KR101245985B1 - 광학 필터 및 디스플레이 평가 시스템 - Google Patents

광학 필터 및 디스플레이 평가 시스템 Download PDF

Info

Publication number
KR101245985B1
KR101245985B1 KR1020117025497A KR20117025497A KR101245985B1 KR 101245985 B1 KR101245985 B1 KR 101245985B1 KR 1020117025497 A KR1020117025497 A KR 1020117025497A KR 20117025497 A KR20117025497 A KR 20117025497A KR 101245985 B1 KR101245985 B1 KR 101245985B1
Authority
KR
South Korea
Prior art keywords
distribution
optical filter
solid
light receiving
optical
Prior art date
Application number
KR1020117025497A
Other languages
English (en)
Other versions
KR20120016215A (ko
Inventor
타카시 사카모토
신야 타바타
아키오 오오타
히로시 무라세
Original Assignee
아이아이엑스 인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 아이아이엑스 인코포레이티드 filed Critical 아이아이엑스 인코포레이티드
Publication of KR20120016215A publication Critical patent/KR20120016215A/ko
Application granted granted Critical
Publication of KR101245985B1 publication Critical patent/KR101245985B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/46Systems using spatial filters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B11/00Filters or other obturators specially adapted for photographic purposes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N17/00Diagnosis, testing or measuring for television systems or their details
    • H04N17/002Diagnosis, testing or measuring for television systems or their details for television cameras
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/63Noise processing, e.g. detecting, correcting, reducing or removing noise applied to dark current

Abstract

액정 패널(10)을 평가하기 위한 디스플레이 평가 시스템은 광학 조정 장치(20), 촬영 카메라(30), 측정 장치(35)로 구성된다. 또, 액정 패널(10)에는 화상 신호 생성 장치(15)가 접속되어 있다. 촬영 카메라(30)는 CCD 이미지 센서(31)를 구비하고 있다. 광학 조정 장치(20)는 렌즈(221, 222)로 구성되어 있다. 광학 조정 장치(20)에 있어서는 금속판을 그물코 모양으로 가공하고, 투과율 구배를 가지게 하고 있는 광학 필터(21)를 조임 위치에 배치한다. 그리고, 디포커스 위치에 설치된 CCD 이미지 센서(31)에 있어서 나이퀴스트 주파수 이상의 응답을 억제한 형상으로 한다. 이에 의해, 파문 모양을 억제하고, 또한 1화소 단위로 해상하고 있는 화상을 촬영할 수가 있다.

