KR101152413B1 - 에틸렌 공중합체 및 이의 제조방법 - Google Patents

에틸렌 공중합체 및 이의 제조방법 Download PDF

Info

Publication number
KR101152413B1
KR101152413B1 KR1020090082291A KR20090082291A KR101152413B1 KR 101152413 B1 KR101152413 B1 KR 101152413B1 KR 1020090082291 A KR1020090082291 A KR 1020090082291A KR 20090082291 A KR20090082291 A KR 20090082291A KR 101152413 B1 KR101152413 B1 KR 101152413B1
Authority
KR
South Korea
Prior art keywords
alkyl
ethylene
formula
ethylene copolymer
aryl
Prior art date
Application number
KR1020090082291A
Other languages
English (en)
Other versions
KR20100031461A (ko
Inventor
신대호
심춘식
정지수
채성석
옥명안
권승범
신동철
이호성
Original Assignee
에스케이이노베이션 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이이노베이션 주식회사 filed Critical 에스케이이노베이션 주식회사
Priority to US12/557,801 priority Critical patent/US8067511B2/en
Priority to CA2729585A priority patent/CA2729585C/en
Priority to JP2011526815A priority patent/JP5550192B2/ja
Priority to PCT/KR2009/005190 priority patent/WO2010030145A2/en
Priority to TW098130682A priority patent/TWI440644B/zh
Priority to CN2009801253476A priority patent/CN102083870B/zh
Priority to RU2010154640/04A priority patent/RU2468039C2/ru
Priority to ES09813267.3T priority patent/ES2674144T3/es
Priority to EP09813267.3A priority patent/EP2324067B1/en
Publication of KR20100031461A publication Critical patent/KR20100031461A/ko
Priority to US13/282,613 priority patent/US20120041149A1/en
Application granted granted Critical
Publication of KR101152413B1 publication Critical patent/KR101152413B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • B01J19/1856Stationary reactors having moving elements inside placed in parallel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • B01J19/1862Stationary reactors having moving elements inside placed in series
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0807Copolymers of ethene with unsaturated hydrocarbons only containing more than three carbon atoms
    • C08L23/0815Copolymers of ethene with aliphatic 1-olefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00159Controlling the temperature controlling multiple zones along the direction of flow, e.g. pre-heating and after-cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00164Controlling or regulating processes controlling the flow
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2420/00Metallocene catalysts
    • C08F2420/03Cp or analog not bridged to a non-Cp X ancillary neutral donor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2420/00Metallocene catalysts
    • C08F2420/04Cp or analog not bridged to a non-Cp X ancillary anionic donor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65908Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an ionising compound other than alumoxane, e.g. (C6F5)4B-X+
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65912Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2314/00Polymer mixtures characterised by way of preparation
    • C08L2314/06Metallocene or single site catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S526/00Synthetic resins or natural rubbers -- part of the class 520 series
    • Y10S526/943Polymerization with metallocene catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

본 발명은 에틸렌 공중합체 및 이의 제조방법에 관한 것으로, 구체적으로는 직렬 또는 병렬의 반응기를 이용하여 전이금속 촉매를 포함하는 촉매조성물 존재하에서 다단계 합성을 통해 제조되어 다봉의 분자량 분포 지수를 지녀 우수한 가공성 및 물성을 나타내는 에틸렌 공중합체 및 이의 제조방법에 관한 것이다.
에틸렌, 공중합체, 전이금속, 촉매, 분자량분포, 다단계

