KR100769949B1 - 폐쇄 냉각 회로를 구비한 풍력 에너지 설비 - Google Patents

폐쇄 냉각 회로를 구비한 풍력 에너지 설비 Download PDF

Info

Publication number
KR100769949B1
KR100769949B1 KR1020077005285A KR20077005285A KR100769949B1 KR 100769949 B1 KR100769949 B1 KR 100769949B1 KR 1020077005285 A KR1020077005285 A KR 1020077005285A KR 20077005285 A KR20077005285 A KR 20077005285A KR 100769949 B1 KR100769949 B1 KR 100769949B1
Authority
KR
South Korea
Prior art keywords
wind energy
energy installation
tower
air
cooling circuit
Prior art date
Application number
KR1020077005285A
Other languages
English (en)
Other versions
KR20070037654A (ko
Inventor
알로이즈 워벤
Original Assignee
알로이즈 워벤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=27213556&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=KR100769949(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from DE19932394A external-priority patent/DE19932394C5/de
Priority claimed from DE10000370A external-priority patent/DE10000370B4/de
Application filed by 알로이즈 워벤 filed Critical 알로이즈 워벤
Publication of KR20070037654A publication Critical patent/KR20070037654A/ko
Application granted granted Critical
Publication of KR100769949B1 publication Critical patent/KR100769949B1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/60Cooling or heating of wind motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/40Ice detection; De-icing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/10Stators
    • F05B2240/13Stators to collect or cause flow towards or away from turbines
    • F05B2240/131Stators to collect or cause flow towards or away from turbines by means of vertical structures, i.e. chimneys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/21Rotors for wind turbines
    • F05B2240/221Rotors for wind turbines with horizontal axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/20Heat transfer, e.g. cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/20Heat transfer, e.g. cooling
    • F05B2260/205Cooling fluid recirculation, i.e. after having cooled one or more components the cooling fluid is recovered and used elsewhere for other purposes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/60Fluid transfer
    • F05B2260/64Aeration, ventilation, dehumidification or moisture removal of closed spaces
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Abstract

본 발명은 손실을 줄이는 풍력 에너지 설비의 냉각 시스템을 제공하는 것을 지향한다. 이러한 목적을 위해서, 풍력 에너지 설비(1)는 전체적으로 또는 적어도 부분적으로 폐쇄된 냉각 회로를 가지는데, 상기 냉각 회로로부터 방출되는 열은 타워(3)의 수단 또는 풍력 에너지 설비(1)의 나셀(nacelle)(2)에 의해 방출된다.

