 반복 간격들로 인하여 상당히 감소될 수 있다.
도 1c 및 도 14의 실시예들을 참조하면, 피드백 지연 루프 프로세서(1420)는, 적어도 두 개의 주파수 서브밴드 신호들(1415)의 각각의 주파수 서브밴드 신호에 대한 다른 탭 지연들에 의해 지연된 신호들을 제공하는 복수의 지연 라인 탭들(115)을 갖는 지연 라인(110), 지연 라인(110)에 연결된 피드백 루프(120)와, 반향된 주파수 서브밴드 신호들(1425)을 획득하기 위해 복수의 지연 라인 탭들(115)에 의해 출력된 신호들을 결합하기 위한 결합기(130)를 포함할 수 있다. 특히, 지연 라인(110)은 가장 높은 탭 지연보다 더 높은 전체 지연량을 제공하도록 구성된다. 이 전체 지연량은 주파수 서브밴드 신호에 대한 루프 지연을 기본적으로 결정한다. 도 14에 도시된 것처럼, 피드백 지연 루프 프로세서(1420)의 제 1 및 제 2 신호 서브밴드 반향 유닛들(1422, 1424)에 의해 제공된 전체 지연량들(N1, N2)은 적어도 두 개의 다른 주파수 서브밴드 신호들(1415)에 대해서 다르다.
추가적인 실시예들에 따라, 반향기(10)의 피드백 지연 루프 프로세서(20)는 각각의 주파수 서브밴드 신호에 대한 도 8에 도시된 임펄스 응답(800)과 같은 필터 임펄스 응답을 갖는 필터를 포함할 수 있다. 상술한 것처럼, 필터 임펄스 응답(800)은 필터 임펄스 응답 샘플들의 제 1 블록(815) 및 필터 임펄스 응답 샘플들의 제 2 블록(825)을 포함한다. 여기서, 제 2 블록(825)은 임펄스 응답 샘플 간격에 관하여 제 1 블록(815)과 유사하며, 제2 블록(825)의 제1 임펄스 응답 샘플(821)은 주파수 서브밴드 신호에 대한 루프 지연에 의해 제1 블록(815)의 제1 임펄스 응답 샘플(811)로부터 지연될 것이다. 더욱이, 필터에 의해 제공된 주파수 서브밴드 신호에 대한 루프 지연은 제 2 블록(820)의 제 1 임펄스 응답 샘플(821) 및 제 1 블록(815)의 제 1 임펄스 응답 샘플(811)에 의해 정의된 지연량(N)에 기본적으로 상응한다.
이에 의해, 피드백 지연 루프 프로세서(20)의 출력에서, 적어도 두 개의 다른 주파수 서브밴드 신호들에 대한 필터 임펄스 응답 샘플들의 복수의 다른 제 1 및 제 2 블록들이 획득된다. 특히, 주파수 서브밴드 신호들에 대한 필터들의 필터 임펄스 응답들의 제 1 블록들 및 제 2 블록들은 적어도 두 개의 다른 주파수 서브밴드 신호들에 대한 다른 루프 지연들에 의해 지연될 것이다.
도 6 및 도 14의 실시예들을 참조하면, 복수의 지연 라인 탭들(615)(115)은 지연 라인 탭들의 제 1 부분(619-1) 및 지연 라인 탭들의 다음의 제 2 부분(619-2)을 포함할 수 있다. 실시예들에 있어서, 싱글 서브밴드 반향 유닛의 지연 라인(610)(110)은 제2 부분(619-2)의 탭들 간의 평균 갭 사이즈가 제1 부분(619-1)의 탭들 간의 평균 갭 사이즈보다 크도록 구성될 수 있다. 여기서, 평균 갭 사이즈는 지연 라인 탭들 각각의 제 1 또는 다음의 제 2 부분(619-1, 619-2)에서 복수의 지연 라인 탭들(615)(115)의 각각의 지연 라인 탭들 간의 연속된 지연들에 대한 평균에 상응한다.
도 1c, 도 13 및 도 14의 실시예들을 참조하면, 도 13에 도시된 반향기(1300)의 확산 필터(1330) 또는 피드백 루프(120) 및 결합기(130)에 연결된 지연 라인(110)은 특히 도 6에 예시적으로 도시된 스파스 필터(600)로서 구성될 수 있다. 상술한 것처럼, 스파스 필터(600)는 스파스 필터(600)의 필터 임펄스 응답(예를 들어, 도 7의 임펄스 응답)이 미리 결정된 에너지 엔빌로프(예를 들어, 도 7의 에너지 엔빌로프(715))를 근사치로 계산하는 것과 같은 방법으로 변경될 수 있는 필터 밀도를 가질 수 있다.
추가적인 실시예들에 따라, 스파스 필터는 복수의 위상 변경 유닛들(950)을 포함하는 도 9(스파스 필터(900))의 실시예에서처럼 구현될 수 있으며, 여기서, 복수의 위상 변경 유닛들(950)의 각각의 위상 변경 유닛은 복수의 지연 라인 탭들(915)의 각각의 지연 라인 탭에 직접 연결되고, 각각의 위상 변경 유닛은 각각의 지연 라인 탭에 의해 출력된 상응하는 신호에 비적 위상 동작을 적용하도록 구성된다. 실시예들에 있어서, 복수의 위상 변경 유닛들(950)의 각각의 위상 변경 유닛에 의해 제공되는 비적 위상 동작은, 예를 들어, 도 10의 테이블(1000)에 따라 실행될 수 있다. 여기서, 각각의 위상 변경 유닛은 도 11a 내지 도 11d에 도시된 것처럼 고성능 위상 변경 유닛으로 구성될 수 있다. 도 1c, 도 13 및 도 14를 참조하면, 확산 필터(1330) 또는 지연 라인(110)은 전형적으로 오디오 신호를 나타내는 복소 신호의 실수 및 허수 부분들을 별도로 처리하기 위한 복소 디바이스들이다. 따라서, 이들 복소 디바이스들을 이용하여, 도 11a 내지 도 11d에 도시된 고성능 위상 변경 유닛들(1110; 1120; 1130; 1140)이 실현될 수 있다.