Description

광학 필터 및 디스플레이 평가 시스템{OPTICAL FILTER AND DISPLAY EVALUATION SYSTEM}
본 발명은 디스플레이의 화질을 평가하는 경우에 이용하는 광학 필터 및 디스플레이 평가 시스템에 관한 것이다.
근래, 액정 패널(panel) 등의 디스플레이의 제조 라인은, 균일한 품질을 실현할 수 있도록 구축되어 있다. 그러나, 이러한 제조 라인에 있어서도 개개의 디스플레이에는 제조 불균일이 발생한다. 그래서, 보다 좋은 화상을 출력하는 디스플레이를 조정하기 위해서 다양한 검토가 이루어지고 있다(예를 들면, 특허 문헌 1 참조). 이 특허 문헌 1에 기재의 기술에서는 조정 대상 장치의 화질을 목표 장치의 화질에 근사하도록 조정한다.
그러나, 각종의 촬상 소자를 이용한 카메라를 사용하여 주기적인 패턴을 가지는 대상물을 촬영한 경우, 촬영한 화상에 파문(moire) 모양이 발생하는 일이 있지만, 실제로는 화면 상에는 그와 같은 파문 모양은 없다. 파문 모양은 액정 패널과 같은 격자상의 모양(화소(pixel) 격자 모양)과 CCD의 각 화소의 격자가 간섭하여 생기는 모양이다.
그래서, 파문 모양을 제거하기 위한 검토가 이루어지고 있다(예를 들면, 특허 문헌 2~4를 참조).
예를 들면, 특허 문헌 2에는, 플랫 패널 표시기의 화소 결함을 검출하는 화질 검사 장치에 있어서, 화질 검사에 제공하는 화상 데이터로부터 파문 성분을 제거하기 위한 기술이 개시되어 있다. 이 문헌에 기재된 기술에서는, 촬상 장치에서 얻어지는 화상 데이터로부터 파문 성분을 추출하고, 이 파문 성분의 주기를 검출하여 주기마다 배치되는 화소값을 이룬 결함 성분을 제거한 복수의 평활 곡선을 구한다. 이 복수의 평활 곡선 상에 위치하는 화소값과 원래의 화상 데이터의 차를 구하여 결함 화상 데이터를 취득하고, 복수의 평활 곡선의 평균을 구하여 파문 모양을 포함하지 않는 평활 화상 데이터를 취득한다. 그리고, 이 평활 화상 데이터와 결함 화상 데이터를 가산하고, 이 가산 결과를 검사용 화상 데이터로서 화상 메모리에 저장한다.
또, 특허 문헌 3에는, LCD 검사 장치에 있어서, 파문 모양을 저감하고, 검사 정밀도의 향상을 도모하기 위한 기술이 개시되어 있다. 이 문헌에 기재된 기술에서는, 피검사 대상물인 LCD 패널을 촬영하는 카메라와 이 카메라에 접속되고 카메라에 의해 촬영된 LCD 패널의 화상을 비추는 모니터와의 사이에, 이 LCD 패널을 통과한 광을 LCD 패널의 블랙마스크(black mask) 부분까지 넓히는 광학 저역통과 필터를 설치한다.
또, 특허 문헌 4에는, 소프트웨어에 의한 처리를 필요로 하지 않고, 보다 염가로 간단한 구조의 광학 부재만을 이용하여 파문 모양이 없는 촬상 화상을 얻기 위한 기술이 개시되어 있다. 이 문헌에 기재된 기술에서는, 카메라와 검사 대상 화면과의 사이의 몇 개의 위치에 광을 산란시키는 산란 투과판을 삽입하여 촬상한다.
일본국 특허 제4109702호 공보(제1페이지, 도 1) 일본국 특허공개 1999-352011호 공보(제1페이지, 도 1) 일본국 특허공개 1996-327496호 공보(제1페이지, 도 1) 일본국 특허공개 1999-6786호 공보(제1페이지, 도 1)
종래 기술은 어느 것에 있어서도 대폭적인 화상의 불선명화를 수반하고, 대상물에 존재하는 패턴 주기와 동일 레벨의 사이즈의 변화나 결함을 관찰하거나 검출하거나 하는 것은 곤란하게 된다고 하는 문제가 있었다.
액정 패널의 얼룩짐 보정을 행하기에 즈음하여, 파문 모양이 촬영되면 본래의 얼룩짐 모양과의 구별이 되지 않는 것이 문제가 된다. 또, 세세한 얼룩짐 모양을 촬영하기 위해서는 불필요하게 화상을 흐릿하게 할 수도 없다.
여기서, 파문 모양은 디지털 신호 처리 이론에 있어서의 거듭 일그러짐이다. 이 거듭 일그러짐이 모양으로서 보였던 것이 파문 모양이다. 거듭 일그러짐이라는 것은, 나이퀴스트(nyquist) 주파수 이상의 주파수가 표본화에 의해 저주파측에 나타난 것이다.
도 11은 광의 양을 조정하기 위한 일반적인 원형 조임(50)을 나타낸 것이고 개구 영역에 의해 광을 투과시킨다.
도 12는 일반적인 원형 조임(50)에서의 흐려짐의 형상(점상강도(点像强度) 분포 함수 PSF : Point Spread Function)의 예이고, 도 13은 이 형상을 2차원으로 표시한 것이다.
이러한 원형 조임(50)을 이용한 경우, 주파수 특성은 도 14에 나타난 것 같이 된다. 고역성분이 충분히 감쇠되어 있지 않은 것을 알 수 있다.
또, 일반적인 광학 저역통과 필터는, 수정판으로 구성되고 CCD 직전에 설치된다. 그렇지만, 수정 저역통과 필터는 수정의 복굴절(더블링(doubling))을 이용하고 있기 때문에, 1개의 점을 약간 분리한 2개의 점에 2중으로 찍는 것이 기본이다. 일반적으로는 수정판을 2매 겹쳐서 이 효과를 종횡 2회 사용함으로써 1개의 점을 4개로 분리한 4중의 점으로서 CCD 상에 찍는다. 이러한 저역통과 필터에서는 파문 모양을 제거할 수 없다.
본 발명은, 상기 과제를 해결하기 위해서 이루어진 것이고, 그 목적은 이 나이퀴스트(nyquist) 주파수에 주목하고, 파문 모양을 억제하고, 또한 1화소 단위로 해상하고 있는 화상을 촬영하기 위한 광학 필터 및 디스플레이 평가 시스템을 제공하는 것에 있다.
