KR101220433B1 - 반도체 기판, 그 제조 방법, 반도체 소자 및 그 제조 방법 - Google Patents
반도체 기판, 그 제조 방법, 반도체 소자 및 그 제조 방법 Download PDFInfo
- Publication number
- KR101220433B1 KR101220433B1 KR1020090075827A KR20090075827A KR101220433B1 KR 101220433 B1 KR101220433 B1 KR 101220433B1 KR 1020090075827 A KR1020090075827 A KR 1020090075827A KR 20090075827 A KR20090075827 A KR 20090075827A KR 101220433 B1 KR101220433 B1 KR 101220433B1
- Authority
- KR
- South Korea
- Prior art keywords
- layer
- semiconductor layer
- substrate
- semiconductor
- forming
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 253
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 42
- 239000000758 substrate Substances 0.000 claims abstract description 167
- 239000007769 metal material Substances 0.000 claims abstract description 33
- 239000000463 material Substances 0.000 claims abstract description 10
- 238000000034 method Methods 0.000 claims description 57
- 150000001875 compounds Chemical class 0.000 claims description 35
- 229910052594 sapphire Inorganic materials 0.000 claims description 28
- 239000010980 sapphire Substances 0.000 claims description 28
- 238000005530 etching Methods 0.000 claims description 23
- 229910052715 tantalum Inorganic materials 0.000 claims description 16
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims description 12
- 238000010438 heat treatment Methods 0.000 claims description 9
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 claims description 8
- 229910001936 tantalum oxide Inorganic materials 0.000 claims description 8
- 229910052757 nitrogen Inorganic materials 0.000 claims description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 6
- 125000002524 organometallic group Chemical group 0.000 claims description 6
- 229910052710 silicon Inorganic materials 0.000 claims description 6
- 239000010703 silicon Substances 0.000 claims description 6
- 230000008018 melting Effects 0.000 claims description 5
- 238000002844 melting Methods 0.000 claims description 5
- 238000005498 polishing Methods 0.000 claims description 5
- 238000001947 vapour-phase growth Methods 0.000 claims description 4
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 abstract description 187
- 229910002601 GaN Inorganic materials 0.000 description 161
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 36
- 230000015572 biosynthetic process Effects 0.000 description 30
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 25
- 238000010586 diagram Methods 0.000 description 22
- 239000007789 gas Substances 0.000 description 11
- 230000000052 comparative effect Effects 0.000 description 9
- 239000013078 crystal Substances 0.000 description 9
- 239000008187 granular material Substances 0.000 description 9
- 239000002245 particle Substances 0.000 description 9
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 230000003595 spectral effect Effects 0.000 description 7
- 230000000694 effects Effects 0.000 description 5
- 239000012071 phase Substances 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 4
- 238000000151 deposition Methods 0.000 description 4
- 230000008021 deposition Effects 0.000 description 4
- 238000010894 electron beam technology Methods 0.000 description 4
- 229910052733 gallium Inorganic materials 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 239000013618 particulate matter Substances 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 239000011800 void material Substances 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- -1 gallium nitride compound Chemical class 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 238000000724 energy-dispersive X-ray spectrum Methods 0.000 description 1
- 238000002309 gasification Methods 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000001451 molecular beam epitaxy Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- XCZXGTMEAKBVPV-UHFFFAOYSA-N trimethylgallium Chemical compound C[Ga](C)C XCZXGTMEAKBVPV-UHFFFAOYSA-N 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 238000000927 vapour-phase epitaxy Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02494—Structure
- H01L21/02496—Layer structure
- H01L21/02502—Layer structure consisting of two layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/0242—Crystalline insulating materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02439—Materials
- H01L21/02455—Group 13/15 materials
- H01L21/02458—Nitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02439—Materials
- H01L21/02491—Conductive materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02538—Group 13/15 materials
- H01L21/0254—Nitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02656—Special treatments
- H01L21/02664—Aftertreatments
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/02636—Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
- H01L21/02647—Lateral overgrowth
- H01L21/0265—Pendeoepitaxy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/005—Processes
- H01L33/0062—Processes for devices with an active region comprising only III-V compounds
- H01L33/0066—Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
- H01L33/007—Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Led Devices (AREA)
Abstract
이종 재료의 기판상에서 평탄하고 박리가 용이한 GaN 기판을 저비용으로 제조하는 것을 가능하게 하는 제조 방법을 제공함과 동시에, 그 GaN 기판을 이용해 제조하는 LED나 레이저 다이오드 등의 반도체 소자의 저비용화, 성능 향상이나 장수명화를 실현하는 것이다.
본 발명의 반도체 기판은, 기판과, 상기 기판상에 형성된 제1의 반도체층과, 상기 제1의 반도체층상에 소정의 패턴 형상으로 형성된 금속성 재료층과, 상기 제1의 반도체층상 및 상기 금속성 재료층상에 형성된 제2의 반도체층과, 상기 금속성 재료층보다 하층 부분의 상기 제1의 반도체층에 형성된 공동을 가진다.
Description
본 발명은, 반도체 기판, 그 제조 방법, 반도체 소자 및 그 제조 방법에 관한 것이다. 특히, 기판상에 GaN층을 형성하는 반도체 기판, 그 제조 방법, 반도체 소자 및 그 제조 방법에 관한 것이다.
질화 갈륨(GaN)계 반도체를 이용한 발광 다이오드(이하, LED라고 한다)는, 신호기나 액정 패널의 백라이트 등의 여러 가지 기기로 이용되고 있다. LED의 발광 효율은, 결정의 전위 밀도, 결함에 영향을 받는다고 알려져 있다. GaN계 반도체의 결정 성장은, 사파이어 등의 이종 기판상에서 행해지지만, GaN층과 기판 사이의 격자 부정합 및 열 팽창 계수의 불일치가 발생해, 고전위 밀도나 결함의 증대를 가져온다고 여겨지고 있다.
여기서, GaN계 반도체의 결정 성장은, GaN 기판 등의 동종 재료의 기판상에서 실시하는 것이 바람직하다. 한편, GaN는 질소의 해리율이 높은 점 등에 의해 GaN 융액의 형성이 어렵고, GaN 기판의 제조를 곤란하게 하고 있다. 또, GaN 기판 용으로 성장시킨 GaN 벌크 결정을 GaN 기판으로서 박리하기 위해, 기계 연마나 레이저 박리 등이 이용되고 있지만, 실용적인 사이즈의 GaN 기판을 재현해 내기에는 매우 곤란했다. 특히, 레이저 박리는 방대한 시간을 필요로 해, GaN 기판의 비용을 상승시키는 원인이 되고 있다.
또, 비특허 문헌1에서는, 석영 기판상, W, Mo, Ta, 및 Nb의 고융점 금속 기판상, 및 Si 기판상의 각각에, 플라즈마 분자선 에피택시(plasma assisted molecular beam epitaxy)를 이용해 GaN를 결정 성장시키는 예를 보여주고 있다.
위에서 설명한 바와 같이, GaN 기판의 제조는 매우 곤란하고 비용도 비싸기 때문에, LED나 레이저 다이오드 등의 반도체 소자는, 사파이어 등의 이종 기판상에서 GaN층을 성장시켜 제조되는 경우가 많다. 그러나 앞서 말한 고전위 밀도나 결함의 증대에 의해, LED의 발광 성능의 향상을 방해하고 있다. 게다가, 사파이어 기판은 GaN 기판에 비해 열전도율이 낮고, 소자의 열방열성을 저하시킨다. 이것은 LED나 레이저 다이오드를 제조하는 경우, 장기 수명화를 방해하는 원인이 된다.
비특허 문헌1: "Polycrystalline GaN for light emitter and field electron emitter applications" S. Hasegawa, S. Nishida, T. Yamashita, H. Asahi, Thin Solid Films 487 (2005) 260-267
비특허 문헌2: "Buried Tungsten Metal Structure Fabricated by Epitaxial-Lateral-Overgrown GaN via Low-Pressure Metalorganic Vapor Phase Epitaxy" M. Haino, et. Al., Jpn. J. Appl. Phys., 39 (2000) L449
본 발명이 해결하려고 하는 기술적 과제는, 이종 재료의 기판상에서 평탄하고 박리가 용이한 GaN 기판을 저비용으로 제조하는 것을 가능하게 하는 제조 방법을 제공함과 동시에, 그 GaN 기판을 이용해 제조하는 LED나 레이저 다이오드 등의 반도체 소자의 성능 향상이나 장수명화를 실현하는 것이다.
본 발명의 일 실시 형태에 의하면, 기판과, 기판상에 형성된 제1의 반도체층과, 제1의 반도체층상에 소정의 패턴 형상으로 형성된 금속성 재료층과, 제1의 반도체층상 및 금속성 재료층상에 형성된 제2의 반도체층과, 금속성 재료층보다 하층 부분의 제1의 반도체층에 형성된 공동을 가지는 반도체 기판이 제공된다.
또, 상기 제1의 반도체층과 상기 제2의 반도체층은, 동일 또는 다른 화합물 반도체여도 좋고, 상기 금속성 재료층은, 상기 제2의 반도체층을 형성할 때의 가열 온도보다 고융점의 금속이어도 괜찮다.
또, 상기 금속성 재료층은, 산화막을 가지며, 상기 산화막은 상기 제1의 반도체층에 대한 마스크를 형성하는 것이 바람직하다.
또, 상기 금속성 재료층은, 상기 제1의 반도체층 및 상기 제2의 반도체층에 통하는 복수의 구멍을 가져도 괜찮다.