Description

에틸렌 공중합체 및 이의 제조방법{Ethylene copolymer and a method of preparing the same}
본 발명은 에틸렌 공중합체 및 이의 제조방법에 관한 것으로, 구체적으로 다단계 합성을 통해 다봉의 분자량 분포 지수를 지녀 우수한 가공성 및 물성을 나타내는 에틸렌 공중합체 및 이의 제조방법에 관한 것이다.
일반적으로 단일 활성점 촉매로 중합된 고분자는 분자량분포가 좁고 공단량체의 분포가 균일하며 지글러-나타 촉매보다 공중합 활성도도 높다. 그러나 좁은 분자량 분포로 인하여 가공 시 에너지 소비가 커지며 제품 가공이 어려워 기존 설비 조건에 의한 생산은 어려우며, 가공 비용이 증가되는 단점이 있다. 단일 활성점 촉매를 이용한 올레핀 중합기술을 상업화된 기존 공정의 관점에서 분석하면, 고압 용액 공정의 경우에는 단일 활성점 촉매가 용매에 대한 용해도가 충분하다면 직접 적용이 가능하고, 상대적으로 높은 중합온도에서 촉매의 안정성, 반응기 이후 후단 공정에서 촉매의 활성을 제거하는 방법 등이 중요한 문제가 되며, 용제를 분리, 정제하여 회수하는 공정에서 불순물 및 반응 저해 물질의 분리 또한 중요하게 된다. 단일 활성점 전이금속 촉매를 사용하여 중합된 에틸렌 공중합체가 향상된 물성을 가지면서도 가공성을 보장하기 위해서는 좀 더 넓은 분자량 분포를 가지거나 분자량 분포 곡선의 꼭지점이 2개 이상을 보이는 분자량 분포를 가지는 것이 유리하다.
이렇게 향상된 가공성과 물성을 가진 에틸렌 공중합체를 만들기 위하여 미국특허 제4935474호에서는 하나의 반응기에 반응속도가 다른 두 가지 이상의 메탈로센 촉매를 사용하는 방법을 개시하였다. 그러나 이 방법으로는 상대적으로 넓은 분자량분포 또는 이봉 분자량 분포를 가지는 중합체의 제조는 가능하나 동시에 다양한 밀도분포를 가진 에틸렌 공중합체를 제조하기에는 어려운 점이 있다.
미국특허 제3592880호, 유럽특허 제057420호, 제237294호, 영국특허 제2020672호 등에서는 슬러리-슬러리 다단계 중합 공정, 영국특허 제1505017호, 유럽특허 제040992호, 미국특허 제4420592호 등에서는 기상-기상 다단계 중합 공정, 영국특허 제1532231호, 미국특허 제4368291호, 제4309521호, 제4368304호 등에서는 슬러리-기상 다단계 공정에 대해 언급하고 있다. 더욱이 WO 제9212182호에서는 슬러리-기상 공정에서 기상 공정의 경우 2단 이상이 가능하다고 되어 있으나 촉매 특성 및 그에 따른 수소 투입에 의해 2단 공정을 통한 이봉(bimodal) 분자량 분포 만을 보이고 있으며, 해당 특허의 실시 예에 의하면, 0.930 g/cm3 이상의 한정된 밀도만을 가지는 에틸렌공중합체를 생산하는 방법이 제시되어 있어 높은 충격 강도를 가지는 필름 등 다양한 용도의 에틸렌공중합체 수지를 생산하는 데에는 한계가 있다.
WO 제1994/17112호에서는 용액 중합법으로 메탈로센 및 지글러-나타 촉매를 사용하여 넓은 분자량 분포를 가지는 에틸렌공중합체를 합성하는 발명을 제시하고 있으나, 이봉 분자량 분포에 한정되어 공정 개선을 통한 중합체의 물성 향상을 도모하는 데에는 한계가 있다.
미국 특허 제6277931호의 경우 역시 용액 중합 공정에 이종의 촉매 (메탈로센 및 지글러-나타)를 사용하여 이봉 분자량 분포를 가지는 에틸렌 중합 공정을 소개하고 있다. 하지만 이종의 촉매를 한 시스템에서 사용할 경우 이종의 촉매 혹은 조촉매 상호 간에 간섭을 일으켜 반응 제어가 어려워질 수 있으며, 지글러-나타 촉매의 조촉매가 단일 활성점 촉매에 있어서는 촉매독으로 혹은 반응 저해제로 작용할 수도 있다.
WO 제2006/048257호에서는 3개의 반응기를 거쳐 넓은 분자량 분포 및 삼봉 분자량 분포를 갖는 에틸렌공중합체를 제안하였다. 해당 발명의 경우 슬러리-기상 공정으로서 슬러리 공정에 앞서 있는 프리폴리머 반응기에서 고분자량의 고밀도 폴리에틸렌을 일부 합성하고 뒤를 이어 슬러리 및 기상 공정을 거치면서 삼봉의 넓은 분자량 분포를 가지는 에틸렌공중합체를 고안하였으나 고분자량 부분이 고밀도가 될 경우 전체 수지의 측면에서 볼 때 필름의 충격 강도에 좋지 않은 영향을 미치는 단점이 있다.
미국 특허 제6372864호에서는 포스핀이민 리간드를 가지는 단일 활성점 촉매를 사용하고, 두 개의 교반식 반응기를 사용하여 물성 및 가공성을 만족하는 에틸렌 공중합체를 제조하는 방법을 제시하였으나 촉매 특성 상 낮은 밀도를 나타내기 위하여 많은 양의 공단량체가 공정 상에서 운영되어야 하며, 이에 따라 공단량체가 최종 중합체 내에 잔류되어 제품에 냄새 및 위생성 문제를 남기는 단점이 있어 개선이 요구된다. 또한 미국 특허 제 6995216호에서는 가교된 인데노인도릴 리간드를 포함하는 단일활성점 촉매를 사용하여 다단계 혹은 다중 반응기를 사용하여 넓은 분자량 분포를 가지는 에틸렌 공중합체를 제조하는 방법을 제시하였으나, 다단계를 거치면서 반응되는 반응물의 완전한 혼합에 대한 고려는 없어서 단계별로 합성된 중합체가 불완전한 혼합에 의해 결점을 가지게 되는 단점이 있다.
이에 본 발명자들은 상기 종래 기술들의 문제점 극복 및 개선을 위하여 광범위한 연구를 수행한 결과, 좁은 분자량 분포 및 균일한 밀도 분포를 가지는 단일 활성점 촉매에 의한 에틸렌 공중합체의 특성을 다단계 합성 공정으로 제어하여 에틸렌공중합체 수지의 물성 및 가공성을 동시에 개선할 수 있도록 적절한 단일 활성점 촉매계를 사용한 다단 용액 반응 공정을 고안하였다. 곧, 2개 이상의 여러 단계로 연결된 각 반응기에서 단량체 및 공단량체 조성, 반응 온도, 반응 압력 등을 달리하여 다양한 분자량 및 공단량체 함량 혹은 밀도를 가지는 중합체를 만들어 내는 것이다. 구체적으로 상기의 다단계 용액 반응 공정을 통해 다봉 분자량 분포, 바람직하게는 이봉 이상의 다봉 분자량 분포를 가지며, 탄소수 3 이상의 α-올레핀 공단량체를 사용하여 각 반응기에서 밀도분포가 다른 에틸렌 공중합체를 제조할 수 있도록 하였고, 본 발명은 이에 기초하여 완성되었다. 특히 본 특허에서 사용된 단일 활성점 촉매의 경우 공단량체 결합도가 높음에도 불구하고 높은 분자량을 가지는 공중합체를 제조할 수 있어 이와 같은 발명이 가능하게 되었다.
따라서, 상기와 같은 문제점을 해결하기 위하여 본 발명의 목적은 에틸렌 또는 α-올레핀의 다단계 합성을 통해, 다봉의 분자량 분포를 지니는 에틸렌 공중합체를 제조하여 물성 및 가공성이 동시에 개선되는 에틸렌 공중합체 및 이의 제조방법을 제공하는 데 있다.
또한, 본 발명의 다른 목적은 블렌딩하여 제조되는 단점을 개선하여 생산성 이 용이하고, 다양한 용도에 적용될 수 있는 에틸렌 공중합체 및 이의 제조방법을 제공하는 데 있다.
상기 목적을 달성하기 위해 본 발명의 한 측면은 (a) 하나이상의 반응기 중에서 하기 화학식 1의 전이금속 촉매를 포함하는 촉매조성물 존재 하에서 에틸렌 및 하나 이상의 C3-C18의 α-올레핀 공단량체를 중합시켜 제1공중합체를 제조하는 단계; 및 (b) 상기 (a) 단계에서 제조된 제1공중합체를 상기 (a)단계의 촉매조성물과 동일한 촉매조성물 존재 하에 상기 (a)단계의 반응온도보다 높은 온도에서 상기 에틸렌 또는 에틸렌 및 하나 이상의 C3-C18의 α-올레핀을 함유하는 하나 이상의 다른 반응기 중으로 통과시킴으로써 에틸렌 및C3-C18의 α-올레핀 공중합체 조성물을 포함하는 고온의 중합체를 제조하는 단계;를 포함하는 에틸렌 공중합체의 제조방법을 제공한다.
본 발명의 또 다른 측면은 (a) 하나이상의 반응기 중에서 하기 화학식 1 의 전이금속 촉매를 포함하는 촉매조성물 존재 하에서 에틸렌 및 하나 이상의 C3-C18의 α-올레핀 공단량체를 중합시켜 제1공중합체를 제조하는 단계; (b) 하나이상의 다른 반응기 중에서 상기 (a)단계의 촉매조성물과 동일한 촉매조성물 존재 하에 상기 (a)단계의 반응온도보다 높은 온도에서 상기 에틸렌 또는 에틸렌 및 하나 이상의 C3-C18의 α-올레핀을 반응하여 제2공중합체를 제조하는 단계; 및 (c) 상기 제1공중합체를 상기 제2공중합체와 혼합하는 단계;를 포함하는 에틸렌 공중합체의 제조방법을 제공한다.
[화학식 1]
Figure 112009053978476-pat00001
상기 식에서, M은 주기율표 상 4족의 전이금속이고;
Cp는 중심금속 M과 η5-결합할 수 있는 시클로펜타디에닐 고리 또는 시클로펜타디에닐 고리를 포함하는 융합고리이고, 상기 시클로펜타디에닐 고리 또는 시클로펜타디에닐 고리를 포함하는 융합고리는 (C1-C20)알킬, (C6-C30)아릴, (C2-C20)알케닐 및 (C6-C30)아르(C1-C20)알킬로부터 선택되는 하나 이상이 더 치환될 수 있고;
R1 내지 R4 는 서로 독립적으로 수소원자, 할로겐 원자, (C1-C20)알킬, (C3-C20)시클로알킬, (C6-C30)아릴, (C6-C30)아르(C1-C10)알킬, (C1-C20)알콕시, (C3-C20)알킬실록시, (C6-C30)아릴실록시, (C1-C20)알킬아미노, (C6-C30)아릴 아미노, (C1-C20)알킬티오, (C6-C30)아릴티오 또는 니트로이거나, 상기 R1 내지 R4는 인접한 치환체와 융합고리를 포함하거나 포함하지 않는 (C3-C12)알킬렌 또는 (C3-C12)알케닐렌으로 연결되어 지환족 고리 및 단일환 또는 다환의 방향족 고리를 형성할 수 있으며;
Ar1 은 (C6-C30)아릴 또는 N, O 및 S로부터 선택된 하나 이상을 포함하는 (C3-C30)헤테로아릴이고;
X1 및 X2 는 서로 독립적으로 할로겐 원자, (C1-C20)알킬, (C3-C20)시클로알킬, (C6-C30)아르(C1-C20)알킬, (C1-C20)알콕시, (C3-C20)알킬실록시, (C6-C30)아릴실록시, (C1-C20)알킬아미노, (C6-C30)아릴아미노, (C1-C20)알킬티오, (C6-C30)아릴티오 또는
Figure 112009053978476-pat00002
이며;
R11 내지 R15는 서로 독립적으로 수소원자, 할로겐 원자, (C1-C20)알킬, (C3-C20)시클로알킬, (C6-C30)아릴, (C6-C30)아르(C1-C10)알킬, (C1-C20)알콕시, (C3-C20)알킬실록시, (C6-C30)아릴실록시, (C1-C20)알킬아미노, (C6-C30)아릴아미노, (C1-C20)알킬티오, (C6-C30)아릴티오 또는 니트로이거나, 상기 R11 내지 R15는 인접한 치환체와 융합고리를 포함하거나 포함하지 않는 (C3-C12)알킬렌 또는 (C3-C12)알케닐렌으로 연결되어 지환족 고리 및 단일환 또는 다환의 방향족 고리를 형성할 수 있으며;
상기 R1 내지 R4, R11 내지 R15, X1 및 X2의 알킬, 아릴, 시클로알킬, 아르알킬, 알콕시, 알킬실록시, 아릴실록시, 알킬아미노, 아릴아미노, 알킬티오, 아릴티오; R1 내지 R4 또는 R11 내지 R15가 인접한 치환체와 알킬렌 또는 알케닐렌으로 연결되어 형성된 고리; 및 상기 Ar1과 Ar11의 아릴 또는 헤테로 아릴은 할로겐 원자, (C1-C20)알킬, (C3-C20)시클로알킬, (C6-C30)아릴, (C6-C30)아르(C1-C10)알킬, (C1-C20)알콕시, (C3-C20)알킬실록시, (C6-C30)아릴실록시, (C1-C20)알킬아미노, (C6-C30)아릴아미노, (C1-C20)알킬티오, (C6-C30)아릴티오, 니트로 및 히드록시로부터 선택되는 하나 이상이 더 치환될 수 있다.
이하 본 발명에 첨부된 도면을 참조하여 본 발명의 바람직한 일실시예를 상세히 설명하기로 한다. 우선, 도면들 중, 동일한 구성요소 또는 부품들은 가능한 동일한 참조부호를 나타내고 있음에 유의하여야 한다. 본 발명을 설명함에 있어, 관련된 공지기능 혹은 구성에 대한 구체적인 설명은 본 발명의 요지를 모호하지 않게 하기 위하여 생략한다.
본 명세서에서 사용되는 정도의 용어 "약", "실질적으로" 등은 언급된 의미에 고유한 제조 및 물질 허용오차가 제시될 때 그 수치에서 또는 그 수치에 근접한 의미로 사용되고, 본 발명의 이해를 돕기 위해 정확하거나 절대적인 수치가 언급된 개시 내용을 비양심적인 침해자가 부당하게 이용하는 것을 방지하기 위해 사용된다.
본 발명의 에틸렌 공중합체는 2단계 이상으로 제조되어 좁은 분자량 분포를 제공하며, 높은 공단량체의 결합력 및 좁은 밀도 분포를 얻을 수 있는 단일 활성점 촉매계를 필요로 한다. 이는 시클로 펜타디엔 유도체 및 오르토(ortho-) 위치에 아릴 유도체가 치환된 아릴옥사이드 리간드를 최소 하나 이상 포함하고 리간드 상호간 가교되지 않은 4족 전이금속 촉매, 즉, 이러한 전이금속 촉매와 알루미녹산 조촉매 또는 붕소 화합물 조촉매를 포함하는 촉매조성물이 이에 해당된다.
이와 함께, 단일 활성점 촉매로 중합한 중합체의 좁은 분자량 분포로 인한 가공성을 극복하기 위해 이봉 이상의 분자량 분포를 가질 수 있도록 하는 공정을 적용하였으며, 탄소 3개 이상, 바람직하게는 탄소 6개 이상의 고분자량 α-올레핀을 공단량체로 적용가능한 용액 중합 공정을 진행시킨다.
따라서, 본 발명은 고분자량 부분의 밀도를 다른 분자량 부분들에 비해 낮게 가져감에 따라 분자쇄 중 연결 분자들(Tie molecule)의 존재 빈도를 높여 필름 용도의 경우 충격강도를 높이고, 파이프 용도의 경우 고온에서의 장기 내구성을 향상시키도록 한다.
이하, 본 발명에 대해 자세히 설명하고자 한다.
1. 사용된 촉매에 대한 상세
본 발명에서 사용된 촉매는 하기 화학식 1의 전이금속 촉매 및 조촉매가 포함된 촉매조성물이다. 상기 조촉매에는 붕소화합물 및 알루미늄 화합물에서 선택되거나 이들의 혼합물이 포함될 수 있다.
우선, 하기 화학식 1은 전이금속 주위에 시클로펜타디엔 유도체 및 오르토(ortho-)위치에 아릴 유도체가 치환된 아릴옥사이드 리간드를 최소 하나이상 포함하고, 리간드 상호간 가교되지 않는 4족 전이금속 촉매이다.
[화학식 1]
Figure 112009053978476-pat00003
상기 화학식 1의 전이금속 촉매에서 중심금속인 M은 주기율표 상 4족의 전이 금속이고 바람직하게는 티타늄, 지르코늄 또는 하프늄이다. 또한 상기 Cp는 중심금속 M과 η5-결합할 수 있는 시클로펜타디에닐 고리 또는 시클로펜타디에닐 고리를 포함하는 융합고리이고, 상기 시클로펜타디에닐 고리 또는 시클로펜타디에닐 고리를 포함하는 융합고리는 (C1-C20)알킬, (C6-C30)아릴, (C2-C20)알케닐 및 (C6-C30)아르(C1-C20)알킬로부터 선택되는 하나 이상이 더 치환될 수 있다. 상기 Cp의 구체적인 예로는, 시클로펜타디에닐, 메틸시클로펜타디에닐, 디메틸시클로펜타디에닐, 테트라메틸시클로펜타디에닐, 펜타메틸시클로펜타디에닐, 부틸시클로펜타디에틸, sec-부틸시클로펜타디에닐, tert-부틸메틸시클로펜타디에닐, 트리메틸실릴시클로펜타디에닐, 인데닐, 메틸인데닐, 디메틸인데닐, 에틸인데닐, 이소프로필인데닐, 플로레닐, 메틸플로레닐, 디메틸플로레닐, 에틸플로레닐, 이소프로필플로레닐 등이 있다.
상기 화학식 1의 아릴페녹사이드 리간드 상의 R1 내지 R4에 관련하여서는, 서로 독립적으로 수소원자, 할로겐 원자, (C1-C20)알킬, (C3-C20)시클로알킬, (C6-C30)아릴, (C6-C30)아르(C1-C10)알킬, (C1-C20)알콕시, (C3-C20)알킬실록시, (C6-C30)아릴 실록시, (C1-C20)알킬아미노, (C6-C30)아릴아미노, (C1-C20)알킬티오 또는 니트로이거나, 상기 R1 내지 R4는 인접한 치환체와 융합고리를 포함하거나 포함하지 않는 (C3-C12)알킬렌 또는 (C3-C12)알케닐렌으로 연결되어 지환족 고리 및 단일환 또는 다환의 방향족 고리를 형성할 수 있으며;
Ar1 은 (C6-C30)의 아릴 또는 N, O 및 S로부터 선택된 하나 이상을 포함하는 (C3-C30)헤테로아릴이고;
X1 및 X2 는 서로 독립적으로 할로겐 원자, (C1-C20)알킬, (C3-C20)시클로알킬, (C6-C30)아르(C1-C20)알킬, (C1-C20)알콕시, (C3-C20)알킬실록시, (C6-C30)아릴실록시, (C1-C20)알킬아미노, (C6-C30)아릴아미노, (C1-C20)알킬티오, (C6-C30)아릴티오 또는
Figure 112009053978476-pat00004
이며;
R11 내지 R15는 서로 독립적으로 수소원자, 할로겐 원자, (C1-C20)알킬, (C3-C20)시클로알킬, (C6-C30)아릴, (C6-C30)아르(C1-C10)알킬, (C1-C20)알콕시, (C3-C20)알킬실록시, (C6-C30)아릴실록시, (C1-C20)알킬아미노, (C6-C30)아릴아미노, (C1-C20)알킬티오, (C6-C30)아릴티오 또는 니트로이거나, 상기 R11 내지 R15는 인접한 치환체와 융합고리를 포함하거나 포함하지 않는 (C3-C12)알킬렌 또는 (C3-C12)알케닐렌으로 연결되어 지환족 고리 및 단일환 또는 다환의 방향족 고리를 형성할 수 있으며;
상기 R1 내지 R4, R11 내지 R15, X1 및 X2의 알킬, 아릴, 시클로알킬, 아르알킬, 알콕시, 알킬실록시, 아릴실록시, 알킬아미노, 아릴아미노, 알킬티오, 아릴티오; R1 내지 R4 또는 R11 내지 R15가 인접한 치환체와 알킬렌 또는 알케닐렌으로 연결되어 형성된 고리; 및 상기 Ar1과 Ar11의 아릴 또는 헤테로 아릴은 할로겐 원자, (C1-C20)알킬, (C3-C20)시클로알킬, (C6-C30)아릴, (C6-C30)아르(C1-C10)알킬, (C1-C20)알콕시, (C3-C20)알킬실록시, (C6-C30)아릴실록시, (C1-C20)알킬아미노, (C6-C30)아릴아미노, (C1-C20)알킬티오, (C6-C30)아릴티오, 니트로 및 히드록시로부터 선택되는 하나 이상이 더 치환될 수 있다.