Description

폐쇄 냉각 회로를 구비한 풍력 에너지 설비{WIND ENERGY FACILITY WITH A CLOSED COOLING CIRCUIT}
도 1은 풍속의 증가로 인해 바람의 최대 냉각 능력이 증가되는 것을 도시한 그래프,
도 2는 발전기의 전력과 풍속과의 관계를 도시한 그래프.
도 3은 본 발명의 일 실시예에 의한 풍력 에너지 설비를 도시한 도면.
도 4는 도 3의 A-A의 단면을 도시한 도면.
도 5는 도 3에 의한 냉각 회로의 변형된 실시예를 도시한 도면.
도 6은 본 발명의 추가적인 실시예에 의한 풍력 에너지 설비를 도시한 도면.
본 발명은 풍력 에너지 설비의 냉각 시스템에 관한 것으로서, 특히 상기 시스템의 손실을 최소화 하기 위한 완전하게 또는 적어도 부분적인 폐쇄 냉각회로를 구비하는 풍력 에너지 설비에 관한 것이다.
규칙적인 에너지의 변환은 열의 형태로 손실이 발생한다. 이것은 바람의 운동에너지가 풍력 에너지 설비의 발전기내에 전기적 에너지로 변환되고, 여기서 이 러한 손실들은 풍력 에너지 설비의 메인 구동 라인에서 규칙적으로 발생하며, 풍력 에너지 설비에 의해 발전되는 에너지의 매개 전압 네트워크(medium voltage network)로의 전기적 급전에서도 역시 적용된다. 이러한 목적으로, 전력 전자 부품들 예를 들어, 정류기 및/또는 변압기와 같은 정규 장치들 필요하다. 풍력 에너지 설비를 위한 나셀(nacelle)내에 설치되는 메인 구동 라인에서 상기 손실들은 로터 블레이드(rotor blade)를 조절하거나, 풍력 에너지 설비를 바람으로 회전시키는 기어들, 발전기내에서 또는 다른 콘트롤 유닛, 예를 들면, 수력 시스템이나 콘트롤 및 단속(regulation) 유닛등에서 압도적으로 발생한다. 에네르콘(Enercon)사의 E-66 모델과 같은 기어가 없는 풍력 에너지 설비에 있어서, 주요 손실들은 발전기내의 메인 구동라인 다시 말하면, 풍력 에너지 설비의 나셀(헤드)에서 발생된다.
전력 공급에 있어서, 손실들은 변압기(power transformer)에서 압도적으로 발생하며, 필요하다면 정류기(rectifier)와 같은 전력 전자부품들에서도 발생한다.
1.5MW급 풍력 에너지 설비에 있어서, 손실은 60 ~ 100kW의 범위가 될 수 있다. 지금까지 이러한 손실들은 팬에 의하여 주변으로 분산시켜 왔다. 이러한 방식으로, 예를 들어 발전기, 이와 상응하는 구성요소들을 냉각시키기 위하여 팬에 의해 외부로부터 냉기를 흡입하였다. 그후, 상기 가열된 공기는 외부로 배출된다.
물에 의해 발전기를 냉각시키는 것은 이미 고려되어져 왔으며, 가열된 물은 열 교환기(heat exchanger)에 의해 철회된다. 이러한 모든 공지된 해결법은 항상 외부로부터 필요한 많은 양의 공기라는 점이다. 특히, 이것은 외부의 공기가 습하거나, 해변지방처럼 높은 염분을 포함하고 있다면 불리하며, 냉각 요소들이 이 습한 공기와 높은 염분을 포함하는 공기에 노출된다. 특히, 이 문제는 해변가에 설치되는 풍력 에너지 설비나, 바닷물과 직접 접하는 근해 기술(offshore technology)에 있어서 극한 상황이 된다.
본 발명의 과제는 앞서 언급한 단점들은 방지하고, 손실을 줄일 수 있는 풍력 에너지 설비를 위한 냉각 장치를 제공하는데 있다.
이 과제는 청구항 1항의 양상에 의한 풍력 에너지 설비로 해결 된다. 좀더 상세한 기술이 종속항들에 개시되어 있다.
본 발명의 기본적인 개념은 풍력 에너지 설비를 위하여 본질적으로 폐쇄된 냉각 회로(closed cooling circuit)를 제공하는 것이며, 냉각을 위해 사용되는 외부의 공기가 전혀 또는 실질적으로 없다는 것이다. 이러한 방식으로 냉각 공기는 풍력 에너지 설비내에서, 나셀(nacelle)로부터 풍력 에너지 설비의 베이스(base) 또는 타워로 순환하며, 냉각제, 바람직하게는 공기에 의해 냉각중에 저장된 에너지는 풍력 에너지 설비의 타워에 의해 방출된다. 상기 풍력 에너지 설비의 타워는 항상 바람에 노출되는데, 상기 풍력 에너지 설비의 타워는 냉각 구성요소 또는 열 교환기로서 동작하며, 이것은 타워를 둘러싸고 있는 바람에 저장된 에너지를 분산시키게 된다.
본 발명에 의한 개념의 다른 장점은 타워가 열교환기로서, 그리고 풍력 에너지 설비의 하중 지지부(load-bearing part)로서 기능하여, 대략 -20℃ ~ -30℃, 나아가 -20℃ ~ -40℃의 추운 외부 온도에 대하여 내부로부터 가열된다는 점이다. 이러한 사실에 기인하여, 상기 풍력 에너지 설비는 여전히 동작할 수 있다. 지금까지의 기술상태에 의하면, 특별한 항냉 금속(cold-resistant steel)이 북스웨덴, 노르웨이, 핀랜드, 카나다와 같은 매우 추운 지방에서 사용되어 왔다.
냉각점 이하의 매우 낮은 외부 온도 때문에 바람직하게는 냉각 회로를 로터 블레이드의 가열과 조합하여 사용하는 것이 가능한데, 자체 에너지는 상기 로터 블레이드의 가열을 위하여 사용하지 않았다.
냉각제는 타워 자체(내부 또는 외부)내에 적어도 하나 이상의 공기 채널(air channel)이 형성된다는 사실에 기인하여 상기 타워에 의해 냉각되며, 가열된 공기는 이 채널을 통해 흘러서 적어도 부분적으로 타워벽에서 그 자체 에너지가 분산될 수 있다.
하나의 공기 채널은 타워가 이중벽 구조가 되도록 형성되는 것이 바람직하며, 상기 냉각 채널의 한 부분은 상기 타워의 하중 지지 벽(load-bearing wall)을 통해 형성된다.
일반적으로 스틸로 제조되는 풍력 에너지 설비의 타워를 냉각 구성요소 또는 열교환기로서 사용하는 것에 의해서, 모든 풍력 에너지 설비에 의해 요구되어지는 유리한 기능을 위해 사용된다. 가열된 공기는 스틸 타워의 외벽내에서 유동한다. 이 외벽은 예를 들어, 1.5MW급의 설비에 있어서 대략적으로 500m2의 매우 넓은 면적을 가지며, 따라서 매우 넓은 가열/냉각 면적을 제공하게 된다. 상기 타워의 주변을 둘러싸는 공기는 계속적으로 이 면적을 냉각하게 된다.
삭제
[실시예]
바람의 최대 냉각 능력(possible cooling power)은 풍속(wind speed)이 증가함에 따라 증가한다. 이 관계는 도 1에 도시되었다. 풍속이 증가하므로써 발전기 전력이 증가하고, 따라서 전력 손실 역시 증가하게 된다. 도 2에 발전기 전력과 풍속과의 관계를 도시하였다. 따라서, 상승하는 전력 손실은, 풍력 에너지 설비의 타워의 냉각 능력 역시 전력 손실의 증가에 따라 상승하기 때문에, 상대적으로 쉽게 방출될 수 있다.
도 3은 1.5MW급의 발전기 전력을 제공하는 에네르콘사의 E-66 모델에 의한 풍력 에너지 설비를 참조한 본 발명의 일 실시예이다. 도 3은 타워(3)에 의해 지지받는 헤드의 단부에 나셀(nacelle)(2)을 갖는 풍력 에너지 설비(1)의 단면도를 도시하고 있다. 이 타워는 지면에 닻(anchor)으로 고정되어 있다.(미도시 됨)
