KR100994029B1 - 노광장치 및 디바이스의 제조방법 - Google Patents

노광장치 및 디바이스의 제조방법 Download PDF

Info

Publication number
KR100994029B1
KR100994029B1 KR1020080067305A KR20080067305A KR100994029B1 KR 100994029 B1 KR100994029 B1 KR 100994029B1 KR 1020080067305 A KR1020080067305 A KR 1020080067305A KR 20080067305 A KR20080067305 A KR 20080067305A KR 100994029 B1 KR100994029 B1 KR 100994029B1
Authority
KR
South Korea
Prior art keywords
optical system
projection optical
reticle
pattern
photoelectric conversion
Prior art date
Application number
KR1020080067305A
Other languages
English (en)
Other versions
KR20090006783A (ko
Inventor
요시노리 오사키
Original Assignee
캐논 가부시끼가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 캐논 가부시끼가이샤 filed Critical 캐논 가부시끼가이샤
Publication of KR20090006783A publication Critical patent/KR20090006783A/ko
Application granted granted Critical
Publication of KR100994029B1 publication Critical patent/KR100994029B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/7085Detection arrangement, e.g. detectors of apparatus alignment possibly mounted on wafers, exposure dose, photo-cleaning flux, stray light, thermal load
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B27/00Photographic printing apparatus
    • G03B27/32Projection printing apparatus, e.g. enlarger, copying camera
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B27/00Photographic printing apparatus
    • G03B27/72Controlling or varying light intensity, spectral composition, or exposure time in photographic printing apparatus
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70591Testing optical components
    • G03F7/706Aberration measurement

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

본 발명은 레티클의 패턴을 기판에 투영하는 투영광학계; 상기 기판을 이동시키는 스테이지;및 상기 스테이지에 배치되어 상기 투영광학계를 통과한 광을 수광하는 센서유닛을 구비하고 있는 노광장치로서, 상기 센서유닛은, 다른 광학성능의 측정에 이용되고 서로 다른 형상 또는 크기의 복수의 개구패턴이 형성된 개구판; 및 상기 복수의 개구패턴으로부터의 광속을 광전변환하는 광전변환소자를 가지는 것을 특징으로 하는 노광장치를 제공한다.