도 1a 및 도 2a의 실시예들을 참조하면, 반향기(10)의 피드백 지연 루프 프로세서(20)는 감쇠율(b)에 의해 적어도 두 개의 주파수 서브밴드 신호들(17)의 각각의 주파수 서브밴드 신호를 감쇠하도록 구성될 수 있다. 상술한 것처럼, 감쇠율(b)은 본 발명의 실시예들에 따라 미리 결정된 반향 시간(T60) 및 주파수 서브밴드 신호에 대한 루프 지연에 의존할 수 있다. 이에 따라, 적어도 두 개의 다른 주파수 서브밴드 신호들(17)에 대한 다른 감쇠율들은 피드백 지연 루프 프로세서(20)에 의해 적용될 수 있다.
도 15는 직교 채널 특정 출력 벡터들을 갖는 반향기(1500)의 추가적인 실시예의 블록 다이어그램을 도시한다. 도 15의 실시예에 있어서, 반향기(1500)는 복수의 입력 오디오 채널들(Chin ,1, Chin ,2, ㆍㆍㆍ)의 제 1 및 제 2 채널(1501-1, 1501-2)(Chin ,1, Chin ,2)에 대한 적어도 두 개의 스펙트럼 컨버터들(1510-1, 1510-2)을 포함할 수 있으며, 여기서, 적어도 두 개의 스펙트럼 컨버터들(1510-1, 1510-2)은 제 1 및 제 2 복수의 다른 주파수 서브밴드 신호들(1515-1, 1515-2) 각각에 두 개의 채널들(1501-1, 1501-2)을 스펙트럼으로 분해하는 분석 필터 뱅크들(예를 들어, 도 1a의 필터 뱅크(12))로서 구성될 수 있다. 도 15에 도시된 것처럼, 피드백 지연 루프 프로세서(1520)(예를 들어, 도 1a의 피드백 지연 루프 프로세서(20))는 가산된 신호들(1555)을 획득하기 위해 제 1 및 제 2 복수의 주파수 서브밴드 신호들(1515-1, 1515-2)의 상응하는 주파수 서브밴드 신호들을 함께 가산하고, 가산된 신호들(1555)을 복수의 싱글 서브밴드 반향 유닛들(1521)의 상응하는 입력들에 공급하기 위해 사용될 수 있는 복수의 가산기들(1550)을 포함할 수 있다. 특히, 복수의 싱글 서브밴드 반향 유닛들(1521)의 하나의 싱글 서브밴드 반향 유닛은 제 1 출력 오디오 채널(Chout ,1)의 주파수 서브밴드 신호들(1525-1) 및 제 2 출력 오디오 채널(Chout ,2)의 주파수 서브밴드 신호들(1525-2) 각각에 대한 적어도 두 개의 다른 필터 탭 위치들(1522, 1524)을 제공하는 지연 라인(1526)을 포함하는 지연 라인 필터를 포함할 수 있다.
더욱이, 반향기(1500)는 출력 오디오 신호의 제 1 및 제 2 출력 채널(1535-1, 1535-2)(Chout ,1, Chout ,2)을 제공하기 위한 두 개의 출력 프로세서들(1530-1, 1530-2)을 포함할 수 있으며, 여기서, 두 개의 출력 프로세서들(1530-1, 1530-2)은 합성 필터 뱅크들(예를 들어, QMF 합성 필터 뱅크들)로서 구성될 수 있다. 특히, 제 1 출력 프로세서(1530-1)는 제 1 지연 라인 출력에 의해 출력된 제 1 복수의 신호들(1525-1) 또는 복수의 싱글 서브밴드 반향 유닛들(1521)의 필터 탭 위치(1522)를 합성하도록 설정될 수 있고, 제 2 출력 프로세서(1530-2)는 다른 제 2 지연 라인 출력에 의해 출력된 제 2 복수의 신호들(1525-2) 또는 복수의 싱글 서브밴드 반향 유닛들(1521)의 필터 탭 위치(1524)를 합성하도록 설정될 수 있다.
도 15의 실시예를 참조하면, 오디오 신호(5)는 복수의 다른 입력 오디오 채널들(Chin ,1, Chin ,2, ㆍㆍㆍ)을 가지며, 여기서, 각각의 입력 오디오 채널은 적어도 두 개의 다른 주파수 서브밴드 신호들(신호들: 1515-1, 1515-2)을 가진다. 구체적으로, 피드백 지연 루프 프로세서(1520)의 일부로서 지연 라인 필터의 지연 라인(1526)은 필터 탭 위치들 또는 이 필터 탭 위치들의 적어도 일부에 연결된 위상 변경 유닛들을 포함할 수 있다. 피드백 지연 루프 프로세서(1520)는 제 1 출력 오디오 채널(1535-1, Chout ,1)의 주파수 서브밴드 신호들(1525-1)에 대한 제 1 출력 구성과 제 2 출력 오디오 채널(1535-2, Chout ,2)의 주파수 서브밴드 신호들(1525-2)에 대한 제 2 출력 구성을 더 포함한다. 도 15의 실시예에 있어서, 피드백 지연 루프 프로세서(1520)는 제 1 및 제 2 출력 구성들이 다른 필터 탭 위치들 또는 위상 변경 유닛들에 연결들(1527)을 포함할 수 있도록 구성될 수 있다. 구체적으로, 도 15의 실시예에 있어서, 제 1 및 제 2 출력 구성들은 동일한 지연 라인(1526)에 연결될 수 있다.
기본적으로, 하나의 입력 주파수 서브밴드 신호로부터 발생되는 출력 오디오 채널들에 다르게 지연된 주파수 서브밴드 신호들을 제공하기 위한 동일한 지연 라인(1526)을 사용함으로써, 피드백 지연 루프 프로세서(1520) 내에서 요구되는 지연 라인들의 수는 두 개의 다른 지연 라인들이 하나의 입력 주파수 서브밴드 신호로부터 발생되는 다르게 지연된 주파수 서브밴드 신호들을 제공하기 위해 사용되는 경우에 비해 효과적으로 감소될 수 있다.