상기 나셀은 상기 풍력 에너지 설비의 메인 구동 라인(main driving line)을 위한 공간을 제공한다. 이 메인 구동 라인은 로터 블레이드(5)(윤곽에만 도시됨)를 구비한 로터(4)와, 마찬가지로 상기 로터에 연결되는 발전기(23)를 본질적으로 포함한다. 이 발전기는 발전기 로터(6)와 발전기 스테이터(7)를 갖는다. 만일 상기 로터, 따라서 상기 발전기 로터가 회전하면, 교류(또는 직류)와 같은 전기 에너지가 발전된다.
더욱이, 상기 풍력 에너지 설비는 변압기(transformer)(8)와, 마찬가지로 상기 변압기에 일련으로 연결되는 정류기(rectifier)(9)를 갖는데, 여기서 상기 정류기는 상기 변압기에 교류 또는 3상 전류(three-phase current)형태의 전기 에너지를 공급한다. 상기 변압기는 네트워크, 바람직하게는 매개 전압 내트워크(미도시 됨)로 상기 풍력 에너지 설비에 의해 발전된 에너지를 공급한다.
상기 타워는 도 3에 도시한 바와 같이, 이중벽의 형상을 갖도록 형성되고, 각 이중벽 영역은 냉각 채널이 된다. 이 냉각 채널에 있어서, 팬(몇 개의 팬이 제공될 수 있다)(10)이 형성되며, 이것은 상기 냉각 채널을 통해 공기를 유동시킨다.
도 4는 도 3의 A-A라인을 절단한 타워의 단면도를 도시하였다. 도시된 실시예에서는 두 개의 냉각 채널(11, 12)가 형성되었으며, 상기 타워는 일부 영역내에 이중벽을 갖는 형상으로 형성된다. 공기는 상기 발전기에 의해 가열되어 공기 채널(12)를 통해 기계(나셀)외부의 타워의 상부 영역으로 유동한다. 상기 가열된 공기는 스틸 타워의 내주면에 직접적으로 접한다. 이미 언급한 바와 같이, 상기 스틸 타워는 외벽(13)과 내벽(14)를 갖는, 대략적으로 50 ~ 80% 이상의 큰 길이에 걸친 이중벽 형상으로 형성되며, 그것은 냉각 채널(11)을 형성하게 되는 것이다. 여기서, 상기 냉각 채널내의 내벽(14)는 간단한 재질로써 형성될 수 있는데, 예를 들어, 합성수지나 섬유재질로 형성될 수 있다. 상기 발전기(23)로부터 가열된 공기는 상기 스틸 타워의 내부상에 길게 연장된 부분을 따라 유동한다. 이러한 방식으로, 타워 또는 그것의 스틸은 넓은 면적에 걸쳐 가열되고, 상기 공기는 냉각된다. 상기 타워의 저부에는 정류기(9)와 매개 전압 변압기(8)(또는/및 추가적인 전기적 장치들)가 존재한다. 이러한 구성요소들은 반드시 냉각되어야 한다. 상기 냉각된 발전기 공기는 일차적으로 상기 정류기로 안내된다. 여기서, 전력 전자부품들은 실질적으로 냉각된다. 더욱이, 상기 정류기로부터 빠져나온 공기는 변압기로 안내되고, 역시 냉각시킨다. 그후, 상기 공기는 두 번째 냉각 채널(12)을 통해 다시 기기 하우징(나셀)과 발전기로 상승하여 회귀한다.
따라서, 상기 냉각 회로는 폐쇄되어 있으며, 외부로부터 냉각된 공기를 도입할 필요가 없다.
모든 구성요소를 냉각하기 위하여, 특히 민감한 요소들을 냉각하기 위하여, 상기 풍력 에너지 설비는 항상 동일한 공기를 사용하게 된다.
필요하다면, 공기 필터와 추가적인 냉각 장치(예를 들어, 열 교환기)가 분명히 상기 냉각 채널상에 설치될 수 있다.
본 발명에 의한 장점은 발전기, 정류기, 변압기와 같은 민감한 요소에 높은 염분을 갖는 공기, 또는 습한 공기가 접촉하지 않는다는 사실에 있다. 따라서, 기기 하우징(나셀)와 타워내의 부식에 대한 위험이 급격이 감소하게 된다. 풍력 에너지 설비, 특히 타워내에 곰팡이나 균류등의 번식을 허용하지 않는다.
전체적으로, 전체 풍력 에너지 설비의 냉각을 위하여 이전보다 아주 최소한의 에너지가 필요로 하게되는데, (2차) 냉각 능력이 타워의 외부로부터 바람에 의해 제공되기 때문이다.
로터 블레이드내에 냉각 채널들을 형성하고, 이 냉각 채널들을 본 발명에 의한 냉각 회로에 연결하는 것에 의해서, 일차적으로 발전기에 의해 가열된 공기를 상기 로터 블레이드의 냉각 채널들로 안내하는 것이 가능하므로, 동절기 특히, 냉각점 근처의 기온동안에 상기 로터 블레이드는 제빙될 수 있다. 로터 블레이드내에 냉각 채널의 구성은 예를 들면 DE 195 28 862.9에 공지되어 있다.
기기 하우징내에 상기 냉각 채널의 구성은 상응하는 벽과 공기 안내 장치들을 통해 수행되며, 상기 공기를 발전기와 같은 요소들을 통과시키게 된다.
상기 타워의 냉각 능력이 충분하지 않다면, 예를 들어, 매우 더운 날들이라면, 종래의 열 교환기와 같은 추가적인 냉각 요소들이 상기 냉각 회로내에 사용 가능하다.
도 5는 도 3에 의한 냉각 회로의 변형된 실시예를 도시하였다. 여기서, 풍력 에너지 설비는 두 개의 독립되고 폐쇄된 냉각 회로(15, 16)를 갖게 되는데, 각각은 타워에 저장된 열을 분산하게 된다. 그러나 상기 두 개의 냉각 채널(15, 16)은 서로 분리되어 있으며, 도 3에 도시한 형상과는 다르다. 여기서, 각각의 독립적인 냉각 채널(15, 16)은 타워(3)내의 전환점에서 통로나 교차 채널을 갖게 되므로, 타워의 외부나 내부로 유동하는 공기는 타워의 대향되는 면을 통하게 되며, 따라서 발전기나 전력 전자부품들과 같은 냉각되기 위한 유닛들을 위하여 냉각된다.
도 6은 본 발명에 의한 풍력 발전 설비의 추가적인 실시예를 도시하였다. 여기서, 배출 튜브(17)와 같은 공기 채널이 타워 하부의 내측을 통해 안내된다. 이것은 역시 풍력 에너지 설비가 존재하도록 쉽게 개조될 수 있으며, 상기 타워(3)내에 설치된다.(매달린다.) 600kW의 파워 박스(power box)와 같은 파워 박스(18)로부터 생성된 가열된 공기는 이 배출 튜브(17)를 통해 타워 베이스로부터 상부로 안내되고, 상기 배출 튜브(17)로부터 타워내로 분출된다. 그곳으로부터, 가열된 공기는 타워벽에서 냉각된 후, 다시 하측으로 유동하며, 상기 파워 박스(18)에 에서 후드(19)에 의해 결합된 통풍장치(ventilating device)(20)에 의해 다시 흡입된다.(공기를 공급하기 위하여) 상기 배출 튜브(17)는 파워 박스(18)의 공기 출구에 직접적으로 연결되거나, 파워 박스(18)의 가열된 공기를 흡입하고, 상기 배출 튜브(17)내로 유입시키는 제 2통풍장치(21)가 있을 수 있다. 상기 배출 튜브는 바람직하게는 합성수지 재질로 형성시키기 때문에 매우 쉽게 구현가능하며, 매우 적은 무게를 갖기 때문에 풍력 에너지 설비에 그것을 부착하고 개조하는데 간편하다.
나셀(2)의 냉각효과를 증진시키기 위하여, 계속적으로 바람에 의해 둘러싸여져 있는 상기 나셀은 전체적으로 또는 부분적으로 바람직하게는 알루미늄과 같은 금속재질로 형성될 수 있고, 따라서 발전기 냉각을 증진시킬 수 있다. 여기서, 냉각 리브들(cooling ribs)과 같은 표면적 증가 구조를 나셀 안쪽에 설치하는 것 역시 유리할 수 있다.
삭제
최초 테스트에서 보여진 바와 같이, 도 6에 도시된 공기 채널을 사용하는 폐쇄된 냉각회로의 형상은 매우 효율적이며, 특히 비용면에서 효과적인데, 그 이유는 합성 수지 배출 튜브와 같은 공기 채널을 개발하기 위한 투자가 열 교환기에 비하여 매우 적게 들며, 그 유지 비용 또한 매우 적게 들기 때문이다. 또한, 냉각이 매우 효과적이다.
본 발명에 따르면, 종래기술의 상기 단점들은 방지하고, 손실을 줄일 수 있 는 풍력 에너지 설비를 위한 냉각 장치를 제공할 수 있다.