Description

노광장치 및 디바이스의 제조방법{EXPOSURE APPARATUS AND DEVICE FABRICATION METHOD}
본 발명은, 노광장치 및 디바이스의 제조방법에 관한 것이다.
포토리소그래피(인쇄) 기술을 사용해서 반도체 디바이스를 제조할 때에, 레티클(마스크)에 묘화된 회로패턴을 투영광학계에 의해 웨이퍼 등에 투영해서 회로패턴을 전사하는 투영노광장치가 종래부터 사용되고 있다. 이러한 노광장치는, 레티클상의 패턴을 소정의 배율(축소율)로 정확하게 웨이퍼상에 전사하는 것이 요구되기 때문에, 결상성능이 양호하고 수차를 억제한 투영광학계를 사용하는 것이 중요하다.
최근에는, 반도체 디바이스의 패턴의 미세화가 더욱 진행되고 있기 때문에, 광학계의 통상의 결상성능을 초과하는 최소선폭의 패턴을 전사하는 경우가 많고, 따라서 전사되는 패턴이 광학계의 수차에 대해서 민감하게 된다. 이에 의해, 투영광학계에 허용되는 잔존 수차량은, rms값으로 1Omλ 이하, 최근에는, 수 mλ로 억제할 필요가 있다.
이러한 상황하에서, 투영광학계의 수차가 보증된 경우에도, 수 mλ정도의 미 소한 수차량은 경시적으로 변화할 가능성이 있다. 이 문제에 대처하기 위해서, 노광장치에 투영광학계를 탑재(내장)한 상태에서, 즉, 실제로 노광에 사용하는 상태에서, 투영광학계의 광학성능(특히, 파면수차)을 측정하는 것이 요구되고 있다.
이러한 요구에 대응하기 위해서, 각각 투영광학계의 파면수차를 측정하기 위해 사용하는 점회절 간섭계(PDI), 선회절 간섭계(LDI), 레터럴 셰어링 간섭계 등의 간섭계를 탑재한 노광장치가 제안되어 있다. 이러한 노광장치는, 일본국 특개 2005-244126호 공보, 일본국 특개 2006-073697호 공보 및 일본국 특개 2006-108597호 공보에 개시되어 있다.
노광장치의 결상성능은 조명광학계에 의해 형성되는 유효광원분포에도 의존하는 것이 알려져 있다. 예를 들면, 복수의 노광장치가 상이한 유효광원분포를 사용하는 경우, 동일한 레티클을 노광한 경우에도, 이들은 상이한 선폭으로 패턴을 형성한다. 이 문제에 대처하기 위해서, 조명광학계에 의해 형성되는 유효광원분포를 노광장치 상에서 측정하는 것도 요구되고 있다. 유효광원분포는, 도 l0에 도시된 바와 같이, 조명광학계(IS)와 투영광학계 PS 사이에 삽입되어 있고 수㎛ 내지 수 1O㎛의 직경을 가진 핀홀 PH로부터 사출한 광속을, 투영광학계 PS를 통하여 웨이퍼스테이지에 배치된 센서 LS에 의해 수광함으로써 측정할 수 있다. 도 10은, 종래의 유효광원분포의 측정 메커니즘을 설명하기 위한 도면이다.
실제로 노광에 사용하는 레티클을 노광하는 조명 조건하에서 레티클을 조명했을 때의 투영광학계의 동공면내에 있어서의 광의 분포, 즉, 레티클의 패턴에 의해 회절된 광의 분포(회절광분포)를 측정하는 것도 요구되고 있다. 레티클 전체면 에서의 회절광분포를 측정함으로써, 노광열에 의한 투영광학계의 수차변동을 고정밀도로 예측하는 것이 가능해진다.
그러나, 파면수차, 유효광원분포 및 회절광분포의 각각을 측정하기 위한 전용의 센서나 (기판의)측정용 패턴을 웨이퍼 스테이지에 탑재(배치)하면, 웨이퍼 스테이지의 탑재 중량이 증가해서, 스테이지 성능의 저하 및 스테이지의 대형화를 초래한다. 또한, 다수의 센서를 웨이퍼스테이지에 배치하면, 이들 센서에 의해 발생된 열이 축적되어 웨이퍼 스테이지에 작용하기 때문에, 스테이지 성능이 더욱 저하해 버린다.
본 발명은 스테이지 성능의 저하나 스테이지의 대형화 없이 파면수차, 유효광원분포 및 회절광분포 등의 복수의 광학성능을 측정할 수 있는 노광장치를 제공한다.
본 발명의 일 측면에 의하면, 레티클의 패턴을 기판에 투영하는 투영광학계; 상기 기판을 이동시키는 스테이지; 및 상기 스테이지에 배치되고 상기 투영광학계를 통과한 광을 수광하는 센서유닛을 구비하고 있는 노광장치로서, 상기 센서유닛은, 다른 광학성능의 측정에 이용되고 서로 다른 형상 또는 크기의 복수의 개구패턴이 형성된 개구판; 및 상기 개구패턴으로부터의 광속을 광전변환하는 광전변환소자를 가지는 것을 특징으로 하는 노광장치를 제공한다.
본 발명의 다른 측면에 의하면, 광원으로부터의 광속에 의해 레티클을 조명하는 조명광학계; 상기 레티클의 패턴을 스테이지에 의해 지지되는 기판에 투영하 는 투영광학계; 및 센서유닛을 구비한 노광장치로서, 상기 센서유닛은, 상기 스테이지에 배치되고 상기 투영광학계로부터의 광속을 투과하는 개구패턴이 형성된 개구판, 및 상기 스테이지에 배치되고 상기 개구패턴으로부터의 광속을 광전변환하는 광전변환소자를 구비하고, 상기 투영광학계의 파면수차, 상기 조명광학계에 의해 형성되는 유효광원분포, 상기 레티클의 패턴에 의해 발생하는 회절광분포 및 상기 투영광학계의 동공 투과율 분포를 측정하는 경우에 따라서, 상기 광전변환소자로부터의 출력을 절환하는 것을 특징으로 하는 노광장치를 제공한다.
본 발명의 또 다른 측면에 의하면, 상기 노광장치를 사용하여 기판을 노광하는 공정; 및 상기 노광된 기판의 현상처리를 행하는 공정을 구비하는 것을 특징으로 하는 디바이스의 제조방법을 제공한다.
본 발명의 다른 특징은 첨부도면을 참조한 다음의 전형적인 실시형태의 설명으로부터 명백해질 것이다.
본 발명에 의하면, 스테이지 성능의 저하나 스테이지의 대형화 없이, 파면수차, 유효광원분포 및 회절광분포 등의 복수의 광학성능을 측정할 수 있는 노광장치를 제공한다.
이하, 첨부도면을 참조하면서, 본 발명의 바람직한 실시형태에 대해 설명한다. 도면 전체에 걸쳐서, 동일한 부재에 대해서는 동일한 참조 번호를 부여하고, 반복되는 설명은 생략한다.
도 1은 본 발명의 1 측면에 의한 노광장치(1)의 구성을 나타내는 개략 블럭도이다. 노광장치(1)는, 본 실시형태에서는, 스텝 앤드 스캔 방식에 의해 레티클(20)의 패턴을 웨이퍼(40)에 전사하는 투영노광장치이다. 그러나, 노광장치(1)는 스텝앤드리피트 방식이나 다른 노광방식도 적용할 수 있다.
노광장치(1)는 조명장치(10), 레티클(20)을 지지하는 레티클스테이지(25), 투영광학계(30), 웨이퍼(40)을 지지하는 웨이퍼스테이지(45), 조정부(50), 제어부(60), 및 측정부(70)를 구비한다.
조명장치(10)는 광원(12) 및 조명광학계(14)를 가지고, 전사용의 회로패턴이 형성된 레티클(20)을 조명한다.
광원(12)은, 예를 들면, 파장 약 248nm의 KrF 엑시머레이져나 파장 약 193 nm의 ArF 엑시머레이져 등의 엑시머레이져를 사용한다. 그러나, 광원(12)은 엑시머레이져로 한정되지 않고, 예를 들면, 파장 약 157 nm의 F2레이저이어도 된다.
조명광학계(14)는 광원(12)로부터의 광속에 의해 레티클(20)을 조명하는 광학계이다.
레티클(20)은 회로패턴을 가지며, 레티클스테이지(25)에 의해 지지 및 구동된다. 레티클(20)에 의해 발생된 회절광은, 투영광학계(30)를 통하여, 웨이퍼(40)에 투영된다. 노광장치(1)는 스텝앤드스캔 방식의 노광장치이기 때문에, 레티클(20) 및 웨이퍼(40)를 주사함으로써, 레티클(20)의 패턴을 웨이퍼(40)에 투영한다.
레티클스테이지(25)는 레티클(20) 및 레티클측 측정기판(71)을 지지하고, 예를 들면, 리니어 모터를 사용하여 레티클(20) 및 레티클측 측정기판(71)을 구동한다. 레티클스테이지(25)는 투영광학계(30)의 물체면에 레티클(20)와 레티클측 측정기판(71)을 교환 가능하게 삽입한다. 보다 구체적으로는, 레티클스테이지(25)는 레티클(20)의 패턴을 노광에 의해 전사할 때에는 레티클(20)을 투영광학계(30)의 물체면에 삽입하고, 투영광학계(30)의 파면수차를 측정할 때에는 레티클측측정기판(71)을 투영광학계(30)의 물체면에 삽입한다.
투영광학계(30)는 레티클(20)의 패턴을 웨이퍼(40)에 투영하는 광학계이다. 투영광학계(30)는 굴절계, 반사 굴절계, 또는 반사계를 사용할 수 있다.
웨이퍼(40)는 레티클(20)의 패턴이 투영(전사)되는 기판이다. 그러나, 웨이퍼(40)는 유리플레이트 또는 다른 기판으로 치환할 수 있다. 웨이퍼(40)에는 포토레지스트가 도포되어 있다.
웨이퍼스테이지(45)는 웨이퍼(40) 및 센서유닛(700)을 지지하고, 예를 들면, 리니어 모터를 사용하여 웨이퍼(40) 및 센서유닛(700)을 구동한다. 웨이퍼스테이지(45)는 투영광학계(30)의 상면에 웨이퍼(40) 및 센서유닛(700)을 교환 가능하게 삽입한다. 보다 구체적으로는, 웨이퍼스테이지(45)는 레티클(20)의 패턴을 노광에 의해 전사할 때에는 웨이퍼(40)를 투영광학계(30)의 상면에 삽입하고, 투영광학계(30)의 파면수차를 측정할 때에는 센서유닛(700)을 투영광학계(30)의 상면에 삽입한다.