추가적인 실시예들에 따라, 피드백 지연 루프 프로세서는 제 1 입력 오디오 채널의 주파수 서브밴드 신호들에 대한 제 1 입력 구성과 제 2 입력 오디오 채널의 주파수 서브밴드 신호들에 대한 제 2 입력 구성을 또한 포함할 수 있다. 이러한 실시예들에 있어서, 피드백 지연 루프 프로세서는 제 1 및 제 2 입력 구성들이 다른 필터 탭 위치들 또는 위상 변경 유닛들에 연결들을 포함할 수 있도록 구성될 수 있다. 이에 의해, 제 1 및 제 2 입력 구성들은 동일한 지연 라인에 연결될 수 있다.
실시예들에 있어서, 입력(Chin ,1, Chin ,2, ㆍㆍㆍ) 및 출력 오디오 채널들 (Chout ,1, Chout ,2,ㆍㆍㆍ)의 수는 동일하거나 다를 수 있다.
기본적으로, 도 15의 실시예의 반향기(1500)는 오디오 신호의 두 개 이상의 채널들을 서브밴드-방식 처리에 기초한 주파수 도메인에서 동작되는 반향 알고리즘을 제공한다. 도 15에 도시된 것처럼, 채널 특정 출력 벡터들은, 예를 들어 서로 직교 되도록 구성될 수 있다. 여기서, 채널 특정 출력 벡터는 각각의 출력 프로세서에 의해 합성에 이용되는 특정 지연 라인 출력들(픽업 지점들 또는 필터 탭 위치들)에 의해 정의될 수 있다. 도 15의 실시예를 참조하면, 제 1 및 제 2채널에 다른 픽업 지점들 또는 필터 탭 위치들(1522, 1524)이 각각 이용될 수 있기 때문에, 채널 특정 출력 벡터들은 서로에 대하여 직교 된다.
일부 관점들이 장치의 맥락에서 설명되었지만, 블록 또는 장치가 방법 단계 또는 방법 단계의 특징에 상응하는 대응 방법의 설명을 나타냄은 명백하다. 유사하게, 방법 단계의 맥락에서 설명된 관점들은 또한 상응하는 블록 또는 항목 또는 상응하는 장치의 특징의 설명을 나타낸다. 방법 단계들의 일부 또는 전부는 예를 들어, 마이크로프로세서, 프로그램 가능한 컴퓨터 또는 전자 회로와 같은 하드웨어 장치에 의해 (또는 사용하여) 실행될 수 있다. 일부 실시예들에 있어서, 일부 하나 이상의 가장 중요한 방법 단계들은 그와 같은 장치에 의해 실행될 수 있다.
본 발명의 처리된 오디오 신호는 디지털 저장 매체에 저장될 수 있거나, 인터넷과 같은 무선 전송 매체 또는 유선 전송 매체와 같은 전송 매체에 전송될 수 있다.
어떤 구현 요구들에 따라, 본 발명의 실시예들은 하드웨어 또는 소프트웨어로 구현될 수 있다. 그러한 구현은, 전기적으로 판독 가능한 제어 신호가 저장되어, 각각의 방법을 실행하는 프로그램 가능한 컴퓨터 시스템과 협력하는 (또는 협력할 수 있는) 플로피 디스크, DVD, 블루-레이(Blu-Ray), CD, ROM, PROM, EPROM, EEPROM 또는 FLASH 메모리와 같은 디지털 저장 매체를 사용하여 실행될 수 있다. 따라서, 디지털 저장 매체는 컴퓨터 판독 가능하게 될 수 있다.
본 발명에 따른 일부 실시예들은 본 명세서에 기재된 방법들 중 하나가 실행되는 것과 같은 프로그램 가능한 컴퓨터 시스템과 협력할 수 있는 전기적으로 판독 가능한 제어 신호들을 갖는 데이터 캐리어를 포함한다.
일반적으로, 본 발명의 실시예들은 프로그램 코드를 포함하는 컴퓨터 프로그램으로서 구현될 수 있으며, 프로그램 코드는 컴퓨터 프로그램 제품이 컴퓨터상에서 실행될 때 방법들 중 하나를 실행하도록 작동된다. 이러한 프로그램 코드는 예를 들어 기계 판독 가능한 캐리어에 저장될 수 있다.
다른 실시예들은 본 명세서에 기재된 방법들 중 하나를 실행하며 기계 판독 가능한 캐리어에 저장된 컴퓨터 프로그램을 포함한다.
즉, 따라서, 본 발명의 방법의 실시예는 컴퓨터 프로그램이 컴퓨터상에서 실행될 때 본 명세서에 기재된 방법들 중 하나를 실행하기 위한 프로그램 코드를 갖는 컴퓨터 프로그램이다.
따라서, 본 발명의 방법들의 추가적인 실시예는 본 명세서에 기재된 방법들 중 하나를 실행하기 위한 컴퓨터 프로그램을 포함하는 데이터 캐리어(또는 디지털 저장 매체, 또는 컴퓨터 판독 가능한 매체)이다. 이러한 데이터 캐리어, 디지털 저장 매체 또는 기록된 매체는 전형적으로 유형(tangible) 및/또는 비-전이형(non- transitionary)이다.
따라서, 본 발명의 방법의 추가적인 실시예는 본 명세서에 기재된 방법들 중 하나를 실행하기 위한 컴퓨터 프로그램을 나타내는 신호들의 시퀀스 또는 데이터 스트림이다. 이러한 신호들의 시퀀스 또는 데이터 스트림은 예를 들어 인터넷을 통해 데이터 통신 연결을 통해 전송되도록 예로서 구성될 수 있다.
추가적인 실시예는 본 명세서에 기재된 방법들 중 하나를 실행하도록 구성 또는 적응된 컴퓨터 또는 프로그램 가능한 로직 디바이스와 같은 처리 수단을 포함한다.
추가적인 실시예는 본 명세서에 기재된 방법들 중 하나를 실행하기 위한 컴퓨터 프로그램들이 설치된 컴퓨터를 포함한다.
본 발명에 따른 추가적인 실시예는 본 명세서에 기재된 방법들 중 하나를 실행하기 위한 컴퓨터 프로그램을 수신기에 (예를 들어, 전기적 또는 광학적으로) 전송하도록 구성된 장치 또는 시스템을 포함한다. 수신기는 컴퓨터, 모바일 디바이스, 메모리 디바이스 등이 될 수 있다. 예를 들어, 장치 또는 시스템은 컴퓨터 프로그램을 수신기에 전송하기 위한 파일 서버를 포함할 수 있다.