또, 상기 기판은, 사파이어 기판 또는 실리콘 기판 등 이어도 괜찮다.
또, 상기 금속성 재료층은, 탄탈이며, 그 막 두께가 5 nm보다 두껍고, 상기 제1의 반도체층상에 형성된 후, 상기 탄탈의 표면이 산화탄탈로 감싸져 있으며, 상기 제1의 반도체층과 상기 탄탈과의 계면이 탄탈과 산화탄탈로 감싸져 있어도 괜찮다.
또, 본 발명의 일 실시 형태에 의하면, 기판상에 제1의 반도체층을 형성하고, 상기 제1의 반도체층상에 소정의 패턴 형상으로 금속성 재료층을 형성하며, 상기 제1의 반도체층상 및 상기 금속성 재료층상에 제2의 반도체층을 형성함과 동시에, 상기 금속성 재료층보다 하층 부분의 상기 제1의 반도체층에 공동을 형성하는 반도체 기판의 제조 방법이 제공된다.
또, 상기 금속성 재료층은, 상기 제1의 반도체층상에 일정한 간격 및 폭으로 스트라이프 형상으로 형성하고, 상기 제2의 반도체층은 상기 금속성 재료층의 폭의 1/2배 이상의 층 두께로 형성해도 좋다. 상기 제2의 반도체층의 층 두께의 상한은, 특별히 한정되지 않으나, 약 1000㎛ 미만일 수 있다.
또, 상기 금속성 재료층은, 산화막을 가지며 상기 산화막은 상기 제1의 반도체층에 대한 마스크를 형성하는 것이 바람직하다.
또, 상기 금속성 재료층은, 상기 제1의 반도체층 및 상기 제2의 반도체층에 통하는 복수의 구멍이 형성되는 두께로 형성해도 좋다.
또, 상기 제2의 반도체층은, 유기 금속 기상 성장법을 이용하여 형성하고, 상기 제2의 반도체층을 성장시키는 것과 동시에, 상기 금속성 재료층이 형성되어 있지 않은 부분의 상기 제1의 반도체층을 상층으로 향하게 성장시키는 것이 바람직하다.
또, 상기 유기 금속 기상 성장법을 이용해 상기 제2의 반도체층을 성장시킬 때, 상기 제1의 반도체층의 성장 속도에 맞추어, 상기 제2의 반도체층을 성장시키도록 상기 유기 금속 기상 성장법의 설정 조건을 조정하는 것이 바람직하다.
또, 상기 유기 금속 기상 성장법의 설정 조건으로서, 원료 가스의 유량, 가열 온도, 성장 시간의 어느 하나 또는 복수를 조정해도 괜찮다.
또, 상기 제1의 반도체층과 상기 제2의 반도체층은, 동일 또는 다른 화합물 반도체 재료를 이용해 형성하고, 상기 금속성 재료층은, 상기 제2의 반도체층을 형성할 때의 가열 온도보다 고융점의 금속성 재료를 이용해 형성하는 것이 바람직하다.
또, 상기 금속성 재료층은, 산화막을 가지고, 상기 산화막은 상기 제1의 반도체층에 대한 마스크를 형성함과 동시에, 상기 제1의 반도체층 및 상기 제2의 반도체층에 통하는 복수의 구멍을 형성하여, 상기 제2의 반도체층을 상기 유기 금속 기상 성장법을 이용해 형성할 때, 상기 금속성 재료층이 형성된 부분의 하층의 상기 제1의 반도체층을 상기 금속성 재료층 및 질소와 반응시켜 상기 복수의 구멍으로부터 증발시켜 공동을 형성하는 것이 바람직하다.
또, 상기 금속성 재료층은, 탄탈이며 그 막 두께가 5 nm보다 두껍고, 상기 제1의 반도체층상에 형성 후, 상기 탄탈의 표면이 산화탄탈로 감싸져 있어 상기 제1의 반도체층과 상기 탄탈과의 계면이 탄탈과 산화탄탈로 감싸져 있어도 좋다.
또, 상기 기판은, 사파이어 기판 또는 실리콘 기판 등이어도 괜찮다.
또, 상기 제1의 반도체층에 형성된 상기 공동을 이용해 상기 기판을 박리하 여, 상기 제1의 반도체층 및 상기 제2의 반도체층으로부터 형성된 반도체 기판을 제조해도 괜찮다.
또, 상기 기판을 박리할 때에, 레이저·리프트 오프법을 이용해도 괜찮다.
또, 상기 기판을 박리할 때에, 연마법을 이용해도 괜찮다.
또, 상기 기판을 박리할 때에, 상기 기판을 트위스트 시켜 상기 제1의 반도체층으로부터 박리해도 괜찮다.
또, 본 발명의 일 실시 형태에 의하면, 상기 반도체 기판상에 형성되는 반도체 소자이며, 상기 제2의 반도체층상에 형성된 제1의 화합물 반도체층과, 상기 제1의 화합물 반도체층상에 형성된 활성층과, 상기 활성층상에 형성된 제2의 화합물 반도체층을 적어도 가지는 반도체 소자가 제공된다.
또, 상기 제1의 반도체층과 상기 제2의 반도체층은, 상기 제1의 화합물 반도체층과 동 계열의 화합물 반도체이며, 상기 제1의 화합물 반도체층의 굴절률과, 상기 제2의 화합물 반도체층의 굴절률은 서로 다른 것이 바람직하다.
또, 본 발명의 일 실시 형태에 의하면, 상기 반도체 기판상에 형성되는 반도체 소자의 제조 방법이며, 상기 제2의 반도체층상에 제1의 화합물 반도체층을 형성하고, 상기 제1의 화합물 반도체층상에 활성층을 형성하며, 상기 활성층상에 제2의 화합물 반도체층을 형성하는 반도체 소자의 제조 방법이 제공된다.
또, 상기 제1의 반도체층과 상기 제2의 반도체층은, 상기 제1의 화합물 반도체층과 동 계열의 화합물 반도체로 형성하고, 상기 제1의 화합물 반도체층의 굴절률과 상기 제2의 화합물 반도체층의 굴절률은 서로 다른 것이 바람직하다.
본 발명에 의하면, 이종 기판상에서 평탄하고 박리가 용이한 GaN 기판을 저비용으로 제조하는 것을 가능하게 하는 제조 방법을 제공함과 동시에, 그 GaN 기판을 이용해 제조하는 LED나 레이저 다이오드 등의 반도체 소자의 저비용화, 성능 향상이나 장수명화를 실현할 수 있다.
이하, 첨부한 도면에 근거하여 본 발명의 실시 형태에 대해 상세하게 설명한다. 또한, 이하에 기재한 실시 형태는 각각 본 발명의 한 형태에 지나지 않고, 본 발명은 이러한 실시 형태로 한정되는 것은 아니다.
(실시 형태 1)
도 1은, 실시 형태 1에 따른 반도체 기판(100)의 제조 방법의 개략을 나타내는 도면이다. 도 1의 (A)는 제1의 GaN층을 형성하는 공정을 나타내는 단면도, (B)는 Ta층을 형성하는 공정을 나타내는 단면도, (C)는 제2의 GaN층 및 공동의 형성 도중을 나타내는 단면도, (D)는 완성된 반도체 기판의 단면도이다.
도 1 (A)에서, 101은 사파이어(Al2O3) 기판이다. 우선, 사파이어 기판(101)상에 2㎛ 두께 정도의 제1의 GaN층(102)을 형성한다. 이 제1의 GaN층의 두께는 일례이며, 한정하는 것은 아니다.
다음으로, 도 1 (B)에서, 제1의 GaN층(102)상에 EB(Electron Beam) 증착 및 리프트 오프를 이용해 50nm 두께 정도의 Ta층(금속성 재료층)(103)을 스트라이프 형상으로 5㎛ 폭, 5㎛ 간격으로 형성한다. 이 Ta층(103)의 형상, 두께, 폭, 간격은 일례이며, 한정하는 것은 아니다.
다음으로, 도 1 (C)에서, 제1의 GaN층(102)상 및 Ta층(103)상에 유기 금속 기상 성장법(이하, MOCVD법이라고 한다)을 이용해 제2의 GaN층(104)을 형성한다. 이 도 1 (C)는, 제2의 GaN층(104)의 형성 도중 상태를 나타내고 있다. 이 경우, GaN층의 N과 Ta가 결합해 TaN이 생기고, 이것이 다른 물질로 되어, 보다 N이 진한 기상 중으로 상승해 간다. 900℃ 이상에서 TaN은 불안정해 지고, 1000℃ 이상에서는 기화하여, 그 기화에 수반해 구멍이 깊어져 가고, 공동(102a)이 형성된다. GaN의 N은 TaN이 되지만, Ga가 남는다. 이 Ga는, 기상 성장 중에 퇴적하는 Ga와 같은 것이므로, 원료로 사용된다. 그러나 Ta막 위에 GaN를 성장시킨 예가 있다. 상기 비특허 문헌1에서는, Ta층(103)의 표면은 Ta 만이 아니고, 뒤에서 기술하겠지만, 공기 중에서 처리됨에 의해, Ta2O5가 되어 있을 가능성이 있다고 판명되었다.
한편, 상기 제2의 GaN층(104)은 Ta층(103)의 1/2배 이상 형성될 수 있으며, 기판으로서의 사용을 위해 1000㎛ 미만으로 형성될 수 있다.