조정부(50)는 제어부(60)에 의해 제어되어 조명광학계(14) 및 투영광학 계(30)의 적어도 한쪽을 조정한다. 조정부(50)는 적어도, 조명광학계(14)에 의해 형성되는 유효광원분포를 조정(보정)하는 기능과 투영광학계(30)의 파면수차를 조정(보정)하는 기능을 가진다. 예를 들면, 조정부(50)는 투영광학계(30)을 구성하는 광학소자를 광축과 평행한 방향으로 구동하여 투영광학계(30)의 구면수차를 조정한다. 조정부(50)는, 또한 투영광학계(30)를 구성하는 광학소자를 광축과 수직인 방향으로 구동하거나 또는 광축에 대해서 경사시켜서 투영광학계(30)의 코마수차를 조정한다. 조정부(50)는, 또한 조명광학계(14)의 광학소자를 구동하거나 또는 조리개나 회절광학소자를 변경하여 유효광원분포를 조정(보정)한다.
제어부(60)는 CPU 및 메모리(도시하지 않음)를 가지며, 노광장치(1)의 동작을 제어한다. 제어부(60)는, 본 실시형태에서는, 측정부(70)에 의해 얻어진 측정결과(후술함)에 의거하여 조정부(50)를 제어한다. 예를 들면, 제어부(60)는 측정부(70)에 의해 얻어진 파면수차의 측정결과를 이용해서, 투영광학계(30)의 파면수차가 최적이 되도록, 조정부(50)를 제어한다. 또, 제어부(60)는 측정부(70)에 의해 얻어진 회절광분포의 측정결과를 이용해서, 노광에 의한 투영광학계(30)의 수차변화를 예측하고, 상기 수차의 변화를 노광중에 보정하도록 조정부(50)를 제어할 수도 있다. 노광에 의해 투영광학계(30)의 수차가 변화하는 경우에도, 항상 수차를 보정하면서 최적인 상태로 노광을 계속하는 것이 가능해진다. 측정부(70)에 의해 얻어진 유효광원분포의 측정결과를 이용해서, 제어부(60)는 또한 조명광학계(14)에 의해 형성되는 유효광원분포가 최적화 되도록 조정부(50)를 제어한다. 예를 들면, 유효광원분포가 2중극형상인 경우, 2개의 극간의 오프셋을 보정함으로써, 노광의 초점심도 등을 최적화할 수 있다. 또, 제어부(60)는 측정부(70)에 의한 광학성능(예를 들면, 파면수차, 유효광원분포, 회절광분포 및 동공투과율분포)의 측정에 관한 동작도 제어한다. 예를 들면, 제어부(60)는 투영광학계(30)의 파면수차 등의 광학성능을 측정하기 위한 산출처리(광전변환소자(740)로부터의 출력에 의거한 산출처리) 및 광전변환소자(740)의 제어(예를 들면, 출력의 절환)를 실시한다.
측정부(70)는 투영광학계(30)의 파면수차, 조명광학계(14)에 의해 형성되는 유효광원분포, 레티클(20)의 패턴에 의해 발생되는 회절광분포, 및 투영광학계(30)의 동공투과율분포 중의 적어도 하나를 측정하는 기능을 가진다. 본 실시형태에서는, 측정부(70)는 레티클측 측정기판(71)과 센서유닛(700)을 가진다.
레티클측 측정기판(71)은 레티클스테이지(25) 상에 배치되어 투영광학계(30)의 파면수차를 측정할 때에 사용되는, 예를들면, 개구패턴을 가진다. 레티클측측정기판(71)의 개구패턴에 대해서는 투영광학계(30)의 파면수차의 측정방법과 함께, 다음에 상세하게 설명한다.
센서유닛(700)은 웨이퍼스테이지(45) 상에 배치되고 웨이퍼측 측정기판(720), 광전변환소자(740), 및 차폐판(760)을 가진다. 후술하는 바와 같이, 웨이퍼측 측정기판(720)은 직사각형 형상의 개구패턴 및 원형 형상의 개구패턴 등의 형상 또는 면적이 서로 다른 복수의 개구패턴을 가진다. 이들 개구패턴은, 예를 들면, 투영광학계(30)의 파면수차, 조명광학계(14)에 의해 형성되는 유효광원분포, 레티클(20)의 패턴에 의해 발생되는 회절광분포, 및 투영광학계(30)의 동공투과율 분포의 측정시에 사용된다. 개구패턴을 통과한 광속을 광전변환소자(740)에 의해 수광함으로써, 파면수차, 유효광원분포, 회절광분포 및 동공투과율 분포 등을 측정할 수 있다. 차폐판(760)은 투영광학계(30)과 웨이퍼측 측정기판(720) 사이에 삽입되고 광축과 수직인 방향으로 구동가능하다. 파면수차, 유효광원분포, 회절광분포 및 동공투과율분포 등 중의 하나를 측정할 때에, 차폐판(760)은 측정에 사용되지 않는 개구패턴에 투영광학계(30)를 통과한 광속이 입사하는 것을 방지한다.
여기서, 웨이퍼측 측정기판(720) 및 광전변환소자(740)에 대해 상세하게 설명한다. 도 2는 웨이퍼측 측정기판(720) 및 광전변환소자(740)의 구성을 나타내는 도면이다. 웨이퍼측 측정기판(720)은 파면수차를 측정할 때에 사용되는 개구패턴으로서 폭이 서로 다른 한 쌍의 슬릿(721)(슬릿(721A) 및 슬릿(721B))을 가진다. 또, 웨이퍼측 측정기판(720)은 유효광원분포를 측정할 때에 사용되는 개구패턴으로서 10㎛ 내지 90㎛ 정도의 직경의 핀홀(722)도 가진다. 웨이퍼측 측정기판(720)은 회절광분포를 측정할 때에 사용되는 개구패턴으로서 10㎛ 내지 90㎛ 정도의 길이를 가진 슬릿(723)도 가진다. 한 쌍의 슬릿(721), 핀홀(722), 및 슬릿(723)은, 10㎛ 내지 900㎛ 정도의 거리에 서로 인접해서 형성되어 있다. 이 구성에 의해, 한 쌍의 슬릿(721), 핀홀(722), 및 슬릿(723)으로부터 사출되는 광속을 1개의 광전변환소자(740)만으로 수광할 수 있다.
웨이퍼측 측정기판(720)의 두께가 1mm이고, 웨이퍼측 측정기판(720)의 굴절률을 1.56이며, 웨이퍼측 측정기판(720)의 개구패턴면으로부터 광전변환소자(740)까지의 거리를 2.5 mm인 것으로 가정하면, NA = 0.9의 광속은, 광전변환소자(740) 상에서 직경 φ7.6 mm가 된다. 또, 슬릿(721), 핀홀(722), 및 슬릿(723)을 일직선 으로 정렬하고, 이들 인접한 개구패턴 사이의 간격을 0.5 mm인 것으로 가정한다. 이 경우에, 광전변환소자(740)에 입사하는 광속은, 슬릿(721), 핀홀(722), 및 슬릿(723)으로부터 사출한 광속의 광전변환소자(740) 상의 유효직경(ED1), (ED2), 및 (ED3)이 서로 중첩된 장축 8.6 mm 및 단축 7.6 mm을 가지는 타원의 범위 내에 들어간다. 이 때문에, 상기 타원에 외접하기에 충분한 크기의 면적을 가지는 수광면(742)을 광전변환소자(740)가 가지고 있으면, 한 쌍의 슬릿(721), 핀홀(722), 및 슬릿(723)으로부터 사출하는 모든 NA의 광속을 수광할 수 있다. 구체적으로는, 광전변환소자(740)는 8.6mm×7.6 mm 이상의 크기의 수광면(742)을 가지는 CCD를 포함한다. 이 결과, 1개의 웨이퍼측 측정기판(720) 및 1개의 광전변환소자(740)만을 사용하여 파면수차, 유효광원분포, 및 회절광분포 등의 복수의 광학성능을 측정할 수 있다. 또, 유효광원분포를 측정할 때에 사용되는 핀홀(722) 및 유효광원분포가 공지된 σ1의 조명모드를 이용하여 투영광학계(30)의 동공투과율분포를 측정할 수도 있다.
이하, 투영광학계(30)의 파면수차, 조명광학계(14)에 의해 형성되는 유효광원분포, 레티클(20)의 패턴에 의해 발생되는 회절광분포, 및 투영광학계(30)의 동공투과율분포의 측정방법에 대해 설명한다.
우선, 투영광학계(30)의 파면수차의 측정방법에 대해 설명한다. 도 3은 측정부(70)를 이용한 파면수차의 측정방법을 설명하기 위한 도면이다. 파면수차의 측정에 관련하지 않는 부재 및 구성요소는 도 3에서는 도시하지 않는다.
투영광학계(30)의 파면수차의 측정에서는, 투영광학계(30)의 물체면에, 레티 클측측정기판(71), 보다 구체적으로는, 레티클측측정기판(71)의 한 쌍의 슬릿(711) (슬릿(711A) 및 (71lB))이 투영광학계의 물체면에 삽입된다. 슬릿(711A)은 투영광학계(30)의 물체면측의 해상한계 이하(즉, 회절한계 이하)의 폭(슬릿폭)을 가진다. 투영광학계(30)의 물체면측의 개구수를 na로 놓고, 파장을 λ로 놓으면, 슬릿(711A)의 슬릿폭 d는 d ≤ 0.61 ×λ/na를 만족시키는 것이 바람직하다. 슬릿(71lB)은 슬릿(711A)과 같은 슬릿폭을 가질 수 있거나 또는 슬릿(711A)보다 넓은 슬릿폭을 가질 수 있다. 슬릿(711A) 및 슬릿(71lB)은 투영광학계(30)가 이들 사이에서 동일한 수차를 가지는, 소위, 아이소플래너틱(isoplanatic) 영역보다 좁아지도록 서로 인접하여 형성된다.
조명장치(10)로부터의 광에 의해 슬릿(711A) 및 (71lB)를 조명하면, 슬릿(711A)의 폭방향에 있어서 무수차인 파면을 가진 광성분이 슬릿(711A)으로부터 사출한다. 슬릿(71lB)이 슬릿(711A)의 폭보다 넓은 폭을 가지는 경우에는, 조명장치(10) (조명광학계(14))의 수차에 의해 영향을 받은 파면을 가진 광성분이 슬릿 (711B)로부터 사출된다.
슬릿(711A) 및 (71lB)로부터 사출한 광은 투영광학계(30)을 통과할 때, 투영광학계(30)의 수차의 영향을 파면 상에서 받아서 투영광학계(30)의 상면에 슬릿(711A) 및 (711B)의 상을 형성한다.