일부 실시예들에 있어서, 프로그램 로직 디바이스(예를 들어, 필드 프로그램 가능한 게이트 어레이(a field programmable gate array)는 본 명세서에 기재된 방법들의 일부 또는 모든 기능들을 실행하는 데 사용될 수 있다. 일부 실시예들에 있어서, 필드 프로그램 가능한 게이트 어레이는 본 명세서 기재된 방법들 중 하나를 실행하기 위하여 마이크로프로세서와 협력할 수 있다. 일반적으로, 방법들은 어떤 하드웨어 장치에 의해 바람직하게 실행된다.
상술한 실시예들은 본 발명의 원리를 단지 예시한 것뿐이다. 본 명세서에 기재된 상세 및 장치들의 변경 및 수정안들이 본 기술 분야에 숙련된 사람들에게 명백하게 될 것임을 알 수 있다. 따라서, 이어지는 특허 청구 범위뿐만 아니라 본 명세서 내의 실시예들의 설명 및 기재에 의해 제공된 구체적인 상세도 제한하려는 의도가 아니다.
본 발명은 주파수 변환 도메인에서 작동될 수 있는 반향기에 대한 독창적인 계산상 효율적인 구조를 기본적으로 제공한다. 이점은 주파수 밴드들에서 반향 시간들에 대한 임의적인 제어와 현존하는 주파수 도메인 솔루션들에 비해 효율적인 구현을 포함한다.
본 발명의 실시예들은 주파수 변환 도메인에서 동작하며 각각의 서브밴드에서 개별 처리하는 알고리즘에 기초할 수 있다. 더욱이, 이러한 알고리즘의 임펄스 응답은 각각의 주파수 밴드에서 지수적으로 감쇄하면서 무한히 반복될 수 있다.
다음은, 본 발명의 실시예들의 주요 이점들을 설명한다. 본 발명의 해법은 실수 확산 반향에 대한 양호한 기준이 되는 것으로 고려되는 화이트 노이즈를 지수적으로 감쇄하는 무한 주파수 밴드-방식에 지각적으로 매우 가까운 반향을 생성한다. 더욱이, 제공된 시스템의 계산의 복잡성은 매우 적고, 또한 긴 반향 시간에 대한 경우도 적다. 특히, 모든 서브밴드들을 처리하기 위한 예의 구현은 시간 도메인 샘플당 단지 2.2 실수 곱셈들 및 10 내지 40 실수 가산들(파라미터(T60)에 의존)만이 필요하였다.
또한, 제공된 해법은 모든 주파수 밴드들에서 파라미터(T60)의 완벽한 자유로운 조정을 개별적으로 허용한다. 이는 룸 모형화 및 가상 음향에 특히 중요한데, 그 이유는 주파수 밴드들 내의 파라미터(T60)가 지각 공간들에서 청취하는 사람에 있어 중요한 특징이며, 사실상, 실내 음향 측정 및 시뮬레이션에서 공통적인 수단이기 때문이다. 마지막으로, 본 발명의 해법은 주파수 도메인 내에서 작동한다. 양호한 품질 주파수 도메인 반향 알고리즘에 대한 수요가 있는 많은 현대적인 오디오 처리 기술들이 있다.
다음은 본 발명의 실시예들의 일부 바람직한 용도의 경우들을 설명한다. 한 용도의 경우는 단시간 주파수 변환 도메인 내에서 기능을 하는 응용들에 실내 효과를 부가하는 것에 관련이 있다. 이와 같은 응용들의 예는 Breebaart, Herre, Jun, Kjorling, Koppens, Plogsties, Villemoes, 29번째 AES 콘퍼런스(2006년 9월) 및 MPEG Surround 표준 ISO/IEC FDIS 23003-1, "Multi-Channel Goes Mobile: MPEG Surround Binaural Rendering"에 기재된 MPEG Surround의 바이노럴 디코딩(binaural decoding)과, Breebaart, Engdegard, Falch, Hellmuth, Hilpert, Hoelzer, Koppens, Oomen, Resch, Schujiers, Trentiev, "Spatial Audio Object Coding (SAOC) - The Upcoming MPEG Standard on Parametric Object Based Audio Coding"에 기재된 SAOC이다. 이들 디코더들은 하이브리드QMF 도메인 내의 실내 효과를 가진다는 점에서 이점이 있다. 반향기들의 필요성은 헤드폰을 사용하는 청취자에 자연적인 청취 경험을 부여할 필요성에 의해 야기된다. 다른 용도의 경우는 업믹싱(upmixing)에 관련이 있다. 바이노럴 디코딩과 유사하게, 업믹싱 응용들은 또한 주파수 도메인 내에서 자주 작동하고, 또한, 반향기들을 사용할 수도 있다. 다른 용도의 경우는 실내 음향 설계에서 가청화(auralization)에 관련이 있다. 실내 음향 소프트웨어는 설계 단계에서 공간(예를 들어, 콘서트 홀)을 가청화하기 위해 T60을 자유롭게 제어하는 반향기를 필요로 한다. 다른 용도의 경우는 게임 오디오 및 VR에 관련이 있다. 가상 현실에 몰입하는 경험의 성공적인 생성은 파라미터(T60)의 어떤 주어진 세트를 정확하게 재현할 수 있는 능력에 의존할 수 있다. 마지막으로, 다른 용도의 경우는 오디오 효과에 관련이 있다. 제안된 기술은 시간 도메인 반향기들의 일부 한계를 극복할 수 있다. 주파수 변환 및 역 주파수 변환 동작의 도움으로, 제안된 기술은 사운드 설계의 효과로서 적용될 수 있다.
5: 오디오 신호 10: 반향기
27: 반향된 주파수 서브밴드 신호들 23: 다른 루프 지연들
17: 다른 주파수 서브밴드 신호들 20: 피드백 지연 루프 프로세서