상기 할로겐 원자의 예로서 불소, 염소, 브롬 또는 요오드원자를 들 수 있고; 상기 (C1-C20)알킬 또는 (C3-C20)시클로알킬의 예로서, 메틸, 에틸, n-프로필, 이소프로필, n-부틸, sec-부틸, tert-부틸, n-펜틸, 네오펜틸, n-헥실, n-옥틸, n-데실, n-도데실, n-펜타데실, 또는 n-에이코실이고, 이 중 바람직한 것은 메틸, 에틸, 이소프로필, tert-부틸이며; (C6-C30)아릴의 예를 들면, 페닐, 나프틸, 안트라세닐, 플로레닐을 들 수 있고; (C6-C30)아르(C1-C20)알킬기의 예로서 벤질, (2-메틸페닐)메틸, (3-메틸페닐)메틸, (4-메틸페닐)메틸, (2,3-디메틸페닐)메틸, (2,4-디메틸페닐)메틸, (2,5-디메틸페닐)메틸, (2,6-디메틸페닐)메틸, (3,4-디메틸페닐)메틸, (4,6-디메틸페닐)메틸, (2,3,4-트리메틸페닐)메틸, (2,3,5-트리메틸페닐)메틸, (2,3,6-트리메틸페닐)메틸, (3,4,5-트리메틸페닐)메틸, (2,4,6-트리메틸페닐)메틸, (2,3,4,5-테트라메틸페닐)메틸, (2,3,4,6-테트라메틸페닐)메틸, (2,3,5,6-테트라메틸페닐)메틸, (펜타메틸페닐)메틸, (에틸페닐)메틸, (n-프로필페닐)메틸, (이소프로필페닐)메틸, (n-부틸페닐)메틸, (sec-부틸페닐)메틸, (n-테트라데실페닐)메틸, 트리페닐메틸, 나프틸메틸 또는 안트라세닐메틸을 들 수 있고, 이 중 바람직한 것은 벤질, 트리페닐메틸이며; (C1-C20)알콕시의 예로는 메톡시, 에톡시, n-프로폭시, 이소프로폭시, n-부톡시, sec-부톡시, tert-부톡시, n-펜톡시, 네오펜 톡시, n-헥속시, n-옥톡시, n-도데속시, n-펜타데속시 또는 n-에이코속시를 들 수 있고, 이 중 바람직한 것은 메톡시, 에톡시, 이소프로폭시 또는tert-부톡시이며; (C3-C20)알킬실록시 또는 (C6-C30)아릴실록시의 예로서 트리메틸실록시, 트리에틸실록시, 트리-n-프로필실록시, 트리이소프로필실록시, 트리-n-부틸실록시, 트리-sec-부틸실록시, 트리-tert-부틸실록시, 트리-이소부틸실록시, tert-부틸디메틸실록시, 트리-n-펜틸실록시, 트리-n-헥시릴록시, 트리시클로헥실실록시, 페닐실록시, 디페닐실록시, 나프틸실록시를 들 수 있고, 이 중 바람직한 것은 트리메틸실록시, 또는 tert-부틸디메틸실록시 또는 페닐실록시이다. 또한, (C1-C20)알킬아미노 또는 (C6-C30)아릴아미노의 예로서 디메틸아미노, 디에틸아미노, 디-n-프로필아미노, 디이소프로필아미노, 디-n-부틸아미노, 디-sec-부틸아미노, 디-tert-부틸아미노, 디이소부틸아미노, tert-부틸이소프로필아미노, 디-n-헥실아미노, 디-n-옥틸아미노, 디-n-데실아미노, 디페닐아미노, 디벤질아미노, 메틸에틸아미노, 메틸페닐아미노, 벤질헥실아미노를 들 수 있고, 이 중 바람직한 것은 디메틸아미노, 디에틸아미노 또는 디페닐아미노이며, (C1-C20)알킬티오 또는 (C6-C30)의 예로서, 메틸티오, 에틸티오, 이소프로필티오, 페닐티오, 나프틸티오를 들 수 있다.
상기 화학식 1의 구체적인 예로서 하기 화학식에서 선택될 수 있다.
[화학식 1-1]
Figure 112009053978476-pat00005
[화학식 1-2]
Figure 112009053978476-pat00006
[화학식 1-3]
Figure 112009053978476-pat00007
[화학식 1-4]
Figure 112009053978476-pat00008
[화학식 1-5]
Figure 112009053978476-pat00009
[화학식 1-6]
Figure 112009053978476-pat00010
[화학식 1-7]
Figure 112009053978476-pat00011
[화학식 1-8]
Figure 112009053978476-pat00012
[화학식 1-9]
Figure 112009053978476-pat00013
[화학식 1-10]
Figure 112009053978476-pat00014
[화학식 1-11]
Figure 112009053978476-pat00015
[화학식 1-12]
Figure 112009053978476-pat00016
[화학식 1-13]
Figure 112009053978476-pat00017
[화학식 1-14]
Figure 112009053978476-pat00018
상기 R21 내지 R26은 서로 독립적으로 수소원자, 할로겐 원자, (C1-C20)알킬, (C3-C20)시클로알킬, (C6-C30)아릴, (C6-C30)아르(C1-C10)알킬, (C1-C20)알콕시, (C3-C20)알킬실록시, (C6-C30)아릴실록시, (C1-C20)알킬아미노, (C6-C30)아릴아미노, (C1-C20)알킬티오, (C6-C30)아릴티오 또는 니트로이거나, 상기 R21 내지 R26은 인접한 치환체와 융합고리를 포함하거나 포함하지 않는 (C3-C12)알킬렌 또는 (C3-C12)알케닐렌으로 연결되어 지환족 고리 및 단일환 또는 다환의 방향족 고리를 형성할 수 있고; 상기 R21 내지 R26 의 알킬, 아릴, 시클로알킬, 아르알킬, 알콕시, 알킬실록시, 아릴실록시, 알킬아미노, 아릴아미노, 알킬티오 및 아릴티오는 할로겐 원자, (C1-C20)알킬, (C3-C20)시클로알킬, (C6-C30)아릴, (C6-C30)아르(C1-C10)알킬, (C1-C20)알콕시, (C3-C20)알킬실록시, (C6-C30)아릴실록시, (C1-C20)알킬아미노, (C6-C30)아릴아미노, (C1-C20)알킬티오, (C6-C30)아릴티오, 니트로 및 히드록시로부터 선택되는 하나 이상이 더 치환될 수 있고;
Cp는 중심금속 M과 η5-결합할 수 있는 시클로펜타디에닐 고리 또는 시클로펜타디에닐 고리를 포함하는 융합고리이고, 상기 시클로펜타디에닐 고리 또는 시클 로펜타디에닐 고리를 포함하는 융합고리는 (C1-C20)알킬, (C6-C30)아릴, (C2-C20)알케닐 및 (C6-C30)아르(C1-C20)알킬로부터 선택되는 하나 이상이 더 치환될 수 있고;
상기 X1 및 X2는 메틸 또는 Cl이다.
더욱 구체적으로는 상기 전이금속촉매는 하기에서 선택되는 것을 특징으로 하는 에틸렌 공중합체의 제조방법을 제공한다.
Figure 112009053978476-pat00019
Figure 112009053978476-pat00020
Figure 112009053978476-pat00021
Figure 112009053978476-pat00022
Figure 112009053978476-pat00023
상기 Cp는 중심금속 M과 η5-결합할 수 있는 시클로펜타디에닐 고리 또는 시클로펜타디에닐 고리를 포함하는 융합고리이고, 상기 시클로펜타디에닐 고리를 포함하는 융합고리는 (C1-C20)알킬, (C6-C30)아릴, (C2-C20)알케닐 및 (C6-C30)아르(C1-C20)알킬로부터 선택되는 하나 이상이 더 치환될 수 있고;
상기 X1 및 X2는 메틸 또는 Cl이다.
한편, 상기 화학식 1의 전이금속 촉매는 올레핀 중합에 사용되는 활성촉매 성분이 되기 위하여, 바람직하게는 본 발명에 따른 전이금속 화합물 중의 X 리간드를 추출하여 중심금속을 양이온화 시키면서 약한 결합력을 가진 반대이온, 즉 음이온으로 작용할 수 있는 알루미늄 화합물 또는 붕소 화합물, 또는 이들의 혼합물이 조촉매로서 사용된다. 이때 사용되는 유기알루미늄 화합물은 반응용매 내에서 촉매독으로 작용하는 미량의 극성물질을 제거하기 위함이지만 X리간드가 할로겐인 경우 에는 알킬화제로서 작용할 수도 있다.
본 발명에서의 조촉매로 사용될 수 있는 붕소화합물은 미국특허 제5,198,401호에서 볼 수 있는 바와 같이 하기 화학식 2, 화학식 3 또는 화학식 4로 표시되는 화합물 중에서 선택될 수 있다.
[화학식 2]
B(R31)3
[화학식 3]
[R32]+[B(R31)4]-
[화학식 4]
[(R33)qZH]+[B(R31)4]-
상기 화학식 2 내지 화학식 4에서, B는 붕소원자; R31은 페닐이며, 상기 페닐는 불소원자, 불소 원자에 의해 치환되거나 치환되지 않은 (C1-C20)알킬, 또는 불소 원자에 의해 치환되거나 치환되지 않은 (C1-C20)알콕시로부터 선택된 3 내지 5개의 치환기로 더 치환될 수 있으며; R32는 (C5-C7)시클로알킬 라디칼 또는 (C1-C20)알킬(C6-C20)아릴 라디칼, (C6-C30)아르(C1-C20)알킬 라디칼, 예를 들면 트리페닐메틸 라디칼; Z는 질소 또는 인원자; R33은 (C1-C20)알킬 라디칼 또는 질소원자와 함께 2개의 (C1-C4)알킬기로 치환된 아닐리늄 라디칼; q는 2 또는 3의 정수이 다.
상기 붕소계 조촉매의 바람직한 예로는 트리스(펜타플루오로페닐)보레인, 트리스(2,3,5,6-테트라플루오로페닐)보레인, 트리스(2,3,4,5-테트라플루오로페닐)보레인, 트리스(3,4,5-트리플루오로페닐)보레인, 트리스(2,3,4-트리플루오로페닐)보레인, 페닐비스(펜타플루오로페닐)보레인, 테트라키스(펜타플루오로페닐)보레이트, 테트라키스(2,3,5,6-테트라플루오로페닐)보레이트, 테트라키스(2,3,4,5-테트라플루오로페닐)보레이트, 테트라키스(3,4,5-트리플루오로페닐)보레이트, 테트라키스(2,2,4-트리플루오로페닐)보레이트, 페닐비스(펜타플루오로페닐)보레이트 또는 테트라키스(3,5-비스트리플루오로메틸페닐)보레이트를 들 수 있다. 또한 그것들의 특정 배합예로는 페로세늄 테트라키스(펜타플루오로페닐)보레이트 1,1'-디메틸페로세늄 테트라키스(펜타플루오로페닐)보레이트, 은 테트라키스(펜타플루오로페닐)보레이트, 트리페닐메틸 테트라키스(펜타플루오로페닐)보레이트, 트리페닐메틸 테트라키스(3,5-비스트리플루오로메틸페닐)보레이트, 트리에틸암모늄 테트라키스(펜타플루오로페닐)보레이트, 트리프로필암모늄 테트라키스(펜타플루오로페닐)보레이트, 트리(n-부틸)암모늄 테트라키스(펜타플루오로페닐)보레이트, 트리(n-부틸)암모늄 테트라키스(3,5-비스트리플루오로메틸페닐)보레이트, N,N-디메틸아닐리늄 테트라키스(펜타플루오로페닐)보레이트, N,N-디에틸아닐리늄 테트라키스(펜타플루오로페닐)보레이트, N,N-2,4,6-펜타메틸아닐리늄 테트라키스(펜타플루오로페닐)보레이트, N,N-디메틸아닐리늄 테트라키스(3,5-비스트리플루오로메틸페닐)보레이트, 디이소프로필암모늄 테트라키스(펜타플루오로페닐)보레이트, 디시클로헥실암모늄 테트라키 스(펜타플루오로페닐)보레이트, 트리페닐포스포늄 테트라키스(펜타플루오로페닐)보레이트 트리(메틸페닐)포스포늄 테트라키스(펜타플루오로페닐)보레이트, 또는 트리(디메틸페닐)포스포늄 테트라키스(펜타플루오로페닐)보레이트가 포함되고, 이 중 가장 바람직한 것은 N,N-디메틸아닐리늄 테트라키스(펜타플루오르페닐)보레이트, 트리페닐메틸 리니움테트라키스(펜타플루오르페닐)보레이트 또는 트리스(펜타플루오르페닐)보레인이고, 이 때 중심금속 M: 붕소원자의 몰비는 바람직하게는 1:0.1~50, 보다 바람직하게는 1:0.5~15이다.
본 발명에서 사용되는 알루미늄 화합물은 화학식 5 또는 화학식 6의 알루미녹산 화합물, 화학식 7의 유기알루미늄 화합물, 또는 화학식 8 또는 화학식 9가 유기알루미늄 히드로카빌옥사이드 화합물이 사용될 수 있다.
[화학식 5]
(-Al(R41)-O-)m
[화학식 6]
(R41)2Al-(-O(R41)-)p-(R41)2
[화학식 7]
(R42)rAl(E)3-r
[화학식 8]
(R43)2AlOR44
[화학식 9]
R43Al(OR44)2
상기 화학식 5 내지 화학식 9에서, R41은 선형 또는 비선형의 (C1-C20)알킬로서, 바람직하게는 메틸 또는 이소부틸이고, m과 p는 5 내지 20의 정수이고; R42, R43은 (C1-C20)알킬; E는 수소원자 또는 할로겐원자; r은 1 내지 3의 정수; R44는 (C1-C20)알킬 또는 (C6-C30)아릴 중에서 선택될 수 있다.
상기 알루미늄 화합물로 사용할 수 있는 구체적인 예로서, 알루미녹산 화합물로서 메틸알루미녹산, 개량메틸알루미녹산, 테트라이소부틸알루미녹산이 있고; 유기알루미늄 화합물의 예로서 트리메틸알루미늄, 트리에틸알루미늄, 트리프로필알루미늄, 트리이소부틸알루미늄, 및 트리헥실알루미늄을 포함하는 트리알킬알루미늄; 디메틸알루미늄클로라이드, 디에틸알루미늄클로라이드, 디프로필알루미늄 클로라이드, 디이소부틸알루미튬클로라이드, 및 디헥실알루미늄클로라이드를 포함하는 디알킬알루미늄클로라이드; 메틸알루미늄디클로라이드, 에틸알루미늄디클로라이드, 프로필알루미늄디클로라이드, 이소부틸알루미늄디클로라이드, 및 헥실알루미늄디클로라이드를 포함하는 알킬알루미늄디클로라이드; 디메틸알루미늄하이드라이드, 디에틸알루미늄하이드라이드, 디프로필알루미늄하이드라이드, 디이소부틸알루미늄하 이드라이드 및 디헥실알루미늄하이드라이드를 포함하는 디알킬알루미늄하이드라이드를 들 수 있으며, 바람직하게는 트리알킬알루미늄, 보다 바람직하게는 트리에틸알루미늄 및 트리이소부틸알루미늄이고, 이 때 중심금속인 M: 알루미늄원자의 몰비는 바람직하게는 1:1 내지 1:2,000, 보다 바람직하게는 1:5 내지 1:1,000이다.
또한, 중심금속 M: 붕소원자:알루미늄원자의 몰비는 바람직하게는 1:0.1~50:1~1,000, 보다 바람직하게는 1:0.5~15;5~500이다.
2. 용액 중합 공정
본 발명의 에틸렌 중합공정은 적어도 2단계 이상으로 중합이 진행되므로, 2개 이상의 반응기를 필요로 한다. 따라서, 상기 단계가 2 또는 3단계 중합단계로 이루어져 넓은 분자량 분포를 지니도록 한다.
또한, 본 발명은 반응온도가 (a)단계 80 내지 210℃ 및 (b)단계 90 내지 220℃이고, 각 단계의 압력이 20 내지 500 기압인 에틸렌 공중합체가 제조됨을 특징으로 한다.
(a)단계에서, 상기 촉매 또는 촉매조성물 하에서, 80 내지 210℃, 더욱 바람직하게는 80 내지 150℃, 압력은 20 내지 500기압, 더욱 바람직하게는 30 내지 200기압에서 중합된다. 상기 반응온도가 80℃미만인 경우, 반응물이 석출되거나 원활하게 분산되지 않고 반응이 일어나지 않아 중합물 생성이 어려우며, 210℃를 초과하면, 미리 설계된 분자량을 지닌 중합체의 제조가 불가능하게 된다. 또한, 압력이 상기 범위를 벗어나는 경우에도 요구되는 분자량을 지닌 중합체의 제조가 어렵게 된다.
이후, (b)단계에서, 상기 (a)단계에서 사용된 동일한 촉매 또는 촉매조성물 하에서, 90 내지 220℃, 더욱 바람직하게는 120 내지 200℃에서 상기 (a)단계와 동일한 압력 하에서 상기 (a)단계에서 제조된 중합체와 함께 중합된다. 상기 온도가 90℃ 미만인 경우, 중합물이 석출될 수도 있고, 상기 (a)단계와 유사한 중합체가 제조되어 다단계 중합의 효과가 없으며, 220℃를 초과하면, 중합체의 분자량이 너무 낮아지게 되어 물성이 저하될 우려가 있다. 또한, 상기 압력의 경우에도 상기 (a)단계의 이유와 동일하다.
한편, 상기 (a) 또는 (b)단계에 투입되는 에틸렌 양, 수소 양, 전환률 등의 공정 조건을 상이하게 하여 균일 분자량 및 밀도 분포가 다봉으로 존재하는 에틸렌 공중합체의 물성을 제어하고자 하는 것이 본 발명의 착안점이다. 특히 (a)단계에서의 고분자량, 저밀도의 중합체를 미리 설계된 비율로 제조하여 분자 구조에서 결합 분자(Tie Molecule)를 최적화하여 인장강도, 충격강도 등의 최종 수지 물성을 개선하고자 하였으며, (a)단계에 이어 (b)단계에도 동일한 촉매 또는 촉매조성물을 사용하여 (a)단계보다 더 높은 온도에서 중합하여 (a)단계에서 제조된 중합체와 상이한 범위의 분자량과 밀도를 지니는 에틸렌 공중합체가 제조되며, 본 발명의 전이금속 촉매 특성상 그 결과물이 좁은 분자량 분포 및 밀도 분포를 나타낼 수 밖에 없지만 다단계의 반응을 통해 생산자가 원하는 넓은 분자량 및 밀도 분포를 갖도록 제어할 수 있다.
상기의 다단계 반응에 있어서, 반응기의 배열은 직렬 또는 병렬 연결이 가능 하다.
도 1은 본 발명의 바람직한 일실시예에 따른 직렬 반응기 개략도이다. 도 1을 참조하면, 본 발명의 직렬 반응기는 1단계 피드 펌프(11), 1단계 피드 쿨러(12), 1단계 반응기 피드 히터(13), 1단계 저온 반응기(14), 1단계 저온 반응기 촉매 피드(15), 직렬 2단계 고온 반응기(16), 2단계 고온 반응기 촉매 피드(17), 2단계 반응기 피드 펌프(18), 2단계 반응기 피드 쿨러(19), 2단계 반응기 피드 히터(20), 2단계 반응기 피드(21) 및 수소 피드(22)가 포함된다.
따라서, 본 발명의 직렬 반응은 1단계 반응기 피드 펌프(11)로 촉매를 제외한 반응물을, 1단계 반응기 피드 쿨러(12) 및 1단계 반응기 피드 히터(13)로 구성된 온도 조절기가 장착된 1단계 저온 반응기(14)에 투입시키고, 1단계 저온 반응기 촉매 피드(15)를 통해 촉매를 투입하여 2단계보다 낮은 온도에서 (a)단계를 진행시킨다. 상기 (a)단계를 거친 중합물을 2단계 반응기 피드 쿨러(19) 및 2단계 반응기 피드 히터(20)가 장착된 직렬 2단계 고온 반응기(16)에 바로 투입하여 2단계 고온 반응기 촉매 피드(17)를 통해 촉매 첨가 후 2단계 반응기 피드 펌프(18)를 통해 2단계 반응기 피드(21)로 반응물 및 수소피드(22)로 수소를 주입하여 상기 (a)단계에서 보다 높은 온도에서 (b)단계의 중합반응을 진행시키게 된다. 이러한 직렬 반응기에서 반응의 경우, 1단계 반응에서의 에틸렌 전환률 및 촉매 활성 등을 고려하여 전체적인 반응기 시스템 설계 및 제어가 되어야 한다.
도 2는 본 발명의 바람직한 일실시예에 따른 병렬 반응기 개략도이다. 도 2를 참조하면, 본 발명의 병렬 반응기는 저온 반응기 피드 펌프(31), 고온 반응기 피드 펌프(32), 저온 반응기 피드 쿨러(33), 저온 반응기 피드 히터(34), 고온 반응기 피드 쿨러(35), 고온 반응기 피드 히터(36), 저온 반응기(37), 저온 반응기 촉매 피드(38), 고온 반응기 촉매 피드(39), 고온 반응기(40), 인라인 믹서(41), 고온 반응기 피드(42) 및 수소 피드(43)가 포함된다.