투영광학계(30)의 상면에는, 웨이퍼측 측정기판(720)의 한 쌍의 슬릿(721)이 삽입된다. 이때, 투영광학계(30)의 파면수차의 측정에 사용하지 않는 핀홀(722) 및 슬릿(723)은, 차폐판(760)에 의해 차폐된다. 한 쌍의 슬릿(721)은 슬릿(711A)의 상 의 위치에 슬릿(721A)이 위치하고, 슬릿(71lB)의 상의 위치에 슬릿(721B)이 위치하도록 웨이퍼측 측정기판(720)에 형성(배치)되어있다. 슬릿(721B)는 투영광학계(30)의 상면측의 해상한계 이하(즉, 회절한계 이하)의 폭(슬릿폭)을 가진다. 투영광학계(30)의 상면측의 개구수를 NA로 하고, 파장을 λ로 하면, 슬릿(721B)의 슬릿폭 D는 D ≤ 0.61 × λ/NA를 만족시키는 것이 바람직하다. 슬릿(721A)은 투영광학계(30)의 해상한계보다 충분히 큰 폭을 가진다. 슬릿(721A)의 폭은, 슬릿(721B)의 슬릿폭 D의 10배 내지 100배 정도인 것이 바람직하다.
슬릿(721B) 상에 결상한 광성분은 투영광학계(30)의 수차의 영향(및 슬릿(71 lB)의 슬릿폭에 의존하는 조명장치(10)의 수차의 영향)을 받은 파면을 가진다. 그러나, 광성분이 슬릿(721B)을 통과하므로, 슬릿(721B)의 폭방향에 있어서 무수차인 파면이 슬릿(721B)으로부터 사출한다. 한편, 슬릿(721A) 상에 결상한 광성분은 슬릿(721A)의 폭방향에 있어서, 투영광학계(30)의 수차의 영향만을 받은 파면을 가진다. 슬릿(721A)의 폭은 충분히 넓어서 투영광학계(30)의 수차의 영향만을 받은 파면이 그대로 사출될 수 있다.
슬릿(721A)으로부터의 광성분과 슬릿(721B)으로부터의 광성분은 서로 간섭해서, 간섭패턴(간섭무늬)을 형성한다. 이 간섭패턴을 광전변환소자(740)의 수광면(742)에 의해 검출하면, 슬릿의 폭방향의 투영광학계(30)의 파면수차를 측정할 수 있다. 슬릿의 폭방향과 직교하는 방향의 투영광학계(30)의 파면수차는, 슬릿(711A) 및 (71lB)이 연장하는 방향과 직교하는 방향으로 연장하는 한 쌍의 슬릿 과, 슬릿(721A) 및 (721B)이 연장하는 방향과 직교하는 방향으로 연장하는 한 쌍의 슬릿을 사용하여 측정할 수 있다.
투영광학계(30)의 물체면 및 상면의 각각에 한 쌍의 슬릿을 형성하는 대신에 서로의 면적이 다른 한 쌍의 핀홀을 형성하고, 이들 한 쌍의 핀홀의 직경을 상술한 슬릿의 폭과 동일하게 설정함으로써, 투영광학계의 모든 방위의 파면수차를 측정하는 것도 가능하다. 이 경우, 레티클측측정기판(71) 및 웨이퍼측 측정기판(720)의 각각은 한 쌍의 핀홀을 가진다. 레티클측측정기판(71)의 한 쌍의 슬릿 또는 핀홀, 및 웨이퍼측 측정기판(720)의 한 쌍의 슬릿 또는 핀홀의 사용에 의해, 투영광학계(30)의 파면수차를 측정할 수 있다.
다음에, 조명광학계(14)에 의해 형성되는 유효광원분포의 측정방법에 대해 설명한다. 도 4는 측정부(70)를 사용한 유효광원분포의 측정방법을 설명하기 위한 도면이다. 유효광원분포의 측정에 관련하지 않는 부재 및 구성요소는 도 4에서는 도시하지 않는다.
유효광원분포의 측정에서는, 투영광학계(30)의 상면에 웨이퍼측 측정기판(720)의 핀홀(722)이 삽입된다. 이때, 유효광원분포의 측정에 사용하지 않는 한 쌍의 슬릿(721) 및 슬릿(723)은 차폐판(760)에 의해 차폐된다.
웨이퍼측 측정기판(720)의 핀홀(722)을, 조명광학계(14) 및 투영광학계(30)를 통하여 핀홀(722)보다 큰 직경을 가지는 광으로 조명하면, 핀홀(722)을 통과한 광이 광전변환소자(740)의 수광면(742)에 입사한다.
상술한 바와 같이, 웨이퍼측 측정기판(720)의 핀홀(722)은 광전변환소자(740)의 수광면(742)과 2.5 mm정도 떨어져 있다. 핀홀 카메라의 핀홀(724B)에 따 라서, 조명광학계(14)에 의해 형성된 유효광원분포(의 형상)를 반영한 강도분포가 수광면(742)에 투영된다. 단, 광전변환소자(740)의 수광면(742)은 투영광학계(30)의 상면으로부터 디포커스되어 있기 때문에, 투영광학계(30)의 동공면과 공역이 되지 않는다. 따라서, 광전변환소자(740)의 수광면(742)에 투영된 강도분포로부터 조명광학계(14)의 유효광원분포(동공면에서의 강도분포)를 산출하기 위해서는, 이하의 계산 처리가 필요하다.
핀홀(722)로부터 사출하는 광속이 광전변환소자(740)의 수광면(742)에 입사 하는 위치를 0으로 하고, 핀홀(722)로부터 광전변환소자(740)의 수광면(742)까지의 거리를 L로 가정한다. 다음에, 핀홀(722)로부터 각도θ를 가지고 사출하는 광은, 광전변환소자(740)의 수광면(742) 상에서 L×tanθ의 위치에 도달한다.
광학계의 동공면좌표위치는, sinθ로 정의할 수 있다. 환언하면, tanθ좌표계에 의해 얻어진 광전변환소자(740)의 수광면(742) 상의 강도분포데이터를 sinθ좌표계에 의한 강도분포 데이터로 변환함으로써, 동공면에서의 강도분포데이터를 산출할 수 있다. 상기 변환된 강도분포데이터가 조명광학계(14)의 유효광원분포를 나타낸다.
이와 같이, 웨이퍼측 측정기판(720)의 핀홀(722)의 사용에 의해, 조명광학계(14)에 의해 형성되는 유효광원분포를 측정할 수 있다. 도 5에 도시된 바와 같이, 웨이퍼측 측정기판(720)과 광전변환소자(740) 사이에, 정의 파워를 가지는 광학계(동공결상광학계)(780)을 삽입함으로써, 광전변환소자(740)의 수광면(742)을 투영광학계(30)의 동공면과 공역으로 설정하는 것이 가능하다. 이에 의해, tanθ좌 표계에 의한 강도분포를 sinθ좌표계에 의한 강도분포로 변환하는 계산의 필요가 없어진다. 또, 측정시간을 단축하고, 계산에 의한 오차의 발생을 억제해서, 측정정밀도를 향상시킬 수 있다. 또, 광학계(780)에, 적어도 1개의 볼록 렌즈를 포함하면, 웨이퍼측 측정기판(720)으로부터 사출하는 광속의 발산각 및 광전변환소자(740)의 수광면(742)에서의 광속의 유효직경을 감소시킬 수도 있다. 이에 의해, 광전변환소자(740)의 수광면(742)을 감소시킬 수 있고 (즉, 광전변환소자(740)의 소형화를 실현할 수 있고), 따라서 광전변환소자(740)(센서유닛(700))을 배치하기 위한 웨이퍼스테이지(45)상의 영역을 좁게 할 수 있다. 여기서, 도 5는, 웨이퍼측 측정기판(720)과 광전변환소자(740) 사이에 삽입된 광학계(780)를 나타내는 도면이다.
다음에, 레티클(20)의 패턴에 의해 발생하는 회절광분포의 측정방법에 대해 설명한다. 도 6은 측정부(70)를 사용한 회절광분포의 측정방법을 설명하기 위한 도면이다. 도 6에서는, 회절광분포의 측정에 관련하지 않는 부재 및 구성요소는 도시하지 않는다.
실제로 노광에 이용하는 레티클(20)을 투영광학계(30)의 물체면에 삽입해서, 실제로 노광하는 조명조건하에서 레티클(20)을 조명하면, 레티클(20)의 패턴에 따라서 회절광이 발생해서, 투영광학계(30)에 입사한다. 이에 의해, 투영광학계(30)의 동공면에는 조명조건(유효광원분포) 및 레티클(20)로부터의 회절광에 의한 강도분포, 즉, 회절광분포(DLD)가 발생한다. 따라서, 실제의 노광에 있어서는 투영광학계(30)의 동공면에서의 강도분포는 일정하지 않고, 조명조건 및 레티클(20)의 패턴 에 따라서 다양한 형태를 가지게 된다.
투영광학계(30)의 수차는, 예를 들면, 노광열의 발생 등에 의해 변화하는 것이 알려져 있지만, 회절광분포(DLD)에 따라서 노광열의 영향을 국소적으로 강하게 받는 부분이나 거의 영향을 받지 않는 부분이 존재한다. 그 결과, 노광열에 의한 투영광학계(30)의 수차변화는, 회절광분포(DLD)에 따라 변화한다. 회절광분포(DLD)를 측정함으로써, 실제의 노광시의 투영광학계(30)의 수차의 변화를 정밀하게(정확하게) 예측하는 것이 가능해진다.
레티클(20)의 패턴은 상이한 광학성능을 가진 영역이 있기 때문에, 회절광분포(DLD)의 정확한 측정에는 노광 전체면(레티클(20)의 전체면)에 걸쳐서의 측정이 요구된다. 일반적으로, 한번에 노광되는 면적은, 스텝 앤드 스캔 방식의 노광장치에서는, 웨이퍼(40) 상에서 최대 26mm×33 mm로서 매우 크다. 이러한 큰 면적을 가진 영역으로부터 사출한 광의 모두를 일괄해서 웨이퍼스테이지(45) 상에 배치한 광전변환소자(740)에 의해 수광할 수 있으면, 노광 전체면에서의 회절광분포(DLD)를 측정할 수 있다. 그러나, 이러한 방법은, 광전변환소자(740)가 50mm 정도의 변을 가진 사각 수광면(742)을 가질 필요가 있기 때문에, 비실용적이다.
이 상황을 극복하기 위해서, 본 실시형태에서는, 웨이퍼측 측정기판(720)의 슬릿(723)을 투영광학계(30)의 상면에 삽입해서, 슬릿(723)을 통과한 광속을 광전변환소자(740)에 의해 수광한다. 이때, 회절광분포(DLD)의 측정에 사용하지 않는 한 쌍의 슬릿(721) 및 핀홀(722)은 차폐판(760)에 의해 차폐된다. 여기서, 슬릿(723)은 주사(스캔) 방향과 직교하는 방향으로 0.5mm 내지 1mm정도의 길이를 가 지며, 주사방향과 평행한 방향으로 10㎛ 내지 90㎛ 정도의 길이를 가진다.