다음으로, 도 1 (D)에 있어서, 제2의 GaN층(104)의 형성이 종료하여, 반도체 기판(100)이 완성된다. MOCVD법에 의해 제2의 GaN층(104)의 형성을 진행시키면, 도면 중에 나타나듯이, Ta층(103)의 하층에 있는 제1의 GaN층(102)의 에칭이 진행되어, 공동(102a)의 형성 영역도 거의 사파이어 기판(101)상까지 확대된다. 또, 제2의 GaN층(104)의 성장과 함께, 제1의 GaN층(102)의 성장도 진행되기 때문에, 도 1 에 나타나듯이 기판 표면은 평탄화된다. 이 때문에, 본 실시 형태 1의 반도체 기판(100)에서는, 기판 표면을 평탄화하는 공정을 생략하는 것이 가능하다.
다음으로, 도 1 (E)에 있어서, 사파이어 기판(101)을 박리한다. 계속해서 도 1 (F)에 있어서, 박리한 제1의 GaN층(102)을 연마하는 것에 의해, GaN 기판(100)을 얻을 수 있다. 이 GaN 기판(100)의 도면 중 표면 측에 Si나 SiC 등의 실리콘계 기판을 붙여 아래면 측을 평탄 가공하여, 소자 제조용의 반도체 기판으로 해도 좋다. 또한, 사파이어 기판(101)을 박리하는 경우, 제1의 GaN층(102)에 형성된 공동(102a)을 이용하는 것이 가능하다. 사파이어 기판(101)을 박리하는 경우, 예를 들면, 레이저·리프트 오프법을 이용해도 좋고, 연마법을 이용해도 좋다. 또, 사파이어 기판(101)을 트위스트 시켜 제1의 GaN층(102)으로부터 박리해도 괜찮다. 본 실시 형태는, 사파이어 기판(101)을 박리하는 방법을 특별히 한정하는 것은 아니다.
이상과 같이, MOCVD법을 이용해 GaN층을 가지는 반도체 기판(100)을 형성하는 것에 의해, 공동(102a)을 이용해 제1의 GaN층(102)을 사파이어 기판(101)으로부터 박리하는 것이 쉬워져, 박리한 GaN층을 GaN 기판으로 이용하는 것이 가능해진다. 따라서, 종래의 GaN 기판보다 저비용으로 GaN 기판을 제조하는 것이 가능해진다.
(실시예 1)
다음으로, 상기 반도체 기판(100)의 제조 방법의 구체적인 예에 대해, 이하에서 설명한다. 본 실시예 1에서는, MOCVD 장치를 이용해 제2의 GaN층(104)을 형성 하는 과정에 대해 설명한다. 원료 가스로서 트리 메틸 갈륨(이하, TMGa라고 한다)을 이용하여 TMGa를 20μmol/min의 유량으로 흐르게 하면서 가열 온도를 1045℃로 설정하고, 결정 성장을 5시간 행한 예를 보여준다. 또, 본 실시예 1에서는, 제1의 GaN층(102)상에 스트라이프 형상으로 두께가 50nm의 Ta층(103)을 형성하고 있다.
상기 조건에 의해 제2의 GaN층(104)의 형성이 종료된 반도체 기판(100)을 도 2에 나타낸다. 도 2는, 반도체 기판(100)의 일부분의 SEM 단면 사진이다. 이 도면에서 분명히 나타나듯이, Ta층(103)의 형성 영역의 하층에 있는 제1의 GaN층(102)에는 공동(102a)이 형성되어 있다. 이 공동(102a)을 포함한 도면 중에 보이는 확대 영역에 대해 에너지 분산형 X선 분광기(이하, EDX라고 한다)를 이용해 분석한 결과를 도 3에 나타낸다.
도 3의 EDX에 의한 스펙트럼도에서 나타나듯이, 제1의 GaN층(102)의 GaN와 사파이어 기판(101)의 Al 및 O가 관측되고 Ta는 대부분 관측되지 않았다. 또, 도 4 (B)~(D)의 EDX도에서 나타나듯이, 제1의 GaN층(102)의 Ga와 사파이어 기판(101)의 Al 및 O가 관측되었지만 Ta는 관측되지 않았다.
이번 실시예 1에서는, 제2의 GaN층(104)의 형성 과정에서 Ta층(103)에 구멍(103a)이 형성되는 것을 관측했다. 이 Ta층(103)에 형성된 구멍(103a)의 분석 결과를 도 5 및 도 6에서 더 설명한다. 또한, 도 5 및 도 6에서 나타나는 분석 결과는, 상술한 MOCVD 장치를 이용한 제2의 GaN층(104)의 형성 과정을 도중에 멈추어, EDX에 의해 분석한 결과이다.
도 5에 있어서, (A)는 반도체 기판(100)의 SEM 단면 사진이며, (B)는 반도체 기판(100)의 SEM 표면 사진이다. 도 6에 있어서, (A)는 도 5 (B)의 반도체 기판(100)의 표면으로부터 EDX 분석한 Ga의 EDX도이며, (B)는 도 5 (B)의 반도체 기판(100)의 표면으로부터 EDX 분석한 Ta의 EDX도이다.
도 5 (A)에 나타내는 반도체 기판(100)의 SEM 단면 사진에서는, Ta층(103)의 하층에 있는 제1의 GaN층(102)이 에칭되어 공동(102a)이 형성된 것을 관측했다. 도 (B)에 나타나는 반도체 기판(100)의 SEM 표면 사진에서는, Ta층(103)의 표면에 구멍(103a)이 형성된 것을 관측했다. 또한, 이 구멍(103a)을 포함한 Ta층(103)의 표면을 EDX법에 의해 Ga, Ta에 대해 분석한 결과를 도 6 (A) 및 (B)에 나타낸다. 이러한 EDX도에 의해, Ta층(103)이 남고, Ta층(103)상에 Ga 및 GaN가 얇게 성장하고 있는 것이 판명되었다.
이상과 같이, 본 실시예 1에 따른 반도체 기판(100)에서는, MOCVD 장치를 이용해 제2의 GaN층(104)을 형성하는 조건을 조정하여, Ta층을 이용해 제1의 GaN층(102) 내에 에칭에 의한 공동(102a)을 형성하는 것을 가능하게 했다. 따라서, 상술의 실시 형태 1에 나타난 제2의 GaN층(104)을 형성할 때, 제1의 GaN층(102)의 성장과 함께, 제1의 GaN층(102) 내에 에칭에 의한 공동(102a)을 형성하는 것이 가능해졌다. 즉, 제1의 GaN층(102)상의 일부에 상술과 같은 에칭 작용을 발생시키는 금속성 재료층을 형성하는 것에 의해, 제1의 GaN층(102) 내에 공동(102a)을 형성하는 것이 가능해진 것이 판명되었다.
또한, 상기 실시예 1에 나타난 MOCVD 장치의 설정 조건은, 일례이며, 상술의 제1의 GaN층의 성장과 공동(102a)의 형성을 동시에 진행하는 것이 가능한 조건이면 좋다. 단, 제2의 GaN층(104)의 성장 과정에 있어서, 제2의 GaN층(104)의 성장 속도에 비해 제1의 GaN층(102)의 성장 속도는 늦기 때문에, 상기 실시예 1에서는, 제1의 GaN층(102)의 성장 속도에 맞추어 MOCVD 장치의 설정 조건을 조정했다.
또, 상기 실시 형태 1에서는, 제2의 GaN층(104)의 성장 과정에 있어서, Ta층(103)에 구멍(103a)이 형성되는 경우를 나타냈지만, 예를 들면, Ta층(103)을 형성할 때 미리 구멍을 형성한 패턴 마스크를 이용해 Ta층(103)을 형성하도록 해도 좋다. 또, Ta층(103)의 형상은, 상술의 스트라이프 형상으로 한정하는 것은 아니고, 그 형상은 반도체 기판(100)상에 형성하는 소자의 구조 등에 맞추어 변경해도 좋다. 반도체 기판(100)을 이용한 소자의 예에 대해서는 후술한다.
또, 상기 실시 형태 1에 나타낸 반도체 기판(100)은 GaN 기판을 박리한 후, 사파이어 기판(101)의 GaN를 형성한 면을 RIE 등에 의해 평탄하게 하면, 상술의 공동을 가지는 GaN층을 형성하는 기판(101)으로서 다시 이용할 수 있다. 따라서, GaN 기판의 제조 비용을 더욱 저감하는 것이 가능하다.
(실시예 2)
본 실시예 2에서는, MOCVD 장치를 이용해 제2의 GaN층(104)을 형성하는 과정에 대해 설명한다. 원료 가스로서 TMGa를 이용해 TMGa를 20μmol/min의 유량으로 흐르게 하면서 가열 온도를 1045℃로 설정해, 결정 성장을 5시간 행한 예를 보여준다. 또, 본 실시예 2에서는, 제1의 GaN층(102)상에 스트라이프 형상으로 두께가 30nm의 Ta층(103)을 형성하고 있다.
상기 조건에 의해 제2의 GaN층(104)의 형성이 종료한 반도체 기판(100)을 도 12에 나타낸다. 도 12는, 반도체 기판(100)의 일부분인 SEM 단면 사진이다. 이 도면에서 분명히 나타나듯이, Ta층(103)의 형성 영역의 하층에 있는 제1의 GaN층(102)의 일부에는 공동(102a)이 형성되어 있다. 또, 이번 실시예 2에서는, 제2의 GaN층(104)의 형성 과정에서 Ta층(103)에 구멍(103a)이 형성되는 것을 관측했다.