따라서, 본 발명의 병렬 반응은 저온 반응기 피드 펌프(31)를 통해 촉매를 제외한 반응물을 저온 반응기 피드 쿨러(33) 및 저온 반응기 피드 히터(34)로 온도 조절이 되는 저온 반응기(37)에 투입하고, 저온 반응기 촉매 피드(38)로 촉매 첨가 후 (a)단계 반응을 진행시킨다. 상기 (a)단계와는 별도로 동시에 고온 반응기 피드 펌프(32)를 통해 촉매를 제외한 반응물을 고온 반응기 피드(42)를 통해 고온 반응기 피드 쿨러(35) 및 고온 반응기 피드 히터(36)로 온도 조절이 되는 고온 반응기(40)에 수소 피드(43)와 함께 투입하고, 고온 반응기 촉매 피드(39)로 촉매 첨가 후 상기 (a)단계에서 보다 높은 온도에서 반응을 진행시킨다. 상기 저온 및 고온 반응물을 인라인 믹서(41)에 혼합하여 균질한 공중합체를 제조한다. 이러한 병렬 반응기에서의 반응의 경우 균일한 공중합체 물성을 나타내기 위하여 각 반응기에서 나온 용액을 균일하게 혼합해 주기 위해 인라인 혼합기가 사용된다. 균질한 공중합체를 만들기 위해 인라인 믹서뿐만 아니라 교반조 등 가능한 단위 조작들이 사용될 수 있다.
본 발명의 상기 (a) 및 (b)단계에서 에틸렌 및 하나 이상의 C3-C18의 α-올레핀 공단량체는 에틸렌 60 내지 99 중량% 및 α-올레핀 공단량체 1 내지 40 중량%인 것임이 바람직하다. 상기 에틸렌 함량이 60 중량% 미만인경우, 에틸렌의 함량이 낮아 에틸렌의 특성이 발휘되지 않아 물성이 저하되게 되며, 99 중량%를 초과하면 공중합체의 효과가 낮아지게 된다.
또한, 상기 (a) 및 (b)단계에서, 상기C3-C18의 α-올레핀 공단량체의 구체적인 예로는 프로필렌, 1-부텐, 1-펜텐, 4-메틸-1-펜텐, 1-헥센, 1-옥텐, 1-데센 및 1-도데센 또는 이들의 혼합물이며, 이 중에서 보다 바람직하게는 1-부텐, 1-헥센, 1-옥텐, 또는 1-데센이다.
또한, 상기 (a) 및 (b)단계에서, 중합에 사용되는 바람직한 유기 용매는 C30-C20의 탄화수소이며, 그 구체적인 예로는 부탄, 이소부탄, 펜탄, 헥산, 헵탄, 옥탄, 이소옥탄, 노난, 데칸, 도데칸, 시클로헥산, 메틸시클로헥산, 벤젠, 톨루엔, 크실렌 등을 들 수 있으며, 상업적으로 시판되고 있는 유기 용매 중 본 공정에 사용하기 적합한 용매를 하나 예로 들면 이소파라핀계열 용매인 SK-ISOL 계열 용매를 들 수 있다. 예를 들어 SK-ISOL E의 경우 C8~C12의 지방족 탄화수소 용제이고 증류범위는 117~137℃ 이며, SK에너지㈜에서 시판하고 있다.
본 발명의 제조방법으로 제조된 에틸렌 공중합체는 (a)단계에서 제조된 중합체 10~70 중량% 및 (b)단계에서 제조된 중합체30~90 중량% 를 포함하고, 상기 (a)단계에서 제조된 중합체는 MI가 0.001 내지 2.0 g/10min.이고, 밀도가 0.860 내지 0.925 g/㎤이고, 상기 (b)단계에서 제조된 중합체는 MI가 0.1 내지 100.0 g/10min.이고, 밀도가 0.900 내지 0.970 g/㎤인 에틸렌 공중합체를 특징으로 한다.
우선, 상기 (a)단계에서 제조된 중합체는 10 내지 70 중량%, 더욱 바람직하게는 20 내지 60중량%가 포함되는데, 상기 (a)단계에서 제조된 중합체의 함량이 10 중량%미만인 경우, 충격 강도 개선의 영향이 없으며, 70중량%를 초과하면, 필름으로 가공되면 투명도가 현저히 저하되어 가공 시 높은 에너지가 필요하며, 생산성이 저하된다.
또한, (a)단계에서 제조된 중합체의 분자량은 ASTM D2839에 의거한 MI(용융지수, Melt Index)측정법을 사용하여 MI가 0.001 내지2.0g/10min., 더욱 바람직하게는 0.005 내지 1.0g/10min.이다. 상기 (a)단계에서 제조된 중합체의 MI가 0.001g/10min. 미만인 경우, 중합체가 너무 뻣뻣하게 되어 가공성이 저하될 우려가 있으며, 2.0g/10min.을 초과하면, 인장강도, 충격강도 등의 전체 물성에 뚜렷한 개선이 보이지 않는다. 테츠야, 요시기요, 타카기 하토리 등('High Performance PE100 Resin with Extraordinary Resistance ot Slow Crack Growth', Plastics Pipes XIII Conference, 2007)에 의하면, 다봉 분자량 분포를 지니는 에틸렌 공중합체를 중합하기 위한 다단계 중합 방법에서 고분자량 부분일수록 우선적으로 중합하는 단계로 하는 것이 고분자량 부분의 전체 수지 중 분산이 양호하게 된다고 하였다.
또한, (a)단계에서 생성되는 중합체의 밀도는 0.860 내지 0.925g/㎤, 더욱 바람직하게는 0.880 내지 0.915g/㎤ 이다. 상기 밀도가 0.860g/㎤미만인 경우, 필름으로 제조 시 물성이 너무 낮아질 우려가 있으며, 0.925g/㎤을 초과하면, 필름이 너무 뻣뻣해지게 된다. 상기 (a)단계에서 제조되는 중합체는 낮은 영역의 밀도 범위를 갖는 수지가 중합되는데, 이는 고분자 사슬 중 불균일한 공중합체 분포를 보이는 지글러-나타 촉매와는 달리, 본 발명의 단일 활성점을 가지는 전이금속 촉매 를 사용하여 고분자 사슬 중 고른 공중합 단량체 분포를 갖는 수지를 합성하여 최종 제조되는 수지의 물성을 개선하기 위함이다.
한편, 상기 (b)단계에서 제조된 중합체는 30 내지 90중량%, 더욱 바람직하게는 40 내지 80중량%가 포함되는데 상기 (b)단계에서 제조된 중합체의 함량이 30중량% 미만인 경우, 상기 (a)단계에서 제조된 고분자량, 저밀도 에틸렌 공중합체에 의해 최종 수지의 가공성 및 필름의 투명도가 저하되며, 90중량%를 초과하면, 높은 물성을 제공하는 (a)단계에서 제조된 중합체의 함량이 낮아지게 되어 수지의 내환경성 저하 및 충격강도, 인장강도 등의 물성이 낮게된다.
또한, (b)단계에서 제조된 중합체의 분자량은 ASTM D2839에 의거한 MI(용융지수, Melt Index)측정법을 사용하여 MI가 0.1 내지 100.0g/10min, 더욱 바람직하게는 0.3 내지 50.0g/10min 이다. 상기 (b)단계에서 제조된 중합체의 MI가 0.1g/10min. 미만인 경우, 상기 (a)단계에서 제조된 중합체와 분자량 범위가 겹쳐 분자량 분포가 넓지 않아 다단계 반응의 장점이 발휘되지 않으며, 100g/10min.를 초과하면, 낮은 분자량으로 인해 물성 저하가 일어난다.
또한, (b)단계에서 생성되는 중합체의 밀도는 0.900 내지 0.970g/㎤임이 바람직하다. 상기 밀도가 0.900g/㎤미만인 경우, 상기 (a)단계에서 제조된 중합체의 밀도 범위에 포함되어 단계별 중합을 하는 효과가 없어지며, 0.970 g/㎤을 초과하는 경우, 필름 등의 용도로 사용할 때 지나치게 뻣뻣하게 되는 문제점이 있다. 따라서, 상기 (a)단계에서 제조된 중합체와 상기 (b)단계에서 제조된 중합체의 밀도 범위를 조정하여 수지의 물성을 최적화 할 수 있는 밀도 범위로 정하게 된다.
그 밖에 본 발명의 방법으로 제조된 에틸렌 공중합체의 밀도가 0.910 내지 0.940 g/㎤ 인 선형저밀도 폴리에틸렌 공중합체(LLDPE)인 에틸렌 공중합체, 밀도가 0.900 g/㎤ 이상 0.910 g/㎤ 이하인 초저밀도 에틸렌 공중합체(VLDPE 또는 ULDPE)인 에틸렌 공중합체가 포함된다.
상기의 제조방법에 따라 제조된 에틸렌 공중합체는 분자량분포지수가 2.8 내지 30.0임을 특징으로 한다.
일반적인 단일활성점 촉매에 의한 에틸렌 공중합체의 특징인 좁은 분자량 분포를 상기 다단계 반응공정을 사용하여 가공성을 개선할 수 있느 두 가지 이상의 분자량 분포를 지니게 되는 넓은 분자량 분포를 가지도록 고안되었다. 이에 본 발명의 공정 및 촉매를 통해 제조되는 에틸렌 공중합체의 분자량 분포 지수(질량 평균 분자량을 수평균 분자량으로 나눈 값)가 2.8 내지 30.0이 되도록 제어하여 가공성과 물성을 동시에 향상시킬 수 있게 된다.
따라서, 상기 (a) 및 (b)단계를 거쳐 제조된 에틸렌 공중합체는 분자량분포지수가 2.8내지 30.0인 에틸렌 공중합체일 수 있으며, 나아가 3.0 내지 20일 수 있다. 상기 분자량분포지수가 상기 범위에 있으면 에틸렌 공중합체의 가공성 또는 물성이 요구되는 범위에 맞게 제어될 수 있다. 상기 분자량분포지수가 2.8 미만인 경우, 단일 반응기 및 단일 활성점 촉매를 사용했을 때와 큰 차이가 없어지며, 30.0을 초과하는 경우, 밀도 및 분자량 분포 제어의 효과가 없어져 가공성 또는 물성 개선의 효과가 저하되는 문제점이 있다.
본 발명에서 상기 (a) 내지 (b)단계에 투입되는 에틸렌, C3-C18의 α-올레핀 공단량체는 반응기에 투입되기 전에 용매에 용해시키는 공정을 거치게 되는데, 용매와 혼합하여 용해시키기 전에 에틸렌, 공단량체 및 용매는 정제 공정을 거쳐서 잠재적으로 촉매의 독이 될 수 있는 수분, 산소, 일산화탄소 및 기타 금속 불순물들을 제거하게 된다. 이러한 정제 공정에 사용되는 물질들은 해당 분야에 공지된 바와 같이 분자체나 활성화 알루미늄, 또는 실리카겔 등을 사용한다.
또한, 상기 (a) 내지 (b)단계에 투입되는 원료들은 투입되기 전에 열교환 공정을 거치면서 냉각되거나 가열되며, 이를 통하여 반응기 내의 온도를 제어하게 된다. 따라서, 반응기의 온도 제어는 반응기 기벽을 통한 열교환이 없는 단열(adiabatic)반응기 공정으로, 반응열의 제어는 반응기로 유입되는 용매와 단량체 흐름의 온도를 변화시키며 반응기 내의 온도를 제어하게 된다.
본 발명에서는 상기 (b)단계 이후 단계에 추가적으로 에틸렌 및 공단량체, 촉매, 용매 등이 공급될 수 있으며, 이 또한 열교환 공정을 거쳐 미리 설계된 온도로 제어된다. 일반적으로 촉매는 각 단계에 투입될 때 타 원료들과는 독립적으로 공급되며, 이 때 용매와 미리 혼합 또는 용해되어 준비됨이 바람직하다.
여기서, 단계별 분자량 및 밀도의 측정은 2 이상의 다단계 반응을 거쳐 중합체가 합성될 경우 (b)단계 또는 그 이상 단계에서 제조되는 중합체의 물성은 (a)단계 후 수지를 채취하여 분석을 하고, (b)단계 후의 최종 생산된 중합체를 분석하여 각 단계별로 중합체의 밀도, 분자량 등을 계산할 수 있다.
또한, 물성 측정에 있어서는, (a) 내지 (b)단계의 각 단계별로 동일한 반응 온도 및 압력, 용매, 반응물, 촉매 및 반응시간 등의 동일한 중합 조건으로 각 단 계를 단일 반응기로 반응하여 생성되는 고분자로 그 물성을 유추해 내거나 문헌(B.Hagsroem Conference on Polymer Processing, 1977)에 나와 있는 바와 같이 다단계 반응에서 각 단계에 해당하는 부분을 계산하여 분석할 수 있다.
한편, 상기 (a) 내지 (b)단계에서의 체류 시간은 각 단계에서의 설계용적과 시간 당 생산량에 의해 결정된다. 상기 (a) 내지 (b)단계에서의 적절한 교반을 통하여 물질들이 균일하도록 운전 조건을 유지할 수 있도록 하며, 최종적으로 제조된 에틸렌 중합체 또는 에틸렌 공중합체는 적절한 용매 제거 공정을 거쳐 회수된다.
따라서, (a) 및 (b)단계를 거쳐 제조된 에틸렌 공중합체로부터 블로운 필름, 캐스팅 필름, 사출, 중공성형 또는 파이프 용도로 사용되는 에틸렌 공중합체 성형물이 얻어질 수 있다.
특히, 상기 필름용으로는 블로운 필름, 캐스팅 필름으로 성형되어 단층 또는 다층으로 형성된 포장용 필름이 제조될 수 있으며, 수축필름, 중포장필름, 냉동포장필름, 자동포장필름, 스트레치랩, 백(bag) 등의 용도에 적용될 수 있다.
상술한 바와 같이 본 발명의 에틸렌 공중합체는 에틸렌 또는 α-올레핀의 다단계 합성을 통해, 다봉의 분자량 분포를 지니는 에틸렌 공중합체를 제조하여 물성 및 가공성이 동시에 개선되는 효과가 있다.
또한, 다른 중합체와 블렌딩하여 제조되는 단점을 개선하여 생산성이 용이하고, 다양한 용도에 적용될 수 있는 효과가 있다.
이하 실시예를 통하여 본 발명을 구체적으로 설명하지만, 하기의 실시예에 의하여 본 발명의 범위가 한정되는 것은 아니다.
별도로 언급되는 경우를 제외하고 모든 리간드 및 촉매 합성 실험은 질소 분위기 하에서 표준 슐렝크(Schenk) 또는 글로브박스 기술을 사용하여 수행되었으며 반응에 사용되는 유기용매는 나트륨금속과 벤조페논 하에서 환류시켜 수분을 제거하여 사용직전 증류하여 사용하였다. 합성된 리간드 및 촉매의 1H-NMR분석은 상온에서 Varian Mercury 300 MHz 스펙트로미터를 사용하여 수행하였다.
중합용매인 시클로헥산은 Q-5 촉매(BASF사), 실리카겔 및 활성알루미나가 충진된 관을 차례로 통과시키고 고순도의 질소로 버블링시켜 수분, 산소 및 기타 촉매독 물질을 충분히 제거시킨 후 사용하였다.
중합된 중합체를 가지고 블로운 필름 성형 장비와 캐스팅 성형 장비로 가공된 필름을 제조하였으며, 중합된 중합체와 필름은 아래에 설명된 방법에 의하여 분석되었다.
1. 용융흐름지수 (MI)
ASTM D 2839에 의거하여 측정하였다.
2. 밀도
ASTM D 1505에 의거, 밀도 구배관을 사용하여 측정하였다.
3. 융용점 (Tm) 분석
DuPont DSC2910을 이용하여 질소분위기 하에서 10℃/min의 속도로 이차 가열 조건에서 측정하였다.
4. 분자량 및 분자량분포
PL Mixed-BX2+preCol이 장착된 PL210 GPC를 이용하여 135℃에서 1.0mL/min의 속도로 1,2,3-트리클로로벤젠 용매 하에서 측정하였으며, PL 폴리스티렌 표준물질을 사용하여 분자량을 보정하였다.
5. 인장 강도
ASTM D638 방법으로 측정하였다.
6. 충격 강도
ASTM D1709 방법으로 측정하였다.
7. 흐림(Haze)
ASTM D1003 방법으로 측정하였다.
8. 열 접착 강도 (Heat seal)
실시예 및 비교예에서 중합된 에틸렌공중합체를 필름으로 가공하고, 필름 2장을 겹쳐 일정 온도에서 1초간 2kgf/cm2의 압력으로 접착시킨다. 접착시킨 시료를 ASTM D638의 방법으로 인장강도를 측정하여 강도가 1,500g을 넘으면 그 때 접착시킨 온도를 열 접착 강도의 값으로 한다. 곧, 값이 낮을수록 접착시키는데 에너지 소모가 적게 되고, 접착 가공 후 사용 시 강도를 보이게 됨을 알 수 있다.
9. 가공 부하
직경 35mm 압출기를 사용하여 제품을 가공하면서 압출기 모터에 걸리는 전류 치를 가공 부하로 측정하였다.
10. 파이프 물성 측정
제작된 수지의 파이프 용도에 대한 적합성 및 강점을 판단하기 위하여 수지를 파이프로 가공하고 (외경=16mm, 두께=1.45mm) ISO 13479에 의거 저속 균열 성장 저항성을 측정하였다.
모든 실시예에 관계된 실험은 아래에 언급된 연속 용액 중합 공정을 이용하여 실행하였다. 본 공정에서 용매, 단량체, 촉매 등의 모든 흐름은 연속적으로 공급되며, 반응 결과물은 중합체와 분리된 용매 및 미반응물들도 연속적으로 제거된다. 모든 공급 흐름은 반응기로 투입되기 전 통상적으로 알려진 흡착 매체를 거쳐 순도를 높이며, 이 과정에서 촉매 독인 불순물(물, 산소, 일산화탄소 등)들이 제거된다. 모든 원료들은 또한 고순도의 질소 분위기 하에서 저장되고 사용된다.
본 발명의 중합 공정은 연속적으로 직렬 연결된 2개의 반응기 혹은 병렬 연결된 2개의 반응기로 구성되어 있다. 직렬 연결의 경우 첫 번째 반응기는 내용적이 500ml이며 관을 통하여 연속적으로 1000ml의 용적을 가진 제2 반응기와 연결되어 있고, 병렬 연결의 경우 500ml 반응기와 650ml 반응기가 연결되어 있는 구조를 가진다. 각 반응기에 각각 용매와 단량체, 공단량체, 수소 및 촉매를 투입할 수 있도록 설계하였다.
본 발명의 반응기에 투입되는 촉매는 상기 화학식 1의 단일 활성점 촉매를 포함하는 촉매조성물을 적용하였으며, 상기 촉매는 전 실시예의 첫번재 및 두번째 단계의 반응에 공통적으로 적용된다.
본 발명의 조촉매로는 보론을 포함한 이온 활성화제 및 알루녹산이 사용되었으며, 구체적으로 본 실시예에서는 트리이소부틸알루미늄이 알루녹산으로 사용되었으며, 트리페닐메틸리니움테트라키스펜타플루오르페닐 보레이트는 이온 활성화제로서 선택적으로 사용되었다. 첫번째와 두번째 반응기로 투입되는 촉매 및 조촉매는 각각 톨루엔에 용해하여 투입하였다.
본 발명에서의 중합 공정은 사이클로헥산을 용매로 하여 110kgf/cm2의 압력 하에서 진행된다. 에틸렌은 중합 반응기에 투입되기 전 30kgf/cm2의 압력 및 23℃ 하에 사이클로헥산에 용해시킨다. 공단량체의 경우 역시 중합 반응기 투입 전 에틸렌과 함께 용매에 용해되어 투입된다. 반응이 진행되면서 에틸렌의 전환률은 촉매 농도, 반응 온도, 촉매 활성 등에 의해 조절한다.
촉매의 제조
[제조예 1] 비스 (2- 페닐 -4- 플로로페녹시 ) ( 펜타메틸사이클로펜타디에닐 )티타늄( IV ) 클로라이드의 합성
1.90g (10.09mmol)의 2-페닐-4-플로로페놀을 80ml 디에틸에테르에 녹인 후 4.8ml의 부틸리튬 (2.5M 헥산용액)을 0℃에서 서서히 적가하였다. 상온에서 5 시간 동안 반응시킨 후 (트리클로로)(펜타메틸사이클로펜타디에닐)티타늄(IV) (1.64 g, 5.5 mmol)을 10ml 의 디에틸에테르에 녹인 용액을 -78℃에서 서서히 적가시켰다. 상온에서 12 시간 교반시킨 후 여과한 다음 휘발물질을 제거하고 톨루엔/헥산 혼합 용액으로 -35℃에서 재결정하여 주황색의 고체성분 2.54g을 얻었다.
수율 85% 1H NMR (C6D6) δ = 1.46 ( s, 15H ), 6.65 ~ 7.57 ( m, 8H ).
[제조예 2] 비스(4- 메틸 -2-(2'- 이소프로필페닐 ) 페녹시 )( 펜타메틸시클로펜타디에닐 ) 티타늄(IV)클로라이드의 합성
4-메틸-2-(2'-이소프로필페닐)페놀 (2g, 8.8mmol)과 나트륨하이드라이드 (636mg, 26.5mmol)를 톨루엔 20ml에 녹인 후 4시간 동안 환류반응시킨다. 이후 상온으로 냉각시킨 다음 (펜타메틸시클로펜타디에닐)티타늄(IV)트리클로라이드 (1.15g, 4.0mmol)를 5ml의 톨루엔에 녹인 용액을 서서히 적가시키고 24시간 동안 환류 반응을 시켰다. 반응이 완료되면 휘발물질을 제거하고 정제된 헥산으로 세정한 후, 헥산으로 -35℃에서 재결정하여 여과한 후 감압 건조시켜 주황색의 고체성분 1.65g을 얻었다.
수율 61 % 1H NMR (C6D6) δ = 0.96-1.07 (m, 6H), 1.54 ( s, 15H ), 1.72 ( s, 3H ), 2.76 (m, 1H), 6.76-7.27 (m, 7H) ppm.
[제조예 3] 비스 (2- 페닐페녹시 )( 펜타메틸시클로펜타디에닐 )티타늄(IV)클로라이드의 합성