Claims (21)

  1. 완전히 폐쇄되거나 부분적으로 폐쇄된 냉각 회로를 갖는 풍력 에너지 설비로서, 상기 풍력 에너지 설비의 타워가 상기 냉각 회로에 포함되어 있고, 상기 냉각 회로로부터 방출되는 열은 상기 풍력 에너지 설비의 상기 타워에 의해 방출되는, 풍력 에너지 설비.
  2. 청구항 1에 있어서, 상기 타워는 하나 이상의 냉각 채널을 가지며, 상기 냉각 채널을 통해 냉각제가 유동하는, 풍력 에너지 설비.
  3. 청구항 2에 있어서, 상기 타워는 그 길이 방향의 축을 따라 2개 이상의 부분(section)에 걸쳐 이중벽 영역을 형성하는 외벽과 내벽으로 구성되고, 상기 이중벽 영역은 상기 냉각 채널을 형성하며, 상기 냉각 채널에 도입된 가열된 공기는 그 열을 상기 타워의 상기 외벽으로 방출하는, 풍력 에너지 설비.
  4. 청구항 2 또는 3에 있어서, 상기 냉각 채널은, 상기 냉각 회로 내에서 공기를 순환시키는 하나 이상의 팬에 의해 제공되는, 풍력 에너지 설비.
  5. 청구항 1 또는 2에 있어서, 상기 타워는, 상기 풍력 에너지 설비가 -20℃ ~ -40℃의 바깥 온도에서도 그 동작을 유지할 수 있도록, 상기 냉각 회로에 의해 가열될 수 있는, 풍력 에너지 설비.
  6. 청구항 1 또는 2에 있어서, 상기 풍력 에너지 설비는 2개 이상의 완전히 폐쇄되거나 적어도 부분적으로 폐쇄된 냉각 회로를 가지며, 하나의 냉각 회로는 상기 풍력 에너지 설비의 구동 라인을 냉각하는 데 이용되고, 다른 냉각 회로는 상기 풍력 에너지 설비의 전력 전자 부품인 전기적 장치를 냉각하는 데 이용되는, 풍력 에너지 설비.
  7. 청구항 6에 있어서, 상기 전력 전자 부품인 전기적 장치는 정류기, 변압기, 및 파워 박스 중 하나인, 풍력 에너지 설비.
  8. 청구항 1 또는 2에 있어서, 가열된 공기를 이송하는 하나 이상의 공기 라인 을 포함하는, 풍력 에너지 설비.
  9. 청구항 8에 있어서, 상기 공기 라인은 전력 전자 부품인 전기적 장치와 상기 풍력 에너지 설비의 구동 라인의 부분들 중 적어도 하나에 연결된 튜브에 의해 형성되는, 풍력 에너지 설비.
  10. 청구항 9에 있어서, 상기 전력 전자 부품인 전기적 장치는 정류기, 변압기, 및 파워 박스 중 하나인, 풍력 에너지 설비.
  11. 청구항 8에 있어서, 상기 공기 라인은 튜브에 의해 형성되고, 상기 튜브는, 상기 풍력 에너지 설비의 전력 전자 부품인 전기적 장치로부터 발생하는 가열된 공기가 상기 튜브를 통해 분출되도록 상기 타워의 하부에 형성되고, 가열된 공기는 튜브 출구에서 다시 배출되며, 이로써 상기 가열된 공기는 타워 벽에서 냉각된 다음 타워 베이스로 되돌아 유동할 수 있는, 풍력 에너지 설비.
  12. 청구항 11에 있어서, 상기 공기 라인은 상기 냉각 회로 내에서 공기를 순환시키는 하나 이상의 통풍장치에 의해 제공되는, 풍력 에너지 설비.
  13. 청구항 11에 있어서, 상기 전력 전자 부품인 전기적 장치는 정류기, 변압기, 및 파워 박스 중 하나인, 풍력 에너지 설비.
  14. 청구항 1 또는 2에 있어서, 상기 타워의 상부에는 나셀이 배치되며, 상기 나셀은 전체적으로 또는 부분적으로 금속으로 이루어진, 풍력 에너지 설비.
  15. 청구항 14에 있어서, 상기 나셀은 전체적으로 알루미늄으로 이루어진, 풍력 에너지 설비.
  16. 청구항 14에 있어서, 상기 나셀은, 상기 나셀의 표면적을 증가시키기 위한 냉각 리브를 전체적으로 또는 부분적으로 갖춘, 풍력 에너지 설비.
  17. 청구항 2에 있어서, 상기 냉각제는 공기인, 풍력 에너지 설비.
  18. 청구항 17에 있어서, 상기 공기는 전력 전자 부품인 장치 뿐만 아니라 메인 구동 라인을 냉각하기 위해 계속해서 이용되는, 풍력 에너지 설비.
  19. 청구항 18에 있어서, 상기 전력 전자 부품인 전기적 장치는 정류기, 변압기, 및 파워 박스 중 하나인, 풍력 에너지 설비.
  20. 청구항 1 또는 2에 있어서, 상기 풍력 에너지 설비의 구동 라인과, 상기 풍력 에너지 설비의 상기 구동 라인의 부분들과, 상기 풍력 에너지 설비의 전력 전자 부품인 전기적 장치, 중에서 적어도 하나가 상기 냉각 회로에 연결되어 있는, 풍력 에너지 설비.
  21. 청구항 19에 있어서, 상기 전력 전자 부품인 전기적 장치는 정류기, 변압기, 및 파워 박스 중 하나인, 풍력 에너지 설비.
KR1020077005285A 1999-07-14 2000-04-27 폐쇄 냉각 회로를 구비한 풍력 에너지 설비 KR100769949B1 (ko)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
DE19932394.1 1999-07-14
DE19932394A DE19932394C5 (de) 1999-07-14 1999-07-14 Windenergieanlage mit einem geschlossenen Kühlkreislauf
DE19936069 1999-07-30
DE19936069.3 1999-07-30
DE10000370A DE10000370B4 (de) 2000-01-07 2000-01-07 Windenergieanlage mit einem geschlossenen Kühlkreislauf
DE10000370.2 2000-01-07

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020027000534A Division KR20020021156A (ko) 1999-07-14 2000-04-27 폐쇄 냉각 회로를 구비한 풍력 에너지 설비

Publications (2)

Publication Number Publication Date
KR20070037654A KR20070037654A (ko) 2007-04-05
KR100769949B1 true KR100769949B1 (ko) 2007-10-25

Family

ID=27213556

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020027000534A KR20020021156A (ko) 1999-07-14 2000-04-27 폐쇄 냉각 회로를 구비한 풍력 에너지 설비
KR1020077005285A KR100769949B1 (ko) 1999-07-14 2000-04-27 폐쇄 냉각 회로를 구비한 풍력 에너지 설비

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR1020027000534A KR20020021156A (ko) 1999-07-14 2000-04-27 폐쇄 냉각 회로를 구비한 풍력 에너지 설비

Country Status (15)

Country Link
US (1) US6676122B1 (ko)
EP (1) EP1200733B2 (ko)
JP (1) JP3715238B2 (ko)
KR (2) KR20020021156A (ko)
AT (1) ATE250721T1 (ko)
AU (1) AU758953B2 (ko)
BR (1) BR0012432A (ko)
CA (1) CA2379161C (ko)
DE (1) DE50003844D1 (ko)
DK (1) DK1200733T4 (ko)
ES (1) ES2204573T5 (ko)
NZ (1) NZ516566A (ko)
PT (1) PT1200733E (ko)
TR (1) TR200200020T2 (ko)
WO (1) WO2001006121A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100987571B1 (ko) * 2008-09-01 2010-10-12 두산중공업 주식회사 풍력 터빈 발전기의 냉각 시스템
KR101334638B1 (ko) 2012-09-06 2013-12-02 삼성중공업 주식회사 공냉식 풍력 발전기 컨버터 및 공냉식 냉각 제어 방법