본 실시예 2에 따른 반도체 기판(100)에서는, MOCVD 장치를 이용해 제2의 GaN층(104)을 형성하는 조건을 조정하여, Ta층(103)을 이용해 제1의 GaN층(102) 내에 에칭에 의한 공동(102a)을 형성하는 것을 가능하게 하였다. 따라서, 상술의 실시 형태 1에 나타난 제2의 GaN층(104)을 형성할 때에, 제1의 GaN층(102)의 성장과 함께, 제1의 GaN층(102) 내에 에칭에 의한 공동(102a)을 형성하는 것이 가능하게 되었다. 즉, 제1의 GaN층(102)상의 일부에 상술과 같은 에칭 작용을 발생시키는 금속성 재료층을 형성하는 것에 의해, 제1의 GaN층(102) 내에 공동(102a)을 형성하는 것이 가능해짐이 판명되었다.
도 12에 나타난 단면도에서는, Ta층(103)의 바로 아래 전체는 아니고, 각 Ta층(103)의 좌우 양단 부분의 하층에 위치하는 제1의 GaN층(102) 내에 에칭에 의한 공동(102a)이 형성되어 있다. 이것은, 제1의 GaN층(102) 내에 에칭이 각 Ta층(103)의 좌우 양단 부분으로부터 진행하는 것을 나타내고 있다.
또한, 상기 실시예 2에 나타난 MOCVD 장치의 설정 조건은, 일례이며, 상술의 제1의 GaN층의 성장과 공동(102a)의 형성을 동시에 진행하는 것이 가능한 조건이면 좋다. 단, 제2의 GaN층(104)의 성장 과정에 있어서, 제2의 GaN층(104)의 성장 속도에 비해 제1의 GaN층(102)의 성장 속도는 늦기 때문에, 상기 실시예 2에서는, 제1 의 GaN층(102)의 성장 속도에 맞추어 MOCVD 장치의 설정 조건을 조정했다.
또, 상기 실시예 2에서는, 제2의 GaN층(104)의 성장 과정에 있어서, Ta층(103)에 구멍(103a)이 형성되는 경우를 나타냈지만, 예를 들면, Ta층(103)을 형성할 때 미리 구멍을 형성한 패턴 마스크를 이용해 Ta층(103)을 형성하도록 해도 좋다. 또, Ta층(103)의 형상은, 상술한 스트라이프 형상으로 한정하는 것은 아니고, 그 형상은 반도체 기판(100)상에 형성하는 소자의 구조 등에 맞추어 변경해도 좋다. 반도체 기판(100)을 이용한 소자의 예에 대해서는 후술한다.
또, 상기 실시예 2에 나타난 반도체 기판(100)은, GaN 기판을 박리한 후, 사파이어 기판(101)의 GaN를 형성한 면을 RIE등에 의해 평탄하게 하면, 상술의 공동을 가지는 GaN층을 형성하는 기판(101)으로서 다시 이용할 수 있다. 따라서, GaN 기판의 제조 비용을 더욱 저감하는 것이 가능하다.
(실시예 3)
본 실시예 3에서는, MOCVD 장치를 이용해 제2의 GaN층(104)을 형성하는 과정에 대해 설명한다. 원료 가스로서 TMGa를 이용해 TMGa를 20μmol/min의 유량으로 흘리면서 가열 온도를 1045℃로 설정해, 결정 성장을 5시간 행한 예를 보여준다 또, 본 실시예 3에서는, 제1의 GaN층(102)상에 스트라이프 형상으로 두께가 50nm인 Ta층(103)을 형성하고 있다.
상기 조건에 의해 제2의 GaN층(104)의 형성이 종료된 반도체 기판(100)을 도 13에 나타낸다. 도 13은, 반도체 기판(100)의 일부분의 SEM 단면 사진이다. 이 도면에서 분명히 나타나듯이, Ta층(103)의 형성 영역의 하층에 있는 제1의 GaN 층(102)에는 공동(102a)이 형성되어 있다. 또, 이번 실시예 3에서는, 제2의 GaN층(104)의 형성 과정에서 Ta층(103)에 구멍(103a)이 형성되는 것을 관측했다.
본 실시예 3에 따른 반도체 기판(100)에서는, MOCVD 장치를 이용해 제2의 GaN층(104)을 형성하는 조건을 조정하여, Ta층(103)을 이용해 제1의 GaN층(102) 내에 에칭에 의한 공동(102a)을 형성하는 것을 가능하게 했다. 따라서, 상술의 실시 형태 1에 나타난 제2의 GaN층(104)을 형성할 때 제1의 GaN층(102)의 성장과 함께, 제1의 GaN층(102) 내에 에칭에 의한 공동(102a)을 형성하는 것이 가능하게 되었다. 즉, 제1의 GaN층(102)상의 일부에 상술과 같은 에칭 작용을 발생시키는 금속성 재료층을 형성하는 것에 의해, 제1의 GaN층(102) 내에 공동(102a)을 형성하는 것이 가능해짐이 판명되었다.
또한, 상기 실시예 3에 나타난 MOCVD 장치의 설정 조건은, 일례이며, 상술의 제1의 GaN층의 성장과 공동(102a)의 형성을 동시에 진행하는 것이 가능한 조건이면 좋다. 단, 제2의 GaN층(104)의 성장 과정에 있어서, 제2의 GaN층(104)의 성장 속도에 비해 제1의 GaN층(102)의 성장 속도는 늦기 때문에, 상기 실시예 3에서는, 제1의 GaN층(102)의 성장 속도에 맞추어 MOCVD 장치의 설정 조건을 조정했다.
또, 상기 실시예 3에서는, 제2의 GaN층(104)의 성장 과정에 있어서, Ta층(103)에 구멍(103a)이 형성되는 경우를 나타냈지만, 예를 들면, Ta층(103)을 형성할 때 미리 구멍을 형성한 패턴 마스크를 이용해 Ta층(103)을 형성하도록 해도 좋다. 또, Ta층(103)의 형상은, 상술의 스트라이프 형상으로 한정하는 것은 아니고, 그 형상은 반도체 기판(100)상에 형성하는 소자의 구조 등에 맞추어 변경해도 좋다. 반도체 기판(100)을 이용한 소자의 예에 대해서는 후술한다.
또, 상기 실시예 3에 나타낸 반도체 기판(100)은, GaN 기판을 박리한 후, 사파이어 기판(101)의 GaN를 형성한 면을 RIE 등에 의해 평탄하게 하면, 상술의 공동을 가지는 GaN층을 형성하는 기판(101)으로서 다시 이용할 수 있다. 따라서, GaN 기판의 제조 비용을 더욱 저감하는 것이 가능하다.
(실시예4)
본 실시예 4에서는, MOCVD 장치를 이용해 제2의 GaN층(104)을 형성하는 과정에 대해 설명한다. 원료 가스로서 TMGa를 이용해 TMGa를 20μmol/min의 유량으로 흐르게 하면서 가열 온도를 1045℃로 설정해, 결정 성장을 5시간 행한 예를 보여준다. 또, 본 실시예 4에서는, 제1의 GaN층(102)상에 스트라이프 형상으로 두께가 100nm인 Ta층(103)을 형성하고 있다.
상기 조건에 의해 제2의 GaN층(104)의 형성이 종료된 반도체 기판(100)을 도 14에 나타낸다. 도 14는, 반도체 기판(100)의 일부분의 SEM 단면 사진이다. 이 도면에서 분명히 나타나듯이, Ta층(103)의 형성 영역의 하층에 있는 제1의 GaN층(102)에는 공동(102a)이 형성되어 있다. 또, 이번 실시예 4에서는, 제2의 GaN층(104)의 형성 과정에서 Ta층(103)에 구멍(103a)이 형성되는 것을 관측했다.
본 실시예 4에 따른 반도체 기판(100)에서는, MOCVD 장치를 이용해 제2의 GaN층(104)을 형성하는 조건을 조정하여, Ta층(103)을 이용해 제1의 GaN층(102) 내에 에칭에 의한 공동(102a)을 형성하는 것을 가능하게 했다. 따라서, 상술의 실시 형태 1에 나타난 제2의 GaN층(104)을 형성할 때, 제1의 GaN층(102)의 성장과 함께, 제1의 GaN층(102) 내에 에칭에 의한 공동(102a)을 형성하는 것이 가능하게 되었다. 즉, 제1의 GaN층(102)상의 일부에 상술과 같은 에칭 작용을 발생시키는 금속성 재료층을 형성하는 것에 의해, 제1의 GaN층(102) 내에 공동(102a)을 형성하는 것이 가능해짐이 판명되었다.
또한, 상기 실시예 4에 나타낸 MOCVD 장치의 설정 조건은, 일례이며, 상술의 제1의 GaN층의 성장과 공동(102a)의 형성을 동시에 진행하는 것이 가능한 조건이면 좋다. 단, 제2의 GaN층(104)의 성장 과정에 있어서, 제2의 GaN층(104)의 성장 속도에 비해 제1의 GaN층(102)의 성장 속도는 늦기 때문에, 상기 실시예 4에서는, 제1의 GaN층(102)의 성장 속도에 맞추어 MOCVD 장치의 설정 조건을 조정했다.
또, 상기 실시예 4에서는, 제2의 GaN층(104)의 성장 과정에 있어서, Ta층(103)에 구멍(103a)이 형성되는 경우를 나타냈지만, 예를 들면, Ta층(103)을 형성할 때 미리 구멍을 형성한 패턴 마스크를 이용해 Ta층(103)을 형성하도록 해도 좋다. 또, Ta층(103)의 형상은, 상술의 스트라이프 형상으로 한정하는 것은 아니고, 그 형상은 반도체 기판(100)상에 형성하는 소자의 구조 등에 맞추어 변경해도 좋다. 반도체 기판(100)을 이용한 소자의 예에 대해서는 후술한다.