Claims (16)

  1. 오디오 신호(5)를 반향하기 위한 반향기로서,
    반향된(reverberated) 주파수 서브밴드 신호들(1425)을 획득하기 위해 다른 루프 지연들(23)에 의해 상기 오디오 신호(5)를 나타내는(representing) 적어도 두 개의 다른 주파수 서브밴드 신호들(1415)을 지연하기 위한 피드백 지연 루프 프로세서(1420)를 포함하고,
    상기 피드백 지연 루프 프로세서(1420)는,
    상기 적어도 두 개의 주파수 서브밴드 신호들(1415)의 제1 주파수 서브밴드 신호를 위해, 탭 지연들에 의해 지연되는 신호들을 제공하는 제1 복수의 지연 라인 탭들(115)을 갖는 제1 지연 라인(110), 상기 제1 지연 라인(110)과 연결된 제1 피드백 루프(120) 및 상기 제1 복수의 지연 라인 탭들(115)에 의해 출력되는 신호들을 결합하기 위한 제1 결합기(130), 및
    상기 적어도 두 개의 주파수 서브밴드 신호들의 제2 주파수 서브밴드 신호를 위해, 탭 지연들에 의해 지연되는 신호들을 제공하는 제2 복수의 지연 라인 탭들을 갖는 제2 지연 라인, 상기 제2 지연 라인과 연결된 제2 피드백 루프 및 상기 제2 복수의 지연 라인 탭들에 의해 출력되는 신호들을 결합하기 위한 제2 결합기를 포함하되,
    상기 제1 지연 라인과 함께 상기 제1 피드백 루프는 제1 루프 지연 양(amount)을 나타내고, 상기 제2 지연 라인과 함께 상기 제2 피드백 루프는 상기 제1 루프 지연 양과 다른 제2 루프 지연 양을 나타내는, 반향기.
  2. 제 1 항에 있어서,
    반향된 오디오 신호(41)를 획득하기 위해 상기 반향된 주파수 서브밴드 신호들(1425)을 처리하기 위한 출력 프로세서(30)를 더 포함하는, 반향기.
  3. 제 2 항에 있어서,
    상기 출력 프로세서(30)는 믹스된 신호들(37)을 획득하고 상기 믹스된 신호들(37)을 결합하기 위해 상기 적어도 두 개의 주파수 서브밴드 신호들(1415)과 이에 상응하는 상기 반향된 주파수 서브밴드 신호들(1425)을 믹스하도록 구성되거나, 결합된 대역폭을 갖는 상기 반향된 오디오 신호(41)를 획득하기 위해 상기 반향된 주파수 서브밴드 신호들(1425)을 결합하도록 구성된, 반향기.
  4. 제 1 항에 있어서,
    상기 피드백 지연 루프 프로세서(1420)는 각 주파수 서브밴드 신호(1415)에 대해, 필터 임펄스 응답(800)을 갖는 필터를 포함하고, 상기 필터 임펄스 응답(800)은 필터 임펄스 응답 샘플들의 제1 블록(815) 및 필터 임펄스 응답 샘플들의 제2 블록(825)을 포함하고, 상기 제2 블록(825)은 임펄스 응답 샘플 간격(spacing)에 관하여 상기 제1 블록(815)과 유사하고, 상기 제2 블록(825)의 제1 임펄스 응답 샘플(821)은 상기 제1 블록(815)의 제1 임펄스 응답 샘플(811)로부터 상기 주파수 서브밴드 신호(1415)에 대한 상기 루프 지연만큼 지연되고, 상기 주파수 서브밴드 신호들(1415)에 대한 상기 필터들의 상기 필터 임펄스 응답들의 상기 제1 블록들과 상기 제2 블록들은 상기 다른 루프 지연들(23)에 의해 지연되는, 반향기.
  5. 제 1 항에 있어서,
    상기 피드백 지연 루프 프로세서(1420)는, 각 주파수 서브밴드 신호(1415)에 대해 복수의 지연 라인 탭들(taps)을 갖는 확산 필터(1330) 및 피드백 루프(1350)를 포함하고, 상기 피드백 루프(1350)는 피드백 신호(1353)를 획득하기 위해 상기 주파수 서브밴드 신호(1415)에 대한 상기 루프 지연을 결정하는 지연 요소(1352)를 포함하고, 상기 피드백 루프(1350)는 상기 주파수 서브밴드 신호(1415)와 상기 피드백 신호(1353)를 가산하기 위한 가산기(adder,1354)를 포함하고, 상기 가산기(1354)는 상기 확산 필터(1330)와 연결되고, 상기 지연 요소들은 상기 적어도 두 개의 다른 주파수 서브밴드 신호들(1415)에 대해 다른, 반향기.
  6. 제 1 항에 있어서,
    상기 피드백 지연 루프 프로세서(1420)는 상기 적어도 두 개의 주파수 서브밴드 신호들(1415)의 각 주파수 서브밴드 신호(1317)에 대한 피드백 루프(1350)를 포함하고, 주파수 서브밴드 신호(1317)에 대한 상기 피드백 루프(1350)는 지연 요소(1352) 및 감쇠기(attenuator, 1356)를 포함하고, 상기 지연 요소들은 상기 적어도 두 개의 다른 주파수 서브밴드 신호들(1415)에 대한 루프 지연들에 대해 다른, 반향기.
  7. 제 1 항에 있어서,
    상기 피드백 지연 루프 프로세서(1420)는 상기 반향된 주파수 서브밴드 신호들(1425)을 획득하도록 구성되고, 상기 지연 라인(110)은 가장 높은 탭 지연보다 높고 상기 루프 지연을 결정하는 총 지연량을 갖고, 상기 총 지연량들(N1, N2)은 상기 적어도 두 개의 다른 주파수 서브밴드 신호들(1415)에 대해 다른, 반향기.
  8. 제 7 항에 있어서,
    상기 복수의 지연 라인 탭들(115)은 지연 라인 탭들의 제1 부분(619-1) 및 지연 라인 탭들의 다음의 제2 부분(619-2)을 포함하고, 상기 지연 라인(115)은 상기 제2 부분(619-2)의 상기 탭들 간의 평균 갭 사이즈가 상기 제1 부분(619-1)의 상기 탭들 간의 평균 갭 사이즈보다 크도록 구성된, 반향기.
  9. 제 1 항에 있어서,
    상기 피드백 지연 루프 프로세서(1420)는 낮은 주파수 밴드를 표현하는 상기 적어도 두 개의 주파수 서브밴드 신호들(1415)의 제2 주파수 서브밴드 신호(51-2)에 대한 루프 지연(56-2)이 높은 주파수 밴드를 표현하는 상기 적어도 두 개의 주파수 서브밴드 신호들(1415)의 제1 주파수 서브밴드 신호(51-1)에 대한 루프 지연(56-1)보다 크도록 구성된, 반향기.
  10. 제 5 항에 있어서,
    상기 확산 필터(1330), 또는 상기 피드백 루프(120) 및 상기 결합기(130)와 연결된 상기 지연 라인(110)은 스파스 필터(600)로 구성되고, 상기 스파스 필터(600)는 가변적인 필터 탭 밀도를 갖고, 상기 스파스 필터(600)의 필터 임펄스 응답(700)이 미리 결정된 에너지 엔빌로프(envelope, 715)를 근사화하는, 반향기.
  11. 제 10 항에 있어서,
    상기 스파스 필터(600)는 복수의 위상 변경 유닛들(950)을 포함하고, 상기 복수의 위상 변경 유닛들(950)의 각 위상 변경 유닛은 상기 제1 복수의 지연 라인 탭들(115)의 각각의 지연 라인 탭과 직접 연결되고, 각 위상 변경 유닛은 상기 각각의 지연 라인 탭에 의해 출력된 대응하는 신호에 비적 위상 동작(multiplication-free phase operation)을 적용하도록 구성된, 반향기.
  12. 제 11 항에 있어서,