Families Citing this family (153)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7612999B2 (en) * 1998-09-18 2009-11-03 Flo Healthcare Solutions, Llc Mobile clinical workstation
DE10000370B4 (de) * 2000-01-07 2006-01-19 Wobben, Aloys, Dipl.-Ing. Windenergieanlage mit einem geschlossenen Kühlkreislauf
DE10119625B4 (de) * 2001-04-20 2004-04-08 Wobben, Aloys, Dipl.-Ing. Verfahren zur Steuerung einer Windenergieanlage
DE10139556A1 (de) * 2001-08-10 2003-02-27 Aloys Wobben Einrichtung zur Entfeuchtung eines gasförmigen Mediums und Windenergieanlage mit einer solchen Einrichtung
ITBZ20010043A1 (it) * 2001-09-13 2003-03-13 High Technology Invest Bv Generatore elettrico azionato da energia eolica.
DE10145414B4 (de) 2001-09-14 2013-09-12 Aloys Wobben Verfahren zur Errichtung einer Windenergieanlage, Windenergieanlage
EP1483502B1 (en) * 2002-03-08 2009-08-26 Ocean Wind Energy Systems Offshore wind turbine
ITMI20021439A1 (it) * 2002-06-28 2003-12-29 High Technology Invest Bv Impianto di generazione eolica ad alto rendimento energetico
DE10233947A1 (de) * 2002-07-25 2004-02-12 Siemens Ag Windkraftanlage
ITTO20020908A1 (it) 2002-10-17 2004-04-18 Lorenzo Battisti Sistema antighiaccio per impianti eolici.
EP1592886B1 (de) * 2003-02-01 2015-10-14 Wobben Properties GmbH Verfahren zur errichtung einer windenergieanlage sowie windenergieanlage
DE10362067B4 (de) * 2003-02-01 2016-09-29 Aloys Wobben Verfahren zur Errichtung einer Windenergieanlage, Windenergieanlage
SI1595076T1 (sl) * 2003-02-12 2012-10-30 Aloys Wobben Vetrna elektrarna z zbiralkami
CA2419222A1 (fr) * 2003-02-19 2004-08-19 4127030 Canada Inc. Eoliennes a axe vertical
DE10324228B4 (de) * 2003-05-28 2006-02-16 Rittal Gmbh & Co. Kg Kühlvorrichtung für eine Offshore-Windenergieanlage
US7431567B1 (en) * 2003-05-30 2008-10-07 Northern Power Systems Inc. Wind turbine having a direct-drive drivetrain
DE102004018758A1 (de) * 2004-04-16 2005-11-03 Klinger, Friedrich, Prof. Dr.-Ing. Turmkopf einer Windenergieanlage
US7217091B2 (en) * 2004-07-20 2007-05-15 General Electric Company Methods and apparatus for deicing airfoils or rotor blades
EP1794512A1 (en) * 2004-08-16 2007-06-13 Water Un Limited Apparatus and method for cooling of air
DE102004046700B4 (de) 2004-09-24 2006-08-17 Aloys Wobben Windenergieanlage mit einer Generatorkühlung
DE102004061391B4 (de) * 2004-12-21 2010-11-11 Repower Systems Ag Temperaturregelung in einer Windenergieanlage
US7633177B2 (en) * 2005-04-14 2009-12-15 Natural Forces, Llc Reduced friction wind turbine apparatus and method
DE102005029463B4 (de) * 2005-06-24 2015-10-29 Senvion Gmbh Turmentfeuchtung einer Windenergieanlage
JP2007002773A (ja) * 2005-06-24 2007-01-11 Fuji Heavy Ind Ltd 水平軸風車
CA2613556A1 (en) * 2005-07-01 2007-01-11 Vestas Wind Systems A/S A variable rotor speed wind turbine, wind park, method of transmitting electric power and method of servicing or inspecting a variable rotor speed wind turbine
KR20080049013A (ko) * 2005-07-15 2008-06-03 사우스웨스트 윈드파워, 인크. 풍력 터빈 및 제조 방법
US7443066B2 (en) * 2005-07-29 2008-10-28 General Electric Company Methods and apparatus for cooling wind turbine generators
ITBZ20050062A1 (it) * 2005-11-29 2007-05-30 High Technology Invest Bv Rotore a magneti permanenti per generatori e motori elettrici
US7946591B2 (en) * 2005-09-21 2011-05-24 Wilic S.Ar.L. Combined labyrinth seal and screw-type gasket bearing sealing arrangement
ITBZ20050063A1 (it) * 2005-11-29 2007-05-30 High Technology Invest Bv Pacco di lamierini per generatori e motori elettrici e procedimento per la sua attuazione
CA2627904C (en) * 2005-11-01 2013-08-20 Vestas Wind Systems A/S A method for prolonging and/or controlling the life of one or more heat generating and/or passive components in a wind turbine, a wind turbine, and use hereof
US8029239B2 (en) * 2005-11-18 2011-10-04 General Electric Company Rotor for a wind energy turbine and method for controlling the temperature inside a rotor hub
US7168251B1 (en) * 2005-12-14 2007-01-30 General Electric Company Wind energy turbine
US7427814B2 (en) * 2006-03-22 2008-09-23 General Electric Company Wind turbine generators having wind assisted cooling systems and cooling methods
ATE447671T1 (de) * 2006-03-25 2009-11-15 Clipper Windpower Technology Wärmeverwaltungssystem für eine windturbine
CN100337025C (zh) * 2006-04-19 2007-09-12 南京航空航天大学 采用蒸发循环冷却的风力发电机
US7621720B2 (en) * 2006-06-30 2009-11-24 General Electric Company Cooling device
CN101548098B (zh) * 2006-11-03 2012-07-04 维斯塔斯风力系统有限公司 风能转换器、风轮机基础、风轮机基础的方法及应用
MX2009003619A (es) * 2006-11-03 2009-06-04 Vestas Wind Sys As Sistema de calentamiento, turbina eolica o parque eolico, metodo para utilizar el calor excedente de uno o mas componentes de la turbina eolica y uso del mismo.
CN101553662A (zh) * 2006-11-03 2009-10-07 维斯塔斯风力系统有限公司 风能转换器及其方法和应用
EP2126351B1 (en) * 2007-01-31 2014-05-07 Vestas Wind Systems A/S Wind energy converter with dehumidifier
ES2350271T3 (es) * 2007-02-14 2011-01-20 Vestas Wind Systems A/S Sistema de recirculación de aire en un componente de una turbina eólica.
JP4796009B2 (ja) * 2007-05-18 2011-10-19 三菱重工業株式会社 風力発電装置
SE532463C2 (sv) * 2007-06-11 2010-01-26 Vertical Wind Ab Vindkraftaggregat, stödpelare för detsamma och användning av detsamma
US8186940B2 (en) * 2007-09-05 2012-05-29 General Electric Company Ventilation arrangement
JP4898621B2 (ja) * 2007-10-05 2012-03-21 三菱重工業株式会社 風力発電装置
US20090094981A1 (en) * 2007-10-12 2009-04-16 General Electric Company Wind turbine geothermal heating and cooling system
JP4796039B2 (ja) * 2007-11-22 2011-10-19 三菱重工業株式会社 風力発電装置
US7637023B2 (en) * 2007-12-14 2009-12-29 Toyota Motor Engineering & Manufacturing North America, Inc. Threaded stud position measurement adapter
US7997855B2 (en) * 2008-01-29 2011-08-16 General Electric Company Lubrication heating system and wind turbine incorporating same
DE102008012664A1 (de) * 2008-01-30 2009-08-06 Repower Systems Ag Windenergieanlage und ein Turm oder Turmsegment und eine Türzarge dafür
DE102008019271A1 (de) * 2008-04-16 2009-10-22 Kenersys Gmbh Windkraftanlage mit verbesserter Kühlluftführung