또, 상기 실시예 4에 나타낸 반도체 기판(100)은, GaN 기판을 박리한 후, 사파이어 기판(101)의 GaN를 형성한 면을 RIE 등에 의해 평탄하게 하면, 상술의 공동을 가지는 GaN층을 형성하는 기판(101)으로서 다시 이용할 수 있다. 따라서, GaN 기판의 제조 비용을 더욱 저감하는 것이 가능하다.
(비교예 1)
다음으로, 상술의 실시예 1에 대한 비교예에 대해 설명한다. 이 비교예에서는, MOCVD 장치의 설정 조건을 변경하여, 반도체 기판(100)의 제2의 GaN층(104)을 형성하는 구체적인 예를 설명한다.
본 비교예 1에서는, 원료 가스로서 TMGa를 이용해 TMGa를 87μmol/min의 유량으로 흐르게 하면서 가열 온도를 1045℃로 설정해, 결정 성장을 5시간 행한 예를 보여준다.
상기 조건에 의해 제2의 GaN층(104)의 형성이 종료된 반도체 기판(100)을 도 7에 나타낸다. 도 7에서, (A)는 반도체 기판(100)의 일부분의 SEM 단면 사진이며, (B)는 (A)의 표면을 부분적으로 확대한 SEM 표면 사진이다. 이 도면에서 분명히 나타나듯이, 제2의 GaN층(104)의 면상에는, 입상의 물질이 석출되고 있고, Ta층(103)의 형성 영역의 하층에 있는 제1의 GaN층(102)에는 공동(102a)이 형성되고 있다. 입상의 물질은, 이하의 EDX 분석 및 CL분석에 의해 Ga입자, N입자, Ta입자인 것이 판명되었다.
상기 입자 형상 물질의 표면을 EDX 분석한 결과를 도 8에 나타낸다. 도 8에서, (A)는 도 7 (B)의 입상 물질을 EDX 분석한 스펙트럼도이며, (B)는 도 7 (B)의 입상 물질을 EDX 분석한 Ga의 EDX도이며, (C)는 도 7 (B)의 입상 물질을 EDX 분석한 N의 EDX도이다. 도 8 (A)의 스펙트럼도에 나타나듯이 Ga 및 N와 약간의 Ta가 관측되고, 도 8 (B) 및 (C)의 EDX도에 나타나듯이 Ga 및 N이 관측되었다.
더욱이, 입상 물질의 단면을 EDX 분석한 결과를 도 9 및 도 10에 나타낸다. 도 9에서, (A)는 도 7 (B)의 입상 물질로서의 보이드 부분을 확대한 SEM 단면 사진 이며, (B)는 (A)의 단면을 EDX 분석한 스펙트럼도이다. 도 10에서, (A)는 도 9 (A)의 단면을 EDX 분석한 Ga의 EDX도이며, (B)는 도 9 (A)의 단면을 EDX 분석한 N의 EDX도이며, (C)는 도 9 (A)의 단면을 EDX 분석한 Ta의 EDX도이다.
도 9 (B)의 스펙트럼도에 나타나듯이, 제2의 GaN층(104) 및 입상 물질의 Ga 및 N, Ta층(103)의 Ta, 사파이어 기판(101)의 Al 및 O가 관측되었다. 또, 도 10 (A)~(C)에 나타나듯이, 보이드 부분에 Ga, N, Ta가 관측되었다.
이상의 관측 결과로부터 제2의 GaN층(104)의 면상에 석출한 입상 물질은, Ga입자, N입자와 Ta입자인 것이 판명되었다. 즉, 본 비교예 1에서는, 제1의 GaN층(103)의 에칭된 부분의 Ga가 N와의 결합이 끊기고, GaO의 반응과 가스화가 끊겨, Ga입자, N입자 및 Ta입자가 석출된 것이 판명되었다.
이상과 같이, 비교예 1의 MOCVD 장치의 설정 조건에서는, TMGa의 유량을 87μmol/min으로 실시예 1보다 많이 설정했기 때문에, 상술과 같은 입상 물질이 기판상에 석출하여, 기판으로서는 사용 불가능한 것이 판명되었다. 따라서, 입상 물질이 기판상에 석출하지 않는 TMGa의 바람직한 유량 X는, X<87μmol/min의 범위인 것이 판명되었다.
(Ta층의 Ta2O5 형성에 대해)
상기 실시예 1 ~ 실시예 4에서는, Ta층(103)의 두께를 30nm, 50nm, 100nm로 변경하는 예를 보여준다. 이와 같이, Ta층(103)의 두께를 변경해도, 제1의 GaN층(104) 중에는 에칭에 의해 공동(102a)이 형성되는 것을 확인할 수 있다.
Ta층(103)은, 그 두께에 따라 Ta2O5가 생성되는 영역이 변화하는 것을, 도 15에 모식적으로 나타낸다. 도 15 (A)는, 두께를 5nm의 Ta층(103)이 Ta2O5로 변화한 예를 나타내고, 도 15 (B)는, 두께를 100nm의 Ta층(103)의 표면이 Ta2O5로 변화한 예를 나타낸다. 제1의 GaN층(102)의 표면에 Ta층(103)을 EB 증착 장치로 증착한 후, MOCVD 장치까지 옮기는 동안에 Ta층(103)은 대기 중에 노출된다. 그동안에 Ta와 산소가 반응해 Ta층(103)이 Ta2O5로 변화하고 있는 것이 판명되었다. 이 때문에, 도 15 (A)에 나타나는 Ta층(103)의 두께를 5nm로 했을 경우는 전체가 Ta2O5로 변화하고, 도 15 (B)에 나타내는 Ta층(103)의 두께를 100nm로 했을 경우는 표면이 Ta2O5로 변화하는 것이 판명되었다. 즉, Ta가 실온에서 공기에 접하면, Ta2O5가 생긴다. 도 15 (A)에 두께 5nm의 Ta막이 GaN층상의 횡방향으로 성장하는 예를 모식적으로 나타낸다. 또, 실제로 두께 10nm의 Ta2O5를 기판상의 횡방향으로 성장시킨 예를 도 16에 나타낸다. 양쪽 모두, Ta막 아래의 GaN층이 에칭되는 일 없이 성장이 진행되고 있다. 즉, 두께 5nm의 Ta막을 형성한 기판을, 공기 중에서 MOCVD 장치까지 옮긴 결과, 도 15 (A)에서는 5nm의 Ta2O5가 형성되었다. Ta2O5는 매우 좋은 횡방향으로 성장하는 마스크이다. 한편, 도 15 (B)에 나타내는 두께 100nm의 Ta를 형성했을 경우는 사정이 다르다. Ta를 EB 증착으로 형성하는 경우, 원료의 Ta를 공기 중에서 장착하기 때문에, Ta 표면에 얇은 산화막이 증착된다. 이것을 더욱 증착하면, 처음에 는 Ta2O5가 되지만, 이 상태는 점점 줄어들어 Ta 금속의 증착이 된다. 따라서, GaN층상의 Ta의 Ta2O5의 막 두께는 5nm 이하이며, 부분적으로 Ta인 부분이 포함되어 있다. 이 Ta2O5막으로부터 위층은 Ta이다. 그리고 Ta층 형성 후의 기판을 공기 중에서 MOCVD 장치까지 옮기는 것에 의해, Ta층의 표면에 얇게 Ta2O5막이 형성된다. 그 결과, Ta층의 표면을 얇게 Ta2O5막으로 감싼 형태가 된다. 이 Ta층 가운데, GaN층상의 Ta2O5막은, 부분적으로 Ta가 섞인 층이 된다. 이 모습을 도 15 (B)에 모식적으로 나타내고 있다. GaN층의 N와 Ta층의 Ta는 결합해 TaN이 되지만, Ga는 기상 성장 중에 퇴적하는 Ga와 같은 것이므로, 그대로 원료로서 사용되고 있다.
상기 실시예 1~실시예 4에 있어서, Ta층(103)이 산화한 Ta2O5 영역은, 제1의 GaN층(104)에 대해서 횡방향으로 성장하여 매우 좋은 에칭 마스크로 작용한다. 이 때문에, 실시예 2에서 도 12에 나타낸 것처럼, 두께가 30nm의 Ta층(103)의 좌우 양단 부분에서는 Ta2O5 영역이 형성되지 않고, 이 부분의 하층에 위치하는 제1의 GaN층(102)으로부터 공동(102a)의 형성이 진행하는 것이 판명되었다. 두께가 50nm, 100nm로 한 Ta층(103)을 형성한 실시예 3 및 4에서도, 그 표면에 Ta2O5 영역이 형성되어 제1의 GaN층(104)에 대해서 에칭 마스크로서 작용하기 때문에, 똑같이 공동(102a)의 형성이 진행된다.
따라서, 에칭 마스크로서 작용시키는 Ta2O5 영역이 형성되는 Ta층(103)의 두 께는, 실시예 1~실시예 4에 나타낸 것처럼 20nm~100nm여도 좋다. 또한, 제1의 GaN층상에 두께 5nm의 Ta 마스크를 형성한 예를 나타낸 도 16 (A)에서는, Ta 마스크의 하층에 공동이 형성되지 않았다. 또, Ta2O5 마스크만을 형성한 예를 나타낸 도 16 (B)에서는, Ta2O5 마스크가 GaN층상, 및 InGaAlN상에 형성 가능한 것을 확인했다. 따라서, Ta층(103)의 두께에 의하지 않고 Ta2O5 마스크가 형성되기 때문에, 상기 실시예 1~실시예 4에 나타낸 것처럼, Ta2O5 마스크의 하층에 위치하는 제1의 GaN층(102) 내에 공동(102a)의 형성을 진행시키는 것이 가능하다.