보다 구체적으로는, 노광장치(l)의 정지노광영역의 좌측단부에 슬릿(723)이 위치하도록 웨이퍼스테이지(45)를 구동한다. 다음에, 레티클(20)을 탑재한 레티클스테이지(25)를 구동해서, 소망한 조명조건으로 레티클(20)을 조명하면서 레티클(20)을 주사한다. 레티클(20)의 주사중에는, 슬릿(723)을 구동하지 않고, 슬릿(723)으로부터 사출하는 광속을 광전변환소자(740)의 수광면(742)에 의해 수광한다. 예를 들면, 슬릿(723)의 주사방향과 직교하는 방향의 길이를 1mm, 레티클(20)의 주사방향의 노광영역의 길이를 33mm(레티클(20) 상에서의 이 노광영역의 길이를 웨이퍼(40) 상에서의 길이로 환산)로 가정한다. 이 경우, 레티클(20)을 1회 주사함으로써, 광전변환소자(740)에 의해 1mm×33mm의 영역의 회절광분포(DLD)에 의한 강도분포를 얻는다. 슬릿(723)을 1mm만큼 우측으로 이동시켜서, 레티클(20)을 주사하면서 슬릿(723)으로부터 사출하는 광속을 광전변환소자(740)의 수광면(742)에 의해 수광한다. 슬릿(723)을 이동시키기 전에 얻어진 강도분포를 슬릿(723)을 이동시킨 후에 얻어진 강도분포에 가산하면, 2mm×33mm의 영역의 회절광분포(DLD)에 의한 강도분포를 얻을 수 있다. 따라서, 주사방향과 직교하는 방향에의 슬릿(723)의 이동과 슬릿(723)으로부터의 광속의 수광을 반복함으로써, 노광영역(레티클(20))의 전체면에서의 회절광분포(DLD)에 의한 강도분포를 얻을 수 있다. 여기서, 회절광분포의 측정에 있어서도, 광전변환소자(740)의 수광면(742)과 투영광학계(30)의 동공면은 공역은 아니다. 광전변환소자(740)에 의해 측정된 강도분포를 투영광학계(30)의 동공면의 회절광분포로 변환하기 위해서는, 유효광원분포의 측정과 마찬가지로, tanθ 좌표계로부터 sinθ좌표계로의 변환이 필요하다.
이와 같이, 웨이퍼측 측정기판(720)의 슬릿(723)을 사용함으로써, 레티클(20)의 패턴에 의해 발생되는 회절광분포를 측정할 수 있다.
측정부(70)는 투영광학계(30)의 동공투과율분포를 측정하는 것도 가능하다. 보다 구체적으로는, 투영광학계(30)의 상면에, 웨이퍼측 측정기판(720)의 핀홀(722)을 삽입하고, 동공강도분포가 알려진 σ1의 조명모드로 핀홀(722)을 조명한다. 핀홀(722)로부터의 광속을 광전변환소자(740)에 의해 수광해서 얻어진 강도분포의 좌표계를 tanθ좌표계로부터 sinθ좌표계로 변환한다. 상기 변환된 강도분포를 조명광학계(14)의 동공면의 강도분포로 나눈다. 이에 의해, 투영광학계(30)의 동공투과율분포를 측정할 수 있다.
본 실시형태에서는, 웨이퍼측 측정기판(720)에 있어서 파면수차, 유효광원분포, 및 회절광분포를 각각 측정하기 위한 개구패턴을 서로 인접하도록 형성한다. 이에 의해, 1개의 웨이퍼측 측정기판(720) 및 1개의 광전변환소자(740)만을 사용해서 파면수차, 유효광원분포, 회절광분포, 및 동공투과율분포 등의 복수의 광학성능을 측정하는 것이 가능하게 된다.
웨이퍼측 측정기판(720)은 파면수차, 유효광원분포, 및 회절광분포의 각각을 측정하는 전용의 개구패턴을 가지고 있지만, 도 7에 도시된 바와 같이, 파면수차, 유효광원분포, 및 회절광분포를 측정하는 공통의 개구패턴을 가지고 있어도 된다. 도 7은 파면수차, 유효광원분포, 및 회절광분포를 측정하는 공통의 개구패턴으로서 한 쌍의 핀홀(724)(핀홀(724A) 및 핀홀(724B))을 가지는 웨이퍼측 측정기판(720A) 의 구성을 나타내는 도면이다.
투영광학계(30)의 파면수차의 측정에서는, 투영광학계(30)의 상면에, 웨이퍼측 측정기판(720A), 보다 구체적으로는, 웨이퍼측 측정기판(720A)이 가지는 한 쌍의 핀홀(724)(핀홀(724A) 및 핀홀(724B))이 삽입된다. 핀홀(제 1 핀홀)(724A)는 투영광학계(30)의 물체면측의 해상한계 이하의 직경, 바람직하게는, 투영광학계(30)의 상면측의 개구수를 NA, 파장을 λ로 하면, 0.61×λ/NA이하의 직경을 가진다. 핀홀(제 2 핀홀)(724B)는 10㎛ 내지 90㎛정도의 직경을 가진다.
투영광학계(30)의 물체면측에는 레티클측측정기판(71)의 한 쌍의 핀홀이 삽입된다. 상기 한 쌍의 핀홀 중의 적어도 하나의 핀홀은, 투영광학계(30)의 물체면측의 해상한계 이하의 직경, 바람직하게는, 투영광학계(30)의 물체면측의 개구수를 NA로 하고, 파장을 λ로 하면, 061×λ/NA이하의 직경을 가진다. 다른 쪽의 핀홀은 투영광학계(30)의 물체면측의 해상한계 이하의 직경을 가져도 되거나, 또는 투영광학계(30)의 물체면측의 해상한계보다 큰 직경을 가져도 된다.
이와 같이, 레티클측측정기판(71)의 한 쌍의 핀홀 및 웨이퍼측 측정기판(720A)의 한 쌍의 핀홀(724)(핀홀(724A) 및 핀홀(724B))을 사용함으로써, 투영광학계(30)의 파면수차를 측정할 수 있다.
유효광원분포를 측정하는 경우에는, 웨이퍼측 측정기판(720A)의 핀홀(724A)을 차폐판(760)으로 차폐하면서, 조명광학계(14) 및 투영광학계(30)를 통하여 핀홀(724B)을 조명한다. 이 동작에 의해, 상술한 것과 동일한 메커니즘에 의해 유효광원분포를 측정할 수 있다.
회절광분포는 웨이퍼측 측정기판(720A)의 핀홀(724B)을 사용하여 상술한 것과 동일한 메커니즘에 의해 측정할 수 있다. 웨이퍼측 측정기판(720)의 슬릿(723)의 길이보다 웨이퍼측 측정기판(720A)의 핀홀(724A)의 직경이 작다. 이 때문에, 레티클(20)의 전체면에서의 회절광분포의 측정에는, 주사방향과 직교하는 방향으로 비교적 많은 회수의 핀홀(724A)의 이동이 필요해서, 측정 시간이 길어질 수 있다. 그러나, 레티클(20)의 전체면에서의 엄밀한 회절광분포를 측정하지는 않지만, 통상의 것과 마찬가지로 핀홀(724A)을 이동시키는 회수의 변화없이, 회절광분포를 측정할 수 있다.
웨이퍼측 측정기판(720A)의 핀홀(724B)을 사용하여 상술한 것과 동일한 메커니즘에 의해 동공투과율 분포를 측정할 수 있다.
이와 같이, 서로 직경(크기)이 다른 2개의 원형 형상의 개구패턴을 웨이퍼측 측정기판(720A)에 형성함으로써, 파면수차, 유효광원분포, 회절광분포, 및 동공투과율분포를 전용의 개구패턴을 사용하지 않고 측정할 수 있다.
웨이퍼측 측정기판(720)에 있어서, 예를 들면, 파면수차, 유효광원분포 및 회절광분포등을 측정하기 위한 개구패턴의 오염이나 파손을 고려해서, 예비의 개구패턴을 형성하는 경우가 많다. 도 8은 도 7에 나타낸 웨이퍼측 측정기판(720A)의 한 쌍의 핀홀(724)(핀홀(724A) 및 핀홀(724B))과 동일한 핀홀(740)을 복수 가지는 웨이퍼측 측정기판(720B)의 구성을 나타내는 도면이다.
복수의 핀홀(724) 중의 하나를 사용해서 상술한 것과 같은 메커니즘에 의해 핀홀(724B)에 의해 파면수차를 측정한다. 핀홀(724) 중의 핀홀(724B)을 사용해서 상술한 것과 같은 메커니즘에 의해 유효광원분포를 측정한다.
회절광분포는 웨이퍼측 측정기판(720B)에 형성된 모든 핀홀(724)을 사용하여 측정한다. 예를 들면, 도 8에 도시된 바와 같이, L1×L2의 영역에 4 쌍의 핀홀(724)을 형성했을 경우를 생각한다. L1 및 L2의 길이가 0.5 mm이면, 모든 핀홀(724B)로부터 사출하는 광속을 광전변환소자(740)의 수광면(742)에 의해 일괄 수광할 수 있다. 이에 의해, 0.5 mm2의 개구패턴을 사용했을 경우와 대략 동등한 측정을 할 수 있다. 따라서, 1개의 슬릿(723)만이 형성되어 있는 웨이퍼측 측정기판(720)을 사용했을 경우와 비교해서, 1회의 주사로 측정할 수 있는 영역이 확대되어 핀홀(724B)를 이동시키는 회수를 줄이는 것이 가능해진다.
또, 도 9에 도시된 바와 같이, 웨이퍼측 측정기판(720)에 회절격자패턴(725)을 형성할 수도 있다. 이 경우, 셰어링 간섭 방식을 사용해서 투영광학계(30)의 파면수차를 측정한다. 여기서, 도 9는, 측정부(70)를 사용한 파면수차의 측정방법을 설명하기 위한 도면이다.
보다 구체적으로는, 투영광학계(30)의 물체면에, 레티클측측정기판(71), 보다 상세하게는, 레티클측측정기판(71)이 가지는 핀홀(713)이 삽입된다. 핀홀(713)은 투영광학계(30)의 물체면측의 해상한계 이하(즉, 회절한계 이하)의 직경을 가진다. 핀홀(713)로부터 사출하는 광속은 무수차가 되어, 투영광학계(30)에 입사한다.
투영광학계(30)의 상면측에는 웨이퍼측 측정기판(720)의 회절격자패턴(725)이 삽입된다. 투영광학계(30)의 파면수차의 측정에 사용하지 않는 핀홀(722) 및 슬 릿(723)은 차폐판(760)에 의해 차폐된다. 회절격자패턴(725)은 투영광학계(30)의 상면으로부터 디포커스된 위치에 배치된다. 투영광학계(30)로부터 사출한 광속은, 회절격자패턴(725)에 의해, 예를 들면, 2개 이상의 광속으로 분리되어 광전변환소자(740)의 수광면(742)에 입사한다. 이에 의해, 광전변환소자(740)의 수광면(742)상에는, 간섭패턴이 형성된다. 이 간섭패턴은 단일 파면을 횡방향으로 전단시켜서 발생되고, 단일 파면을 어느 방향으로 전단시켜서 발생된 2개의 파면 간의 차이를 나타낸다. 단일 파면을 전단한 방향으로 상기 간섭패턴을 적분함으로써 파면수차를 산출하는 것이 가능해진다.