DE102009019453B3 (de) * 2008-05-13 2010-09-30 Suzlon Energy Gmbh Schaltschrank für eine Windturbine
ITMI20081122A1 (it) 2008-06-19 2009-12-20 Rolic Invest Sarl Generatore eolico provvisto di un impianto di raffreddamento
IT1390758B1 (it) 2008-07-23 2011-09-23 Rolic Invest Sarl Generatore eolico
WO2010010442A2 (en) 2008-07-23 2010-01-28 Clipper Windpower Technology, Inc. Wind turbine tower heat exchanger
JP5123780B2 (ja) * 2008-07-28 2013-01-23 三菱重工業株式会社 風力発電装置
PL2151833T3 (pl) * 2008-08-07 2013-08-30 Starkstrom Geraetebau Gmbh Układ transformatorowy
ES2435269T3 (es) * 2008-08-28 2013-12-17 Vestas Wind Systems A/S Filtrado de residuos en turbinas eólicas
KR101021333B1 (ko) * 2008-09-01 2011-03-14 두산중공업 주식회사 풍력터빈의 나셀 냉각 시스템
US8047774B2 (en) * 2008-09-11 2011-11-01 General Electric Company System for heating and cooling wind turbine components
DE102008050848A1 (de) 2008-10-08 2010-04-15 Wobben, Aloys Ringgenerator
IT1391939B1 (it) 2008-11-12 2012-02-02 Rolic Invest Sarl Generatore eolico
IT1391770B1 (it) 2008-11-13 2012-01-27 Rolic Invest Sarl Generatore eolico per la generazione di energia elettrica
US7748946B2 (en) * 2008-12-09 2010-07-06 General Electric Company Cooling system and method for wind turbine components
CN102245897B (zh) * 2008-12-17 2014-12-03 湘电达尔文有限责任公司 包括冷却回路的风力涡轮机
JP5148517B2 (ja) * 2009-01-07 2013-02-20 三菱重工業株式会社 風力発電装置
IT1392804B1 (it) * 2009-01-30 2012-03-23 Rolic Invest Sarl Imballo e metodo di imballo per pale di generatori eolici
IT1393937B1 (it) * 2009-04-09 2012-05-17 Rolic Invest Sarl Aerogeneratore
DE102009017325A1 (de) 2009-04-16 2010-10-21 Avantis Ltd. Generatorkühlanordnung einer Windenergieanlage
DE102009017586A1 (de) * 2009-04-19 2010-10-28 Timber Tower Gmbh Turm für eine Windkraftanlage
IT1393707B1 (it) 2009-04-29 2012-05-08 Rolic Invest Sarl Impianto eolico per la generazione di energia elettrica
IT1394723B1 (it) 2009-06-10 2012-07-13 Rolic Invest Sarl Impianto eolico per la generazione di energia elettrica e relativo metodo di controllo
ES2377696B1 (es) * 2009-07-06 2013-02-14 Gamesa Innovation & Technology S.L. Sistema de aportación de aire filtrado al interior de un aerogenerador.
IT1395148B1 (it) * 2009-08-07 2012-09-05 Rolic Invest Sarl Metodo e apparecchiatura di attivazione di una macchina elettrica e macchina elettrica
JP5455508B2 (ja) * 2009-08-28 2014-03-26 三菱重工業株式会社 風力発電用風車
US20100277869A1 (en) * 2009-09-24 2010-11-04 General Electric Company Systems, Methods, and Apparatus for Cooling a Power Conversion System
US7837126B2 (en) 2009-09-25 2010-11-23 General Electric Company Method and system for cooling a wind turbine structure
US20110103950A1 (en) * 2009-11-04 2011-05-05 General Electric Company System and method for providing a controlled flow of fluid to or from a wind turbine blade surface
IT1397081B1 (it) 2009-11-23 2012-12-28 Rolic Invest Sarl Impianto eolico per la generazione di energia elettrica
EP2507512B1 (en) * 2009-12-01 2016-06-01 Vestas Wind Systems A/S A wind turbine nacelle comprising a heat exchanger assembly
JP2011117381A (ja) * 2009-12-04 2011-06-16 Mitsubishi Heavy Ind Ltd 風力発電装置
JP5318740B2 (ja) * 2009-12-11 2013-10-16 株式会社日立製作所 洋上風車
IT1398060B1 (it) 2010-02-04 2013-02-07 Wilic Sarl Impianto e metodo di raffreddamento di un generatore elettrico di un aerogeneratore, e aerogeneratore comprendente tale impianto di raffreddamento
AU2010201650A1 (en) * 2010-02-08 2011-08-25 Mitsubishi Heavy Industries, Ltd. Wind generator
IT1399201B1 (it) 2010-03-30 2013-04-11 Wilic Sarl Aerogeneratore e metodo di rimozione di un cuscinetto da un aerogeneratore
IT1399511B1 (it) 2010-04-22 2013-04-19 Wilic Sarl Generatore elettrico per un aerogeneratore e aerogeneratore equipaggiato con tale generatore elettrico
DE102010030472A1 (de) * 2010-06-24 2011-12-29 Repower Systems Ag Rotorblattenteisung
JP5511549B2 (ja) * 2010-06-30 2014-06-04 三菱重工業株式会社 風力発電装置
JP5463218B2 (ja) * 2010-06-30 2014-04-09 三菱重工業株式会社 風力発電装置
CN101956668A (zh) * 2010-09-01 2011-01-26 广东明阳风电产业集团有限公司 共用水冷散热方式的风力发电机组
DE102010040911A1 (de) * 2010-09-16 2012-03-22 Aloys Wobben Magnus-Rotor
US9077212B2 (en) * 2010-09-23 2015-07-07 Northern Power Systems, Inc. Method and apparatus for rotor cooling in an electromechanical machine
US8038398B2 (en) * 2010-10-06 2011-10-18 General Electric Company System and method of distributing air within a wind turbine
US7963743B1 (en) * 2010-10-16 2011-06-21 Winter Curt B Wind turbine with improved cooling
JP2012102692A (ja) 2010-11-12 2012-05-31 Hitachi Industrial Equipment Systems Co Ltd 風力発電用変圧器及び風力発電用変圧器を搭載する風力発電設備
US8421264B2 (en) * 2010-11-14 2013-04-16 Asia Vital Components Co., Ltd. Wind power generation device for electronic equipment
CN102128139A (zh) * 2011-01-26 2011-07-20 南京航空航天大学 利用塔筒壁冷却的风力发电机
CA2826392C (en) * 2011-02-04 2016-03-22 Hitachi, Ltd. Cooling system for a wind turbine generator system
JP5284386B2 (ja) * 2011-02-21 2013-09-11 株式会社日立産機システム 風力発電設備
ITMI20110377A1 (it) 2011-03-10 2012-09-11 Wilic Sarl Macchina elettrica rotante per aerogeneratore
ITMI20110378A1 (it) 2011-03-10 2012-09-11 Wilic Sarl Macchina elettrica rotante per aerogeneratore
ITMI20110376A1 (it) 2011-03-10 2012-09-11 Wilic Sarl Aerogeneratore raffreddato a fluido
ITMI20110375A1 (it) 2011-03-10 2012-09-11 Wilic Sarl Turbina eolica
EP2505830B1 (en) * 2011-03-31 2016-08-03 Alstom Wind, S.L.U. Wind turbine
US9127648B2 (en) * 2011-04-19 2015-09-08 Gamesa Innovation & Technology, S.L. System to cool the nacelle and the heat generating components of an offshore wind turbine
DK2520797T3 (en) * 2011-05-03 2016-01-25 Siemens Ag Direct powered wind turbine with a thermal control system
US8961130B2 (en) * 2011-06-03 2015-02-24 Gamesa Innovation & Technology, S.L. Cooling and climate control system and method for an offshore wind turbine
JP5912518B2 (ja) * 2011-06-22 2016-04-27 株式会社日立産機システム 静止機器
JP5492832B2 (ja) 2011-07-25 2014-05-14 株式会社日立産機システム 変圧器及び風力発電システム
CN102307459B (zh) * 2011-09-09 2014-05-21 广东明阳风电产业集团有限公司 一种散热装置