(실시 형태 2)
다음으로, 상기 실시 형태 1에 나타낸 반도체 기판(100)상에 형성한 반도체 소자의 예로서 LED를 형성했을 경우에 대해 도 11을 참조해 설명한다.
도 11은, 본 실시 형태 2에 따른 LED를 설명하기 위한 부분 단면도이다.
도 11에 있어서, 반도체 기판(100)상에는 복수의 LED(200)가 서로 격리되어 형성된다. 각 LED(200)는, 제1의 도전형 화합물 반도체층으로 된 하부 반도체층(201)과, 활성층(202)과 제2의 도전형 화합물 반도체층으로 된 상부 반도체층(203)을 가진다. 활성층(202)은, 층 및 장벽층을 가지는 단일 또는 다중 양자 우물 구조를 가져도 좋고, 요구되는 발광 파장에 의해, 그 물질 및 조성이 선택된다. 예를 들면, 활성층(202)은, 질화갈륨계의 화합물 반도체로 형성되어도 좋다. 하부 및 상부 반도체층(201, 203)은, 활성층(202)에 비해 밴드 갭이 큰 물질로 형성되고, 질화갈륨계의 화합물 반도체로 형성되어도 좋다.
이 경우, 반도체 기판(100)상에 형성되는 하부 반도체층(201)은, 제2의 GaN층(104)상에 형성된다. 따라서, 반도체 기판(100)을 이용해 LED(200)를 제조하는 것에 의해, 제조 비용을 저감하는 것이 가능하게 된다.
상부 반도체층(203)은, 하부 반도체층(201)의 일부 영역의 상부에 위치하고, 활성층(202)은, 상부 반도체층(203)과 하부 반도체층(201)의 사이에 개재된다. 또, 상부 반도체층(203)상에 상부 전극층(204)을 형성해도 좋다. 상부 전극층(204)은, 투명 전극층, 예를 들면, 인디움틴산화물막(ITO), 또는, Ni/Au 등의 물질로 형성되어도 좋다.
또, 상부 전극층(204)상에는, 상부 전극 패드(205)가 형성되고, 하부 반도체층(201)이 노출된 영역에는, 하부 전극(207)이 형성된다.
이와 같이, 단일의 반도체 기판(100)상에서 복수의 LED(200)를 형성한 후, 도면 중에 나타내는 절단 위치에서 절단하는 것에 의해, 개개의 LED(200)로 분리하는 것이 가능하다. 이 LED(200)와 같이, 상부 전극(205)과 하부 전극 패드(207)를 수평형으로 배치하는 것만이 아니고, 각 전극을 수직형으로 배치한 LED도 제조 가능하다. 즉, 반도체 기판(100)의 공동(102a)을 이용해 사파이어 기판(101)을 박리하고, 제1의 GaN층(102)의 박리면을 RIE 등에 의해 평탄화한 후, 하부 전극을 형성하는 것에 의해, 수직형 구조의 LED를 제조하는 것이 가능하다.
이상과 같이, 반도체 기판(100)상을 이용해 복수의 LED(200)를 제조하는 것에 의해, LED의 제조 비용을 저감하는 것이 가능하게 된다. 또, 제2의 GaN층(104)상에 LED(200)를 형성할 때에, 제2의 GaN층(104)과 하부 반도체층(201)의 굴절률을 서로 다르게 한 화합물 반도체를 형성하는 것에 의해, 발광 효율의 향상을 꾀할 수 있어 고휘도의 LED 어레이를 구성하는 것도 가능하다. 또, 반도체 기판(100)을 이용해 레이저 다이오드를 형성하면, 사파이어 기판(101)보다 열전도율이 좋은 GaN층상에 형성되기 때문에, 방열 특성을 향상할 수 있어 레이저 다이오드의 장수명화를 꾀하는 일도 가능하다.
또한, 상기 실시 형태 2에서는, 반도체 기판(100)의 제2의 GaN층상에 LED(200)를 형성하는 경우를 나타냈지만, 사파이어 기판(101)으로부터 박리한 GaN 기판을 이용해 똑같이 LED(200)를 형성해도 좋다. 또, 사파이어 기판(101)으로부터 박리한 GaN 기판의 피박리면에 Si나 SiC 등의 실리콘계 기판을 지지재로서 붙이고, 박리면을 RIE 등에 의해 연마해, FET 등의 반도체 소자를 형성하도록 해도 좋다. 이 경우, 대전류 소자를 제조하는 것이 가능하게 된다.
따라서, 반도체 기판(100)을 이용해 LED나 레이저 다이오드 등의 반도체 소자를 형성하는 것에 의해, 고가의 GaN 기판을 이용함이 없이, 저비용으로 고성능의 반도체 소자를 용이하게 제조하는 것이 가능하게 된다.
또한, 상기 실시 형태에서는, 금속성 재료층으로서 Ta층을 형성했을 경우를 나타냈지만, 복수의 금속의 합금이나 금속과 반도체 등의 합금 등을 이용해도 좋고, 상술의 제1의 GaN층에 대해서 에칭 작용을 발휘하는 금속성 재료이면 좋다.
도 1은 본 발명의 실시 형태 1에 따른 반도체 기판의 제조 방법을 나타내는 도면이며, (A)는 제1의 GaN층을 형성하는 공정을 나타내는 단면도, (B)는 Ta층을 형성하는 공정을 나타내는 단면도, (C)는 제2의 GaN층 및 공동의 형성 도중을 나타내는 단면도, (D)는 제2의 GaN층의 형성의 완료를 나타내는 단면도, (E)는 사파이어 기판을 박리한 단면도, (F)는 완성된 GaN 기판의 단면도이다.
도 2는 실시예 1에 따른 반도체 기판의 SEM 단면 사진이다.
도 3은 실시예 1에 따른 EDX의 스펙트럼도이다.
도 4는 실시예 1에 따른 (A)는 도 2의 확대 영역의 SEM 단면 사진, (B)는 Ga의 EDX도, (C)는 Al의 EDX도, (D)는 O의 EDX도이다.
도 5는 실시예 1에 따른 (A)는 반도체 기판의 SEM 단면 사진, (B)는 반도체 기판의 SEM 표면 사진이다.
도 6은 실시예 1에 따른 반도체 기판의 EDX도 이며, (A)는 Ga의 EDX도, (B)는 Ta의 EDX도 이다.
도 7은 비교예 1에 따른 (A)는 반도체 기판의 SEM 조감 사진, (B)는 반도체 기판의 SEM 표면 사진이다.
도 8은 비교예 1에 따른 (A)는 도 7 (B)의 EDX의 스펙트럼도, (B)는 도 7 (B)의 Ga의 EDX도, (C)는 도 7 (B)의 N의 EDX도이다.
도 9는 비교예 1에 따른 (A)는 보이드의 SEM 단면 사진, (B)는 (A)의 EDX 스펙트럼도이다.
도 10은 비교예 1에 따른 (A)는 도 9 (A)의 Ga의 EDX도, (B)는 도 9 (A)의 N의 EDX도, (C)는 도 9 (A)의 Ta의 EDX도이다.
도 11은 본 발명의 실시 형태 2에 따른 LED 어레이의 구성을 나타내는 단면도이다.
도 12는 실시예 2에 따른 반도체 기판의 SEM 단면 사진이다.
도 13은 실시예 3에 따른 반도체 기판의 SEM 단면 사진이다.
도 14는 실시예 4에 따른 반도체 기판의 SEM 단면 사진이다.
도 15는 (A)는 두께 5nm의 Ta층이 Ta2O5로 변화한 예를 모식적으로 나타내는 도면, (B)는 두께 100nm의 Ta층의 표면이 Ta2O5로 변화한 예를 모식적으로 나타내는 도면이다.
도 16은 (A)는 두께 5nm의 Ta 마스크를 형성한 기판의 SEM 표면 사진이며, (B)는 두께 10nm의 Ta2O5 마스크를 형성한 기판의 SEM 단면 사진이다.
(부호의 설명)
100:반도체 기판, 101:사파이어 기판, 102:제1의 GaN층, 102a:공동, 103:Ta층, 103a:구멍, 104:제2의 GaN층, 200:LED, 201:하부 반도체층, 202:활성층, 203:상부 반도체층
Claims (25)
- 기판과,상기 기판상에 형성된 제1의 반도체층과,상기 제1의 반도체층상에 패턴 형상으로 형성된 Ta층과,상기 제1의 반도체층상 및 상기 Ta층상에 형성된 제2의 반도체층과,상기 Ta층보다 하층 부분의 상기 제1의 반도체층에 형성된 공동을 가지는 것을 특징으로 하는 반도체 기판.
- 청구항 1에 있어서,상기 제1의 반도체층과 상기 제2의 반도체층은 동일 또는 다른 화합물 반도체이며,상기 Ta층은, 상기 제2의 반도체층을 형성할 때의 가열 온도보다 고융점의 금속성 재료인 것을 특징으로 하는 반도체 기판.
- 청구항 1에 있어서,상기 Ta층은 그 일부가 산화막으로 이루어져 있으며, 상기 산화막은 상기 산화막의 하부에 위치한 상기 제1의 반도체층의 일부에는 공동이 형성되지 않도록 하는 에칭 마스크로 형성되는 것을 특징으로 하는 반도체 기판.