유효광원분포, 회절광분포 및 동공투과율을 측정하는 경우에는, 상술한 바와 같이, 투영광학계(30)의 상면에 웨이퍼측 측정기판(720)의 핀홀(722) 또는 슬릿(723)을 삽입한다. 웨이퍼측 측정기판(720)의 회절격자패턴(725)을 디포커스시키지 않고 투영광학계(30)의 상면에 삽입하면, 회절격자패턴(725)의 개구를 사용해 서 유효광원분포, 회절광분포 및 동공투과율분포를 측정하는 것도 가능하다.
본 실시형태에서는, 파면수차, 유효광원분포, 회절광분포, 및 동공투과율 분포를 측정하는 경우에 따라서, 광전변환소자(740)의 측정 규격을 최적화(즉, 광전변환소자(740)로부터의 출력을 절환) 할 수 있다. 광전변환소자(740)의 측정규격은, 예를 들면, 사용하는 화소의 수(분할수), 축적시간, 출력게인, 및 계조의 수를 포함한다.
파면수차, 유효광원분포, 회절광분포, 및 동공투과율 분포를 측정하는 경우에 따라서 동공의 분할수를 변경할 수 있다. 예를 들면, 1000×1000의 화소로 구성 되는 수광면(742)을 가지는 광전변환소자(740)를 사용하여 파면수차를 측정하는 경우에는, 보다 고차의 수차 성분을 측정하기 위해서, 1000×1000의 화소의 광전변환소자로서 광전변환소자(740)를 사용한다.
유효광원분포 또는 회절광분포 등은, 200×200 정도의 화소(분할수)로도 충분히 측정할 수 있는 경우가 있다. 이 경우에, 유효광원분포 또는 회절광분포를 측정하는 경우에는, 수광면(742)의 화소로부터, 5×5의 화소를 l개의 화소로서 비닝(binning)(선택)해서 측정해도 된다. 환언하면, l00O×1000의 화소의 광전변환소자(740)를 200×200의 화소의 광전변환소자로서 사용한다.
5×5의 화소를 비닝해서 즉, 전체 25 화소를 1 화소로서 측정하는 경우, 1개의 비닝된 화소에 의해 수광되는 광속의 광량은 비닝 전의 25배로 증가한다. 동일한 에너지의 광을 광전변환소자(740)에 입사시켰을 경우, 광전변환소자(740)는 비닝할때 보다 미약한 광까지 검출하는 것이 가능해진다. 또, 비닝에 의해 1 화소당 수광량이 증가한다는 사실을 이용해서 광전변환소자(740)의 축적시간을 단축하는 것도 가능하고, 따라서 측정시간을 단축할 수 있다. 또한, 비닝에 의해 광전변환소자(740)로부터 판독하는 정보량이 적게 되기 때문에, 판독시간 및 전송시간도 단축하는 것이 가능해진다. 이에 의해, 측정시간을 단축하거나 또는 같은 시간에 복수회의 측정을 행할 수 있다. 수광면(742)의 화소중 약간의 화소를 비닝함으로써, 광전변환소자(740)에 의한 발열도 억제할 수 있어서 광전변환소자(740)의 측정성능에의 악영향을 억제할 수 있다. 이와 같이, 측정대상에 따라서, 광전변환소자(740)의 수광면(742)의 화소중 약간의 화소를 비닝함으로써, 측정시간을 단축하고 복수회의 측정에 있어서의 재현성을 향상할 수 있다.
다음에, 축적시간에 대해 설명한다. KrF 엑시머레이져나 ArF 엑시머레이져를 광원으로서 사용한 노광장치에 있어서, 광원은 펄스발광 레이저이다. 광전변환소자(740)의 축적시간을 변경함으로써, 광전변환소자(740)에 입사하는 펄스수를 변경할 수 있다. KrF 엑시머레이져 및 ArF 엑시머레이져에서는, 각각 1 펄스당 약 수% 내지 10%보다 다소 적은 광량변동을 나타낸다. 축적 펄스수가 불충분하면, 광전변환소자(740)에 의해 광량변동이 있는 화상을 발생시키는 경우가 있다. 측정하는 대상에 따라서, 광량변동의 허용도가 변화된다. 측정대상에 따라서 광전변환소자(740)의 축적시간을 다음과 같이 설정한다. 즉, 광량의 변동이 억제되어야 하는 경우에는 광전변환소자(740)의 축적시간을 길게 설정하고, 반면에 측정하는 대상이 광량의 변동에 둔감한 경우에는 광전변환소자(740)의 축적시간을 짧게 설정한다.
다음에, 출력게인에 대해서 설명한다. 여기서, 출력게인이란, 광전변환소자(740)로부터의 전기신호를 전기적으로 증폭하는 것을 의미한다. 출력게인을 증가시키면(전기적인 증폭을 증가시키면), 노이즈도 증폭되어 버린다고 하는 결점이 있다. 한편, 출력게인은, 광전변환소자(740)로부터의 전기신호가 비교적 약한 경우, 즉, 광량이 비교적 적은 경우에도, 측정이 가능 하다는 이점이 있다. 따라서, 저노이즈에서의 측정이 필요한 경우에는, 출력게인을 작게 설정하고, 저노이즈에서의 측정이 필요하지 않은 경우에는, 출력게인을 크게 설정하면 된다. 이에 의해, 광전변환소자(740)의 축적시간을 단축해서, 측정시간을 단축할 수 있다.
마지막으로, 계조수에 대해 설명한다. 측정에 필요한 최적의 계조수는, 측정 대상에 따라서 결정된다. 예를 들면, 동공투과율분포와 같이, 광량의 1% 정도의 변화를 측정하기 위해서는 512계조 정도 있으면 충분하고, 유효광원분포와 같이, 광량의 0.1% 정도의 변화를 측정하기 위해서는, 4092계조 정도가 필요하다. 측정하는 대상의 모두를 만족시키는 계조수를 설정해도 되지만, 측정대상에 따라서는 불필요한 정보가 증가하게 되어, 광전변환소자(740)로부터의 화상의 전송에 걸리는 시간이나 처리시간의 연장을 초래한다. 이 때문에, 측정대상에 따라서, 최적인 계조수로 변경하는 것이 바람직하다.
이와 같이, 이들 광학성능을 측정하는 경우에 따라서, 측정에 사용하는 화소를 비닝하거나 축적시간, 게인, 및 계조수를 변경함으로써, 항상 최적인 측정조건하에서 파면수차, 유효광원분포, 회절광분포, 및 동공투과율분포를 측정할 수 있다.
파면수차, 유효광원분포 및 회절광분포의 각각을 측정하기 위한 개구패턴을 웨이퍼측 측정기판(720)에 형성함으로써, 1개의 광전변환소자(740)만을 사용하여 파면수차, 유효광원분포, 회절광분포 및 동공투과율분포 등의 복수의 광학성능을 측정할 수 있다. 또, 개구패턴을 개선시킴으로써, 파면수차, 유효광원분포 및 회절광분포의 각각을 측정하는 전용의 개구패턴을 형성하지 않아도 된다. 따라서, 측정부(70)는 웨이퍼스테이지(45)의 스테이지 성능의 저하나 웨이퍼스테이지(45)의 대형화 없이, 파면수차, 유효광원분포, 회절광분포 및 동공투과율 분포 등의 복수의 광학성능을 측정할 수 있다.
노광에 있어서, 광원(l2)으로부터 방출된 광속은 조명광학계(14)에 의해 레 티클(20)을 조명한다. 레티클(20)의 패턴을 반영하는 광성분은 투영광학계(30)에 의해 웨이퍼(40)상에 결상한다. 측정부(70)의 측정결과에 의거하여 노광장치(1)의 파면수차, 유효광원분포 및 회절광분포 등이 최적으로 조정되어 있다. 웨이퍼(40)를 구동하는 웨이퍼스테이지(45)가 뛰어난 스테이지 성능을 유지하고 있기 때문에, 레티클(20) 및 웨이퍼(40)를 고정밀도로 얼라인먼트할 수 있고, 주사노광에 있어서 웨이퍼(40)를 고정밀도로 구동할 수 있다. 따라서, 노광장치(1)는 높은 스루풋으로, 경제성이 우수하고, 고품위인 디바이스(예를 들면, 반도체소자, LCD 소자, 촬상소자(예를 들면, CCD), 박막자기헤드)를 제공할 수 있다. 이들 디바이스는, 노광장치(1)를 사용해서 레지스트(감광제)가 도포된 기판(예를 들면, 웨이퍼, 또는 유리 플레이트)을 노광하는 공정, 노광된 기판을 현상하는 공정, 및 그 외의 공지의 공정에 의해 제조된다.
본 발명을 전형적인 실시예를 참조하면서 설명하였지만, 본 발명은 상기 개시된 전형적인 실시예로 한정되지 않는 것으로 이해되어야 한다. 이하 특허 청구범위는 이러한 모든 변경과 등가의 구성 및 기능을 망라하도록 최광의로 해석되어야 한다.
도 1은 본 발명의 일 측면에 의한 노광장치를 도시한 개략블럭도;
도 2는 도 1에 도시된 노광장치에 있어서, 센서유닛의 웨이퍼측 측정기판 및 광전변환소자의 구성을 도시한 도면;
도 3은 도 1에 도시된 노광장치의 측정부를 사용한 파면수차의 측정방법을 설명하기 위한 도면;
도 4는 도 1에 도시된 노광장치의 측정부를 사용한 유효광원분포의 측정방법을 설명하기 위한 도면;
도 5는 도 1에 도시된 노광장치의 측정부에 있어서, 웨이퍼측 측정기판과 광전변환소자 사이에 삽입된 광학계를 도시한 도면;
도 6은 도 1에 도시된 노광장치의 측정부를 사용한 회절광분포의 측정방법을 설명하기 위한 도면;
도 7은 도 1에 도시된 노광장치에 있어서, 센서유닛의 웨이퍼측 측정기판의 구성을 도시한 도면;
도 8은 도 1에 도시된 노광장치에 있어서, 센서유닛의 웨이퍼측 측정기판의 구성을 도시된 도면;
도 9는 도 1에 도시된 노광장치의 측정부를 사용한 파면수차의 측정방법을 설명하기 위한 도면;
도 10은 종래의 유효광원분포의 측정 메커니즘을 설명하기 위한 도면.
[주요부분에 대한 도면부호의 설명]
1: 노광장치 10: 조명장치
12: 광원 14: 조명광학계:
20: 레티클 25: 레티클스테이지
30: 투영광학계 40: 웨이퍼
45:웨이퍼스테이지 50: 조정부
60: 제어부 70: 측정부
720: 웨이퍼측 측정기판 721, 723: 슬릿
722: 핀홀 740: 광전변환소자
742: 수광면