EP2568170B1 (en) * 2011-09-09 2014-05-07 Areva Wind GmbH Wind turbine tower with circumferential air guiding tower wall reinforcement
EP2587052A1 (en) * 2011-10-25 2013-05-01 Ewt Ip B.V. Wind turbine with cooling system
CN103178657A (zh) * 2011-12-20 2013-06-26 北京金风科创风电设备有限公司 风力发电机散热结构
CN102493927B (zh) * 2011-12-23 2014-09-24 新疆金风科技股份有限公司 风力发电机组的散热结构
US20130202421A1 (en) * 2012-02-08 2013-08-08 Clipper Windpower, LLC. Passive Liquid Cooling System for Inverters Utilized for Wind Turbine Applications
US20130214538A1 (en) * 2012-02-16 2013-08-22 Clipper Windpower, Llc Air Cooled Power Feeders for Wind Turbine Applications
JP5872316B2 (ja) * 2012-02-20 2016-03-01 株式会社東芝 密閉型発変電設備
JP5864307B2 (ja) * 2012-03-02 2016-02-17 株式会社日立製作所 ダウンウィンドロータ型風力発電装置
IN2012DE00735A (ko) * 2012-03-14 2015-08-21 Gamesa Innovation & Tech Sl
US9484615B2 (en) * 2012-05-03 2016-11-01 Telefonaktiebolaget L M Ericsson (Publ) Mast arrangement radio network node and related method
CN102705179B (zh) * 2012-06-08 2014-05-14 华锐风电科技(江苏)有限公司 微正压发生装置
ITMI20121304A1 (it) 2012-07-25 2014-01-26 Wilic Sarl Rotore di una macchina elettrica rotante per aerogeneratore e aerogeneratore comprendente tale rotore
ITMI20121301A1 (it) 2012-07-25 2014-01-26 Wilic Sarl Segmento attivo di una macchina elettrica rotante per aerogeneratore, macchina elettrica rotante, e aerogeneratore
KR101368774B1 (ko) * 2012-09-06 2014-03-05 삼성중공업 주식회사 타워 내부에 냉각부가 설치된 해상용 풍력 발전기
DK2806542T3 (en) * 2013-05-22 2016-12-19 Siemens Ag Airflow Control Device
CN103277156B (zh) * 2013-06-18 2014-12-24 国家电网公司 新型混合动力发动机
DK2832992T3 (en) 2013-07-30 2018-01-22 Siemens Ag Wind turbine comprising a cooling system
EP2846038A1 (en) * 2013-09-05 2015-03-11 Siemens Aktiengesellschaft Cooling system of a wind turbine
CA2929898C (en) * 2013-11-11 2018-06-26 Vestas Wind Systems A/S Heating installation arrangement
DK2933481T3 (en) 2014-04-15 2019-04-15 Areva Wind Gmbh Air duct for wind turbines, wind turbines, method for producing an air duct and method for upgrading a wind turbine with an air duct
US9657719B2 (en) 2014-06-16 2017-05-23 General Electric Company Ventilation arrangement
MA40556A (fr) * 2014-09-02 2016-03-10 Lm Wp Patent Holding As Système de dégivrage pour une pale d'éolienne
DE102015206478A1 (de) * 2015-04-10 2016-10-13 Wobben Properties Gmbh Windenergieanlage mit Flüssigkeitskreislauf und Komponenten dafür
DE102015006307B4 (de) * 2015-05-16 2021-03-18 Audi Ag Ladevorrichtung zum induktiven Laden eines elektrischen Energiespeichers eines Kraftfahrzeugs und Verfahren zum Betreiben einer Ladevorrichtung
DE102015006313B4 (de) * 2015-05-16 2021-03-18 Audi Ag Ladevorrichtung zum induktiven Laden eines elektrischen Energiespeichers eines Kraftfahrzeugs und Verfahren zum Betreiben einer Ladevorrichtung
DE102015006308B4 (de) * 2015-05-16 2022-01-27 Audi Ag Ladevorrichtung zum induktiven Laden eines elektrischen Energiespeichers eines Kraftfahrzeugs und Verfahren zum Betreiben einer Ladevorrichtung
DE102015217035A1 (de) 2015-09-04 2017-03-09 Wobben Properties Gmbh Windenergieanlage und Verfahren zum Steuern einer Kühlung einer Windenergieanlage
EP3144528B1 (en) * 2015-09-15 2018-03-14 Siemens Aktiengesellschaft Wind turbine with a brake dust collector
CN105545616A (zh) * 2016-01-28 2016-05-04 西安盾安电气有限公司 一种兆瓦级内转子直驱永磁风力发电电机内循环冷却系统
CN105553182B (zh) * 2016-03-02 2018-09-14 新疆金风科技股份有限公司 一种风力发电机系统及流体输运装置
CN105863953B (zh) * 2016-03-24 2019-01-11 北京金风科创风电设备有限公司 风力发电机叶片、风力发电机散热装置及风力发电机组
US20170370349A1 (en) * 2016-06-27 2017-12-28 General Electric Company System and Method for Adjusting Environmental Operating Conditions Associated with Heat Generating Components of a Wind Turbine
CN106640554B (zh) * 2016-12-12 2019-01-08 北京金风科创风电设备有限公司 风力发电机组散热系统、散热方法及风力发电机组
CN107605666B (zh) * 2017-09-11 2019-01-11 北京金风科创风电设备有限公司 具有抑制涡激振动功能的围护结构及抑制涡激振动的方法
CN107387335B (zh) * 2017-09-11 2018-10-23 北京金风科创风电设备有限公司 风力发电设备、塔筒及抑制塔筒塔影效应的方法
US10978943B2 (en) * 2019-04-03 2021-04-13 General Electric Company System and method for auto-ramping and energy dump for a superconducting wind turbine generator
EP3719313A1 (en) * 2019-04-05 2020-10-07 Siemens Gamesa Renewable Energy A/S Cooling arrangement for a wind turbine
US10954922B2 (en) 2019-06-10 2021-03-23 General Electric Company System and method for cooling a tower of a wind turbine
CN110905741B (zh) * 2019-12-17 2021-03-12 湘电风能有限公司 一种风力发电机组主轴承和轮毂的冷却和加热系统
CN112081721B (zh) * 2020-08-24 2021-08-06 江苏财经职业技术学院 液冷式风力发电机组及其温度控制系统
CN112682277B (zh) * 2020-12-25 2021-10-12 湖南拓天节能控制技术股份有限公司 一种风机增发电量统计方法和除冰系统
CN112832961B (zh) * 2021-02-05 2022-03-08 中国华能集团清洁能源技术研究院有限公司 一种风电机组叶片气动除冰系统及其工作方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3721290A (en) * 1971-07-30 1973-03-20 T Butler Tower with rotated cooling assembly
DE2417290A1 (de) * 1974-04-09 1975-10-23 Kraftwerk Union Ag Kraftwerk im innenraum eines kuehlturmes
US4068131A (en) * 1975-10-20 1978-01-10 Jacobs Marcellus L Wind electric plant
US4031173A (en) * 1976-03-25 1977-06-21 Paul Rogers Efficiency and utilization of cooling towers
DE3523028A1 (de) * 1985-06-27 1987-01-02 Interatom Sonnenenergiebetriebene ortsfeste leuchte
DE3527951A1 (de) * 1985-08-03 1987-02-12 Walter Mueller Windkraftanlage mit verdichter und druckluftspeicherung
DE19528862A1 (de) 1995-08-05 1997-02-06 Aloys Wobben Verfahren zum Enteisen eines Rotorblattes einer Windenergieanlage sowie zur Durchführung des Verfahrens geeignetes Rotorblatt
DE19714512C2 (de) * 1997-04-08 1999-06-10 Tassilo Dipl Ing Pflanz Maritime Kraftwerksanlage mit Herstellungsprozeß zur Gewinnung, Speicherung und zum Verbrauch von regenerativer Energie
JP2001526357A (ja) * 1997-12-08 2001-12-18 シーメンス アクチエンゲゼルシヤフト 風力発電設備及び風力発電設備の発電機の冷却方法
DE19802574A1 (de) 1998-01-23 1999-03-11 Siemens Ag Windkraftanlage und Verfahren zum Betrieb einer Windkraftanlage
DE19816483C2 (de) * 1998-04-14 2003-12-11 Aloys Wobben Windenergieanlage
EP1185790B1 (en) 1999-05-07 2004-10-27 NEG Micon A/S An offshore wind turbine with liquid-cooling
JP4276363B2 (ja) * 2000-07-31 2009-06-10 株式会社小松製作所 ファン装置の騒音低減機構に用いられる多孔質吸音材の成形方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WO-A-99/30031