상기 문제점을 해결하기 위해서, 본 발명은, 복수의 수광 화소를 구비한 고체 촬상 소자에 적용하는 광학 필터로서, 상기 고체 촬상 소자에 있어서의 수광 화소의 피치(pitch)에 기초하여 정해지는 나이퀴스트 주파수 이상의 주파수에 있어서의 공간 주파수 성분을 억제한 파형을 생성하는 투과율 분포를 가지고, 상기 투과율 분포로서, 상기 고체 촬상 소자의 수광면에 있어서의 광강도가 정규 분포로 되도록 구성한 분포를 이용하고 있고, 상기 투과율 분포는 소정 모양으로 가공되어 상기 광학 필터를 형성하는 플레이트에 형성된 개공(開孔)의 밀도 분포를 이용하여 구성하고, 상기 개공의 밀도 분포는 상기 광학 필터의 중심으로부터 직경 방향 외측을 향해 동심원적으로 감소하는 것을 특징으로 한다.
본 발명에 의하면, 고역주파수 성분을 충분히 감쇠시키는 것이 가능하다. 그리고, PSF의 크기를 적절히 설정하여 나이퀴스트 주파수를 떨어짐 시작의 점으로 설정하면, 나이퀴스트 주파수 이상의 주파수 성분을 충분히 감쇠하고, 나이퀴스트 주파수 이하의 주파수 성분은 잘 통과하는 이상적인 광학 저역통과 필터를 제작하는 것이 가능하게 된다.
또한, 본 발명에 의하면, 상기 투과율 분포가 플레이트에 형성된 개공의 밀도 분포를 이용하여 구성됨으로써, 플레이트의 개공의 밀도 분포가 광학 필터에 있어서의 투과율 분포, 바꾸어 말하면 광학 농도 분포에 대응하고, 플레이트에 대한 구멍 가공으로 정밀하게 광학 농도 분포를 설정할 수가 있다.
본 발명의 다른 태양에서는, 복수의 수광 화소를 구비한 고체 촬상 소자에 적용하는 광학 필터로서, 상기 고체 촬상 소자에 있어서의 수광 화소의 피치에 기초하여 정해지는 나이퀴스트 주파수 이상의 주파수에 있어서의 공간 주파수 성분을 억제한 파형을 생성하는 투과율 분포를 가지고, 상기 투과율 분포로서, 상기 고체 촬상 소자의 수광면에 있어서의 광강도가 정규 분포로 되도록 구성한 분포를 이용하고 있고, 상기 투과율 분포는, 소정 모양으로 가공되어 상기 광학 필터를 형성하는 투명판에 형성된 도트(dot) 패턴의 밀도 분포를 이용하여 구성하고, 상기 도트 패턴의 밀도 분포는 상기 광학 필터의 중심으로부터 직경 방향 외측을 향해 동심원적으로 증대하는 것을 특징으로 한다.
이에 의해, 투명판의 강도를 유지하면서, 투과율을 용이하게 높게 할 수가 있다.
또한, 상기 투과율 분포로서 고체 촬상 소자의 수광면에 있어서의 광강도가 정규 분포로 되도록 구성한 분포를 이용함으로써, 나이퀴스트 주파수 이상의 주파수를 확실히 감쇠시킬 수가 있다.
본 발명의 다른 태양에서는, 복수의 수광 화소를 구비한 고체 촬상 소자에 적용하는 광학 필터로서, 상기 고체 촬상 소자에 있어서의 수광 화소의 피치에 기초하여 정해지는 나이퀴스트 주파수 이상의 주파수에 있어서의 공간 주파수 성분을 억제한 파형을 생성하는 투과율 분포를 가지고, 상기 투과율 분포를 설치하기 위해, 상기 광학 필터의 중심 또는 중심으로부터 어긋나 있는 지점을 지나는 선을 횡단축으로 하고 상기 횡단축에 대해 대칭으로 배치된 2개의 정규 분포 곡선을 접합한 형상의 개구부를 설치한 것을 특징으로 한다.
또한, 상기 태양에 있어서, 상기 개구부를, 광학 필터를 횡단하는 적어도 하나의 횡단축에 대해 대칭으로 배치한 2개의 정규 분포 곡선에 의해 구성하는 것이 바람직하다. 상기 태양에 의하면, 상기 횡단축을 촬영 대상의 주기적 패턴 모양(예를 들면, 액정 패널과 같은 격자상 모양)에 맞춤으로써 고역주파수 성분을 감쇠시킬 수가 있다.
이에 의해, 횡단축에 대해 직교하는 직교축에 있어서도, 「산」 형상의 개구부를 얻을 수 있으므로, 직교축 방향에 있어서도, 고역주파수 성분의 발생을 억제할 수가 있다.
본 발명의 다른 태양에서는, 디스플레이 평가 시스템으로서, 복수의 수광 화소를 구비한 고체 촬상 소자와, 평가 대상의 디스플레이의 화상을 포커스(focus)하는 광학계 부재와, 상기 광학계 부재의 조임 위치에 설치되고, 상기 고체 촬상 소자에 있어서의 수광 화소의 피치에 기초하여 정해지는 나이퀴스트 주파수 이상의 주파수에 있어서의 공간 주파수 성분을 억제한 파형을 생성하는 투과율 분포를 설치한 광학 필터를 구비하고, 상기 투과율 분포로서, 상기 고체 촬상 소자의 수광면에 있어서의 광강도가 정규 분포로 되도록 구성한 분포를 이용하고 있고, 상기 투과율 분포는 소정 모양으로 가공되어 상기 광학 필터를 형성하는 플레이트에 형성된 개공의 밀도 분포를 이용하여 구성하고, 상기 개공의 밀도 분포는 상기 광학 필터의 중심으로부터 직경 방향 외측을 향해 동심원적으로 감소하는 것을 특징으로 한다.
본 발명에 의하면, 나이퀴스트 주파수 이상의 주파수 성분에 의한 파문 모양의 발생을 억제하여 디스플레이의 평가를 적확하게 행할 수가 있다.
본 발명의 다른 태양에서는, 디스플레이 평가 시스템으로서, 복수의 수광 화소를 구비한 고체 촬상 소자와, 평가 대상의 디스플레이의 화상을 포커스하는 광학계 부재와, 상기 광학계 부재의 조임 위치에 설치되고, 상기 고체 촬상 소자에 있어서의 수광 화소의 피치에 기초하여 정해지는 나이퀴스트 주파수 이상의 주파수에 있어서의 공간 주파수 성분을 억제한 파형을 생성하는 투과율 분포를 가지는 광학 필터를 구비하고, 상기 투과율 분포로서, 상기 고체 촬상 소자의 수광면에 있어서의 광강도가 정규 분포로 되도록 구성한 분포를 이용하고 있고, 상기 투과율 분포는 소정 모양으로 가공되어 상기 광학 필터를 형성하는 투명판에 형성된 도트 패턴의 밀도 분포를 이용하여 구성하고, 상기 도트 패턴의 밀도 분포는 상기 광학 필터의 중심으로부터 직경 방향 외측을 향해 동심원적으로 증대하는 것을 특징으로 한다.