Claims (12)

  1. 삭제
  2. 삭제
  3. 레티클의 패턴을 기판에 투영하는 투영광학계;
    상기 기판을 이동시키는 스테이지; 및
    상기 스테이지에 배치되고 상기 투영광학계를 통과한 광을 수광하는 센서유닛을 구비하고 있는 노광장치로서,
    상기 센서유닛은,
    다른 광학성능의 측정에 이용되고 서로 다른 형상 또는 크기의 복수의 개구패턴이 형성된 개구판; 및
    상기 복수의 개구패턴으로부터의 광속을 광전변환하는 광전변환소자
    를 갖고,
    상기 복수의 개구패턴은, 폭이 서로 다르고 상기 광학성능으로서 상기 투영광학계의 파면수차를 측정할 때에 사용되는 한 쌍의 슬릿과, 상기 광학성능으로서 상기 레티클의 패턴에 의해 발생하는 회절광분포를 측정할 때에 사용되는 슬릿 및 원형 형상의 개구패턴을 포함하는 것을 특징으로 하는 노광장치.
  4. 레티클의 패턴을 기판에 투영하는 투영광학계;
    상기 기판을 이동시키는 스테이지; 및
    상기 스테이지에 배치되고 상기 투영광학계를 통과한 광을 수광하는 센서유닛을 구비하고 있는 노광장치로서,
    상기 센서유닛은,
    다른 광학성능의 측정에 이용되고 서로 다른 형상 또는 크기의 복수의 개구패턴이 형성된 개구판; 및
    상기 복수의 개구패턴으로부터의 광속을 광전변환하는 광전변환소자
    를 갖고,
    상기 복수의 개구패턴은, 유효광원분포를 측정할 때에 사용되고, 상기 광학성능으로서 상기 레티클을 조명하는 조명광학계에 의해 형성되는 원형 형상의 개구패턴과, 직사각형 형상의 개구패턴을 포함하는 것을 특징으로 하는 노광장치.
  5. 제 4항에 있어서,
    상기 직사각형 형상의 개구패턴은, 폭이 서로 다르고 상기 광학성능으로서 상기 투영광학계의 파면수차를 측정할 때에 사용되는 한 쌍의 슬릿을 포함하는 것을 특징으로 하는 노광장치.
  6. 삭제
  7. 레티클의 패턴을 기판에 투영하는 투영광학계;
    상기 기판을 이동시키는 스테이지; 및
    상기 스테이지에 배치되고 상기 투영광학계를 통과한 광을 수광하는 센서유닛을 구비하고 있는 노광장치로서,
    상기 센서유닛은,
    다른 광학성능의 측정에 이용되고 서로 다른 형상 또는 크기의 복수의 개구패턴이 형성된 개구판; 및
    상기 복수의 개구패턴으로부터의 광속을 광전변환하는 광전변환소자
    를 갖고,
    상기 광전변환소자는 복수의 화소를 포함하고,
    상기 투영광학계의 파면수차, 상기 레티클을 조명하는 조명광학계에 의해 형성되는 유효광원분포, 상기 레티클의 패턴에 의해 발생하는 회절광분포 및 상기 투영광학계의 동공 투과율 분포를 측정하는 경우에 따라서, 상기 복수의 화소 중 사용되는 화소, 상기 화소의 축적시간, 출력 게인, 및 계조수가 변경되는 것을 특징으로 하는 노광장치.
  8. 제 3항, 제 4항 및 제 7항 중 어느 한 항에 있어서,
    상기 레티클을 조명하는 조명광학계 및 상기 투영광학계 중의 적어도 한쪽을 조정하는 조정부; 및
    상기 센서유닛에 의해 얻어진 측정결과에 의거해서, 상기 조정부를 제어하는 제어부를 더 가지는 것을 특징으로 하는 노광장치.
  9. 광원으로부터의 광속에 의해 레티클을 조명하는 조명광학계;
    상기 레티클의 패턴을 스테이지에 의해 지지되는 기판에 투영하는 투영광학계; 및
    센서유닛
    을 구비한 노광장치로서,
    상기 센서유닛은,
    상기 스테이지에 배치되고 상기 투영광학계로부터의 광속을 투과하는 개구패턴이 형성된 개구판, 및
    상기 스테이지에 배치되고 상기 개구패턴으로부터의 광속을 광전변환하는 광전변환소자
    를 구비하고,
    상기 투영광학계의 파면수차, 상기 조명광학계에 의해 형성되는 유효광원분포, 상기 레티클의 패턴에 의해 발생하는 회절광분포, 및 상기 투영광학계의 동공 투과율 분포를 측정하는 경우에 따라서, 상기 광전변환소자로부터의 출력을 절환하는 것을 특징으로 하는 노광장치.
  10. 제 9항에 있어서,
    상기 개구패턴은 상기 투영광학계의 해상 한계 이하의 직경의 제 1 핀홀 및 상기 투영광학계의 해상한계보다 큰 직경의 제 2 핀홀을 포함하고,
    상기 센서유닛은 상기 조명광학계에 의해 형성되는 유효광원분포, 상기 레티클의 패턴에 의해 발생하는 회절광분포, 및 상기 투영광학계의 동공투과율분포 중 적어도 하나를 측정할 때에, 상기 제 1 핀홀에 광속이 입사하는 것을 방지하는 차폐판을 가지는 것을 특징으로 하는 노광장치.
  11. 제 9항에 있어서,
    상기 조명광학계 및 상기 투영광학계 중의 적어도 하나를 조정하는 조정부; 및
    상기 센서유닛에 의해 얻어진 측정결과에 의거해서, 상기 조정부를 제어하는 제어부를 더 가지는 것을 특징으로 하는 노광장치.
  12. 제 3항, 제 4항, 제7항 및 제 9항 내지 제 11항 중 어느 한 항에 기재된 노광장치를 사용하여 기판을 노광하는 공정; 및
    상기 노광된 기판의 현상처리를 행하는 공정
    을 구비하는 것을 특징으로 하는 디바이스의 제조방법.
KR1020080067305A 2007-07-12 2008-07-11 노광장치 및 디바이스의 제조방법 KR100994029B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPJP-P-2007-00183645 2007-07-12
JP2007183645A JP5063229B2 (ja) 2007-07-12 2007-07-12 露光装置及びデバイス製造方法