    상기 확산 필터(1330) 또는 상기 지연 라인(110)은 복소값을 가진 (complex-valued) 디바이스들이고, 상기 복수의 위상 변경 유닛들(950)의 각 위상 변경 유닛(1110; 1120; 1130; 1140)은 각각의 지연 라인 탭 출력 신호의 실수 부분에 대한 제1 위상 변경 유닛 입력(1112-1; 1122-1; 1132-1; 1142-1) 또는 상기 각각의 지연 라인 탭 출력 신호의 허수 부분에 대한 제2 위상 변경 유닛 입력(1112-2; 1122-2; 1132-2; 1142-2), 및 위상 변경된 출력 신호의 상기 실수 부분에 대한 제1 위상 변경 유닛 출력(1114-1; 1124-1; 1134-1; 1144-1) 또는 상기 위상 변경된 출력 신호의 상기 허수 부분에 대한 제2 위상 변경 유닛 출력(1114-2; 1124-2; 1134-2; 1144-2)을 포함하고,
    상기 제1 위상 변경 유닛 입력(1112-1)은 상기 제1 위상 변경 유닛 출력(1114-1)에 직접 연결되고, 상기 제2 위상 변경 유닛 입력(1112-2)은 상기 제2 위상 변경 유닛 출력(1114-2)에 직접 연결되거나; 또는
    상기 제2 위상 변경 유닛 입력(1122-2)은 상기 제1 위상 변경 유닛 출력(1124-1)에 직접 연결되고, 상기 제1 위상 변경 입력(1122-1)은 상기 제2 위상 변경 유닛 출력(1124-2)에 연결된 상관된(interconnected) 부호(sign) 인버터(1125)에 연결되고, 그에 따라 상기 위상 변경된 출력 신호의 상기 실수 부분은 상기 각각의 지연 라인 탭 출력 신호의 상기 허수 부분에 기초하고, 상기 위상 변경된 출력 신호의 상기 허수 부분은 상기 각각의 지연 라인 탭 출력 신호의 부호-인버트된(sign-inverted) 실수 부분에 기초하거나; 또는
    상기 제1 변경 유닛 입력(1132-1)은 상기 제1 위상 변경 유닛 출력(1134-1)에 연결된 상관된 부호 인버터(1135-1)에 연결되고, 상기 제2 위상 변경 유닛 입력(1132-2)은 상기 제2 위상 변경 유닛 출력(1134-2)에 연결된 상관된 부호 인버터(1135-2)에 연결되고, 그에 따라 상기 위상 변경된 출력 신호의 상기 실수 부분은 상기 각각의 지연 라인 탭 출력 신호의 부호-인버트된 실수 부분에 기초하고, 상기 위상 변경된 출력 신호의 상기 허수 부분은 상기 각각의 지연 라인 탭 출력 신호들의 부호-인버트된 허수 부분에 기초하거나; 또는
    상기 제1 변경 유닛 입력(1142-1)은 상기 제2 위상 변경 유닛 출력(1144-2)에 직접 연결되고, 상기 제2 위상 변경 입력(1142-2)은 상기 제1 위상 변경 유닛 출력(1144-1)에 연결된 상관된 부호 인버터(1145)에 연결되고, 그에 따라 상기 위상 변경된 출력 신호의 상기 허수 부분은 상기 각각의 지연 라인 탭 출력 신호의 상기 실수 부분에 기초하고, 상기 위상 변경된 출력 신호의 상기 실수 부분은 상기 각각의 지연 라인 탭 출력 신호의 부호-인버트된 허수 부분에 기초하는, 반향기.
  13. 제 1 항에 있어서,
    상기 오디오 신호(5)는 복수의 다른 입력(Chin,1, Chin,2, ㆍㆍㆍ) 또는 출력 오디오 채널들(Chout,1, Chout,2,ㆍㆍㆍ)을 갖고, 각 입력 또는 출력 오디오 채널은 적어도 두 개의 다른 주파수 서브밴드 신호들(1201; 1515-1; 1515-2)을 갖고, 상기 피드백 지연 루프 프로세서(1420)는 지연 라인 필터를 포함하고, 상기 지연 라인 필터의 지연 라인(1526)은 필터 탭 위치들 또는 상기 필터 탭 위치들의 적어도 일부에 연결된 위상 변경 유닛들을 포함하고, 상기 피드백 지연 루프 프로세서(1420)는 제1 입력(Chin,1) 또는 출력 오디오 채널(Chout,1)의 주파수 서브밴드 신호들(1201; 1525-1)에 대한 제1 입력 또는 출력 구성 및 제2 입력(Chin,2) 또는 출력 오디오 채널(Chout,2)의 주파수 서브밴드 신호들(1201; 1525-2)에 대한 제2 입력 또는 출력 구성을 더 포함하고, 상기 피드백 지연 루프 프로세서(1420)는 상기 제1 및 제2 입력 또는 출력 구성들이 다른 필터 탭 위치들 또는 위상 변경 유닛들에 연결들(1527)을 포함하도록 구성되고, 상기 제1 및 제2 입력 또는 출력 구성들은 동일한 지연 라인(1526)에 연결되는, 반향기.
  14. 제 1 항에 있어서,
    상기 피드백 지연 루프 프로세서(1420)는 감쇠율(attenuation factor, b)에 의해 상기 적어도 두 개의 주파수 서브밴드 신호들(1415)의 각 주파수 서브밴드 신호를 감쇠하도록 구성되고, 상기 감쇠율(b)은 미리 결정된 반향 시간(T60) 및 상기 주파수 서브밴드 신호에 대한 상기 루프 지연에 의존하는, 반향기.
  15. 오디오 신호(5)를 반향하기 위한 방법으로서,
    반향된 주파수 서브밴드 신호들(1425)을 획득하기 위해, 피드백 지연 루프 프로세서(1420)를 사용하여 다른 루프 지연들(23)에 의해 상기 오디오 신호(5)를 나타내는 적어도 두 개의 다른 주파수 서브밴드 신호들(1415)을 지연하는 단계를 포함하고,
    상기 피드백 지연 루프 프로세서(1420)는,
    상기 적어도 두 개의 주파수 서브밴드 신호들(1415)의 제1 주파수 서브밴드 신호를 위해, 탭 지연들에 의해 지연되는 신호들을 제공하는 제1 복수의 지연 라인 탭들(115)을 갖는 제1 지연 라인(110), 상기 제1 지연 라인(110)과 연결된 제1 피드백 루프(120) 및 상기 제1 복수의 지연 라인 탭들(115)에 의해 출력되는 신호들을 결합하기 위한 제1 결합기(130), 및
    상기 적어도 두 개의 주파수 서브밴드 신호들(1415)의 제2 주파수 서브밴드 신호를 위해, 탭 지연들에 의해 지연되는 신호들을 제공하는 제2 복수의 지연 라인 탭들을 갖는 제2 지연 라인, 상기 제2 지연 라인과 연결된 제2 피드백 루프 및 상기 제2 복수의 지연 라인 탭들에 의해 출력되는 신호들을 결합하기 위한 제2 결합기를 포함하되,
    상기 제1 지연 라인과 함께 상기 제1 피드백 루프는 제1 루프 지연 양(amount)을 나타내고, 상기 제2 지연 라인과 함께 상기 제2 피드백 루프는 상기 제1 루프 지연 양과 다른 제2 루프 지연 양을 나타내는, 오디오 신호 반향 방법.
  16. 컴퓨터상에서 실행될 때 청구항 15에 따른 방법을 수행하는 프로그램 코드를 갖는 컴퓨터 프로그램을 저장하는 컴퓨터로 판독 가능한 기록 매체.
KR1020127013104A 2009-10-21 2010-10-06 오디오 신호를 반향하기 위한 반향기 및 방법 KR101409039B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US25365509P 2009-10-21 2009-10-21
US61/253,655 2009-10-21
PCT/EP2010/064909 WO2011057868A1 (en) 2009-10-21 2010-10-06 Reverberator and method for reverberating an audio signal