본 발명에 의하면, 나이퀴스트 주파수 이상의 주파수 성분에 의한 파문 모양의 발생을 억제하여 디스플레이의 평가를 적확하게 행할 수가 있다.
상기 태양에 있어서, 상기 평가 대상의 디스플레이는, 플라스마 디스플레이(PDP), 유기 EL 디스플레이, 및 투영형 프로젝터를 포함한다.
상기한 본 발명에 의하면, 파문(moire) 모양을 억제하고, 또한 1화소 단위로 해상하고 있는 화상을 촬영하기 위한 광학 필터 및 디스플레이 평가 시스템을 제공할 수가 있다.
도 1은 본 발명의 일실시 형태의 디스플레이 평가 시스템의 설명도이다.
도 2는 디스플레이 평가 시스템에 있어서의 광선도(光線圖)이다.
도 3은 본 발명의 필터를 이용한 경우의 광강도 분포의 설명도이다.
도 4는 본 발명의 필터를 이용한 경우의 광강도 분포(2차원)의 설명도이다.
도 5는 본 발명의 필터를 이용한 경우의 광강도 분포의 주파수 특성의 설명도이다.
도 6은 디포커스량(defocus quantity))과 광강도 분포의 주파수 특성과의 관계의 설명도로서, (a)는 디포커스량을 2배, (b)는 기준, (c)는 기준의 반으로 변화시켰을 때의 주파수 특성이다.
도 7은 본 발명의 일실시 형태의 필터의 설명도이다.
도 8은 본 발명의 제2 실시 형태의 필터의 설명도로서, (a)는 촬영 대상의 화소, (b)는 필터 구조의 설명도이다.
도 9는 본 발명의 다른 실시 형태의 필터의 설명도로서, (a)는 하나의 정규 분포 곡선을 이용한 개구부, (b)는 곡선 상의 정규 분포 곡선을 이용한 개구부이다.
도 10은 본 발명의 다른 실시 형태의 필터의 설명도이다.
도 11은 종래의 조임의 설명도이다.
도 12는 종래의 조임을 이용한 경우의 광강도 분포의 설명도이다.
도 13은 종래의 조임을 이용한 경우의 광강도 분포(2차원)의 설명도이다.
도 14는 종래의 조임을 이용한 경우의 광강도 분포의 주파수 특성의 설명도이다.
(제1 실시 형태)
이하, 본 발명의 광학 필터 및 디스플레이 평가 시스템에 대해서 설명한다. 본 실시 형태에서는, CCD 이미지 센서를 이용하여 조정 대상의 표시 패널의 화질을 평가하는 경우를 상정한다. 여기에서는, 도 1에 나타내듯이, 조정 대상의 표시 패널로서 액정 패널(10)을 이용한다. 이 액정 패널(10)은, 소정의 주기(제1 피치(pitch))로 배치된 화소 소자에 의해 화상을 형성한다.
그리고, 이 액정 패널(10)을 평가하기 위한 디스플레이 평가 시스템은 광학 조정 장치(20), 촬영 카메라(30), 측정 장치(35)로 구성된다. 또, 액정 패널(10)에는 화상 신호 생성 장치(15)가 접속되어 있다.
여기서, 촬상 수단(촬상 장치)으로서의 촬영 카메라(30)는 광학 조정 장치(20)를 통해 취득한 화상을 촬영하고, 출력 화상 데이터를 측정 장치(35)에 공급한다. 본 실시 형태에서는, 촬영 카메라(30)에는, 고체 촬상 소자로서의 CCD 이미지 센서(31)를 구비한 흑백 카메라를 이용한다. CCD 이미지 센서(31)는, 소정의 주기(제1 피치와는 다른 제2 피치)로 배치된 화소 센서에 의해 화상을 촬영한다.
측정 장치(35)는, CCD 이미지 센서(31)로부터 취득한 화상의 화질을 평가한다.
화상 신호 생성 장치(15)는, 액정 패널(10)에 화질 평가를 위한 테스트 패턴 신호를 공급한다. 이 테스트 패턴 신호에 따라 액정 패널(10) 상에 테스트 패턴 화상이 출력된다.
광학 조정 장치(20)는, 액정 패널(10) 상에 표시된 화상의 포커스를 조정하는 장치이다. 광학 조정 장치(20)는 광학 필터(21), 화상을 포커스하는 광학계 부재로서의 렌즈(221, 222)로 구성되어 있다. 후술하듯이 PSF 형상을 매끈매끈한 「산」 형상으로 하기 위해 조임 부분에 넣는 광학 필터(21)의 주변 부분의 투과율을 거의 「0」으로 할 필요가 있다. 이와 같이 투과율의 낮은 필터를 넣기 때문에 렌즈(221, 222)로서는 충분히 밝은 F값의 렌즈를 이용하여 설계하고, 필터를 넣은 후의 실효 F값이 목적의 값이 되도록 설계한다.
(광학 필터)
본 실시 형태에서는, 디포커스(defocus) 위치에 설치된 CCD 이미지 센서(31)의 수광면에서의 PSF를 목적의 형상으로 설정한다. 구체적으로는, CCD 이미지 센서(31)에 있어서의 화소의 피치에 기초하여 정해지는 나이퀴스트 주파수 이상의 주파수에 있어서의 공간 주파수 성분을 억제한 파형을 생성하는 투과율 분포를 광학 필터(21)에 설치한다. 이 때문에, 광학 조정 장치(20)에 있어서는 렌즈(221, 222)의 조임 위치에 저역통과 필터로서 광학 농도 구배를 가지는 광학 필터(21)를 삽입한다.
본 실시 형태에서 이용하는 광학 필터(21)는, 도 7에 나타내듯이, 금속판(플레이트)을 그물코 모양으로 가공함으로써 형성되고, 이에 따라 광학 필터(21)에 목적의 광학 농도 구배를 가지게 하고 있다. 구체적으로는, 광학 필터(21)에 개공(211)을 설치한다. 이 개공(211)의 밀도 분포를 광학 필터(21)의 중심으로부터의 위치(21a, 21b, 21c)에 의해 바꾼다. 즉, 개공(211)의 분포 밀도가 광학 필터(21)의 중심으로부터 직경 방향 외측을 향해 동심원적으로 변화(감소)하도록 개공(211)이 광학 필터(21)에 설치된다.