- 청구항 3에 있어서,상기 Ta층은, 상기 제2의 반도체층을 형성하는 과정에서 형성된 복수의 구멍을 가지는 것을 특징으로 하는 반도체 기판.
- 청구항 2에 있어서,상기 Ta층은, 상기 제2의 반도체층을 형성하는 과정에서 형성된 복수의 구멍을 가지는 것을 특징으로 하는 반도체 기판.
- 청구항 1에 있어서,상기 기판은, 사파이어 기판 또는 실리콘 기판인 것을 특징으로 하는 반도체 기판.
- 청구항 1에 있어서,상기 Ta층은, 탄탈을 포함하여 이루어져 있으며, 그 막 두께가 5nm보다 두껍고, 상기 제1의 반도체층상에 형성 후, 상기 Ta층의 표면들 중 상기 제1의 반도체층과 상기 Ta층 사이의 계면을 이루는 표면은 탄탈과 산화탄탈을 포함하여 이루어지며, 상기 제1의 반도체층과 상기 Ta층 사이의 계면을 이루는 표면을 제외한 표면들은 산화탄탈을 포함하여 이루어지는 것을 특징으로 하는 반도체 기판.
- 기판상에 제1의 반도체층을 형성하고,상기 제1의 반도체층상에 패턴 형상으로 Ta층을 형성하고,상기 제1의 반도체층상 및 상기 Ta층상에 제2의 반도체층을 형성함과 함께, 상기 Ta층보다 하층 부분의 상기 제1의 반도체층에 공동을 형성하되,상기 공동은 상기 Ta층과 상기 Ta층보다 하층 부분의 상기 제1의 반도체층이 반응하여 상기 제1의 반도체층이 식각되어 형성되는 것을 특징으로 하는 반도체 기판의 제조 방법.
- 청구항 8에 있어서,상기 Ta층은, 상기 제1의 반도체층상에 일정한 간격 및 폭으로 스트라이프 형상으로 형성하고,상기 제2의 반도체층은, 상기 Ta층의 폭의 1/2배 이상의 층 두께로 형성하는 것을 특징으로 하는 반도체 기판의 제조 방법.
- 청구항 8에 있어서,상기 Ta층은, 그 일부가 산화막으로 이루어져 있으며, 상기 산화막은 상기 산화막의 하부에 위치한 상기 제1의 반도체층의 일부에는 공동이 형성되지 않도록 하는 에칭 마스크로 형성되는 것을 특징으로 하는 반도체 기판의 제조 방법.
- 청구항 10에 있어서,상기 Ta층은, 상기 제2의 반도체층을 형성하는 과정에서 형성된 복수의 구멍이 형성되는 두께로 형성되는 것을 특징으로 하는 반도체 기판의 제조 방법.
- 청구항 9에 있어서,상기 Ta층은, 상기 제2의 반도체층을 형성하는 과정에서 형성된 복수의 구멍이 형성되는 두께로 형성되는 것을 특징으로 하는 반도체 기판의 제조 방법.
- 삭제
- 청구항 8에 있어서,상기 제1의 반도체층과 상기 제2의 반도체층은, 동일 또는 다른 화합물 반도체 재료를 이용해 형성하고,상기 Ta층은, 상기 제2의 반도체층을 형성할 때의 가열 온도보다 고융점의 금속성 재료를 이용해 형성하는 것을 특징으로 하는 반도체 기판의 제조 방법.
- 청구항 8에 있어서,상기 Ta층은, 그 일부가 산화막으로 이루어져 있으며, 상기 산화막은 상기 제1의 반도체층에 대한 마스크를 형성함과 함께, 복수의 구멍을 형성하며,상기 제2의 반도체층을 유기 금속 기상 성장법을 이용해 형성할 때에, 상기 Ta층이 형성된 부분의 하층의 상기 제1의 반도체층을 상기 Ta층 및 질소와 반응시켜 상기 복수의 구멍으로부터 증발시켜, 상기 공동을 형성하는 것을 특징으로 하는 반도체 기판의 제조 방법.
- 청구항 8에 있어서,상기 Ta층은, 탄탈을 포함하여 이루어져 있으며, 그 막 두께가 5nm보다 두껍고, 상기 제1의 반도체층상에 형성 후, 상기 Ta층의 표면들 중 상기 제1의 반도체층과 상기 Ta층 사이의 계면을 이루는 표면은 탄탈과 산화탄탈을 포함하여 이루어지며, 상기 제1의 반도체층과 상기 Ta층 사이의 계면을 이루는 표면을 제외한 표면들은 산화탄탈을 포함하여 이루어지는 것을 특징으로 하는 반도체 기판의 제조 방법.
- 청구항 8에 있어서,상기 기판은, 사파이어 기판 또는 실리콘계 기판인 것을 특징으로 하는 반도체 기판의 제조 방법.
- 청구항 8에 있어서,상기 제1의 반도체층에 형성된 상기 공동을 이용해 상기 기판을 박리하여, 상기 제1의 반도체층 및 상기 제2의 반도체층으로부터 형성된 반도체 기판을 제조하는 것을 특징으로 하는 반도체 기판의 제조 방법.
- 청구항 18에 있어서,상기 기판을 박리할 때에, 레이저·리프트 오프법을 이용하는 것을 특징으로 하는 반도체 기판의 제조 방법.
- 청구항 18에 있어서,상기 기판을 박리할 때, 연마법을 이용하는 것을 특징으로 하는 반도체 기판의 제조 방법.
- 청구항 18에 있어서,상기 기판을 박리할 때, 상기 기판을 트위스트 시켜 상기 제1의 반도체층으로부터 박리하는 것을 특징으로 하는 반도체 기판의 제조 방법.
- 청구항 1에 기재되어 있는 반도체 기판상에 형성되는 반도체 소자이며,상기 제2의 반도체층상에 형성된 제1의 화합물 반도체층과, 상기 제1의 화합물 반도체층상에 형성된 활성층과, 상기 활성층상에 형성된 제2의 화합물 반도체층을 적어도 가지는 것을 특징으로 하는 반도체 소자.
- 청구항 22에 있어서,상기 제1의 반도체층과 상기 제2의 반도체층은, 상기 제1의 화합물 반도체층 과 동계열의 화합물 반도체이며,상기 제1의 화합물 반도체층의 굴절률과, 상기 제2의 화합물 반도체층의 굴절률은 서로 다른 것을 특징으로 하는 반도체 소자.
- 청구항 1에 기재되어 있는 반도체 기판상에 형성되는 반도체 소자의 제조 방법이며,상기 제2의 반도체층상에 제1의 화합물 반도체층을 형성하고,상기 제1의 화합물 반도체층상에 활성층을 형성하고,상기 활성층상에 제2의 화합물 반도체층을 형성하는 것을 특징으로 하는 반도체 소자의 제조 방법.