2-페닐페놀 (1.72g, 10.1mmol, Aldrich 99%)을 건조된 플라스크에 넣고 40ml의 톨루엔에 녹인 후 잘 교반시키며 온도를 0℃로 냉각시켰다. N-부틸리튬 (4.8ml, 2.5M 헥산 용액, Aldrich)을 혼합물에 천천히 적가하였다. 적가가 끝나면 1시간 동 안 온도를 유지시킨 후에 펜타메틸시클로펜타디에닐티타늄트리클로라이드 (1.64g, 5.5mmol)을 10ml 톨루엔에 녹여서 천천히 적가하였다. 적가가 끝나면 1시간 동안 유지시킨 후에 상온으로 올려주고 다시 1시간 동안 교반시켰다. 반응기 온도를 90℃로 올려준 후 12시간 동안 반응시켰다. 얻어진 혼합물을 여과한 다음 휘발물질을 제거하고 톨루엔/헥산 혼합 용매로 -35℃에서 재결정을 실시하여 주황색 고체성분 2.3g을 얻었다.
수율 75 % 1H NMR (C6D6) δ = 1.54 ( s, 15H ), 6.74~7.16 ( m, 9H ) ppm.
[제조예 4] 2-이소프로필-6- 페닐페놀의 합성
2-브로모-6-이소프로필아니솔 (1.98g, 8.64mmol), 페닐보로닉산 (2.10g, 17.28mmol), 팔라듐아세테이트 (96mg, 0.43mmol), 트리페닐포스핀 (0.225g, 0.86mmol) 및 인산칼륨(11g, 51.84mmol)을 투입한 플라스크에 8ml의 물과 32ml의 디메톡시에탄 혼합 용액을 넣고 12시간 환류시켰다. 상온으로 냉각시킨 후 염화암모늄 수용액 (15ml)과 30ml의 디에틸에테르를 주입한 다음 유기층을 분리하고 잔류물을 디에틸에테르로 추출하여 모아진 유기층을 황산 마그네슘으로 건조시킨 후 휘발물질을 제거하여 2-이소프로필-6-페닐아니솔 회색 고체 2g을 얻었다. 얻어진 아니솔은 별도의 정제 과정없이 15ml의 메틸렌클로라이드에 녹인 후 -78℃에서 12ml의 보론트리브로마이드 (1M 메틸렌클로라이드 용액)를 적가한 후 서서히 상온으로 온도를 올리면서 12시간 동안 반응시켰다. 반응 후 물(15ml)과 디에틸에테르(30ml) 혼합 용액을 투입한 다음 유기층을 분리하고 수용액 층을 디에틸에테르로 추출 (15ml X 3)하여 모아진 유기층을 건조시킨 후 휘발 성분을 감압하에 제거한 잔류물을 실리카겔 크로마토그래피관을 이용하여 헥산과 메틸렌클로라이드 혼합용매 하에서 정제하여 백색의 고체물질인 2-이소프로필-6-페닐페놀 1.72g을 수득하였다.
수율 : 94%, 1H-NMR (CDCl3) δ = 1.307 (d, 6H), 3.45 (m, 1H), 5.09 (s, 1H), 6.95-7.43 (m, 8H) ppm.
( 디클로로 )( 펜타메틸사이클로펜타디에닐 )(2-이소프로필-6- 페닐페녹시 )티타늄( IV)의 합성
2-이소프로필-6-페닐페놀 (700mg, 3.28mmol)과 나트륨하이드라이드 (236mg, 9.84mmol)를 톨루엔 10ml에 녹인 후 4시간 동안 환류 반응시켰다. 이후 상온으로 냉각시킨 다음 (트리클로로)(펜타메틸사이클로펜타디에닐)티타늄(IV) (930mg, 3.21mmol)을 5ml의 톨루엔에 녹인 용액을 서서히 적가시키고 24시간동안 환류반응을 시켰다. 반응이 완료되면 휘발물질을 제거하고 정제된 헥산으로 세정한 후 톨루엔/헥산 혼합용액으로 -35℃에서 재결정하여 여과한 후 감압 건조시켜 적색의 고체성분 1.0g을 얻었다.
수율:64%, 1H-NMR (C6D6) δ = 1.324 (d, 6H), 1.63 (s, 15H), 3.53 (m, 1H), 7.05-7.66 (m, 8H) ppm.
[제조예 5] 2- 비페닐페놀의 합성
2-브로모아니솔 (1.62g, 8.64mmol), 4-비페닐보로닉산 (2.57g, 12.96mmol), 팔라듐아세테이트 (96mg, 0.43mmol), 트리페닐포스핀 (0.225g, 0.86mmol) 및 인산칼륨(11g, 51.84mmol)을 투입한 플라스크에 8ml의 물과 32ml의 디메톡시에탄 혼합 용액을 넣고 상온에서 12시간 환류시켰다. 상온으로 냉각시킨 후 염화암모늄 수용액 (15ml)과 30ml의 디에틸에테르를 주입한 다음 유기층을 분리하고 잔류물을 디에틸에테르로 추출하여 모아진 유기층을 황산 마그네슘으로 건조시킨 후 휘발물질을 제거하여 2-비페닐아니솔 회색 고체 2.0g을 얻었다. 얻어진 아니솔은 별도의 정제 과정없이 15ml의 메틸렌클로라이드에 녹인 후 -78℃에서 12ml의 보론트리브로마이드 (1M 메틸렌클로라이드 용액)를 적가한 후 서서히 상온으로 온도를 올리면서 12시간 동안 반응시켰다. 반응 후 물(15ml)과 디에틸에테르(30ml) 혼합 용액을 투입한 다음 유기층을 분리하고 수용액 층을 디에틸에테르로 추출 (15ml X 3)하여 모아진 유기층을 건조시킨 후 휘발 성분을 감압하에 제거한 잔류물을 실리카겔 크로마토그래피관을 이용하여 헥산과 메틸렌클로라이드 혼합용매 하에서 정제하여 백색의 고체물질인 2-비페닐페놀 1.8g을 수득하였다.
수율 : 85%, 1H-NMR (CDCl3) δ = 5.29 (s, 1H), 6.95-7.75 (m, 13H) ppm.
( 디클로로 )( 펜타메틸사이클로펜타디에닐 )(2- 비페닐페녹시 )티타늄( IV )의 합성
2-비페닐페놀 (700mg, 2.84mmol)과 나트륨하이드라이드 (204mg, 8.52mmol)를 톨루엔 10ml에 녹인 후 4시간 동안 환류 반응시켰다. 이후 상온으로 냉각시킨 다음 (트리클로로)(펜타메틸사이클로펜타디에닐)티타늄(IV) (820mg, 2.83mmol)을 5ml의 톨루엔에 녹인 용액을 서서히 적가시키고 24시간동안 환류반응을 시켰다. 반응이 완료되면 휘발물질을 제거하고 정제된 헥산으로 세정한 후 톨루엔/헥산 혼합용액으로 -35℃에서 재결정하여 여과한 후 감압 건조시켜 적색의 고체성분 0.9g을 얻었다.
수율:64%, 1H-NMR (C6D6) δ = 1.65 (s, 15H), 6.65-7.89 (m,13H) ppm.
[제조예 6] ( 디클로로 )( 펜타메틸사이클로펜타디에닐 )(2-(9',9''- 디메틸플루오렌 -2'-일) 페녹시 )티타늄( IV )의 합성
2- 브로모 -9,9'- 디메틸플루오렌의 합성
1000 mL 3구 둥근 플라스크에 2-브로모플루오렌(25g, 102.0 mmol), 요오드메탄 (43.4g, 306.0 mmol)과 DMSO 300 mL를 넣고 질소 분위기하에서 교반하여 녹인다. 포타슘-터트-부톡사이드(32.1g, 285.6 mmol)를 DMSO 400 mL에 녹여 서서히 적가시킨다. 상온에서 12시간동안 교반시킨후 다시 80℃에서 1시간 동안 교반시킨 다음 상온으로 온도를 내린다. 물 1000mL와 혼합한 다음 노말헥산으로 추출한다. 유기혼합물을 증류수로 3번 씻어준 다음 무수 마그네슘 설페이트(MgSO4)로 수분을 제거한 후 회전증발기로 용매를 제거하고 실리카겔 크로마토그라피관을 이용하여 노말헥산으로 정제하여 다시 노말헥산에서 재결정하여 흰색 고형분인 2-브로모-9,9'-디메틸플루오렌 27.0g(수율 96.9% )을 수득하였다.
1H-NMR (CDCl3) δ = 1.65(s, 6H), 7.35-7.39(m, 2H), 7.44-7.50(m, 2H), 7.58-7.62(m, 2H), 7.72-7.73(m, 1H) ppm
2-(2''- 메톡시페닐 )-9,9'- 디메틸플루오렌의 합성
2-브로모-9,9'-디메틸플루오렌(27.0g, 98.8mmol), 2-메톡시페닐보로닉산 (18.0g, 118.6 mmol), 팔라듐아세테이트 (0.13g, 0.6 mmol), 트리페닐포스핀(0.94 g, 3.6 mmol) 및 인산칼륨 (40.9 g, 177.9 mmol)을 투입한 플라스크에 70 ml의 물과 150 mL의 디메톡시에탄 혼합용액을 넣고 6시간 환류시킨다. 상온으로 냉각시킨 후 염화 암모늄 수용액 (150 mL)과 200 mL의 디에틸에테르를 주입한 다음 유기층을 분리하고 잔류물을 디에틸에테르로 추출하여 모아진 유기층을 마그네슘 설페이트로 건조시킨 후 휘발물질을 제거한 후 실리카겔 크로마토그라피관을 이용하여 헥산으로 정제하여 고형분인 2-(2''-메톡시페닐)-9,9'-디메틸플루오렌 28.0g(수율 94.0%)을 수득하였다.
1H-NMR (CDCl3) δ = 1.56(s, 6H), 3.88(s, 3H), 7.04-7.06(d, 1H), 7.08-7.11(t, 1H), 7.33-7.39(m, 3H), 7.43-7.45(d, 1H), 7.47-7.48(d, 1H), 7.56-7.58(d, 1H), 7.63(s, 1H), 7.76-7.840(t, 2H) ppm.
2-(9',9''- 디메틸플루오렌 -2'-일)페놀의 합성
2-(2''-메톡시페닐)-9,9'-디메틸플루오렌 (25.0 g, 83.2 mmol)을 400 mL의 메틸렌클로라이드에 녹인 후 -78℃에서 100 mL의 보론트리브로마이드(1M-메틸렌클로라이드 용액)를 적가한 후 서서히 상온으로 온도를 올려 3시간동안 반응시켰다. 반응 후 얼음(150 g)과 디에틸에테르(300 mL) 혼합용액을 투입한 다음 유기층을 분리하고 수용액 층을 디에틸에테르로 추출하여 모아진 유기층을 마그네슘 설페이트 로 건조시킨 후 휘발물질을 제거한 후 실리카겔 크로마토그라피관을 이용하여 헥산과 메틸렌클로라이드 혼합용액으로 정제하여 흰색 고형분인 2-(9',9''-디메틸플루오렌-2'-일)페놀 18.0 g(수율 75.5%) 을 수득하였다.
1H-NMR (CDCl3) δ = 1.55(s, 6H), 7.04-7.07(m, 2H), 7.30-7.40(m, 4H), 7.47-7.50(m, 2H), 7.55(s, 1H), 7.78-7.80 (d, 1H), 7.85-7.87(d, 1H) ppm
( 디클로로 )( 펜타메틸사이클로펜타디에닐 )(2-(9',9''- 디메틸플루오렌 -2'-일)페녹시)티타늄( IV )의 합성
2-(9',9''-디메틸플루오렌-2'-일)페놀 (5.0 g, 17.1 mmol)을 200 mL 톨루엔에 녹인후 -78℃에서 노르말부틸리튬 (2.5M 헥산용액, 6.9 mL)을 서서히 주입한 후 상온에서 12시간 동안 교반시킨다. 반응물의 온도를 -78℃으로 내린다음 (펜타메틸시클로펜타디에닐)티타늄(IV)트리클로라이드(4.7 g, 16.3 mmol)를 100 mL의 톨루엔에 녹여 서서히 첨가하여, 12시간 동안 상온에서 반응을 시켰다. 반응이 완료되면 셀라이트로 필터하여 용매를 제거하고 정제된 톨루엔과 헥산으로 -35℃에서 재결정하여 여과한 후 감압 건조시켜 적색의 고체성분인 (디클로로)(펜타메틸사이클로펜타디에닐)(2-(9',9''-디메틸플루오렌-2'-일)페녹시)티타늄(IV) 5.6 g (수율 63.9%)을 얻었다.
1H-NMR (C6D6) δ = 1.61(s, 6H), 1.77(s, 15H), 7.03-7.05(t, 1H), 7.16-7.19(t, 1H), 7.32-7.34(m, 2H), 7.37-7.39(d, 1H), 7.42-7.44(d, 1H), 7.46- 7.47(d, 1H), 7.71-7.77(m, 3H), 7.82-7.84(d, 1H) ppm.
Mass (APCI mode, m/z): 539.4
[제조예 7] ( 클로로 )( 펜타메틸사이클로펜타디에닐 )(비스(2-(9',9''- 디메틸플루오렌 -2'-일) 페녹시 ))티타늄( IV )의 합성
2-(9',9''-디메틸플루오렌-2'-일)페놀 (5.0 g, 17.1 mmol)을 200 mL 톨루엔에 녹인 후 -78℃에서 노르말부틸리튬 (2.5M 헥산용액, 6.9 mL)을 서서히 주입한 후 상온에서 12시간 동안 교반시킨다. 반응물의 온도를 -78℃으로 내린다음 (펜타메틸시클로펜타디에닐)티타늄(IV)트리클로라이드(2.3 g, 8.0 mmol)를 100 mL의 톨루엔에 녹여 서서히 첨가하여, 12시간 동안 80 ℃에서 반응을 시켰다. 반응이 완료되면 셀라이트로 필터하여 용매를 제거하고 정제된 톨루엔과 헥산으로 -35℃에서 재결정하여 여과한 후 감압 건조시켜 주황색의 고체성분인 (클로로)(펜타메틸사이클로펜타디에닐)(비스(2-(9',9''-디메틸플루오렌-2'-일)페녹시))티타늄(IV) 3.5 g (수율 55.8%)을 얻었다.
1H-NMR (C6D6) δ = 1.54(s, 6H), 1.61(s, 6H), 1.65(s, 15H), 7.01-7.04(t, 2H), 7.21-7.24(t, 2H), 7.33-7.36(m, 4H), 7.39-7.41 (t, 4H), 7.44-7.46(m, 2H), 7.65(s, 2H), 7.73-7.757(t, 2H), 7.82-7.88(m, 4H) ppm.
Mass (APCI mode, m/z): 789.3
[제조예 8] ( 디클로로 )( 펜타메틸사이클로펜타디에닐 )(2-(9'H- 플루오렌 -2'-일) 페녹시 )티타늄( IV )의 합성
2-(2'- 메톡시페닐 )-9H- 디메틸플루오렌의 합성
2-브로모-9H-플루오렌(10.0g, 40.8mmol), 2-메톡시페닐보로닉산 (7.4g, 49.0 mmol), 팔라듐아세테이트 (0.055g, 0.245 mmol), 트리페닐포스핀(0.44 g, 1.4 mmol) 및 인산칼륨 (2.0 g, 95.5 mmol)을 투입한 플라스크에 33 ml의 물과 100 mL의 디메톡시에탄 혼합용액을 넣고 6시간 환류시킨다. 상온으로 냉각시킨 후 염화 암모늄 수용액 (100 mL)과 150 mL의 디에틸에테르를 주입한 다음 유기층을 분리하고 잔류물을 디에틸에테르로 추출하여 모아진 유기층을 마그네슘 설페이트로 건조시킨 후 휘발물질을 제거한 후 실리카겔 크로마토그라피관을 이용하여 헥산으로 정제하여 고형분인 2-(2'-메톡시페닐)-9H-디메틸플루오렌 10.0g(수율 90.0% )을 수득하였다.
1H-NMR (CDCl3) δ = 3.87(s, 3H), 3.98(s, 2H), 7.04-7.05(d, 1H), 7.07-7.10(t, 1H), 7.32-7.42(m, 4H), 7.57-7.59(d, 2H), 7.74(s, 1H), 7.83-7.86(t, 2H) ppm.
2-(9'H- 플루오렌 -2'-일)페놀의 합성
2-(2'-메톡시페닐)-9H-디메틸플루오렌 (10.0 g, 36.7 mmol)을 200 mL의 메틸렌클로라이드에 녹인 후 -78℃에서 44 mL의 보론트리브로마이드(1M-메틸렌클로라이드 용액)를 적가한 후 서서히 상온으로 온도를 올려 3시간동안 반응시켰다. 반응 후 얼음(150 g)과 디에틸에테르(200 mL) 혼합용액을 투입한 다음 유기층을 분리하고 수용액 층을 디에틸에테르로 추출하여 모아진 유기층을 마그네슘 설페이트로 건 조시킨 후 휘발물질을 제거한 후 실리카겔 크로마토그라피관을 이용하여 헥산과 메틸렌클로라이드 혼합용액으로 정제하여 흰색 2-(9'H-플루오렌-2'-일)페놀 7.0 g(수율 73.8%) 을 수득하였다.
1H-NMR (CDCl3) δ = 3.96(s, 2H), 7.00-7.02(m, 2H), 7.25-7.35(m, 3H), 7.39-7.42(t, 1H), 7.47-7.49(d, 1H), 7.56-7.58(d, 1H), 7.64(s, 1H), 7.81-7.83(d, 1H), 7.88-7.89(d, 1H) ppm.
( 디클로로 )( 펜타메틸사이클로펜타디에닐 )(2-(9'H- 플루오렌 -2'-일) 페녹시 )티타늄( IV)의 합성
2-(9'H-플루오렌-2'-일)페놀 (4.4 g, 17.0 mmol)을 200 mL 톨루엔에 녹인후 -78℃에서 노르말부틸리튬 (2.5M 헥산용액, 6.9 mL)을 서서히 주입한 후 상온에서 12시간 동안 교반시킨다. 반응물의 온도를 -78℃으로 내린 다음 (펜타메틸시클로펜타디에닐)티타늄(IV)트리클로라이드(4.7 g, 16.3 mmol)를 100 mL의 톨루엔에 녹여 서서히 첨가하여, 12시간 동안 상온에서 반응을 시켰다. 반응이 완료되면 셀라이트로 필터하여 용매를 제거하고 정제된 톨루엔과 헥산으로 -35℃에서 재결정하여 여과한 후 감압 건조시켜 적색의 고체성분인 (디클로로)(펜타메틸사이클로펜타디에닐)(2-(9'H-플루오렌-2'-일)페녹시)티타늄 (IV) 5.9 g (수율 71.0%)을 얻었다.
1H-NMR (C6D6) δ = 1.72(s, 15H), 3.94(s, 2H), 7.05-7.18(m, 2H), 7.36-7.38(m, 2H), 7.44-7.46(m, 2H), 7.48-7.50 (d, 1H), 7.65-7.66(d, 1H), 7.81- 7.82(d, 1H), 7.86-7.87(d, 1H), 7.98(1, 1H) ppm.
Mass (APCI mode, m/z): 511.3
[제조예 9] ( 디클로로 )( 펜타메틸사이클로펜타디에닐 )(1- 페닐나프탈렌 -2- 일옥 시)티타늄( IV )의 합성
1- 브로모 -2- 메톡시나프탈렌의 합성
500 mL 3구 둥근 플라스크에 1-브로모나프탈렌-2-올(30.0g, 134.5 mmol), 수산화칼륨(KOH)(11.3 g 201.7 mmol)과 DMSO 300 mL를 넣고 질소 분위기하에서 10분동안 교반시킨 다음, 얼음물 용기로 반응물을 냉각시킨 후, 요오드메탄 (28.6 g, 201.7 mmol)를 서서히 적가시킨다. 요오드메탄의 주입이 끝나면 상온에서 12시간동안 질소분위기 하에서 교반시킨후 다시 50℃에서 1시간 동안 교반시킨 다음 상온으로 온도를 내린다. 물 500mL와 혼합한 다음 디에틸에테르로 추출한다. 유기혼합물을 증류수로 3번 씻어준 다음 무수 마그네슘 설페이트(MgSO4)로 수분을 제거한 후 회전증발기로 용매를 제거하고 실리카겔 크로마토그라피관을 이용하여 노말헥산으로 정제하여 흰색 고형분인 1-브로모-2-메톡시나프탈렌의 22.0g(수율 69.0%)을 수득하였다.
1H-NMR (CDCl3) δ = 4.07(s, 3H), 7.30-7.32(d, 1H), 7.41-7.44(t, 1H), 7.58-7.61(t, 1H), 7.81-7.86(m, 2H), 8.25-8.26 (d, 1H) ppm.
2- 메톡시 -1- 페닐나프탈렌의 합성
1-브로모-2-메톡시나프탈렌 (20.0g, 84.4mmol), 페닐보로닉산 (11.3g, 92.8 mmol), 팔라듐아세테이트 (0.10g, 0.46 mmol), 트리페닐포스핀(0.85 g, 2.78 mmol) 및 인산칼륨 (40.9 g, 177.9 mmol)을 넣은 플라스크에 60 ml의 물과 120 mL의 디메톡시에탄 혼합용액을 넣고 6시간 환류시킨다. 상온으로 냉각시킨 후 염화 암모늄 수용액 (150 mL)과 200 mL의 디에틸에테르를 주입한 다음 유기층을 분리하고 잔류물을 디에틸에테르로 추출하여 모아진 유기층을 마그네슘 설페이트로 건조시킨 후 휘발물질을 제거한 후 실리카겔 크로마토그라피관을 이용하여 헥산으로 정제하여 무색액체인 2-메톡시-1-페닐나프탈렌 13.0g(수율 66 % )을 수득하였다.