이와 같이 하면, 금속판의 가공 정밀도로 정밀하게 광학 농도 분포를 설정하는 것이 가능하게 된다. 이 그물코의 차폐율이 광학 농도 분포에 대응한다.
개공(211)으로 이루어지는 그물코 모양 자체는 상(像) 면에서는 매우 섬세한 모양이 되기 때문에 해상되지 않고 개공(211)의 밀도 분포에 따른 그라데이션(gradation)을 얻을 수 있다.
(디포커스량의 결정)
다음에, 디포커스량의 결정에 대해서 설명한다.
액정 패널(10)의 화소로부터 발하여진 광은 도 2에 나타내는 광로에 따라서 CCD 이미지 센서(31)에 이른다. 여기서, 광학 조정 장치(20)의 초점 위치로부터 CCD 이미지 센서(31)까지의 거리를 디포커스량(df)으로 한다. 이 경우, 조임의 형상이 디포커스량(df)에 비례한 크기로 CCD 이미지 센서(31) 상에 투영된다. 따라서, 디포커스량(df)을 조정함으로써 자유로운 크기의 디포커스 화상(흐려짐)을 만들 수가 있다. 또한, 흐려짐의 형태는 디포커스량(df)에 의존하지 않는다.
도 3에 본 실시 형태의 목적의 흐려짐 형상, 즉 필터를 이용한 경우의 광강도 분포를 나타낸다. 높이 방향이 광의 강도, XY축은 CCD 이미지 센서(31) 면 상에서의 위치를 나타낸다.
도 4는 이 광강도 분포를 2차원으로 표시한 것이다. 횡축 눈금은 CCD 이미지 센서(31)의 피치의 길이가 정확히「1」이 되도록 정규화되어 있다. 세로축 눈금은 최대광강도로 정규화되어 있다.
도 5는 이 형상의 주파수 특성을 나타낸 것이다. 횡축의 단위는 주파수로 CCD 이미지 센서(31)의 피치에 의해 정해지는 나이퀴스트 주파수가 「1」이 되도록 정규화되어 있다. 세로축의 단위는 응답(response)으로 dB로 표시되어 있고, -40dB의 경우에는 「1/100」로 된다.
본 실시 형태의 디포커스량(df)은 흐려짐의 크기가 도 5가 되도록 조정되어 있다. 흐려짐의 형태는 조임 위치에 넣는 광학 필터(21)에 의해 결정되어 있고, 디포커스량을 바꾸어도 변화하지 않는다.
또, 도 5를 기준으로 하여 디포커스량을 변화시킨 주파수 특성을 도 6에 나타낸다. 여기서, 도 6의 (a)는 디포커스량을 기준의 2배, (b)는 기준과 같음, (c)는 기준의 반으로 변화시켰을 때의 주파수 특성이다. 디포커스량을 크게 하면 흐려짐이 커지고, 낮은 주파수로부터 감쇠해 버리는 대신에, 나이퀴스트 주파수 이상의 주파수를 확실히 감쇠시키는 것이 가능하다. 디포커스량을 작게 하면 흐려짐이 작아지고, 낮은 주파수의 감쇠가 억제되는 대신에, 나이퀴스트 주파수 이상의 주파수를 감쇠시키지 못하고 증가해 버린다. 이와 같이, 디포커스량을 변화시킴으로써 고역주파수의 감쇠량과 저주파 성분의 통과량과의 트레이드오프(trade-off)가 취해진다.
여기서, 액정 패널(10) 상의 점광원에 대해서 디포커스 위치에 있어서의 광의 강도 「V(r)」은 정규 분포로 되도록 설정되어 있고, 아래의 산출식에 의해 나타내진다.
V(r)=exp(-2*r2)
여기서, 「r」은 원점(0, 0)으로부터의 거리이고, CCD 이미지 센서(31)의 피치 간격과 동일한 길이를 「1」(단위)로 하고 있다. 본 실시 형태의 광학 필터(21)의 투과율 분포도 정규 분포에 근사하고 있고, 디포커스 위치에 있어서 광강도가 정규 분포로 되도록 보정되어 있다. 또한, 투과율 분포는 정규 분포에 가까운 쪽이 바람직하지만, 실질적으로 정규 분포로부터의 어긋남이 있는 경우에도 파문의 발생을 저감할 수가 있다.
상기 산출식에서는 「r」을 크게 해도 「0」은 되지 않기 때문에 엄밀하게는 광의 존재 범위가 무한하게 된다. 이래서는 제작 불능이므로 적당한 범위에서 중지하게 된다. 이 중단을 고려했을 경우의 최적 형상은 상식과는 다르지만 결과적으로 상기 산출식과 잘 닮은 형태로 된다.
본 실시 형태에 의하면 이하와 같은 효과를 얻을 수 있다.
- 본 실시 형태에서는, 조임 위치에 있어서 투과율 구배(광학 농도 구배)를 가지는 광학 필터(21)를 설치한다. 이 필터에 의해 화상에 있어서 나이퀴스트 주파수 성분 이상을 차단한다. 여기서, 본 실시 형태의 주파수 특성(도 5)과 통상의 조임의 주파수 특성(도 14)을 비교한다. 도 14와 도 5에 있어서는, 흐려짐의 크기를 조정하여 나이퀴스트 주파수에서의 응답(response)이 동일하게 되도록 되어 있다. 양쪽 도의 주파수 특성을 보고서 비교하면 목적의 형상에서는 높은 주파수가 잘 감쇠되고 있지만, 일반적인 형상의 흐려짐에서는 높은 주파수가 감쇠하지 않는 것을 알 수 있다.
파문 모양의 발생 원인은 디스플레이의 격자 모양이고, 이것은 높은 주파수에 집중하고 있다. 이 높은 주파수를 효과적으로 감쇠할 수가 있으면 파문 모양의 발생을 억제할 수가 있다. 따라서, 파문 모양을 억제하여 디스플레이의 평가를 적확하게 행할 수가 있다.
- 본 실시 형태에서는, 광학 필터(21)에 있어서 목적의 광학 농도 구배를 실현하기 위해서 금속판을 그물코 모양으로 가공한다. 일반적인 감광 필터(ND필터)를 이용하여 광학 농도 분포를 정밀하게 변화시켜도 이 광학 농도 구배를 제어하는 것은 곤란하다. 본 실시 형태에서는, 금속판의 그물코의 차폐율이 광학 농도 분포에 대응하고, 금속 가공 정밀도로 정밀하게 광학 농도 분포를 설정할 수가 있다.