Publications (2)

Publication Number Publication Date
KR20120074316A KR20120074316A (ko) 2012-07-05
KR101409039B1 true KR101409039B1 (ko) 2014-07-02

Family

ID=43530122

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020127013104A KR101409039B1 (ko) 2009-10-21 2010-10-06 오디오 신호를 반향하기 위한 반향기 및 방법

Country Status (14)

Country Link
US (3) US9245520B2 (ko)
EP (1) EP2478519B1 (ko)
JP (3) JP5712219B2 (ko)
KR (1) KR101409039B1 (ko)
CN (1) CN102667918B (ko)
AU (1) AU2010318214B2 (ko)
BR (1) BR112012011340B1 (ko)
CA (1) CA2777657C (ko)
ES (1) ES2405990T3 (ko)
HK (1) HK1174142A1 (ko)
MX (1) MX2012004643A (ko)
PL (1) PL2478519T3 (ko)
RU (1) RU2558004C2 (ko)
WO (1) WO2011057868A1 (ko)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5712219B2 (ja) 2009-10-21 2015-05-07 フラウンホッファー−ゲゼルシャフト ツァ フェルダールング デァ アンゲヴァンテン フォアシュンク エー.ファオ 反響装置およびオーディオ信号を反響させる方法
CN104982042B (zh) 2013-04-19 2018-06-08 韩国电子通信研究院 多信道音频信号处理装置及方法
CN108806704B (zh) 2013-04-19 2023-06-06 韩国电子通信研究院 多信道音频信号处理装置及方法
US9319819B2 (en) * 2013-07-25 2016-04-19 Etri Binaural rendering method and apparatus for decoding multi channel audio
CN104768121A (zh) * 2014-01-03 2015-07-08 杜比实验室特许公司 响应于多通道音频通过使用至少一个反馈延迟网络产生双耳音频
MX365162B (es) 2014-01-03 2019-05-24 Dolby Laboratories Licensing Corp Generacion de audio binaural en respuesta a audio multicanal utilizando al menos una red de retardo realimentada.
JP6511775B2 (ja) * 2014-11-04 2019-05-15 ヤマハ株式会社 残響音付加装置
EP3018918A1 (en) * 2014-11-07 2016-05-11 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Apparatus and method for generating output signals based on an audio source signal, sound reproduction system and loudspeaker signal
CN108369494B (zh) * 2015-10-28 2021-08-27 Dts(英属维尔京群岛)有限公司 音频信号的频谱校正
EP3236336B1 (en) * 2016-04-21 2019-03-27 Nokia Technologies Oy Virtual reality causal summary content
DK3291581T3 (da) 2016-08-30 2022-04-11 Oticon As Høreanordning omfattende en feedback-detektionsenhed
US11373667B2 (en) * 2017-04-19 2022-06-28 Synaptics Incorporated Real-time single-channel speech enhancement in noisy and time-varying environments
US10531222B2 (en) 2017-10-18 2020-01-07 Dolby Laboratories Licensing Corporation Active acoustics control for near- and far-field sounds
EP3807872B1 (en) 2018-06-14 2024-04-10 Magic Leap, Inc. Reverberation gain normalization
CA3113275A1 (en) 2018-09-18 2020-03-26 Huawei Technologies Co., Ltd. Device and method for adaptation of virtual 3d audio to a real room
CN111048107B (zh) * 2018-10-12 2022-09-23 北京微播视界科技有限公司 音频处理方法和装置
US11399252B2 (en) 2019-01-21 2022-07-26 Outer Echo Inc. Method and system for virtual acoustic rendering by time-varying recursive filter structures
JP7447533B2 (ja) * 2020-02-19 2024-03-12 ヤマハ株式会社 音信号処理方法および音信号処理装置
JP2022045086A (ja) * 2020-09-08 2022-03-18 株式会社スクウェア・エニックス 残響を求めるためのシステム
CN112584300B (zh) * 2020-12-28 2023-05-30 科大讯飞(苏州)科技有限公司 音频上混方法、装置、电子设备和存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003271165A (ja) * 2002-03-13 2003-09-25 Yamaha Corp 音場再生装置、プログラム及び記録媒体
JP2005308946A (ja) * 2004-04-20 2005-11-04 Matsushita Electric Ind Co Ltd 残響付加装置
JP2006524002A (ja) * 2003-04-17 2006-10-19 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ オーディオ信号生成