Publications (2)

Publication Number Publication Date
KR20090006783A KR20090006783A (ko) 2009-01-15
KR100994029B1 true KR100994029B1 (ko) 2010-11-11

Family

ID=40252822

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080067305A KR100994029B1 (ko) 2007-07-12 2008-07-11 노광장치 및 디바이스의 제조방법

Country Status (4)

Country Link
US (1) US8294875B2 (ko)
JP (1) JP5063229B2 (ko)
KR (1) KR100994029B1 (ko)
TW (1) TWI403859B (ko)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013238670A (ja) * 2012-05-11 2013-11-28 Canon Inc 露光装置、露光方法、デバイスの製造方法及び開口板
JP5900204B2 (ja) * 2012-07-10 2016-04-06 富士ゼロックス株式会社 文書処理装置及びプログラム
KR102120893B1 (ko) * 2012-12-14 2020-06-10 삼성디스플레이 주식회사 노광장치, 그 제어방법 및 노광을 위한 정렬방법
DE102013204466A1 (de) 2013-03-14 2014-09-18 Carl Zeiss Smt Gmbh Messung einer optischen Symmetrieeigenschaft an einer Projektionsbelichtungsanlage
US10088412B2 (en) * 2016-09-27 2018-10-02 Electronics & Telecommunications Research Institute Apparatus for analyzing bio-material
JP6477850B2 (ja) * 2017-12-15 2019-03-06 株式会社ニコン 算出装置及び方法、プログラム、並びに露光方法
JP6980562B2 (ja) * 2018-02-28 2021-12-15 キヤノン株式会社 パターン形成装置、アライメントマークの検出方法及びパターン形成方法
CN113204176A (zh) * 2021-04-27 2021-08-03 合肥芯碁微电子装备股份有限公司 用于检测和调试设备成像光路的工装、检测系统和方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100525067B1 (ko) * 1997-01-20 2005-12-21 가부시키가이샤 니콘 노광 장치의 광학 특성 측정 방법, 노광 장치의 동작 방법 및 투영 노광 장치
JP4464166B2 (ja) * 2004-02-27 2010-05-19 キヤノン株式会社 測定装置を搭載した露光装置
JP2006019691A (ja) * 2004-05-31 2006-01-19 Nikon Corp 収差計測方法及び装置、露光方法及び装置、並びにマスク
JP4630611B2 (ja) * 2004-09-01 2011-02-09 キヤノン株式会社 干渉計を備えた露光装置及び方法、並びに、デバイス製造方法
JP4769448B2 (ja) * 2004-10-08 2011-09-07 キヤノン株式会社 干渉計を備えた露光装置及びデバイス製造方法
JP2006278960A (ja) * 2005-03-30 2006-10-12 Canon Inc 露光装置
JP2006303196A (ja) * 2005-04-20 2006-11-02 Canon Inc 測定装置及びそれを有する露光装置
JP2006324311A (ja) 2005-05-17 2006-11-30 Canon Inc 波面収差測定装置及びそれを有する露光装置
JP2007165845A (ja) * 2005-11-18 2007-06-28 Nikon Corp 露光方法及び装置、並びにデバイス製造方法
JP2007192676A (ja) * 2006-01-19 2007-08-02 Canon Inc 投影露光装置

Also Published As

Publication number Publication date
KR20090006783A (ko) 2009-01-15
US20090015815A1 (en) 2009-01-15
US8294875B2 (en) 2012-10-23
TW200921284A (en) 2009-05-16
TWI403859B (zh) 2013-08-01
JP5063229B2 (ja) 2012-10-31
JP2009021450A (ja) 2009-01-29

Similar Documents

Publication Publication Date Title
KR100994029B1 (ko) 노광장치 및 디바이스의 제조방법
KR100674045B1 (ko) 조명장치, 노광장치 및 디바이스 제조방법
JP5159027B2 (ja) 照明光学系及び露光装置
US8520291B2 (en) Illumination optical system, exposure apparatus, and device manufacturing method
US7768625B2 (en) Photo detector unit and exposure apparatus having the same
JP2007180152A (ja) 測定方法及び装置、露光装置、並びに、デバイス製造方法
US7826044B2 (en) Measurement method and apparatus, and exposure apparatus
US8854605B2 (en) Illumination optical system, exposure apparatus, and device fabrication method
US6977728B2 (en) Projection exposure apparatus and aberration measurement method
JP3762323B2 (ja) 露光装置
JP2009032747A (ja) 露光装置及びデバイス製造方法
JP4599632B2 (ja) 照度分布の評価方法、光学部材の製造方法、照度測定装置、露光装置および露光方法
JP3673731B2 (ja) 露光装置及び方法
JP2009272387A (ja) 走査露光装置及びデバイス製造方法。
KR20200038413A (ko) 특히 마이크로리소그라피용 광학 시스템에서 요소의 노광 동안 노광 에너지를 결정하기 위한 디바이스
JPH05160003A (ja) 投影露光装置
JP5225433B2 (ja) 照明光学系及び露光装置
KR20090004699A (ko) 측정장치, 노광장치 및 디바이스 제조방법
US10222293B2 (en) Optical characteristic measuring method, optical characteristic adjusting method, exposure apparatus, exposing method, and exposure apparatus manufacturing method by detecting a light amount of measuring light
US20100177290A1 (en) Optical characteristic measuring method, optical characteristic adjusting method, exposure apparatus, exposing method, and exposure apparatus manufacturing method
JPH0922868A (ja) 投影露光装置及びそれを用いた半導体デバイスの製造方法
JPH1167660A (ja) 露光装置、該露光装置の製造方法及びデバイスの製造方法
JP2008153554A (ja) 測定装置及び当該測定装置を有する露光装置
JP2002118046A (ja) 露光装置およびマイクロデバイスの製造方法

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20131029

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20141028

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20151023

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20161025

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20171025

Year of fee payment: 8