(제2 실시 형태)
상기 제1 실시 형태에 있어서는, 광학 필터(21)에 개공(211)을 그 분포 밀도가 동심원적으로 변화하도록 설치함으로써 광학 필터(21)에 투과율 분포를 설치하였다. 제2 실시 형태에 있어서는, 정규 분포의 개구폭을 가지는 개구부를 이용한 광학 필터를 설명한다.
여기에서는, 도 8(a)에 나타내는 액정 패널(10)의 화소(11)에 대해서 도 8(b)에 나타내는 광학 필터(21)를 이용한다. 이 광학 필터(21)는 개구부(213)를 가진다. 이 개구부(213)는, 횡단축(214)에 대해서 대칭으로 배치된 2개의 정규 분포 곡선을 접합한 형상의 가장자리에 의해 구성된다. 본 실시 형태에서는, 이 횡단축(214)을 광축(광학 필터(21))의 중심을 지나도록 배치한다.
이 광학 필터(21)를 이용하는 경우에는 RGB 각 색의 화소(11)의 배치된 방향(도 8(a)에 대해 수평 방향)에 횡단축(214)을 맞춘다.
본 실시 형태에 의하면 이하와 같은 효과를 얻을 수 있다.
- 본 실시 형태에서는, 개구부(213)는 횡단축(214)에 대해서 대칭으로 배치된 2개의 정규 분포 곡선을 접합한 형상을 가진다. 액정 패널(10)에 있어서는 RGB 각 색의 화소(11)의 상대적인 휘도가 다르기 때문에 세로의 줄무늬의 휘도 모양(주기적 패턴 모양)이 생긴다. 이 주기 패턴 모양의 발생 방향(여기에서는 수평 방향)에 맞추어 정규 분포 곡선으로 이루어지는 개구부를 설치함으로써 파문 모양을 억제하여 디스플레이의 평가를 적확하게 행할 수가 있다.
- 본 실시 형태에서는, 동일 형상의 정규 분포 곡선을 대칭으로 접합한 형상의 개구부(213)를 설치함으로써 횡단축에 직교하는 직교축(도 8에서는 수직 방향)에 있어서도, 「산」 형상의 개구폭 분포를 얻을 수 있다. 이에 의해, 직교축에 있어서의 고역주파수 성분의 발생을 억제할 수가 있다.
- 본 실시 형태에서는, 개구부(213)의 횡단축(214)을 광축(광학 필터(21))의 중심을 지나도록 구성한다. 이에 의해, 렌즈의 수차의 발생을 억제할 수가 있다.
또, 상기 실시 형태는 이하와 같이 변경해도 좋다.
○ 상기 실시 형태에 있어서는, 액정 패널(10)의 파문 모양의 억제에 적용했지만 조정 대상의 표시 패널은 이것에 한정되는 것은 아니다. 플라스마 디스플레이(PDP), 유기 EL디스플레이, 투영형 프로젝터 등과 같은 주기적인 화소에 의해 구성된 화상의 출력 장치에 적용하는 것도 가능하다.
○ 상기 실시 형태에 있어서는, 소정의 주기로 배치된 화소 센서를 구비한 CCD 이미지 센서(31)를 이용하여 화상을 촬영했지만 촬상 소자는 이것에 한정되는 것은 아니다. 디스플레이의 화소 배치의 주기에 기인하여 파문 모양이 발생하는 것 같은 주기로 배치된 화소 센서를 구비한 촬상 소자(예를 들면, CMOS 촬상 소자)에 적용할 수가 있다.
○ 상기 실시 형태에 있어서는, 금속판을 가공하여 광학 필터(21)를 제작했다. 이에 대신하여 투명판(예를 들면 유리판) 상에 그물코 모양을 인쇄함으로써 광학 필터(21)를 제작할 수도 있다. 유리판 상에 도트(dot)의 분포 밀도가 다른 도트 패턴을 형성한다. 도트는 예를 들면 그 분포 밀도가 광학 필터(21)의 중심으로부터 직경 방향 외측을 향해 동심원적으로 변화(증대)하도록 배치된다. 금속판의 가공의 경우에는 개공의 수가 많아지면 금속판의 강도가 떨어지는 경우가 있지만, 유리판의 경우에는 투과율을 용이하게 높게 할 수가 있다.
다만, 유리판을 이용하는 경우에는 유리판을 포함한 렌즈 설계가 필요하다. 또, 유리 표면에서의 불필요한 반사를 억제하기 위해서 렌즈와 같은 저반사 코팅을 실시할 필요가 있다.
이 때에 사용하는 렌즈에 대해서는, 조임 위치에서의 광선의 통과 위치와 디포커스시의 상(像) 면에의 도달 위치의 관계가 촬상 영역 전반에 걸쳐 변화하지 않는 것이 바람직하다. 따라서, 이것은 촬상 영역 전반에 걸쳐 거의 무수차의 렌즈를 이용한다.
○ 상기 제2 실시 형태에 있어서는, 개구부(213)의 가장자리를 횡단축(214)에 대해서 대칭으로 정규 분포 곡선을 접합한 곡선에 의해 구성하였다. 이 가장자리의 형상은 이것에 한정되는 것은 아니고, 개구부(213)의 개구폭이 횡단축에 대해 정규 분포로 되어 있으면 좋다. 예를 들면, 도 9(a)에 나타내듯이, 직선과 정규 분포 곡선을 가장자리로 하는 개구부를 이용하는 것도 가능하다. 또, 도 9(b)에 나타내듯이, 곡선 상에 정규 분포의 개구폭을 설정함으로써 개구부를 형성하는 것도 가능하다.
또, 개구부(213)에 있어서, 횡단축(214) 상의 개구폭의 분포가 정규 분포에 가까우면 좋다. 이 경우, 개구폭이 부분적으로 정규 분포 또는 정규 분포에 가까운 분포로 되어 있는 경우에도 파문의 발생을 저감할 수가 있다.
○ 상기 제2 실시 형태에 있어서는, 개구부(213)의 횡단축(214)을 광축(광학 필터(21))의 중심을 지나도록 구성하였지만, 이 위치는 중심에 한정되는 것은 아니다. 예를 들면, 도 10에 나타내듯이, 횡단축(214)이 광학 필터(21)의 중심으로부터 어긋나 있는 경우에도 파문의 발생을 저감할 수가 있다.
10 액정 패널 15 화상 신호 생성 장치
20 광학 조정 장치 21 광학 필터
211 개공 213 개구부
214 횡단축
221, 222 렌즈
30 촬영 카메라
31 CCD 이미지 센서 35 측정 장치