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100987571B1 (ko) * 2008-09-01 2010-10-12 두산중공업 주식회사 풍력 터빈 발전기의 냉각 시스템
KR101334638B1 (ko) 2012-09-06 2013-12-02 삼성중공업 주식회사 공냉식 풍력 발전기 컨버터 및 공냉식 냉각 제어 방법

Also Published As

Publication number Publication date
AU758953B2 (en) 2003-04-03
CA2379161A1 (en) 2001-01-25
NZ516566A (en) 2003-05-30
WO2001006121A1 (de) 2001-01-25
KR20070037654A (ko) 2007-04-05
ES2204573T3 (es) 2004-05-01
ATE250721T1 (de) 2003-10-15
CA2379161C (en) 2005-04-05
TR200200020T2 (tr) 2002-06-21
EP1200733A1 (de) 2002-05-02
PT1200733E (pt) 2004-02-27
DK1200733T3 (da) 2004-01-26
ES2204573T5 (es) 2012-05-31
KR20020021156A (ko) 2002-03-18
EP1200733B1 (de) 2003-09-24
JP3715238B2 (ja) 2005-11-09
BR0012432A (pt) 2002-04-02
US6676122B1 (en) 2004-01-13
DE50003844D1 (de) 2003-10-30
DK1200733T4 (da) 2012-04-10
EP1200733B2 (de) 2012-02-15
AU4403200A (en) 2001-02-05
JP2003504562A (ja) 2003-02-04

Similar Documents

Publication Publication Date Title
KR100769949B1 (ko) 폐쇄 냉각 회로를 구비한 풍력 에너지 설비
US9228566B2 (en) Wind turbine comprising a cooling circuit
US7161260B2 (en) Wind power installation with separate primary and secondary cooling circuits
KR101021333B1 (ko) 풍력터빈의 나셀 냉각 시스템
US8058742B2 (en) Thermal management system for wind turbine
EP2518315B1 (en) Wind turbine power generating facilities
ES2400140T3 (es) Turbina eólica con soplante de velocidad variable directamente conectada
KR20150039852A (ko) 풍력 터빈의 나셀을 위한 통합형 냉각 시스템
KR101721372B1 (ko) 수상전력변환장치가 적용된 수상태양광발전시스템
TW201525273A (zh) 風力發電設備
CN102094763A (zh) 海洋风车
US20070229205A1 (en) Arrangemetn for Cooling of Components of Wind Energy Installations
JP6383562B2 (ja) 風力発電設備
CN108026900B (zh) 风能设备和用于控制风能设备的冷却的方法
JP6230424B2 (ja) 風力発電装置
JP6074033B2 (ja) 風力発電設備
EP2846038A1 (en) Cooling system of a wind turbine
JP2018029429A (ja) 発電システム

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121009

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20131011

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20141013

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20151013

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20161011

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20181010

Year of fee payment: 12