1H-NMR (CDCl3) δ = 3.87(s, 3H), 7.35-7.47(m, 6H), 7.52-7.55(m, 3H), 7.85-7.87(d, 1H), 7.91-7.93(d, 1H) ppm.
1- 페닐나프탈렌 -2-올의 합성
2-메톡시-1-페닐나프탈렌 (13.0 g, 55.5 mmol)을 300 mL의 메틸렌클로라이드에 녹인 후 -78℃에서 670 mL의 보론트리브로마이드(1M-메틸렌클로라이드 용액)를 적가한 후 서서히 상온으로 온도를 올려 3시간동안 반응시켰다. 반응 후 얼음(150 g)과 디에틸에테르(250 mL) 혼합용액을 투입한 다음 유기층을 분리하고 수용액 층을 디에틸에테르로 추출하여 모아진 유기층을 마그네슘 설페이트로 건조시킨 후 휘발물질을 제거한 후 실리카겔 크로마토그라피관을 이용하여 헥산과 메틸렌클로라이드 혼합용액으로 정제하여 흰색 고형분인 1-페닐나프탈렌-2-올 10.0 g(수율 81.8%) 을 수득하였다.
1H-NMR (CDCl3) δ = 7.29-7.31(d, 1H), 7.35-7.39(m, 2H), 7.53-7.56(t, 1H), 7.61-7.64(t, 2H), 7.83-7.86 (m, 2H) ppm.
( 디클로로 )( 펜타메틸사이클로펜타디에닐 )(1- 페닐나프탈렌 -2- 일옥시 )티타늄( IV )의 합성
1-페닐나프탈렌-2-올 (2.0 g, 9.1 mmol)을 100 mL 톨루엔에 녹인후 -78℃에서 노르말부틸리튬 (2.5M 헥산용액, 3.6 mL)을 서서히 주입한 후 상온에서 12시간 동안 교반시킨다. 반응물의 온도를 -78℃으로 내린다음 (펜타메틸시클로펜타디에닐)티타늄(IV)트리클로라이드(2.5 g, 16.3 mmol)를 60 mL의 톨루엔에 녹여 서서히 첨가하여, 12시간 동안 상온에서 반응을 시켰다. 반응이 완료되면 셀라이트로 필터하여 용매를 제거하고 정제된 톨루엔과 헥산으로 -35℃에서 재결정하여 여과한 후 감압 건조시켜 적색의 고체성분인 (디클로로)(펜타메틸사이클로펜타디에닐)(1-페닐나프탈렌-2-일옥시)티타늄(IV) 2.5 g (수율 58.2%)을 얻었다.
1H-NMR (C6D6) δ = 1.87(s, 15H), 7.27-7.32(m, 3H), 7.43-7.46(t, 2H), 7.58-7.60(m, 3H), 7.70-7.73(t, 1H), 7.92-7.94(t, 1H) ppm.
Mass (APCI mode, m/z): 471.83
실시예 1
직렬로 연결된 1단계 및 2단계 반응기의 단일 활성점 촉매로서 제조예 1에서 합성된 비스(펜타메틸사이클로펜타디에닐)(2-페닐-4-플로로페녹시) 티타늄(IV)클로 라이드 가 사용되었다. 실시예 및 비교예에 있어서 촉매 사용량은 표1, 표2에 나타난 것과 같다. Ti는 단일 활성점 촉매, Al은 조촉매인 트리이소부틸알루미늄, B는 트리페닐메틸리니움테트라키스펜타플루오르페닐 보레이트를 각각 나타낸다. 각 촉매는 자일렌에 각각 0.2 g/l, 5.0 g/l, 1.5 g/l의 농도로 용해시켜 주입하였다. 각 반응기 별로 에틸렌 투입비를 4:6으로 하고 공단량체로 1-옥텐을 사용하여 합성을 실시하였다. 단, 2단계 반응기에 투입되는 에틸렌 양의 경우 제1반응기에서의 중합체 밀도 및 분자량을 맞추기 위해 전환률이 낮을 경우, 제2반응기로 넘어가는 미반응 에틸렌을 고려하여 결정된다. 각 반응기의 전환률은 각각의 반응 조건에서 한 가지 중합체로 중합할 때의 반응 조건 및 반응기 내 온도 구배를 통해 추측할 수 있다. 2단계 반응기에서 상대적으로 높은 MI의 공중합체를 생성하기 위하여 적당량의 수소를 주입하여 분자량을 제어하였다. 또한 각 반응기 내에서의 분자량은 단일 활성점 촉매의 경우 반응기 온도 및 1-옥텐 함량의 함수로 제어하게 되며, 아래 표 1-1에 그 조건이 나와 있다.
상기 제조된 에틸렌 공중합체를 가지고 배럴온도 160-170-170℃, 다이온도 175℃에서 압출하여 두께 40㎛, 폭 530mm인 블로운 필름으로 제조하였다.
실시예 2
상기 실시예 1과 같은 방법으로 중합체를 제조하였으며, 다만 단일활성점 촉매로는 제조예 3에서 합성된 비스(2-페닐페녹시)(펜타메틸시클로펜타디에닐) 티타늄(IV)클로라이드를 톨루엔에 0.2 g/l의 농도로 용해하여 표 1에 게시된 양으로 투입하였다. 또한 표 1-1에 나와 있는 조건과 같이 각 반응기에 공급되는 에틸렌 양 과 공단량체인 1-옥텐 양, 그리고 반응기 온도 조건을 달리하여 제조하였다.
도 3은 본 발명의 실시예 2에 따른 에틸렌 공중합체의 분자량 분포 곡선이다. 도 3을 참조하면, 본 발명의 실시예 2에 따른 에틸렌 공중합체의 분자량 분포 곡선은 두 개의 봉으로 3.58을 나타내어 넓은 분자량 분포를 지님을 확인하였다.
상기 제조된 에틸렌 공중합체를 상기 실시예 1과 동일한 조건에서 블로운 필름으로 제조하였다.
실시예 3
병렬로 연결된 두 개의 반응기를 사용하여 반응을 진행하고, 각 반응기에서 나온 중합체와 용제의 혼합물인 용액은 인라인 믹서를 통하여 균질하도록 혼합시키는 공정을 거치는 방법으로 중합체를 제조하였으며, 또한 단일 활성점 촉매로는 제조예 2의 방법으로 제조한 비스(4-메틸-2-(2'-이소프로필페닐)페녹시)(펜타메틸시클로펜타디에닐)티타늄(IV)클로라이드를 톨루엔에 0.2 g/l 의 농도로 용해하고 표1-1에 나타난 양으로 첨가하여 사용하였다. 또한 표 1-1에 나와 있는 조건과 같이 각 반응기에 공급되는 에틸렌 양과 공단량체인 1-옥텐 양, 그리고 반응기 온도 조건을 달리하여 제조하였다.
상기 제조된 에틸렌 공중합체를 상기 실시예 1과 동일한 조건에서 블로운 필름으로 제조하였다.
실시예 4
상기 실시예 3과 같은 방법으로 중합체를 제조하였으며, 다만 제1 및 제2 반응기로 투입되는 단일활성점 촉매양은 표1-1에 게시된 바와 같으며, 또한 표 1-1에 나와 있는 조건과 같이 각 반응기에 공급되는 에틸렌 양과 공단량체인 1-옥텐양, 그리고 반응기 온도 조건을 달리하여 제조하였다.
상기 제조된 에틸렌 공중합체를 가지고 캐스팅 필름법으로 배럴온도 160-180-200℃, 다이온도 230℃에서 압출하여 두께 40㎛, 폭 445mm인 캐스팅 필름으로 제조하였다.
실시예 5
상기 실시예 1과 같은 방법으로 중합체를 제조하였으며, 다만 단일활성점촉매로는 제조예 4에서 합성된 (디클로로)(펜타메틸사이클로 펜타디에닐)(2-이소프로필-6-페닐페녹시)티타늄(IV)를 톨루엔에 0.2 g/l의 농도로 용해하여 표1-1에 게시된 양으로 제1 및 제2 반응기에 투입하였다. 또한 표 1-1에 나와 있는 조건과 같이 각 반응기에 공급되는 에틸렌 양과 공단량체인 1-옥텐 양, 그리고 반응기 온도 조건을 달리하여 제조하였다.
상기 제조된 에틸렌 공중합체를 상기 실시예 4와 동일한 조건에서 캐스팅 필름으로 제조하였다.
실시예 6
상기 실시예 3과 같은 방법으로 중합체를 제조하였으며, 다만 단일활성점촉매로는 제조예 5에서 합성된 (디클로로) (펜타메틸사이클로펜타디에닐)(2-비페닐페녹시) 티타늄(IV)를 톨루엔에 0.2 g/l의 농도로 용해하여 표1-1에 게시된 양으로 제1 및 제2 반응기에 투입하였다. 또한 표 1-1에 나와 있는 조건과 같이 각 반응기에 공급되는 에틸렌 양과 공단량체인 1-옥텐 양, 그리고 반응기 온도 조건을 달리 하여 제조하였다.
상기 제조된 에틸렌 공중합체를 상기 실시예 4와 동일한 조건에서 캐스팅 필름으로 제조하였다.
실시예 7
상기 실시예 1과 같은 방법으로 중합체를 제조하였으며, 다만 단일활성점촉매로는 제조예 3에서 합성된 비스(2-페닐페녹시) (펜타메틸시클로펜타디에닐)티타늄(IV)클로라이드를 톨루엔에 0.2 g/l의 농도로 용해하여 표1-1에 게시된 양으로 투입하였다. 또한 표 1-1에 나와 있는 조건과 같이 각 반응기에 공급되는 에틸렌 양과 공단량체인 1-옥텐 양, 그리고 반응기 온도 조건을 달리하여 제조하였다.
상기 제조된 에틸렌 공중합체를 파이프 압출기를 사용하여 배럴온도 160-200-220℃, 다이온도 230℃에서 선속도 5m/min로 압출하여 외경 16mm, 두께 1.45mm의 파이프를 제조하였다.
실시예 8
상기 실시예 1과 같은 방법으로 중합체를 제조하였으며, 다만 단일활성점촉매로는 제조예 6에서 합성된 (디클로로)(펜타메틸사이클로펜타디에닐)(2-(9'9''-디메틸플루오렌-2'-일)페녹시)티타늄(IV)를 톨루엔에 0.2 g/l의 농도로 용해하여 표1-2에 게시된 양으로 제1 및 제2 반응기에 투입하였다. 또한 표 1-2에 나와 있는 조건과 같이 각 반응기에 공급되는 에틸렌 양과 공단량체인 1-옥텐 양, 그리고 반응기 온도 조건을 달리하여 제조하였다.
상기 제조된 에틸렌 공중합체를 상기 실시예 4와 동일한 조건에서 캐스팅 필 름으로 제조하였다.
실시예 9
상기 실시예 1과 같은 방법으로 중합체를 제조하였으며, 다만 단일활성점촉매로는 제조예 7에서 합성된 (클로로)(펜타메틸사이클로펜타디에닐)(비스(2-(9',9''-디메틸플루오렌-2'-일)페녹시))티타늄(IV)를 톨루엔에 0.2 g/l의 농도로 용해하여 표 1-2에 게시된 양으로 제1 및 제2 반응기에 투입하였다. 또한 표 1-2에 나와 있는 조건과 같이 각 반응기에 공급되는 에틸렌 양과 공단량체인 1-옥텐 양, 그리고 반응기 온도 조건을 달리하여 제조하였다.
상기 제조된 에틸렌 공중합체를 상기 실시예 4와 동일한 조건에서 캐스팅 필름으로 제조하였다.
실시예 10
상기 실시예 1과 같은 방법으로 중합체를 제조하였으며, 다만 단일활성점촉매로는 제조예 8에서 합성된 (디클로로)(펜타메틸사이클로펜타디에닐)(2-(9'H-플루오렌-2'-일)페녹시)티타늄(IV)를 톨루엔에 0.2 g/l의 농도로 용해하여 표 1-2에 게시된 양으로 제1 및 제2 반응기에 투입하였다. 또한 표 1-2에 나와 있는 조건과 같이 각 반응기에 공급되는 에틸렌 양과 공단량체인 1-옥텐 양, 그리고 반응기 온도 조건을 달리하여 제조하였다.
상기 제조된 에틸렌 공중합체를 상기 실시예 4와 동일한 조건에서 캐스팅 필름으로 제조하였다.
실시예 11
상기 실시예 1과 같은 방법으로 중합체를 제조하였으며, 다만 단일활성점촉매로는 제조예 9에서 합성된 (디클로로)(펜타메틸사이클로펜타디에닐)(1-페닐나프탈렌-2-일옥시)티타늄(IV)를 톨루엔에 0.2 g/l의 농도로 용해하여 표 1-2에 게시된 양으로 제1 및 제2 반응기에 투입하였다. 또한 표 1-2에 나와 있는 조건과 같이 각 반응기에 공급되는 에틸렌 양과 공단량체인 1-옥텐 양, 그리고 반응기 온도 조건을 달리하여 제조하였다.
상기 제조된 에틸렌 공중합체를 상기 실시예 4와 동일한 조건에서 캐스팅 필름으로 제조하였다.
비교예 1
반응기는 단일 반응기 만을 사용하고 단일 활성점촉매로는 제조예2의 방법으로 제조한 비스(4-메틸-2-(2'-이소프로필페닐)페녹시)(펜타메틸시클로 펜타디에닐)티타늄(IV)클로라이드를 톨루엔에 0.2 g/l 의 농도로 용해하고 표2에 나타난 양으로 첨가하여 사용하였다. 또한 표 2에 나와 있는 조건과 같이 각 반응기에 공급되는 에틸렌 양과 공단량체인 1-옥텐 양, 그리고 반응기 온도 조건을 달리하여 제조하였다. 물성은 표2와 같으며, 상기 실시예 1, 2, 3에 따라 제조된 공중합체와 같이 필름으로 가공 후 물성을 하기 표 3에 비교하였다.
비교예 2
상기 실시예 1과 같은 방법으로 중합체를 제조하였으며, 다만 제1 및 제2반응기에 사용된 단일 활성점 촉매는 (트리메틸)(펜타메틸사이클로 펜타디에닐)티타늄(IV)이 사용되었으며, 톨루엔에 0.5mol/ml의 농도로 용해하여 표2에 게시된 양으 로 투입하였다. 나머지는 표 2에 나와 있는 조건과 같이 각 반응기에 공급되는 에틸렌 양과 공단량체인 1-옥텐 양, 그리고 반응기 온도 조건을 달리하여 제조하였다. 물성은 표2와 같으며, 상기 실시예 1, 2, 3에 따라 제조된 공중합체와 같이 필름으로 가공 후 물성을 하기 표 3에 비교하였다.
비교예 3
SK에너지의 판매 제품인 FN810 Grade로, 단봉 분자량 분포를 가지는 1-옥텐 공중합체로서 물성은 표2와 같으며, 상기 실시예 1, 2, 3에 따라 제조된 공중합체와 같이 필름으로 가공 후 물성을 하기 표 3에 비교하였다.
비교예 4
SK에너지의 판매 제품인 FT810 Grade로, 단봉 분자량 분포를 가지는 1-옥텐 공중합체로서 물성은 표2와 같으며, 실시예 4,5에 따라 제조된 공중합체와 같이 필름으로 가공 후 물성을 하기 표 3에 비교하였다.
비교예 5
SK에너지의 판매 제품인 DX800 Grade로, 단봉 분자량 분포를 가지는 1-옥텐 공중합체로서 물성은 표2와 같으며, 실시예 6에 따라 제조된 공중합체와 같이 파이프로 가공 후 물성을 하기 표 3에 비교하였다.
[표 1-1]
Figure 112009053978476-pat00024
[표 1-2]
Figure 112009053978476-pat00025
-에틸렌 투입비 = 제1반응기:제2반응기
-Ti: 단일 활성점 촉매 중의 Ti를 의미한다.
-Al: 조촉매 트리이소부틸알루미늄을 나타낸다.
-B: 조촉매 트리페닐메틸리니움테트라키스펜타플루오르페닐보레이트를 나타낸다.
[표 2]
Figure 112009053978476-pat00026
[표 3]
Figure 112009053978476-pat00027
[표 4]
Figure 112009053978476-pat00028
상기 표 1-1, 1-2 및 2는 실시예 1 내지 11 및 비교예 1 내지 5의 중합조건과 각 조건에 따른 중합체의 물성 결과이다. 상기 표 1-1, 1-2와 표 2에서 볼 수 있는 바와 같이, 단일 활성점 촉매와 함께 이단계 반응 공정을 통해 중합됨에 따라 단일 활성점 촉매에 의해 제조된 중합체임에도 불구하고 3 이상의 넓은 분자량 분 포를 나타냄을 확인하였으며, 본 특허에서 한정한 범위 내의 촉매 예에서 공단량체 결합 정도나 활성에서는 약간의 차이가 있기는 하나 단일 활성점 촉매의 특성을 잘 보여 주며, 특히 본 특허에서 제시한 공정을 통하여 제조한 공중합체들은 기존 제품들에 비해 우수한 물성을 보임을 알 수 있다.
상기 표 3은 실시예 1 내지 6, 8 내지 11 및 비교예 1, 2 에서 제조된 필름의 물성결과이다. 상기 표 3에서와 같이 유사한 MI, 밀도 규격임에도 불구하고 거의 모든 물성에서 향상된 것을 볼 수 있다. 특히 더 넓은 분자량 분포로 인하여 압출기의 가공 부하가 상당히 줄어들었음을 알 수 있으며, 이를 통하여 생산 시 에너지 소비 절감 혹은 생산 속도 향상을 이룰 수 있음을 알 수 있다.
또한, 실시예 1,2,3,8,10과 비교예 2의 경우, 같은 공정을 통해 서로 다른 메탈로센 촉매를 사용하여 수지를 합성하여 중합체 분석을 하고, 블로운 필름으로 가공하여 물성을 비교하였다. 비교예 2에서 사용한 메탈로센 촉매는 본 특허에 게시된 메탈로센 촉매 범위에 해당되지 않는 촉매이며, 이 촉매로 제1 반응기를 거쳐 생성된 에틸렌 공중합체는 해당 반응온도에서 고분자량의 수지를 제공하지 못하며, 따라서 이렇게 제조된 블로운 필름은 실시예 1,2,3,8,10의 수지와 커다란 물성에서의 차이를 보인다. 블로운 필름에서 본 특허에 제시된 방법으로 실시한 실시예 1~3,8,10과 기성 제품 (SK에너지 FN810 Grade) 비교예 3을 비교해 보아도 역시 본 발명의 효과를 파악할 수 있으며, 실시예 1~3,8,10의 경우 반응기에서 생성되는 고분자량, 저밀도 부분의 비를 달리한 결과 충격 강도 및 열접착 강도 (Heat seal) 측면에서 많은 물성 향상을 보임을 알 수 있다.
또한, 실시예 4,5,6,9,11과 비교예 4는 캐스팅 필름의 대표적 MI 및 밀도에 해당하는 수지를 당 특허에 고안된 방법으로 합성한 것과 기성 제품(SK에너지, FT810 Grade)의 중합체 분석 및 필름 가공 후 물성을 비교한 것이다.
상기 표 4는 실시예 7 및 비교예 5에서 제조된 파이프 실험결과이다. 전술한 바와 같이 파이프 용도에서의 물성 향상 여부를 알아보기 위해 ISO 13479의 방법으로 80℃의 고온에서 저속 균열 성장 속도를 측정하였다. 실시예 6의 중합체와 비교예 3의 중합체를 각각 외경 16mm, 두께 1.45mm의 파이프로 가공하고, 80℃에서 각각 5.5 MPa, 5.65 MPa의 후프 스트레스를 작용하여 파괴가 일어나기까지의 시간을 기록하였다. 표 4에서와 같이 1단계 반응기에서 고분자량, 저밀도 부분이 첨가된 실시예 7로 제작된 파이프의 내구성이 향상되었음을 알 수 있다.
이상에서 설명한 본 발명은 전술한 실시예 및 첨부된 도면에 의해 한정되는 것이 아니고, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능함은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 있어서 명백할 것이다.
도 1은 본 발명의 바람직한 일실시예에 따른 직렬 반응기 개략도.
도 2는 본 발명의 바람직한 일실시예에 따른 병렬 반응기 개략도.
도 3은 본 발명의 실시예 2에 따른 에틸렌 공중합체의 분자량 분포 곡선.
<도면의 주요 부호에 대한 설명>
11: 1단계 반응기 피드 펌프, 12: 1단계 반응기 피드 쿨러
13: 1단계 반응기 피드 히터, 14: 1단계 저온 반응기
15: 1단계 저온 반응기 촉매 피드, 16: 직렬 2단계 고온 반응기
17: 2단계 고온 반응기 촉매 피드, 18: 2단계 반응기 피드 펌프
19: 2단계 반응기 피드 쿨러, 20: 2단계 반응기 피드 히터
21: 2단계 반응기 피드, 22: 수소 피드
31: 저온 반응기 피드 펌프, 32: 고온 반응기 피드 펌프
33: 저온 반응기 피드 쿨러, 34: 저온 반응기 피드 히터
35: 고온 반응기 피드 쿨러, 36: 고온 반응기 피드 히터
37: 저온 반응기, 38: 저온 반응기 촉매 피드
39: 고온 반응기 촉매 피드, 40: 고온 반응기
41: 인라인 믹서, 42: 2단계 반응기 피드,
43: 수소 피드