Claims (7)

  1. 복수의 수광 화소를 구비한 고체 촬상 소자에 적용하는 광학 필터로서,
    상기 고체 촬상 소자에 있어서의 수광 화소의 피치에 기초하여 정해지는 나이퀴스트 주파수 이상의 주파수에 있어서의 공간 주파수 성분을 억제한 파형을 생성하는 투과율 분포를 가지고,
    상기 투과율 분포로서, 상기 고체 촬상 소자의 수광면에 있어서의 광강도가 정규 분포로 되도록 구성한 분포를 이용하고 있고,
    상기 투과율 분포는 소정 모양으로 가공되어 상기 광학 필터를 형성하는 플레이트에 형성된 개공의 밀도 분포를 이용하여 구성하고,
    상기 개공의 밀도 분포는 상기 광학 필터의 중심으로부터 직경 방향 외측을 향해 동심원적으로 감소하는 것을 특징으로 하는 광학 필터.
  2. 복수의 수광 화소를 구비한 고체 촬상 소자에 적용하는 광학 필터로서,
    상기 고체 촬상 소자에 있어서의 수광 화소의 피치에 기초하여 정해지는 나이퀴스트 주파수 이상의 주파수에 있어서의 공간 주파수 성분을 억제한 파형을 생성하는 투과율 분포를 가지고,
    상기 투과율 분포로서, 상기 고체 촬상 소자의 수광면에 있어서의 광강도가 정규 분포로 되도록 구성한 분포를 이용하고 있고,
    상기 투과율 분포는, 소정 모양으로 가공되어 상기 광학 필터를 형성하는 투명판에 형성된 도트 패턴의 밀도 분포를 이용하여 구성하고,
    상기 도트 패턴의 밀도 분포는 상기 광학 필터의 중심으로부터 직경 방향 외측을 향해 동심원적으로 증대하는 것을 특징으로 하는 광학 필터.
  3. 복수의 수광 화소를 구비한 고체 촬상 소자에 적용하는 광학 필터로서,
    상기 고체 촬상 소자에 있어서의 수광 화소의 피치에 기초하여 정해지는 나이퀴스트 주파수 이상의 주파수에 있어서의 공간 주파수 성분을 억제한 파형을 생성하는 투과율 분포를 가지고,
    상기 투과율 분포를 설치하기 위해, 상기 광학 필터의 중심 또는 중심으로부터 어긋나 있는 지점을 지나는 선을 횡단축으로 하고 상기 횡단축에 대해 대칭으로 배치된 2개의 정규 분포 곡선을 접합한 형상의 개구부를 설치한 것을 특징으로 하는 광학 필터.
  4. 제3항에 있어서,
    상기 개구부를, 광학 필터를 횡단하는 적어도 하나의 횡단축에 대해 대칭으로 배치한 2개의 정규 분포 곡선에 의해 구성한 것을 특징으로 하는 광학 필터.
  5. 복수의 수광 화소를 구비한 고체 촬상 소자와,
    평가 대상의 디스플레이의 화상을 포커스하는 광학계 부재와,
    상기 광학계 부재의 조임 위치에 설치되고, 상기 고체 촬상 소자에 있어서의 수광 화소의 피치에 기초하여 정해지는 나이퀴스트 주파수 이상의 주파수에 있어서의 공간 주파수 성분을 억제한 파형을 생성하는 투과율 분포를 가지는 광학 필터를 구비하고, 상기 투과율 분포로서, 상기 고체 촬상 소자의 수광면에 있어서의 광강도가 정규 분포로 되도록 구성한 분포를 이용하고 있고,
    상기 투과율 분포는 소정 모양으로 가공되어 상기 광학 필터를 형성하는 플레이트에 형성된 개공의 밀도 분포를 이용하여 구성하고,
    상기 개공의 밀도 분포는 상기 광학 필터의 중심으로부터 직경 방향 외측을 향해 동심원적으로 감소하는 것을 특징으로 하는 디스플레이 평가 시스템.
  6. 복수의 수광 화소를 구비한 고체 촬상 소자와,
    평가 대상의 디스플레이의 화상을 포커스하는 광학계 부재와,
    상기 광학계 부재의 조임 위치에 설치되고, 상기 고체 촬상 소자에 있어서의 수광 화소의 피치에 기초하여 정해지는 나이퀴스트 주파수 이상의 주파수에 있어서의 공간 주파수 성분을 억제한 파형을 생성하는 투과율 분포를 가지는 광학 필터를 구비하고,
    상기 투과율 분포로서, 상기 고체 촬상 소자의 수광면에 있어서의 광강도가 정규 분포로 되도록 구성한 분포를 이용하고 있고,
    상기 투과율 분포는 소정 모양으로 가공되어 상기 광학 필터를 형성하는 투명판에 형성된 도트 패턴의 밀도 분포를 이용하여 구성하고,
    상기 도트 패턴의 밀도 분포는 상기 광학 필터의 중심으로부터 직경 방향 외측을 향해 동심원적으로 증대하는 것을 특징으로 하는 디스플레이 평가 시스템.
  7. 제5항 또는 제6항에 있어서,
    상기 평가 대상의 디스플레이는, 플라스마 디스플레이(PDP), 유기 EL 디스플레이, 및 투영형 프로젝터를 포함하는 것을 특징으로 하는 디스플레이 평가 시스템.
KR1020117025497A 2009-04-22 2010-04-22 광학 필터 및 디스플레이 평가 시스템 KR101245985B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JPJP-P-2009-104487 2009-04-22
JP2009104487 2009-04-22
PCT/JP2010/057142 WO2010123063A1 (ja) 2009-04-22 2010-04-22 光学フィルタ及びディスプレイ評価システム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020127022237A Division KR20120101182A (ko) 2009-04-22 2010-04-22 광학 필터 및 디스플레이 평가 시스템