- 청구항 24에 있어서,상기 제1의 반도체층과 상기 제2의 반도체층은, 상기 제1의 화합물 반도체층과 동계열의 화합물 반도체로 형성하고,상기 제1의 화합물 반도체층의 굴절률과 상기 제2의 화합물 반도체층의 굴절률은 서로 다른 것을 특징으로 하는 반도체 소자의 제조 방법.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JPJP-P-2009-139212 | 2009-06-10 | ||
JP2009139212 | 2009-06-10 | ||
JPJP-P-2009-166682 | 2009-07-15 | ||
JP2009166682 | 2009-07-15 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20100132896A KR20100132896A (ko) | 2010-12-20 |
KR101220433B1 true KR101220433B1 (ko) | 2013-02-04 |
Family
ID=43305669
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020090075827A KR101220433B1 (ko) | 2009-06-10 | 2009-08-17 | 반도체 기판, 그 제조 방법, 반도체 소자 및 그 제조 방법 |
Country Status (3)
Country | Link |
---|---|
US (1) | US8294183B2 (ko) |
KR (1) | KR101220433B1 (ko) |
WO (1) | WO2010143778A1 (ko) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101220433B1 (ko) | 2009-06-10 | 2013-02-04 | 서울옵토디바이스주식회사 | 반도체 기판, 그 제조 방법, 반도체 소자 및 그 제조 방법 |
US8481411B2 (en) | 2009-06-10 | 2013-07-09 | Seoul Opto Device Co., Ltd. | Method of manufacturing a semiconductor substrate having a cavity |
US8860183B2 (en) | 2009-06-10 | 2014-10-14 | Seoul Viosys Co., Ltd. | Semiconductor substrate, semiconductor device, and manufacturing methods thereof |
WO2011025149A2 (ko) | 2009-08-26 | 2011-03-03 | 서울옵토디바이스주식회사 | 반도체 기판 제조 방법 및 발광 소자 제조 방법 |
JP5570838B2 (ja) * | 2010-02-10 | 2014-08-13 | ソウル バイオシス カンパニー リミテッド | 半導体基板、その製造方法、半導体デバイス及びその製造方法 |
KR101131206B1 (ko) * | 2010-03-19 | 2012-03-28 | 광주과학기술원 | 발광 다이오드 및 이의 제조 방법 |
KR101155773B1 (ko) * | 2010-06-09 | 2012-06-12 | 삼성엘이디 주식회사 | 수직형 발광다이오드의 제조방법 및 이를 이용하여 제조된 수직형 발광다이오드 |
WO2014142892A1 (en) * | 2013-03-14 | 2014-09-18 | King Abdullah University Of Science And Technology | Defect free single crystal thin layer |
DE102014105208A1 (de) * | 2014-04-11 | 2015-10-29 | Osram Opto Semiconductors Gmbh | Verfahren zur Herstellung eines Nitridverbindungshalbleiter-Bauelements |
KR102301793B1 (ko) * | 2014-12-18 | 2021-09-14 | 삼성전자주식회사 | 이미지 생성 방법 및 이를 수행하기 위한 이미징 시스템 |
FR3065322B1 (fr) * | 2017-04-18 | 2019-06-14 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Procede de realisation d'un dispositif d'affichage a matrice de leds |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003124576A (ja) | 2001-10-10 | 2003-04-25 | Nichia Chem Ind Ltd | 窒化物半導体基板及びその成長方法 |
KR20100079466A (ko) * | 2008-12-31 | 2010-07-08 | 광주과학기술원 | 발광다이오드의 제조방법 |
Family Cites Families (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6024884A (en) | 1998-03-12 | 2000-02-15 | Storage Technology Corporation | Method for creating microstructures |
WO2000055893A1 (fr) * | 1999-03-17 | 2000-09-21 | Mitsubishi Cable Industries, Ltd. | Base de semiconducteur et son procede de fabrication et procede de fabrication de cristal semiconducteur |
EP1104031B1 (en) * | 1999-11-15 | 2012-04-11 | Panasonic Corporation | Nitride semiconductor laser diode and method of fabricating the same |
US6627974B2 (en) | 2000-06-19 | 2003-09-30 | Nichia Corporation | Nitride semiconductor substrate and method for manufacturing the same, and nitride semiconductor device using nitride semiconductor substrate |
JP3556916B2 (ja) * | 2000-09-18 | 2004-08-25 | 三菱電線工業株式会社 | 半導体基材の製造方法 |
JP3631724B2 (ja) * | 2001-03-27 | 2005-03-23 | 日本電気株式会社 | Iii族窒化物半導体基板およびその製造方法 |
JP3886341B2 (ja) | 2001-05-21 | 2007-02-28 | 日本電気株式会社 | 窒化ガリウム結晶基板の製造方法及び窒化ガリウム結晶基板 |
EP1291904A3 (en) | 2001-09-10 | 2009-10-07 | FUJIFILM Corporation | GaN substrate formed over GaN layer having discretely formed minute holes produced by selective growth |
JP4932121B2 (ja) | 2002-03-26 | 2012-05-16 | 日本電気株式会社 | Iii−v族窒化物系半導体基板の製造方法 |
EP1508922B1 (en) | 2002-05-15 | 2009-03-11 | Panasonic Corporation | Semiconductor light emitting element and production method therefor |
JP4088111B2 (ja) * | 2002-06-28 | 2008-05-21 | 日立電線株式会社 | 多孔質基板とその製造方法、GaN系半導体積層基板とその製造方法 |
JP4151421B2 (ja) * | 2003-01-23 | 2008-09-17 | セイコーエプソン株式会社 | デバイスの製造方法 |
JP3821232B2 (ja) | 2003-04-15 | 2006-09-13 | 日立電線株式会社 | エピタキシャル成長用多孔質基板およびその製造方法ならびにiii族窒化物半導体基板の製造方法 |
JP2005057220A (ja) | 2003-08-07 | 2005-03-03 | Sony Corp | 半導体光素子及びその製造方法 |
JP4427993B2 (ja) | 2003-08-12 | 2010-03-10 | ソニー株式会社 | 半導体発光素子の製造方法 |
JP2005101475A (ja) | 2003-08-28 | 2005-04-14 | Hitachi Cable Ltd | Iii−v族窒化物系半導体基板及びその製造方法 |
JP2005085851A (ja) | 2003-09-05 | 2005-03-31 | Hitachi Cable Ltd | 窒化物系化合物半導体発光素子の製造方法 |
KR100744933B1 (ko) | 2003-10-13 | 2007-08-01 | 삼성전기주식회사 | 실리콘 기판 상에 형성된 질화물 반도체 및 그 제조 방법 |
JP2005232559A (ja) | 2004-02-23 | 2005-09-02 | Meltex Inc | チタン剥離液 |
JP4581490B2 (ja) | 2004-05-31 | 2010-11-17 | 日立電線株式会社 | Iii−v族窒化物系半導体自立基板の製造方法、及びiii−v族窒化物系半導体の製造方法 |
US7560294B2 (en) * | 2004-06-07 | 2009-07-14 | Toyoda Gosei Co., Ltd. | Light emitting element and method of making same |
JP4720125B2 (ja) | 2004-08-10 | 2011-07-13 | 日立電線株式会社 | Iii−v族窒化物系半導体基板及びその製造方法並びにiii−v族窒化物系半導体 |
JP2006080314A (ja) | 2004-09-09 | 2006-03-23 | Canon Inc | 結合基板の製造方法 |
KR100682879B1 (ko) | 2005-01-07 | 2007-02-15 | 삼성코닝 주식회사 | 결정 성장 방법 |
US20060151801A1 (en) * | 2005-01-11 | 2006-07-13 | Doan Trung T | Light emitting diode with thermo-electric cooler |
KR100797180B1 (ko) | 2005-06-25 | 2008-01-23 | (주)에피플러스 | 휘도가 향상된 반도체 발광 소자 및 그 제조 방법 |
KR101132910B1 (ko) * | 2005-07-05 | 2012-04-04 | 엘지이노텍 주식회사 | 발광 다이오드 제조방법 |
KR20070009854A (ko) | 2005-07-14 | 2007-01-19 | 에피밸리 주식회사 | 화합물 반도체 발광소자 |
JP4879614B2 (ja) | 2006-03-13 | 2012-02-22 | 住友化学株式会社 | 3−5族窒化物半導体基板の製造方法 |
JP4862442B2 (ja) | 2006-03-15 | 2012-01-25 | 日立電線株式会社 | Iii−v族窒化物系半導体基板の製造方法及びiii−v族窒化物系デバイスの製造方法 |
KR100794121B1 (ko) | 2006-04-10 | 2008-01-10 | 광주과학기술원 | 발광 다이오드 |
KR101338698B1 (ko) | 2007-04-16 | 2013-12-06 | 엘지이노텍 주식회사 | 질화물 반도체 발광소자 |
KR101459754B1 (ko) | 2007-09-06 | 2014-11-13 | 엘지이노텍 주식회사 | 반도체 발광소자 및 그 제조방법 |
JP4892445B2 (ja) | 2007-10-01 | 2012-03-07 | 昭和電工株式会社 | 半導体発光素子および半導体発光素子の製造方法 |
WO2009070625A1 (en) | 2007-11-27 | 2009-06-04 | Nanocrystal, Llc | Ultra-low dislocation density group iii - nitride semiconductor substrates grown via nano-or micro-particle film |
TWI377685B (en) | 2008-12-08 | 2012-11-21 | Pvnext Corp | Photovoltaic cell structure and manufacturing method thereof |
KR101220433B1 (ko) | 2009-06-10 | 2013-02-04 | 서울옵토디바이스주식회사 | 반도체 기판, 그 제조 방법, 반도체 소자 및 그 제조 방법 |
WO2011025149A2 (ko) | 2009-08-26 | 2011-03-03 | 서울옵토디바이스주식회사 | 반도체 기판 제조 방법 및 발광 소자 제조 방법 |
-
2009
- 2009-08-17 KR KR1020090075827A patent/KR101220433B1/ko active IP Right Grant
- 2009-08-17 WO PCT/KR2009/004587 patent/WO2010143778A1/ko active Application Filing
- 2009-12-30 US US12/650,276 patent/US8294183B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003124576A (ja) | 2001-10-10 | 2003-04-25 | Nichia Chem Ind Ltd | 窒化物半導体基板及びその成長方法 |
KR20100079466A (ko) * | 2008-12-31 | 2010-07-08 | 광주과학기술원 | 발광다이오드의 제조방법 |
Also Published As
Publication number | Publication date |
---|---|
US20100314661A1 (en) | 2010-12-16 |
KR20100132896A (ko) | 2010-12-20 |
WO2010143778A1 (ko) | 2010-12-16 |
US8294183B2 (en) | 2012-10-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101220433B1 (ko) | 반도체 기판, 그 제조 방법, 반도체 소자 및 그 제조 방법 | |
US8026119B2 (en) | Method of fabricating semiconductor substrate and method of fabricating light emitting device | |
US10128403B2 (en) | Semiconductor substrate, semiconductor device, and manufacturing methods thereof | |
KR101229832B1 (ko) | 반도체 기판 제조 방법 및 발광 소자 제조 방법 | |
KR101106136B1 (ko) | 반도체 기판 제조 방법 및 발광 소자 제조 방법 | |
JP5647497B2 (ja) | 半導体基板、その製造方法、半導体デバイス及びその製造方法 | |
KR20100132910A (ko) | 반도체 기판, 그 제조방법, 반도체 디바이스 및 그 제조방법 | |
KR101106149B1 (ko) | 반도체 기판 제조 방법 및 발광 소자 제조 방법 | |
KR101106150B1 (ko) | 발광 소자 제조 방법 | |
KR101761833B1 (ko) | 반도체 기판, 그 제조 방법, 반도체 디바이스 및 그 제조 방법 | |
KR101593213B1 (ko) | 반도체 기판 제조 방법 및 발광 소자 제조 방법 | |
KR20120057600A (ko) | 반도체 기판, 그 제조방법, 반도체 디바이스 및 그 제조방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E902 | Notification of reason for refusal | ||
E90F | Notification of reason for final refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20160104 Year of fee payment: 4 |
|
FPAY | Annual fee payment |
Payment date: 20161212 Year of fee payment: 5 |
|
FPAY | Annual fee payment |
Payment date: 20171211 Year of fee payment: 6 |