Claims (19)

  1. (a) 하나이상의 단열 반응기 중에서 하기 화학식 1의 전이금속 촉매를 포함하는 촉매조성물 존재 하에서 에틸렌 및 하나 이상의 C3-C18의 α-올레핀 공단량체를 용액 중합시켜 MI가 0.001 내지 2.0 g/10min.이고, 밀도가 0.860 내지 0.925 g/㎤이며, 전체 중합체 대비 10~70 중량%를 갖는 제1공중합체를 제조하는 단계; 및
    (b) 상기 (a) 단계에서 제조된 제1공중합체를 상기 (a)단계의 촉매조성물과 동일한 촉매조성물 존재 하에 상기 (a)단계의 반응온도보다 높은 온도에서 상기 에틸렌 또는 에틸렌 및 하나 이상의 C3-C18의 α-올레핀을 함유하는 하나 이상의 다른 단열 반응기 중으로 통과시킴으로써 용액 중합시켜 에틸렌 및C3-C18의 α-올레핀 공중합체 조성물을 포함하는 고온의 중합체로서 MI가 0.1 내지 100.0 g/10min.이고, 밀도가 0.900 내지 0.970 g/㎤이며, 전체 중합체 대비 30~90 중량%를 갖는 중합체를 제조하는 단계;
    를 포함하며, 제조된 에틸렌 공중합체의 분자량분포지수가 2.8 내지 30인 에틸렌 공중합체의 제조방법.
    [화학식 1]
    Figure 112012022818132-pat00029
    상기 식에서, M은 주기율표 상 4족의 전이금속이고;
    Cp는 중심금속 M과 η5-결합할 수 있는 시클로펜타디에닐 고리 또는 시클로펜타디에닐 고리를 포함하는 융합고리이고, 상기 시클로펜타디에닐 고리 또는 시클로펜타디에닐 고리를 포함하는 융합고리는 (C1-C20)알킬, (C6-C30)아릴, (C2-C20)알케닐 및 (C6-C30)아르(C1-C20)알킬로부터 선택되는 하나 이상이 더 치환될 수 있고;
    R1 내지 R4 는 서로 독립적으로 수소원자, 할로겐 원자, (C1-C20)알킬, (C3-C20)시클로알킬, (C6-C30)아릴이거나, 상기 R1 내지 R4는 인접한 치환체와 융합고리를 포함하거나 포함하지 않는 (C3-C12)알킬렌 또는 (C3-C12)알케닐렌으로 연결되어 지환족 고리 및 단일환 또는 다환의 방향족 고리를 형성할 수 있으며;
    Ar1 은 (C6-C30)아릴 또는 N, O 및 S로부터 선택된 하나 이상을 포함하는 (C3-C30)헤테로아릴이고;
    X1 및 X2 는 서로 독립적으로 할로겐 원자, (C1-C20)알킬, (C3-C20)시클로알킬, (C6-C30)아르(C1-C20)알킬, (C1-C20)알콕시 또는
    Figure 112012022818132-pat00030
    이며;
    R11 내지 R15는 서로 독립적으로 수소원자, 할로겐 원자, (C1-C20)알킬, (C3-C20)시클로알킬, (C6-C30)아릴이거나, 상기 R11 내지 R15는 인접한 치환체와 융합고리를 포함하거나 포함하지 않는 (C3-C12)알킬렌 또는 (C3-C12)알케닐렌으로 연결되어 지환족 고리 및 단일환 또는 다환의 방향족 고리를 형성할 수 있으며;
    상기 Ar1의 아릴 또는 헤테로 아릴은 할로겐 원자, (C1-C20)알킬, (C3-C20)시클로알킬, (C6-C30)아릴, (C6-C30)아르(C1-C10)알킬, (C1-C20)알콕시, (C3-C20)알킬실록시, (C6-C30)아릴실록시, (C1-C20)알킬아미노, (C6-C30)아릴아미노, (C1-C20)알킬티오, (C6-C30)아릴티오, 니트로 및 히드록시로부터 선택되는 하나 이상이 더 치환될 수 있다.
  2. (a) 하나이상의 단열 반응기 중에서 하기 화학식 1 의 전이금속 촉매를 포함하는 촉매조성물 존재 하에서 에틸렌 및 하나 이상의 C3-C18의 α-올레핀 공단량체를 용액 중합시켜 MI가 0.001 내지 2.0 g/10min.이고, 밀도가 0.860 내지 0.925 g/㎤이며, 전체 중합체 대비 10~70 중량%를 갖는 제1공중합체를 제조하는 단계;
    (b) 하나이상의 다른 단열 반응기 중에서 상기 (a)단계의 촉매조성물과 동일한 촉매조성물 존재 하에 상기 (a)단계의 반응온도보다 높은 온도에서 상기 에틸렌 또는 에틸렌 및 하나 이상의 C3-C18의 α-올레핀을 용액 중합 반응하여 MI가 0.1 내지 100.0 g/10min.이고, 밀도가 0.900 내지 0.970 g/㎤이며, 전체 중합체 대비 30~90 중량%를 갖는 제2공중합체를 제조하는 단계; 및
    (c) 인라인 믹서를 사용하여 상기 제1공중합체를 상기 제2공중합체와 혼합하는 단계;
    를 포함하며, 제조된 에틸렌 공중합체의 분자량분포지수가 2.8 내지 30인 에틸렌 공중합체의 제조방법.
    [화학식 1]
    Figure 112012022818132-pat00031
    상기 식에서, M은 주기율표 상 4족의 전이금속이고;
    Cp는 중심금속 M과 η5-결합할 수 있는 시클로펜타디에닐 고리 또는 시클로펜타디에닐 고리를 포함하는 융합고리이고, 상기 시클로펜타디에닐 고리 또는 시클로펜타디에닐 고리를 포함하는 융합고리는 (C1-C20)알킬, (C6-C30)아릴, (C2-C20)알케닐 및 (C6-C30)아르(C1-C20)알킬로부터 선택되는 하나 이상이 더 치환될 수 있고;
    R1 내지 R4 는 서로 독립적으로 수소원자, 할로겐 원자, (C1-C20)알킬, (C3-C20)시클로알킬, (C6-C30)아릴이거나, 상기 R1 내지 R4는 인접한 치환체와 융합고리를 포함하거나 포함하지 않는 (C3-C12)알킬렌 또는 (C3-C12)알케닐렌으로 연결되어 지환족 고리 및 단일환 또는 다환의 방향족 고리를 형성할 수 있으며;
    Ar1 은 (C6-C30)아릴 또는 N, O 및 S로부터 선택된 하나 이상을 포함하는 (C3-C30)헤테로아릴이고;
    X1 및 X2 는 서로 독립적으로 할로겐 원자, (C1-C20)알킬, (C3-C20)시클로알킬, (C6-C30)아르(C1-C20)알킬, (C1-C20)알콕시 또는
    Figure 112012022818132-pat00032
    이며;
    R11 내지 R15는 서로 독립적으로 수소원자, 할로겐 원자, (C1-C20)알킬, (C3-C20)시클로알킬, (C6-C30)아릴이거나, 상기 R11 내지 R15는 인접한 치환체와 융합고리를 포함하거나 포함하지 않는 (C3-C12)알킬렌 또는 (C3-C12)알케닐렌으로 연결되어 지환족 고리 및 단일환 또는 다환의 방향족 고리를 형성할 수 있으며;
    상기 Ar1의 아릴 또는 헤테로 아릴은 할로겐 원자, (C1-C20)알킬, (C3-C20)시클로알킬, (C6-C30)아릴, (C6-C30)아르(C1-C10)알킬, (C1-C20)알콕시, (C3-C20)알킬실록시, (C6-C30)아릴실록시, (C1-C20)알킬아미노, (C6-C30)아릴아미노, (C1-C20)알킬티오, (C6-C30)아릴티오, 니트로 및 히드록시로부터 선택되는 하나 이상이 더 치환될 수 있다.
  3. 제1항 또는 제2항에 있어서,
    상기 화학식 1의 전이금속촉매는 M이 Ti인 것을 특징으로 하는 에틸렌 공중합체의 제조방법.
  4. 제3항에 있어서,
    상기 전이금속촉매는 하기 화학식에서 선택되는 것을 특징으로 하는 에틸렌 공중합체의 제조방법.
    [화학식 1-1]
    Figure 112011082380917-pat00033
    [화학식 1-2]
    Figure 112011082380917-pat00034
    [화학식 1-3]
    Figure 112011082380917-pat00035
    [화학식 1-4]
    Figure 112011082380917-pat00036
    [화학식 1-5]
    Figure 112011082380917-pat00037
    [화학식 1-6]
    Figure 112011082380917-pat00038
    [화학식 1-7]
    Figure 112011082380917-pat00039
    [화학식 1-8]
    Figure 112011082380917-pat00040
    [화학식 1-9]
    Figure 112011082380917-pat00041
    [화학식 1-10]
    Figure 112011082380917-pat00042
    [화학식 1-11]
    Figure 112011082380917-pat00043
    [화학식 1-12]
    Figure 112011082380917-pat00044
    [화학식 1-13]
    Figure 112011082380917-pat00045
    [화학식 1-14]
    Figure 112011082380917-pat00046
    상기 R21 내지 R26은 서로 독립적으로 수소원자, 할로겐 원자, (C1-C20)알킬, (C3-C20)시클로알킬, (C6-C30)아릴이거나, 상기 R21 내지 R26은 인접한 치환체와 융합고리를 포함하거나 포함하지 않는 (C3-C12)알킬렌 또는 (C3-C12)알케닐렌으로 연결되어 지환족 고리 및 단일환 또는 다환의 방향족 고리를 형성할 수 있고;
    Cp는 중심금속 M과 η5-결합할 수 있는 시클로펜타디에닐 고리 또는 시클로펜타디에닐 고리를 포함하는 융합고리이고, 상기 시클로펜타디에닐 고리 또는 시클로펜타디에닐 고리를 포함하는 융합고리는 (C1-C20)알킬, (C6-C30)아릴, (C2-C20)알케닐 및 (C6-C30)아르(C1-C20)알킬로부터 선택되는 하나 이상이 더 치환될 수 있고;
    상기 X1 및 X2는 메틸 또는 Cl이다.
  5. 제4항에 있어서,
    상기 전이금속촉매는 하기에서 선택되는 것을 특징으로 하는 에틸렌 공중합체의 제조방법.
    Figure 112009053978476-pat00047
    Figure 112009053978476-pat00048
    Figure 112009053978476-pat00049
    Figure 112009053978476-pat00050
    Figure 112009053978476-pat00051
    상기 Cp는 중심금속 M과 η5-결합할 수 있는 시클로펜타디에닐 고리 또는 시클로펜타디에닐 고리를 포함하는 융합고리이고, 상기 시클로펜타디에닐 고리를 포함하는 융합고리는 (C1-C20)알킬, (C6-C30)아릴, (C2-C20)알케닐 및 (C6-C30)아르(C1-C20)알킬로부터 선택되는 하나 이상이 더 치환될 수 있고;
    상기 X1 및 X2는 메틸 또는 Cl이다.
  6. 제1항 또는 제2항에 있어서,
    상기 촉매조성물은 상기 전이금속 촉매; 및 알루미녹산 화합물, 알킬알루미늄 화합물 및 붕소 화합물, 또는 이들의 혼합물로부터 선택되는 조촉매; 를 포함하는 에틸렌 공중합체의 제조방법.
  7. 제6항에 있어서,
    상기 전이금속 촉매와 상기 조촉매의 비율이 전이금속 M: 알루미늄 원자의 몰비 기준으로 1:1 내지 1:2,000 인 에틸렌 공중합체의 제조방법.
  8. 제6항에 있어서,
    상기 전이금속 촉매와 상기 조촉매의 비율이 전이금속 M: 붕소 원자의 몰비 기준으로 1:0.1 내지 1:50 인 에틸렌 공중합체의 제조방법.
  9. 제7항에 있어서,
    상기 전이금속 촉매와 상기 조촉매의 비율이 전이금속 M: 붕소원자: 알루미늄 원자의 몰비 기준으로 1:0.1~50:1~1,000인 에틸렌 공중합체의 제조 방법.
  10. 제1항 또는 제2항에 있어서,
    상기 반응온도가 (a)단계 80 내지 210℃ 및 (b)단계 90 내지 220℃이고, 각 단계의 압력이 20 내지 500 기압인 에틸렌 공중합체의 제조방법.
  11. 제1항 또는 제2항에 있어서,
    상기 (a) 및 (b)단계에서 α-올레핀 공단량체가 프로필렌, 1-부텐, 1-펜텐, 4-메틸-1-펜텐, 1-헥센, 1-옥텐, 1-데센, 1-도데센 및 이들의 혼합물로부터 선택되는 에틸렌 공중합체의 제조방법.
  12. 제1항 또는 제2항에 있어서,
    상기 (a) 및 (b)단계에서 에틸렌 및 하나 이상의 C3-C18의 α-올레핀 공단량체는 에틸렌 60 내지 99 중량% 및 α-올레핀 공단량체 1 내지 40 중량%인 에틸렌 공중합체의 제조방법.
  13. 제1항 또는 제2항에 따른 에틸렌 공중합체의 제조방법으로 제조된 에틸렌 공중합체.
  14. 삭제
  15. 삭제
  16. 제13항에 있어서,
    상기 에틸렌 공중합체의 밀도가 0.910 내지 0.940 g/㎤ 인 선형저밀도 폴리에틸렌 공중합체인 것을 특징으로 하는 에틸렌 공중합체.
  17. 제13항에 있어서,
    상기 에틸렌 공중합체의 밀도가 0.900 내지 0.910 g/㎤ 인 초저밀도 에틸렌 공중합체인 것을 특징으로 하는 에틸렌 공중합체.
  18. 삭제
  19. 제13항에 있어서,
    상기 에틸렌 공중합체는 블로운 필름, 캐스팅 필름, 사출, 중공성형 또는 파이프 용도로 사용되는 것을 특징으로 하는 에틸렌 공중합체.
KR1020090082291A 2008-09-12 2009-09-02 에틸렌 공중합체 및 이의 제조방법 KR101152413B1 (ko)