Publications (2)

Publication Number Publication Date
KR20120016215A KR20120016215A (ko) 2012-02-23
KR101245985B1 true KR101245985B1 (ko) 2013-03-20

Family

ID=43011179

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020117025497A KR101245985B1 (ko) 2009-04-22 2010-04-22 광학 필터 및 디스플레이 평가 시스템
KR1020127022237A KR20120101182A (ko) 2009-04-22 2010-04-22 광학 필터 및 디스플레이 평가 시스템

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020127022237A KR20120101182A (ko) 2009-04-22 2010-04-22 광학 필터 및 디스플레이 평가 시스템

Country Status (5)

Country Link
JP (1) JP5289561B2 (ko)
KR (2) KR101245985B1 (ko)
CN (1) CN102460271B (ko)
TW (1) TWI471550B (ko)
WO (1) WO2010123063A1 (ko)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160334636A1 (en) * 2014-01-27 2016-11-17 Empire Technology Development Llc Light field filter
US10015373B2 (en) 2014-07-15 2018-07-03 Iix Inc. Image processing method and image processing apparatus for executing image processing method
JP6519109B2 (ja) * 2014-07-17 2019-05-29 株式会社ニコン 露光方法及び装置、並びにデバイス製造方法
US10970825B2 (en) 2017-02-09 2021-04-06 Iix Inc. Image processing method and image processing apparatus for executing image processing method
CN109708842B (zh) * 2018-10-18 2022-07-26 北京航空航天大学 一种基于单像素成像的相机镜头点扩散函数测量方法
CN110049256B (zh) * 2019-04-23 2024-02-20 光沦科技(深圳)有限公司 一种局部自适应成像系统以及局部自适应成像控制方法
JP7443034B2 (ja) * 2019-11-29 2024-03-05 キヤノン株式会社 撮像装置、撮像アクセサリ、および、中間アクセサリ

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04144372A (ja) * 1990-10-04 1992-05-18 Fuji Photo Film Co Ltd 撮像装置
JPH08327496A (ja) * 1995-05-29 1996-12-13 Sony Corp Lcd検査装置
JP2000249986A (ja) * 1999-02-25 2000-09-14 Nikon Corp 光学濾光素子および光学装置
JP2006080845A (ja) * 2004-09-09 2006-03-23 Nikon Corp 電子カメラ

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5967565A (ja) * 1982-10-08 1984-04-17 Minolta Camera Co Ltd 静電潜像現像方法
US4613896A (en) * 1984-03-30 1986-09-23 Dainippon Screen Mfg. Co., Ltd. Methods and apparatus for avoiding moire in color scanners for graphic art
JPS60178820U (ja) * 1984-05-09 1985-11-27 大日本スクリ−ン製造株式会社 ロ−パスフイルタ−
JPS63301934A (ja) * 1987-06-01 1988-12-08 Canon Inc 焼き付け装置
TW518883B (en) * 1999-06-24 2003-01-21 Minolta Co Ltd Luminance characteristic measurement method and instrument for CRT
JP2004198780A (ja) * 2002-12-19 2004-07-15 Daishinku Corp 光学ローパスフィルタ、および光学ローパスフィルタを用いた撮像装置
JP4144372B2 (ja) * 2003-02-18 2008-09-03 トヨタ自動車株式会社 筒内噴射式内燃機関の制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04144372A (ja) * 1990-10-04 1992-05-18 Fuji Photo Film Co Ltd 撮像装置
JPH08327496A (ja) * 1995-05-29 1996-12-13 Sony Corp Lcd検査装置
JP2000249986A (ja) * 1999-02-25 2000-09-14 Nikon Corp 光学濾光素子および光学装置
JP2006080845A (ja) * 2004-09-09 2006-03-23 Nikon Corp 電子カメラ

Also Published As

Publication number Publication date
TWI471550B (zh) 2015-02-01
WO2010123063A1 (ja) 2010-10-28
KR20120016215A (ko) 2012-02-23
CN102460271B (zh) 2014-09-03
TW201105955A (en) 2011-02-16
JP5289561B2 (ja) 2013-09-11
KR20120101182A (ko) 2012-09-12
CN102460271A (zh) 2012-05-16
JPWO2010123063A1 (ja) 2012-10-25

Similar Documents

Publication Publication Date Title
KR101245985B1 (ko) 광학 필터 및 디스플레이 평가 시스템
TWI390195B (zh) 顯示面板之檢查方法及檢查裝置
EP3171588B1 (en) Image processing method and image processing apparatus executing that image processing method
TWI484283B (zh) 影像計算量測方法、影像計算量測裝置及影像檢查裝置
JP2008249909A (ja) 撮像装置及び光学系
US20110273569A1 (en) Monitoring of optical defects in an image capture system
JP2010256471A (ja) フォーカス調整装置
JP2005070025A (ja) 光源テストシステム及び光源のテスト方法
JP2007212214A (ja) レンズ系の製造方法とその評価装置とその評価方法
JP4885471B2 (ja) プリフォームロッドの屈折率分布測定方法
JP2011075310A (ja) むら検査方法及びむら検査装置
KR20010042895A (ko) 물체 특히 방출 방향에 따라 휘도가 좌우되는 물체의휘도특성을 측정하기 위한 시스템
JP2015115726A (ja) 輝度測定方法、輝度測定装置及びこれらを用いた画質調整技術
JP5104438B2 (ja) 周期性パターンのムラ検査装置および方法
JP6212843B2 (ja) 異物検査装置、異物検査方法
JP2009053019A (ja) 解像度検査用チャート、解像度検査装置及び解像度検査方法
JP2008175768A (ja) 表示パネルの欠陥検査装置および欠陥検査方法
JP2004186789A (ja) 画像評価装置
JP6196148B2 (ja) デフォーカス制御装置およびデフォーカス制御方法
JPH0771930A (ja) スリット光プロジェクタ
JP4365955B2 (ja) フレア率測定装置
JP6294904B2 (ja) ギラツキ評価装置およびギラツキ評価方法
JP6119785B2 (ja) 異物検査装置、異物検査方法
JP2001201459A (ja) 周期性パターンのムラ検査方法及び装置
JPH06258249A (ja) スジ検査方法

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
A107 Divisional application of patent
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160125

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20160826

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20170908

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20190129

Year of fee payment: 7