Family Cites Families (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3419522A (en) 1965-11-22 1968-12-31 Du Pont Nongraying, nonyellowing polytetrafluoroethylene molding powder
US3417837A (en) * 1966-09-30 1968-12-24 Bell Telephone Labor Inc Signal processor for multipath signals
US4910706A (en) * 1972-09-11 1990-03-20 Hyatt Gilbert P Analog memory for storing digital information
GB1400275A (en) * 1972-05-26 1975-07-16 British Broadcasting Corp Artificial reverberation systems
JPS5630878B2 (ko) * 1973-08-13 1981-07-17
NL8001118A (nl) * 1980-02-25 1981-09-16 Philips Nv Inrichting voor het opnemen of weergeven van geluidstrillingen.
JPS56125141A (en) 1980-03-06 1981-10-01 Oki Electric Ind Co Ltd Pulse signal transmission system
JPS5831600A (ja) 1981-08-19 1983-02-24 松下電器産業株式会社 枠体
JPS5831600U (ja) * 1981-08-26 1983-03-01 ヤマハ株式会社 残響音付加装置
JPS58123592A (ja) * 1982-01-19 1983-07-22 松下電器産業株式会社 残響付加装置
JPS58205195A (ja) * 1982-05-26 1983-11-30 松下電器産業株式会社 残響装置
US4509191A (en) * 1982-09-20 1985-04-02 Scholz Research & Development Electronic stereo reverberation device
US4485484A (en) * 1982-10-28 1984-11-27 At&T Bell Laboratories Directable microphone system
US4731848A (en) * 1984-10-22 1988-03-15 Northwestern University Spatial reverberator
JPH0689097B2 (ja) 1986-11-21 1994-11-09 三井東圧化学株式会社 高屈折率プラスチックレンズ用樹脂の製造方法
JPH0687540B2 (ja) * 1988-11-10 1994-11-02 日本電気株式会社 復調装置
JP2600896B2 (ja) * 1989-03-29 1997-04-16 松下電器産業株式会社 残響発生装置
US5272274A (en) * 1989-08-10 1993-12-21 Yamaha Corporation Electronic musical instrument with reverberation effect
GB9026906D0 (en) * 1990-12-11 1991-01-30 B & W Loudspeakers Compensating filters
JPH05173584A (ja) * 1991-12-24 1993-07-13 Casio Comput Co Ltd 効果付加装置
JPH05191894A (ja) 1992-01-16 1993-07-30 Fujitsu Ten Ltd 残響付加装置
JP2953851B2 (ja) 1992-02-19 1999-09-27 富士通テン株式会社 残響付加装置
FR2688371B1 (fr) * 1992-03-03 1997-05-23 France Telecom Procede et systeme de spatialisation artificielle de signaux audio-numeriques.
JP3033357B2 (ja) * 1992-09-08 2000-04-17 ヤマハ株式会社 効果付与装置
KR100316116B1 (ko) * 1993-12-06 2002-02-28 요트.게.아. 롤페즈 잡음감소시스템및장치와,이동무선국
JP3276528B2 (ja) * 1994-08-24 2002-04-22 シャープ株式会社 音像拡大装置
JPH08286691A (ja) 1995-04-18 1996-11-01 Yamaha Corp 残響効果付与装置
JP2956642B2 (ja) * 1996-06-17 1999-10-04 ヤマハ株式会社 音場制御ユニットおよび音場制御装置
US6317703B1 (en) * 1996-11-12 2001-11-13 International Business Machines Corporation Separation of a mixture of acoustic sources into its components
US6483922B1 (en) * 1998-04-13 2002-11-19 Allen Organ Company Method and system for generating a simulated reverberation audio signal
JP2000099061A (ja) * 1998-09-25 2000-04-07 Sony Corp 効果音付加装置
US6188769B1 (en) * 1998-11-13 2001-02-13 Creative Technology Ltd. Environmental reverberation processor
US20020067836A1 (en) * 2000-10-24 2002-06-06 Paranjpe Shreyas Anand Method and device for artificial reverberation
US20030007648A1 (en) * 2001-04-27 2003-01-09 Christopher Currell Virtual audio system and techniques
US7583805B2 (en) * 2004-02-12 2009-09-01 Agere Systems Inc. Late reverberation-based synthesis of auditory scenes
JP4019753B2 (ja) * 2002-03-12 2007-12-12 ヤマハ株式会社 残響付与装置、残響付与方法、プログラムおよび記録媒体
JP4263869B2 (ja) 2002-03-11 2009-05-13 ヤマハ株式会社 残響付与装置、残響付与方法、プログラムおよび記録媒体
US6723910B1 (en) * 2002-11-18 2004-04-20 Silicon Integrated Systems Corp. Reverberation generation processor
US7330556B2 (en) * 2003-04-03 2008-02-12 Gn Resound A/S Binaural signal enhancement system
US7330552B1 (en) * 2003-12-19 2008-02-12 Lamance Andrew Multiple positional channels from a conventional stereo signal pair
EP1775996A4 (en) * 2004-06-30 2011-08-10 Pioneer Corp REVERB-SETTING DEVICE, REVERB-SETTING METHOD, REVERB-SETTING PROGRAM, RECORDING MEDIUM CONTAINING THE PROGRAM, AND SOUND FIELD CORRECTION SYSTEM
SG135058A1 (en) * 2006-02-14 2007-09-28 St Microelectronics Asia Digital audio signal processing method and system for generating and controlling digital reverberations for audio signals
JP2008065232A (ja) * 2006-09-11 2008-03-21 Fujitsu Ten Ltd ディジタル信号処理装置
US20080069197A1 (en) * 2006-09-20 2008-03-20 Agere Systems Inc. Equalizer for equalizing multiple received versions of a signal
US20080085008A1 (en) 2006-10-04 2008-04-10 Earl Corban Vickers Frequency Domain Reverberation Method and Device
US8204240B2 (en) * 2007-06-30 2012-06-19 Neunaber Brian C Apparatus and method for artificial reverberation
CN101136197B (zh) * 2007-10-16 2011-07-20 得理微电子(上海)有限公司 基于时变延迟线的数字混响处理器
EP2144229A1 (en) * 2008-07-11 2010-01-13 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Efficient use of phase information in audio encoding and decoding
JP5712219B2 (ja) 2009-10-21 2015-05-07 フラウンホッファー−ゲゼルシャフト ツァ フェルダールング デァ アンゲヴァンテン フォアシュンク エー.ファオ 反響装置およびオーディオ信号を反響させる方法
US8908874B2 (en) * 2010-09-08 2014-12-09 Dts, Inc. Spatial audio encoding and reproduction

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003271165A (ja) * 2002-03-13 2003-09-25 Yamaha Corp 音場再生装置、プログラム及び記録媒体
JP2006524002A (ja) * 2003-04-17 2006-10-19 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ オーディオ信号生成
JP2005308946A (ja) * 2004-04-20 2005-11-04 Matsushita Electric Ind Co Ltd 残響付加装置

Also Published As

Publication number Publication date
CA2777657A1 (en) 2011-05-19
KR20120074316A (ko) 2012-07-05
JP6487383B2 (ja) 2019-03-20
WO2011057868A1 (en) 2011-05-19
US9747888B2 (en) 2017-08-29
US20150379980A1 (en) 2015-12-31
RU2012118785A (ru) 2013-11-10
BR112012011340A2 (pt) 2016-04-19
CN102667918A (zh) 2012-09-12
HK1174142A1 (en) 2013-05-31
JP2013508760A (ja) 2013-03-07
US9245520B2 (en) 2016-01-26
JP2016197252A (ja) 2016-11-24
CN102667918B (zh) 2015-08-12
JP5969580B2 (ja) 2016-08-17
ES2405990T3 (es) 2013-06-04
JP5712219B2 (ja) 2015-05-07
US20120263311A1 (en) 2012-10-18
US10043509B2 (en) 2018-08-07
JP2015064597A (ja) 2015-04-09
RU2558004C2 (ru) 2015-07-27
CA2777657C (en) 2015-09-29
EP2478519A1 (en) 2012-07-25
BR112012011340B1 (pt) 2020-02-11
MX2012004643A (es) 2012-05-29
EP2478519B1 (en) 2013-02-13
PL2478519T3 (pl) 2013-07-31
AU2010318214B2 (en) 2013-10-24
US20170323632A1 (en) 2017-11-09
AU2010318214A1 (en) 2012-05-17

Similar Documents

Publication Publication Date Title
KR101409039B1 (ko) 오디오 신호를 반향하기 위한 반향기 및 방법
US8971551B2 (en) Virtual bass synthesis using harmonic transposition
CN101167250B (zh) 使用变形处理的数字音频的动态范围控制与均衡的方法和设备
EP3606102B1 (en) Method for processing an audio signal, signal processing unit, binaural renderer, audio encoder and audio decoder
US8175280B2 (en) Generation of spatial downmixes from parametric representations of multi channel signals
US11049482B1 (en) Method and system for artificial reverberation using modal decomposition
Lee et al. Differentiable artificial reverberation
WO2006045373A1 (en) Diffuse sound envelope shaping for binaural cue coding schemes and the like
JP5753899B2 (ja) オーディオ信号合成器
JP5894347B2 (ja) 転移器に基づく仮想ベース・システムにおけるレイテンシーを低減するシステムおよび方法
Alary et al. Frequency-dependent directional feedback delay network
Marelli et al. Time–frequency synthesis of noisy sounds with narrow spectral components
US20080085008A1 (en) Frequency Domain Reverberation Method and Device
Wang et al. Subband analysis of time delay estimation in STFT domain
Malathi et al. FPGA Implementation of Adaptive NMLS Algorithm: Timbre Based Filtering from Multiple Harmonics using FIR Filters
Bai et al. Multirate synthesis of reverberators using subband filtering
Schlecht et al. Decorrelation in Feedback Delay Networks

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170529

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20180531

Year of fee payment: 5