Priority Applications (10)

Application Number Priority Date Filing Date Title
CA2729585A CA2729585C (en) 2008-09-12 2009-09-11 Ethylene copolymer and a method of preparing the same
JP2011526815A JP5550192B2 (ja) 2008-09-12 2009-09-11 エチレン共重合体及びその製造方法
PCT/KR2009/005190 WO2010030145A2 (en) 2008-09-12 2009-09-11 Ethylene copolymer and a method of preparing the same
TW098130682A TWI440644B (zh) 2008-09-12 2009-09-11 乙烯共聚物及其製備方法
US12/557,801 US8067511B2 (en) 2008-09-12 2009-09-11 Ethylene copolymer and a method of preparing the same
CN2009801253476A CN102083870B (zh) 2008-09-12 2009-09-11 乙烯共聚物及其制备方法
RU2010154640/04A RU2468039C2 (ru) 2008-09-12 2009-09-11 Этиленовый сополимер и способ его получения
ES09813267.3T ES2674144T3 (es) 2008-09-12 2009-09-11 Copolímero de etileno y un procedimiento de preparación del mismo
EP09813267.3A EP2324067B1 (en) 2008-09-12 2009-09-11 Ethylene copolymer and a method of preparing the same
US13/282,613 US20120041149A1 (en) 2008-09-12 2011-10-27 Ethylene copolymer and a method of preparing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20080090522 2008-09-12
KR1020080090522 2008-09-12

Publications (2)

Publication Number Publication Date
KR20100031461A KR20100031461A (ko) 2010-03-22
KR101152413B1 true KR101152413B1 (ko) 2012-06-05

Family

ID=42181126

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090082291A KR101152413B1 (ko) 2008-09-12 2009-09-02 에틸렌 공중합체 및 이의 제조방법

Country Status (10)

Country Link
US (2) US8067511B2 (ko)
EP (1) EP2324067B1 (ko)
JP (1) JP5550192B2 (ko)
KR (1) KR101152413B1 (ko)
CN (1) CN102083870B (ko)
CA (1) CA2729585C (ko)
ES (1) ES2674144T3 (ko)
RU (1) RU2468039C2 (ko)
TW (1) TWI440644B (ko)
WO (1) WO2010030145A2 (ko)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101142117B1 (ko) * 2008-09-25 2012-05-09 에스케이이노베이션 주식회사 전이금속 촉매계 및 이를 이용한 에틸렌 단독중합체 또는 에틸렌과 α-올레핀의 공중합체 제조방법
KR101142122B1 (ko) * 2008-09-30 2012-05-09 에스케이이노베이션 주식회사 새로운 전이금속 촉매계 및 이를 이용한 에틸렌 단독중합체또는 에틸렌과 α-올레핀의 공중합체 제조방법
KR101077071B1 (ko) * 2008-11-03 2011-10-26 에스케이이노베이션 주식회사 내충격성이 우수한 에틸렌 공중합체
CN105348417B (zh) * 2010-01-14 2019-03-01 埃克森美孚化学专利公司 连续溶液聚合的方法和设备
KR101248421B1 (ko) * 2010-07-15 2013-03-28 에스케이이노베이션 주식회사 탄성 및 가공성이 우수한 에틸렌 공중합체
KR101164962B1 (ko) 2010-09-20 2012-07-12 에스케이이노베이션 주식회사 위생성이 우수한 에틸렌 공중합체 및 이의 제조방법
JP5431376B2 (ja) * 2011-01-26 2014-03-05 住友化学株式会社 連続重合装置および重合体組成物の製造方法
JP5249366B2 (ja) * 2011-01-26 2013-07-31 住友化学株式会社 連続重合装置および重合体組成物の製造方法
KR101889978B1 (ko) * 2012-01-30 2018-08-21 사빅 에스케이 넥슬렌 컴퍼니 피티이 엘티디 다환기가 치환된 신규의 전이금속 화합물, 이를 포함한 전이금속 촉매 조성물 및 이를 이용한 에틸렌과 α-올레핀 공중합체 또는 에틸렌과 올레핀-디엔 공중합체의 제조방법
US9034991B2 (en) 2013-01-29 2015-05-19 Chevron Phillips Chemical Company Lp Polymer compositions and methods of making and using same
EP2816051B1 (en) * 2013-06-19 2015-11-04 Scg Chemicals Co. Ltd. Catalyst for olefin polymerization, method for its preparation and use thereof
WO2015182952A1 (ko) * 2014-05-28 2015-12-03 사빅 에스케이 넥슬렌 컴퍼니 피티이 엘티디 전이금속 착체의 제조방법
KR102299848B1 (ko) * 2014-05-28 2021-09-09 사빅 에스케이 넥슬렌 컴퍼니 피티이 엘티디 전이금속 착체의 제조방법
KR102300853B1 (ko) * 2014-05-29 2021-09-13 사빅 에스케이 넥슬렌 컴퍼니 피티이 엘티디 새로운 전이금속 화합물, 이를 포함한 올레핀 중합용 전이금속 촉매 조성물 및 이를 이용한 에틸렌 단독중합체 또는 에틸렌과 α-올레핀의 공중합체의 제조방법
WO2015183017A1 (ko) * 2014-05-29 2015-12-03 사빅 에스케이 넥슬렌 컴퍼니 피티이 엘티디 새로운 전이금속 화합물, 이를 포함한 올레핀 중합용 전이금속 촉매 조성물 및 이를 이용한 에틸렌 단독중합체 또는 에틸렌과 α-올레핀의 공중합체의 제조방법
GB2533770B (en) * 2014-12-22 2021-02-10 Norner Verdandi As Polyethylene for pipes
GB201611295D0 (en) * 2016-06-29 2016-08-10 Norner Verdandi As Polyethylene for pipes
CN110869399B (zh) 2017-12-20 2022-06-07 Lg化学株式会社 聚乙烯共聚物及其制备方法
US11603452B2 (en) 2017-12-26 2023-03-14 Dow Global Technologies Llc Multimodal ethylene-based polymer compositions having improved toughness
EP3732216B1 (en) 2017-12-26 2023-04-19 Dow Global Technologies LLC Process for the production of multimodal ethylene-based polymers
CN111683980B (zh) * 2017-12-26 2024-03-05 陶氏环球技术有限责任公司 多峰型乙烯类聚合物的加工系统和方法
JP7326283B2 (ja) 2017-12-26 2023-08-15 ダウ グローバル テクノロジーズ エルエルシー マルチモーダルエチレン系ポリマーの製造のための二重反応器溶液プロセス
CN108610443B (zh) * 2018-04-13 2020-12-01 中国石油化工股份有限公司 双峰聚乙烯的生产方法
KR102571139B1 (ko) 2018-06-08 2023-08-28 사빅 에스케이 넥슬렌 컴퍼니 피티이 엘티디 에틸렌 중합체 혼합물과 이의 제조방법 및 이를 이용한 성형품
KR102584267B1 (ko) * 2019-09-30 2023-10-05 주식회사 엘지화학 혼성 담지 메탈로센 촉매 및 이를 이용한 폴리에틸렌 공중합체의 제조 방법
KR20220098363A (ko) * 2019-11-04 2022-07-12 다우 글로벌 테크놀로지스 엘엘씨 비페닐페놀 중합 촉매
BR112022025697A2 (pt) * 2020-06-15 2023-01-03 Dow Global Technologies Llc Método para reduzir o monômero de etileno não reagido, e, processo
WO2022069409A1 (en) * 2020-09-30 2022-04-07 Borealis Ag Plant and method for the production of an in-line blended polymer
CN115677885A (zh) * 2022-11-11 2023-02-03 山东京博石油化工有限公司 一种聚合反应过程中原料冷却的方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060235147A1 (en) * 2005-04-14 2006-10-19 Nova Chemicals (International) S.A. Dual reactor polyethylene resins for food packaging - films, bags and pouches

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US235147A (en) * 1880-12-07 frankle
DE1720611C3 (de) 1967-01-28 1984-03-01 Hoechst Ag, 6230 Frankfurt Verfahren zur Polymerisation von Äthylen oder dessen Mischungen mit höheren &alpha;-Olefinen
GB1532231A (en) 1975-04-18 1978-11-15 Ici Ltd Polymerisation process
FR2312511A1 (fr) 1975-05-27 1976-12-24 Naphtachimie Sa Polymerisation a sec des olefines dans des reacteurs en serie
DE2803281C2 (de) 1978-01-26 1982-12-02 Chemische Werke Hüls AG, 4370 Marl Verfahren zur mehrstufigen Polymerisation von Äthylen, allein oder zusammen mit anderen Olefinen
JPS54146885A (en) 1978-05-10 1979-11-16 Nissan Chem Ind Ltd Improved polymerization process for ethylene
JPS5928573B2 (ja) 1980-02-05 1984-07-13 チッソ株式会社 α−オレフイン重合体の製造方法
JPS6023764B2 (ja) 1980-02-27 1985-06-10 チッソ株式会社 α−オレフイン重合体を製造する方法
JPS56166207A (en) 1980-05-27 1981-12-21 Mitsui Petrochem Ind Ltd Gas-phase polymerization of olefin
JPS6045645B2 (ja) 1980-10-09 1985-10-11 三井化学株式会社 オレフイン類の気相重合方法
CA1162700A (en) 1981-01-30 1984-02-21 Kiyoshi Kawai Process for producing ethylene polymers
US4935474A (en) 1983-06-06 1990-06-19 Exxon Research & Engineering Company Process and catalyst for producing polyethylene having a broad molecular weight distribution
JPH0725829B2 (ja) 1986-03-07 1995-03-22 日本石油株式会社 エチレン重合体の製造方法
US5198401A (en) 1987-01-30 1993-03-30 Exxon Chemical Patents Inc. Ionic metallocene catalyst compositions
FI86867C (fi) 1990-12-28 1992-10-26 Neste Oy Flerstegsprocess foer framstaellning av polyeten
CZ288678B6 (cs) 1993-01-29 2001-08-15 The Dow Chemical Company Způsob přípravy ethylen/alfa-olefinových interpolymerních kompozic
FI96216C (fi) * 1994-12-16 1996-05-27 Borealis Polymers Oy Prosessi polyeteenin valmistamiseksi
US5795941A (en) * 1995-10-03 1998-08-18 The Dow Chemical Company Crosslinkable bimodal polyolefin compositions
CA2245375C (en) 1998-08-19 2006-08-15 Nova Chemicals Ltd. Dual reactor polyethylene process using a phosphinimine catalyst
CA2247703C (en) 1998-09-22 2007-04-17 Nova Chemicals Ltd. Dual reactor ethylene polymerization process
EP1083183A1 (en) * 1999-09-10 2001-03-14 Fina Research S.A. Process for producing polyolefins
JP2003231693A (ja) * 2002-02-04 2003-08-19 Kanto Chem Co Inc アリールオキシメタロセン化合物の製造方法
US6995216B2 (en) 2003-06-16 2006-02-07 Equistar Chemicals, Lp Process for manufacturing single-site polyolefins
ES2274413T3 (es) * 2004-03-12 2007-05-16 Borealis Technology Oy Tuberia a presion de lldpe.
EP1655334B1 (en) 2004-11-03 2006-12-27 Borealis Technology Oy Multimodal polyethylene composition with improved homogeneity
EP1674490A1 (en) * 2004-12-23 2006-06-28 Borealis Technology Oy Copolymer
KR100639696B1 (ko) * 2005-07-01 2006-10-30 에스케이 주식회사 에틸렌 단독중합체 또는 α-올레핀과의 공중합체 제조용아릴페녹시 촉매계
US7473745B2 (en) * 2005-09-02 2009-01-06 Equistar Chemicals, Lp Preparation of multimodal polyethylene
KR101141359B1 (ko) * 2005-09-09 2012-05-03 에스케이이노베이션 주식회사 에틸렌 단독중합체 또는 α-올레핀과의 공중합체 제조용균일 촉매계
US7423098B2 (en) * 2006-01-17 2008-09-09 Equistar Chemicals, Lp Polyethylene process
KR101060838B1 (ko) * 2006-04-24 2011-08-30 에스케이이노베이션 주식회사 에틸렌 단독중합체 또는 α-올레핀과의 공중합체 제조용비스-아릴아릴옥시 촉매계
CN101522727B (zh) * 2006-10-18 2011-07-20 Sk能源株式会社 用来制备乙烯均聚物或乙烯与α-烯烃的共聚物的芳基苯氧基催化剂体系
KR101141494B1 (ko) * 2007-09-05 2012-05-03 에스케이이노베이션 주식회사 다봉 분자량 분포를 갖는 에틸렌 공중합체 및 이의제조방법

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060235147A1 (en) * 2005-04-14 2006-10-19 Nova Chemicals (International) S.A. Dual reactor polyethylene resins for food packaging - films, bags and pouches

Also Published As

Publication number Publication date
CN102083870A (zh) 2011-06-01
EP2324067A4 (en) 2016-03-23
WO2010030145A3 (en) 2010-06-24
JP2012502161A (ja) 2012-01-26
US20120041149A1 (en) 2012-02-16
RU2010154640A (ru) 2012-10-20
TW201030026A (en) 2010-08-16
JP5550192B2 (ja) 2014-07-16
CA2729585C (en) 2015-05-12
EP2324067A2 (en) 2011-05-25
EP2324067B1 (en) 2018-04-25
ES2674144T3 (es) 2018-06-27
KR20100031461A (ko) 2010-03-22
US20100120981A1 (en) 2010-05-13
US8067511B2 (en) 2011-11-29
WO2010030145A2 (en) 2010-03-18
CN102083870B (zh) 2013-03-06
RU2468039C2 (ru) 2012-11-27
TWI440644B (zh) 2014-06-11
CA2729585A1 (en) 2010-03-18

Similar Documents

Publication Publication Date Title
KR101152413B1 (ko) 에틸렌 공중합체 및 이의 제조방법
KR101060838B1 (ko) 에틸렌 단독중합체 또는 α-올레핀과의 공중합체 제조용비스-아릴아릴옥시 촉매계
KR101141494B1 (ko) 다봉 분자량 분포를 갖는 에틸렌 공중합체 및 이의제조방법
US7589042B2 (en) Arylphenoxy catalyst system for producing ethylene homopolymer or copolymers of ethylene and α-olefins
JP5229636B2 (ja) エチレン単独重合体又はエチレンとα−オレフィンとの共重合体の製造用のアリールフェノキシ触媒システム
KR101142117B1 (ko) 전이금속 촉매계 및 이를 이용한 에틸렌 단독중합체 또는 에틸렌과 α-올레핀의 공중합체 제조방법
KR101470564B1 (ko) 에틸렌과 α-올레핀의 탄성 공중합체 제조방법
EP2087011B1 (en) Transition metal catalytic systems and methods for preparing ethylene homopolymers or copolymers of ethylene and olefins using the same
US8993694B2 (en) Advanced transition metal catalytic systems in terms of comonomer incorporations and methods for preparing ethylene homopolymers or copolymers of ethylene and alpha-olefins using the same
KR102300853B1 (ko) 새로운 전이금속 화합물, 이를 포함한 올레핀 중합용 전이금속 촉매 조성물 및 이를 이용한 에틸렌 단독중합체 또는 에틸렌과 α-올레핀의 공중합체의 제조방법
KR101181314B1 (ko) 에틸렌 공중합체 필름 및 이의 제조방법
KR101470532B1 (ko) 새로운 전이금속 촉매계 및 이를 이용한 에틸렌 단독중합체 또는 에틸렌과 α-올레핀의 공중합체 제조방법

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160421

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20170306

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20180222

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20190215

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20200214

Year of fee payment: 9